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Abstract (EN)Management of river water quality is important for mitigating eutrophication. After thewater quality improvements since the 1990s, this trend might have turned in the upperVltava catchment after 2010: Concentrations of the four optically inactive water qualityparameters ammonia nitrogen, nitrate nitrogen, five-day biochemical oxygen demand, andtotal phosphorus might have increased, as results presented in this thesis suggest. All fourparameters follow a land-use and ecosystem degradation gradient in the upper Vltava,increasing in concentration from the headwaters to the lower parts of the research area. In this study, five different types of algorithms (multiple stepwise linear regression, partialleast  squares  regression,  support  vector  regression,  random  forest  regressor,  andbackpropagation  artificial  neural  network)  were  performed  on  harmonized  Landsat-Sentinel-2-data (HLS), in order to predict AN, NN, BOD5, and TP. Such machine learningmethods can be useful tools for estimating the four named parameters, but they still bear alot of challenges, especially given the often narrow streambed. Further improvements at allsteps  –  from input  data  selection,  over  model  optimization,  to  model  selection  –  arerequired for ensuring accurate and robust predictions. The presented results indicate thatthis goal can be achieved. In most cases, machine learning algorithms clearly outperformedsimpler  linear  models.  Especially the method of  the random forest  regressor  can oftenestimate a big fraction of variance, while also producing comparatively low errors. Of all four water quality parameters, NN was most effectively-predicted, with R2 = 0.555by a random forest regressor, whereas AN is the most challenging with a maximum R 2 =0.156,  also  by  a  random  forest  regressor.  BOD5  and  TP  prediction  also  remainschallenging, but some models returned relatively strong metrics, indicating great potentialfor sound predictions of these parameters as well. 
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Abstract (CZ)Řízení kvality říční vody je důležité pro zmírnění eutrofizace. Po zlepšení kvality vody od90.  let  20.  století  se  tento  trend  mohl  v  povodí  horní  Vltavy  po  roce  2010  obrátit:Koncentrace  čtyř  opticky  neaktivních  ukazatelů  jakosti  vody  -  amoniakálního  dusíku,dusičnanového dusíku,  pětidenní biochemické spotřeby kyslíku a celkového fosforu -  semohly zvýšit, jak naznačují výsledky uvedené v této práci. Všechny čtyři parametry sledujív horní Vltavě gradient využití půdy a degradace ekosystémů, přičemž jejich koncentracese zvyšuje od pramenné oblasti k dolním částem výzkumného území. V této studii bylo na harmonizovaných datech Landsat-Sentinel-2 (HLS) provedeno pětrůzných  typů  algoritmů  (vícenásobná  kroková  lineární  regrese,  regrese  částečnýchnejmenších  čtverců,  regrese  s  podpůrnými  vektory,  regresor  náhodného  lesa  a  uměláneuronová síť  s  zpětným šířením)  za  účelem předpovědi  AN, NN,  BOD5 a TP.  Tytometody  strojového  učení  mohou  být  užitečnými  nástroji  pro  odhad  čtyř  jmenovanýchparametrů, ale stále s sebou nesou mnoho problémů, zejména vzhledem k často úzkémukorytu toku. Pro zajištění přesných a spolehlivých předpovědí je nutné další zdokonalováníve všech krocích - od výběru vstupních dat, přes optimalizaci modelu až po výběr modelu.Prezentované  výsledky  naznačují,  že  tohoto  cíle  lze  dosáhnout.  Ve  většině  případůalgoritmy strojového učení  jednoznačně  překonaly  jednodušší  lineární  modely.  Zejménametoda regresoru náhodného lesa dokáže často odhadnout velkou část rozptylu a zároveňprodukuje relativně nízké chyby. Ze všech čtyř parametrů kvality vody byl nejefektivněji předpovídán NN s R2 = 0,555pomocí regresoru náhodného lesa, zatímco AN je nejnáročnější s maximálním R2 = 0,156,rovněž pomocí regresoru náhodného lesa. Predikce BSK5 a TP zůstává rovněž náročná, aleněkteré modely vrátily poměrně silné metriky, což naznačuje velký potenciál pro spolehlivépredikce i těchto parametrů. 
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1. Introduction:1.1 The Challenge of EutrophicationEutrophication,  especially  of  aquatic  ecosystems,  as  a  consequence  of  anthropogenicinterferences with the phosphorus and nitrogen cycles is widely considered to be one of thegreat  environmental  challenges  of  the  present  (Carpenter  et  al.,  1998;  Carpenter  andBennett, 2011; Conley et al., 2009; Rockström et al., 2009; Smith et al., 2006). This isbecause it poses threats to ecosystem integrity and biodiversity loss  (Maúre et al., 2021;Wang et al., 2021), safe water supplies, contributes to soil degradation  (Vitousek et al.,1997), and even contributes to the release of the potent greenhouse gases nitrous oxide(Vitousek et al., 1997) and methane (Beaulieu et al., 2019). Coupled with climate change,eutrophication  is  also  a  main  driver  of  oxygen  depletion  in  freshwater  and  marineecosystems (Brush et al., 2020; Foley et al., 2012; Pitcher et al., 2021). The global annualeconomic damages due to eutrophication amount multiple billion US-dollars, as researchfrom China (Le et al., 2010), the United Kingdom (Pretty et al., 2003), and the UnitedStates (Dodds et al., 2009) shows. N  and  P  are  mainly  introduced  to  the  environment  via  the  application  of  artificialfertilizers used in agriculture, by wastewater, by atmospheric deposition, and by variousurban activities  (Carpenter et al., 1998; Selman and Greenhalgh, 2009). Another majornitrogen source is the combustion of fossil fuels (Gruber and Galloway, 2008; Selman andGreenhalgh, 2009). Phosphorus enters the environment also via the use and production ofdetergents (Mainstone and Parr, 2002). Overall, non-point sources (such as surface runofffrom agriculturally used land) tend to be the more dominant pathways of eutrophication,while point sources (such as wastewater treatment plants) often play a lesser role (Kakadeet  al.,  2021),  although  they  are  still  of  great  importance,  e.g.,  due  to  the  highbioavailability of P from point sources (Mainstone and Parr, 2002). This is also true for the Czech Republic, where the annual P surface runoff ranges between0.1 and 9.98 kg m−2 in the Vltava basin; for the upper Vltava, maximum values of 4.08 kgkm−2 year−1 have been reported (Rosendorf et al., 2016). 
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This P input is not considered to be a significant source of inland water eutrophication(Rosendorf et al., 2016), yet monitoring of the trophic state of the river remains important.Nitrogen  input  into  the  Vltava  is  considered  critical  in  25% of  the  cases  studies  byRosendorf  et  al.  (2016).  Evidence  suggests  that  the  trophic  state  is  critical  for  theassemblage of fish communities in the Vltava River, with different nitrogen compoundsand oxygen demand having a negative influence on fish diversity, while total phosphorus(TP) might support some isotopic niche area species (Horka et al., 2023). On a global and regional scale, rivers play a special role in the context of eutrophication.Yet, research of nutrient and eutrophication studies on river has lagged behind, comparedto lentic (i.e., lacustrine/standing water) and coastal and marine ecosystems (Smith, 2003).By draining their catchments, rivers take up large amounts of various substances from theenvironment, including potential pollutants such as nitrogen and phosphorus compounds(Beusen et al., 2005; Houser and Richardson, 2010). Subsequently, the rivers transport the accumulated compounds to the seas (Smith, 2003)and the oceans where they can cause further problems, such as promoting acidification(Cai et al., 2011), hypoxia and anoxia of coastal regions (Howarth et al., 2011), mainly dueto harmful “blooms” of phytoplankton, usually cyanobacteria (Anderson et al., 2002). Buteutrophication of lotic systems, i.e., of streams and rivers, is not only a concern because ofnutrient transport, but also because of the detrimental effects it has on these water bodiesthemselves. The  formerly  widespread  belief  according  to  which  lotic  systems  are  always  nutrient-saturated an that accordingly any algal development is suppressed by light limitation andshort water residence times has been refuted  (Smith, 2003) by manifold observations ofextensive river eutrophication (Köhler and Gelbrecht, 1998; Soana et al., 2024; Yan et al.,2019; Zhang et al., 2015). Additionally, the trophic state of a river is not only relevant forthe ecology of the river itself, but also for that of all wetlands fed by it  (Mainstone andParr,  2002).  Considering  the  underappreciated  relevance  of  rivers  in  the  context  ofeutrophication,  researchers  from  the  U.S.  Geological  survey  recently  demanded  theprioritization of river basins for nutrient studies (Tesoriero et al., 2024). 
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Although it has been argued by scholars that only control of phosphorus was needed fortackling the detrimental effects of eutrophication (Schindler, 1977; Schindler et al., 2008),effective mitigation of nutrient pollution depends on controlling input of both nutrientelements, P and N (Basu et al., 2022; Conley et al., 2009). This is mainly because while Pis indeed the main element causing eutrophication of inland waters (Schindler et al., 2008),N is considered to be the main cause of coastal and marine eutrophication, at least in mosttemperate systems  (Howarth and Marino, 2006).  Regardless of the implemented controlmeasures,  their  effectivity  and  efficiency  fundamentally  depends  on  the  availableknowledge on nutrient pollution and surface water quality. Such knowledge can be obtained by an extensive network of field sampling and sampleanalysis infrastructure. Despite the relevance of this approach, relying on it alone comeswith three major downsides (Sagan et al., 2020): 1.) It is connected with high costs andefforts; 2.) The results can only represent the quality at the given point from which asample was taken at the given time. But water quality parameters are not homogeneouslydistributed in space and time. Hence, knowledge about their distribution in the area isrequired.  3.)  Not  all  potentially  relevant  points  can  be accessed  easily  and in  a non-invasive way. To address these requirements, remote sensing methods have been successfully applied formonitoring various water quality parameters since the 1970s  (Anding and Kauth, 1970;Gholizadeh et al.,  2016; Kondratyev et al.,  1998; Topp et al.,  2020; Zhu et al.,  2022).However,  since  many water-quality  parameters  –  including  concentrations  of  dissolvedphosphorus and of the inorganic nitrogen species in water – do not show straightforwardinteractions with the electromagnetic radiation emitted by the sun, common knowledge-driven approaches for estimating these parameters are often insufficient. Instead, data-driven approaches based on machine-learning algorithms  (Reichstein et al.,  2019) haveproven to be suitable in such contexts (Dey and Vijay, 2021; Dong et al., 2023; Gao et al.,2024; Peterson et al., 2020; Pu et al., 2019; Sagan et al., 2020; Tan et al., 2023; Tian et al.,2024). 
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1.2 Introduction to Selected Water Quality Parameters in RiversWater quality parameters that tend not to directly influence the optical characteristicsmeasured by remote-sensing (RS) instruments are called non-optically active water qualityparamters  (Guo et al., 2021; Sagan et al., 2020), many of which are directly linked toeutrophication: These parameters include the different forms of inorganic nitrogen, totalphosphorus, and oxygen as dissolved oxygen and the (bio)chemical oxygen demand (e.g.,Fu et al., 2022; Gao et al., 2024). 1.2.1 Reactive inorganic Nitrogen: Ammonia and Nitrate NitrogenAnnual  human  production  of  reactive  nitrogen  (i.e.,  all  N  species  except  N2)  largelyexceeds natural production (Razon, 2018; Xia et al., 2018). Reactive inorganic N is presentin rivers mainly in the forms of ammonia nitrogen (AN) and nitrate nitrogen (NN). Ammonia nitrogen, also known as ammoniacal nitrogen, includes both, N in unionizedammonia (NH3), as well as in cationic ammonium (NH4+) (Boyd, 2015; Lin et al., 2019). Invirtually  all  natural  waters,  ammonium is  the dominant species  in  which ammonia Noccurs  due to  a  pH- and temperature  dependent equilibrium  (Lin  et  al.,  2019).  Withincreasing pH and temperature, the ammonia proportion gets higher (Boyd, 2015). In somerivers, NH4+ is considered the main pollutant (Xia et al., 2018). Ammonia N is transformed to nitrate-N by nitrification, mostly under aerobic conditions(Canfield et al., 2010). Like most N transformations in riverine ecosystems, this process isgenerally  mediated  by  bacteria  (Canfield  et  al.,  2010).  Nitrification  is  usually  achemoautotrophic process, in which ammonium is oxidized to nitrate (NO3-), with nitrite(NO2-)  as  an intermediate,  by nitrifying bacteria,  using CO2 as  carbon source for  cellgeneration  (Vymazal,  2007).  The  oxidation  of  ammonium to  NO2-  is  done  by  strictlyaerobic chemolithotrophs (e.g.,  Nitrosomonas), whereas the second step (the oxidation ofnitrite to nitrate) is executed by facultative chemolithotrophs (e.g., Nitrobacter) that usenitrite and organic compounds as energy sources for growth. Due  to  its  comparatively  high  thermodynamic  stability  under  common  environmentalconditions, nitrate is the most abundant form of nitrogen in rivers, usually accounting formore than 80% of dissolved inorganic nitrogen (DIN)  (Meybeck, 1982; Shuiwang et al.,2000; Xia et al., 2018). 4



Little  is  known about  how and to  which  extent  rivers  contribute  to  nitrogen  loss  atdifferent spatial and temporal scales (Boyer and Howarth, 2002) and about other nitrogentransformations in rivers and streams (Xia et al., 2018). Known hotspots of the different Ntransformation  processes  include  sediment-water  interfaces,  riparian  zones  and  eveninterfaces  between  suspended  particles  and  water  (Xia  et  al.,  2018).  Also  dams  canstrongly influence river nitrogen transformations (Akbarzadeh et al., 2019). While  having  well-documented  adverse  effects  on  biodiversity  and  ecosystem integrity(Baxter, 1977; Wu et al., 2019), dams and impoundments act as net nitrogen sinks on aglobal scale, as denitrification and nitrogen burial usually exceed N fixation (Akbarzadehet al., 2019). 1.2.2 Total PhosphorusIn most rivers, the limiting major nutrient to plant growth is phosphorus, which can beindicated by the N/P ratio (Mainstone and Parr, 2002). Phosphorus concentrations and dynamics in all riverine ecosystems are largely determinedby P loads of tributaries, catchment geology and (hydro)geochemistry, climate, channelhydrology and morphology,  land use  and environmental  change  (Records  et  al.,  2016;Withers  and  Jarvie,  2008).  Artificially  enhanced  loads  of  P  pose  a  risk  to  riverineecosystems, as P enrichment can shift competitive balances between primary producers,including both, phytoplankton and higher plants (Mainstone and Parr, 2002). Increased P levels in faster flowing rivers (such as the upper Vltava) promote increasedgrowth rates of epiphytic diatoms and periphyton, like green algae, while leading to adecrease of shallow-rooted submerged plants, whereas in  slower-moving riverine systems,higher  P  concentrations  lead  to  growth  of  phytoplankton  along  the  water  column,increasing light competition (Withers and Jarvie, 2008). The detrimental direct effects ofP-induced eutrophication are generally considered to be lower in riverine ecosystems thanin  lakes  and  reservoirs,  as  the  production  of  suspended  algae  per  mass  unit  of  P  issignificantly lower in rivers (Smith, 2003; Soballe and Kimmel, 1987). Elevated riverine P concentrations in sediments and the water column can in principleaffect riverine plant communities in four different ways (Mainstone and Parr, 2002):
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1. Increasing plant growth rates, and thus standing stock.2. Promoting higher plant species adapted to higher nutrient levels and thus alteringecological composition/balance.3. Promoting epiphytic, epibenthic, filamentous and planktonic algae, thus decreasinglight availability for higher plants.4. Reducing root depth, making plants more sensitive to being ripped out by currents.Throughout the growing season, continuous point sources of P (mainly sewage treatmentplants) can be highly important for bioavailable P in rivers (Mainstone and Parr, 2002). Itis thus important to reduce P flows from these sources during the growing season andmonitor their dynamics throughout the year. When point sources of P are under control,diffuse sources gain relevance for the trophic state of any water body. Diffuse P sources(mainly agricultural runoff) contribute substantially to P levels in river sediments, wherethey can be used by benthic algae, and by rooted plants. The highest loads of P fromdiffuse sources occur when animal excretions or soluble fertilizers are washed off.While acknowledging the relevance of P in riverine sediments, the analysis presented inthis thesis can only focus on the TP concentration in the water column.1.2.3 Five-day biochemical oxygen DemandHigher concentrations of N and P can contribute to higher microbial pollution; in turn,the  biochemical  oxygen demand (BOD) can be  enhanced by microbial  pollution.  Thismeasure is therefore also critical for water quality assessment and control. It is a measureof the amount of dissolved oxygen in a given water sample that microorganisms consumein a certain amount of time (Boyd, 2015). Most commonly, BOD is determined for a five-day-period (BOD5). This parameter is estimated in a bioassay procedure, where samplesare placed in a constant temperature chamber at 20±1°C for five days. At the beginningand  the  end  of  the  period,  dissolved  oxygen  is  instrumentally  measured  (Delzer  andMcKenzie, 2003). A detailed description of the method is given by Delzer and McKenzie(2003). Pristine rivers usually have BOD5 concentrations below 1 mg L-1. Concentrationsbetween 2 and 8 mg L-1 indicate medium pollution; higher values are considered severepollution (Li and Liu, 2019). 
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As BOD represents the amount of dissolved oxygen (DO) in water, higher BOD levelsreduce DO concentrations  (Penn et al.,  2009; Whitehead et al.,  2009). BOD5 levels inwater bodies are projected to increase globally, due to climate change (Whitehead et al.,2009). 1.3 State of  the Art:  Utilizing Remote Sensing and Machine Learning forWater Quality PredictionWater management in general, and specifically eutrophication mitigation, usually dependson environmental models (Records et al., 2016). Traditional approaches largely depend onextensive field measurements that are costly, tedious, labor-intensive, and strongly limitedin spatial and temporal resolution (Ahmed et al., 2022; Gao et al., 2024; Guo et al., 2021;Li et al., 2022).Utilizing remote sensing data for water-quality prediction and modeling can be a remedyto these shortcomings that has been applied since the 1970s (Gao et al., 2024; Wrigley andHorne, 1974). However, using conventional, knowledge-based linear and nonlinear modelingapproaches on satellite imagery is not suitable for many – especially optically inactive –water-quality parameters: They usually fail to model the complex nonlinear relationshipsbetween the satellite data and the concerning water quality parameters (Niu et al., 2021). Recent  advances  in  data-driven  methodologies  can  help  limiting  this  issue:  Machine-learning approaches have proven to outperform classical modeling strategies and can oftengive robust estimates of different water quality parameters. Remote sensing-based methodsare well-established for the estimation and prediction of  optically active water qualityparameters, such as chlorophyll-a concentration, total suspended solids, colored dissolvedorganic  matter  or  turbidity  (Sagan et  al.,  2020).  This  also  reflects  in  the  amount  ofscientific publications using machine learning techniques to estimate these optically activeparameters from remote sensing data (Kupssinsku et al., 2019; Leggesse et al., 2023; Magriet al., 2023; Maier and Keller, 2018; Ruescas et al., 2018; Singhal et al., 2019). Research on machine learning algorithms being used for estimating optically non-activewater quality parameters from remote sensing data is still relatively scarce, but the bodyof highly promising published literature is steadily growing (e.g., Gao et al., 2024; Guo etal., 2021; Li et al., 2022; Niu et al., 2021; Peterson et al., 2020; Sagan et al., 2020). 7



More literature has been published on lakes than on rivers. Research focusing on rivers,mostly tries to estimate water quality parameters in the lower reaches, as due to theirgreater width they are generally easier to monitor with the available spatial solutions ofremote  sensing  satellites.  In  the  following,  results  of  relevant  literature  are  presented,including assessment of model performances on the testing dataset, based on the coefficientof determination (R2) and, where possible, the root-mean-square error (RMSE) in mg L-1.Sagan et  al.  (2020) reviewed and analyzed recent  advances  in  ML methodology usingremote  sensing  for  water  quality  prediction.  The  authors  further  analyzed  200  waterquality datasets, showing great potentials of ML and RS for water quality prediction ofoptically active parameters,  but challenges for inactive parameters.  The study presentsvarious different ML models for predicting a multitude of optically active and inactivewater quality parameters, the latter including nitrate nitrogen and phosphate phosphorus(PO4-P). Some of the algorithm types are also used in the present work. The models  bySagan et al. use data from 9 sapling locations in a river and 34 points in lakes in CentralIllinois, USA. Partial least squares regression (PLSR) was unsuitable for estimating PO4-P(R2 = 0.02; RMSE = 0.25), while turning out quite useful for estimating NN (R2 = 0.26;RMSE = 0.32). Support vector regression (SVR) performed slightly better (PO4-P: R2 =0.00; RMSE = 0.25. NN: R2 = 0.29; RMSE = 0.31). A deep neural network approach alsoperformed similarly for PO4-P (R2 = 0.00; RMSE = 0.25) and NN (R2 = 0.29; RMSE =0.31).Another study by the same research group utilized surface reflectance data from a virtualconstellation of Landsat-8 and Sentinel-2 for constructing ML models in order to estimatevarious optically active (e.g.,  fluorescent dissolved organic  matter  fDOM) and inactive(DO, electric conductivity) water quality parameters  (Peterson et al., 2020). The studywas performed in four lakes within the Great Rivers Ecological Observatory (GREON) inthe USA. Model performance for optically active parameters was generally excellent: Adeep neural network model estimated the concentration of fDOM with R2 = 0.926 andRMSE (µg L–1) = 0.863. A DNN algorithm performed also very well for DO estimationwith R2 = 0.894 (RMSE (mg L–1) = 1.806 mg L–1). Relatively strong performances for DOestimation were also shown by SVR (R2 = 0.805; RMSE = 2.141) and multiple linearregression (R2 = 0.440; RMSE = 3.309) algorithms. 
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Despite minor difficulties of the models to predict DO concentrations in the higher ranges,the algorithms presented in the study are of great value for predicting this non-opticallyactive measure of water quality. Relatively  good  model  performances  for  estimating  non-optically  active  water  qualityparameters have been reported in a recent paper by Gao et al. (2024) who used machinelearning  imagery  on  Sentinel-2  imagery  in  various  water  bodies  in  China  (Zhejiangprovince, West Lake, Xin’an River, Fuchun River, Lan River, Changtan Reservoir). SVR was relatively weak on TP prediction (R2 = 0.10; RMSE = 0.057), while showingdecent results for total nitrogen (TN. R2 = 0.31; RMSE = 1.164) and DO (R2 = 0.36;RMSE = 1.99). It was outperformed by random forest regressors for TP (R2 = 0.39; RMSE= 0.047) and TN (R2 = 0.42; RMSE = 1.068), but not for DO (R2 = 0.34; RMSE = 1.02).K-nearest neighbour neural networks (KNN) also quite good performance for TP (R2 =0.35; RMSE = 0.048), TN (R2 = 0.33: RMSE = 1.151), and DO (R2 = 0.35; RMSE =2.00). While the authors themselves judge the model performances for DO and TP asrelatively “poor”, they still conclude that the obtained models are helpful for obtainingwater quality information and can be a relevant reference for water management in theZhejiang Province.Another study from China, estimating non-optically active water quality parameters in thetropical Nandu River, reported very strong performances of some algorithms for estimatingTN, AN, and TP from Landsat-8 imagery (Li et al., 2022). 25 Landsat images were usedand 67 water samples analyzed. TN was predicted with R2 = 0.2 by SVR (RMSE = ), R2= 0.49 by RFR, and R2 = 0.45 by an artificial neural network (ANN). AN estimates weresubstantially less accurate with R2 = 0.07 for SVR, R2 = 0.24 for RFR, and R2 = 0.44 forANN. TP estimates were very strong for SVR (R2 = 0.59) and ANN (R2 = 0.67), and stillquite useful for RFR (R2 = 0.21). It is remarkable that RFR was outperformed by simpleregression trees for TP (R2 = 0.24). Yet, it performed a lot worse for the other investigatedparameters. The clearly study shows the suitability of machine learning algorithms formonitoring water quality at in the tropical river at relatively low cost, without dependingon a deep understanding of the underlying environmental processes. Water bodies in China are arguably the geographical focus of most published researchusing ML methodologies for estimating optically inactive water quality parameters from9



RS imagery. Guo et al. (2021) applied machine learning algorithms to Sentinel-2 imageryin  order  to  obtain  information  on   TP,  and  TN concentrations  and chemical  oxygendemand (COD) in an urban lake in an industrial park in Tianjin, China. The authorscompared the performances of SVR, RFR, and NN models. For each target parameter, adifferent model type gave the best estimates. Some models showed excellent performances:TP was estimated with = 0.94, with a root mean square percentage error (RMPSE) of16.80% by a back-propagation ANN. An RFR algorithm gave the best predictions for TN (R2 = 0.88; RMPSE = 18.39%). CODwas  best  predicted  by  SVR (R2 =  0.86;  RMPSE  =  18.75%).  Compared  to  the  MLalgorithms, multiple linear regression performed quite poorly. While having substantiallylower – but still considerably high – R2 values, the errors of the linear models are a lothigher  for  the  three  parameters,  TP (R2 = 0.65;  RMPSE = 30.65),  TN (R2 = 0.76;RMPSE = 36.24), and COD (R2 = 0.65; RMPSE = 71.65). The outstanding performances of the models by Guo et al.  (2021) in comparison to thepreviously discussed studies can likely be attributed to the following factors: Water qualityin lentic systems is a lot more stable than in lotic systems (Schwoerbel and Brendelberger,2022). Samplings were performed within four hours of a satellite overpass, when there wasno  cloud  cover  above  the  lake  and  no  considerable  plant  cover  on  the  lake  surface.Furthermore, the model predictions might have profited from the advantages of Sentinel-2data over other similar products, such as its relatively high spatial, spectral and temporalresolution. The quasi-ideal setup of the study by Guo et al.  (2021) is not realistic forwater-quality monitoring in most water bodies, let alone in near-natural systems. The  described  studies  demonstrate  the  suitability  of  combining  remote  sensing  andmachine  learning  methods  for  estimating  different  optically  inactive  water  qualityparameters in inland water bodies. They also reflect on current challenges and limitationsof such methodologies. The still relatively small amount of relevant publications points toa  vast,  under-explored  area  for  scientific  inquiry,  with  the  potential  to  substantiallyimprove water quality management. At the time of writing the present thesis, no RS-based ML models with optically inactivetarget  parameters  in  European  inland  waters  have  been  found.  Moreover,  the  upperreaches of river networks have received only little scientific attention in this context. 10



The reasons for that can only be speculated about, but it might be due to the challenges offaster flow and thus higher transport rates of dissolved and suspended matter, due to thechallenges of narrow streambeds, often covering only fraction of satellite pixels, and due tolower interest because of smaller amounts of water and a lower potential for accumulationof pollutants (Schwoerbel and Brendelberger, 2022) than downstream. Anyhow, it is still highly desirable to have robust models for estimating water quality –including optically inactive parameters – in headwaters and upper reaches of rivers, due totheir pivotal importance for biogeochemical connectivity between terrestrial and aquaticecosystems  and  their  control  function  for  transporting  nutrients  and  pollutantsdownstream  (Withers  and  Jarvie,  2008).  From  this  virtually  unilateral  relationshipbetween upper and lower reaches of rivers, it follows that upstream pollution mitigationand  conservation  measures  can  automatically  result  in  protection  of  downstreamenvironments. 1.4 Identifying Appropriate Remote Sensing DataThe performance of statistical models largely depends on the quality of the used data.Besides using suitable and reliable water quality data, it is  critical  to select the mostsuitable remote sensing data product.Two fundamentally different categories of RS data are available for the purpose of waterquality estimations: Airborne and satellite-based data  (Richards, 2013). Airborne remotesensing methodologies can be useful for water quality analysis and have been successfullyused  as  input  data  for  ML-based  estimation  of  non-optically  active  water  qualityparameters (e.g., Niu et al., 2021). They are highly adaptable to the purposes of individualanalyses and come with the great advantage that detrimental atmospheric effects on thedata quality are reduced. Yet,  airborne data come with multiple major disadvantages,making them unsuitable for the scopes of the present thesis. Unlike satellite-derived data,they are very costly, resource-demanding, and often labor-intensive to obtain. In contrast,satellite-based RS data are readily available  in  good temporal  resolution,  covering theentire earth surface over a long period of time (Myers and Miller, 2005).
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Both described ways of data acquisition can rely on active or passive methods, wherepassive refers to the measurement of radiation emitted or reflected by the observed objects,and active to the measurement of time delay between actively emitted radiation back-scattered  or  reflected  by  the  observed  objects  (e.g.,  LiDAR).  Passive  remote  sensingsystems have some distinctive advantages over active ones, making them more suitable formost river water quality monitoring tasks: Passively obtained RS data are available incomparatively high spatial and temporal resolutions. Their reliance on reflection of sunlight further allows to obtain spectral fingerprints thatcan be related to different aspects of water quality.As expounded, passively obtained data from earth observation satellites are most suitablefor  the  aims  of  the  thesis.  Suitable  satellites  include  Landsat-5,  Landsat-8,  and  theSentinel-2 satellite pair, for which different data products are available. 1.4.1 Landsat (LS)Landsat-5 (LS-5) was a remote sensing satellite, launched by NASA, orbiting earth fromMarch 1984 until June 2013 (Riebeek, Holly, 2013). A surface-reflectance dataset (USGSLandsat 5 Level 2, Collection 2, Tier 1) is offered by the USGS (Crawford et al., 2023) andreadily available for Google Earth Engine, covering the period from 16. March 1984 to 05.May 2012 (Google, 2024a). Landsat-5 was succeeded by Landsat-8 (LS-8), which enteredservice on 30. March 2013. Like its predecessor, it has a spatial resolution of 30 m. LS-8was  constructed  in  a  way  that  allows  continuity  from  LS-5  by  ensuring  sufficientconsistency of geometry, calibration, and spectral band properties (USGS, 2012). 1.4.2 Sentinel (S)The  Sentinel-2  (S-2)  earth  observation  satellite  pair  was  launched  by  the  CopernicusProgramme of the European Space Agency 23. June 2015 (Sentinel-2 A) and 7. March2017 (Sentinel-2 B). S-2 has a spatial resolution of 10 m on three bands – nine times higherthan that of LS-5 and LS-8. Most remaining bands resolve at 20 m. The spectral resolutionand the amount of  spectral bands are also higher than those of the corresponding LSsatellites. 
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Due to the constellation as a satellite pair, and the orbit of the satellites being adapted toEurope, S-2 has a revisit time of less than five days in Northern mid latitudes (Claverie etal., 2018).1.4.3 Harmonized Landsat Sentinel-2 Surface Reflectance DataThe harmonized Landsat and Sentinel-2 (HLS) surface reflectance dataset is a productoffered by the NASA, providing virtual constellation data LS-8 and S-2  (Claverie et al.,2018). The data product HLS L30 offers data with 1. atmospheric correction, 2. geometricresampling  and  geographic  registration,  and  3.  Bidirectional  Reflectance  DistributionFunction normalization (BRDF) (Claverie et al., 2018). This adjustment follows the methodology described by Roy et al. (2017, 2016) and aims tonormalize the view angle effects, with the sun in zenith angle largely intact (Claverie et al.,2018; Ju et al., 2020). The spatial resolution and pixel geometry of the Sentinel-2 data isadjusted to that of the Landsat-8 data, necessarily coming with a downward correction ofthe spatial resolution of many bands of the Sentinel-2 data to 30 m (Claverie et al., 2018).The virtual constellation of the satellites allows a mean revisit time of as little as ~3.5 daysin mid latitudes (Claverie et al., 2018).While S-2 has great technological advantages due to its comparatively great spatial andspectral resolution, it cannot compete with the temporal availability and resolution of theHLS L30 product, which is thus used for the analysis presented and discussed in furtherchapters.1.5 Relevant Machine Learning Problems and AlgorithmsAs elaborated, conventional statistical methods usually fail to capture the highly nonlinearrelationship between non-optically active water quality parameters and surface reflectanceof water bodies, as measured by satellites. Machine learning algorithms, in contrast, areoften able to account for those nuances, leading us to the questions: What is ML and whatspecifically differs such algorithms from conventional ones?A useful working definition, helping to answer both questions, is given by El Naqa andMurphy (2015, p. 4):
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“A machine learning algorithm is a computational process that uses input datato  achieve  a  desired  task  without  being  literally  programmed  (i.e.,  “hardcoded”) to produce a particular outcome. These algorithms are in a sense “softcoded”  in  that  they automatically  alter  or  adapt  their  architecture throughrepetition (i.e., experience) so that they become better and better at achievingthe desired task.”Being a branch of Artificial Intelligence (AI), a central problem of ML algorithms is one,known as the fundamental credit assignment problem. It can be paraphrased as: Whichmodifiable  components  of  a  learning  system are  responsible  for  its  success  or  failure?(Minsky, 1961; Schmidhuber, 2015). ML algorithms should aim for providing the best possible answer to such questions. This,however,  is  difficult,  due  to  the  great  amount  of  learning  parts  and  their  often  inthemselves complex interrelations. Closely related to the fundamental assignment problemis the so-called curse of dimensionality. 1.5.1 Overfitting and Dimensionality ReductionThe course of dimensionality was famously introduced by Bellman (1984, p. ix):“In the first place, the effective analytic solution of a large number of evensimple equations as, for example, linear equations, is a difficult affair. Loweringour sights, even a computational solution usually has a number of difficulties ofboth gross and subtle nature. Consequently, the determination of this maximumis quite definitely not routine when the number of variables is large. All thismay be subsumed under the heading ‘the curse of dimensionality.’”In simpler terms, this means that a high number of input features can cause gross andsubtle problems for solving even simple mathematical equations in a modeling problem(Bellman,  1984).  While  additional  dimensions  can  add  valuable  information  to  aninvestigated space of variables, they also add additional complexity to the space, thusmaking accurate representation in a model more difficult. Hence, it is important to adaptthe number of model inputs to the number and quality of observations, and to engineerand select suitable feature combinations. 
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The challenges posed by the curse of dimensionality make it relevant to reflect on someaspects of dimensionality reduction, feature engineering, and other preparation steps forconstructing the ML models.1.5.2 Feature Selection and RegularizationOne of the most important considerations in ML modeling is: Which variables are relevantfor achieving the goal of good prediction  (De Mol et al., 2009)? Various algorithms aregenerally used to achieve this goal of feature selection, including LASSO (Least AbsoluteShrinkage  and  Selection  Operator)  regression  (L1 regularization),  ridge  regression  (L2regularization), and Elastic Nets which are mathematical combinations of the previouslymentioned algorithms (De Mol et al., 2009; Zou and Hastie, 2005). Another problem addressed by many of these algorithms is that of regularization. Likefeature  selection,  regularization  serves  the  purpose  of  dimensionality  reduction.Regularization  reduces  variance  by  shrinking  the  estimated  coefficients  towards  zero,relative to the least square estimates (James et al., 2023). A model with all p  parametersis fitted in these shrinkage approaches. Some of the input coefficients may be estimated tobe zero, depending on the type of regularization, and therefore shrinkage methods can alsofunction as methods for variable selection (James et al., 2023). L1 regularization penalizesregression  coefficients  proportional  to  their  absolute  values  .  Doing  so,  the  LASSOalgorithm often shrinks coefficients to exactly zero and can thus be effective for featureselection, especially in high-dimensional feature spaces  (Tibshirani,  1996). The  L2 ridgepenalty encourages the sum of the squares of the parameters to be small (towards but notexactly 0) by penalizing regression coefficients proportional to their squared values  (Ng,2004).  It can further be useful to balance penalties from L1 and L2 in an elastic net,resulting in a tradeoff between their benefits (De Mol et al., 2009). L1, L2, and combinedregularization can directly be implemented into neural networks and partial least squareregression (Pedregosa et al., 2011; TensorFlow Developers, 2024). Before  regularization,  other  preparatory  steps  should  be  considered.  Techniques  ofnormalization  (transformation  of  data  to  specific  range,  e.g.,  0-1  or  –1-1)  andstandardization (e.g., Z-score standardization: transformation to dataset with mean = 0and standard deviation = 1)  are powerful  tools  for  equalizing feature importance and
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increasing  model  performance  (Peshawa  and  Rezhna,  2014;  Santos  and  Papa,  2022).Combined with other techniques, they can also reduce the risk of overfitting (Santos andPapa, 2022). 1.5.3 Further Model OptimizationsIn order to avoid overfitting, the initial dataset is split into a training dataset including80% of the data, and a test dataset containing the remaining 20%. This is done for allmodels. However, adapting modifiable components of the model until the best fit on thetest dataset is reached still poses a risk of overfitting  (Pedregosa et al., 2011). A thirdpartition of the initial dataset, known as validation set, can help to mitigate this so-calledleak of data, which comes with the downside of reducing the number of observations intraining or test set (Pedregosa et al., 2011). Therefore, the approach of k-fold cross-validation is used for all models constructed for thepresent thesis. In this procedure, the training set is split into k smaller sets of equal size(“folds”). k  − 1 of  the k folds are then used on the training dataset.  The remainingsubsample is used for calculating an error (Rodríguez et al., 2010). Other types of cross-validation are also commonly used (Yadav and Shukla, 2016) but not further consideredhere.For some types of algorithms, including partial least squares regression and the randomforest regressor, a different approach called bootstrapping can be beneficial  (Egbert andPlonsky, 2020; Ljumović and Klar, 2015). This procedure is based on repeated randomsampling  with  replacement  from  the  original  dataset  (Egbert  and  Plonsky,  2020).Appropriate  models  can  then  be  trained  using  these  bootstrap-samples  (Mooney  andDuval,  2006).  The approach is considered especially useful  for small  and non-normallydistributed samples . For random forest algorithms, oftentimes similar generalization errorscan be expected from cross-validation and bootstrapping approaches (Ljumović and Klar,2015). Combining  cross-validation  and  bootstrapping  algorithms  can  be  a  powerful  approach(Kohavi,  1995; Tibshirani,  1996; Tsamardinos et al.,  2018).  This could for instance beachieved by performing cross-validation on further divided bootstrap samples drawn fromthe original dataset. 
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The  combination  allows  evaluation  of  model  stability  and  uncertainty  while  alsocontributing to hyperparameter optimization (Tsamardinos et al., 2018). Hyperparameters are model parameters that are not derived from the input data, butadditional components of the model itself (Bakhteev and Strijov, 2020). such as the kernelfunction  of   SVR  or  weights  in  artificial  neural  networks  or  other  algorithms.  Thepredictive power of an ML model can be largely enhanced by identifying optimal values ofthese parameters. Their adaptation with that goal is called hyperparameter optimizationor hyperparameter tuning (Bardenet et al., 2013).1.5.4 Multiple stepwise linear regression (MSLR)Multiple  stepwise  linear  regression  is  a  linear  modeling  technique  for  estimating  therelationship between multiple input features and one dependent variable. There  are  two  different  approaches  in  MSLR:  a)  forward  selection  and  b)  backwardelimination  (Breaux,  1967).  In  the  more  commonly  used  forward  selection  method,predictors are iteratively added to an initially empty model, beginning with the one mostcorrelated with the target parameter  (Breaux, 1967; Zhan et al., 2013). This procedurecontinues until new feature addition does not significantly improve the model performance.Backward elimination in contrast, starts with all input features included in the model, andis followed by iterative variable removal,  until the model does not further improve itsperformance (Breaux, 1967). Different criteria (e.g., p-value, Akaike Information CriterionAIC) can be used for predictor selection and performance comparison between the models(Keith, 2019). Analogous to other model types, the performance of the final model shouldbe evaluated based on criteria such as the goodness of fit. It is recommendable to usecross-validation to mitigate the risk of overfitting (Keith, 2019). Multiple linear regression algorithms can come with some serious constraints for variousapplications in the environmental sciences and have been criticized for being unsuitable insome cases due to poor performances (Grossman et al., 1996). Caution is imperative whenusing such models  .  Despite  this,  many cases,  they have been applied successfully forenvironmental  modeling  problems  (Liu  et  al.,  2021).  useful  and  widely  applied  forcomparing performances of ML algorithms to linear models  (e.g., Guo et al., 2021; Lattand Wittenberg, 2014).
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1.5.5 Partial least squares regression (PLSR)In partial least squares regression algorithms are based on constructing so-called latentvariables, also known as components, capturing the maximum variance in predictors andresponse variables (Geladi and Kowalski, 1986; Tobias, 1995). The components serve thepurpose  of  obtaining  a  low-dimensional  predictor  space  by  maximizing  the  covariancebetween predictors  and a response variable  (Abdi,  2010;  Pedregosa et al.,  2011).  Thisapproach is similar to that of PCA, which aims to maximize the variance only within thespace of the predictors (Pedregosa et al., 2011). Iteratively the components explaining thegreatest  covariance  are  extracted,  while  adding  a  new  orthogonal  component  at  eachiteration  (Abdi, 2010). Predictors are weighted in a way that maximizes the covariancebetween input and output variables. Cross-validation is commonly performed to reduceoverfitting.Due  to  its  approach  of  component  of  constructing  components  and  thus  increasingcovariance, PLSR can handle great degrees of multicollinearity among the input features(Abdi,  2010;  Pedregosa  et  al.,  2011).  PLSR can be  performed  on  multiple  dependentvariables simultaneously. It is a powerful, flexible and versatile transformer and regressorfor many learning problems involving. Unlike MSLR, PLSR is often considered a machinelearning algorithm, despite its roots in linear regression. PLSR is a supervised algorithm,meaning that the model is trained on a training dataset, meaning each input data point isassociated with a corresponding target output (Berry et al., 2020). 1.5.6 Support Vector Regression (SVR)The support vector regressor is a type of supervised ML algorithms, based on the supportvector machine (SVM) classifier, applying its logic to regression problems  (Pedregosa etal., 2011). SVR is based on computing linear regression in a higher dimensional featurespace and mapping the input data via a nonlinear function (Basak et al., 2007). By thislinear combination of weighted input features, the so-called hyperplane is constructed. Thedata points closest to this plane are called support-vectors (SVs). Using only this SV-subset of the training data for fitting the hyperplane, makes SVR algorithms comparablystorage efficient. 
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The margin of the hyperplane to the support vectors is maintained as large as possible,while  maintaining  the  lowest  possible  generalization  error  (Pedregosa  et  al.,  2011).  Aregularization parameter C controls the trade-off between error minimization and marginmaximization (Smola and Schölkopf, 2004). The performance of SVR algorithms dependslargely on the selected kernel function  (Pedregosa et al., 2011). The kernel function canallow capturing non-linear relationships between predictors and target variables. Commonkernel functions include linear, polynomial, sigmoid tanh, and radial basis function (rbf).SVMs for classification and regression problems are effective in high dimensional spaces(Burges,  1998;  Pedregosa et al.,  2011).  This  holds true in  cases  where the number ofdimensions is greater than the sample number. Probability estimates can be calculatedusing five-fold cross validation (Pedregosa et al., 2011). 1.5.7 Random Forest RegressorThe random forest regressor is based on a type of decision trees, called regression tree. LikeSVMs,  decision  trees  can  be  constructed  for  classification  as  well  as  for  regressionproblems. The logic behind regression trees is hierarchical splitting of the input space intoever narrower regions. Tree growth is limited by a maximum depth, defined by a stoppingcriterion. Nodes that are not followed by further split are called leaves, each of whichrepresents a prediction value of the output parameter,given the previously followed path ofsplits. Growing a random forest (RF) means generating a large number of decision trees fromrandom subsamples (Breiman, 2001). RFs can be applied for classification and regressionproblems. RFRs are based on trees  depending on a random vector ϴ so that the treepredictor h(x, ϴ)takes on numerical values instead of categorical ones/classes. Predictionsof random forest classifiers are based on “votes” for the most popular class or in the case ofRFR for  the  average  metric  output.  Feature  selection  in  RF algorithms  is  performedrandomly,  mitigation  intercorrelation  between  the  individual  trees  (Biau  and  Scornet,2016). Random forests can also be useful for feature selection in other models, as they canproduce information on feature relevance. Due to the averaging of a great number of trees,random forests are generally not very susceptible to overfitting (Breiman, 2001). 
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However, it is still advantageous to perform cross-validation or bootstrapping resamplingtechniques for further reducing the risk of overfitting (Ljumović and Klar, 2015).RFR is a powerful approach for obtaining robust estimates of metric target variables withthe  ability  to capture  nonlinear  relationships  between input  and output features.  Thepredictive power of RFRs can come at the cost of high computational complexity (Hassineet al., 2019). Moreover, like most ML algorithms, random forests are characterized by theirlimited interpretability (Carvalho et al., 2019; Sagi and Rokach, 2020). 1.5.8 Backpropagation Artificial Neural Network (BP-ANN)Artificial neural networks (ANNs) are computational models inspired by the human brain(Zou et al., 2009). ANNs are composed of nodes, called neurons that ar arranged in layers:“A standard neural network (NN) consists of many simple, connected processorscalled neurons, each producing a sequence of real-valued activations. Input neurons get activated through sensors perceiving the environment, otherneurons  get  activated  through  weighted  connections  from  previously  activeneurons” (Schmidhuber, 2015, p. 86). Each individual  neuron  communicates  with  neurons  in  the  adjacent  layers,  but  neverwithin its own layer.  Between the input and output layer,  there are hidden layers  ofmutually independent size, meaning that specific layers can have any arbitrary number ofneurons (Abiodun et al., 2018). The neurons of the hidden layers process their respectiveinput information by assigning weights and applying an activation function to producetheir  output that is  then forwarded to the following layer  (Schmidhuber, 2015).  Somewidespread  activation  unctions  are  sigmoid,  tanh,  Rectified  Linear  Unit  (ReLu),  andsoftmax (Ramachandran et al., 2017; Sharma et al., 2017). The subsequent processing ofinformation propagated from the input layer over the hidden layers to the output layer isknown as  feedforward operation  (Schmidhuber,  2015).  ANNs are  trained  by adjustnigweights and biases of neurons to optimize the output. For this purpose, different gradientdescent algorithms are often used (Andrychowicz et al., 2016). Backpropagation (BP) is acommon gradient descent method in supervised learning that has been used in discrete,differentiable neural networks since the early 1980s (Schmidhuber, 2015). 20



BP calculates gradients of the loss function considering the weights and biases, that arethen updated in a way that minimizes the loss function (Amari, 1993). ANNs have shown excellent performances in a great variety of applications. Due to theircomplexity, they are often very resource demanding. When designing ANNs it is furtherimportant  to address  the challenges of  overfitting  and of  hyperparameter  optimization(Bakhteev and Strijov, 2020; Piotrowski and Napiorkowski, 2013). 1.6 ObjectivesIn this thesis, the presented machine learning methodologies are applied on remote sensingdata  from  the  upper  Vltava  river  in  order  to  estimate  AN,  BOD5,  NN,  and  TPconcentrations. For each output variable, two types of linear models (MSLR and PLSR)and three types of more complex machine learning algorithms (SVR, RFR, BP-ANN) areconstructed and evaluated. Overarching aims are to identify fundamental spatiotemporal patterns and dynamics of theinvestigated  water  quality  parameters  in  the  upper  Vltava  basin,  and  to  assess  thesuitability of machine learning methods for modeling the named parameters in this part ofa  major  central-European  river.  More  specifically,  the  thesis  follows  three  three  mainobjectives of: 1. Analyzing  spatial  and patterns  and temporal  developments  of  concentrations  ofBOD5, AN, NN, and TP in the upper Vltava river and selected tributaries.2. Estimating concentrations of  the four water  quality parameter based on remotesensing imagery, using machine learning methods. 3. Evaluating model performances and select the best algorithms for predicting each ofthe four water quality parameters. Based  on  the  aims,  and  following  the  relevant  literature,  three  main  hypotheses  areinvestigated:1. There is a decrease of BOD5, AN, NN, and TP concentrations from the decade2001-2010 and 2011-2020.2. There is a downstream increase of BOD5, AN, NN, and TP in the upper VltavaRiver. 21



3. The used algorithms can give accurate estimates of the investigated water qualityparameters. 4. Machine learning algorithms outperform the linear models for estimating the targetvariables (in terms of R2, RMSE, MAPE).
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2. Study Area, Materials and Methods2.1 Study AreaThe investigated area (fig. 1) is the upper Vltava catchment, including the Lužnice River.The Vltava river  sources  in  the  Šumava mountains  (Bohemian Forest)  in  Southwest-Bohemia, Czech Republic. Since 1991, the area is protected as a national park (Mentlík,2016). 

The Bohemian Forest is characterized by felsic plutonic and metamorphic bedrock (mostlygranites) and shallow acidic soils  (Baburek et al., 2013). The mountains are part of thebohemian massif which formed during the Variscian orogeny.  From a hydro-geologicalperspective,  the  Šumava  mountains  are  a  hard-rock  environment. Magmatic  (mostlyplutonic)  and  metamorphic  rocks  dominate.  Most  notably,  there  are  large  bodies  ofgranite, migmatite, paragneiss, granulite, eclogite, amphibolites, marbles, and quartzites.
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Figure 1: Sampling localities in the upper Vltava catchment



The soils are mostly acidic and poor in nutrients. The Bohemian forest is among the fewEuropean regions naturally dominated by Picea abies- (European spruce-)forests.Downstream of the Šumava region the Lipno reservoir – Czech Republic’s largest standingwater body  – follows (de Moraes et al., 2023). It was created in the 1950s for by dammingthe Vltava river, serving the purposes of hydropower production, flood mitigation, andrecreation. In contrast to the Vltava headwaters, the large (46.5 km2) but shallow (max. 22m) Lipno reservoirs are relatively eutrophic (Tesfaye et al., 2023). The area downstream ofLipno is charcterized by a transition to sedimentary rock. Important land cover forms areforests, quite vast floodplains and extensive agriculture. In this section, the Vltava crossesa part of the Třeboň Basin, known for its fishpond system (Bohnet et al., 2022). As theVltava River flows northwards into the Budějovice basin, agricultural intensity graduallyincreases to high levels in the Northern part of the study area. Other human activities alsointensify, following the river from the source to the lower parts of the investigated region.Major municipalities include  Český Krumlov (ca. 13,907 inhabitants; 492 m above NN)and most notably  České Budějovice with almost 100,000 inhabitants  (Czech StatisticalOffice, 2023). At 381 m above NN, České Budějovice is only slightly more elevated thanthe lowest point used for modeling, located in the dam reservoir Vodní nádrž Hněvkoviceat 371 m above NN. The Vltava was dammed there in the 1980s for supplying the Temelínnuclear power plant with cooling water (Růžička et al., 2005). In brief, it can be concludedthat along the upper Vltava, there is an increasing gradient of land use and agriculturalintensity and a corresponding nutrient gradient.Apart from this, general developments of the trophic state of the upper Vltava can bedescribed. After a long, steady increase of nitrogen in synthetic fertilizers after the secondworld war until 1989, followed by a short, but very steep decrease from approximately 110kg ha-1 year-1 to approximately 50  ha-1 year-1  within only four years; afterwards, the useslowly increased again to 70  kg ha-1 year-1  (Kopáček et al., 2013). More recent data werenot found. Despite the re-elevated N use in fertilizers, overall observed total nitrogen (TN)concentrations in the Vltava have continued to decrease until 2010 (Kopáček et al., 2013).While more recent information has not been available, the present work presents evidenceindicating a re-introduction of increasing N-concentrations in the upper Vltava. 
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Evidence  from  the  Slapy  reservoir  north  of  the  study  area  shows  relatively  stableconcentrations  with  considerable  seasonal  fluctuations  (maxima  in  winter,  minima  insummer), with annual averages fluctuating between ~40 and ~80 µg L–1 between 1963 and2015 (Vystavna et al., 2017). Until 1992, a P increase has been documented, afterwards, a decrease; only for the summermonths, there was an overall increase (Vystavna et al., 2017). However, it must be notedthat these values are from a standing water body which is downstream of the investigatedcatchment area, so the reported trends are only of minor indicative value. Annual P runoff from agricultural land in the upper Vltava basin has been found to be inthe unit range of kg km-2, being close to anthropogenically unaffected areas (Rosendorf etal., 2016). Nitrogen pollution, in contrast, is found to be a major obstacle for achieving andsustaining healthy water quality in the area: In parts of the upper Vltava catchment,surface N runoff of more than 20 kg ha–1 has been reported,largely due to the application ofanimal manure (Rosendorf et al., 2016).2.2 Identification of relevant literatureRelevant literature was identified by entering various keyword combinations to the Web ofScience, Scopus, ScienceDirect, Google Scholar and Pubmed. The search was limited toresults in the English language. Besides recent publications, selected pioneering works andother relevant older publications were included.Corresponding to the research objectives, the identified literature covers following topics:1. Use of machine learning algorithms for estimating inland water quality parameters witha main focus on non-optically active parameter and on rivers; 2. General literature on theused algorithms; 3. General literature on river water quality and the investigated waterquality parameters; 4. Hydrology, geology, and geography of the study area. Keywordswere combined in different ways by the boolean operators AND and OR” and included“ammon*”, “backpropagation”, “Landsat*”, “Lužnice”, “machine learning”, “neural net*”,“nitrogen”, “non-active”, “non-optical*”, “optically active” “phosphorus”, “random forest”,“remote  sens*”,  “sentinel*”,  “South  Bohemia”,  “support  vector”,  “upper  Vltava”,  and“water quality”. Literature on specific questions that arose during the writing process was
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identified by using the respectively relevant keywords in the previously enlisted literaturerepositories. 2.3 Data Sources and Dataset creation2.3.1 Water Quality DataWater quality data were provided by the Czech Hydrometeorological Institute  (CHMI,2022). The dataset includes a total of 62 sampling points (35 in the Lužnice River and itstributaries; 27 in the Vltava river and other of its tributaries), eleven of which could beused for model construction. It covers the period from January 2000 to December 2020. Inincludes water quality data from 9,217 samples, in total. 
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Points  were  removed  following  visual  inspection  in  QGIS  (QGIS  Development  Team,2009). Points were not removed from the dataset when the corresponding Sentinel-2 pixelfrom the HLS-S30 product was at least almost fully covered by water, and not hiddenbehind vegetation or objects. The satellite imagery for this procedure was loaded into theGIS via the Semi-automatic classification plugin (Congedo, 2023). Only imagery with less than 5% cloud cover  was considered. Decisions on whether toremove a point were made after inspecting the respective point with band combinations04-03-02 (fig. no), representing natural color, and 08-11-04 (fig. no), suitable for identifyingopen water (Kaplan and Avdan, 2017). 51 points (82%) of the points had to be removed.Subsequently, remote sensing data from the remaining eleven point were obtained.
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Figure 2: Point in QGIS with no apparent water in Sentinel-2 image (band combination04-03-02)



2.3.2 Remote Sensing DataAll remote sensing datasets were obtained using the JavaScript programming language inGoogle Earth Engine (GEE). The code is based on examples from the GEE documentation(Google, 2024b) and in parts written with the help of the large language model ChatGPT4(OpenAI, 2023), as documented in the scripts. All relevant scripts can be found in theappendix. Landast-5 surface reflectance data (Crawford et al., 2023; Google, 2024a) were used for theperiod from 01. January 2000 to 05. May 2008. Surface reflectance data from the HLS dataproduct (Claverie et al., 2018; Ju et al., 2020) were used for the period from 12. April 2013to 31. December 2020.  Due to the lack of readily available satellite imagery in GEE, nodata for the time range between 06. May 2012 and 11. April 2013 are used in the models.
28

Figure 3: Same point, in QGIS, using different bands (band combination 08-11-04)



Table 1: Wavelength ranges of used bands of LS5 and HLS L30LS5 Band Description LS5 Wavelength (µm) Corresponding HLS L30 Band HLS L30 wavelength (approximation; µm)Band 1 Blue 0.45-0.52 Band 2 0.45-0.51Band 2 Green 0.52-0.60 Band 3 0.53-0.59Band 3 Red 0.63-0.69 Band 4 0.64-0.67Band 4 Near-Infrared (NIR) 0.76-0.90 Band 5 0.85-0.88Band 5 Shortwave Infrared (SWIR) 1 1.55-1.75 Band 6 1.57-1.65
Band 7 Shortwave Infrared (SWIR) 2 2.08-2.35 Band 7 2.11-2.29
The exact HLS-product used for the models is called HLSL30: HLS-2 Landsat OperationalLand Imager Surface Reflectance and TOA Brightness Daily Global 30m  (Masek et al.,2021). Data were also downloaded using the JavaScript programming language in GoogleEarth Engine. Cloud-covered points and measurements of poor quality were omitted basedon the quality variables included in the product. The used bands were selected based oncompatibility with the Landsat-5 product (see tab. 1), and on suitability for the modelingpurpose. The fairly similar wavelength ranges of the used products allow using both asmodeling input data without further spectral harmonization steps.  LS-5 and HLS-datawere joined based on the common bands (tab. 1) using the Python programming language.In the obtained dataset and in the further text, LS-5 band names are used to refer to both,LS-5 and the corresponding HLS bands. 2.3.2 Data merging and cleaningDatasets  were joined by appending each row from the water quality dataset with therespectively temporally closest row from the satellite dataset at the given point. Therefore,the absolute time difference in days was considered, i.e., the amount of days before or afterthe satellite passed a given point. Rows containing missing band values were removed.Rows with greater absolute time differences of more than 15 days were also removed fromthe dataset, resulting in a total of n = 835 remaining observations. 
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2.3 Data Analysis and VisualizationData  preparation,  analysis  and  visualization  were  performed  using  the  Pythonprogramming language in Jupyter notebooks in the VSCodium IDE from the minicondadistribution.  Data  preparation,  statistical  analysis,  and  ML  model  construction  wereperformed  using  the  libraries  numpy  (Harris  et  al.,  2020),  pandas  (McKinney,  2010),statsmodels.api  (Seabold  and  Perktold,  2010), Scikit-learn  (Pedregosa  et  al.,  2011),tensorflow(-gpu) (TensorFlow Developers, 2024), and the H2O-AutoML library (LeDell andPoirier,  2020). Graphs  were  plotted  using  the  additional  libraries   seaborn  (Waskom,2021), and matplotlib (Hunter, 2007). For data visualization, code from the python graphgallery was used and adapted to the purposes of the presented research  (Holtz, 2024).Maps were created in QGIS. The satellite basemap from ESRI was loaded into QGIS viathe SRTM-Dowloader (Duester, 2023) package for QGIS. Vector files of water bodies andcatchment delineations were downloaded from the EEA (European Environment Agency.,2012).  Further formatting of graphs and maps was performed using the vector graphicseditor Inkscape (Inkscape Project, 2020). Parts of the codes were written with the help ofChat-GPT 4 and Chat-GPT 3.5 (OpenAI, 2023).The input variables were normalized by applying the Z-score standardization (Pedregosa etal., 2011) algorithm (fig. 1), where z is the standardized value of a variable, x is its originalvalue, µ the mean of the feature values, and σ is their standard deviation.
Equation 1: Z-score standardization Satellite measurements at a given point usually occurred on different days than water wassampled. Weighting columns were calculated in order to be able to penalize bigger timelags  between  a  satellite  revisit  and  water  sampling.  Weighting  transformations  wereperformed using an exponential function (eq. 2) in order to increase the punishment ofgreater time lags. Different weights were calculated based on different multipliers mi  (0.5, 1.0, 1.5, 2.0, 2.5),allowing greater flexibility and more appropriate weighting for each model. In the furthertext, natural numbers from 1 to 5 are used to refer to the weights, in ascending order. 
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Equation  2:  Calculation  of  weights,  based  on  time  lag  between  sampling  and  revisit.  w i   =  weight;  mi = multiplier; Δt = absolute time difference (days)PCA was performed on the standardized satellite band variables, obtaining two principalcomponents that were later on tested as potential model input parameters. All modelswere tested with PCs in comparison to the standardized satellite bands as input features.Additionally, models were tested including the months (as categorical variable) as inputfeature. For each output feature in each model, the best available  wi was selected, usingfor-loops. Both approaches of MLSR, forward selection and backward elimination were performed forall output variables. All possible combinations of polynomials from the first to the thirdorder were modeled by using a for-loop. Time lag weight variables were iterated for eachmodel. Subsequently, the respective model with the best fit (i.e., highest R2) was identifiedautomatically for each dependent variable. Exhaustive iterations over weight columns, andthe best polynomial order (1-3) were performed, and the model summaries for the modelswith the highest R2 were printed.  For PLSR, the  standardized satellite band variables were used as inputs, with no furtherfeature engineering. Models including or excluding the sampling month as input variablewere  tried.  The  models  were  constructed  for  all  output  variables  at  once.  For  eachdependent variable, the model with the highest R2 was selected and printed as output.For-loops  were  used  to  exhaustively  iterate  over  all  combinations  of  possible  scalingmethods  (mean_centering,  robust_scaling,  or  no  scaling),  and  components  components.Suitability of polynomials (up to the fourth order) as input variables was also assessediteratively, but were not further considered after proving unsuitable. The final algorithmincludes exhaustive iterations over all combinations of up to three excluded input features,of weight columns (including the option not to use any). The month-variable is part of thefeature-space of this algorithm. The modelled relationship between the input variables and a given output variable wasconsidered statistically significant, if p < 0.05 (i.e., 95% level of significance).
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Random  forest  regressors  were  constructed  optionally  with  or  without  month  (ascategorical variable) as input variable. Iterations over all weight variables were performedto find the best one for each output variable. The minimum number of trees was set to100. Incrementally, trees were added in steps of 20 additional trees, until further additiondid not result in a significant decrease of the RMSE. The constructed RFR models predictall  output  features  at  once,  but  model  evaluation  was  done  for  each  water  qualityparameter individually. 100 bootstraps were applied.Possible  feature  combinations  for  SVR-based  estimation  of  the  wq  parameters  wasperformed  with  a  combined  SVR-RFE  algorithms,  that  assigned  stability/importanceestimates for the individual bands, and their simple polynomials of the second order (i.e.,the squared observations of  each individual band,  and products of  the observations ofeach  possible  combination  of  two  individual  bands).  An  adapted  algorithm,  includingpolynomials up to the third order polynomials was run for ANN feature selection. Possiblefeature  combinations  with  different  purposes  were  then  constructed  based  on  featureimportance for each dependent variable. For instance, including features of the highestrelevance, or covering a broad set of mid- to high-stability feature, or covering nonlineardynamics. SVR algorithms were trained by applying Bayes search to a search-space including pre-defined sets of input features, the weighting columns of the dataframe, kernel functions(rbf,  linear,  polynomial,  and  sigmoid),  degree  (if  polynomial  kernel),  and  thehyperparameters C, gamma, and epsilon. Bayes search was run with a varying amount ofiterations (30-85), starting on a sample subset (n=400), and then generalized to the holedataset, on which – if necessary – further hyperparameter optimization was performed.The  Each  iteration  of  Bayes  search  used  3-fold  cross-validation.  While  5-folds  cross-validation would have increased model robustness, the increased computational cost was aconstraint against it. Model training was done by gradually eliminating unsuitable featurecombinations, and kernel function, and by gradually reducing (and sometimes enhancing)the search-space for the hyperparameters. BP-ANN construction  was  first  tried  with  hard-coded  hyperparameters  for  all  outputvariables at once, leading to mostly unsatisfactory results, and great computational effortsfor hyperparameter tuning. 32



After, also mostly unsuccessful, computationally and temporally constrained attempts toimplement  a  similar  search-  and  training-approach  as  for  the  SVR-algorithms,  anautomated pipeline for BP-ANN construction and model selection, based on limited inputs,was implemented. For this approach, the automated machine learning (AutoML) Python-library  H2O  was  used.  The  included  algorithm  types  were  set  to  only  to  BP-ANNalgorithms, encoded as “DeepLearning” in the H2O package . Again, enforced by resourcelimitations, the maximum model number to be calculated was set to 50, with a respectivemaximum  runtime  of  2,500  seconds.  A  csv  file  with  detailed  results  on  modelhyperparameters, and selected performance metrics (RMSE, R2, MAPE) was returned. Model evaluation for all types of algorithms was based on the performance metrics R2,RMSE,  and  MAPE. Where  applicable,  information  on  weighting  of  the  time  lag,  thepolynomial degree, the best number of components (based on R2). In the case of R2, theR2-score from the scikit-learn library was used. While it is equal to the regular coefficientof determination in the positive range, it can have negative values, indicating a worse fitthan a model that always estimates the mean value of the target parameter (Pedregosa etal., 2011). Such a model would get the R2-score 0.More details on the methodology are described in the supplementary materials. 
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3. Results3.1 Seasonal and spatial patternsMost of the investigated water quality parameters averaged over the 62 initial input pointsshow distinct seasonal patterns (Fig. 4). The biochemical oxygen demand is lowest duringthe winter months, with an average of slightly more than 3 mg L -1 between December andFebruary. Highest values are measured between May and October. During this period,BOD5 is relatively stable. 

Seasonal dynamics of ammonia nitrogen are less pronounced than of the other measuredparameters. 34
Figure  4: Monthly averages of water quality parameters across all sampling points (2000-2020), includingdecadal averages (2001-2010 and 2011-2020)



On  average,  there  is  only  little  seasonality,  but  in  most  years,  a  decline  of  ANconcentration  can  be  observed  between  December  and  April,  followed  by  a  stronglyfluctuating increase over the rest of the year. The monthly average concentration (2000-2020)  never  exceeds 0.4  mg L-1.  However,  there are considerable  outliers,  especially inrecent years, where concentrations of more than 1 or even more than 1.2 mg L -1 are themean concentration of the 62 sites at individual months in the second half of the year.Nitrate nitrogen concentrations peak early in the year, between February and March. The21-year average concentration in March is at almost 3 mg L-1. After this, the concentrationsteeply drops to a minimum of slightly more than 1 mg L-1  in July. Until  October itremains relatively stable and then gradually increases again to the annual maximum. Total  Phosphorus  shows  approximately  the  opposite  pattern:  On  average,  it  has  adistinctive peak in July (ca. 0.24 mg L-1), from which it gradually drops to a minimumbetween  February  and  March  (ca.  0.12  mg  L-1).   Between  January  and  March,  theconcentration is relatively stable. A notable increase of all four water quality parameters can be observed when comparingthe 10-year averages of the decades between 2001 and 2010 on the one side and 2011 and2020 on the other. This holds true for all four parameters in every single month of theyear. Unlike in the previous decade, from 2011 to 2020, average BOD5 concentrations remain atlevels of more than 4 mg L-1 from March to October, and do not drop below 3 mg L-1 forthe rest of the year. A single extreme outlier was observed in March. when the averageconcentration at the 62 sampling points reached 10 mg L-1. In the more recent decade,mean monthly AN concentrations exceeded 0.4 mg L-1 from November to January as wellas in July. In the previous decade, the annual maximum monthly average was in Januaryat around 0.3 mg L-1 with all other months showing substantially lower concentrations.Monthly mean AN in the later decade is constantly above 0.2 mg  -1, while it had beenbelow that threshold for eight months (March –  October) of the year in the previousdecade. Mean nitrate nitrogen concentrations show an especially high increase in the firsttwo months of the year. The decadal monthly maximum shifted from March to Februaryand from a previous ~3 mg L-1 to almost 4 mg L-1. The average minima are found in Julyand October in both decades, and increased from around 1 mg L-1 to more than 1.3 mg L-1.35
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Figure  5: Reactive inorganic nitrogen (AN and NN) in the study area, considering all 62 sampling pointsfrom initial dataset

Figure 6: BOD5 and TP in study area (62 points)



 The annual TP maximum in July increased by 50% from ~0.2 mg L -1 between 2001 and2010 to ~0.3 L-1 between 2011 and 2020. While mean monthly TP concentrations onlyslightly increased for the months January and March, the increase in the remaining tenmonths is substantial or even dramatic. Visual  inspection  of  the  mapped  average  concentrations  of  the  four  water  qualityparameters shows clear spatial patterns (fig. 5-6): All four water quality parameters appearin lower concentrations in the Šumava source region, while being more concentrated in theagricultural  and  urban  areas  more  downstream.  Furthermore,  it  appears  that  higherconcentrations of all target parameters are found in stream segments of higher order. In-depth analysis could provide other relevant insights.  3.2 Spatial distribution of the water quality parametersAveraged over the entire investigated period, the spatial  distribution of  all  four waterquality parameters behaves as hypothesized. An almost steady increase of all four, AN,NN, BOD5,  and TP can be  observed from the  headwaters  to  the lower  parts  of  theinvestigated areas.It is  important to keep in mind that the described temporal and spatial patterns refer tothe dataset cover a wider range of water quality data than the models presented below, asthe description of spatiotemporal patterns of the field measurements is not constrained bythe availability of remote sensing data. 3.3 Model PreparationNone of  the  reflectance  data  from the  bands  in  the  combined LS5-HLS dataset  werenormally distributed. All of them were strongly skewed to the right. Often, local modes inhigher ranges of the distributions were observed. While theoretically, the reflectance valuesshould range between 0.00 and 1.00, the dataset includes few observations where 1.00 wasexceeded. It was not further investigated whether such results are a consequence of dataharmonization,  satellite  calibration,  atmospheric  correction,  or  randomly  occurringartifacts. Instead, the observations were used as given in the datasets. 
37



The non-normal distribution of all independent variables makes parametric tests unviablefor  first  explorations  of  their  suitability  for  estimating  the  concerning  water  qualityparameters.  Even after various transformations (quadratic, exponential, boxcox), none ofthe input variables was normally distributed, as shown by Shapiro-Wilk-tests. 
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Figure 7: Distributions of surface reflectance data on the input bands of the combined LS5-HLS dataset



The distributions of all dependent variables are also strongly skewed to the right. Therecorded levels of AN, NN, BOD5, and TP appear to resemble gamma-distributions, andcould  thus  be  transformed  to  normal  distribution  quite  easily.  But  since  the  usedalgorithms do not depend on normal distribution, and the distributions of the dependentvariables do not allow for parametric tests, this was not further investigated. Due  to  the  non-normal  data  distributions  –  even  after  transformations  –,  it  is  notadmissible to estimate basic interactions between dependent and independent variableswith Pearson’s correlation. Therefore, a first estimate of relevant interactions of reflectance at given satellite bandsand concentrations of AN, NN, BOD5, and TP was made, based on Spearman’s rankcorrelation. The satellite reflectance data show strong positive intercolinearity between allbands. 
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Figure 8: Distributions of the investigated water quality parameters



The weakest association, found between bands 1 and 5, is still very high at ρ = 0.84, whilethe strongest one (ρ = 0.99) almost reaches the theoretical maximum.  All of the investigated water quality parameters also positively correlated with each other.The weakest rank correlation is found between NN and TP (ρ = 0.12) and the highest onebetween BOD5 and TP (ρ = 0.77). 

Spearman’s rank correlation coefficients between the bands on the one side and the waterquality parameters on the other, are mostly relatively weak and negative. The greatestrelationship is found between B7 and NN (ρ = –0.085). Positive coefficients are found onlyfound between the bands 2, 3, and especially 4 (ρ = 0.032) with TP. 
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Figure 9: Correlation matrix of input (satellite bands) and output (water quality parameters) features usingSpearman's ρ 



The identified rank correlations between surface reflectance on the given bandwidths onthe one side, and the levels of the investigated water quality parameters on the other sidesuggest  that  there  might  be  more  complex  underlying  patterns,  allowing  to  interferebetween these data.
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3.4 Model PerformanceThese patterns were captured by the different algorithms with varying success (Tab. 2).Table 2: Model performances on testing dataset for each water quality parameter (best model of each typebased on R2; For BP-ANN: No weight variables tested)WQP Model R2 RMSE MAPE (%) wi

AN
MSLR (ns) 0.005 0.585 488.61 5PLSR 0.012 0.918 567.22 -SVR 0.078 0.500 376.48 5RFR 0.156 1.180 319.36 4BP-ANN 0.010 1.804 288.95 -

NN
MSLR (***) 0.212 1.768 141.68 -PLSR 0.112 2.450 138.97 1SVR 0.091 2.472 169.84 1RFR 0.555 1.124 80.01 5BP-ANN 0.180 1.354 112.69 -

BOD5
MSLR (***) 0.035 2.747 68.11 -PLSR 0.061 3.180 75.68 1SVR 0.042 3.218 52..3 4RFR 0.462 2.667 46.15 3BP-ANN 0.040 4.370 72.31 -

TP
MSLR (***) 0.041 0.431 128.72 -PLSR 0.004 0.229 127.71 1SVR 0.049 0.224 98.84 5RFR 0.390 0.257 91.24 5BP-ANN 0.041 0.397 105.92 -
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The MLSR models indicate no significant linear relationship (p < 0.05) between the inputband variables and Ammonia Nitrogen, regardless of weighting, polynomial degree of inputvariables, or type of the MSLR (forward selection vs. backward elimination). Very littlevariance is explained by the model (R2 = 0.005), and errors are high (RMSE = 0.585 mg L-1; MAPE = 488.61%). Most variance of AN is explained by RFR (R2 = 0.156) and SVR(R2 = 0.078) models. All other algorithms perform very poorly on this target variable.Even these comparatively well-performing models predicted AN with an RMSE of 0.500mg L-1 (RFR) to 1.180 mg L-1 (SVR). Given the monthly mean range of ca. 0.2-0.4 mg L -1,a root mean square error this high cannot be satisfactory. PLSR (R2  = 0.012) and BP-ANN,  both  explain  only  an  almost  negligible  fraction  of  the  variance.  The  relativedifferences of estimated and measured AN concentrations are high for all models, rangingfrom 288.95% (BP-ANN) to 567.22% (PLSR). It is interesting to note that models withhigher penalties for time lags between sampling and satellite revisit tend to perform betterthan with lower penalties. 

43
Figure 10: Predictions vs. actual values of test-dataset of RFR for NN estimation



Estimation of nitrate-N, the other nitrogen fraction among the dependent variables, workssubstantially better. The linear MSLR-model can explain a considerable fraction of thevariance of NN (R2 = 0.212). Apart from SVR (R2 = 0.091), all types of algorithms returnR2  > 0.10. The highest fraction of variance (R2 = 0.555) is explained by a random forestregressor (fig.7), which also returns the lowest mean errors (RMSE = 1.124; MAPE =80.01). PLSR (R2 = 0.112), and BP-ANN (0.180) explain less of the variance than MSLR.Due to mean observations an order of magnitude higher than those of AN, also the RMSEvalues  in  mg L-1 are  higher,  while  the  relative  deviation  of  estimated  from measuredconcentrations,  expressed by the MAPE, is a lot lower (AN: 288.95% - 567.22%; NN:77.52.95% - 169.84.%). Overall, all types of models return useful outputs for estimatingnitrate nitrogen. BOD5-estimates are less powerful than those of NN, but still a lot more valuable thanthose  of  AN.  The  multiple  stepwise  linear  regression  indicates  a  highly  significantrelationship with R2 = 0.035 (RMSE = 2.747 mg L-1). The RFR model performs the beston all investigated metrics (R2 = 0.462; RMSE = 2.557 mg L-1; MAPE = 46.15). Theremaining models also explain a greater fraction of the variance of BOD5, but their RMSEvalues indicate lower accuracy than for MSLR (see tab. 2). Over all selected models, thedeviation  of  predicted  values  from measured  values  stayed  well  below 100% (MAPE:46.15% - 75.68%), indicating considerably high accuracy, compared to other dependentvariables. Despite the relatively low fraction of variance explained by MSLR, PLSR, SVR,and BP-ANN, the results still show a clear response between satellite bands and BOD5,even though it might be weak, and hard to capture in a model.Quite similar results as for BOD5 were obtained for TP. The MSLR showed a highlysignificant (p < ) relationship with the predictors and TP, explaining a small part of thevariance (R2 = 0.041). Lower errors at the same R2 were achieved by the BP-ANN (seetab. 2). While having somewhat lower errors than MLSR, partial least square regression(R2 =0.004) can hardly explain more variance than a constant model, always assuming theaverage  value  of  TP,  suggesting  that  it  is  not  ideal  for  predicting  this  water  qualityparameter. SVR, in contrast, can explain a small, yet non-negligible part of the variance(R2 = 0.049), while also returning substantially lower errors (see tab. 2). At similar errors,but clearly higher explained variance, SVR was only outperformed by RFR (R2 = 0.390). 
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The main results of the model evaluation are: Estimating AN remains challenging, as noneof the used algorithms was able to explain a high part of its variance, while all of themproduce high errors when estimating AN concentrations. In contrast, NN estimates arecomparably accurate. Various types of models can return valuable information, promisingat least some degree of suitability for NN prediction, and promising to be a good base forfurther optimization. The results for BOD5- and TP-estimation indicate a relevant response between the usedpredictors and the target variables. Yet, the models mostly fail to accurately capture thevariance of BOD5, and TP. The comparably low relative error of BOD5 estimates, asexpressed by MAPE, indicates the possibility of relatively accurate predictions. Yet, theminimum MAPE vales of almost 50% are still far from ideal. One of the most important results is the capital effectivity of RFR to predict any of thetarget parameters from the dataset, as compared to all other tested algorithms. In fact, itcan be considered the only used algorithm providing solid estimates of NN, BOD5, andTP, while still being very limited for AN. In contrast, the MLSR algorithms tended to produce the weakest predictions, with theexceptions of NN, where MLSR explains the second-highest fraction of variance among thetested models, and for TP, where its R2 value is ten times higher than that of PLSR.However,  the MLSR outcomes also  indicate that some significant  relationships can becaptured between the input variables on the one side, and NN, BOD5, or TP on the otherside, even by linear models. For  all  sorts  of  algorithms,  and  all  investigated  water-quality  parameters,  findingappropriate weights for the absolute time-differences between water sampling and satelliterevisit at a given point is  not a trivial  task. This is  underlined by the wide range ofweights used in the respectively best models, with no apparent clear pattern. 
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4. Discussion4.1 Spatiotemporal patterns of Water Quality ParametersAN.  Relatively  unobstrusive  seasonality:  AN  largely  determined  by  plant  uptake  ingrowing season. Effect maybe neutralized by elevated inputs, or by changed patters ofammonia oxidation. Increase likely due to higher agri input.NN: Seasonality matches observations from East-Polish Supraśl River  (Skorbiłowicz andOfman, 2014) and from Latvian river sites (Tsirkunov et al., 1992). Explanation: Growingseason: More N in primary producers. Increase likely due to higher agri input, and not dueto lower uptake or the like. Solubility of nitrates increases with temperature, but directclimate change contribution low. After decreasing agricultural nitrate loads between 2000and 2014 in the catchment of the Rímov reservoir, an increase until 2020 was reported. Incontrast, nitrate loads from settlements showed a low, but steady decrease between 2000and 2020, while no significant changes were reported for nitrate loads from forests. Maybedifferent pattern further downstream? Especially TP Seasonality:  Hgher solubility in summer.  Increase:  Higher  P-input.  It  is  yet  to beinvestigated, if effects of climate change contribute to P-increase on this local level. Alikely explanation is increased use of phosphate fertilizers. Also accumulation in reservoirsmight be a factor. Contribution of point sources? Easier to control. But improving WWTPefficiencies.   Rímov reservoir: Insignificant,  and almost negligible decrease from forests,little change from agricultural, slow increase from settlement. Overall, very slight increase.Loads from all systems peak in summer, indicating that higher mobility and loads mightalso contribute to seasonal patterns. Observed overall increase corresponds to observationspresented in previous chapter. Increase in temperature was found. Weaker seasonality of BOD5: Microbial activity in summer increased due to hugher temp.and P-availability (assuming P-limitation of the system). But: Also, lower O2-availability,due to lower solubility, so faster O2 depletion. Also, BOD5 tested under lab conditions, sotemperature during respiration is same and growth promoted again in lab. Increase due toeutrophication, and like for P: climate change effects would be interesting to investigate.
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Might have direct effects due to higher microbial activity at higher temperatures. Due tousually high O2 saturation in rivers, lower solubility might not have a contrary effect. Slapy reservoir: Slight temperature increase, with decade 2010-2019 as warmest decade inpast 60 years. Increased O2 saturation. Similar levels of nitrate, and in some months lowerlevels of ammonium . Increased DOC. Strong increase of DON. Very similar TP (Kopáčeket al., 2021).Seasonality: Identified patterns correspond to those reported in literature. Increase: Partlysupported by other published results, but partly in contrast to them. Maybe: addition ofpoints with higher trophic status later included to dataset? Refinement of methodologyrequired. Also, literature usually focuses on individual basins, and not on whole area, sofurther investigation is needed. After further progress in methodology, ML models could bea good way for quantifying this development in a good temporal and spatial resolution. Streamflow decline observed (Vystavna et al., 2023). Spatial: Downstream increase corresponds to land use gradient: Lowest inputs from forestsalso reported by (Vystavna et al., 2023).The hypothesis of decadal decrease cannot be accepted. The results clearly indicate anincrease of all four water quality parameters between the two compared decades. However,due  to  methodological  limitations,  and  inconsistencies  with  the  findings  reported  inpublished research, a refined approach of investigation is required. Spatially,  a  downstream  increase  of  all  four  parameters  was  observed,  matching  theinitially stated hypothesis. Two factors might contribute to that: Faster flor rates in theupstream area allow faster transport of input contaminants and other substances, givingless  time for accumulation  (Schwoerbel and Brendelberger,  2022).  But more importantmight even be the land use gradient described earlier that is closely associated to the“continuous gradient of pollution and habitat degradation” (Horka et al., 2023, p. 2) in thearea. 
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4.2 Model EvaluationApart from some RFR models, the accuracy of all predictions is fairly low, as indicated bythe test  metrics.  Other model types can at least still  explain considerable amounts ofvariance of nitrate nitrogen. Furthermore, estimations of BOD5 differ on average by lessthan 80% (MAPE < 80%) from the actually observed values, also indicating some relativeaccuracy. This lower mean absolute percentage error of BOD5 estimates, compared to theremaining dependent variables, might be due to a narrower range or smaller variance ofBOD5. For now, the hypothesis of accurate ML-based estimates in the given research areacannot be accepted, but the results point toward a promising direction. Especially estimating AN turned out to be difficult. Two types of algorithms, SVR (R 2 =0.08), and RFR (R2 = 0.16), explained similar levels of AN variance in the upper Vltava,as the equivalent models by Li et al. (2022) explain for the tropical Nandu river in China(R2 (SVR) = 0.07; R2 (RFR) = 0.24). However, the poor performance of the BP-ANN inthe present thesis (R2 = 0.10) is in stark contrast to the ANN presented in the Chinesestudy (R2 = 0.44). Still, also for Li et al. (2022) AN turned out to be the variable hardestto estimate. Despite explaining a substantial share of AN variance, also the estimates by Liet al. show large deviations from the actual values, with MAPE ranging from 274% to318%. While the errors might still be relatively large and the explained fractions of AN varianceby the different models presented in the previous chapter might be low, they are far fromnegligible. Future improvements of ML methodology application are required to allow forrobust and accurate estimates of AN. The  comparably  good  estimates  if  NN  are  in  correspondence  to  those  presented  inliterature. SVR (R2 = 0.29) and NN (R2 = 0.29) models in a study by Sagan et al. (2020)could to explain considerable parts of the variance of nitrate in the water. Their PLSRmodel (R2 = 0.26) also outperformed the one presented in this thesis (R2 = 0.11). Othersimilar  studies  do  usually  not  focus  on  nitrate  (nitrogen).  Anyhow,  comparing  thepresented NN estimates to such of TN/TIN can still provide valuable insights, as river Ngenerally mostly consists of NN (Boyd, 2015). 
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Gao reported R2 0.31 (SVR) – 0.45 (XGB). XGB was generally among best algorithms formost variables. Li: RF performed best with R2 = 0.49. SVR had 0.2. MAPE ranging from33.11-43.59%. Maybe narrower distribution of values? Overall: Explained variance in mymodels can compete. Li had ANN with R2 = 0.45. Gao was not so good in TN estimationwith best model XGB R2 = 0.45, but had strong SVR with 0.35%. According to thecoefficient of determination, RFR models by Gao et al.  (2024; R2 = 0.42) and Li et al.(2022; R2 = 0.49) performed slightly weaker than the one from the upper Vltava (R2 =0.56). However, at 33.53%, also the MAPE reported by Li et al. is a lot lower. Bothstudies also presented relatively well-performing ANNs and gradient boosting algorithms.It  can  be  concluded  that  besides  the  present  work,  various  publications  support  theobservation  that  ML  algorithms  have  considerable  predictive  power  for  AN-  or  TN-estimation from satellite imagery.  BOD5 has largely been neglected in similar studies. The remarkably low MAPE values, thelarge fraction of variance explained by RFR, and the small, but still obvious responsesshown by other models are strong indicators of the suitability of ML-approaches for alsoestimating  this  parameter  from  RS-imagery.  This,  however,  demands  more  in-depthresearch, ideally from the upper Vltava and other riverine systems around the world.Estimating TP in the upper Vltava turned out to be somewhat more challenging thanBOD5, and a lot more than AN. This is in line with the results by Sagan et al. (2020) whofailed  to  explain  any  variance  of  TP  (R2 =  0.00)  with  SVR  or  ANN  (R2 =  0.00)algorithms. While clearly outperforming the best calculated PLSR model on the upperVltava (R2 = 0.00), the one by Sagan et al. still predicted TP very poorly (R2 = 0.02). Theexplained TP variance by SVR (0.05) and RFR (0.43) in the upper Vltava are higher byorders of magnitude, and might represent promising starting points for the development ofmore  accurate  ML algorithms  for  this  geographic  realm.  Substantially  stronger  modelperformances for TP estimations in commensurable systems have been presented by Li etal. (2022), who obtained an SVR model with R2 = 0.59, and an ANN with R2 = 0.67, bothof which came with MAPE values around 50%. This level accuracy remains hard to reachfor  the  upper  Vltava.  The  models  presented  by  Gao  et  al.  had  a  somewhat  weakerperformance, with SVR having the lowest (R2 = 0.2), and RFR the highest (R2 = 0.39)coefficient of determination. 
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The huge  variability  of  model  outputs  from the  upper  Vltava,  and their  partly  poorperformances  when compared  to  other  research  results  points  to  a  demand of  furtherrefinement  of  ML  methodologies.  The  high  R2 of  the  RFR  model  clearly  indicatessuitability of such models for TP estimation in the area. From a  broader  perspective,  it  can  be  observed  that  model  performances  from otherstudies are often better, and more stable across different model types. But there are alsoexceptions  to  this,  and  not  even  uniform patterns  on  which  variables  are  hardest  topredict. However, there seems to be a tendency, that various approaches for NN or TNprediction tends to perform very well, while AN prediction remains challenging.The approach of neural network construction in the present thesis turned out to likely beinsufficient, as ANNs in published research generally performed a lot better, than thoseused for the upper Vltava. The Azto ML-approach for ANN-construction might be usefulfor  getting  a  first  orientation  for  the  algorithm and  the  behaviors  of  the  dependentvariables, but it might be insufficient for actually identifying suitable ANN models, or atleast, requires more control by the modeler. 4.3 Limitations and potential for future model improvementsThe brief analysis of spatial and temporal patterns can only give a rough idea of them, butdue  to  massive  temporal  constraints,  it  comes  with  some  methodological  flaws.  Themonthly averages, the decadal changes, and the mapping are all based on averages from allsampling  locations.  While  this  increases  the  sample  size  for  these  calculations  andcorresponding visualizations,  the results cannot easily be generalized, and must not beovervalued: Since samplings have not been taken from all sites since January 2000, butsome sites were added later, there might be some introduced bias. This might for instancebe because stations which come into service later, might have artificially increased meanlevels of the four parameters, due to a temporal increase between the two decades. Ormaybe, sites with higher levels of one or more of the parameters have been introducedlater, leading to only seemingly increased concentrations, so that the proclaimed increasesmight  actually  be  lower  than  described.  Neither  possibility  has  been  tested,  due  totemporal limitations.
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Work remains to be done to eliminate these shortcomings and reduce the bias. Only thiscould  enable  reliable  detailed  conclusions  on  the  spatiotemporal  distribution  anddevelopment of AN, NN, BOD5, and TP. However, despite these limitations, the simplifiedanalysis approach satisfies the requirements of the performed further investigations.Additional valuable spatiotemporal information, some of which could also be useful for themodel,  could be  obtained  by methods  such as  time-series  analysis,  allowing to isolateseasonal patterns from long-term trends in water quality development  (Halliday et al.,2012). Another valuable approach could be catchment modeling based on digital elevationmodels, providing reliable estimates of catchment area (Kwast and Menke, 2022) and riverlength until a certain point (e.g., sampling locality). As already stated, also the ML models themselves come with limitations. Some of these arenecessary consequences of  the nature of  the ML methods.  Others  are more related tomodifiable  parts  of  the  learning  systems,  and  thus  represent  potentials  for  futureimprovements. First of all,  ML not able to explain mechanisms of interactions between water qualityparameters and surface reflectance, thus leaving them as a black box  (Cao et al., 2020;Gao et al.,  2024). Their interpretability is very limited and they cannot shed light ondeeper underlying patterns. While to some degree, we have to just live with that fact fornow, increased interpretability and more detailed interpretations would be possible in somecases. Some of the possible methods can be useful for future improvements of the presentedapproach. One easy approach could for instance be, to include feature importance to the output fromrandom forest models. This can not only increase their interpretability by giving insightsto the strength of connections between input features and target variables, but can also bevaluable for feature selection in other models  (Pedregosa et al., 2011). Another strategyspecifically  for  random  forests  could  be  to  visualize  a  simplified  decision  tree  thatrepresents the average decision-making process of the forest, in a so-called born-again tree(Vidal and Schiffer, 2020). This approach could represent the unmanageable complexity ofan RFR model in the more comprehensible form of a single, condensed regression tree, andthus allow an approximate interpretation of the decision procedures performed by the tree.
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However,  even  the  born-again  tree  can  be  sufficiently  complex  to  be  of  only  limitedinterpretability. A relatively simple and highly effective improvement of interpretability could further beusing additional metrics for model evaluation across all models, such as MSE, RMPSE orMAE,/MAD as it has been done in previous studies (Gao et al., 2024; Guo et al., 2021; Liet al., 2022; Sagan et al., 2020). Still simple and even more informative would be furthervisualization of model performances, by including different types of visualization, and –more  importantly  –  by  visually  comparing  predictions  of  all  selected  models  to  therespective actual values of the respective dependent variable in the test dataset, as it wasdone in the study by Li et al. (2022). The information obtained by this visualization mighteven be valuable for  optimizing the models  themselves.  For instance,  model  adaptionscould  be  implemented  to  try  to  mitigate  the  overestimation  of  NN  in  the  upperconcentration ranges, and the underestimation in the very low range. Besides aiming at higher interpretability, the architecture of the models can also changedin a way that allow for greater robustness, and higher accuracy. An obvious approach forincreased robustness could be to add more folds to cross-validation or more iterations tobootstrapping.  This  strategy is,  however,  limited  by computational  constraints,  and itshould be kept in mind that at some point, the added robustness from additional folds orbootstraps gets marginal, while still substantially increasing computational cost. Model  predictions  could  be  improved  by refining  the  strategy  of  weighting  individualobservations. The entire range of weighting variables for penalizing the time lag betweensampling at satellite revisit was used in the models. This indicates that both, a wider anddenser  set  of  weighting variables,  or  even a  more dynamic  weighting approach mightbenefit  model  performances.  It  is  furthermore  interesting,  that  there  was  no  uniformpattern regarding preferred weights and dependent variables, which could indicate greaterstability of a wq-parameter, if the penalty was lower, and larger fluctuations at greaterpreferred penalties.  More exhaustive strategies of identifying the best hyperparamters might further be helpful.Even more important might be to optimize the approach to input-features. 
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More individualized feature selection could be implemented for each model and outputvariable, in order to keep a balance between the amount of variables containing valuableinformation, and dimensionality. This can also include polynomial features, obtained bymultiplication of individual input bands. The feature selection engineering and selectionapproach used for SVR is a step into that direction, yet it may have failed to identify theideal set of features for each output variable. Also, there was no systematic approach toidentifying the best number of input variables. For-loops, or preferably search mechanismssuch as Bayesian search, grid search, or maybe even genetic algorithms (Yang, 2021) couldbe  (further)  implemented.  While  promising  powerful  improvements,  sophisticatedstrategies of this kind are nevertheless far beyond the scope of this thesis.The evaluation – and massive removal – of measurement points evokes the question if theused satellite imagery is appropriate. Instead, sacrificing a wide time span, and all Landsatimagery in favor of Sentinel-2 data might be a better approach. Their spatial resolution ofup to 15 m, would allow the inclusion of a much greater amount of points. Combined withthe  better  spectral  resolution,  this  could  also  improve  the  model  performance.  Acomparison of predictions of HLS and S-2 data, could bring clarity. But, as previouslyelaborated, relying only on Sentinel-2 data has also has a great limitation: I  can onlyprovide estimates from June 2015 onward. Models based on these data can thus only covera short time range, which makes them unsuitable for many all applications that requirelong-term estimates of the development of the investigated parameters. Not only might different remote sensing data allow better models. After understandingwhich  band  combinations  from  which  instrument  allow  the  best  predictions  of  eachconcerning water quality parameter, it might also be of interest to consider other freelyavailable  predictors.  Combining  the  remote  sensing-based  approach  with  other  freelyavailable  predictors,  such  as  meteorological  data,  hydrogeomorphological  data  (e.g.,catchment area at sampling locality), or data on adjacent landcover and landuse couldenhance the performance of some of the algorithms significantly.  Besides  different  input  data,  also  different  models  should  be  tried  in  future  research.Plenty  of  studies  have  shown,  for  instance,  that  gradient  boosting  algorithms  haveoutperformed other methods for estimation of various non-optically active water qualityparameters (Gao et al., 2024; Li et al., 2022). 53



The pursuit for finding the most appropriate model for predicting each of them shouldthus  also  focus  on  gradient  boosting  methods,  but  also  other  algorithms,  like  simpleregression trees,  have performed surprisingly well  in  some cases  (Li  et  al.,  2022),  andshould thus also be considered. From the  beginning to the end,  parts  of  our learning systems could be adapted withpotential  benefits. Even if  the models were calculated using ideal input datasets,  idealfeature engineering and selection, and ideal hyperparameter selection, at least one furtherstep  could  be  optimized:  The  performed  model-selection  strategy,  focusing  almostexclusively on R2 is very limited. Given the limited resources and the modest scope of thisthesis, focusing on R2 as main target metric is a justified, yet not ideal approach. The  availability  of  better  models  will  also  allow  mapping  of  spatial  distribution  andtemporal developments of estimated water quality parameters, opening up a new, rapidly-availble source of valuable information for water quality management. This can provideunprecedented insights on behavior of the distribution of the mapped parameters, and helpidentifying and managing the influence of various point- and diffuse sources of nitrogenand phosphorus. So far, however, the models have limitations due to which such efforts areunlikely to produce very valuable knowledge. The shortcomings of the models presented in this thesis demonstrate the challenges ofestimating non-optically active wq params based on optical data. They further show thedemand for further refinement of methodologies. The comparison to published data doesnot that there are slight methodological  deficiencies in the present work,  that call  foroptimization; it also shows that the usually narrower, and faster-flowing upper reaches ofrivers  come  with  additional  particular  challenges  for  RS-ML-based  estimation  of  non-optically  active  water  quality  parameters.  But  despite  undeniable  weaknesses  of  thepresented results,  they still  clearly show that even for such systems, machine learningmethods have the potential to be powerful tools for estimating NN, BOD5, TP, and evenAN concentrations in the upper Vltava and similar riverine systems. For  direct  application  in  water  quality  management,  the  presented  results  are  stillinsufficient. 
54



But they can serve as a good starting point for developing robust models that can reliablyprovide accurate estimates of AN, NN, BOD5, and TP, and thus become an invaluableand  unprecedented  resource  for  water  quality  management  and  similar  practicalapplications. 
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5. Conclusions and OutlookManagement of river water quality is important for mitigating eutrophication. After thewater quality improvements since the 1990s, this trend might have turned in the upperVltava catchment after 2010: Concentrations of the four optically inactive water qualityparameters ammonia nitrogen, nitrate nitrogen, five-day biochemical oxygen demand, andtotal phosphorus might have increased, as results presented in this thesis suggest. All fourparameters follow a land-use and ecosystem degradation gradient in the upper Vltava,increasing in concentration from the headwaters to the lower parts of the research area. In this study, five different types of algorithms (multiple stepwise linear regression, partialleast  squares  regression,  support  vector  regression,  random  forest  regressor,  andbackpropagation  artificial  neural  network)  were  performed  on  harmonized  Landsat-Sentinel-2-data (HLS), in order to predict AN, NN, BOD5, and TP. Such machine learningmethods can be useful tools for estimating the four named parameters, but they still bear alot of challenges, especially given the often narrow streambed. Further improvements at allsteps  –  from input  data  selection,  over  model  optimization,  to  model  selection  –  arerequired for ensuring accurate and robust predictions. The presented results indicate thatthis goal can be achieved. In most cases, machine learning algorithms clearly outperformedsimpler  linear  models.  Especially the method of  the random forest  regressor  can oftenestimate a big fraction of variance, while also producing comparatively low errors. Of all four water quality parameters, NN was most effectively-predicted, with R2 = 0.555by a random forest regressor, whereas AN is the most challenging with a maximum R2 =0.156,  also  by  a  random  forest  regressor.  BOD5  and  TP  prediction  also  remainschallenging, but some models returned relatively strong metrics, indicating great potentialfor sound predictions of these parameters as well. Optimization  of  used  input  data,  feature  engineering,  feature  selection,  modelarchitectures,  hyperparameter  optimization  and  model  selection  will  allow  broadapplication of ML methods for river water quality estimations, even in upper reaches of theVltava and other major European rivers. Reaching this goal requires big further efforts. 
56



6. ReferencesAbdi,  H.,  2010.  Partial  least  squares  regression  and  projection  on  latent  structureregression  (PLS  Regression).  WIREs  Computational  Statistics  2,  97–106.https://doi.org/10.1002/wics.51Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H., 2018.State-of-the-art  in  artificial  neural  network  applications:  A  survey.  Heliyon  4,e00938. https://doi.org/10.1016/j.heliyon.2018.e00938Ahmed, M., Mumtaz, R., Anwar, Z., 2022. An Enhanced Water Quality Index for WaterQuality Monitoring Using Remote Sensing and Machine Learning. Applied Sciences12, 12787. https://doi.org/10.3390/app122412787Akbarzadeh, Z., Maavara, T., Slowinski, S., Van Cappellen, P., 2019. Effects of Dammingon River  Nitrogen Fluxes:  A Global Analysis.  Global  Biogeochemical  Cycles 33,1339–1357. https://doi.org/10.1029/2019GB006222Amari,  S.,  1993.  Backpropagation  and  stochastic  gradient  descent  method.Neurocomputing 5, 185–196. https://doi.org/10.1016/0925-2312(93)90006-OAnderson,  D.M.,  Glibert,  P.M.,  Burkholder,  J.M.,  2002.  Harmful  algal  blooms  andeutrophication: Nutrient sources, composition, and consequences. Estuaries 25, 704–726. https://doi.org/10.1007/BF02804901Anding, D., Kauth, R., 1970. Estimation of sea surface temperature from space. RemoteSensing of Environment 1, 217–220. https://doi.org/10.1016/S0034-4257(70)80002-5Andrychowicz,  M.,  Denil,  M.,  Gomez,  S.,  Hoffman,  M.W.,  Pfau,  D.,  Schaul,  T.,Shillingford,  B.,  de Freitas,  N.,  2016.  Learning to learn by gradient  descent bygradient descent. https://doi.org/10.48550/arXiv.1606.04474Baburek, J., Pertoldová, J., Verner, K.,  Jiřička, J.,  2013. Guide to the geology of theŠumava Mts. Administration of the Šumava National Park and Protected LandcapeArea, Vimperk.Bakhteev,  O.Y.,  Strijov,  V.V.,  2020.  Comprehensive  analysis  of  gradient-basedhyperparameter  optimization  algorithms.  Ann  Oper  Res  289,  51–65.https://doi.org/10.1007/s10479-019-03286-zBardenet,  R.,  Brendel,  M.,  Kégl,  B.,  Sebag,  M.,  2013.  Collaborative  hyperparametertuning, in: Proceedings of the 30th International Conference on Machine Learning.Presented at the International Conference on Machine Learning, PMLR, pp. 199–207.Basak,  D.,  Pal,  S.,  Patranabis,  D.C.,  others,  2007.  Support  vector  regression.  NeuralInformation Processing-Letters and Reviews 11, 203–224.Basu, N.B., Van Meter, K.J., Byrnes, D.K., Van Cappellen, P., Brouwer, R., Jacobsen,B.H.,  Jarsjö,  J.,  Rudolph,  D.L.,  Cunha,  M.C.,  Nelson,  N.,  Bhattacharya,  R.,Destouni,  G.,  Olsen,  S.B.,  2022.  Managing nitrogen legacies  to  accelerate  waterquality improvement. Nat. Geosci. 15, 97–105. https://doi.org/10.1038/s41561-021-00889-9Baxter, R.M., 1977. Environmental Effects of Dams and Impoundments. Annual Review ofEcology  and  Systematics  8,  255–283.https://doi.org/10.1146/annurev.es.08.110177.001351
57



Beaulieu, J.J., DelSontro, T., Downing, J.A., 2019. Eutrophication will increase methaneemissions from lakes and impoundments during the 21st century. Nat Commun 10,1375. https://doi.org/10.1038/s41467-019-09100-5Bellman, R., 1984. Dynamic programming. Princeton Univ. Pr, Princeton, NJ.Berry,  M.W.,  Mohamed,  A.,  Yap,  B.W.  (Eds.),  2020.  Supervised  and  UnsupervisedLearning for Data Science, Unsupervised and Semi-Supervised Learning. SpringerInternational Publishing, Cham. https://doi.org/10.1007/978-3-030-22475-2Beusen,  A.H.W.,  Dekkers,  A.L.M.,  Bouwman,  A.F.,  Ludwig,  W.,  Harrison,  J.,  2005.Estimation of global river transport of sediments and associated particulate C, N,and P. Global Biogeochemical Cycles 19. https://doi.org/10.1029/2005GB002453Biau,  G.,  Scornet,  E.,  2016.  A  random  forest  guided  tour.  TEST  25,  197–227.https://doi.org/10.1007/s11749-016-0481-7Bohnet, I.C., Janeckova Molnarova, K., van den Brink, A., Beilin, R., Sklenicka, P., 2022.How cultural heritage can support sustainable landscape development: The case ofTřeboň  Basin,  Czech  Republic.  Landscape  and  Urban  Planning  226,  104492.https://doi.org/10.1016/j.landurbplan.2022.104492Boyd,  C.E.,  2015.  Water  Quality:  An  Introduction.  Springer  International  Publishing,Cham. https://doi.org/10.1007/978-3-319-17446-4Boyer,  E.W.,  Howarth, R.W. (Eds.),  2002.  The Nitrogen Cycle  at  Regional  to GlobalScales. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-3405-9Breaux, H.J., 1967. On stepwise multiple linear regression (Master’s Thesis). University ofDelaware.Breiman,  L.,  2001.  Random  Forests.  Machine  Learning  45,  5–32.https://doi.org/10.1023/A:1010933404324Brush, M.J., Giani, M., Totti, C., Testa, J.M., Faganeli,  J., Ogrinc, N., Kemp, W.M.,Umani,  S.F.,  2020.  Eutrophication,  Harmful  Algae,  Oxygen  Depletion,  andAcidification, in: Coastal Ecosystems in Transition. American Geophysical Union(AGU), pp. 75–104. https://doi.org/10.1002/9781119543626.ch5Burges, C.J.C., 1998. A Tutorial on Support Vector Machines for Pattern Recognition.Data  Mining  and  Knowledge  Discovery  2,  121–167.https://doi.org/10.1023/A:1009715923555Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M.C., Lehrter, J.C., Lohrenz, S.E., Chou, W.-C., Zhai, W., Hollibaugh, J.T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai,M.,  Gong,  G.-C.,  2011.  Acidification  of  subsurface  coastal  waters  enhanced  byeutrophication. Nature Geosci 4, 766–770. https://doi.org/10.1038/ngeo1297Canfield, D.E., Glazer, A.N., Falkowski, P.G., 2010. The Evolution and Future of Earth’sNitrogen Cycle. Science 330, 192–196. https://doi.org/10.1126/science.1186120Cao, Z., Ma, R., Duan, H., Pahlevan, N., Melack, J., Shen, M., Xue, K., 2020. A machinelearning approach to estimate chlorophyll-a from Landsat-8 measurements in inlandlakes.  Remote  Sensing  of  Environment  248,  111974.https://doi.org/10.1016/j.rse.2020.111974Carpenter,  S.R.,  Bennett,  E.M.,  2011.  Reconsideration  of  the  planetary  boundary  forphosphorus.  Environ.  Res.  Lett.  6,  014009.  https://doi.org/10.1088/1748-9326/6/1/014009Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H.,1998.  Nonpoint  Pollution  of  Surface  Waters  with  Phosphorus  and  Nitrogen.Ecological Applications 8, 559–568. https://doi.org/10.2307/2641247
58



Carvalho, D.V., Pereira, E.M., Cardoso, J.S., 2019. Machine Learning Interpretability: ASurvey  on  Methods  and  Metrics.  Electronics  8,  832.https://doi.org/10.3390/electronics8080832CHMI,  2022.  Non-optically  active  water  quality  parameters  from  Povodí  Vltavy(unpublished data).Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V.,Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance dataset.  Remote  Sensing  of  Environment  219,  145–161.https://doi.org/10.1016/j.rse.2018.09.002Congedo, L., 2023. Semi-Automatic Classification Plugin for QGIS.Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E.,Lancelot,  C.,  Likens,  G.E.,  2009.  Controlling  Eutrophication:  Nitrogen  andPhosphorus. Science 323, 1014–1015. https://doi.org/10.1126/science.1167755Crawford, C.J., Roy, D.P., Arab, S., Barnes,  C., Vermote, E.,  Hulley, G., Gerace, A.,Choate, M., Engebretson, C., Micijevic, E., Schmidt, G., Anderson, C., Anderson,M., Bouchard, M., Cook, B., Dittmeier, R., Howard, D., Jenkerson, C., Kim, M.,Kleyians,  T.,  Maiersperger,  T.,  Mueller,  C.,  Neigh,  C.,  Owen,  L.,  Page,  B.,Pahlevan, N., Rengarajan, R., Roger, J.-C., Sayler, K., Scaramuzza, P., Skakun, S.,Yan, L., Zhang, H.K., Zhu, Z., Zahn, S., 2023. The 50-year Landsat collection 2archive.  Science  of  Remote  Sensing  8,  100103.https://doi.org/10.1016/j.srs.2023.100103Czech Statistical  Office,  2023.  Population  of  Municipalities  -  1  January  2023  [WWWDocument].  Population  of  Municipalities  -  1  January  2023.  URLhttps://www.czso.cz/csu/czso/population-of-municipalities-1-january-2023 (accessed3.17.24).De Mol, C., De Vito, E., Rosasco, L., 2009. Elastic-net regularization in learning theory.Journal of Complexity 25, 201–230. https://doi.org/10.1016/j.jco.2009.01.002de  Moraes,  K.R.,  Souza,  A.T.,  Bartoň,  D.,  Blabolil,  P.,  Muška,  M.,  Prchalová,  M.,Randák, T., Říha, M., Vašek, M., Turek, J., Tušer, M., Žlábek, V., Kubečka, J.,2023.  Can  a  Protected  Area  Help  Improve  Fish  Populations  under  HeavyRecreation Fishing? Water 15, 632. https://doi.org/10.3390/w15040632Delzer,  G.C.,  McKenzie,  S.W.,  2003.  Chapter  A7.  Section  7.0.  Five-Day  BiochemicalOxygen Demand. https://doi.org/10.3133/twri09A7.0Dey, J., Vijay, R., 2021. A critical and intensive review on assessment of water qualityparameters through geospatial techniques. Environ Sci Pollut Res 28, 41612–41626.https://doi.org/10.1007/s11356-021-14726-4Dodds,  W.K.,  Bouska,  W.W.,  Eitzmann,  J.L.,  Pilger,  T.J.,  Pitts,  K.L.,  Riley,  A.J.,Schloesser,  J.T.,  Thornbrugh,  D.J.,  2009.  Eutrophication  of  U.S.  Freshwaters:Analysis  of  Potential  Economic  Damages.  Environ.  Sci.  Technol.  43,  12–19.https://doi.org/10.1021/es801217qDong, L., Gong, C., Huai, H., Wu, E., Lu, Z., Hu, Y., Li, L., Yang, Z., 2023. Retrieval ofWater Quality Parameters in Dianshan Lake Based on Sentinel-2 MSI Imagery andMachine  Learning:  Algorithm Evaluation  and  Spatiotemporal  Change  Research.Remote Sens. 15, 5001. https://doi.org/10.3390/rs15205001Duester, H., 2023. SRTM Downloader Plugin for QGIS.Egbert,  J.,  Plonsky,  L.,  2020.  Bootstrapping Techniques,  in:  Paquot,  M.,  Gries,  S.Th.(Eds.),  A  Practical  Handbook  of  Corpus  Linguistics.  Springer  InternationalPublishing, Cham, pp. 593–610. https://doi.org/10.1007/978-3-030-46216-1_2459



El Naqa, I.,  Murphy, M.J., 2015. What Is Machine Learning?, in: El Naqa, I.,  Li, R.,Murphy,  M.J.  (Eds.),  Machine  Learning  in  Radiation  Oncology:  Theory  andApplications.  Springer  International  Publishing,  Cham,  pp.  3–11.https://doi.org/10.1007/978-3-319-18305-3_1European  Environment  Agency.,  2012.  EEA Catchments  and  Rivers  Network  SystemECRINS  v1.1:  rationales,  building  and  improving  for  widening  uses  to  WaterAccounts and WISE applications. Publications Office, LU.Foley,  B.,  Jones,  I.D.,  Maberly,  S.C.,  Rippey,  B.,  2012.  Long-term changes in  oxygendepletion in a small temperate lake: effects of climate change and eutrophication.Freshwater Biology 57, 278–289. https://doi.org/10.1111/j.1365-2427.2011.02662.xFu, B., Lao, Z., Liang, Y., Sun, J., He, X., Deng, T., He, W., Fan, D., Gao, E., Hou, Q.,2022. Evaluating optically and non-optically active water quality and its responserelationship to hydro-meteorology using multi-source data in Poyang Lake, China.Ecological Indicators 145, 109675. https://doi.org/10.1016/j.ecolind.2022.109675Gao, L., Shangguan, Y., Sun, Z., Shen, Q., Shi, Z., 2024. Estimation of Non-OpticallyActive Water Quality Parameters in Zhejiang Province Based on Machine Learning.Remote Sens. 16, 514. https://doi.org/10.3390/rs16030514Geladi,  P.,  Kowalski,  B.R.,  1986. Partial  least-squares  regression:  a  tutorial.  AnalyticaChimica Acta 185, 1–17. https://doi.org/10.1016/0003-2670(86)80028-9Gholizadeh, M., Melesse, A., Reddi, L., 2016. A Comprehensive Review on Water QualityParameters  Estimation  Using  Remote  Sensing  Techniques.  Sensors  16,  1298.https://doi.org/10.3390/s16081298Google, 2024a. USGS Landsat 5 Level 2, Collection 2, Tier 1 | Earth Engine Data Catalog[WWW  Document].  Google  for  Developers.  URLhttps://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2 (accessed 2.22.24).Google,  2024b.  JavaScript  and  Python  Guides  |  Google  Earth  Engine  |  Google  forDevelopers  [WWW  Document].  URLhttps://developers.google.com/earth-engine/guides (accessed 3.14.24).Grossman, Y.L., Ustin, S.L., Jacquemoud, S., Sanderson, E.W., Schmuck, G., Verdebout,J., 1996. Critique of stepwise multiple linear regression for the extraction of leafbiochemistry  information  from  leaf  reflectance  data.  Remote  Sensing  ofEnvironment 56, 182–193. https://doi.org/10.1016/0034-4257(95)00235-9Gruber,  N.,  Galloway,  J.N.,  2008.  An Earth-system perspective  of  the global  nitrogencycle. Nature 451, 293–296. https://doi.org/10.1038/nature06592Guo, H., Huang, J.J., Chen, B., Guo, X., Singh, V.P., 2021. A machine learning-basedstrategy for estimating non-optically active water quality parameters using Sentinel-2  imagery.  Int.  J.  Remote  Sens.  42,  1841–1866.https://doi.org/10.1080/01431161.2020.1846222Halliday, S.J., Wade, A.J., Skeffington, R.A., Neal, C., Reynolds, B., Rowland, P., Neal,M., Norris, D., 2012. An analysis of long-term trends, seasonality and short-termdynamics  in  water  quality  data  from  Plynlimon,  Wales.  Science  of  The  TotalEnvironment, Climate Change and Macronutrient Cycling along the Atmospheric,Terrestrial, Freshwater and Estuarine Continuum - A Special Issue dedicated toProfessor Colin Neal 434, 186–200. https://doi.org/10.1016/j.scitotenv.2011.10.052Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau,D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., VanKerkwijk, M.H., Brett, M., Haldane, A., Del Río, J.F., Wiebe, M., Peterson, P.,60



Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke,C., Oliphant, T.E., 2020. Array programming with NumPy. Nature 585, 357–362.https://doi.org/10.1038/s41586-020-2649-2Hassine, K., Erbad, A., Hamila, R., 2019. Important Complexity Reduction of RandomForest  in  Multi-Classification  Problem,  in:  2019  15th  International  WirelessCommunications & Mobile Computing Conference (IWCMC). Presented at the 201915th  International  Wireless  Communications  &  Mobile  Computing  Conference(IWCMC), pp. 226–231. https://doi.org/10.1109/IWCMC.2019.8766544Holtz, Y., 2024. Python Graph Gallery [WWW Document]. The Python Graph Gallery.URL https://python-graph-gallery.com/ (accessed 3.18.24).Horka, P., Musilova, Z., Holubova, K., Jandova, K., Kukla, J., Rutkayova, J., Jones, J.I.,2023. Anthropogenic nutrient loading affects both individual species and the trophicstructure  of  river  fish  communities.  Frontiers  in  Ecology  and  Evolution  10.https://doi.org/10.3389/fevo.2022.1076451Houser, J.N., Richardson, W.B., 2010. Nitrogen and phosphorus in the Upper MississippiRiver: transport, processing, and effects on the river ecosystem. Hydrobiologia 640,71–88. https://doi.org/10.1007/s10750-009-0067-4Howarth, R., Chan, F., Conley, D.J., Garnier, J., Doney, S.C., Marino, R., Billen, G.,2011.  Coupled  biogeochemical  cycles:  eutrophication  and  hypoxia  in  temperateestuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment9, 18–26. https://doi.org/10.1890/100008Howarth, R.W., Marino, R., 2006. Nitrogen as the limiting nutrient for eutrophication incoastal  marine  ecosystems:  Evolving  views  over  three  decades.  Limnology  andOceanography 51, 364–376. https://doi.org/10.4319/lo.2006.51.1_part_2.0364Hunter,  J.D.,  2007.  Matplotlib:  A 2D graphics  environment.  Computing  in  Science  &Engineering 9, 90–95. https://doi.org/10.1109/MCSE.2007.55Inkscape Project, 2020. Inkscape.James, G., Witten, D., Hastie, T., Tibshirani, R., Taylor, J., 2023. Linear Model Selectionand Regularization, in: James, G., Witten, D., Hastie, T., Tibshirani, R., Taylor, J.(Eds.),  An  Introduction  to  Statistical  Learning:  With  Applications  in  Python,Springer Texts in Statistics. Springer International Publishing, Cham, pp. 229–288.https://doi.org/10.1007/978-3-031-38747-0_6Ju, J., Neigh, C., Claverie, M., Skakun, S., Roger, J.-C., Vermote, E., Dungan, J., 2020.Harmonized Landsat Sentinel-2 (HLS) Product User Guide, 2.0. ed.Kakade, A., Salama, E.-S., Han, H., Zheng, Y., Kulshrestha, S., Jalalah, M., Harraz, F.A.,Alsareii,  S.A.,  Li,  X.,  2021.  World  eutrophic  pollution  of  lake  and  river:Biotreatment  potential  and  future  perspectives.  Environmental  Technology  &Innovation 23, 101604. https://doi.org/10.1016/j.eti.2021.101604Kaplan, G., Avdan, U., 2017. Object-based water body extraction model using Sentinel-2satellite imagery. European Journal of Remote Sensing.Keith, T.Z., 2019. Multiple regression and beyond: An introduction to multiple regressionand structural equation modeling. Routledge.Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation andmodel  selection,  in:  Proceedings  of  the  14th  International  Joint  Conference  onArtificial Intelligence - Volume 2, IJCAI’95. Morgan Kaufmann Publishers Inc., SanFrancisco, CA, USA, pp. 1137–1143.
61



Köhler, J., Gelbrecht, J., 1998. Interactions between phytoplankton dynamics and nutrientsupply along the lowland river  Spree, Germany.  SIL Proceedings,  1922-2010 26,1045–1049. https://doi.org/10.1080/03680770.1995.11900880Kondratyev,  K.Ya.,  Pozdnyakov,  D.V.,  Pettersson,  L.H.,  1998.  Water  quality  remotesensing in the visible spectrum. International Journal of Remote Sensing 19, 957–979. https://doi.org/10.1080/014311698215810Kopáček, J., Hejzlar, J., Porcal, P., Znachor, P., 2021. Biogeochemical causes of sixty-yeartrends and seasonal variations of river water properties in a large European basin.Biogeochemistry 154, 81–98. https://doi.org/10.1007/s10533-021-00800-zKopáček, J., Hejzlar, J., Posch, M., 2013. Factors controlling the export of nitrogen fromagricultural  land  in  a  large  central  european  catchment  during  1900-2010.Environmental  Science  and  Technology  47,  6400–6407.https://doi.org/10.1021/es400181mKupssinsku, L.S., Guimaraes, T.T., de Freitas, R., de Souza, E.M., Rossa, P., Marques Jr,A., Veronez, M.R., Gonzaga Jr, L., Cazarin, C.L., Mauad, F.F., 2019. Prediction ofchlorophyll-a  and  suspended  solids  through  remote  sensing  and  artificial  neuralnetworks,  in:  2019  13TH  INTERNATIONAL  CONFERENCE  ON  SENSINGTECHNOLOGY  (ICST),  International  Conference  on  Sensing  Technology.Presented  at  the  13th  International  Conference  on  Sensing  Technology  (ICST),IEEE, New York. https://doi.org/10.1109/icst46873.2019.9047682Kwast,  H.  van  der,  Menke,  K.,  2022.  QGIS  for  hydrological  applications:  recipes  forcatchment  hydrology and water  management,  Second edition.  ed.  Locate  Press,Penticton, BC.Latt, Z.Z., Wittenberg, H., 2014. Improving Flood Forecasting in a Developing Country: AComparative Study of Stepwise Multiple Linear Regression and Artificial NeuralNetwork. Water Resour Manage 28, 2109–2128. https://doi.org/10.1007/s11269-014-0600-8Le, C., Zha, Y., Li, Y., Sun, D., Lu, H., Yin, B., 2010. Eutrophication of Lake Waters inChina:  Cost,  Causes,  and  Control.  Environmental  Management  45,  662–668.https://doi.org/10.1007/s00267-010-9440-3LeDell, E., Poirier, S., 2020. H2O AutoML: Scalable Automatic Machine Learning.Leggesse, E.S., Zimale, F.A., Sultan, D., Enku, T., Srinivasan, R., Tilahun, S.A., 2023.Predicting Optical Water Quality Indicators from Remote Sensing Using MachineLearning  Algorithms  in  Tropical  Highlands  of  Ethiopia.  Hydrology  10,  110.https://doi.org/10.3390/hydrology10050110Li, D., Liu, S., 2019. Chapter 7 - Detection of River Water Quality, in: Li, D., Liu, S.(Eds.), Water Quality Monitoring and Management. Academic Press, pp. 211–220.https://doi.org/10.1016/B978-0-12-811330-1.00007-7Li, N., Ning, Z., Chen, M., Wu, D., Hao, C., Zhang, D., Bai, R., Liu, H., Chen, X., Li, W.,Zhang,  W.,  Chen,  Y.,  Li,  Q.,  Zhang,  L.,  2022.  Satellite  and Machine  LearningMonitoring of  Optically Inactive Water Quality Variability in a Tropical  River.Remote Sensing 14, 5466. https://doi.org/10.3390/rs14215466Lin, K., Zhu, Y., Zhang, Y., Lin, H., 2019. Determination of ammonia nitrogen in naturalwaters:  Recent  advances  and  applications.  Trends  in  Environmental  AnalyticalChemistry 24, e00073. https://doi.org/10.1016/j.teac.2019.e00073Liu, Y., Heuvelink, G.B.M., Bai, Z., He, P., Xu, X., Ding, W., Huang, S., 2021. Analysis ofspatio-temporal  variation  of  crop  yield  in  China  using  stepwise  multiple  linear
62



regression.  Field  Crops  Research  264,  108098.https://doi.org/10.1016/j.fcr.2021.108098Ljumović, M., Klar, M., 2015. Estimating expected error rates of random forest classifiers:A  comparison  of  cross-validation  and  bootstrap,  in:  2015  4th  MediterraneanConference  on  Embedded  Computing  (MECO).  Presented  at  the  2015  4thMediterranean  Conference  on  Embedded  Computing  (MECO),  pp.  212–215.https://doi.org/10.1109/MECO.2015.7181905Magri,  S.,  Ottaviani,  E.,  Prampolini,  E.,  Besio,  G.,  Fabiano,  B.,  Federici,  B.,  2023.Application  of  machine  learning  techniques  to  derive  sea  water  turbidity  fromSentinel-2  imagery.  Remote  Sens.  Appl.-Soc.  Environ.  30,  100951.https://doi.org/10.1016/j.rsase.2023.100951Maier,  P.M.,  Keller,  S.,  2018.  Machine Learning Regression on Hyperspectral  Data toEstimate  Multiple  Water  Parameters,  in:  2018  9TH  WORKSHOP  ONHYPERSPECTRAL  IMAGE  AND  SIGNAL  PROCESSING:  EVOLUTION  INREMOTE SENSING (WHISPERS), Workshop on Hyperspectral Image and SignalProcessing.  Presented  at  the  9th Workshop on Hyperspectral  Image and SignalProcessing - Evolution in Remote Sensing (WHISPERS), IEEE, New York.Mainstone,  C.P.,  Parr,  W.,  2002.  Phosphorus  in  rivers  — ecology  and  management.Science of The Total Environment, Water quality functioning of lowland permeablecatchments:inferences from an intensive study of the River Kennet and upper RiverThames 282–283, 25–47. https://doi.org/10.1016/S0048-9697(01)00937-8Masek, J., Ju, J., Roger, J.-C., Skakun, S., Vermote, E., Claverie, M., Dungan, J., Yin, Z.,Freitag, B., Justice, C., 2021. HLS Operational Land Imager Surface Reflectanceand  TOA  Brightness  Daily  Global  30m  v2.0.https://doi.org/10.5067/HLS/HLSL30.002Maúre,  E.  de R.,  Terauchi,  G.,  Ishizaka,  J.,  Clinton,  N.,  DeWitt,  M.,  2021.  Globallyconsistent  assessment  of  coastal  eutrophication.  Nat  Commun  12,  6142.https://doi.org/10.1038/s41467-021-26391-9McKinney, W., 2010. Data Structures for Statistical Computing in Python. Presented atthe  Python  in  Science  Conference,  Austin,  Texas,  pp.  56–61.https://doi.org/10.25080/Majora-92bf1922-00aMentlík,  P.,  2016.  Bohemian  ForestBohemian  Forest:  Landscape  and  People  on  theFrontier,  in:  Pánek,  T.,  Hradecký,  J.  (Eds.),  Landscapes and Landforms of  theCzech  Republic.  Springer  International  Publishing,  Cham,  pp.  87–100.https://doi.org/10.1007/978-3-319-27537-6_8Meybeck, M., 1982. Carbon, Nitrogen, and Phosphorus Transport by World Rivers. Am. J.Sci. 282. https://doi.org/10.2475/ajs.282.4.401Minsky, M., 1961. Steps Toward Artificial Intelligence. Proceedings of the IRE 49, 8–30.Mooney, C.Z., Duval, R.D., 2006. Bootstrapping: a nonparametric approach to statisticalinference, Nachdr. ed, Quantitative applications in the social sciences. Sage Publ,Newbury Park, Calif.Myers, J.S., Miller, R.L., 2005. Optical Airborne Remote Sensing, in: Miller, R.L., DelCastillo,  C.E.,  Mckee,  B.A.  (Eds.),  Remote  Sensing  of  Coastal  AquaticEnvironments:  Technologies,  Techniques and Applications.  Springer  Netherlands,Dordrecht, pp. 51–67. https://doi.org/10.1007/978-1-4020-3100-7_3Ng, A.Y., 2004. Feature selection, L1 vs. L2 regularization, and rotational invariance, in:Proceedings  of  the  Twenty-First  International  Conference  on  Machine  Learning,
63



ICML ’04.  Association  for  Computing  Machinery,  New York,  NY,  USA,  p.  78.https://doi.org/10.1145/1015330.1015435Niu, C., Tan, K., Jia, X., Wang, X., 2021. Deep learning based regression for opticallyinactive  inland  water  quality  parameter  estimation  using  airborne  hyperspectralimagery.  Environmental  Pollution  286,  117534.https://doi.org/10.1016/j.envpol.2021.117534OpenAI, 2023. ChatGPT-4.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,M.,  Prettenhofer,  P.,  Weiss,  R.,  Dubourg,  V.,  Vanderplas,  J.,  Passos,  A.,Cournapeau,  D.,  Brucher,  M.,  Perrot,  M.,  Duchesnay,  É.,  2011.  Scikit-learn:Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830.Penn, M.R., Pauer, J.J., Mihelcic, J.R., 2009. Biochemical oxygen demand. Environmentaland ecological chemistry 2, 278–297.Peshawa,  J.M.A.,  Rezhna,  H.F.,  2014.  Data  Normalization  and  Standardization:  ATechnical Report. https://doi.org/10.13140/RG.2.2.28948.04489Peterson, K.T., Sagan, V., Sloan, J.J., 2020. Deep learning-based water quality estimationand anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloudcomputing.  GIScience  &  Remote  Sensing  57,  510–525.https://doi.org/10.1080/15481603.2020.1738061Piotrowski, A.P., Napiorkowski, J.J., 2013. A comparison of methods to avoid overfittingin neural networks training in the case of catchment runoff modelling. Journal ofHydrology 476, 97–111. https://doi.org/10.1016/j.jhydrol.2012.10.019Pitcher,  G.C.,  Aguirre-Velarde,  A.,  Breitburg,  D.,  Cardich,  J.,  Carstensen,  J.,  Conley,D.J.,  Dewitte,  B.,  Engel,  A.,  Espinoza-Morriberón,  D.,  Flores,  G.,  Garçon,  V.,Graco, M., Grégoire, M., Gutiérrez, D., Hernandez-Ayon, J.M., Huang, H.-H.M.,Isensee, K., Jacinto, M.E., Levin, L., Lorenzo, A., Machu, E., Merma, L., Montes,I.,  SWA,  N.,  Paulmier,  A.,  Roman,  M.,  Rose,  K.,  Hood,  R.,  Rabalais,  N.N.,Salvanes,  A.G.V.,  Salvatteci,  R.,  Sánchez,  S.,  Sifeddine,  A.,  Tall,  A.W.,  Plas,A.K.V.D., Yasuhara, M., Zhang, J., Zhu, Z.Y., 2021. System controls of coastal andopen  ocean  oxygen  depletion.  Progress  in  Oceanography  197.https://doi.org/10.1016/j.pocean.2021.102613Pretty,  J.N.,  Mason,  C.F.,  Nedwell,  D.B.,  Hine,  R.E.,  Leaf,  S.,  Dils,  R.,  2003.Environmental Costs of Freshwater Eutrophication in England and Wales. Environ.Sci. Technol. 37, 201–208. https://doi.org/10.1021/es020793kPu, F., Ding, C., Chao, Z., Yu, Y., Xu, X., 2019. Water-Quality Classification of InlandLakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sensing11, 1674. https://doi.org/10.3390/rs11141674QGIS  Development  Team,  2009.  QGIS  Geographic  Information  System.  Open  SourceGeospatial Foundation.Ramachandran,  P.,  Zoph,  B.,  Le,  Q.V.,  2017.  Searching  for  Activation  Functions.https://doi.org/10.48550/arXiv.1710.05941Razon, L.F., 2018. Reactive nitrogen: A perspective on its global impact and prospects forits  sustainable  production.  Sustainable  Production  and  Consumption  15,  35–48.https://doi.org/10.1016/j.spc.2018.04.003Records, R.M., Wohl, E., Arabi, M., 2016. Phosphorus in the river corridor. Earth-ScienceReviews 158, 65–88. https://doi.org/10.1016/j.earscirev.2016.04.010
64



Reichstein,  M.,  Camps-Valls,  G.,  Stevens,  B.,  Jung,  M.,  Denzler,  J.,  Carvalhais,  N.,Prabhat,  2019.  Deep  learning  and  process  understanding  for  data-driven  Earthsystem science. Nature 566, 195–204. https://doi.org/10.1038/s41586-019-0912-1Richards,  J.A.,  2013.  Sources  and  Characteristics  of  Remote  Sensing  Image  Data,  in:Richards,  J.A.  (Ed.),  Remote  Sensing  Digital  Image  Analysis:  An  Introduction.Springer, Berlin, Heidelberg, pp. 1–26. https://doi.org/10.1007/978-3-642-30062-2_1Riebeek,  Holly,  2013.  Historic  Landsat  5  Mission  Ends  |  Landsat  Science  [WWWDocument].  URL  https://landsat.gsfc.nasa.gov/article/historic-landsat-5-mission-ends/ (accessed 3.27.24).Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., Lambin, E.F., Lenton,T.M.,  Scheffer,  M.,  Folke,  C.,  Schellnhuber,  H.J.,  Nykvist,  B.,  de  Wit,  C.A.,Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R.,Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J.,Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, J.A., 2009. A safeoperating  space  for  humanity.  Nature  461,  472–475.https://doi.org/10.1038/461472aRodríguez,  J.D.,  Pérez,  A.,  Lozano,  J.A.,  2010.  Sensitivity  Analysis  of  k-Fold  CrossValidation in Prediction Error Estimation. IEEE Transactions on Pattern Analysisand Machine Intelligence 32, 569–575. https://doi.org/10.1109/TPAMI.2009.187Rosendorf,  P.,  Vyskoč,  P.,  Prchalová,  H.,  Fiala,  D.,  2016.  Estimated  contribution  ofselected non-point pollution sources to the phosphorus and nitrogen loads in waterbodies  of  the  Vltava  river  basin.  Soil  and  Water  Research  11,  196–204.https://doi.org/10.17221/15/2015-SWRRoy, D.P., Li, Z., Zhang, H.K., 2017. Adjustment of Sentinel-2 Multi-Spectral Instrument(MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR)and  Quantification  of  Red-Edge  Band  BRDF Effects.  Remote  Sensing  9,  1325.https://doi.org/10.3390/rs9121325Roy, D.P., Zhang, H.K., Ju, J., Gomez-Dans, J.L., Lewis, P.E., Schaaf, C.B., Sun, Q., Li,J.,  Huang,  H.,  Kovalskyy,  V.,  2016.  A  general  method  to  normalize  Landsatreflectance  data  to  nadir  BRDF  adjusted  reflectance.  Remote  Sensing  ofEnvironment 176, 255–271. https://doi.org/10.1016/j.rse.2016.01.023Ruescas, A.B., Mateo-Garcia, G., Camps-Valls, G., Hieronymi, M., 2018. Retrieval of Case2 Water Quality Parameters with Machine Learning, in: IGARSS 2018 - 2018 IEEEINTERNATIONAL  GEOSCIENCE  AND  REMOTE  SENSING  SYMPOSIUM,IEEE  International  Symposium  on  Geoscience  and  Remote  Sensing  IGARSS.Presented  at  the  38th  IEEE  International  Geoscience  and  Remote  SensingSymposium (IGARSS), IEEE, New York, pp. 124–127.Růžička,  M.,  Hejzlar,  J.,  Jarošík,  J.,  2005.  Modelling  the  Hydrodynamics  and  WaterQuality of the Vltava River Reservoir Cascade, in: Informatics for EnvironmentalProtection-Networking Environmental Information. Masaryk University Brno.Sagan,  V.,  Peterson,  K.T.,  Maimaitijiang,  M.,  Sidike,  P.,  Sloan,  J.,  Greeling,  B.A.,Maalouf,  S.,  Adams,  C.,  2020.  Monitoring  inland  water  quality  using  remotesensing:  potential  and  limitations  of  spectral  indices,  bio-optical  simulations,machine  learning,  and  cloud  computing.  Earth-Science  Reviews  205,  103187.https://doi.org/10.1016/j.earscirev.2020.103187Sagi, O., Rokach, L., 2020. Explainable decision forest: Transforming a decision forest intoan  interpretable  tree.  Information  Fusion  61,  124–138.https://doi.org/10.1016/j.inffus.2020.03.01365



Santos,  C.F.G.D.,  Papa,  J.P.,  2022. Avoiding Overfitting:  A Survey on RegularizationMethods for Convolutional Neural Networks. ACM Comput. Surv. 54, 213:1-213:25.https://doi.org/10.1145/3510413Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195, 260–262.https://doi.org/10.1126/science.195.4275.260Schindler, D.W., Hecky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J.,Beaty, K.G., Lyng, M., Kasian, S.E.M., 2008. Eutrophication of lakes cannot becontrolled  by  reducing  nitrogen  input:  Results  of  a  37-year  whole-ecosystemexperiment. Proceedings of the National Academy of Sciences of the United Statesof America 105, 11254–11258. https://doi.org/10.1073/pnas.0805108105Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural Networks61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003Schwoerbel,  J.,  Brendelberger,  H.,  2022.  Einführung in  die  Limnologie:  Stoffhaushalt  -Lebensgemeinschaften  -  Technologie.  Springer,  Berlin,  Heidelberg.https://doi.org/10.1007/978-3-662-63334-2Seabold, S.,  Perktold, J.,  2010. statsmodels:  Econometric and statistical  modeling withPython.Selman,  M.,  Greenhalgh,  S.,  2009.  Eutrophication:  Sources  and  Drivers  of  NutrientPollution.Sharma,  Sagar,  Sharma,  Simone,  Athaiya,  A.,  2017.  Activation  functions  in  neuralnetworks. Towards Data Sci 6, 310–316.Shuiwang, D., Shen, Z., Hongyu, H., 2000. Transport of dissolved inorganic nitrogen fromthe major rivers to estuaries in China. Nutrient Cycling in Agroecosystems 57, 13–22. https://doi.org/10.1023/A:1009896032188Singhal, G., Bansod, B., Mathew, L., Goswami, J., Choudhury, B.U., Raju, P.L.N., 2019.Chlorophyll  estimation  using  multi-spectral  unmanned  aerial  system  based  onmachine  learning  techniques.  Remote  Sens.  Appl.-Soc.  Environ.  15,  100235.https://doi.org/10.1016/j.rsase.2019.100235Skorbiłowicz,  M.,  Ofman,  P.,  2014.  Seasonal  changes  of  nitrogen  and  phosphorusconcentration  in  supraśl  river.  Journal  of  Ecological  Engineering  15,  26–31.https://doi.org/10.12911/22998993.1084172Smith, V.H., 2003. Eutrophication of freshwater and coastal marine ecosystems a globalproblem.  Environ  Sci  &  Pollut  Res  10,  126–139.https://doi.org/10.1065/espr2002.12.142Smith, V.H., Joye, S.B., Howarth, R.W., 2006. Eutrophication of freshwater and marineecosystems.  Limnology  and  Oceanography  51,  351–355.https://doi.org/10.4319/lo.2006.51.1_part_2.0351Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Statistics andComputing 14, 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88Soana,  E.,  Gervasio,  M.P.,  Granata,  T.,  Colombo,  D.,  Castaldelli,  G.,  2024.  Climatechange impacts on eutrophication in the Po River (Italy): Temperature-mediatedreduction in nitrogen export but no effect on phosphorus. Journal of EnvironmentalSciences (China) 143, 148–163. https://doi.org/10.1016/j.jes.2023.07.008Soballe,  D.M.,  Kimmel,  B.L.,  1987.  A  Large-Scale  Comparison  of  Factors  InfluencingPhytoplankton Abundance in Rivers, Lakes, and Impoundments. Ecology 68, 1943–1954. https://doi.org/10.2307/1939885
66



Tan,  Z.,  Ren,  J.,  Li,  S.,  Li,  W.,  Zhang,  R.,  Sun,  T.,  2023.  Inversion  of  NutrientConcentrations Using Machine Learning and Influencing Factors in Minjiang River.Water 15, 1398. https://doi.org/10.3390/w15071398TensorFlow Developers, 2024. TensorFlow. https://doi.org/10.5281/ZENODO.4724125Tesfaye, M., Souza, A.T., Soukalová, K., Šmejkal, M., Hejzlar, J., Prchalová, M., Říha,M., Muška, M., Vašek, M., Frouzová, J., Blabolil, P., Boukal, D.S., Kubečka, J.,2023. Somatic growth of pikeperch (Stizostedion lucioperca) in relation to variationin temperature and eutrophication in a Central Europe Lake. Fisheries Research267, 106824. https://doi.org/10.1016/j.fishres.2023.106824Tesoriero, A.J., Robertson, D.M., Green, C.T., Böhlke, J.K., Harvey, J.W., Qi, S.L., 2024.Prioritizing  river  basins  for  nutrient  studies.  Environmental  Monitoring  andAssessment 196. https://doi.org/10.1007/s10661-023-12266-7Tian, D., Zhao, X., Gao, L., Liang, Z., Yang, Z., Zhang, P., Wu, Q., Ren, K., Li, R., Yang,C., Li, S., Wang, M., He, Z., Zhang, Z., Chen, J., 2024. Estimation of water qualityvariables  based  on  machine  learning  model  and  cluster  analysis-based  empiricalmodel using multi-source remote sensing data in inland reservoirs,  South China.Environmental Pollution 342. https://doi.org/10.1016/j.envpol.2023.123104Tibshirani, R., 1996. Regression Shrinkage and Selection Via the Lasso. Journal of theRoyal  Statistical  Society:  Series  B  (Methodological)  58,  267–288.https://doi.org/10.1111/j.2517-6161.1996.tb02080.xTobias, R.D., 1995. An introduction to partial least squares regression, in: Proceedings ofthe Twentieth Annual  SAS Users  Group International  Conference.  Citeseer,  pp.1250–1257.Topp, S.N., Pavelsky, T.M., Jensen, D., Simard, M., Ross, M.R.V., 2020. Research Trendsin the Use of Remote Sensing for Inland Water Quality Science: Moving TowardsMultidisciplinary Applications. Water 12, 169. https://doi.org/10.3390/w12010169Tsamardinos, I., Greasidou, E., Borboudakis, G., 2018. Bootstrapping the out-of-samplepredictions for efficient and accurate cross-validation. Mach Learn 107, 1895–1922.https://doi.org/10.1007/s10994-018-5714-4Tsirkunov, V.V., Nikanorov, A.M., Laznik, M.M., Dongwei, Z., 1992. Analysis of long-termand seasonal river water quality changes in Latvia. Water Research 26, 1203–1216.https://doi.org/10.1016/0043-1354(92)90181-3USGS, 2012. Landsat Data Continuity Mission.Vidal,  T.,  Schiffer,  M., 2020. Born-Again Tree Ensembles,  in:  Proceedings of  the 37thInternational  Conference  on  Machine  Learning.  Presented  at  the  InternationalConference on Machine Learning, PMLR, pp. 9743–9753.Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W.,Schlesinger, W.H., Tilman, D.G., 1997. Human Alteration of the Global NitrogenCycle:  Sources  and  Consequences.  Ecological  Applications  7,  737–750.https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Scienceof The Total Environment, Contaminants in Natural and Constructed Wetlands:Pollutant  Dynamics  and  Control  380,  48–65.https://doi.org/10.1016/j.scitotenv.2006.09.014Vystavna,  Y.,  Hejzlar,  J.,  Kopáček,  J.,  2017.  Long-term  trends  of  phosphorusconcentrations in an artificial lake: Socio-economic and climate drivers. PLOS ONE12, e0186917. https://doi.org/10.1371/journal.pone.0186917
67



Vystavna, Y., Paule-Mercado, M.C., Schmidt, S.I.,  Hejzlar, J., Porcal, P., Matiatos, I.,2023. Nutrient dynamics in temperate European catchments of different land useunder  changing  climate.  Journal  of  Hydrology:  Regional  Studies  45,  101288.https://doi.org/10.1016/j.ejrh.2022.101288Wang,  H.,  García  Molinos,  J.,  Heino,  J.,  Zhang,  H.,  Zhang,  P.,  Xu,  J.,  2021.Eutrophication  causes  invertebrate  biodiversity  loss  and  decreases  cross-taxoncongruence  across  anthropogenically-disturbed  lakes.  Environment  International153, 106494. https://doi.org/10.1016/j.envint.2021.106494Waskom,  M.,  2021.  seaborn:  statistical  data  visualization.  JOSS  6,  3021.https://doi.org/10.21105/joss.03021Whitehead, P.G., Wilby, R.L., Battarbee, R.W., Kernen, M., Wade, A.J., 2009. A reviewof the potential impacts of climate change on surface water quality. HydrologicalSciences Journal 54, 101–123. https://doi.org/10.1623/hysj.54.1.101Withers, P.J.A., Jarvie, H.P., 2008. Delivery and cycling of phosphorus in rivers: A review.Science  of  The  Total  Environment  400,  379–395.https://doi.org/10.1016/j.scitotenv.2008.08.002Wrigley, R.C., Horne, A.J., 1974. Remote sensing and lake eutrophication. Nature 250,213–214. https://doi.org/10.1038/250213a0Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Liu, Q., Yin, Z., Dai, J., Yin, D., Liang, J.,Ye,  S.,  2019.  Effects  of  dam construction on biodiversity:  A review.  Journal  ofCleaner Production 221, 480–489. https://doi.org/10.1016/j.jclepro.2019.03.001Xia, X., Zhang, S., Li, S., Zhang, Liwei, Wang, G., Zhang, Ling, Wang, J., Li, Z., 2018.The cycle of nitrogen in river systems: sources, transformation, and flux. Environ.Sci.: Processes Impacts 20, 863–891. https://doi.org/10.1039/C8EM00042EYadav, S., Shukla, S., 2016. Analysis of k-Fold Cross-Validation over Hold-Out Validationon Colossal Datasets  for Quality Classification, in:  2016 IEEE 6th InternationalConference  on  Advanced  Computing  (IACC).  Presented  at  the  2016  IEEE 6thInternational  Conference  on  Advanced  Computing  (IACC),  pp.  78–83.https://doi.org/10.1109/IACC.2016.25Yan, D., Wang, K., Qin, T., Weng, B., Wang, H., Bi, W., Li, X., Li, M., Lv, Z., Liu, F.,He, S., Ma, J., Shen, Z., Wang, J., Bai, H., Man, Z., Sun, C., Liu, M., Shi, X., Jing,L.,  Sun, R.,  Cao, S.,  Hao, C.,  Wang,  L.,  Pei,  M.,  Dorjsuren, B.,  Gedefaw, M.,Girma, A., Abiyu, A., 2019. A data set of global river networks and correspondingwater resources zones divisions.  Sci Data 6, 219. https://doi.org/10.1038/s41597-019-0243-yYang, X.-S., 2021. Chapter 6 - Genetic Algorithms, in: Yang, X.-S. (Ed.), Nature-InspiredOptimization  Algorithms  (Second  Edition).  Academic  Press,  pp.  91–100.https://doi.org/10.1016/B978-0-12-821986-7.00013-5Zhan, X., Liang, X., Xu, G., Zhou, L., 2013. Influence of plant root morphology and tissuecomposition on phenanthrene uptake: Stepwise multiple linear regression analysis.Environmental Pollution 179, 294–300. https://doi.org/10.1016/j.envpol.2013.04.033Zhang, H., Lin, C., Lei, P., Shan, B., Zhao, Y., 2015. Evaluation of river eutrophication ofthe Haihe River Basin. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae 35,2336–2344. https://doi.org/10.13671/j.hjkxxb.2015.0025Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., Ye, L., 2022. Areview of  the application of  machine learning  in  water  quality evaluation.  Eco-Environment & Health 1, 107–116. https://doi.org/10.1016/j.eehl.2022.06.001
68



Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. Journalof  the Royal  Statistical  Society:  Series B (Statistical  Methodology)  67,  301–320.https://doi.org/10.1111/j.1467-9868.2005.00503.xZou, J., Han, Y., So, S.-S., 2009. Overview of Artificial Neural Networks, in: Livingstone,D.J. (Ed.), Artificial Neural Networks: Methods and Applications. Humana Press,Totowa, NJ, pp. 14–22. https://doi.org/10.1007/978-1-60327-101-1_2

69



CZECH UNIVERSITY OF LIFE SCIENCESPRAGUEFACULTY OF ENVIRONMENTSL SCIENCES

DIPLOMA THESIS

2024 Jonas Niese


	Author’s statement
	Abstract (EN)
	Abstract (CZ)
	1. Introduction:
	1.1 The Challenge of Eutrophication
	1.2 Introduction to Selected Water Quality Parameters in Rivers
	1.2.1 Reactive inorganic Nitrogen: Ammonia and Nitrate Nitrogen
	1.2.2 Total Phosphorus
	1.2.3 Five-day biochemical oxygen Demand

	1.3 State of the Art: Utilizing Remote Sensing and Machine Learning for Water Quality Prediction
	1.4 Identifying Appropriate Remote Sensing Data
	1.4.1 Landsat (LS)
	1.4.2 Sentinel (S)
	1.4.3 Harmonized Landsat Sentinel-2 Surface Reflectance Data

	1.5 Relevant Machine Learning Problems and Algorithms
	1.5.1 Overfitting and Dimensionality Reduction
	1.5.2 Feature Selection and Regularization
	1.5.3 Further Model Optimizations
	1.5.4 Multiple stepwise linear regression (MSLR)
	1.5.5 Partial least squares regression (PLSR)
	1.5.6 Support Vector Regression (SVR)
	1.5.7 Random Forest Regressor
	1.5.8 Backpropagation Artificial Neural Network (BP-ANN)

	1.6 Objectives

	2. Study Area, Materials and Methods
	2.1 Study Area
	2.2 Identification of relevant literature
	2.3 Data Sources and Dataset creation
	2.3.1 Water Quality Data
	2.3.2 Remote Sensing Data
	2.3.2 Data merging and cleaning

	2.3 Data Analysis and Visualization

	3. Results
	3.1 Seasonal and spatial patterns
	3.2 Spatial distribution of the water quality parameters
	3.3 Model Preparation
	3.4 Model Performance

	4. Discussion
	4.1 Spatiotemporal patterns of Water Quality Parameters
	4.2 Model Evaluation
	4.3 Limitations and potential for future model improvements

	5. Conclusions and Outlook
	6. References

