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Abstract (EN) 

Management of river water quality is important for mitigating eutrophication. After the 

water quality improvements since the 1990s, this trend might have turned in the upper 

Vltava catchment after 2010: Concentrations of the four optically inactive water quality 

parameters ammonia nitrogen, nitrate nitrogen, five-day biochemical oxygen demand, and 

total phosphorus might have increased, as results presented in this thesis suggest. Al l four 

parameters follow a land-use and ecosystem degradation gradient in the upper Vltava, 

increasing in concentration from the headwaters to the lower parts of the research area. 

In this study, five different types of algorithms (multiple stepwise linear regression, partial 

least squares regression, support vector regression, random forest regressor, and 

backpropagation artificial neural network) were performed on harmonized Landsat-

Sentinel-2-data (HLS), in order to predict A N , NN, BOD5, and TP. Such machine learning 

methods can be useful tools for estimating the four named parameters, but they still bear a 

lot of challenges, especially given the often narrow streambed. Further improvements at all 

steps - from input data selection, over model optimization, to model selection - are 

required for ensuring accurate and robust predictions. The presented results indicate that 

this goal can be achieved. In most cases, machine learning algorithms clearly outperformed 

simpler linear models. Especially the method of the random forest regressor can often 

estimate a big fraction of variance, while also producing comparatively low errors. 

Of all four water quality parameters, NN was most effectively-predicted, with R 2 = 0.555 

by a random forest regressor, whereas A N is the most challenging with a maximum R 2 = 

0.156, also by a random forest regressor. BOD5 and TP prediction also remains 

challenging, but some models returned relatively strong metrics, indicating great potential 

for sound predictions of these parameters as well. 
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Abstract (CZ) 

Řízení kvality říční vody je důležité pro zmírnění eutrofizace. Po zlepšení kvality vody od 

90. let 20. století se tento trend mohl v povodí horní Vltavy po roce 2010 obrátit: 

Koncentrace čtyř opticky neaktivních ukazatelů jakosti vody - amoniakálního dusíku, 

dusičnanového dusíku, pětidenní biochemické spotřeby kyslíku a celkového fosforu - se 

mohly zvýšit, jak naznačují výsledky uvedené v této práci. Všechny čtyři parametry sledují 

v horní Vltavě gradient využití půdy a degradace ekosystémů, přičemž jejich koncentrace 

se zvyšuje od pramenné oblasti k dolním částem výzkumného území. 

V této studii bylo na harmonizovaných datech Landsat-Sentinel-2 (HLS) provedeno pět 

různých typů algoritmů (vícenásobná kroková lineární regrese, regrese částečných 

nejmenších čtverců, regrese s podpůrnými vektory, regresor náhodného lesa a umělá 

neuronová síť s zpětným šířením) za účelem předpovědi A N , NN, BOD5 a TP. Tyto 

metody strojového učení mohou být užitečnými nástroji pro odhad čtyř jmenovaných 

parametrů, ale stále s sebou nesou mnoho problémů, zejména vzhledem k často úzkému 

korytu toku. Pro zajištění přesných a spolehlivých předpovědí je nutné další zdokonalování 

ve všech krocích - od výběru vstupních dat, přes optimalizaci modelu až po výběr modelu. 

Prezentované výsledky naznačují, že tohoto cíle lze dosáhnout. Ve většině případů 

algoritmy strojového učení jednoznačně překonaly jednodušší lineární modely. Zejména 

metoda regresoru náhodného lesa dokáže často odhadnout velkou část rozptylu a zároveň 

produkuje relativně nízké chyby. 

Ze všech čtyř parametrů kvality vody byl nejefektivněji předpovídán NN s R2 = 0,555 

pomocí regresoru náhodného lesa, zatímco A N je nejnáročnější s maximálním R2 = 0,156, 

rovněž pomocí regresoru náhodného lesa. Predikce BSK5 a TP zůstává rovněž náročná, ale 

některé modely vrátily poměrně silné metriky, což naznačuje velký potenciál pro spolehlivé 

predikce i těchto parametrů. 
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1. Introduction: 

1.1 The Challenge of Eutrophication 

Eutrophication, especially of aquatic ecosystems, as a consequence of anthropogenic 

interferences with the phosphorus and nitrogen cycles is widely considered to be one of the 

great environmental challenges of the present (Carpenter et al., 1998; Carpenter and 

Bennett, 2011; Conley et al., 2009; Rockstrom et al., 2009; Smith et al., 2006). This is 

because it poses threats to ecosystem integrity and biodiversity loss (Maure et al., 2021; 

Wang et al., 2021), safe water supplies, contributes to soil degradation (Vitousek et al., 

1997), and even contributes to the release of the potent greenhouse gases nitrous oxide 

(Vitousek et al., 1997) and methane (Beaulieu et al., 2019). Coupled with climate change, 

eutrophication is also a main driver of oxygen depletion in freshwater and marine 

ecosystems (Brush et al., 2020; Foley et al., 2012; Pitcher et al., 2021). The global annual 

economic damages due to eutrophication amount multiple billion US-dollars, as research 

from China (Le et al., 2010), the United Kingdom (Pretty et al., 2003), and the United 

States (Dodds et al., 2009) shows. 

N and P are mainly introduced to the environment via the application of artificial 

fertilizers used in agriculture, by wastewater, by atmospheric deposition, and by various 

urban activities (Carpenter et al., 1998; Selman and Greenhalgh, 2009). Another major 

nitrogen source is the combustion of fossil fuels (Gruber and Galloway, 2008; Selman and 

Greenhalgh, 2009). Phosphorus enters the environment also via the use and production of 

detergents (Mainstone and Parr, 2002). Overall, non-point sources (such as surface runoff 

from agriculturally used land) tend to be the more dominant pathways of eutrophication, 

while point sources (such as wastewater treatment plants) often play a lesser role (Kakade 

et al., 2021), although they are still of great importance, e.g., due to the high 

bioavailability of P from point sources (Mainstone and Parr, 2002). 

This is also true for the Czech Republic, where the annual P surface runoff ranges between 

0.1 and 9.98 kg m~2 in the Vltava basin; for the upper Vltava, maximum values of 4.08 kg 

km - 2 year_1 have been reported (Rosendorf et al., 2016). 
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This P input is not considered to be a significant source of inland water eutrophication 

(Rosendorf et al., 2016), yet monitoring of the trophic state of the river remains important. 

Nitrogen input into the Vltava is considered critical in 25% of the cases studies by 

Rosendorf et al. (2016). Evidence suggests that the trophic state is critical for the 

assemblage of fish communities in the Vltava River, with different nitrogen compounds 

and oxygen demand having a negative influence on fish diversity, while total phosphorus 

(TP) might support some isotopic niche area species (Horka et al., 2023). 

On a global and regional scale, rivers play a special role in the context of eutrophication. 

Yet, research of nutrient and eutrophication studies on river has lagged behind, compared 

to lentic (i.e., lacustrine/standing water) and coastal and marine ecosystems (Smith, 2003). 

By draining their catchments, rivers take up large amounts of various substances from the 

environment, including potential pollutants such as nitrogen and phosphorus compounds 

(Beusen et al., 2005; Houser and Richardson, 2010). 

Subsequently, the rivers transport the accumulated compounds to the seas (Smith, 2003) 

and the oceans where they can cause further problems, such as promoting acidification 

(Cai et al., 2011), hypoxia and anoxia of coastal regions (Howarth et al., 2011), mainly due 

to harmful "blooms" of phytoplankton, usually cyanobacteria (Anderson et al., 2002). But 

eutrophication of lotic systems, i.e., of streams and rivers, is not only a concern because of 

nutrient transport, but also because of the detrimental effects it has on these water bodies 

themselves. 

The formerly widespread belief according to which lotic systems are always nutrient-

saturated an that accordingly any algal development is suppressed by light limitation and 

short water residence times has been refuted (Smith, 2003) by manifold observations of 

extensive river eutrophication (Köhler and Gelbrecht, 1998; Soana et al., 2024; Yan et al., 

2019; Zhang et al., 2015). Additionally, the trophic state of a river is not only relevant for 

the ecology of the river itself, but also for that of all wetlands fed by it (Mainstone and 

Parr, 2002). Considering the underappreciated relevance of rivers in the context of 

eutrophication, researchers from the U.S. Geological survey recently demanded the 

prioritization of river basins for nutrient studies (Tesoriero et al., 2024). 

2 



Although it has been argued by scholars that only control of phosphorus was needed for 

tackling the detrimental effects of eutrophication (Schindler, 1977; Schindler et al., 2008), 

effective mitigation of nutrient pollution depends on controlling input of both nutrient 

elements, P and N (Basu et al., 2022; Conley et al., 2009). This is mainly because while P 

is indeed the main element causing eutrophication of inland waters (Schindler et al., 2008), 

N is considered to be the main cause of coastal and marine eutrophication, at least in most 

temperate systems (Howarth and Marino, 2006). Regardless of the implemented control 

measures, their effectivity and efficiency fundamentally depends on the available 

knowledge on nutrient pollution and surface water quality. 

Such knowledge can be obtained by an extensive network of field sampling and sample 

analysis infrastructure. Despite the relevance of this approach, relying on it alone comes 

with three major downsides (Sagan et al., 2020): 1.) It is connected with high costs and 

efforts; 2.) The results can only represent the quality at the given point from which a 

sample was taken at the given time. But water quality parameters are not homogeneously 

distributed in space and time. Hence, knowledge about their distribution in the area is 

required. 3.) Not all potentially relevant points can be accessed easily and in a non

invasive way. 

To address these requirements, remote sensing methods have been successfully applied for 

monitoring various water quality parameters since the 1970s (Anding and Kauth, 1970; 

Gholizadeh et al., 2016; Kondratyev et al., 1998; Topp et al., 2020; Zhu et al., 2022). 

However, since many water-quality parameters - including concentrations of dissolved 

phosphorus and of the inorganic nitrogen species in water - do not show straightforward 

interactions with the electromagnetic radiation emitted by the sun, common knowledge-

driven approaches for estimating these parameters are often insufficient. Instead, data-

driven approaches based on machine-learning algorithms (Reichstein et al., 2019) have 

proven to be suitable in such contexts (Dey and Vijay, 2021; Dong et al., 2023; Gao et al., 

2024; Peterson et al., 2020; Pu et al., 2019; Sagan et a l , 2020; Tan et al., 2023; Tian et al., 

2024). 
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1.2 Introduction to Selected Water Quality Parameters in Rivers 

Water quality parameters that tend not to directly influence the optical characteristics 

measured by remote-sensing (RS) instruments are called non-optically active water quality 

paramters (Guo et al., 2021; Sagan et al., 2020), many of which are directly linked to 

eutrophication: These parameters include the different forms of inorganic nitrogen, total 

phosphorus, and oxygen as dissolved oxygen and the (bio)chemical oxygen demand (e.g., 

Fu et al., 2022; Gao et a l , 2024). 

1.2.1 Reactive inorganic Nitrogen: Ammonia and Nitrate Nitrogen 

Annual human production of reactive nitrogen (i.e., all N species except N2) largely 

exceeds natural production (Razon, 2018; Xia et al., 2018). Reactive inorganic N is present 

in rivers mainly in the forms of ammonia nitrogen (AN) and nitrate nitrogen (NN). 

Ammonia nitrogen, also known as ammoniacal nitrogen, includes both, N in unionized 

ammonia (NH3), as well as in cationic ammonium (NH4+) (Boyd, 2015; Lin et al., 2019). In 

virtually all natural waters, ammonium is the dominant species in which ammonia N 

occurs due to a pH- and temperature dependent equilibrium (Lin et al., 2019). With 

increasing pH and temperature, the ammonia proportion gets higher (Boyd, 2015). In some 

rivers, N t L + is considered the main pollutant (Xia et al., 2018). 

Ammonia N is transformed to nitrate-N by nitrification, mostly under aerobic conditions 

(Canfield et al., 2010). Like most N transformations in riverine ecosystems, this process is 

generally mediated by bacteria (Canfield et al., 2010). Nitrification is usually a 

chemoautotrophic process, in which ammonium is oxidized to nitrate ( N O 3 ) , with nitrite 

(NO2) as an intermediate, by nitrifying bacteria, using CO2 as carbon source for cell 

generation (Vymazal, 2007). The oxidation of ammonium to NO2" is done by strictly 

aerobic chemolithotrophs (e.g., Nitrosomonas), whereas the second step (the oxidation of 

nitrite to nitrate) is executed by facultative chemolithotrophs (e.g., Nitrobacter) that use 

nitrite and organic compounds as energy sources for growth. 

Due to its comparatively high thermodynamic stability under common environmental 

conditions, nitrate is the most abundant form of nitrogen in rivers, usually accounting for 

more than 80% of dissolved inorganic nitrogen (DIN) (Meybeck, 1982; Shuiwang et al., 

2000; Xia et al., 2018). 
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Little is known about how and to which extent rivers contribute to nitrogen loss at 

different spatial and temporal scales (Boyer and Howarth, 2002) and about other nitrogen 

transformations in rivers and streams (Xia et al., 2018). Known hotspots of the different N 

transformation processes include sediment-water interfaces, riparian zones and even 

interfaces between suspended particles and water (Xia et al., 2018). Also dams can 

strongly influence river nitrogen transformations (Akbarzadeh et al., 2019). 

While having well-documented adverse effects on biodiversity and ecosystem integrity 

(Baxter, 1977; Wu et al., 2019), dams and impoundments act as net nitrogen sinks on a 

global scale, as denitrification and nitrogen burial usually exceed N fixation (Akbarzadeh 

et a l , 2019). 

1.2.2 Total Phosphorus 

In most rivers, the limiting major nutrient to plant growth is phosphorus, which can be 

indicated by the N / P ratio (Mainstone and Parr, 2002). 

Phosphorus concentrations and dynamics in all riverine ecosystems are largely determined 

by P loads of tributaries, catchment geology and (hydro)geochemistry, climate, channel 

hydrology and morphology, land use and environmental change (Records et al., 2016; 

Withers and Jarvie, 2008). Artificially enhanced loads of P pose a risk to riverine 

ecosystems, as P enrichment can shift competitive balances between primary producers, 

including both, phytoplankton and higher plants (Mainstone and Parr, 2002). 

Increased P levels in faster flowing rivers (such as the upper Vltava) promote increased 

growth rates of epiphytic diatoms and periphyton, like green algae, while leading to a 

decrease of shallow-rooted submerged plants, whereas in slower-moving riverine systems, 

higher P concentrations lead to growth of phytoplankton along the water column, 

increasing light competition (Withers and Jarvie, 2008). The detrimental direct effects of 

P-induced eutrophication are generally considered to be lower in riverine ecosystems than 

in lakes and reservoirs, as the production of suspended algae per mass unit of P is 

significantly lower in rivers (Smith, 2003; Soballe and Kimmel, 1987). 

Elevated riverine P concentrations in sediments and the water column can in principle 

affect riverine plant communities in four different ways (Mainstone and Parr, 2002): 
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1. Increasing plant growth rates, and thus standing stock. 

2. Promoting higher plant species adapted to higher nutrient levels and thus altering 

ecological composition/balance. 

3. Promoting epiphytic, epibenthic, filamentous and planktonic algae, thus decreasing 

light availability for higher plants. 

4. Reducing root depth, making plants more sensitive to being ripped out by currents. 

Throughout the growing season, continuous point sources of P (mainly sewage treatment 

plants) can be highly important for bioavailable P in rivers (Mainstone and Parr, 2002). It 

is thus important to reduce P flows from these sources during the growing season and 

monitor their dynamics throughout the year. When point sources of P are under control, 

diffuse sources gain relevance for the trophic state of any water body. Diffuse P sources 

(mainly agricultural runoff) contribute substantially to P levels in river sediments, where 

they can be used by benthic algae, and by rooted plants. The highest loads of P from 

diffuse sources occur when animal excretions or soluble fertilizers are washed off. 

While acknowledging the relevance of P in riverine sediments, the analysis presented in 

this thesis can only focus on the TP concentration in the water column. 

1.2.3 Five-day biochemical oxygen Demand 

Higher concentrations of N and P can contribute to higher microbial pollution; in turn, 

the biochemical oxygen demand (BOD) can be enhanced by microbial pollution. This 

measure is therefore also critical for water quality assessment and control. It is a measure 

of the amount of dissolved oxygen in a given water sample that microorganisms consume 

in a certain amount of time (Boyd, 2015). Most commonly, BOD is determined for a five-

day-period (BOD5). This parameter is estimated in a bioassay procedure, where samples 

are placed in a constant temperature chamber at 20±1°C for five days. At the beginning 

and the end of the period, dissolved oxygen is instrumentally measured (Delzer and 

McKenzie, 2003). A detailed description of the method is given by Delzer and McKenzie 

(2003). Pristine rivers usually have BOD5 concentrations below 1 mg L"1. Concentrations 

between 2 and 8 mg L"1 indicate medium pollution; higher values are considered severe 

pollution (Li and Liu, 2019). 
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As BOD represents the amount of dissolved oxygen (DO) in water, higher BOD levels 

reduce DO concentrations (Penn et al., 2009; Whitehead et al., 2009). BOD5 levels in 

water bodies are projected to increase globally, due to climate change (Whitehead et al., 

2009). 

1.3 State of the Art: Utilizing Remote Sensing and Machine Learning for 

Water Quality Prediction 

Water management in general, and specifically eutrophication mitigation, usually depends 

on environmental models (Records et al., 2016). Traditional approaches largely depend on 

extensive field measurements that are costly, tedious, labor-intensive, and strongly limited 

in spatial and temporal resolution (Ahmed et al., 2022; Gao et al., 2024; Guo et al., 2021; 

Li et al., 2022). 

Utilizing remote sensing data for water-quality prediction and modeling can be a remedy 

to these shortcomings that has been applied since the 1970s (Gao et al., 2024; Wrigley and 

Home, 1974). However, using conventional, knowledge-based linear and nonlinear modeling 

approaches on satellite imagery is not suitable for many - especially optically inactive -

water-quality parameters: They usually fail to model the complex nonlinear relationships 

between the satellite data and the concerning water quality parameters (Niu et al., 2021). 

Recent advances in data-driven methodologies can help limiting this issue: Machine-

learning approaches have proven to outperform classical modeling strategies and can often 

give robust estimates of different water quality parameters. Remote sensing-based methods 

are well-established for the estimation and prediction of optically active water quality 

parameters, such as chlorophyll-a concentration, total suspended solids, colored dissolved 

organic matter or turbidity (Sagan et al., 2020). This also reflects in the amount of 

scientific publications using machine learning techniques to estimate these optically active 

parameters from remote sensing data (Kupssinsku et al., 2019; Leggesse et al., 2023; Magri 

et a l , 2023; Maier and Keller, 2018; Ruescas et al., 2018; Singhal et al., 2019). 

Research on machine learning algorithms being used for estimating optically non-active 

water quality parameters from remote sensing data is still relatively scarce, but the body 

of highly promising published literature is steadily growing (e.g., Gao et al., 2024; Guo et 

a l , 2021; Li et a l , 2022; Niu et al., 2021; Peterson et a l , 2020; Sagan et al., 2020). 
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More literature has been published on lakes than on rivers. Research focusing on rivers, 

mostly tries to estimate water quality parameters in the lower reaches, as due to their 

greater width they are generally easier to monitor with the available spatial solutions of 

remote sensing satellites. In the following, results of relevant literature are presented, 

including assessment of model performances on the testing dataset, based on the coefficient 

of determination (R2) and, where possible, the root-mean-square error (RMSE) in mg L"1. 

Sagan et al. (2020) reviewed and analyzed recent advances in ML methodology using 

remote sensing for water quality prediction. The authors further analyzed 200 water 

quality datasets, showing great potentials of ML and RS for water quality prediction of 

optically active parameters, but challenges for inactive parameters. The study presents 

various different ML models for predicting a multitude of optically active and inactive 

water quality parameters, the latter including nitrate nitrogen and phosphate phosphorus 

(P04-P). Some of the algorithm types are also used in the present work. The models by 

Sagan et al. use data from 9 sapling locations in a river and 34 points in lakes in Central 

Illinois, USA. Partial least squares regression (PLSR) was unsuitable for estimating P04-P 

(R2 = 0.02; RMSE = 0.25), while turning out quite useful for estimating NN (R 2 = 0.26; 

RMSE = 0.32). Support vector regression (SVR) performed slightly better (P04-P: R 2 = 

0.00; RMSE = 0.25. NN: R 2 = 0.29; RMSE = 0.31). A deep neural network approach also 

performed similarly for P04-P (R2 = 0.00; RMSE = 0.25) and NN (R2 = 0.29; RMSE = 

0.31). 

Another study by the same research group utilized surface reflectance data from a virtual 

constellation of Landsat-8 and Sentinel-2 for constructing ML models in order to estimate 

various optically active (e.g., fluorescent dissolved organic matter fDOM) and inactive 

(DO, electric conductivity) water quality parameters (Peterson et al., 2020). The study 

was performed in four lakes within the Great Rivers Ecological Observatory (GREON) in 

the USA. Model performance for optically active parameters was generally excellent: A 

deep neural network model estimated the concentration of fDOM with R 2 = 0.926 and 

RMSE (ug L _ 1) = 0.863. A DNN algorithm performed also very well for DO estimation 

with R 2 = 0.894 (RMSE (mg L _ 1 ) = 1.806 mg L _ 1 ) . Relatively strong performances for DO 

estimation were also shown by SVR (R2 = 0.805; RMSE = 2.141) and multiple linear 

regression (R2 = 0.440; RMSE = 3.309) algorithms. 
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Despite minor difficulties of the models to predict DO concentrations in the higher ranges, 

the algorithms presented in the study are of great value for predicting this non-optically 

active measure of water quality. 

Relatively good model performances for estimating non-optically active water quality 

parameters have been reported in a recent paper by Gao et al. (2024) who used machine 

learning imagery on Sentinel-2 imagery in various water bodies in China (Zhejiang 

province, West Lake, Xin'an River, Fuchun River, Lan River, Changtan Reservoir). 

SVR was relatively weak on TP prediction (R2 = 0.10; RMSE = 0.057), while showing 

decent results for total nitrogen (TN. R 2 = 0.31; RMSE = 1.164) and DO (R2 = 0.36; 

RMSE = 1.99). It was outperformed by random forest regressors for TP (R2 = 0.39; RMSE 

= 0.047) and T N (R2 = 0.42; RMSE = 1.068), but not for DO (R2 = 0.34; RMSE = 1.02). 

K-nearest neighbour neural networks (KNN) also quite good performance for TP (R2 = 

0.35; RMSE = 0.048), T N (R2 = 0.33: RMSE = 1.151), and DO (R2 = 0.35; RMSE = 

2.00). While the authors themselves judge the model performances for DO and TP as 

relatively "poor", they still conclude that the obtained models are helpful for obtaining 

water quality information and can be a relevant reference for water management in the 

Zhejiang Province. 

Another study from China, estimating non-optically active water quality parameters in the 

tropical Nandu River, reported very strong performances of some algorithms for estimating 

TN, A N , and TP from Landsat-8 imagery (Li et al., 2022). 25 Landsat images were used 

and 67 water samples analyzed. T N was predicted with R 2 = 0.2 by SVR (RMSE = ), R 2 

= 0.49 by RFR, and R 2 = 0.45 by an artificial neural network (ANN). A N estimates were 

substantially less accurate with R 2 = 0.07 for SVR, R 2 = 0.24 for RFR, and R 2 = 0.44 for 

ANN. TP estimates were very strong for SVR (R2 = 0.59) and A N N (R2 = 0.67), and still 

quite useful for RFR (R2 = 0.21). It is remarkable that RFR was outperformed by simple 

regression trees for TP (R2 = 0.24). Yet, it performed a lot worse for the other investigated 

parameters. The clearly study shows the suitability of machine learning algorithms for 

monitoring water quality at in the tropical river at relatively low cost, without depending 

on a deep understanding of the underlying environmental processes. 

Water bodies in China are arguably the geographical focus of most published research 

using ML methodologies for estimating optically inactive water quality parameters from 
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RS imagery. Guo et al. (2021) applied machine learning algorithms to Sentinel-2 imagery 

in order to obtain information on TP, and T N concentrations and chemical oxygen 

demand (COD) in an urban lake in an industrial park in Tianjin, China. The authors 

compared the performances of SVR, RFR, and NN models. For each target parameter, a 

different model type gave the best estimates. Some models showed excellent performances: 

TP was estimated with = 0.94, with a root mean square percentage error (RMPSE) of 

16.80% by a back-propagation ANN. 

An RFR algorithm gave the best predictions for TN (R2 = 0.88; RMPSE = 18.39%). COD 

was best predicted by SVR (R2 = 0.86; RMPSE = 18.75%). Compared to the ML 

algorithms, multiple linear regression performed quite poorly. While having substantially 

lower - but still considerably high - R 2 values, the errors of the linear models are a lot 

higher for the three parameters, TP (R2 = 0.65; RMPSE = 30.65), T N (R2 = 0.76; 

RMPSE = 36.24), and COD (R2 = 0.65; RMPSE = 71.65). 

The outstanding performances of the models by Guo et al. (2021) in comparison to the 

previously discussed studies can likely be attributed to the following factors: Water quality 

in lentic systems is a lot more stable than in lotic systems (Schwoerbel and Brendelberger, 

2022). Samplings were performed within four hours of a satellite overpass, when there was 

no cloud cover above the lake and no considerable plant cover on the lake surface. 

Furthermore, the model predictions might have profited from the advantages of Sentinel-2 

data over other similar products, such as its relatively high spatial, spectral and temporal 

resolution. The quasi-ideal setup of the study by Guo et al. (2021) is not realistic for 

water-quality monitoring in most water bodies, let alone in near-natural systems. 

The described studies demonstrate the suitability of combining remote sensing and 

machine learning methods for estimating different optically inactive water quality 

parameters in inland water bodies. They also reflect on current challenges and limitations 

of such methodologies. The still relatively small amount of relevant publications points to 

a vast, under-explored area for scientific inquiry, with the potential to substantially 

improve water quality management. 

At the time of writing the present thesis, no RS-based ML models with optically inactive 

target parameters in European inland waters have been found. Moreover, the upper 

reaches of river networks have received only little scientific attention in this context. 
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The reasons for that can only be speculated about, but it might be due to the challenges of 

faster flow and thus higher transport rates of dissolved and suspended matter, due to the 

challenges of narrow streambeds, often covering only fraction of satellite pixels, and due to 

lower interest because of smaller amounts of water and a lower potential for accumulation 

of pollutants (Schwoerbel and Brendelberger, 2022) than downstream. 

Anyhow, it is still highly desirable to have robust models for estimating water quality -

including optically inactive parameters - in headwaters and upper reaches of rivers, due to 

their pivotal importance for biogeochemical connectivity between terrestrial and aquatic 

ecosystems and their control function for transporting nutrients and pollutants 

downstream (Withers and Jarvie, 2008). From this virtually unilateral relationship 

between upper and lower reaches of rivers, it follows that upstream pollution mitigation 

and conservation measures can automatically result in protection of downstream 

environments. 

1.4 Identifying Appropriate Remote Sensing Data 

The performance of statistical models largely depends on the quality of the used data. 

Besides using suitable and reliable water quality data, it is critical to select the most 

suitable remote sensing data product. 

Two fundamentally different categories of RS data are available for the purpose of water 

quality estimations: Airborne and satellite-based data (Richards, 2013). Airborne remote 

sensing methodologies can be useful for water quality analysis and have been successfully 

used as input data for ML-based estimation of non-optically active water quality 

parameters (e.g., Niu et al., 2021). They are highly adaptable to the purposes of individual 

analyses and come with the great advantage that detrimental atmospheric effects on the 

data quality are reduced. Yet, airborne data come with multiple major disadvantages, 

making them unsuitable for the scopes of the present thesis. Unlike satellite-derived data, 

they are very costly, resource-demanding, and often labor-intensive to obtain. In contrast, 

satellite-based RS data are readily available in good temporal resolution, covering the 

entire earth surface over a long period of time (Myers and Miller, 2005). 
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Both described ways of data acquisition can rely on active or passive methods, where 

passive refers to the measurement of radiation emitted or reflected by the observed objects, 

and active to the measurement of time delay between actively emitted radiation back-

scattered or reflected by the observed objects (e.g., LiDAR). Passive remote sensing 

systems have some distinctive advantages over active ones, making them more suitable for 

most river water quality monitoring tasks: Passively obtained RS data are available in 

comparatively high spatial and temporal resolutions. 

Their reliance on reflection of sunlight further allows to obtain spectral fingerprints that 

can be related to different aspects of water quality. 

As expounded, passively obtained data from earth observation satellites are most suitable 

for the aims of the thesis. Suitable satellites include Landsat-5, Landsat-8, and the 

Sentinel-2 satellite pair, for which different data products are available. 

1.4.1 Landsat (LS) 

Landsat-5 (LS-5) was a remote sensing satellite, launched by NASA, orbiting earth from 

March 1984 until June 2013 (Riebeek, Holly, 2013). A surface-reflectance dataset (USGS 

Landsat 5 Level 2, Collection 2, Tier 1) is offered by the USGS (Crawford et al., 2023) and 

readily available for Google Earth Engine, covering the period from 16. March 1984 to 05. 

May 2012 (Google, 2024a). Landsat-5 was succeeded by Landsat-8 (LS-8), which entered 

service on 30. March 2013. Like its predecessor, it has a spatial resolution of 30 m. LS-8 

was constructed in a way that allows continuity from LS-5 by ensuring sufficient 

consistency of geometry, calibration, and spectral band properties (USGS, 2012). 

1.4.2 Sentinel (S) 

The Sentinel-2 (S-2) earth observation satellite pair was launched by the Copernicus 

Programme of the European Space Agency 23. June 2015 (Sentinel-2 A) and 7. March 

2017 (Sentinel-2 B). S-2 has a spatial resolution of 10 m on three bands - nine times higher 

than that of LS-5 and LS-8. Most remaining bands resolve at 20 m. The spectral resolution 

and the amount of spectral bands are also higher than those of the corresponding LS 

satellites. 
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Due to the constellation as a satellite pair, and the orbit of the satellites being adapted to 

Europe, S-2 has a revisit time of less than five days in Northern mid latitudes (Claverie et 

a l , 2018). 

1.4.3 Harmonized Landsat Sentinel-2 Surface Reflectance Data 

The harmonized Landsat and Sentinel-2 (HLS) surface reflectance dataset is a product 

offered by the NASA, providing virtual constellation data LS-8 and S-2 (Claverie et al., 

2018). The data product HLS L30 offers data with 1. atmospheric correction, 2. geometric 

resampling and geographic registration, and 3. Bidirectional Reflectance Distribution 

Function normalization (BRDF) (Claverie et al., 2018). 

This adjustment follows the methodology described by Roy et al. (2017, 2016) and aims to 

normalize the view angle effects, with the sun in zenith angle largely intact (Claverie et al., 

2018; Ju et al., 2020). The spatial resolution and pixel geometry of the Sentinel-2 data is 

adjusted to that of the Landsat-8 data, necessarily coming with a downward correction of 

the spatial resolution of many bands of the Sentinel-2 data to 30 m (Claverie et al., 2018). 

The virtual constellation of the satellites allows a mean revisit time of as little as —3.5 days 

in mid latitudes (Claverie et al., 2018). 

While S-2 has great technological advantages due to its comparatively great spatial and 

spectral resolution, it cannot compete with the temporal availability and resolution of the 

HLS L30 product, which is thus used for the analysis presented and discussed in further 

chapters. 

1.5 Relevant Machine Learning Problems and Algorithms 

As elaborated, conventional statistical methods usually fail to capture the highly nonlinear 

relationship between non-optically active water quality parameters and surface reflectance 

of water bodies, as measured by satellites. Machine learning algorithms, in contrast, are 

often able to account for those nuances, leading us to the questions: What is ML and what 

specifically differs such algorithms from conventional ones? 

A useful working definition, helping to answer both questions, is given by El Naqa and 

Murphy (2015, p. 4): 
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"A machine learning algorithm is a computational process that uses input data 

to achieve a desired task without being literally programmed (i.e., "hard 

coded") to produce a particular outcome. These algorithms are in a sense "soft 

coded" in that they automatically alter or adapt their architecture through 

repetition (i.e., experience) so that they become better and better at achieving 

the desired task." 

Being a branch of Artificial Intelligence (AI), a central problem of ML algorithms is one, 

known as the fundamental credit assignment problem. It can be paraphrased as: Which 

modifiable components of a learning system are responsible for its success or failure? 

(Minsky, 1961; Schmidhuber, 2015). 

ML algorithms should aim for providing the best possible answer to such questions. This, 

however, is difficult, due to the great amount of learning parts and their often in 

themselves complex interrelations. Closely related to the fundamental assignment problem 

is the so-called curse of dimensionality. 

1.5.1 Overfitting and Dimensionality Reduction 

The course of dimensionality was famously introduced by Bellman (1984, p. ix): 

"In the first place, the effective analytic solution of a large number of even 

simple equations as, for example, linear equations, is a difficult affair. Lowering 

our sights, even a computational solution usually has a number of difficulties of 

both gross and subtle nature. Consequently, the determination of this maximum 

is quite definitely not routine when the number of variables is large. Al l this 

may be subsumed under the heading 'the curse of dimensionality.'" 

In simpler terms, this means that a high number of input features can cause gross and 

subtle problems for solving even simple mathematical equations in a modeling problem 

(Bellman, 1984). While additional dimensions can add valuable information to an 

investigated space of variables, they also add additional complexity to the space, thus 

making accurate representation in a model more difficult. Hence, it is important to adapt 

the number of model inputs to the number and quality of observations, and to engineer 

and select suitable feature combinations. 
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The challenges posed by the curse of dimensionality make it relevant to reflect on some 

aspects of dimensionality reduction, feature engineering, and other preparation steps for 

constructing the ML models. 

1.5.2 Feature Selection and Regularization 

One of the most important considerations in ML modeling is: Which variables are relevant 

for achieving the goal of good prediction (De Mol et al., 2009)? Various algorithms are 

generally used to achieve this goal of feature selection, including LASSO (Least Absolute 

Shrinkage and Selection Operator) regression {LI regularization), ridge regression (L2 

regularization), and Elastic Nets which are mathematical combinations of the previously 

mentioned algorithms (De Mol et al., 2009; Zou and Hastie, 2005). 

Another problem addressed by many of these algorithms is that of regularization. Like 

feature selection, regularization serves the purpose of dimensionality reduction. 

Regularization reduces variance by shrinking the estimated coefficients towards zero, 

relative to the least square estimates (James et al., 2023). A model with all p parameters 

is fitted in these shrinkage approaches. Some of the input coefficients may be estimated to 

be zero, depending on the type of regularization, and therefore shrinkage methods can also 

function as methods for variable selection (James et al., 2023). LI regularization penalizes 

regression coefficients proportional to their absolute values . Doing so, the LASSO 

algorithm often shrinks coefficients to exactly zero and can thus be effective for feature 

selection, especially in high-dimensional feature spaces (Tibshirani, 1996). The L2 ridge 

penalty encourages the sum of the squares of the parameters to be small (towards but not 

exactly 0) by penalizing regression coefficients proportional to their squared values (Ng, 

2004). It can further be useful to balance penalties from LI and L2 in an elastic net, 

resulting in a tradeoff between their benefits (De Mol et al., 2009). LI , L2, and combined 

regularization can directly be implemented into neural networks and partial least square 

regression (Pedregosa et al., 2011; TensorFlow Developers, 2024). 

Before regularization, other preparatory steps should be considered. Techniques of 

normalization (transformation of data to specific range, e.g., 0-1 or -1-1) and 

standardization (e.g., Z-score standardization: transformation to dataset with mean = 0 

and standard deviation = 1) are powerful tools for equalizing feature importance and 
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increasing model performance (Peshawa and Rezhna, 2014; Santos and Papa, 2022). 

Combined with other techniques, they can also reduce the risk of overfitting (Santos and 

Papa, 2022). 

1.5.3 Further Model Optimizations 

In order to avoid overfitting, the initial dataset is split into a training dataset including 

80% of the data, and a test dataset containing the remaining 20%. This is done for all 

models. However, adapting modifiable components of the model until the best fit on the 

test dataset is reached still poses a risk of overfitting (Pedregosa et al., 2011). A third 

partition of the initial dataset, known as validation set, can help to mitigate this so-called 

leak of data, which comes with the downside of reducing the number of observations in 

training or test set (Pedregosa et al., 2011). 

Therefore, the approach of if-fold cross-validation is used for all models constructed for the 

present thesis. In this procedure, the training set is split into k smaller sets of equal size 

("folds"), k — 1 of the k folds are then used on the training dataset. The remaining 

subsample is used for calculating an error (Rodriguez et al., 2010). Other types of cross-

validation are also commonly used (Yadav and Shukla, 2016) but not further considered 

here. 

For some types of algorithms, including partial least squares regression and the random 

forest regressor, a different approach called bootstrapping can be beneficial (Egbert and 

Plonsky, 2020; Ljumovic and Klar, 2015). This procedure is based on repeated random 

sampling with replacement from the original dataset (Egbert and Plonsky, 2020). 

Appropriate models can then be trained using these bootstrap-samples (Mooney and 

Duval, 2006). The approach is considered especially useful for small and non-normally 

distributed samples . For random forest algorithms, oftentimes similar generalization errors 

can be expected from cross-validation and bootstrapping approaches (Ljumovic and Klar, 

2015). 

Combining cross-validation and bootstrapping algorithms can be a powerful approach 

(Kohavi, 1995; Tibshirani, 1996; Tsamardinos et al., 2018). This could for instance be 

achieved by performing cross-validation on further divided bootstrap samples drawn from 

the original dataset. 
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The combination allows evaluation of model stability and uncertainty while also 

contributing to hyperparameter optimization (Tsamardinos et al., 2018). 

Hyperparameters are model parameters that are not derived from the input data, but 

additional components of the model itself (Bakhteev and Strijov, 2020). such as the kernel 

function of SVR or weights in artificial neural networks or other algorithms. The 

predictive power of an ML model can be largely enhanced by identifying optimal values of 

these parameters. Their adaptation with that goal is called hyperparameter optimization 

or hyperparameter tuning (Bardenet et al., 2013). 

1.5.4 Multiple stepwise linear regression (MSLR) 

Multiple stepwise linear regression is a linear modeling technique for estimating the 

relationship between multiple input features and one dependent variable. 

There are two different approaches in MSLR: a) forward selection and b) backward 

elimination (Breaux, 1967). In the more commonly used forward selection method, 

predictors are iteratively added to an initially empty model, beginning with the one most 

correlated with the target parameter (Breaux, 1967; Zhan et al., 2013). This procedure 

continues until new feature addition does not significantly improve the model performance. 

Backward elimination in contrast, starts with all input features included in the model, and 

is followed by iterative variable removal, until the model does not further improve its 

performance (Breaux, 1967). Different criteria (e.g., p-value, Akaike Information Criterion 

AIC) can be used for predictor selection and performance comparison between the models 

(Keith, 2019). Analogous to other model types, the performance of the final model should 

be evaluated based on criteria such as the goodness of fit. It is recommendable to use 

cross-validation to mitigate the risk of overfitting (Keith, 2019). 

Multiple linear regression algorithms can come with some serious constraints for various 

applications in the environmental sciences and have been criticized for being unsuitable in 

some cases due to poor performances (Grossman et al., 1996). Caution is imperative when 

using such models . Despite this, many cases, they have been applied successfully for 

environmental modeling problems (Liu et al., 2021). useful and widely applied for 

comparing performances of ML algorithms to linear models (e.g., Guo et al., 2021; Latt 

and Wittenberg, 2014). 
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1.5.5 Partial least squares regression (PLSR) 

In partial least squares regression algorithms are based on constructing so-called latent 

variables, also known as components, capturing the maximum variance in predictors and 

response variables (Geladi and Kowalski, 1986; Tobias, 1995). The components serve the 

purpose of obtaining a low-dimensional predictor space by maximizing the covariance 

between predictors and a response variable (Abdi, 2010; Pedregosa et al., 2011). This 

approach is similar to that of PCA, which aims to maximize the variance only within the 

space of the predictors (Pedregosa et al., 2011). Iteratively the components explaining the 

greatest covariance are extracted, while adding a new orthogonal component at each 

iteration (Abdi, 2010). Predictors are weighted in a way that maximizes the covariance 

between input and output variables. Cross-validation is commonly performed to reduce 

overfitting. 

Due to its approach of component of constructing components and thus increasing 

covariance, PLSR can handle great degrees of multicollinearity among the input features 

(Abdi, 2010; Pedregosa et al., 2011). PLSR can be performed on multiple dependent 

variables simultaneously. It is a powerful, flexible and versatile transformer and regressor 

for many learning problems involving. Unlike MSLR, PLSR is often considered a machine 

learning algorithm, despite its roots in linear regression. PLSR is a supervised algorithm, 

meaning that the model is trained on a training dataset, meaning each input data point is 

associated with a corresponding target output (Berry et al., 2020). 

1.5.6 Support Vector Regression (SVR) 

The support vector regressor is a type of supervised ML algorithms, based on the support 

vector machine (SVM) classifier, applying its logic to regression problems (Pedregosa et 

al., 2011). SVR is based on computing linear regression in a higher dimensional feature 

space and mapping the input data via a nonlinear function (Basak et al., 2007). By this 

linear combination of weighted input features, the so-called hyperplane is constructed. The 

data points closest to this plane are called support-vectors (SVs). Using only this SV-

subset of the training data for fitting the hyperplane, makes SVR algorithms comparably 

storage efficient. 
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The margin of the hyperplane to the support vectors is maintained as large as possible, 

while maintaining the lowest possible generalization error (Pedregosa et al., 2011). A 

regularization parameter C controls the trade-off between error minimization and margin 

maximization (Smola and Scholkopf, 2004). The performance of SVR algorithms depends 

largely on the selected kernel function (Pedregosa et al., 2011). The kernel function can 

allow capturing non-linear relationships between predictors and target variables. Common 

kernel functions include linear, polynomial, sigmoid tanh, and radial basis function (rbf). 

SVMs for classification and regression problems are effective in high dimensional spaces 

(Burges, 1998; Pedregosa et al., 2011). This holds true in cases where the number of 

dimensions is greater than the sample number. Probability estimates can be calculated 

using five-fold cross validation (Pedregosa et al., 2011). 

1.5.7 Random Forest Regressor 

The random forest regressor is based on a type of decision trees, called regression tree. Like 

SVMs, decision trees can be constructed for classification as well as for regression 

problems. The logic behind regression trees is hierarchical splitting of the input space into 

ever narrower regions. Tree growth is limited by a maximum depth, defined by a stopping 

criterion. Nodes that are not followed by further split are called leaves, each of which 

represents a prediction value of the output parameter,given the previously followed path of 

splits. 

Growing a random forest (RF) means generating a large number of decision trees from 

random subsamples (Breiman, 2001). RFs can be applied for classification and regression 

problems. RFRs are based on trees depending on a random vector 0 so that the tree 

predictor h(x, 0)takes on numerical values instead of categorical ones/classes. Predictions 

of random forest classifiers are based on "votes" for the most popular class or in the case of 

RFR for the average metric output. Feature selection in RF algorithms is performed 

randomly, mitigation inter cor relation between the individual trees (Biau and Scornet, 

2016). Random forests can also be useful for feature selection in other models, as they can 

produce information on feature relevance. Due to the averaging of a great number of trees, 

random forests are generally not very susceptible to overfitting (Breiman, 2001). 
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However, it is still advantageous to perform cross-validation or bootstrapping resampling 

techniques for further reducing the risk of overfitting (Ljumovic and Klar, 2015). 

RFR is a powerful approach for obtaining robust estimates of metric target variables with 

the ability to capture nonlinear relationships between input and output features. The 

predictive power of RFRs can come at the cost of high computational complexity (Hassine 

et al., 2019). Moreover, like most ML algorithms, random forests are characterized by their 

limited interpretability (Carvalho et al., 2019; Sagi and Rokach, 2020). 

1.5.8 Backpropagation Artificial Neural Network (BP-ANN) 

Artificial neural networks (ANNs) are computational models inspired by the human brain 

(Zou et al., 2009). ANNs are composed of nodes, called neurons that ar arranged in layers: 

"A standard neural network (NN) consists of many simple, connected processors 

called neurons, each producing a sequence of real-valued activations. 

Input neurons get activated through sensors perceiving the environment, other 

neurons get activated through weighted connections from previously active 

neurons" (Schmidhuber, 2015, p. 86). 

Each individual neuron communicates with neurons in the adjacent layers, but never 

within its own layer. Between the input and output layer, there are hidden layers of 

mutually independent size, meaning that specific layers can have any arbitrary number of 

neurons (Abiodun et al., 2018). The neurons of the hidden layers process their respective 

input information by assigning weights and applying an activation function to produce 

their output that is then forwarded to the following layer (Schmidhuber, 2015). Some 

widespread activation unctions are sigmoid, tanh, Rectified Linear Unit (ReLu), and 

softmax (Ramachandran et al., 2017; Sharma et al., 2017). The subsequent processing of 

information propagated from the input layer over the hidden layers to the output layer is 

known as feedforward operation (Schmidhuber, 2015). ANNs are trained by adjustnig 

weights and biases of neurons to optimize the output. For this purpose, different gradient 

descent algorithms are often used (Andrychowicz et al., 2016). Backpropagation (BP) is a 

common gradient descent method in supervised learning that has been used in discrete, 

differentiable neural networks since the early 1980s (Schmidhuber, 2015). 
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BP calculates gradients of the loss function considering the weights and biases, that are 

then updated in a way that minimizes the loss function (Amari, 1993). 

ANNs have shown excellent performances in a great variety of applications. Due to their 

complexity, they are often very resource demanding. When designing ANNs it is further 

important to address the challenges of overfitting and of hyperparameter optimization 

(Bakhteev and Strijov, 2020; Piotrowski and Napiorkowski, 2013). 

1.6 Objectives 

In this thesis, the presented machine learning methodologies are applied on remote sensing 

data from the upper Vltava river in order to estimate A N , BOD5, NN, and TP 

concentrations. For each output variable, two types of linear models (MSLR and PLSR) 

and three types of more complex machine learning algorithms (SVR, RFR, BP-ANN) are 

constructed and evaluated. 

Overarching aims are to identify fundamental spatiotemporal patterns and dynamics of the 

investigated water quality parameters in the upper Vltava basin, and to assess the 

suitability of machine learning methods for modeling the named parameters in this part of 

a major central-European river. More specifically, the thesis follows three three main 

objectives of: 

1. Analyzing spatial and patterns and temporal developments of concentrations of 

BOD5, A N , NN, and TP in the upper Vltava river and selected tributaries. 

2. Estimating concentrations of the four water quality parameter based on remote 

sensing imagery, using machine learning methods. 

3. Evaluating model performances and select the best algorithms for predicting each of 

the four water quality parameters. 

Based on the aims, and following the relevant literature, three main hypotheses are 

investigated: 

1. There is a decrease of BOD5, A N , NN, and TP concentrations from the decade 

2001-2010 and 2011-2020. 

2. There is a downstream increase of BOD5, A N , NN, and TP in the upper Vltava 

River. 
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The used algorithms can give accurate estimates of the investigated water quality 

parameters. 

Machine learning algorithms outperform the linear models for estimating the target 

variables (in terms of R 2, RMSE, MAPE). 
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2. Study Area, Materials and Methods 

2.1 Study Area 

The investigated area (fig. 1) is the upper Vltava catchment, including the Lužnice River. 

The Vltava river sources in the Šumava mountains (Bohemian Forest) in Southwest-

Bohemia, Czech Republic. Since 1991, the area is protected as a national park (Mentlik, 

2016). 

Figure 1: Sampling localities in the upper Vltava catchment 

The Bohemian Forest is characterized by felsic plutonic and metamorphic bedrock (mostly 

granites) and shallow acidic soils (Baburek et al., 2013). The mountains are part of the 

bohemian massif which formed during the Variscian orogeny. From a hydro-geological 

perspective, the Sumava mountains are a hard-rock environment. Magmatic (mostly 

plutonic) and metamorphic rocks dominate. Most notably, there are large bodies of 

granite, migmatite, paragneiss, granulite, eclogite, amphibolites, marbles, and quartzites. 
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The soils are mostly acidic and poor in nutrients. The Bohemian forest is among the few 

European regions naturally dominated by Picea abies- (European spruce-)forests. 

Downstream of the Šumava region the Lipno reservoir - Czech Republic's largest standing 

water body - follows (de Moraes et al., 2023). It was created in the 1950s for by damming 

the Vltava river, serving the purposes of hydropower production, flood mitigation, and 

recreation. In contrast to the Vltava headwaters, the large (46.5 km2) but shallow (max. 22 

m) Lipno reservoirs are relatively eutrophic (Tesfaye et al., 2023). The area downstream of 

Lipno is charcterized by a transition to sedimentary rock. Important land cover forms are 

forests, quite vast floodplains and extensive agriculture. In this section, the Vltava crosses 

a part of the Třeboň Basin, known for its fishpond system (Bohnet et al., 2022). As the 

Vltava River flows northwards into the Budějovice basin, agricultural intensity gradually 

increases to high levels in the Northern part of the study area. Other human activities also 

intensify, following the river from the source to the lower parts of the investigated region. 

Major municipalities include Český Krumlov (ca. 13,907 inhabitants; 492 m above NN) 

and most notably České Budějovice with almost 100,000 inhabitants (Czech Statistical 

Office, 2023). At 381 m above NN, České Budějovice is only slightly more elevated than 

the lowest point used for modeling, located in the dam reservoir Vodní nádrž Hněvkovice 

at 371 m above NN. The Vltava was dammed there in the 1980s for supplying the Temelín 

nuclear power plant with cooling water (Růžička et al., 2005). In brief, it can be concluded 

that along the upper Vltava, there is an increasing gradient of land use and agricultural 

intensity and a corresponding nutrient gradient. 

Apart from this, general developments of the trophic state of the upper Vltava can be 

described. After a long, steady increase of nitrogen in synthetic fertilizers after the second 

world war until 1989, followed by a short, but very steep decrease from approximately 110 

kg ha"1 year"1 to approximately 50 ha"1 year"1 within only four years; afterwards, the use 

slowly increased again to 70 kg ha"1 year"1 (Kopáček et al., 2013). More recent data were 

not found. Despite the re-elevated N use in fertilizers, overall observed total nitrogen (TN) 

concentrations in the Vltava have continued to decrease until 2010 (Kopáček et al., 2013). 

While more recent information has not been available, the present work presents evidence 

indicating a re-introduction of increasing N-concentrations in the upper Vltava. 
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Evidence from the Slapy reservoir north of the study area shows relatively stable 

concentrations with considerable seasonal fluctuations (maxima in winter, minima in 

summer), with annual averages fluctuating between ~40 and ~80 ug L 1 between 1963 and 

2015 (Výstavná et al., 2017). 

Until 1992, a P increase has been documented, afterwards, a decrease; only for the summer 

months, there was an overall increase (Výstavná et al., 2017). However, it must be noted 

that these values are from a standing water body which is downstream of the investigated 

catchment area, so the reported trends are only of minor indicative value. 

Annual P runoff from agricultural land in the upper Vltava basin has been found to be in 

the unit range of kg km"2, being close to anthropogenically unaffected areas (Rosendorf et 

al., 2016). Nitrogen pollution, in contrast, is found to be a major obstacle for achieving and 

sustaining healthy water quality in the area: In parts of the upper Vltava catchment, 

surface N runoff of more than 20 kg ha - 1 has been reported,largely due to the application of 

animal manure (Rosendorf et al., 2016). 

2.2 Identification of relevant literature 

Relevant literature was identified by entering various keyword combinations to the Web of 

Science, Scopus, ScienceDirect, Google Scholar and Pubmed. The search was limited to 

results in the English language. Besides recent publications, selected pioneering works and 

other relevant older publications were included. 

Corresponding to the research objectives, the identified literature covers following topics: 

1. Use of machine learning algorithms for estimating inland water quality parameters with 

a main focus on non-optically active parameter and on rivers; 2. General literature on the 

used algorithms; 3. General literature on river water quality and the investigated water 

quality parameters; 4. Hydrology, geology, and geography of the study area. Keywords 

were combined in different ways by the boolean operators AND and OR" and included 

"amnion*", "backpropagation", "Landsat*", "Lužnice", "machine learning", "neural net*", 

"nitrogen", "non-active", "non-optical*", "optically active" "phosphorus", "random forest", 

"remote sens*", "sentinel*", "South Bohemia", "support vector", "upper Vltava", and 

"water quality". Literature on specific questions that arose during the writing process was 
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identified by using the respectively relevant keywords in the previously enlisted literature 

repositories. 

2.3 Data Sources and Dataset creation 

2.3.1 Water Quality Data 

Water quality data were provided by the Czech Hydrometeorological Institute (CHMI, 

2022). The dataset includes a total of 62 sampling points (35 in the Lužnice River and its 

tributaries; 27 in the Vltava river and other of its tributaries), eleven of which could be 

used for model construction. It covers the period from January 2000 to December 2020. In 

includes water quality data from 9,217 samples, in total. 
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Figure 2: Point in QGIS with no apparent water in Sentinel-2 image (band combination 

04-03-02) 

Points were removed following visual inspection in QGIS (QGIS Development Team, 

2009). Points were not removed from the dataset when the corresponding Sentinel-2 pixel 

from the HLS-S30 product was at least almost fully covered by water, and not hidden 

behind vegetation or objects. The satellite imagery for this procedure was loaded into the 

GIS via the Semi-automatic classification plugin (Congedo, 2023). 

Only imagery with less than 5% cloud cover was considered. Decisions on whether to 

remove a point were made after inspecting the respective point with band combinations 

04-03-02 (fig. no), representing natural color, and 08-11-04 (fig. no), suitable for identifying 

open water (Kaplan and Avdan, 2017). 51 points (82%) of the points had to be removed. 

Subsequently, remote sensing data from the remaining eleven point were obtained. 
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Figure 3: Same point, in QGIS, using different bands (band combination 08-11-04) 

2.3.2 Remote Sensing Data 

All remote sensing datasets were obtained using the JavaScript programming language in 

Google Earth Engine (GEE). The code is based on examples from the GEE documentation 

(Google, 2024b) and in parts written with the help of the large language model ChatGPT4 

(OpenAI, 2023), as documented in the scripts. A l l relevant scripts can be found in the 

appendix. 

Landast-5 surface reflectance data (Crawford et al., 2023; Google, 2024a) were used for the 

period from 01. January 2000 to 05. May 2008. Surface reflectance data from the HLS data 

product (Claverie et al., 2018; Ju et al., 2020) were used for the period from 12. April 2013 

to 31. December 2020. Due to the lack of readily available satellite imagery in GEE, no 

data for the time range between 06. May 2012 and 11. April 2013 are used in the models. 
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Table 1: Wavelength ranges of used bands of LS5 and HLS L30 

LS5 Band Description LS5 Wavelength 
(um) 

Corresponding 
HLS L30 Band 

HLS L30 wavelength 
(approximation; um) 

Band 1 Blue 0.45-0.52 Band 2 0.45-0.51 

Band 2 Green 0.52-0.60 Band 3 0.53-0.59 

Band 3 Red 0.63-0.69 Band 4 0.64-0.67 

Band 4 Near-Infrared (NIR) 0.76-0.90 Band 5 0.85-0.88 

Band 5 Shortwave Infrared 1.55-1.75 Band 6 1.57-1.65 

Band 7 

(SWIR) 1 

Shortwave Infrared 

(SWIR) 2 

2.08-2.35 Band 7 2.11-2.29 

The exact HLS-product used for the models is called HLSL30: HLS-2 Landsat Operational 

Land Imager Surface Reflectance and TOA Brightness Daily Global 30m (Masek et al., 

2021). Data were also downloaded using the JavaScript programming language in Google 

Earth Engine. Cloud-covered points and measurements of poor quality were omitted based 

on the quality variables included in the product. The used bands were selected based on 

compatibility with the Landsat-5 product (see tab. 1), and on suitability for the modeling 

purpose. The fairly similar wavelength ranges of the used products allow using both as 

modeling input data without further spectral harmonization steps. LS-5 and HLS-data 

were joined based on the common bands (tab. 1) using the Python programming language. 

In the obtained dataset and in the further text, LS-5 band names are used to refer to both, 

LS-5 and the corresponding HLS bands. 

2.3.2 Data merging and cleaning 

Datasets were joined by appending each row from the water quality dataset with the 

respectively temporally closest row from the satellite dataset at the given point. Therefore, 

the absolute time difference in days was considered, i.e., the amount of days before or after 

the satellite passed a given point. Rows containing missing band values were removed. 

Rows with greater absolute time differences of more than 15 days were also removed from 

the dataset, resulting in a total of n = 835 remaining observations. 
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2.3 Data Analysis and Visualization 

Data preparation, analysis and visualization were performed using the Python 

programming language in Jupyter notebooks in the VSCodium IDE from the miniconda 

distribution. Data preparation, statistical analysis, and ML model construction were 

performed using the libraries numpy (Harris et al., 2020), pandas (McKinney, 2010), 

statsmodels.api (Seabold and Perktold, 2010), Scikit-learn (Pedregosa et al., 2011), 

tensor flow (-gpu) (TensorFlow Developers, 2024), and the ILO-AutoML library (LeDell and 

Poirier, 2020). Graphs were plotted using the additional libraries seaborn (Waskom, 

2021), and matplotlib (Hunter, 2007). For data visualization, code from the python graph 

gallery was used and adapted to the purposes of the presented research (Holtz, 2024). 

Maps were created in QGIS. The satellite basemap from ESRI was loaded into QGIS via 

the SRTM-Dowloader (Duester, 2023) package for QGIS. Vector files of water bodies and 

catchment delineations were downloaded from the EE A (European Environment Agency., 

2012). Further formatting of graphs and maps was performed using the vector graphics 

editor Inkscape (Inkscape Project, 2020). Parts of the codes were written with the help of 

Chat-GPT 4 and Chat-GPT 3.5 (OpenAI, 2023). 

The input variables were normalized by applying the Z-score standardization (Pedregosa et 

al., 2011) algorithm (fig. 1), where z is the standardized value of a variable, x is its original 

value, u the mean of the feature values, and a is their standard deviation. 

x—u 
z = —o~ 

Equation 1: Z-score standardization 

Satellite measurements at a given point usually occurred on different days than water was 

sampled. Weighting columns were calculated in order to be able to penalize bigger time 

lags between a satellite revisit and water sampling. Weighting transformations were 

performed using an exponential function (eq. 2) in order to increase the punishment of 

greater time lags. 

Different weights were calculated based on different multipliers m; (0.5, 1.0, 1.5, 2.0, 2.5), 

allowing greater flexibility and more appropriate weighting for each model. In the further 

text, natural numbers from 1 to 5 are used to refer to the weights, in ascending order. 
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Equation 2: Calculation of weights, based on time lag between sampling and revisit, wi = weight; 

mt = multiplier; At = absolute time difference (days) 

PCA was performed on the standardized satellite band variables, obtaining two principal 

components that were later on tested as potential model input parameters. Al l models 

were tested with PCs in comparison to the standardized satellite bands as input features. 

Additionally, models were tested including the months (as categorical variable) as input 

feature. For each output feature in each model, the best available wi was selected, using 

for-loops. 

Both approaches of MLSR, forward selection and backward elimination were performed for 

all output variables. Al l possible combinations of polynomials from the first to the third 

order were modeled by using a for-loop. Time lag weight variables were iterated for each 

model. Subsequently, the respective model with the best fit (i.e., highest R 2) was identified 

automatically for each dependent variable. Exhaustive iterations over weight columns, and 

the best polynomial order (1-3) were performed, and the model summaries for the models 

with the highest R 2 were printed. 

For PLSR, the standardized satellite band variables were used as inputs, with no further 

feature engineering. Models including or excluding the sampling month as input variable 

were tried. The models were constructed for all output variables at once. For each 

dependent variable, the model with the highest R 2 was selected and printed as output. 

For-loops were used to exhaustively iterate over all combinations of possible scaling 

methods (meancentering, robust_scaling, or no scaling), and components components. 

Suitability of polynomials (up to the fourth order) as input variables was also assessed 

iteratively, but were not further considered after proving unsuitable. The final algorithm 

includes exhaustive iterations over all combinations of up to three excluded input features, 

of weight columns (including the option not to use any). The month-variable is part of the 

feature-space of this algorithm. 

The modelled relationship between the input variables and a given output variable was 

considered statistically significant, if p < 0.05 (i.e., 95% level of significance). 
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Random forest regressors were constructed optionally with or without month (as 

categorical variable) as input variable. Iterations over all weight variables were performed 

to find the best one for each output variable. The minimum number of trees was set to 

100. Incrementally, trees were added in steps of 20 additional trees, until further addition 

did not result in a significant decrease of the RMSE. The constructed RFR models predict 

all output features at once, but model evaluation was done for each water quality 

parameter individually. 100 bootstraps were applied. 

Possible feature combinations for SVR-based estimation of the wq parameters was 

performed with a combined SVR-RFE algorithms, that assigned stability/importance 

estimates for the individual bands, and their simple polynomials of the second order (i.e., 

the squared observations of each individual band, and products of the observations of 

each possible combination of two individual bands). An adapted algorithm, including 

polynomials up to the third order polynomials was run for A N N feature selection. Possible 

feature combinations with different purposes were then constructed based on feature 

importance for each dependent variable. For instance, including features of the highest 

relevance, or covering a broad set of mid- to high-stability feature, or covering nonlinear 

dynamics. 

SVR algorithms were trained by applying Bayes search to a search-space including pre

defined sets of input features, the weighting columns of the dataframe, kernel functions 

(rbf, linear, polynomial, and sigmoid), degree (if polynomial kernel), and the 

hyperparameters C, gamma, and epsilon. Bayes search was run with a varying amount of 

iterations (30-85), starting on a sample subset (n=400), and then generalized to the hole 

dataset, on which - if necessary - further hyperparameter optimization was performed. 

The Each iteration of Bayes search used 3-fold cross-validation. While 5-folds cross-

validation would have increased model robustness, the increased computational cost was a 

constraint against it. Model training was done by gradually eliminating unsuitable feature 

combinations, and kernel function, and by gradually reducing (and sometimes enhancing) 

the search-space for the hyperparameters. 

BP-ANN construction was first tried with hard-coded hyperparameters for all output 

variables at once, leading to mostly unsatisfactory results, and great computational efforts 

for hyperparameter tuning. 

32 



After, also mostly unsuccessful, computationally and temporally constrained attempts to 

implement a similar search- and training-approach as for the SVR-algorithms, an 

automated pipeline for BP-ANN construction and model selection, based on limited inputs, 

was implemented. For this approach, the automated machine learning (AutoML) Python-

library H2O was used. The included algorithm types were set to only to BP-ANN 

algorithms, encoded as "DeepLearning" in the H2O package . Again, enforced by resource 

limitations, the maximum model number to be calculated was set to 50, with a respective 

maximum runtime of 2,500 seconds. A csv file with detailed results on model 

hyperparameters, and selected performance metrics (RMSE, R 2, MAPE) was returned. 

Model evaluation for all types of algorithms was based on the performance metrics R 2 , 

RMSE, and M A P E . Where applicable, information on weighting of the time lag, the 

polynomial degree, the best number of components (based on R 2 ) . In the case of R 2, the 

R2-score from the scikit-learn library was used. While it is equal to the regular coefficient 

of determination in the positive range, it can have negative values, indicating a worse fit 

than a model that always estimates the mean value of the target parameter (Pedregosa et 

al., 2011). Such a model would get the R2-score 0. 

More details on the methodology are described in the supplementary materials. 
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3. Results 

3.1 Seasonal and spatial patterns 

Most of the investigated water quality parameters averaged over the 62 initial input points 

show distinct seasonal patterns (Fig. 4). The biochemical oxygen demand is lowest during 

the winter months, with an average of slightly more than 3 mg I/ 1 between December and 

February. Highest values are measured between May and October. During this period, 

BOD5 is relatively stable. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2000 2002 2004 2006 2003 2010 2012 — 2014 2016 2018 2020 - - Avg 2001-2010 

2001 2003 2005 2007 — 2009 2011 2013 — 2015 2017 2019 Avg Avg 2011-2020 

Figure 4: Monthly averages of water quality parameters across all sampling points (2000-2020), including 

decadal averages (2001-2010 and 2011-2020) 

Seasonal dynamics of ammonia nitrogen are less pronounced than of the other measured 

parameters. 
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On average, there is only little seasonality, but in most years, a decline of A N 

concentration can be observed between December and April, followed by a strongly 

fluctuating increase over the rest of the year. The monthly average concentration (2000-

2020) never exceeds 0.4 mg L"1. However, there are considerable outliers, especially in 

recent years, where concentrations of more than 1 or even more than 1.2 mg I / 1 are the 

mean concentration of the 62 sites at individual months in the second half of the year. 

Nitrate nitrogen concentrations peak early in the year, between February and March. The 

21-year average concentration in March is at almost 3 mg L"1. After this, the concentration 

steeply drops to a minimum of slightly more than 1 mg L"1 in July. Until October it 

remains relatively stable and then gradually increases again to the annual maximum. 

Total Phosphorus shows approximately the opposite pattern: On average, it has a 

distinctive peak in July (ca. 0.24 mg I/1), from which it gradually drops to a minimum 

between February and March (ca. 0.12 mg I/1). Between January and March, the 

concentration is relatively stable. 

A notable increase of all four water quality parameters can be observed when comparing 

the 10-year averages of the decades between 2001 and 2010 on the one side and 2011 and 

2020 on the other. This holds true for all four parameters in every single month of the 

year. 

Unlike in the previous decade, from 2011 to 2020, average BOD5 concentrations remain at 

levels of more than 4 mg L"1 from March to October, and do not drop below 3 mg I/ 1 for 

the rest of the year. A single extreme outlier was observed in March, when the average 

concentration at the 62 sampling points reached 10 mg L"1. In the more recent decade, 

mean monthly A N concentrations exceeded 0.4 mg L"1 from November to January as well 

as in July. In the previous decade, the annual maximum monthly average was in January 

at around 0.3 mg L"1 with all other months showing substantially lower concentrations. 

Monthly mean A N in the later decade is constantly above 0.2 mg _1, while it had been 

below that threshold for eight months (March - October) of the year in the previous 

decade. Mean nitrate nitrogen concentrations show an especially high increase in the first 

two months of the year. The decadal monthly maximum shifted from March to February 

and from a previous ~3 mg L"1 to almost 4 mg L" . The average minima are found in July 

and October in both decades, and increased from around 1 mg L"1 to more than 1.3 mg L" . 
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Figure 5: Reactive inorganic nitrogen (AN and NN) in the study area, considering all 62 sampling points 

from initial dataset 

Figure 6: BOD5 and TP in study area (62 points) 
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The annual TP maximum in July increased by 50% from —0.2 mg I/ 1 between 2001 and 

2010 to —0.3 L"1 between 2011 and 2020. While mean monthly TP concentrations only 

slightly increased for the months January and March, the increase in the remaining ten 

months is substantial or even dramatic. 

Visual inspection of the mapped average concentrations of the four water quality 

parameters shows clear spatial patterns (fig. 5-6): Al l four water quality parameters appear 

in lower concentrations in the Sumava source region, while being more concentrated in the 

agricultural and urban areas more downstream. Furthermore, it appears that higher 

concentrations of all target parameters are found in stream segments of higher order. In-

depth analysis could provide other relevant insights. 

3.2 Spatial distribution of the water quality parameters 

Averaged over the entire investigated period, the spatial distribution of all four water 

quality parameters behaves as hypothesized. An almost steady increase of all four, A N , 

NN, BOD5, and TP can be observed from the headwaters to the lower parts of the 

investigated areas. 

It is important to keep in mind that the described temporal and spatial patterns refer to 

the dataset cover a wider range of water quality data than the models presented below, as 

the description of spatiotemporal patterns of the field measurements is not constrained by 

the availability of remote sensing data. 

3.3 Model Preparation 

None of the reflectance data from the bands in the combined LS5-HLS dataset were 

normally distributed. Al l of them were strongly skewed to the right. Often, local modes in 

higher ranges of the distributions were observed. While theoretically, the reflectance values 

should range between 0.00 and 1.00, the dataset includes few observations where 1.00 was 

exceeded. It was not further investigated whether such results are a consequence of data 

harmonization, satellite calibration, atmospheric correction, or randomly occurring 

artifacts. Instead, the observations were used as given in the datasets. 
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Figure 7: Distributions of surface reflectance data on the input bands of the combined LS5-HLS dataset 

The non-normal distribution of all independent variables makes parametric tests unviable 

for first explorations of their suitability for estimating the concerning water quality 

parameters. Even after various transformations (quadratic, exponential, boxcox), none of 

the input variables was normally distributed, as shown by Shapiro-Wilk-tests. 
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B0D5 

Figure 8: Distributions of the investigated water quality parameters 

The distributions of all dependent variables are also strongly skewed to the right. The 

recorded levels of A N , NN, B0D5, and TP appear to resemble gamma-distributions, and 

could thus be transformed to normal distribution quite easily. But since the used 

algorithms do not depend on normal distribution, and the distributions of the dependent 

variables do not allow for parametric tests, this was not further investigated. 

Due to the non-normal data distributions - even after transformations -, it is not 

admissible to estimate basic interactions between dependent and independent variables 

with Pearson's correlation. 

Therefore, a first estimate of relevant interactions of reflectance at given satellite bands 

and concentrations of A N , NN, BOD5, and TP was made, based on Spearman's rank 

correlation. The satellite reflectance data show strong positive intercolinearity between all 

bands. 
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The weakest association, found between bands 1 and 5, is still very high at p = 0.84, while 

the strongest one (p = 0.99) almost reaches the theoretical maximum. 

All of the investigated water quality parameters also positively correlated with each other. 

The weakest rank correlation is found between NN and TP (p = 0.12) and the highest one 

between BOD5 and TP (p = 0.77). 
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Figure 9: Correlation matrix of input (satellite bands) and output (water quality parameters) features using 

Spearman's p 

Spearman's rank correlation coefficients between the bands on the one side and the water 

quality parameters on the other, are mostly relatively weak and negative. The greatest 

relationship is found between B7 and NN (p = -0.085). Positive coefficients are found only 

found between the bands 2, 3, and especially 4 (p = 0.032) with TP. 
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The identified rank correlations between surface reflectance on the given bandwidths on 

the one side, and the levels of the investigated water quality parameters on the other side 

suggest that there might be more complex underlying patterns, allowing to interfere 

between these data. 
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3.4 Model Performance 

These patterns were captured by the different algorithms with varying success (Tab. 2). 

Table 2: Model performances on testing dataset for each water quality parameter (best model of each type 

based on R2; For BP-ANN: No weight variables tested) 

WQP Model R 2 RMSE M A P E (%) W i 

MSLR (ns) 0.005 0.585 488.61 5 

PLSR 0.012 0.918 567.22 -

A N SVR 0.078 0.500 376.48 5 

RFR 0.156 1.180 319.36 4 

BP-ANN 0.010 1.804 288.95 -

MSLR (***) 0.212 1.768 141.68 -

PLSR 0.112 2.450 138.97 1 

NN SVR 0.091 2.472 169.84 1 

RFR 0.555 1.124 80.01 5 

BP-ANN 0.180 1.354 112.69 -

MSLR (***) 0.035 2.747 68.11 -

PLSR 0.061 3.180 75.68 1 

BOD5 SVR 0.042 3.218 52..3 4 

RFR 0.462 2.667 46.15 3 

BP-ANN 0.040 4.370 72.31 -

MSLR (***) 0.041 0.431 128.72 -

PLSR 0.004 0.229 127.71 1 

TP SVR 0.049 0.224 98.84 5 

RFR 0.390 0.257 91.24 5 

BP-ANN 0.041 0.397 105.92 -
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The MLSR models indicate no significant linear relationship (p < 0.05) between the input 

band variables and Ammonia Nitrogen, regardless of weighting, polynomial degree of input 

variables, or type of the MSLR (forward selection vs. backward elimination). Very little 

variance is explained by the model (R2 = 0.005), and errors are high (RMSE = 0.585 mg L" 
l; M A P E = 488.61%). Most variance of A N is explained by RFR (R2 = 0.156) and SVR 

(R2 = 0.078) models. A l l other algorithms perform very poorly on this target variable. 

Even these comparatively well-performing models predicted A N with an RMSE of 0.500 

mg L"1 (RFR) to 1.180 mg L"1 (SVR). Given the monthly mean range of ca. 0.2-0.4 mg I/ 1, 

a root mean square error this high cannot be satisfactory. PLSR (R 2 = 0.012) and BP-

ANN, both explain only an almost negligible fraction of the variance. The relative 

differences of estimated and measured A N concentrations are high for all models, ranging 

from 288.95% (BP-ANN) to 567.22% (PLSR). It is interesting to note that models with 

higher penalties for time lags between sampling and satellite revisit tend to perform better 

than with lower penalties. 

0 5 10 15 20 
Actua l V a l u e s (mg L" 1) 

Figure 10: Predictions vs. actual values of test-dataset of RFR for NN estimation 
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Estimation of nitrate-N, the other nitrogen fraction among the dependent variables, works 

substantially better. The linear MSLR-model can explain a considerable fraction of the 

variance of NN (R2 = 0.212). Apart from SVR (R2 = 0.091), all types of algorithms return 

R 2 > 0.10. The highest fraction of variance (R2 = 0.555) is explained by a random forest 

regressor (fig.7), which also returns the lowest mean errors (RMSE = 1.124; M A P E = 

80.01). PLSR (R2 = 0.112), and BP-ANN (0.180) explain less of the variance than MSLR. 

Due to mean observations an order of magnitude higher than those of A N , also the RMSE 

values in mg L"1 are higher, while the relative deviation of estimated from measured 

concentrations, expressed by the M A P E , is a lot lower (AN: 288.95% - 567.22%; NN: 

77.52.95% - 169.84.%). Overall, all types of models return useful outputs for estimating 

nitrate nitrogen. 

BOD5-estimates are less powerful than those of NN, but still a lot more valuable than 

those of A N . The multiple stepwise linear regression indicates a highly significant 

relationship with R 2 = 0.035 (RMSE = 2.747 mg L"1). The RFR model performs the best 

on all investigated metrics (R2 = 0.462; RMSE = 2.557 mg L"1; M A P E = 46.15). The 

remaining models also explain a greater fraction of the variance of BOD5, but their RMSE 

values indicate lower accuracy than for MSLR (see tab. 2). Over all selected models, the 

deviation of predicted values from measured values stayed well below 100% (MAPE: 

46.15% - 75.68%), indicating considerably high accuracy, compared to other dependent 

variables. Despite the relatively low fraction of variance explained by MSLR, PLSR, SVR, 

and BP-ANN, the results still show a clear response between satellite bands and BOD5, 

even though it might be weak, and hard to capture in a model. 

Quite similar results as for BOD5 were obtained for TP. The MSLR showed a highly 

significant (p < ) relationship with the predictors and TP, explaining a small part of the 

variance (R2 = 0.041). Lower errors at the same R were achieved by the BP-ANN (see 

tab. 2). While having somewhat lower errors than MLSR, partial least square regression 

(R2 =0.004) can hardly explain more variance than a constant model, always assuming the 

average value of TP, suggesting that it is not ideal for predicting this water quality 

parameter. SVR, in contrast, can explain a small, yet non-negligible part of the variance 

(R2 = 0.049), while also returning substantially lower errors (see tab. 2). At similar errors, 

but clearly higher explained variance, SVR was only outperformed by RFR (R2 = 0.390). 
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The main results of the model evaluation are: Estimating A N remains challenging, as none 

of the used algorithms was able to explain a high part of its variance, while all of them 

produce high errors when estimating A N concentrations. In contrast, NN estimates are 

comparably accurate. Various types of models can return valuable information, promising 

at least some degree of suitability for NN prediction, and promising to be a good base for 

further optimization. 

The results for BOD5- and TP-estimation indicate a relevant response between the used 

predictors and the target variables. Yet, the models mostly fail to accurately capture the 

variance of BOD5, and TP. The comparably low relative error of BOD5 estimates, as 

expressed by M A P E , indicates the possibility of relatively accurate predictions. Yet, the 

minimum M A P E vales of almost 50% are still far from ideal. 

One of the most important results is the capital effectivity of RFR to predict any of the 

target parameters from the dataset, as compared to all other tested algorithms. In fact, it 

can be considered the only used algorithm providing solid estimates of NN, BOD5, and 

TP, while still being very limited for A N . 

In contrast, the MLSR algorithms tended to produce the weakest predictions, with the 

exceptions of NN, where MLSR explains the second-highest fraction of variance among the 

tested models, and for TP, where its R 2 value is ten times higher than that of PLSR. 

However, the MLSR outcomes also indicate that some significant relationships can be 

captured between the input variables on the one side, and NN, BOD5, or TP on the other 

side, even by linear models. 

For all sorts of algorithms, and all investigated water-quality parameters, finding 

appropriate weights for the absolute time-differences between water sampling and satellite 

revisit at a given point is not a trivial task. This is underlined by the wide range of 

weights used in the respectively best models, with no apparent clear pattern. 
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4, Discussion 

4.1 Spatiotemporal patterns of Water Quality Parameters 

A N . Relatively unobstrusive seasonality: A N largely determined by plant uptake in 

growing season. Effect maybe neutralized by elevated inputs, or by changed patters of 

ammonia oxidation. Increase likely due to higher agri input. 

NN: Seasonality matches observations from East-Polish Suprašl River (Skorbilowicz and 

Ofman, 2014) and from Latvian river sites (Tsirkunov et al., 1992). Explanation: Growing 

season: More N in primary producers. Increase likely due to higher agri input, and not due 

to lower uptake or the like. Solubility of nitrates increases with temperature, but direct 

climate change contribution low. After decreasing agricultural nitrate loads between 2000 

and 2014 in the catchment of the Rímov reservoir, an increase until 2020 was reported. In 

contrast, nitrate loads from settlements showed a low, but steady decrease between 2000 

and 2020, while no significant changes were reported for nitrate loads from forests. Maybe 

different pattern further downstream? Especially 

TP Seasonality: Hgher solubility in summer. Increase: Higher P-input. It is yet to be 

investigated, if effects of climate change contribute to P-increase on this local level. A 

likely explanation is increased use of phosphate fertilizers. Also accumulation in reservoirs 

might be a factor. Contribution of point sources? Easier to control. But improving WWTP 

efficiencies. Rímov reservoir: Insignificant, and almost negligible decrease from forests, 

little change from agricultural, slow increase from settlement. Overall, very slight increase. 

Loads from all systems peak in summer, indicating that higher mobility and loads might 

also contribute to seasonal patterns. Observed overall increase corresponds to observations 

presented in previous chapter. Increase in temperature was found. 

Weaker seasonality of B O D 5 : Microbial activity in summer increased due to hugher temp, 

and P-availability (assuming P-limitation of the system). But: Also, lower 02-availability, 

due to lower solubility, so faster O2 depletion. Also, B O D 5 tested under lab conditions, so 

temperature during respiration is same and growth promoted again in lab. Increase due to 

eutrophication, and like for P: climate change effects would be interesting to investigate. 
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Might have direct effects due to higher microbial activity at higher temperatures. Due to 

usually high O2 saturation in rivers, lower solubility might not have a contrary effect. 

Slapy reservoir: Slight temperature increase, with decade 2010-2019 as warmest decade in 

past 60 years. Increased O2 saturation. Similar levels of nitrate, and in some months lower 

levels of ammonium . Increased DOC. Strong increase of DON. Very similar TP (Kopáček 

et a l , 2021). 

Seasonality: Identified patterns correspond to those reported in literature. Increase: Partly 

supported by other published results, but partly in contrast to them. Maybe: addition of 

points with higher trophic status later included to dataset? Refinement of methodology 

required. Also, literature usually focuses on individual basins, and not on whole area, so 

further investigation is needed. After further progress in methodology, ML models could be 

a good way for quantifying this development in a good temporal and spatial resolution. 

Streamflow decline observed (Výstavná et al., 2023). 

Spatial: Downstream increase corresponds to land use gradient: Lowest inputs from forests 

also reported by (Výstavná et al., 2023). 

The hypothesis of decadal decrease cannot be accepted. The results clearly indicate an 

increase of all four water quality parameters between the two compared decades. However, 

due to methodological limitations, and inconsistencies with the findings reported in 

published research, a refined approach of investigation is required. 

Spatially, a downstream increase of all four parameters was observed, matching the 

initially stated hypothesis. Two factors might contribute to that: Faster flor rates in the 

upstream area allow faster transport of input contaminants and other substances, giving 

less time for accumulation (Schwoerbel and Brendelberger, 2022). But more important 

might even be the land use gradient described earlier that is closely associated to the 

"continuous gradient of pollution and habitat degradation" (Horka et al., 2023, p. 2) in the 

clXGcL. 
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4.2 Model Evaluation 

Apart from some RFR models, the accuracy of all predictions is fairly low, as indicated by 

the test metrics. Other model types can at least still explain considerable amounts of 

variance of nitrate nitrogen. Furthermore, estimations of BOD5 differ on average by less 

than 80% (MAPE < 80%) from the actually observed values, also indicating some relative 

accuracy. This lower mean absolute percentage error of BOD5 estimates, compared to the 

remaining dependent variables, might be due to a narrower range or smaller variance of 

BOD5. For now, the hypothesis of accurate ML-based estimates in the given research area 

cannot be accepted, but the results point toward a promising direction. 

Especially estimating A N turned out to be difficult. Two types of algorithms, SVR (R 2 = 

0.08), and RFR (R2 = 0.16), explained similar levels of A N variance in the upper Vltava, 

as the equivalent models by Li et al. (2022) explain for the tropical Nandu river in China 

(R2 (SVR) = 0.07; R 2 (RFR) = 0.24). However, the poor performance of the BP-ANN in 

the present thesis (R2 = 0.10) is in stark contrast to the ANN presented in the Chinese 

study (R2 = 0.44). Still, also for Li et al. (2022) A N turned out to be the variable hardest 

to estimate. Despite explaining a substantial share of A N variance, also the estimates by Li 

et al. show large deviations from the actual values, with M A P E ranging from 274% to 

318%. 

While the errors might still be relatively large and the explained fractions of A N variance 

by the different models presented in the previous chapter might be low, they are far from 

negligible. Future improvements of ML methodology application are required to allow for 

robust and accurate estimates of A N . 

The comparably good estimates if NN are in correspondence to those presented in 

literature. SVR (R2 = 0.29) and NN (R2 = 0.29) models in a study by Sagan et al. (2020) 

could to explain considerable parts of the variance of nitrate in the water. Their PLSR 

model (R2 = 0.26) also outperformed the one presented in this thesis (R2 = 0.11). Other 

similar studies do usually not focus on nitrate (nitrogen). Anyhow, comparing the 

presented NN estimates to such of TN/TIN can still provide valuable insights, as river N 

generally mostly consists of NN (Boyd, 2015). 
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Gao reported R 2 0.31 (SVR) - 0.45 (XGB). XGB was generally among best algorithms for 

most variables. Li : RF performed best with R 2 = 0.49. SVR had 0.2. M A P E ranging from 

33.11-43.59%. Maybe narrower distribution of values? Overall: Explained variance in my 

models can compete. L i had A N N with R 2 = 0.45. Gao was not so good in T N estimation 

with best model X G B R 2 = 0.45, but had strong SVR with 0.35%. According to the 

coefficient of determination, RFR models by Gao et al. (2024; R 2 = 0.42) and Li et al. 

(2022; R 2 = 0.49) performed slightly weaker than the one from the upper Vltava (R2 = 

0.56). However, at 33.53%, also the M A P E reported by Li et al. is a lot lower. Both 

studies also presented relatively well-performing ANNs and gradient boosting algorithms. 

It can be concluded that besides the present work, various publications support the 

observation that ML algorithms have considerable predictive power for A N - or TN-

estimation from satellite imagery. 

BOD5 has largely been neglected in similar studies. The remarkably low M A P E values, the 

large fraction of variance explained by RFR, and the small, but still obvious responses 

shown by other models are strong indicators of the suitability of ML-approaches for also 

estimating this parameter from RS-imagery. This, however, demands more in-depth 

research, ideally from the upper Vltava and other riverine systems around the world. 

Estimating TP in the upper Vltava turned out to be somewhat more challenging than 

BOD5, and a lot more than A N . This is in line with the results by Sagan et al. (2020) who 

failed to explain any variance of TP (R2 = 0.00) with SVR or A N N (R2 = 0.00) 

algorithms. While clearly outperforming the best calculated PLSR model on the upper 

Vltava (R2 = 0.00), the one by Sagan et al. still predicted TP very poorly (R 2 = 0.02). The 

explained TP variance by SVR (0.05) and RFR (0.43) in the upper Vltava are higher by 

orders of magnitude, and might represent promising starting points for the development of 

more accurate ML algorithms for this geographic realm. Substantially stronger model 

performances for TP estimations in commensurable systems have been presented by Li et 

al. (2022), who obtained an SVR model with R 2 = 0.59, and an A N N with R 2 = 0.67, both 

of which came with M A P E values around 50%. This level accuracy remains hard to reach 

for the upper Vltava. The models presented by Gao et al. had a somewhat weaker 

performance, with SVR having the lowest (R2 = 0.2), and RFR the highest (R2 = 0.39) 

coefficient of determination. 
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The huge variability of model outputs from the upper Vltava, and their partly poor 

performances when compared to other research results points to a demand of further 

refinement of ML methodologies. The high R 2 of the RFR model clearly indicates 

suitability of such models for TP estimation in the area. 

From a broader perspective, it can be observed that model performances from other 

studies are often better, and more stable across different model types. But there are also 

exceptions to this, and not even uniform patterns on which variables are hardest to 

predict. However, there seems to be a tendency, that various approaches for NN or TN 

prediction tends to perform very well, while A N prediction remains challenging. 

The approach of neural network construction in the present thesis turned out to likely be 

insufficient, as ANNs in published research generally performed a lot better, than those 

used for the upper Vltava. The Azto ML-approach for ANN-construction might be useful 

for getting a first orientation for the algorithm and the behaviors of the dependent 

variables, but it might be insufficient for actually identifying suitable A N N models, or at 

least, requires more control by the modeler. 

4.3 Limitations and potential for future model improvements 

The brief analysis of spatial and temporal patterns can only give a rough idea of them, but 

due to massive temporal constraints, it comes with some methodological flaws. The 

monthly averages, the decadal changes, and the mapping are all based on averages from all 

sampling locations. While this increases the sample size for these calculations and 

corresponding visualizations, the results cannot easily be generalized, and must not be 

overvalued: Since samplings have not been taken from all sites since January 2000, but 

some sites were added later, there might be some introduced bias. This might for instance 

be because stations which come into service later, might have artificially increased mean 

levels of the four parameters, due to a temporal increase between the two decades. Or 

maybe, sites with higher levels of one or more of the parameters have been introduced 

later, leading to only seemingly increased concentrations, so that the proclaimed increases 

might actually be lower than described. Neither possibility has been tested, due to 

temporal limitations. 
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Work remains to be done to eliminate these shortcomings and reduce the bias. Only this 

could enable reliable detailed conclusions on the spatiotemporal distribution and 

development of A N , NN, BOD5, and TP. However, despite these limitations, the simplified 

analysis approach satisfies the requirements of the performed further investigations. 

Additional valuable spatiotemporal information, some of which could also be useful for the 

model, could be obtained by methods such as time-series analysis, allowing to isolate 

seasonal patterns from long-term trends in water quality development (Halliday et al., 

2012). Another valuable approach could be catchment modeling based on digital elevation 

models, providing reliable estimates of catchment area (Kwast and Menke, 2022) and river 

length until a certain point (e.g., sampling locality). 

As already stated, also the ML models themselves come with limitations. Some of these are 

necessary consequences of the nature of the ML methods. Others are more related to 

modifiable parts of the learning systems, and thus represent potentials for future 

improvements. 

First of all, ML not able to explain mechanisms of interactions between water quality 

parameters and surface reflectance, thus leaving them as a black box (Cao et al., 2020; 

Gao et al., 2024). Their interpretability is very limited and they cannot shed light on 

deeper underlying patterns. While to some degree, we have to just live with that fact for 

now, increased interpretability and more detailed interpretations would be possible in some 

cases. Some of the possible methods can be useful for future improvements of the presented 

approach. 

One easy approach could for instance be, to include feature importance to the output from 

random forest models. This can not only increase their interpretability by giving insights 

to the strength of connections between input features and target variables, but can also be 

valuable for feature selection in other models (Pedregosa et al., 2011). Another strategy 

specifically for random forests could be to visualize a simplified decision tree that 

represents the average decision-making process of the forest, in a so-called born-again tree 

(Vidal and Schiffer, 2020). This approach could represent the unmanageable complexity of 

an RFR model in the more comprehensible form of a single, condensed regression tree, and 

thus allow an approximate interpretation of the decision procedures performed by the tree. 

51 



However, even the born-again tree can be sufficiently complex to be of only limited 

interpretability. 

A relatively simple and highly effective improvement of interpretability could further be 

using additional metrics for model evaluation across all models, such as MSE, RMPSE or 

M A E , / M A D as it has been done in previous studies (Gao et al., 2024; Guo et al., 2021; Li 

et al., 2022; Sagan et al., 2020). Still simple and even more informative would be further 

visualization of model performances, by including different types of visualization, and -

more importantly - by visually comparing predictions of all selected models to the 

respective actual values of the respective dependent variable in the test dataset, as it was 

done in the study by Li et al. (2022). The information obtained by this visualization might 

even be valuable for optimizing the models themselves. For instance, model adaptions 

could be implemented to try to mitigate the overestimation of NN in the upper 

concentration ranges, and the underestimation in the very low range. 

Besides aiming at higher interpretability, the architecture of the models can also changed 

in a way that allow for greater robustness, and higher accuracy. An obvious approach for 

increased robustness could be to add more folds to cross-validation or more iterations to 

bootstrapping. This strategy is, however, limited by computational constraints, and it 

should be kept in mind that at some point, the added robustness from additional folds or 

bootstraps gets marginal, while still substantially increasing computational cost. 

Model predictions could be improved by refining the strategy of weighting individual 

observations. The entire range of weighting variables for penalizing the time lag between 

sampling at satellite revisit was used in the models. This indicates that both, a wider and 

denser set of weighting variables, or even a more dynamic weighting approach might 

benefit model performances. It is furthermore interesting, that there was no uniform 

pattern regarding preferred weights and dependent variables, which could indicate greater 

stability of a wq-parameter, if the penalty was lower, and larger fluctuations at greater 

preferred penalties. 

More exhaustive strategies of identifying the best hyperparamters might further be helpful. 

Even more important might be to optimize the approach to input-features. 
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More individualized feature selection could be implemented for each model and output 

variable, in order to keep a balance between the amount of variables containing valuable 

information, and dimensionality. This can also include polynomial features, obtained by 

multiplication of individual input bands. The feature selection engineering and selection 

approach used for SVR is a step into that direction, yet it may have failed to identify the 

ideal set of features for each output variable. Also, there was no systematic approach to 

identifying the best number of input variables. For-loops, or preferably search mechanisms 

such as Bayesian search, grid search, or maybe even genetic algorithms (Yang, 2021) could 

be (further) implemented. While promising powerful improvements, sophisticated 

strategies of this kind are nevertheless far beyond the scope of this thesis. 

The evaluation - and massive removal - of measurement points evokes the question if the 

used satellite imagery is appropriate. Instead, sacrificing a wide time span, and all Landsat 

imagery in favor of Sentinel-2 data might be a better approach. Their spatial resolution of 

up to 15 m, would allow the inclusion of a much greater amount of points. Combined with 

the better spectral resolution, this could also improve the model performance. A 

comparison of predictions of HLS and S-2 data, could bring clarity. But, as previously 

elaborated, relying only on Sentinel-2 data has also has a great limitation: I can only 

provide estimates from June 2015 onward. Models based on these data can thus only cover 

a short time range, which makes them unsuitable for many all applications that require 

long-term estimates of the development of the investigated parameters. 

Not only might different remote sensing data allow better models. After understanding 

which band combinations from which instrument allow the best predictions of each 

concerning water quality parameter, it might also be of interest to consider other freely 

available predictors. Combining the remote sensing-based approach with other freely 

available predictors, such as meteorological data, hydrogeomorphological data (e.g., 

catchment area at sampling locality), or data on adjacent landcover and landuse could 

enhance the performance of some of the algorithms significantly. 

Besides different input data, also different models should be tried in future research. 

Plenty of studies have shown, for instance, that gradient boosting algorithms have 

outperformed other methods for estimation of various non-optically active water quality 

parameters (Gao et al., 2024; Li et al., 2022). 
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The pursuit for finding the most appropriate model for predicting each of them should 

thus also focus on gradient boosting methods, but also other algorithms, like simple 

regression trees, have performed surprisingly well in some cases (Li et al., 2022), and 

should thus also be considered. 

From the beginning to the end, parts of our learning systems could be adapted with 

potential benefits. Even if the models were calculated using ideal input datasets, ideal 

feature engineering and selection, and ideal hyperparameter selection, at least one further 

step could be optimized: The performed model-selection strategy, focusing almost 

exclusively on R 2 is very limited. Given the limited resources and the modest scope of this 

thesis, focusing on R 2 as main target metric is a justified, yet not ideal approach. 

The availability of better models will also allow mapping of spatial distribution and 

temporal developments of estimated water quality parameters, opening up a new, rapidly-

availble source of valuable information for water quality management. This can provide 

unprecedented insights on behavior of the distribution of the mapped parameters, and help 

identifying and managing the influence of various point- and diffuse sources of nitrogen 

and phosphorus. So far, however, the models have limitations due to which such efforts are 

unlikely to produce very valuable knowledge. 

The shortcomings of the models presented in this thesis demonstrate the challenges of 

estimating non-optically active wq params based on optical data. They further show the 

demand for further refinement of methodologies. The comparison to published data does 

not that there are slight methodological deficiencies in the present work, that call for 

optimization; it also shows that the usually narrower, and faster-flowing upper reaches of 

rivers come with additional particular challenges for RS-ML-based estimation of non-

optically active water quality parameters. But despite undeniable weaknesses of the 

presented results, they still clearly show that even for such systems, machine learning 

methods have the potential to be powerful tools for estimating NN, BOD5, TP, and even 

A N concentrations in the upper Vltava and similar riverine systems. 

For direct application in water quality management, the presented results are still 

insufficient. 
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But they can serve as a good starting point for developing robust models that can reliably 

provide accurate estimates of A N , NN, B0D5, and TP, and thus become an invaluable 

and unprecedented resource for water quality management and similar practical 

applications. 
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5. Conclusions and Outlook 

Management of river water quality is important for mitigating eutrophication. After the 

water quality improvements since the 1990s, this trend might have turned in the upper 

Vltava catchment after 2010: Concentrations of the four optically inactive water quality 

parameters ammonia nitrogen, nitrate nitrogen, five-day biochemical oxygen demand, and 

total phosphorus might have increased, as results presented in this thesis suggest. Al l four 

parameters follow a land-use and ecosystem degradation gradient in the upper Vltava, 

increasing in concentration from the headwaters to the lower parts of the research area. 

In this study, five different types of algorithms (multiple stepwise linear regression, partial 

least squares regression, support vector regression, random forest regressor, and 

backpropagation artificial neural network) were performed on harmonized Landsat-

Sentinel-2-data (HLS), in order to predict A N , NN, BOD5, and TP. Such machine learning 

methods can be useful tools for estimating the four named parameters, but they still bear a 

lot of challenges, especially given the often narrow streambed. Further improvements at all 

steps - from input data selection, over model optimization, to model selection - are 

required for ensuring accurate and robust predictions. The presented results indicate that 

this goal can be achieved. In most cases, machine learning algorithms clearly outperformed 

simpler linear models. Especially the method of the random forest regressor can often 

estimate a big fraction of variance, while also producing comparatively low errors. 

Of all four water quality parameters, NN was most effectively-predicted, with R 2 = 0.555 

by a random forest regressor, whereas A N is the most challenging with a maximum R 2 = 

0.156, also by a random forest regressor. BOD5 and TP prediction also remains 

challenging, but some models returned relatively strong metrics, indicating great potential 

for sound predictions of these parameters as well. 

Optimization of used input data, feature engineering, feature selection, model 

architectures, hyperparameter optimization and model selection will allow broad 

application of ML methods for river water quality estimations, even in upper reaches of the 

Vltava and other major European rivers. Reaching this goal requires big further efforts. 
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