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Abstract 
Nowadays, the process of analyzing malicious software is an important part of information 
technologies. One of the crucial techniques is decompilat ion of malicious binary programs. 
The decompilat ion is a complex process, and there are mult iple projects w i t h such a goal. 
The project Re tDec aims to develop retargetable and flexible decompiler. The goal of this 
research is to improve the decompilat ion of advanced instruct ion sets for architecture x86. 
The new opt imizat ion for F P U register stack manipulat ion is designed, and the support of 
F P U and S S E instruction set translation is extended. The new extensions are implemented 
and tested i n the manner of decompilat ion efficiency and quality. 

Abstrakt 
V dnešne j dobe je proces a n a l ý z y n e b e z p e č n é h o softvéru dô lež i tou súčasťou in fo rmačných 
technológi í . Jedna z kľúčových t echn ík je s p ä t n ý preklad škodl ivých b i n á r n y c h programov. 
S p ä t n ý preklad je k o m p l e x n ý proces, k t o r ý rieši niekoľko projektov. Projekt Re tDec sa za­
meriava na flexibilný n á v r h a r iešenie s p ä t n é h o p r e k l a d a č a s možnosťou znovupouž i teľnos t i . 
Cieľom tejto p r á c e je z lepšenie s p ä t n é h o prekladu pokroč i lých i n š t rukčných s ád pre architek­
t ú r u x86. B o l a n a v r h n u t á nová op t ima l i zác i a pre F P U reg is t rový zásobník . B o l a rozš í rená 
podpora prekladu in š t rukčných s ád jednotiek F P U a S S E . Nové rozš í renia bol i implemen­
tova né a o t e s tované z hľadiska efektivity a kval i ty s p ä t n é h o prekladu. 
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Rozšířený abstrakt 
T á t o p r á c a sa z a o b e r á v y u ž i t í m reverzného inž in ie rs tva v oblasti sof tvérových technológi í . 
Reve rzné inž in iers tvo je všeobecne m e t ó d a z ískavania informáci í alebo p l ánov o akýchkoľvek 
objektoch v y t v o r e n ý c h č lovekom. V oblasti in fo rmačných technológi í je v ý z n a m tejto dis­
ciplíny n a j m ä v r á m c i kybernetickej bezpečnos t i . T á t o technika je využ ívaná tvorcami 
škodl ivého softvéru (tzv. m a l v é r ) . Malvér využ íva reverzné inž in iers tvo na získavanie 
c i t l ivých informáci í o o p e r a č n o m s y s t é m e s p o t e n c i á l n y m cieľom získať kontrolu nad zari­
a d e n í m . Ďalš ia rozš í rená oblasť je softvérové p i r á t s t v o , kedy sa ú t o č n í k snaž í prelomiť 
ochranu k o m e r č n é h o d ig i t á lneho obsahu ako sú knihy, filmy, hudba, hry alebo rôzne p l a t ené 
programy. N a druhej strane m ô ž e pomôcť p ráve pr i ana lýze m a l v é r u za úče lom zvýšenia 
bezpečnos t i voči d a n é m u softvéru. 

Jedna z kľúčových t echn ík pre a n a l ý z u m a l v é r u je a n a l ý z a pomocou programu všeobecne 
n a z ý v a n é h o s p ä t n ý p r e k l a d a č . S p ä t n ý p r e k l a d a č je program, k t o r ý analyzuje spus t i t e lné 
b i n á r n e s ú b o r y a z rekonš t ruu je vysoko ú r o v ň o v ý v ý s t u p , n a p r í k l a d v podobe grafu alebo 
k ó d u v programovacom jazyku . V dnešne j dobe existuje niekoľko projektov s p ä t n ý c h 
p rek ladačov . Projekt Re tDec sa zameriava na vytvorenie open-source n á s t r o j a , k t o r ý je 
rozdelený na viacero knižníc . T a k ý t o n á v r h m á za cieľ umožniť znovupouži teľnosť jed­
no t l ivých ná s t ro jov s p ä t n é h o p rek l adača . 

Cieľom tejto p r á c e je rozšíriť podporu s p ä t n é h o prekladu v projekte Re tDec o špe­
cial izované i n š t r u k č n é sady F P U a S S E (procesorová a r c h i t e k t ú r u x86). B o l v y t v o r e n ý 
n á v r h nových rozší rení na zák lade zhodnotenia a k t u á l n e j podpory i n š t r u k č n ý c h s ád F P U 
a S S E . I n š t r u k č n á sada F P U bola v r á m c i p r á c e rozš í rená na 100% inš t rukc i í . RetDec 
už v súčasnos t i novú i m p l e m e n t á c i u podporuje. P re sadu S S E bo l v y t v o r e n ý a č ias točne 
i m p l e m e n t o v a n ý n á v r h , k t o r ý rozlišuje inš t rukc ie na s k a l á r n ě a vektorové . 

D r u h é rozší renie sa zameriava na op t ima l i zác iu s p ä t n é h o prekladu F P U registrov, k to ré 
tvor ia zásobn íkovú š t r u k t ú r u . V r á m c i p r á c e bola n a v r h n u t á nová op t ima l i zác ia , k t o r á 
transformuje p r á c u s F P U z á s o b n í k o m na p ř e u r č e n u s ú s t a v u l ineárnych rovníc . V ďalšej 
čas t i p r á c e sa zhodnot i l i rôzne a p r o x i m a č n ě m e t ó d y na r iešenie z í skaného sy s t ému . B o l 
v y k o n a n ý v ý k o n n o s t n ý experiment, k t o r ý bo l m e r a n ý na s p ä t n o m preklade stoviek sku­
t o č n ý c h b i n á r n y c h spus t i t e lných súborov . Exper iment porovnal efektivitu sku točne j im-
p l emn tác i e pre j edno t l ivé n a v h o v a n é m e t ó d y a zvol i l na jop t imá lne j š iu , k t o r á bola nás l edne 
in t eg rovaná do novej op t imal izác ie . 

Záver p r á c e popisuje testovanie i m p l e m e n t á c i e nových rozš í rení v s p ä t n o m p rek ladač i 
RetDec. V r á m c i testovania bol i p o u ž i t é t r i testovacie nás t ro j e . P r v é dva n á s t r o j e testovali 
nové rozš í renia pomocou j e d n o t k o v é h o a regresného testovania. D o j e d n o t k o v ý c h testov 
bol i p r i d a n é testy zvlášť pre k a ž d ú novo p o d p o r o v a n ú inš t rukc iu (a jej varianty). N á s t r o j 
regresných testov otestoval nové rozší renie na 822 s k u t o č n ý c h b i n á r n y c h programoch, k to ré 
bol i p re ložené pre a r c h i t e k t ú r u x86 a manipulovali F P U zásobník . N á s t r o j vyhodnot i l 
s p ä t n ý preklad pre zvolenú testovaciu sadu za úspešný. Tre t í n á s t r o j sa v r á m c i projektu 
RetDec n a z ý v a ako n o č n é testy. Tento n á s t r o j otestoval nové rozš í renia na t i s íckach reál­
nych spus t i t e lných súbo roch . Výs ledky n o č n ý c h testov zaznamenali v ý k o n n o s t n ý pokles 
s p ä t n é h o prekladu. Nové spracovanie F P U registrov je priemerne šesťkrá t poma l š i e oproti 
o r ig iná lnemu r iešeniu. Avšak t a k ý t o v ý k o n n o s t n ý pokles bo l o č a k á v a n ý a je akceptova teľný 
vzhľadom na komplexnosť novej op t imal izác ie . 
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Chapter 1 

Introduction 

Nowadays, the process of analysing malicious software is an important part of informal 
technologies. One of the essential methods is decompilat ion of malicious binary programs. 
The decompilat ion is a complex process, and there are many projects w i th such an intent. 
The project Re tDec intends to develop retargetable and flexible decompiler. The research 
proposes designs and tests new extensions for Re tDec that improve the decompilat ion of 
advanced instruct ion sets for architecture x86. The support of F P U and S S E instruction 
set t ranslat ion is extended. The new opt imizat ion for F P U register stack manipula t ion is 
designed. These extensions are tested i n te rm of decompilat ion efficiency and quality. 

The thesis, besides the general introduction, is split into eight logical Chapters. Chap­
ter 2 introduces the concept of reverse engineering. Expressly, it presents the typica l process 
of decompilat ion and explains the usual difficulties. 

The Chapter 3 discusses the project RetDec, presents its architecture, and technologies 
applied i n this decompiler ( L L V M , Capstone, Keystone, and others). 

Chapter 4 discuses the processor architecture Intel x86 supported by RetDec decom­
piler. The Chapter discusses the floating-point extensions F P U and S S E . The Chapter 
offers information that explains the problems and obstacles of this processor extension 
decompilation. 

The Chapter 5 analyse actual state and potential obstacles of Re tDec wi th the support of 
F P U and S S E instruction sets. It reviews these deficiencies in term of information obtained 
from the previous Chapter. 

The Chapter 6 proposes a new advanced F P U opt imizat ion. It presents several methods 
for solving the designed task. It also proposes better support of S S E instruct ion set for Ret­
Dec decompiler. A t last, the modifications to decompiler necessary for the implementat ion 
of the new extensions are discussed. 

The Chapter 7 reviews the final implementat ion of the proposed extensions. The Chap­
ter examines the newly proposed opt imizat ion implementat ion efficiency for various method 
of task solution, and it selects the best alternative. It also shows the result of the imple­
mentation for the advanced support of S S E instruct ion set. 

The Chapter 8 tests implemented extensions in term of efficiency and functionality. The 
Chapter introduces three testing framework and shows the results of these tests. 

Final ly , the Chapter 9 summarize the entire work and point out the proposed and actual 
results. 
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Chapter 2 

Reverse engineering 

The concepts of reverse engineering, actual and historical reasons and conditions are pre­
sented at the base of the following book [8]. 

Reverse engineering, in general, is a method of obtaining information or blueprints about 
any object created by human. The idea of reverse engineering does not associate only to 
modern computer technologies. The concept has already existed i n the era of the industr ial 
revolution. The method has been typical ly used to examine commercial ly available technical 
products. Such a product has been physically decomposed, and each part was investigated 
to figure out its purpose. The process reveals the secrets of merchandise design without 
owning the original blueprints. Retr ieved designs were commonly used to improve the 
product of the competing company. 

The reverse engineering, i n the domain of software technologies, is commonly named 
just reversing. Reversing is a fully abstract process of looking inside a computer program. 
There is not any physical object but only binary data, which are executable on a specific 
processor. Reversing requires knowledge of computers and software development processes. 

The software reversing exploitat ion is useful for a variety of different purposes, the most 
significant are security-related reversing, and software development reversing. B o t h of these 
reversing purposes has discussed in the following Chapter . Software reversing considerably 
relates w i t h a low-level layer of software architecture. Terms associated to low-level software 
describe this Chapter . A t last, the Chapter introduces the concept of automatized reversing 
of software by the special program intended for this purpose. 

2.1 Revers ing i n area of software security 

In the area of software security, the reversing is used by both malware developers and by 
those creating security measures. In the area of computer security, the typica l appl icat ion of 
reversing is to analyses of malicious software. A l so reversing of the cryptographic algorithms 
can discover implementation-dependent deficiency. Ana lys ing of proprietary software pro­
gram binaries, and searching for security vulnerabili t ies. Some of these applications are 
discussed in this Section. 

2.1.1 M a l i c i o u s software 

In the beginning, a malicious software spread was fairly slow, and the precautions were much 
simpler because the human intervention was required to infect computer device. Internet 
network expansion dramatical ly changes the security character of computer technology. 

5 



Nowadays, nearly every computer on earth is connected to this v i r tua l network. The mal i ­
cious software spreads much faster, and the protection of computer devices is considerably 
more difficult. Computer attackers use reversing to capture vulnerabili t ies of the operating 
system or some other software. The reversing allows attackers to locate sensitive informa­
t ion about users, or even to take over control of the system. O n the contrary, developers 
of antivirus software use reversing for analyzing malicious programs. T h e y monitor every 
step of the malicious program to determine the damage it could cause and to find a possible 
method of protection. 

2.1.2 R e v e r s i n g c r y p t o g r a p h i c a lgor i thms 

Cryptography is a method of preserving information by transforming it into a human un­
readable format. Protect ion of e-mails, credit cards information, or any other sensitive data 
are obtained by cryptography. [15] 

The specific method of data transformation is called a cryptographic algori thm. C r y p ­
tographic algorithms i n the manner of reversing purposes divide into two groups: key-base 
and restricted algorithms. The restricted algorithms are secret because the knowledge of 
the a lgori thm allows encryption and decryption of the message. Further, the key-based 
algorithms are typical ly public and well-known, but it uses the secret key. The secret key 
is necessary for encrypting and decrypting the message. Reversing t ry to analyses the re­
stricted algori thm. The restricted algorithms are weak protection of information because 
exposing the a lgori thm makes it unsafe. Reversing of the key-based algori thm can look 
like ineffective. However, there are cases where it makes sense. Understanding of specific 
implementation can offer some interesting security details. 

2.1.3 D i g i t a l R i g h t s M a n a g e m e n t 

In contrast w i th the past, providers of the most kinds of copyrighted materials turned their 
products into digi ta l content. The products, like books, music, films, or games, are now 
available digitally. Th is produces huge benefits for customers, but also enormous compli­
cations for providers and content owners. The dupl icat ion of digi ta l information, between 
consumers, is easy and unfortunately common practise. Commonly, the software owners 
wrap their product w i th addi t ional copy protection software. Over the years, piracy pro­
tection technologies become more advanced, and this type of software are collectively called 
Dig i t a l Rights Management ( D R M ) . D R M technologies are active protection, which decides 
about the availabil i ty of protected digi ta l media. Software pirates use reverse engineering 
techniques to defeat D R M protection. Reversing of D R M technologies allow pirates to un­
derstand the inner secrets of software protection. The i r goal is to find out how to modify 
it to disable the protection. 

2.2 Revers ing i n area of software development 

Reversing has as well great importance i n the field of software development. Developers 
use reversing techniques to analyse par t ia l ly documented or undocumented software, to 
improving competitive software, or to evaluating software quali ty and robustness. 
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2.2.1 P r o p r i e t a r y software d o c u m e n t a t i o n 

Proprie tary software documentation is almost always insufficient. Vendors of proprietary 
software can make a huge effort to provide adequate documentation. B u t customers typ­
ically encounter a problem wi th an unclear, or an undocumented solution. Developers in 
such a si tuat ion have to contact the vendor, which is a t ime-consuming solution. Differ­
ently, a developer can use reversing. Reversing can solve several of these problems wi th 
small effort. Typical ly , third-party software contains undocumented proprietary file for­
mats, or networking protocols, which has to be reversed. Consider a famous Microsoft 
W o r d document format .doc . This format is also undocumented. B u t there is a lot of 
programs, which wants to support this format. Someone had to reverse the Microsoft W o r d 
file format, to provide support of it . 

2.2.2 D e v e l o p m e n t of compet i t i ve software 

The development of a competitive product is, without a doubt, the most leading ut i l iza t ion 
of reverse engineering. Al though , software engineering industry creates considerably com­
plex products. Reversing whole software to create a competing product is almost always 
worthless. More often then not, it is effortless to create a new product from scratch or 
integrate the third-party libraries for more complex parts. Nevertheless, there are excep­
tions where the appl icat ion of reversing is reasonable. Some extremely complex algorithms 
might be reversed, because of time-saving reasons. The legal aspect of reversing competitive 
software discuss the following book (see [8], Chapter 1, Section 'Is Reversing Legal? ' ) . 

2.2.3 Software qual i ty metr ics 

Software development includes techniques and metrics that evaluate software robustness, 
security and other general qualities of source code. Such techniques require access to the 
source code of the software. The disadvantage of the proprietary software is that there is 
no access to source code for customers. The users have to trust the vendor or apply revere 
engineering. O f course, reversing w i l l never be as effective as analysing of source code itself, 
but it can be highly informative. The need for evaluating source code of cr i t ica l software 
by users is even confirmed by large companies. For example, Microsoft gives access to 
Windows sources for large customers. 

2.3 Low- leve l software 

Generally, software is composed of layered architecture (see [8]). The bo t tom layer relates 
wi th the physical hardware. Hardware control provides assembly language. Usually, the 
assembler is different for each processor architecture and specific hardware device. Above 
physical layer is low-level software layer. It consists of an operating system and development 
tools such as compilers, linkers, or debuggers. The operating system encapsulates specific 
hardware architecture dependency, and development tools encapsulate assembly language 
dependency. Today, low-level software is encapsulated by another layer. A t the top layer, 
there are some high-level languages, which greatly simplify development. 

Reverse engineering strongly relates wi th low-level software layer. The reason is that 
the low-level details about the original program are typical ly the only pieces of information 
obtainable from the executable binary program. The Section introduces key aspects of 
low-level software. 
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2.3.1 A s s e m b l y language 

Assembly language (or s imply assembler) is a family of languages. E a c h processor architec­
ture has its assembly language. A n d these languages usually significantly differ from each 
other. The knowledge of chosen architecture assembler is the necessary basis for the reverse 
engineer. 

Assembler is a representation of processor instructions i n a human-readable form. O n 
the other hand, the machine code, or binary code is a representation of processor instruc­
tions in a sequence of bits, which is more effective for the processor itself. The machine 
code and assembler are just a different representation of the same object. 

The i l lustrative example presents the translation process of assembler instruction to 
machine code. The instruction belongs to processor Intel 8086 (see [14], Chapter 12, Section 
'x86 Instruction Encoding ' ) . The process of encoding instruct ion example from Table 2.1 
includes the following steps: 

1. The unique code for instruct ion PUSH wi th 16-bit register operand is 0x50. 

2. The unique identification for register CX is 0x01. A d d i t i o n of 0x50 and 0x01 produces 
0x51. 

Assembly instruction Machine instruction 
P U S H C X 0x51 

Table 2.1: M a p p i n g assembler instruction to machine code for Intel 8086 processor. 

For the reversing purposes, the opposite (or backward) process of translat ion is important . 
A disassembler is a specific type of program that transforms the input binary executable 
program into a text file. Such a file contains assembler code equivalent to input machine 
code. It is a relatively simple process that maps binary code into assembler. 

2.3.2 C o m p i l e r s 

A s described i n Section 2.3.1, the software consists of layered architecture, where the as­
sembly language creates the bo t tom layer. High-level language is an abstraction over the 
assembly language. However, the high-level languages (for example Java, or C + + ) have 
to be transformed into machine code at the end. The reason is that machine code is the 
only language executable at the processor. The transformation performs a program called 
a compiler. The resulting machine code classifies into two categories. E i ther it is standard 
platform-dependent binary code, which is straight executable by a processor. O r it is a 
platform-independent format of code that is called bytecode. The specific program called 
a v i r tua l machine process the bytecode and executes the specific hardware functionality. 

Compilers of standard programming languages convert source code into machine code, 
which is direct ly executable at the processor (for example C or Pascal) . Dur ing the con­
version, a lot of optimizations over the machine code is applied. They increase program 
performance, but reversing of the opt imized program is considerably more challenging. The 
reconstruction of the original high-level programming constructions from the opt imized ma­
chine code is a complicated process. It is not an exception that the reconstruction is not 
achievable. 

O n the contrast, the second class of compilers transforms source code into bytecode (for 
example Java). In comparison to reversing of the standard binary code, the reversing of 
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bytecode is a completely different process. In general, it is a more straightforward process, 
because bytecode offers higher abstraction. 

2.4 D e c o m p i l a t i o n 

The process of reversing binary executable software into high-level programming language 
is called decompilat ion. The decompiler program reverses the executable binary file and 
produces high-level language code output. The Section introduces common decompiler 
architecture. It also describes the widely used techniques such as an intermediate repre­
sentation of the program and static single assignment form of code representation. F ina l ly , 
the Section discusses existing decompilers and compares them. 

2.4.1 Intermediate Representa t ions 

Section 2.3.2 introduces the concept of compilers. The result of compilat ion is machine code 
that depends on the processor architecture (see Section 2.3.1). Intermediate Representation 
(IR) provides a generic set of instruction independent from architecture but w i th the abi l i ty 
to adequately represent the reversed program. Some decompilers transform source program 
to I R and just i teratively eliminate low-level detail . Other decompilers use more IRs, 
typical ly one for low-level representation and another for higher-level representation in 
later stages. Generally, the I R contains the following instruction set: assignment, push, 
pop, cal l , ret, branch, and uncondit ional j ump (for more detai l information about typical 
IR instruction set see [8], Chapter 13.). The I R instruct ion set is considerably smaller than 
the usual assembler instruct ion set. However, I R instructions typical ly represent complex 
expressions. For the representation of such complex expressions, the decompiler uses a 
structure called an expression tree. A n expression tree effectively represents the sequence 
of ari thmetic instructions. Expression tree provides reasonably more accessible input for 
generating high-level language expression. 

Decompilers must create a Control Flow Graph (CFG) to reconstruct high-level control 
flow information from low-level IR . The C F G always represents the control flow of a single 
procedure. The reason for C F G representation is a simple transformation to high-level 
control flow constructs like loops and branches. 

2.4.2 Stat ic Single A s s i g n m e n t ( S S A ) f o r m 

S S A is a naming convention for variables in low-level program representation. P rogram 
code is in S S A form if each variable is a target of exactly one assignment statement. Th is 
lead to referential transparency, which means that for a variable w i th exactly one definition, 
the variable value is independent of its posit ion i n code. Th is knowledge is used for code 
optimizations such as data-flow analysis. For example, the dead code el iminat ion i n the 
fourth version of the G C C compiler is based on S S A intermediate representation, and an 
earlier version of the G C C compiler does not use S S A . The fourth version of the G C C 
compiler analyses around 40 % less of code lines then the equivalent optimizer pass wi th 
the th i rd version of the G C C compiler. [27] 

2.4.3 T y p i c a l D e c o m p i l e r A r c h i t e c t u r e 

The compiler is a special program, which transforms high-level programing language repre­
sentation of program into a binary executable program. O n the other hand, the decompiler 
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Compiler 

Frontend 
IR 

Midend 
optimized IR 

Backend Frontend ^ Midend ^ Backend 

High-level 
source code Decompiler 

E x e c u t a b l e -

binary 
p rogram 

1 Frontend 
optimized IR 

Midend 
IR 

Frontend Frontend Midend Frontend 

Figure 2.1: The typica l architecture of compiler i n contrast to decompiler. 

reconstructs high-level language representation from some binary program. Decompiler 
typica l architecture consists of s imilar parts as compiler architecture but in reversed order. 

The compiler frontend is a component that parses input source code. The decompiler 
frontend decodes assembler instructions into some IR . In the beginning, there is only an 
input binary executable program, which has to be parsed. Frontend also provides seman­
tic analysis because a lot of these assembly instructions hardly make sense individual ly. 
Instead, many of them create architecture-specific sequences. The output of frontend ad­
di t ional ly represents control flow. The I R creates blocks of instructions where each block 
reference to some other part of code. 

T h e midend of bo th architectures performs a set of optimizations over I R but w i t h 
opposite goals. The compiler performs a code analysis to increase the performance speed 
of the final executable program. O n the contrary, the decompiler code analysis aims to 
transform code into the more abstract form. A t this stage, the decompiler eliminates the 
hardware concepts (registers and low-level condit ional code) and converts it into the high-
level programming constructions (variables, loops, branches and others). Typ ica l ly for C F G 
analysis, the S S A notat ion is used (see Section 2.4.2). D a t a flow analysis can also provide 
information about data type propagation (e.g., the data type propagation of function return 
value). B u t before the data type propagation, the decompiler has to find out data types 
by itself. Registers often do not define data type information, but some instructions are 
data type sensitive. This information allows decompiler to scan for pr imit ive data types. 
Decompilers also reconstruct complex data types. For such purposes, decompiler applies 
various advanced code scanning techniques: 

• Cer ta in registers are analysed to find out a memory address point ing to some data 
structure. 

• The program commonly uses a hard-coded constant for manipula t ing data structure. 
Identification of such constant allows access to the analysed data structure. 

• Detect ion of an array provides identification of standard loop i teration sequence and 
others. 

Usually, the analysed program contains a lot of l ibrary functionality. Identification of such 
code is very beneficial. It provides very accurate information about data types without 
type-analysis process. 
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Final ly , the backend takes this improved I R and generates output. Separation of 
output generation brings flexibil i ty benefits. The generator produces various programing 
language output but always work wi th the same I R input . Such an approach allows an easy 
way to generate different programming language product. 

2.5 E x i s t i n g reversing tools 

The Section introduces some decompiler projects and discusses their comparison. The goal 
of this thesis is to design new extensions for Re tDec decompiler. A s a result, the comparison 
of existing decompilers relates to this reference project (RetDec is detailed i n Chapter 3). 

I D A (Interactive Disassembler) 1 is cross-platform, multi-processor disassembler and 
debugger developed by Hex-Rays company. The part of the project is also the H e x - R a y 
Decompi ler 2 . It generates human-readable C-l ike pseudocode. Currently, the supported 
input processor architectures are x86, x64, A R M 3 2 , A R M 6 4 , P o w e r P C , and PowerPC64. 
Nowadays, Hex-Rays offers one of the best decompilers on the market, but it is a paid tool , 
and because it is proprietary software, it cannot be used commercially. 

Ghidra^ is open-source reverse engineering framework developed by The Na t iona l Se­
curity Agency of the U . S . Government. The framework was released i n 2019, but it presents 
functionality comparable to the I D A project. It provides support of mult iple processor ar­
chitectures and operating systems. O n the other hand, it is a robust tool , and it does not 
allow the use of ind iv idua l framework tools separately. 

X I D A project: h t tps : / /www.hex-rays .com/products / ida/ index.shtml 
2 Hex-Ray Decompiler: h t t p s : / /www.hex-rays.com/products/decompiler/ index.shtml 
3 G h i d r a project: h t tps : / /www.nsa.gov/resources/everyone/ghidra/ 
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Chapter 3 

Retargetable Decompiler (RetDec) 

RetDec decompiler project is a set of open-source reversing tools that are chained together. 
The goal of the decompiler is to become architecture, operating system and executable file 
format independent. The Chapter introduces RetDec architecture and software technologies 
used by this framework. Figure 3.1 shows the schema of Re tDec and technologies used in 
each part of the decompiler. The core technologies used in decompiler are L L V M I R (see 
Section 3.1.1) and Capstone (see Section 3.1.2). 

Preprocessing Core Backend 

Figure 3.1: The architecture of Re tDec and software technologies used by decompiler. 

3.1 Technologies used i n decomplier 

Decompiler contains various open source technologies. The core of the decompiler design 
uses L L V M project. Capstone and Keystone libraries perform binary parsing and assembler 
generating. The Section explains details about these technologies. 

3.1.1 L L V M I R 

Low Level Virtual Machine (LLVM) I R defines common, low-level code representation. It 
is freely available under a non-restrictive license. L L V M representation uses an S S A form 
(see Section 2.4.2). L L V M code representation resembles an abstract R I S C instruct ion set 
w i th high-level information for efficient analyses. For example, language-independent type 
system, control flow graphs or typed register set in S S A form. L L V M I R representation is 
independent of source language because it uses low-level instruct ion set slightly richer than 
common assembly language. It is important to note that L L V M I R has not intended to be a 
universal compiler IR . In particular, it does not provide high-level language features such as 
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classes, inheritance or exception handling. These features could be provided only indirectly. 
It also does not guarantee type or memory safety any more than assembly language. L L V M 
is complementary to high-level v i r tua l machines such as in Self and Small ta lk. Benefits of 
L L V M are ideal for statically compiled languages like C and C + + . [20] 

The Section describes the basic concept of L L V M syntax and representation. For further 
details about L L V M syntax, see the official documentation of the project 1 , or book [22]. 
L L V M representation of the program consists of the following data structures: 

1. Module: The module is a top-level abstraction. It defines the content of an entire 
L L V M file. Natural ly, the program can consist of mult iple modules combined w i t h 
the language linker. Each module consists of a sequence of functions. It also contains 
external entities, such as global variables, external function prototypes, or definition 
of data structures. 

2. Function: The function representation is s imilar to C language syntax. There are 
function definition and a declaration signature syntax. The function declaration sig­
nature begins wi th declare keyword followed wi th the return type, name of the func­
t ion and argument list. The function name is the global identifier and always begin 
wi th @ prefix. E a c h argument consists of a data type and argument label. The argu­
ment label needs % prefix because it is a local identifier. The body of the procedure 
sets function definition, which expl ici t ly breaks the function into a sequence of basic 
blocks. 

3. Basic Block: The basic blocks form the C F G for the function. Each block begins 
w i t h a unique identifier. Such identification can be expl ic i t ly defined, or an impl ic i t 
numeral label is assigned. A block represents a sequence of instructions wi th a single 
entry point (first instruction) and a single exit point (last one). The terminat ing 
instruction changes control flow to another basic block or returns from the function. 

4. Instruction: The instructions classification split instruct ion set into several classes: 
terminator instructions, binary instructions, memory instructions, and other instruc­
tions. Terminat ing instruct ion are explained previously, together w i th the basic block 
concept. B ina ry instructions perform general operations, for example, ar i thmetic op­
erations, bitwise shifting, bitwise logical operations, etc.. Memory instructions read, 
write, or allocate memory. The remaining instructions cover mixed functionality 
(comparations, special constants, a function cal l , etc.). Typical ly , the instructions 
form a three-address code wi th two sources and one destination operand. 

The code L i s t i ng 3.1 shows possible content of L L V M I R module. This module contains 
one definition of a function wi th a globally unique label @foo . The function has two 
arguments w i th explicit type definition (a 32-bit wide integer), and return data type is also 
an integer. The model also defines one global variable @GL0BAL_VAR . The body of the 

function contains three basic blocks: °/0labelO , °/0labell , and °/0label2 . The basic blocks 
°/0labell and °/0label2 are terminat ing blocks of function, and basic block °/0labelO ends 

wi th branching instructions. The expressive abi l i ty of instructions inside the basic block is 
very similar to assembler, but besides, it expl ic i t ly defines data types and variables. Lines 
4 and 8 shows a characteristic load/store architecture. 

1 Official documentation of L L V M project: h t t p s : / / l l v m . o r g / d o c s / 
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1 @GLOBAL_VAR = g l o b a l i32 
2 define i32 <§foo(i32 7.arg0, i32 7.argl) { 
3 labelO: 

'/.flag = load i l , i 3 2 * @GLOBAL_VAR 
5 br i l '/.flag, l a b e l '/.labell, l a b e l 7.1abel2 
6 l a b e l 1 : 
7 7.x = add i32 7.arg0, 7.argl 
8 store i l f a l s e , @GLOBAL_VAR 

ret u r n i32 7.x 
10 l a b e l 2 : 
11 7.y = mul i l 7.arg0, 7.argl 
12 r e t u r n i32 7.y 
13 } 

Lis t ing 3.1: Example of L L V M I R syntax. 

3.1.2 C a p s t o n e 

Capstone is a disassembly framework for reverse engineering. It is an open-source project 
under a B S D license. The framework is compatible w i th mult iple platforms. Accord­
ing to the official documentation (see [2]), the engine supports the following hardware 
architectures: x86 (16-bit, 32-bit, 64-bit), A R M , A R M 6 4 , M I P S , P o w e r P C , Sparc, Sys-
temZ and X C o r e . Capstone has native support for the Windows operating system and 
it also supports L i n u x , O S X , i O S , A n d r o i d , B S D , and Solaris. The disassembler engine 
provides architecture-independent App l i ca t i on Programming Interface ( A P I ) . A s shown in 
Figure 3.2, Capstone disassembler is complementary to Keystone assembler project (see [3]). 
Keystone is an assembler framework, which compile assembly instructions to binary. Ret-
Dec decompiler uses Capstone l ibrary for disassembling, and Keystone l ibrary as a testing 
framework. 

Figure 3.2: Complementary reverse engineering engines Capstone and Keystone. 

3.2 Decompi ler s tructure 

The Section describes the architecture of the decompiler (for further details see [18]). The 
decompiler is structured into three main blocks. Every block consists of smaller units. 
Such a design makes the project units reusable because each unit works as the l ibrary wi th 
its interface. The three main blocks chains framework into the pipeline in the following 
sequence: 

1. Preprocessing part unifies and analyses binary files. Unified binary files and ex­
tracted metadata are input for the core block. 

Keystone 

Capstone 
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2. T h e core block creates an I R and applies dozens of analyses and optimizations. The 
optimized I R is the output of the core block. 

3. T h e backend block creates an Abstract Syntax Tree (AST). It applies optimizations 
over A S T and generates a final high-level representation. 

3.2.1 T h e preprocess ing 

The structure of the preprocessing part describes Figure 3.3. The input of the preprocessing 
phase is a set machine code files. There are a lot of different formats for different platforms. 
The File format library analyses and unifies various file formats into uniform representation. 
Currently, the l ibrary supports the following machine code formats: E L F , P E , M a c h - O , 
C O F F , A R (archive), Intel H E X , and raw machine code. 

Typical ly , the executable binary program addit ional ly includes debugging data. This 
metadata creates a relationship between source code and binary data. Such relation is 
originally created for the debugger program, but also decompiler makes use of i t . The 
Debug Format library parses this data and transforms them to debug representation used 
i n next phases of decompilat ion. The l ibrary support D W A R F and P D B format. [7] 

The compiler that creates analysed binary program might use a tool so-called packer. 
The packing of binary files is done for two ma in reasons - code compression and code 
protection. A s a consequence, the decompiler uses Unpacker library, which examines and 
identifies possible compression of the binary file. The l ibrary contains third-party tool 
Y A R A 2 . Y A R A tool helps identifies and detects binary patterns. The output of prepro­
cessing is a metadata file in J S O N format and uniform representation of machine code. 
The J S O N metadata file contains information like compiler type and version, or processor 
architecture. 

Machine code files Preprocessing 

ELF PE 
— ^ 
raw File format 

library 
Unpacker 

library 

J S O N 
metadata 

unified binary 

pdb k dwarfs Debug format 
library 

debug 
representation 

Figure 3.3: Preprocessing phase of decompilation. 

3.2.2 T h e core 

The functionality of the decompiler core illustrates Figure 3.4. The core block receives as 
an input J S O N metadata, unified and unpacked machine code, and debug representation. 
Firs t ly , the machine code is transformed into L L V M IR . The transformation process per­
forms the Decoder library. Decoder starts traversing binary data from the entry point of the 
program, and it follows the control flow of the reversed program. Capstone l ibrary maps 
the binary code into Capstone IR, which is transformed into L L V M IR. 

2 Y A R A tool: h t tps : / /yaxa . r ead thedocs . io / 
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Figure 3.4: Transformation of binary code into L L V M I R by Re tDec core. 

The ma in part of the decompiler core performs modifications over obtained L L V M IR. 
The sequence of passes modifies IR . There are two types of passes: analysis and opt imizat ion 
passes. Analysis passes do not modify IR, but they obtain addi t ional information. For 
example, analysis helps identify global variables, data types, function arguments, or return 
types of functions. The optimization passes iterate over I R and modify i t . A t last, the 
transformed L L V M I R is dissasembled. The result of this process is opt imized L L V M IR, 
which is the output of the decompiler core block. 

3.2.3 B a c k e n d 

Backend does not operate wi th L L V M I R but transforms it into special I R so-called Backend 
IR (BIR). Th is transformation is done because L L V M I R is a rather low-level representation 
similar to the assembler. O n the other hand, B I R is a high-level representation based on the 
A S T . A S T allows better reconstruction of high-level control-flow patterns like condit ional 
branches and loops. Backend restructures B I R when it identifies high-level constructs like 
if-else, for-loop, while-loop, switch, break, or continue. 

Backend performs many high-level optimizations. It removes redundant variables, re­
duces constants in ari thmetic expressions to simpler form. Backend opt imizat ion converts 
expressions to form more readable for programmers. Consider the following C source code: 

sock_id = socket(AF_INET, SOCK_STREAM, IPPR0T0_TCP) 

A s you can see, there are used constants defined i n the standard C library. The mean­
ing of this literals depends on the context. B u t the context of this literals is lost after 
disassembling. The decompiled code looks like: 

v a r _ f f f = socket(2, 1, 6) 

The optimizer searches for context literals and refactors them. Backend can generate the 
output i n the following formats: C , Cont ro l -F low G r a p h ( C F G ) , or C a l l G r a p h . [19] 
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Chapter 4 

Floating-point extensions of 
architecture Intel x86 

In the beginning the Intel x86 architecture was developed to manipulate only wi th integer 
values. The floating-point calculat ion was possible to emulate through software but w i t h a 
considerable performance penalty. A s a consequence, a separate floating-point coprocessor 
unit was introduced. Nowadays, the Floating-Point Unit (FPU) is typical ly part of the 
main processor. The Section 4.1 explains details about F P U registers and instruct ion set, 
and Section 4.2 details cal l ing conventions of function wi th floating-point values. 

Next , the architecture extends support of the floating-point calculation wi th parallel 
processing of floating-point vectors. The Section 4.3 introduces S S E extension, the instruc­
t ion set and their manipulations. 

4.1 F loat ing-point uni t x87 

The Section details F P U registers and instruct ion set according to assembly language doc­
umentation for x86 processors (see [14]). F P U does not operate wi th x86 general-purpose 
registers because it contains its own set of registers. Floating-point instructions manipulate 
wi th these registers s imilar ly to the stack data structure. 

4.1.1 F l o a t i n g - p o i n t registers 

F P U has eight 80-bit general-purpose data registers named RO through R 7 . These registers 
handling differs from manipulat ion of general-purpose data registers for integer evaluations. 
Hardware registers like E A X , E B X , E C X , etc., are direct operands of assembly instructions. 
B u t floating-point data registers forms an abstract stack data structure, and they cannot be 
accessed directly. Access to such hardware register is relative as explained i n Section 4.1.2. 
A s an addi t ion to floating-point data registers, the unit has six special-purpose registers: 

• Contro l register determines the rounding method and precision of F P U . 

• Status register contains condit ion and exception flags. A three-bit field of status 
word so-called T O P identifies the register that is currently at the top of the stack. 

• Tag register indicates the contents of data registers (valid number, zero, or special 
value like N a N , infinity, denormalized number, etc.). Register has a three-bit field for 
each data register. 
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• Opcode register contains the last executed instruction opcode. 

• Last instruction pointer register points to the last executed instruction. 

• Last data (operand) pointer register points to operands used by the last executed 
instruction (if the instruct ion has any data operand). 

4.1.2 Reg i s ter stack 

F P U loads and stores values from the register stack where it performs floating-point ari th­
metic calculations. The x87 instructions evaluate ari thmetic expressions in postfix form due 
to stack evaluation advantages of this form. Consider the following infix expression: 

A n d equivalent postix expression: 

(A + B) *C 

AB + C* 

The postfix format does not require parenthesis to override precedence rules. The transfor­
mat ion algori thm from infix to postfix form is not a subject of this thesis. 

Figure 4.1 shows the abstraction of F P U stack data manipulat ion. Stack operands are 
labelled ST(0) through ST(7) , where ST(0) label points to data register on the top of the 
stack. The value of T O P points to data register labelled ST(0) . A push (alternatively load) 
instruction decrements T O P and moves the content of operand to ST(0) register. Overr iding 
of existing data i n the stack generates a floating-point exception. Decrementation of T O P 
wi th value 0 (ST(0) points to RO) leads to underflow T O P value to 7 (ST(0) points to 
R7) . A pop (alternatively store) instruct ion moves content of ST(0) register to operand 
and increment T O P . Incrementation of T O P wi th value 7 (ST(0) points to R7) leads to 
overflow T O P value to 0 (ST(0) point to RO). 
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Figure 4.1: F P U data register stack abstraction. [14] 
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4.1.3 F P U ins truct ions 

The floating-point instruct ion operands allow only one addressing mode. Operands are 
always in general-purpose data registers. A n instruction can inherently manipulate w i th 
register stack ( implici t push, or store). The set of floating-point instructions contains the 
following basic instructions categories: 

• Basic ari thmetic instructions. 

• Constant loading instructions. 

• D a t a transfer instructions. 

• Exponent ia l , logari thmic and trigonometric instructions. 

• D a t a comparsion instructions. 

• F P U control instructions. 

4.2 F loat ing-point conventions for ca l l ing functions 

The procedure, alternatively function, or subroutine is a fundamental abstraction for general-
purpose procedural programming languages. The program is divided into various parts, and 
such part of code could be used several times. The procedure abstraction eliminates rep­
etitions of program code segments and allows their reusability. A n execution of program 
subroutine is known as a procedure cal l . The Section explains details about procedures 
wi th the floating-point interface and their cal l ing conventions. 

4.2.1 S t a n d a r d i z a t i o n of p r o c e d u r e calls 

In past, procedure cal l ing interface differed for every operating system or compiler. It 
led to compat ibi l i ty problems. Nowadays, there is an effort on the standardization of 
the procedure cal l ing interface. The cal l ing conventions determine the following low-level 
details: 

• For interaction between caller (calling program) and callee (a subroutine), the pro­
gram reserves specific hardware registers. 

• The system of arguments transfer between calle and caller. Arguments are typical ly 
passed wi th in registers, on the stack or i n shared memory. 

• Cal ler has to pass arguments i n the right order. Typical ly , arguments are passed from 
the first to the last or i n the reversed order. 

• Arguments could be passed by value or by reference. 

• The result of procedure execution (return value) has to be passed to the callee. 

• The method of stack pointer restoration after the procedure execution. 
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Architecture Cal l ing convention Passing registers 
cdecl 

16 bit 
pascal 
fast ca l l 

A X 

watcom Inconclusive. 
cdecl 

stdcall 

32 bit 
pascal 
fastcall 
thiscal l 

ST(0) 

watcom Inconclusive. 

64 bit 
Windows 

S S E registers 64 bit 
L inux , B S D , M a c O S 

S S E registers 

Table 4.1: Usage of registers for passing floating-point values across cal l ing conventions for 
x86 architecture. 

4.2.2 A r c h i t e c t u r e x86 ca l l ing convent ions 

Architecture x86 has three modes: 16-bit, 32-bit, and 64-bit mode. The bit-wide of mode 
specifies wide of registers, memory address, etc. i n bits. The 16-bit and 32-bit mode have 
usually cal l ing conventions independent on operating systems. Instead of the operating 
system, the cal l ing convention is defined by the compiler. The thesis assumes Microsoft, 
Bor land , Wa tcom and G n u compilers brands. O n the other hand, the 64-bit mode has a 
default cal l ing convention for each operating system, while other cal l ing conventions are 
rare i n 64-bit mode. The thesis considers cal l ing conventions for Windows, L inux , B S D , 
U n i x and M a c O S X operating system. [9] 

For 16-bit mode, there is cal l ing conventions so-called cdecl, pascal, fastcall and wat­
com. Wa tcom is inconclusive because the method of registers usage depends on options 
in effect. A l l others cal l ing conventions do not return floating-point value in ST(0) . The 
called function is expected to allocate space for value i n memory and write the return value 
to this address. The address where is the result stored is passed i n A X register. [5] 

System V (see [30]) appl icat ion binary interface for a 32-bit mode of x86 architecture 
defines the usage of floating-point stack registers. In case that procedure returns a floating­
point value, then the value is stored i n ST(0) register. It does not matter if the floating­
point value is in the representation of single or double precision. If the procedure does not 
return floating-point value, then register ST(0) must be empty. Also , register ST(0) must 
be empty before every procedure cal l . Registers ST(1) through ST(7) are unused i n the 
standard cal l ing sequence of the procedure w i t h floating-point arguments or return value. 
The standard defines that these registers must be empty before and upon every procedure 
cal l . Most used cal l ing conventions for architecture x86 in 32-bit mode are cdecl, stdcall, 
pascal, fastcall, thiscall and watcom. System V standard follows a l l of these conventions 
except watcom. Wa tcom same like i n 16-bit mode is inconclusive. 

A s described i n Section 4.3, the x86 platform over t ime introduced extensions the 
Streaming S I M D Extensions (SSE) . S S E adds new instructions and registers, which also 
manipulates floating-point values. System V for the 64-bit mode of architecture x86 
defines that function wi th floating-point arguments, or return value does not pass these 
values through F P U registers (see [10]). Preferably, it uses S S E registers. The convention 
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is followed i n L inux , B S D , U n i x , and M a c O S X operating system. The Windows operat­
ing system uses different conventions then System V . Nevertheless, the Microsoft function 
call ing convention wi th floating-point values also uses only S S E registers, and it does not 
specify any convention for F P U registers. [25] 

The x86 architecture function cal l ing conventions are summarized i n Table 4.1. 

4.3 S t reaming S I M D Extensions (SSE) 

Over the years, the architecture x86 includes mult iple extensions, which operate i n mode 
commonly called the Single Instruction Multiple Data (SIMD). These technologies have 
dedicated to the parallel processing of data. The first extension was M M X , and it created 
support of basic S I M D processing for the integer ari thmetic. The successor of M M X is 
the Streaming SIMD Extension (SSE), which is a set of the hardware improvements. S S E 
regularly increases the C P U abi l i ty of S I M D processing. It increases integer ari thmetic w i th 
new registers and instructions, and it extends processor w i th floating-point S I M D facilities. 

Eventually, S S E mult iple t ime upgrades hardware facilities and functionality. The orig­
inal S S E gradually evolves to SSE2 , SSE3 , SSE4, A V X (Advanced Vector Extensions), 
A V X 2 , and A V X - 5 1 2 . However, this research discusses the general aspects of this hardware 
extension, and it uses the general label S S E . W h e n the specific version of S S E has discussed, 
the version name is used. 

Fol lowing Subsections details S S E , and also explains the standard of compilers buil t-
in functions. The S I M D technology details are obtained from the publ icat ion of the x86 
assembler programming guide (for further details see [17]). 

4.3.1 Idea of S I M D process ing 

This Subsection introduces the general concept of S I M D technology. The hardware unit 
allows executing the same operation on the collection of the data elements at the same 
time. Typical ly , the performed operations are basic ari thmetic computat ion, for instance, 
subtraction, addit ion, mul t ip l ica t ion, division, bitwise operations, and conversion. Such 
parallelism achieves specific interpretation of the register, or memory location content. 

To illustrate considers Figure 4.2 that shows 32-bit wid th register intended to integer 
data processing. The register can hold the single 32-bit integer value, but S I M D allows 
to reinterpret it as two 16-bit integers, or four 8-bit integers. The processor handles each 
subsequence of register separately, but simultaneously. The hardware supports the usual 
service of data processing for each bit pattern individual ly , for example, integer overflow, 
underflow, rounding, and others. 

The effectivity of S I M D strongly depends on the compiler. The compiler must correctly 
detect and splits the program data that can process simultaneously. The Intel provides 
documentation for the developers of the compilers that allows them to optimize the effi­
ciency of the resulting program binary. The documentat ion also contains a guide for the 
Intel bui l t - in functions, as closely explained i n Section 4.3.4. 

4.3.2 S S E register set a n d d a t a types 

S S E extends the 32-bit architecture of x86 wi th eight general-purpose registers, which are 
128-bit wid th . The 64-bit architecture appends another eight registers. They are labelled 
XMMO through XMM15 . These registers allow carrying floating-point values. The original 
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0x33 OxlE 0x2F OxlF 

Figure 4.2: S I M D processing demonstration for integers addi t ion w i t h 32-bit wid th regis­
ters. [17] 

S S E supports single-precision, but SSE2 starts support ing double-precision floating-point 
data. A s a contrast to F P U , S S E uses direct addressing of registers. S S E does not operate 
w i t h register as a stack structure (see Section 4.1.2). 

S S E supports various integer and floating-point data types. These data types create 
two categories: 

• Scalar data types: The XMM register or memory locat ion holds 32-bit (single-
precision), or 64-bit (double-precision) floating-point value. A s mentioned before, 
the XMM register is 128-bit wid th , but S S E supports maximal ly 64-bit wid th floating­
point data types. Suppose that S S E performs some double-precision floating-point 
scalar operation and saves the result value into specific XMM registers. In such a case, 
S S E saves the result value into lower 64-bits of a destination XMM register, while the 
rest of the register content stay untouched. 

• Packed data types: The register or memory location holds four 32-bit or two 64-bit 
floating-point values. A l so , it can hold integers w i th various bit length: 16 bytes, 8 
words, 4 doublewords, or 2 quad word integer values. 

4.3.3 Ins t ruc t ion set 

A s detailed in Section 4.3.2, S S E support two categories of data types. In consequence, also 
S S E instruct ion set split instructions into these two categories: instructions w i t h scalar, or 
packed operands. S S E floating-point instruction has typical ly four modes: 

• Scalar Single-precision mode wi th instruct ion suffix SS . 
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Compi ler Bui l t - in A D D P S 
G C C v4sf builtin_ia32_addps(v4sf, v4sf) 
C l a n g v4sf builtin_ia32_addps(v4sf, v4sf) 

Microsoft V S ml28 mm add ps( ml28, ml28) 
Intel __ml28 _mm_add_ps(__ml28 a, __ml28 b) 

Table 4.2: The example of the bui l t - in function for the assembly instruct ion that performs 
vector addi t ion of four float operands. 

• Packed Single-precision mode wi th instruction suffix PS . 

• Scalar Double-precision mode wi th instruct ion suffix SD . 

• Packed Double-precision mode wi th instruction suffix PD . 

S S E support following basic functionality for floating-point data (always in packed and 
scalar version): data transfer, ar i thmetical and logical operations, and data type conver­
sions. For packed mode only, it allows data shuffle, data unpack or element insertion. 

S S E supports only packed processing of integer operands. The integer processing in­
structions offer almost the same functionality, as for packed floating-point operands, but 
each instructions differs four modes (byte, word, doubleword, and quadword). A t last, S S E 
supports text string processing. It performs string compares, and string length calculation. 
It can accelerate a pattern search and replaces algori thm. For full information about a l l 
instructions read Intel Software Developer M a n u a l (see [1]). 

4.3.4 C o m p i l e r s b u i l t - i n funct ions 

Compilers bui l t - in functions (also known as intrinsic functions) are C / C + + functions that 
allow call ing assembler instruct ion in the high-level programming language. B u i l t - i n func­
tions are equivalent to the inline assembler. However, the bui l t - in functions offer benefits 
of high-level programming: better code readability, or advantages of debugging. In general, 
the developers use these functions when they need some very low-level assembly function­
ality. In the case of the architecture x86, the bui l t - in functions offer instructions related to 
M M X , S S E or A V X . Typical ly , these instructions work w i t h vector operands. [1] 

The method of use bui l t - in functions i n the program source depends on the compiler. 
The G C C compiler offers bui l t - in functions for architecture x86 wi th 32-bit mode and 64-bit 
mode (see [28]). C l a n g compiler offers very similar bui l t - in functions wi th the same syntax 
(see [29]). O n the contrary, the Microsoft V i s u a l Studio defines their bui l t - in functions wi th 
different syntax (see [26]). The Microsft includes a definition of the x86 bui l t - in functions in 
header <intrin . h > . However, the Intel defines manufacturer-specific bui l t - in functions in 
header <immintrin. h> . The Intel also offers a detailed guide 1 for compiler developers that 
describes the semantic meaning of these bui l t - in function. These Intel bui l t - in functions are 
most general equivalent because of their definition shares between a l l common compilers. 
Table 4.2 il lustrate the example of the bui l t - in function for the assembly instruct ion that 
performs vector addit ion. 

1 T h e Intel Intrinsics Guide: h t t p s : / / s o f t w a r e . i n t e l . c o m / s i t e s / l a n d i n g p a g e / I n t r i n s i c s G u i d e 
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Chapter 5 

Review of RetDec deficiencies 

The chapter reviews the design and implementat ion details of Re tDec core. The chapter 
analysis the flaws and deficiencies of the current Re tDec core design. The process of trans­
lat ion Capstone I R into L L V M I R is introduced, and specific problems and restrictions wi th 
the translat ion of F P U instruct ion set are presented. 

5.1 Decoder of Capstone into L L V M I R 

The section generally explains the model of Re tDec for the mapping of disassembled in­
structions into L L V M IR . The section demonstrates Decoder l ibrary (briefly introduced in 
Section 3.2.2) that controls this process. The possible modes of translat ion and reasons for 
such a design are presented. [23] 

5.1.1 T r a n s l a t i o n modes 

RetDec decompiler does not a im to entirely translate the semantic meaning of the disas­
sembled machine code. The goal of the decompiler is to generate easy and understandable 
C / C + + output. Such output can be effectively analysed by a reverse engineer. Decoder 
l ibrary performs mapping of assembly instructions in four modes: 

1. F u l l t r a n s l a t i o n m o d e : Instructions are simple enough to capture their full seman­
tics w i th a sequence of L L V M IR . This mode captures mostly the core instruct ion set 
(basic ari thmetic and data transfer instructions). 

2. P s e u d o a s s e m b l y f u n c t i o n s : Some instructions cannot be represented through 
L L V M I R sequence. For example, instruct ion FWAIT checks for pending floating-point 
exceptions. L i b r a r y represents instruct ion like a self-explanatory pseudo function 
@ asm_fwai t ( ) . 

3. P a r t i a l t r a n s l a t i o n m o d e : Some assembler instructions are too complex i n L L V M 
IR representation. A s an example, consider instruct ion FXSAVE [addr] , which saves 
the state of F P U , M M X , S S E units, and their registers to 512-bytes i n memory to 
address addr . Ent i re ly mapped instruct ion produces dozens of L L V M instructions. 
O n the contrary, par t ia l conversion mode produces pseudo assembly function as de­
scribed previously. B u t this mode also expl ic i t ly informs about storing 512-bytes to 
memory. 
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Public interface Capstone2LlvmlrTranslator 

LLVM related methods 

Capstone related methods 

Translation methods 

Configuration methods 

TranslatorPowerpc 

Powerpc specific methods 

TranslatorMips 

Mips specific methods 

TranslatorArm 

Arm specific methods 

TranslatorArm 64 

Arm64 specific methods 

TranslatorX86 

X86 specific methods 

Translate) M m pi 

Common translator 
data members 

Common translator  
methods implementation 

TranslatorPowerpcjmpI TranslatorMipsjmpI TranslatorArmjmpI Tran sl ator Arm 64_i m p 1 TranslatorX86_impl 

Powerpc specific data members Mips specific data members Arm specific data members Arm64 specific data members X86 specific data members 

Powerpc methods implementation Mips methods implementation Arm methods implementation Arm64 methods implementation X86 methods implementation 

Private implementation 

Figure 5.1: Class diagram of the decoder l ibrary (Capstone2LlvmIr [23]) implementat ion 
in Re tDec core. 

4. Ignore instruction: Instruction FNOP performs no F P U operation. The occurrence 
of this instruct ion i n C output is unnecessary, and decompiler skips it. 

RetDec project is developed mainly for decompilat ion purposes. For some other use-
cases, where full semantic meaning is needful, there are other projects like Q E M U 1 or 
M c S e m a 2 , which allow better alternative i n such situations. 

5.1.2 D e c o d e r l i b r a r y s tructure 

A s mentioned i n Section 3.2.2, the first unit of Re tDec core is Decoder library, which 
transforms Capstone I R into L L V M IR . The l ibrary design illustrates the class diagram in 
Figure 5.1. The l ibrary encapsulates design into two parts: 

• Publ ic interface: The l ibrary provides public headers without data members and 
implementation. 

• Private implementation: The implementat ion of the decoder (source code and 
hidden headers) is hidden for the l ibrary users. 

Also , the design divides library, by inheritance, into the two types of modules. Such l ibrary 
design allows simple and flexible expandabil i ty by another processor architectures. 

• Generic translator: Modu le w i th common translat ion interface and implementat ion 
that is independent from processor architecture. It includes L L V M , Capstone, general 
translation and configuration related methods and data members (Translator_impl, 
see Figure 5.1). 

1 Q E M U project: https://www.qemu.org/ 
"McSema project: h t t p s : / / g i t h u b . c o m / l i f t i n g - b i t s / m c s e m a 
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• Processor architecture-specific translator: It includes ind iv idua l modules for 
each supported processor architecture by a decompiler. For example, there are spe­
cific modules for A R M , M I P S , or x86 architecture TranslatorArm_impl, Transla-
torMips_impl, TranslatorX86_impl, see Figure 5.1). 

5.1.3 T r a n s l a t i o n process 

The translation process of Capstone I R into L L V M I R work s imilar ly for each specific pro­
cessor architecture module of the decoder library. The Section demonstrates the translat ion 
process of two x86 instructions: sub eax, ebx and je 0x1000. 

In the first place, decoder creates the instance of the translator module for x86 archi­
tecture. The constructor of decoder instantiat ion accepts an empty L L V M I R module. It 
initializes a Capstone engine and other internal structures. L L V M I R module initializes 
w i th the architecture-dependent environment: 

• The specific global variables have been created. They represent concrete hardware 
registers. L i s t ing 5.1 shows an example of generated global variables. Some registers 
have internally divided into bit sequences wi th special meaning. Such special bit is 
commonly called a flag. A typica l example represents the E F L A G register (see [14], 
Chapter 2). This register consists of flags that crucial ly control the operation of the 
processor. Due to the importance of these bits, the equivalent global variables in 
L L V M I R are generated. 

1 @_asm_program_counter = i n t e r n a l g l o b a l i64 0 
2 @eax = i n t e r n a l g l o b a l i32 0 
3 @ebx = i n t e r n a l g l o b a l i32 0 
4 ; . . . 
5 @st0 = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
6 O s t l = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
7 ; ... 
8 @cf = i n t e r n a l g l o b a l i l f a l s e ; The Carry f l a g (CF) 
9 @pf = i n t e r n a l g l o b a l i l f a l s e ; The P a r i t y f l a g (PF) 

10 @ac = i n t e r n a l g l o b a l i l f a l s e ; The A u x i l i a r y Carry f l a g (AC) 
11 <§zf = i n t e r n a l g l o b a l i l f a l s e ; The Zero f l a g (ZF) 
12 @sf = i n t e r n a l g l o b a l i l f a l s e ; The Sign f l a g (SF) 
13 Oof = i n t e r n a l g l o b a l i l f a l s e ; The Overflow f l a g (OF) 
Lis t ing 5.1: Example of the specific architecture-dependent global variables. 

Special attention belongs to the global variable @_asm_program_counter . The global 
variable value is updated at the beginning of each translated assembly instruction. 
It stores integer value that denotes an address of the current reversed assembler 
instruction i n the program. Every sequence of L L V M I R that represents one assembly 
instruction begins wi th such a store operation. For example, instruct ion at address 
1234 begins wi th the following store operation: 

store v o l a t i l e i64 1234, i64* @_asm_program_counter 

• Except for architecture-specific global variables, the module also generates the control 
flow pseudo functions (see L i s t i ng 5.2). These pseudo functions represent control 
flow operation: function cal l , return from the function, branching, and condit ional 
branching. Natural ly , L L V M I R provides bui ld- in instructions for such functionality. 
B u t this stage of decompilat ion cannot use them, because they accept targets only 
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in the form of a label. However, the labels reconstruction is subject of advanced 
opt imizat ion at later stages of decompilat ion. Currently, the l ibrary has only integer 
address of destination targets. 

1 ; address i s 64-bit integer because of 64-bit a r c h i t e c t u r e 
2 declare v o i d @ pseudo_call(i64 °/,addr) 
3 declare v o i d @ pseudo_return(i64 °/,addr) 
4 declare v o i d @ pseudo_branch(i64 °/,addr) 
5 declare v o i d @ pseudo_cond_branch(il '/.condition, i64 °/,addr) 

Lis t ing 5.2: Example of the specific architecture-dependent (x86-64) control flow pseudo 
functions. 

• A module defines an architecture-specific data layout s tr ing that determines the format 
of stored data i n memory. A s an example, the data layout string specifies i f the data 
lays out i n big-endian, or l i t t le-endian form. It specifies the size of the memory address 
pointer, or it defines an alignment of various integer and floating-point types. 

• A t last, it specifies ind iv idua l settings intended for part icular processor functionality. 
For instance, the pseudo functions that manipulate F P U stack (see Section 5.2.1). 

After module ini t ia l izat ion, the translator traverses over binary data and transforms 
them. P u t simplistically, the Decoder processes part icular binary data of specific size and 
at the exact address and the result of transformation places at the relevant posi t ion in 
L L V M I R module. The transformation process utilizes Capstone engine. To illustrate, 
Capstone receives the binary data 29 d8 (hexadecimal represention) of size 2 bytes at 
address 0x1000 . The l ibrary performs the following steps: 

1. Capstone disassembles 29 d8 into sub eax, ebx . Bu t , disassembler offers much 
more metadata about reversed instruction than just textual assembler representation. 
In particular, it provides detail information about operands like which processor sup­
port ing units are active for this instruction (e.g. S S E , A V X ) , or general info about 
reading and wri t ing into registers. 

2. Each Capstone instruct ion has a unique I D . The module defines the mapping for each 
Capstone I D into specific translat ion routine. The module executes the corresponding 
routine that implements L L V M I R template for the given Capstone IR . Capstone I D 
is mapped into one of the three types of translation routine: 

a) M a p p i n g one I D into one specific routine. In case of similar instructions, the 
more IDs have mapped into one routine. Such routine implements full , or par t ia l 
semantic meaning of assembler instruction. 

b) M a p p i n g Capstone ID into part icular pseudo assembly generation routine. These 
type of routine generates pseudo assembly function cal l , but w i th addi t ional 
information about instruct ion data flow. 

c) The last possibil i ty is that there is no specific service routine for Capstone I D . In 
such a situation, the translator executes universal routine that generates pseudo 
assembly function cal l . 

3. After execution of the selected translat ion routines, the two representative assembly 
instructions would transform into L L V M I R sequence i n L i s t ing 5.3. 

27 



; sub eax, ebx 
store v o l a t i l e i64 4096, i 6 4 * @_asm_program_counter 
7.0 = load i 3 2 , i 3 2 * @eax 
7.1 = load i 3 2 , i 3 2 * Oebx 
7.2 = sub i32 7.0, 7.1 ; eax - ebx 
7.3 = and i32 7.0, 15 
7.4 = and i32 7.1, 15 
7.5 = sub i32 7.3, 7.4 
7.6 = icmp ugt i32 7.5, 15 
7.7 = icmp u l t i32 7.0,7.1 
7.8 = xor i32 7.0, 7.1 
7.9 = xor i32 7.0, 7.2 
7.10 = and i32 7.8, 7.9 
7.11 = icmp s i t i32 7.10, 0 
store i l 7.6, i l * @az 
store i l 7.7, i l * @cf 
store i l 7.11, i l * @of 
7.12 = icmp eq i32 7.2, 0 
store i l 7.12, i l * @zf 
7.13 = icmp s i t i32 7.2, 0 
store i l 7.13, i l * @sf 
7.14 = trunc i32 7.2 to i 8 
7.15 = c a l l i 8 <§llvm.ctpop.i8(i8 7.14) 
7.16 = and i 8 7.15, 1 
7.17 = icmp eq i 8 7.16, 0 
store i l 7.17, i l * @pf 
store i32 7.2, i 3 2 * @eax 

; j e 0x1000 
store v o l a t i l e i64 4096, i 6 4 * @_asm_program_counter 
7.0 = load i l , i l * @zf 
c a l l v o i d @__pseudo_cond_branch(il 7.0, i32 4096) ; 32-bit target addresS 

Lis t ing 5.3: Result of translation. 

The resulting L L V M I R sequence for the subtraction instruct ion describes the full se­
mantic of equal assembly instruction. The subtraction itself represents lines 4 to 6 (see 
L i s t ing 5.3), but the rest of the I R sequence describes evaluating of flags i n E F L A G reg­
ister. The second translated instruction is a condit ional j ump (or branching instruction). 
A s described earlier, the control flow pseudo function was generated instead of L L V M I R 
bui ld- in branching instruction. The simple generation branch to target address 0x1000 
(or 4096 in decimal format, which is used in L i s t i ng 5.3, line 33) instead of a part icular 
label does not require the expertise of the entire module context. Designed Decoder l ibrary 
translates without control flow context, which is much more straightforward and effective 
i n this stage of the reversing process. 

5.1.4 A d v a n c e d i n s t r u c t i o n sets of x86 archi tec ture 

A s shown i n Figure 5.1, there is support for x86 architecture i n Capstone into L L V M 
IR decoder. Decoder of x86 module supports entire architecture instruction set w i th a l l 
specialized extensions. However, the decoder translates most of the advanced instruction 
sets (like F P U , S S E , M M X , or A V X instruct ion sets) into pseudo assembly functions. In 
other words, there are not service routines for the majori ty of x86 extension units. It is 
important to note that we cannot evaluate such translat ion support as a huge decompiler 
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data 

code 

floatO REAL8 0.0 
f l o a t 1 REAL8 1.0 
f l o a t 2 REAL8 3.1415 

FADD ST(0), ST(1) 
FLD f l o a t 2 
FADD ST(0), ST(1) 

FLD f l o a t O 
FLD f l o a t l 

ST(0) = R7 
ST(0) = R6, ST(1) = R7 
ST(0) + ST(1) == R6 + R7 
ST(0) = R5, ST(1) = R6, ST(2) = R7 
ST(0) + ST(1) == R5 + R6 

Lis t ing 5.4 Example of x87 assembler F P U stack usage. 

deficiency. The x86 processor family is C I S C assembly architecture, which means that the 
majority of instructions provides a very specific functionality, and they are rarely used in 
general. Yet , larger support of par t ia l (or even full) semantic translation of these extensive 
instruction sets is beneficial. 

The goal of this research is to extend support of advanced instruction, especially for F P U 
and S S E units. Currently, the decoder supports 6 5 % of F P U instruct ion set and 2 0 % of 
S S E instruct ion set. A n instruction is marked as a supported when there is a service routine 
that implements it , and also there is at least one unit test for this instruction. The extension 
aims to add full support of F P U instruct ion set and S S E floating-point instructions. F u l l 
semantic description of packed S S E instructions (see Section 4.3.3) is beyond the facility 
of L L V M IR. S t i l l , this thesis investigates the possible improvements of scalar instruction 
representation. 

5.2 L L V M I R o p t i m i z a t i o n for F P U ins t ruc t ion set 

A s described earlier (see Section 4.1.2), F P U instructions manipulate operands through the 
register stack. Such relative indexing of data registers leads to the problems wi th mapping 
of disassembled instructions to L L V M I R semantic model . The section describes currently 
implemented opt imizat ion that tries to solve this problem. A t last, the section analyses 
defects and potential disadvantages of the current implementation. 

5.2.1 Semant i c m o d e l of F P U i n s t r u c t i o n set 

Straightforward mapping of F P U instruct ion wi th register operands into L L V M I R sequence 
template is not possible, therefore correct mapping requires more advanced analysis. To 
illustrate, let us consider the assembler code in L i s t i ng 5.4. A n instruct ion at line 8 manip­
ulates w i t h registers labelled as ST(0) and ST(1) . These labels refer to concrete hardware 
data registers (let us assume that they are R 6 and R 7 ) . Fol lowing instruction, at line 9, 
loads constant to F P U register stack and decrements the value of an actual stack top. A s 
a result, labels ST(0) and ST(1) now refer to different data registers than before. A t last, 
an instruct ion at line 10 is syntactically identical to instruct ion at line 8, but this time 
they refer to different hardware registers (R5 and R 6 ) . This leads to a problem because, 
without the stack top context, disassembled code represents different registers w i t h equal 
labels. Therefore, Re tDec semantic model cannot represent shown assembler instruction at 
line 10 as L L V M I R sequence i n L i s t i ng 5.5. 
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1 @stO = i n t e r n a l g l o b a l x86_fp80 
2 O s t l = i n t e r n a l g l o b a l x86_fp80 
3 ; . . . 
4 ; FADD ST(0), ST(1) 
5 y.opO = load x86_fp80, x86_fp80* @st0 
6 y.opl = load x86_fp80, x86_fp80* @stl 
7 '/.res = fmul x86_fp80 7.op0, 7.opl 
8 store x86_fp80 ties, x86_fp80* OstO 

Lis t ing 5.5: Incorrect L L V M I R of instruction FADD ST(0), ST(1) . 

1 @fpu_stat_TOP = i n t e r n a l g l o b a l i 3 0 
2 ; ... 
3 ; FADD ST(0), ST(1) 
4 7.0 = load i 3 , i 3 * Ofpu_stat_TOP 
5 7.1 = add i 3 7.0, 1 
6 7.2 = c a l l x86_fp80 <§_pseudox87DataLoad(i3 7.0) 
7 7.3 = c a l l x86_fp80 @_pseudox87DataLoad(i3 7.1) 
8 7.4 = fmul x86_fp80 7.2, 7.3 
9 c a l l v o i d @_pseudox87DataStore(i3 7.1, x86_fp80 7.4) 

Lis t ing 5.6: Correct L L V M I R of instruct ion FADD ST(0), ST(1) . 

To represent correct F P U registers, load/store instructions have to contain information 
about F P U stack top. Decoder library, which maps Capstone I R into L L V M IR, translates 
these instructions into pseudo functions s imilar ly to control-flow pseudo functions (as de­
scribed in Section 5.1.3). Decompiler has metadata about these pseudo functions and passes 
them into later analyses. The core of Re tDec contains dozens of optimizations passes (see 
Section 3.2.2). One of them reconstructs F P U stack context for each function. It replaces 
pseudo functions cal l for load/store instruct ion wi th part icular F P U registers. The decoder 
generates four pseudo functions: 

• The pseudo function stores float value into F P U register denoted by TOP value: 
void @_pseudox87DataStore(i3 °/0T0P, x86_fp80 %ST) 

• The function stores tag value (see Section 4.1) of F P U register denoted by TOP value: 
void @_pseudox87TagStore(i3 %T0P, i2 %TAG) 

• The pseudo function returns the float value of the register from F P U stack wi th po­
sit ion TOP: x86_fp80 @_pseudox87DataLoad(i3 %T0P) 

• The pseudo function returns the value of the tag register adequate to F P U register 
denoted by the TOP: i2 @_pseudox87TagLoad(i3 %T0P) 

5.2.2 T h e current state of F P U stack o p t i m i z a t i o n 

A s explained i n Section 5.2.1, the decompiler core opt imizat ion contain the a l l necessary 
data to restores F P U physical register operands. The problem is that existing implemen­
tat ion maps pseudo functions straight to instructions for each reversed function without 
knowledge about function control flow. The current opt imizat ion assumes that F P U stack 

30 



FUNCTION 

Input state of 
the FPU 

stack B: 

FPU.push() 

D: 

FPU.pop() 

Output state 
of the FPU 

stack 

Figure 5.2: I l lustrat ion of the incorrect manipula t ion wi th F P U stack value. 

is empty at the beginning of every function. The opt imizat ion performs one sequential 
traverse over instructions and tracks F P U stack posit ion. E a c h occurrence of a pseudo 
function replaces wi th the calculated value. A potential error of such solution demonstrates 
Figure 5.2, which presents the control flow between basic blocks i n some function. The basic 
block B pushes the value to F P U stack, and block C pops a value from the stack. However, 
these two basic blocks form alternative branches. The control flow always visits only one 
of these blocks. A s a consequence, the stack state at the exit block is nondeterministic. 
However, the sequential pass through basic blocks ignores control flow dependency. A s a 
result, such an algori thm does not detect this type of error. 
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Chapter 6 

Proposed extensions of RetDec 

The chapter proposes extension for Re tDec support of architecture x86 advanced instruct ion 
sets ( F P U and S S E ) . Section 6.1 introduces the idea of S S E translation extension i n the 
manner of vector and scalar floating-point instructions. Section 6.2 outlines advanced F P U 
instruction set opt imizat ion that reconstructs register stack. 

6.1 T h e x86 decoder extends of the advaced ins t ruc t ion set. 

A s described in Section 5.1, Re tDec core contains the l ibrary that decodes Capstone into 
L L V M IR . A s mentioned i n Section 5.1.4, the decoder offers many upgrade opportunities 
for the advanced instruct ion sets of the architecture x86. This section proposes semantic of 
the floating-point related instruction wi th in S S E . 

6.1.1 S S E extens ion 

Section 5.1.1 describes the d i lemma of semantic complexity for some advanced instructions. 
The decompiler tries to simplify the description of the instruct ion hardware behaviour. 
A s explained i n Section 4.3, S S E allows manipulat ing the single register operand as a 
vector of the values. For example, consider a simple vector addi t ion of two registers, as 
i l lustrated in Figure 4.2. Such a simple hardware operation is nontr iv ia l for the software 
emulation. Section 4.3.4 explains bui l t - in functions that are equivalent to the C inline 
assembler. The proposed extension translates S S E vector instructions into the cal l of the 
bui l t - in functions. O n the contrary, the scalar instructions can translate w i th a full semantic 
meaning. Figure 6.1 illustrates both variants of instruction translation. The vector addi t ion 
of floats (instruction ADDPS ) translates into the bui l t - in function (see line 4). 

1 ;; ADDPS 
2 7.0 = load i l 2 8 , i l 2 8 * @xmmO 
3 7.1 = load i l 2 8 , i l 2 8 * Oxmml 

7.2 = c a l l i l 2 8 <§_mm_add_ps(il28 7.0, 
1128 7.1) 

5 store i l 2 8 7.2, i l 2 8 * OxmmO 

1 ;; ADDSS 
2 7.0 = load f l o a t * , f l o a t * * @xmm0_f3 
3 7.1 = load f l o a t , f l o a t * 7.0 

7.2 = load f l o a t * , f l o a t * * <§xmml_f3 
5 7.3 = load f l o a t , f l o a t * 7.2 

7.4 = fadd f l o a t 7.1, 7.3 
store f l o a t 7.4, f l o a t * 7.0 

Figure 6.1: The example of translation S S E floating-point addi t ion for packed and scalar 
instruction. 
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O n the other side, the scalar float addi t ion (instruction ADDSS in Figure 6.1) does not 
use a bui l t - in function. The instruction uses lower 32-bits of two S S E registers. However, 
extracting of these register subsequences for each instruction ca l l is inefficient, considering 
a large number of this specific instruct ion occurrence in the program. This problem par­
t ia l ly solves the following decompiler extension proposal (see [16]). The proposed extension 
generates global views to specific subsequences of S S E registers. L i s t ing 6.1 illustrates the 
example of such views. The advantage of these register views is that the decoder generates 
al l of them at the beginning of translation. Next , the specific translated instructions use 
them as operands. 

1 @xmmO = i n t e r n a l g l o b a l i l 2 8 0; r e g i s t e r XMMO 
2 @xmml = i n t e r n a l g l o b a l i l 2 8 0; r e g i s t e r XMM1 
3 @xmm0_f3 = i n t e r n a l g l o b a l f l o a t * b i t c a s t ( i 8 * getelementptr ( i 8 , i 8 * b i t c a s t ( i l 2 8 * 

@xmm0 to i 8 * ) , i64 12) to f l o a t * ) ; p o i n t e r t o lower 32-bits of XMMO 
4 @xmml_f3 = i n t e r n a l g l o b a l f l o a t * b i t c a s t ( i 8 * getelementptr ( i 8 , i 8 * b i t c a s t ( i l 2 8 * 

OxmmO to i 8 * ) , i64 12) to f l o a t * ) ; p o i n t e r t o lower 32-bits of XMM1 
Lis t ing 6.1: The example of the generated views to S S E register subsequences. [16] 

6.2 A d v a n c e d reconstruct ion of F P U stack 

This section proposes F P U instruct ion set opt imizat ion extensions for Re tDec wi th the best 
ratio of positive impact for the decompilat ion quali ty to the difficulty of their implemen­
tat ion. The newly designed opt imizat ion resolves problems of currently used opt imizat ion 
that is described i n Section 5.2. The section expects basic knowledge of numerical linear 
algebra and matrices (for required information, see Elementary Linear Algebra [4], Chapter 

!)• 

6.2.1 F u n c t i o n - b a s e d o p t i m i z a t i o n 

Reconstruction of F P U stack is always resolved separately for each function. Wi thou t 
exception, F P U stackis empty at the beginning of each function execution. The premise 
is based on the analysis of the standards for function cal l ing conventions (see Section 4.2, 
and Table 4.1). A l l conventions procla im that before every function cal l , the stack must 
be empty. The precondition is true even when a function contains parameters w i t h any 
floating-point data type. F P U stack is at the end of the function cal l either empty, or it 
holds a single value. The stack contains one value in case of function wi th the floating­
point return type, but only i n case of the 32-bit mode for the x86 architecture. Obta in ing 
this information for the decompiled program is easily achievable because Re tDec provides 
metadata about the module architecture, and functions cal l ing convention. 

A s a result, the opt imizat ion analyses each function as a separate context. The state of 
F P U stack at the entry and exit of this context is predetermined. This approach split the 
program module into independent and smaller parts. In case of the opt imizat ion fails for 
one function, that is an advantage because others function analysis results are not affected. 
Also , i f a function does not manipulate F P U register, then the opt imizat ion skips the whole 
function and reduces analysis duration. 

6.2.2 F u n c t i o n C o n t r o l F l o w G r a p h analysis 

Proposed opt imizat ion tries to find out the state of F P U stack at the entry point of each 
basic block. W i t h this information, the opt imizat ion can sequentially traverse a l l instruc-
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Figure 6.2: Example of possible C F G for some function. 

t ion i n the basic block and analyses F P U stack related instructions. These instructions 
opt imizat ion divides into two categories: 

• The first category modifies F P U stack. They read and increment, or decrement stack 
top and saves the new value of top. Every stack modification has internally saved 
w i t h context to the modification posit ion in a basic block. Th is information uses the 
second group of instructions. 

• The second category read and write to F P U registers (and their tags). A s described in 
Section 5.2, the register load/store operation represents a pseudo function cal l . The 
opt imizat ion mark pseudo cal l w i th the current state of the stack related to it. 

A t this point, the replacement of the pseudo cal l has not performed because the current 
state of the stack is only an offset relative to the start of the basic block. Opt imiza t ion 
calculates the exact stack value at the block entry at the next step. To find out stack state 
at the block entry, an opt imizat ion forms a linear equation system that reflects C F G of 
basic blocks. E a c h basic block defines two variables: 

• BBin : Stack value at the entry into the basic block BB. 

• BBout: Stack value at the entry into the basic block BB. 

To demonstrate, suppose C F G i n Figure 6.2. It shows basic blocks dependencies for 
potential function. Let us consider that function holds floating-point arguments and re­
turns the floating-point value. T h e n opt imizat ion transforms the C F G of function into the 
following Equa t ion system (6.1). 

Bin A0ut = 0 

Cin — Bout = 0 

Bin ~ Cout = 0 

Bin — Bout = 0 

E- — D0ut = 0 

E- ~ -A-out = 0 

(6.1) 

A s described in the previous step, each basic block is analysed separately. Independently 
on the stack state at the entry point, the analysis can determine the difference between input 
and output stack value. Such a computed difference produces one more equation for each 
basic block. For the i l lustrative C F G example (see Figure 6.2), the analysis extends system 
wi th Equations (6.2), where the value ^4a is a part icular constant difference resolved by a 
traverse of basic block A. 
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A0ut — A • = AA 

Bout Bin = BA 

Cout Cin = CA 

Bout Bin = DA 

Bout — E-
'-'in 

= EA 

(6.2) 

The following step encapsulates function context by definition of stack state at the 
function entry and exit point (detailed i n Section 6.2.1). The opt imizat ion creates two and 
more equations (more i n case that function contains mult iple terminat ing basic blocks). 
For our example, it creates Equations (6.3). The stack is empty at the function entry point 
(Ain). The stack holds single value at the end of function terminat ing block (Cout) because 
of the i l lustrative function (see Figure 6.2) pass floating-point return value through F P U 
stack. 

Ain 

Bout 
(6.3) 

C F G for each part icular function contains a different number of nodes and edges. The 
produced system has more equations than variables. Such a system of linear equations 
is called overdetermined. A n overdetermined system typical ly has no solution but i n this 
case, there is a high probabil i ty of exactly one solution. Re tDec expects that the analysed 
binary file is the product of some unknown compiler. In the majority of the cases, such 
compiler produces a val id binary. If the system has no solution, then the examined code 
contains errors. Opt imiza t ion transforms extracted equations system to a mat r ix Equa­
t ion (6.4). Equa t ion (6.5) universally represents this system, where the A is a mat r ix of 
system coefficients, and x is a vector of unknowns. 

The matr ix (A|b) is called the augmented matrix. The analysis determines the rank of 
matr ix A and the rank of augmented mat r ix (A|b). The system has exactly one solution i f 
these ranks are equal. In such a case, the optimizer solves Equa t ion (6.6). Section 6.3 discuss 
various methods for solving the overdetermined system of linear equations. Calcula ted 
vector x contains values of F P U stack at the entry and end of each basic block. 
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0 0 0 - 1 1 0 0 0 0 0 
0 0 1 0 - 1 0 0 0 0 0 
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X = A " 1 b (6.6) 

After analyzing of a l l functions, optimizer replaces previously marked pseudo function 
calls w i th specific registers load/store instructions. Natural ly , subst i tut ion is applied only 
for successfully analysed functions. The concrete register index is calculated by addi t ion of 
previously obtained stack offset relative to the start of the basic block, and value of stack 
at the block entry calculated i n vector x. 

6.3 M e t h o d s for solving l inear systems 

A system of linear equations i n matr ix notat ion (see Equa t ion (6.7)), where the A is a 
matr ix of system coefficients, b is the r ight-hand side, and x is a vector of unknowns. In 
our applicat ion, the system is overdetermined because the number of equations is bigger 
then number of unknowns (see Section 6.2.2). In general, there are many applications where 
the consistent overdetermined system is measured (it has exactly one solution). Such type of 
problem is typical ly solved by approximat ion methods. There are various methods suitable 
for that problem. The Section discusses the most common approximat ion method called 
the least squares solution, and three opt imized modification of this method. [6] 

6.3.1 Least squares so lut ion 

Let a given linear system (6.7) be overdetermined. Since the exact solution is improbable, 
the method looks for a vector x that is as close as possible to the exact solution. The A x is 
an approximat ion to b, and ||b — A x | | is an error i n that approximation. Such an x vector 
is called the least squares solutions of the system (6.7). The vector b is called the least 
square error. In case that a linear system is consistent, then the least squares solutions are 
equivalent to the exact solutions. In other words, the least squares error is zero. For our 
purposes, we expect that this is our case. [4] 

M a t r i x decomposition is a process that solves linear systems in a numerically stable 
way. Addi t ional ly , it can provide mat r ix inversion or reveals matr ix rank. The following 
subsection describes three commonly used decompositions (Cholesky, Q R , and S V D de­
compositions). Cholesky and Q R decompositions transform a system of linear equations 
(6.7) into a system wi th an upper triangular coefficient matr ix : U x = b. The S V D de­
composit ion transforms such a system into a diagonal coefficient matr ix: D x = b. A s a 
result, the transformed system is easier to solve and even wi th higher accuracy by back 
substi tution. [6] 

6.3.2 C h o l e s k y d e c o m p o s i t i o n 

There is the least squares solution for each linear system (6.7) i f and only i f it is a solution 
of the associated normal system (6.8). [21] 

Therefore, to find the least square solution, the system can be reduced to a system of 
the normal equations. The normal system (6.8) is always consistent, and a l l solutions of 
(6.8) are least squares solutions of (6.7). The normal equations system solves Cholesky 

A x = b (6.7) 

A T A x = A T b 
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decomposition (also called factorization) that transforms the nonsquare mat r ix A into an 
upper tr iangular matr ix U for the system (6.7), where holds A = U T U . The normal 
equations system solves the following method: 

1. Calculate A A ctS ct v_->. 

2. Cholesky decomposition of mat r ix C into U U . 

3. Or ig ina l system A T A x = A T b results into U T U x = A T b 

4. Transformed system has a least square solution x = ( U T U ) _ 1 A T b 

The Cholesky factorization is generally the fastest method of solving least squares, but 
it is numerically unstable. The method is sensitive to inaccuracy i n mat r ix A . Smal l 
inaccuracy of mat r ix can lead to large changes in the solution. Generally, this method 
offers half accuracy on the contrary to other methods. [21] 

6.3.3 Q R d e c o m p o s i t i o n 

The QR decomposition is a very important mat r ix transformation that splits general matr ix 
A to an upper triangular matrix R and an orthonormal matrix Q. Or thonormal mat r ix 
has columns orthogonal to each other and its Euclidian norm equals to 1. If A is substi­
tuted by Q R , then for each b in the system A x = b is a least squares solution given by 
Equa t ion (6.9). [6, 4] 

x = R " 1 Q T b (6.9) 

The obtaining least squares solution by Q R decomposition is more suitable for numerical 
computat ion than the Cholesky decomposition (see Section 6.3.1). In general, the Q R 
decomposition guarantees numerical s tabil i ty because it minimizes errors caused by machine 
roundoffs. The Q R method is more accurate i n comparison to Cholesky, but such an 
advantage is not beneficial when the system is well-conditioned (our system expects to be 
well-conditioned and deterministic). In most cases, the Q R decomposition takes twice more 
t ime then Cholesky. [21] 

6.3.4 S V D d e c o m p o s i t i o n 

The Singular Value Decomposition (SVD) is a method that decomposes a mat r ix into nu­
merous matrices, revealing important properties of the source matr ix . The detailed algo­
r i thm of S V D is not presented, but in general, the decomposition obtains pseudoinverse ma­
t r ix A t (called the More-Penrose pseudoinverse matr ix) from matr ix A of the system (6.8) 
(see [13]). The method proceeds i n the following steps: 

1. Change linear equations system A x = b into normal system A T A x = ATh. 

2. N o r m a l system has a least square solution x = ( A T A ) _ 1 A T b . 

3. The mat r ix ( A T A ) _ 1 A T is obtained by S V D as a pseudo inverse matr ix A L 

4. Transformed system has a least squares solution x = A ^ b 

The S V D is a robust method, and it evaluates roughly about 10 times slower i n compar­
ison to other methods. However, it is numerically stable, and it offers addi t ional properties 
about the matr ix . It can also handle greater inaccuracy. [21] 
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6.3.5 S u m m a r y 

This section analysed the various method for mat r ix decomposition. The mat r ix decom­
posit ion offers a numerically stable method for solving overdetermined systems of linear 
equations by the method of least squares. The efficiency and accuracy of three decom­
posit ion methods have discussed. The fastest method is Cholesky decomposition, second 
is Q R decomposition, and the slowest method is S V D . O n the contrary, the most accu­
rate method is S V D , followed by Q R decomposition, and the most inaccurate method is 
Cholesky decomposition. For our applicat ion (see Section 6.2.2), the accuracy lack is ac­
ceptable because the solved system produces only integer results. The efficiency is the most 
important parameter because the opt imizat ion expects huge functions w i th hundreds or 
even thousands basic blocks. Another factor is the need for matr ix rank revealing because 
the analysis computes it due to evaluation of system consistency. M a t r i x rank evaluation 
can be a separate process, but the S V D and Q R decomposition allow to solve this task. 
Merge of these tasks can lead to higher opt imizat ion efficiency. 
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Chapter 7 

Implementation of extensions 

Chapter 6 proposes the new extensions of advanced instruct ion set support for the RetDec 
( F P U and S S E ) . Th is chapter summarizes the result of new instructions implementation. 
Chapter 6 also designs the new F P U stack opt imizat ion that transforms F P U stack into a 
linear system. This chapter details implementat ion details, and Section 7.2.2 select solver 
of a linear system in term of implementat ion efficiency. 

7.1 Decoder support of advanced ins t ruc t ion sets 

Section 5.1.4 shows the available support of advanced instruct ion set for RetDec . The 
research focuses on F P U and S S E . In consequence, the full F P U instruction set is imple­
mented. Each instruct ion is defined by specific translat ion routine, which generates L L V M 
IR sequence (see Section 5.1.3). Every instruction, w i th each possible type of operands, is 
covered wi th a unit test (see Section 8.1.2). The new implementat ion is already included 
in a stable version of the decompiler. 

In the case of proposed S S E extension (see Section 6.1.1), the instruct ion core is im­
plemented (arithmetic, data manipulat ion, and comparison instructions). New translation 
subroutines are not fully covered wi th unit tests. The unit test framework used i n the 
project offers insufficient functionality for reasonable val idat ion (see Section 8.1.2). For 
example, it does not allow to check modification of register subsequences, as required wi th 
S S E instructions. 

7.2 L inear algebra l i b r a r y 

The opt imizat ion proposed i n Section 6.2.2 transforms F P U stack into a linear system. 
For such an approach, Re tDec requires efficient module wi th the support of the linear 
algebra evaluation. The implementat ion of the linear algebra module wi th in Re tDec project 
is a robust task. The module has to support basic mat r ix algebraic evaluation and, in 
addit ion, advanced methods (decomposition of overdetermined systems and rank evaluation 
for nonsquare matrices). The design, implementation, and maintaining of such a robust 
module is too challenging for the entire project when it is used only by one opt imizat ion. A s 
a consequence, the project includes an external l ibrary for these purposes. The third-party 
project must be C+-1- open-source l ibrary that supports compilat ion wi th C M a k e 1 because 
the entire Re tDec uses this tool to bu i ld a l l components. 

1 C M a k e project: https://cmake.org/ 
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Figure 7.1: Benchmark comparison of ma th libraries w i th Eigen (retrieved from official 
project benchmark [11]). 

7.2.1 E i g e n 3 project 

The chosen l ibrary is called Eigen3 (see official project web page [11]). It is a mult iplat-
form ( G C C , Clang , x86 S S E , A R M Neon, PowerPC) l ibrary for linear algebra: basic vector 
and matr ix manipulations, evaluating of various decompositions (Cholesky, L U , Q R , S V D ) , 
solving of linear systems, least squares solutions, eigenvalues, or singular values. The l ibrary 
analyses object size and optimize evaluation methods for them. Another opt imizat ion in­
creases performance wi th the classification of matrices to dense and sparse. Figure 7.1 shows 
a benchmark comparison of various algebraic libraries ( G O T O 2 , A T L A S 3 , and others' 1) for 
operation wi th two matrices. U n i t M F L O P S means mill ions of ari thmetic operations per 
second. The graph shows Eigen3 as an efficiency favourable tool for large matrices, which 
is our use case. Re tDec source repository does not include Eigen3 sources, but it l inks it as 
an external dependency (for further detai l see C M a k e external projects documentat ion 5 ) . 

7.2.2 Se lect ion of solver for a l inear sys tem 

Designed F P U opt imizat ion proposed three methods for determining the least squares so­
lut ion of overdetermined linear systems: 

• Cholesky decomposition: see Section 6.3.2. 

• Q R decomposition: see Section 6.3.3. 

• S V D decomposition: see Section 6.3.4. 

2 G O T O project: h t tp: / /www.csar .cfs .ac .uk/user_information/sof tware/maths/goto.shtml 
3 A T L A S project: h t tp : / /ma th -a t l a s . source fo rge .ne t / 
4 Eigen3 benchmark: h t t p : / / e i g e n . t u x f amily.org/index.php?ti t le=Benchmark 
5 C M a k e external project h t tps : / / cmake .o rg /cmake /he lp / l a t es t /module /Ex te rna lPro jec t .h tml 
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Figure 7.2: Compar ison of computat ion t iming 

Eigen3 l ibrary supports a l l three decomposition methods. A n empiric experiment, de­
scribed below, measured the performance effectiveness of each method, to select the de­
composit ion algori thm w i t h the best ratio of performance efficiency and sufficient solution 
accuracy. The experimental data were real executable binary files retrieved from the project 
regression test framework database (the framework and testing binaries are expl ici t ly dis­
cussed in Section 8.3). The experiment included 822 binaries. These binaries contain 
over 4000 functions that manipulate F P U . For each ind iv idua l function, the experiment 
measured the time of the linear system decomposition. The experiment measured each 
function three times (separately for each proposed method). The accuracy of the least 
squares solution evaluated RetDec regression test framework, which decided about decom­
pilat ion success (framework supported accuracy cri teria are presented in Section 8.3). For 
better experiment evaluation, the measured data split into three classes by the number of 
equations i n the part icular function system: 

• Low: For each function, the number of equations in the system is maximal ly 100. A n 
experimental set consists of 3 173 functions. 

• M e d i u m : For each function, the number of equations i n the system belongs to 
(100, 600). A n experimental set consists of 644 functions. 

• High: For each function, the number of equations i n the system is more than 600. 
A n experimental set consists of 276 functions. 

Cholesky Q R S V D 
Low 1.29 ms 1.88 ms 43.89 ms 

M e d i u m 264.34 ms 345.11 ms 3 948.95 ms 
H i g h 18 741.14 ms 23 332.06 ms 125 831.64 ms 

Table 7.1: Average t ime of linear system solving for different methods. 
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The Figure 7.2 shows result of experiment. Independently on the number of equations 
of the system, the durat ion of evaluation Cholesky decomposition is very slightly better 
than Q R decomposition. For smal l systems, the difference is even unimportant . However, 
the S V D indicates significant performance lack that is unacceptable for large systems. Ta­
ble 7.1 shows the average evaluation durat ion separately for each method and experiment 
class. The S V D evaluation durat ion is around 10 times slower i n comparison to the other 
two methods. F r o m this point of view, the S V D is not a suitable method. In terms of 
solution accuracy, the testing framework successfully decompiles a l l binaries for Cholesky 
and Q R decomposition. The S V D solves system wi th the highest accuracy. B u t the du­
rat ion of evaluation is unacceptable, and for huge systems (category wi th 600 and more 
equations) the testing framework terminates decompilat ion wi th a failure status. T h e ac­
curacy of S V D cannot be qualified as a benefit because the system least squares solution 
should approximate to integer results. A s a result of the experiment, the implementat ion 
of the opt imizat ion selects the Q R decomposition. In addi t ion to efficient system solving, 
Q R implementat ion offers an evaluation of mat r ix rank w i t h a smal l performance lack (the 
opt imizat ion must calculate mat r ix rank because of the determination of system inconsis­
tency) . 

7.2.3 S u m m a r y 

This chapter summarizes the results of F P U and S S E instruction set implementat ion in 
decoder library. Next , due to F P U opt imizat ion, the suitable l ibrary for linear algebra was 
selected. The experiment w i th real binary programs decompilat ion compares and select the 
most efficient implementat ion of the proposed system solver method (see Section 7.2.2). 
Next chapter tests the functionality of new extensions. 
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Chapter 8 

Testing of extension 

RetDec project uses various methods of testing that t ry to determine decompiler errors. 
The project contains three main utili t ies that test the decompiler w i th different goals. The 
proposed and implemented extensions, described in Chapters 6 and 7, are tested i n the man­
ner of decompilat ion success, quality, and performance. Section 8.1 describes the project 
unit testing framework. Section 8.2 introduces the night test framework, and Section 8.3 
describes the regression testing framework. E a c h section summarizes the testing results of 
the new extensions. The notions and definitions related to software testing are retrieved 
from [24]. 

8.1 U n i t tests 

RetDec applies unit testing as a fundamental testing process. The basic concept is to test 
the decompiler subcomponents separately and independently. Re tDec is main ly created 
in C + + language, and it uses Google Test framework 1 that offers unit testing in this 
programming language (separate testing of the classes and their methods). In the case 
of Re tDec core (see Section 3.2.2), each analysis or opt imizat ion defines ind iv idua l class. 
Typical ly , such a class contains an adequate unit test suite. 

The approach of unit testing brings many advantages. Firs t ly , it allows to test part of 
the program independently from the rest. Also , it is reasonably a fast testing technique: 
RetDec contains 6 819 unit tests, and their execution takes around 6.5 sec for a specific 
C P U 2 . Generally, it allows to detects bugs faster and easier. Moreover, each unit test 
offers a sort of documentation for developers because it shows concrete examples of class 
instantiation and their methods use. 

8.1.1 F P U o p t i m i z a t i o n 

Uni t testing is an essential key for the agile methodology such as Extreme programming 
(see [12]). This methodology applies a technique commonly named Test-Driven Develop­
ment (TDD). The development of the extended opt imizat ion for F P U instruct ion set (see 
Section 6.2) applies the key T D D principle: 

1. Wri te unit tests based on the specified requirements, and executes them to check that 
their fails. 

1Google Testing and Mocking Framework: https://github.com/google/googletest 
experimental CPU: Intel(R) Xeon(R) C P U E5-2680 v3 @ 2.50GHz 
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2. Continuously implement ind iv idua l requirements and checks improvements in the tests 
success ratio. 

The input of F P U opt imizat ion contains an L L V M I R module and various configuration 
properties (processor architecture specification, cal l ing conventions for each function, and 
others). The unit test framework must prepare an input L L V M I R module and the entire 
environment. Next , it executes unit under tests, which is the new F P U opt imizat ion. The 
output of the optimizations is modified L L V M I R module and return code (success or fail). 
The framework compares the modified L L V M I R module and the return value w i t h the 
expected preprepared module and the return value. The detailed approach of F P U unit 
test wr i t ing is described i n A p p e n d i x A . 

8.1.2 D e c o d e r of C a p s t o n e into L L V M I R 

Decoder is a considerably large component, and it is inherited by specific C P U architecture 
modules (see Section 5.1, Figure 5.1). E a c h architecture module contains its own unit test 
suite (see Table 8.1). In general, Re tDec tries to create at least one unit test for each 
instruction of every architecture. W i t h i n F P U instruction set extension for the x86 archi­
tecture, the test suite is extended by cases for each instruct ion and its variant (architecture 
bit w id th and a l l possible instruction operands type combinations). 

The unit test framework takes as an input a single L L V M I R module wi th a single 
instruction, the architecture specification and values of registers or memory values that are 
necessary for the instruct ion under test. Next , the framework interprets L L V M I R and 
checks postconditions (expected values of registers and memory). 

Architecture Uni t tests [-] 
A r m 422 

A r m 6 4 419 
M i p s 572 

P o w e r P C 766 
x86 1749 

Table 8.1: The number of the unit tests for each architecture module supported i n Decoder 
library. 

8.2 N i g h t tests 

RetDec night tests framework is the largest testing tool used in the entire project. It tests 
thousands of program samples. The goal is to check decompilat ion success and quality. The 
project uses night tests to monitor impact of development changes. The test suite consists 
of the large pallet of different program samples. The entire testing process is significantly 
time-consuming, and it can take dozens of hours. The program test samples are divided 
into two groups: 

• Source files in C : These programs are compiled by the framework for a l l supported 
architectures wi th different options of opt imizat ion used by the specific compiler. The 
advantage of these samples is that it allows to evaluate decompilat ion output quality. 
The quali ty is evaluated by the comparison of the original and decompiled C source. 
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• B inary executable files: These test samples are large and complex programs. T y p ­
ically, it is some obtained malware binary program. The goal is to determine decom­
pilat ion performance efficiency 

The night tests execution splits into two phases. The first phase performs the decompi­
lat ion of each sample, and it logs the running process. The second phase evaluates obtained 
decompilation logs (the size of these files are generally in gigabytes unit) and the results 
are presented as a web page. The web page summarizes each decompilat ion phase suc­
cess (return code), the decompilat ion output quality, t ime summary, memory consumption 
summary, and others. The night test samples and the framework itself are proprietary, and 
only internal developers of the project have access to this tool . The resulting web page 
allows comparing different night test executions. In the case of comparison, the web page 
shows which decompilat ion phases improve or worsen. 

8.2.1 F P U o p t i m i z a t i o n eva luat ion 

Figure in Append ix B . l presents the result of night tests w i th the new F P U opt imizat ion. 
The new opt imizat ion considerably extends the t ime complexity of the analysis. A s a result, 
the runtime of entire decompilat ion averagely grows by 4 .3%. Figure 8.1 shows the most 
performance influential operations i n the new F P U opt imizat ion. The graph summarizes 
the result of opt imizat ion profiling. Profiler^ measures decompilat ion executed over one 
of the biggest binary programs i n the database. The program contains a function wi th 
more than 3 000 basic block that manipulates F P U stack. The graph shows that most of 
the t ime, the opt imizat ion evaluates Q R decomposition to determine system solution (see 
Section 6.2). 

A s a result, the implementat ion was modified. Due to decompilat ion performance re­
quirement, the newly proposed extension does not optimize the huge binaries. If opt imiza­
t ion detects that the analysed function generates a system wi th more than 1 000 equations, 
then the new optimizations skip the search for a system solution. In such a case, opt imiza­
t ion decreases to an old opt imizat ion a lgor i thm that ignores C F G . After this new approach, 
the night tests results show that average F P U opt imizat ion runtime decrease by 92.9% in 
comparison to opt imizat ion without performance restriction (see Figure in Append ix B.2) . 

To summarize, the final implementat ion of F P U opt imizat ion takes averagely 19 min­
utes while old optimizations around 3 minutes. The results of both night tests run shows 
Append ix B . 

8.3 Regression tests 

RetDec project also includes a regression test framework' 1. Generally, regression testing 
tries to detect errors introduced i n the new version of the software (see [24]). Similarly, 
RetDec regression test framework checks each new version of the decompiler. Each phase of 
decompilation contains a specific subset of the regression tests. Typical ly , every proposed 
and implemented feature in some decompiler component must pass a specific regression 
test suite intended for this component. The night tests contain significantly bigger test set 
than regression tests, but regression framework also tests the entire decompilat ion process. 

Performance analysis tool perf: http://man7.Org/linux/man-pages/manl/perf.l.html  
4RetDec regression tests framework: https://retdec-regression-tests-framework.readthedocs.io/ 

en/la t e s t / 
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Run FPU analysis 

100% 

Figure 8.1: Prof i l ing summary of large program decompilat ion (program includes function 
wi th more than 3 000 basic blocks). 

Further, the regression test framework is freely available and open-source, on the contrary 
to the proprietary night test tool . Regression test u t i l i ty allows to create tests that check 
for errors i n the decompilat ion process by some of the following criteria: 

• Evalua t ion of the expected return value in comparison to decompilat ion result. How­
ever, the framework allows for a finer diagnosis of the return value. It separately 
distinguishes the return value for each phase of the decompilation. 

• The framework tries to compare the original program wi th the decompiled in terms 
of functionality equality. The framework compiles reversed C source and run both, 
the original and recompiled program. If programs produce the same outputs, then 
it declares the programs equality. This approach can be applied typical ly only for 
simple programs because decompiled programs often contain pseudo-code that is un­
derstandable for humans but not for compilers. 

• Regression tool can search for key string patterns i n decompilat ion output. It searches 
for definitions and usage of identificators, data types, functions and their parameters, 
variables and similar structures. 

Ent i re regression test suite contains 5 464 samples, where 822 samples are binaries for 
x86 architecture wi th F P U instruct ion set usage. The framework tests new opt imizat ion 
extension wi th this test suite. A l l binaries decompilat ion run successfully and without error 
detections. 
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Chapter 9 

Summary 

The thesis outlines the topic of decompilat ion i n term of software reverse engineering. It 
describes the typica l decompiler structure and corresponding terminology. Next , the open-
source decompiler project called Re tDec was introduced. The specific technologies used in 
the decompiler were detailed. 

Fol lowing chapters describe the x86 processor architecture supported by RetDec . The 
C P U extensions F P U and S S E were detailed. The research analyses RetDec decompilat ion 
deficiencies, and obstacles in connection wi th previously explained x86 extensions. A s a 
result, it proposes the new extension for the reconstruction of F P U stack. A l so , it suggests 
the extension of decompiler support for the floating-point instructions related to F P U and 
S S E . 

The support of F P U instruct ion set in the decoder l ibrary was developed and integrated 
into the stable version of the decompiler. The decoder now provides semantic translat ion 
routines for 100 % of F P U instructions. Addi t ional ly , the par t ia l support of core packed 
and scalar S S E instructions were implemented. However, the design is not properly tested. 

The new F P U opt imizat ion extension was implemented and tested. The various exper­
iments determine the best method for the proposed F P U opt imizat ion implementat ion in 
the matter of decompilat ion performance. The three testing framework tests the new ex­
tensions: unit , regression, and night test framework. A l l three tests suites pass successfully. 
The night tests measure performance decrease because of the new analysis complexity. The 
new F P U opt imizat ion is around six times slower than original, but such a performance 
decrease was expected, and it is acceptable concerning analysis improvement. 
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Appendix A 

F P U optimization unit testing 

The single unit test of the F P U opt imizat ion performs the following steps: 

1. The test parses an input string that contains the L L V M I R module. The module 
always holds definitions of the F P U registers and variable function definitions (see 
Lis t ing A . l ) . The content of the functions is the subject of the test. For example, 
L i s t ing A . 3 shows possible function content. Note that the lines 6, 11, 16, and 24 (in 
L is t ing A.3) carry the F P U pseudo load/store functions. The lines 7, 12, 17, and 25 
show the expected substi tution. 

1 @fpu_stat_TOP = i n t e r n a l g l o b a l i 3 0 
2 @stO = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
3 O s t l = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
i @st2 = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
5 @st3 = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
6 @st4 = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
7 @st5 = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
8 @st6 = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 
9 @st7 = i n t e r n a l g l o b a l x86_fp80 OxKOOOOOOOOOOOOOOOOOOOO 

10 
11 declare v o i d @ f r o n t e n d _ r e g _ s t o r e . f p r ( i 3 , x86_fp80) 
12 declare x86_fp80 @ fr o n t e n d _ r e g _ l o a d . f p r ( i 3 
Lis t ing A . l : Example of the specific architecture-dependent global variables. 

2. Define the module environment configuration. The RetDec preprocessing generates a 
file w i th J S O N metadata that defines processor architecture and their bit wid th , data 
endianity, name and cal l ing convention for each function and other information. The 
unit test holds his J S O N metadata. To illustrate, see L i s t ing A . 2 . 

1 { 
2 " a r c h i t e c t u r e " : { 
3 " b i t S i z e " : 32, 
4 "endian" : " l i t t l e " , 
5 "name" : "x86" 
6 1, 
7 "mainAddress" : "0x1000 
8 "functions" : [ 
9 { 

10 "callingConvent i on" 
11 "name" : "foo" 
12 1, 
13 { 
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14 "callingConvention" : "cdecl " , 
15 "name" : "boo" 
16 > 
17 ] 
18 } 

Lis t ing A . 2 : Example of the specific architecture-dependent global variables. 

3. U n i t test associates the predefined pseudo functions wi th Re tDec core metadata be­
cause the core must detect these functions as special-purpose pseudo calls. 

4. The test defines the applicat ion binary interface. In our case, it associates the F P U 
registers to the appropriate global variables: 

(a) General-purpose data registers STO - ST7 . 
(b) Tag registers TAGO - TAG7 . 
(c) Pseudo status register, which indicates the F P U stack top value. 

5. The test executes the F P U opt imizat ion i n the prepared L L V M I R module. 

6. Next , it evaluates the return value of executed module wi th the expected return value. 
The opt imizat ion modifies the L L V M I R module. Compares the modified module wi th 
the prearranged module. Such a module hold the same functions, but the pseudo 
load/store functions are already replaced wi th the correct registers load/store. 

1 define void @foo() { 
2 A: 
3 br i l 1, l a b e l 7.B, l a b e l 7.C 
4 B: 
5 7.0 = load i 3 , i 3 * @fpu_stat_T0P 
6 c a l l v o i d @__frontend_reg_store.fpr(i3 7.0, x86_fp80 0xK3FFF8000000000000000) 
7 
8 

;store x86_fp80 0xK3FFF8000000000000000, x86_fp80* @st0 
7.1 = sub i 3 7.0, 1 

9 store i 3 7.1, i 3 * @fpu_stat_T0P 
10 7.2 = load i 3 , i 3 * Ofpu_stat_T0P 
11 c a l l v o i d @__frontend_reg_store.fpr(i3 7.2, x86_fp80 0xK3FFF8000000000000000) 
12 ; store x86_fp80 0xK3FFF8000000000000000, x86_fp80* @st7 
13 br i l 1, l a b e l 7.D, l a b e l 7.E 
14 D: 
15 7.3 = load i 3 , i 3 * Ofpu_stat_T0P 
16 7.4 = c a l l x86_fp80 <§ fro n t e n d _ r e g _ l o a d . f p r ( i 3 7.3) 
17 ;7.4 = load x86_fp80, x86_fp80* @st7 
18 br l a b e l 7.E 
19 E: 
20 7.5 = load i 3 , i 3 * Ofpu_stat_T0P 
21 7.6 = add i 3 7.5, 1 
22 store i 3 7.6, i 3 * @fpu_stat_T0P 
23 7.7 = load i 3 , i 3 * Ofpu_stat_T0P 
24 7.8 = c a l l x86_fp80 0 fr o n t e n d _ r e g _ l o a d . f p r ( i 3 7.7) 
25 ;7.8 = load x86_fp80, x86_fp80* @stO 
26 br l a b e l 7.C 
27 C: 
28 r e t v o i d 
29 } 

Lis t ing A . 3 : Example of the specific architecture-dependent global variables. 
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Appendix B 

F P U optimization night tests 

Decompiler Tests 

experimental_-_2020-04-09 (x87_fpu_analysis #1} experimental_-_2020-04-06b (master) Swap 

Basic Info Success Running Time Phases Runtime Memory Usage Program Exits Syntax Errors Build Warnings 

Test ID: 
Test name: 
D if ring with: 
Test description: 
Test series: 
Tested commit: 
Start date: 
End date: 

14 
experimental- 202 0-04-09 
experimental_-_2020-04-06b 
x87_fpu_analysis #1 
experimental tests 

2020-04-09 00:33:59 
2020-04-09 04:57:36 

Overall running time: 04h 23m 37s 
Max active processes: 48 
Timeout: 300 
Decompilations: 110039 

+4.3% 
0.0% 
0.0% 
0.0% 

Significant Worsenings Significant Improvements 

Running Time Program Exits 

• x86/pe - gcc/03: from OOh 22m 49s to OOh 34m 53s (+52.9%) • Ilvmir2hll - RC 139 (sigsegv): from 2 to 1 (-50.0%) 
• malware (binary) - x86/elf: from OOh 50m 45s to Olh 05m 18s (+28.7%) 
• web-service (binary) - x86/pe: from l l h 27m 29s to 15h 09m 42s (+32.3%) 
• Overall running time: from 04h 12m 50s to 04h 23m 37s (+4.3%) 

Phases Runtime 

• bin2llvmir - x87 fpu register analysis: from OOh 03m 06s to 04h 27m 59s 

(+8515.6%) 

Program Exits 

• bin2llvmir - RC 135 (memory): from 0 to 4 (+100.0%) 
• bin2llvmir - RC 137 (timeout): from 80 to 98 (+22.5%) 

Figure B . l : Results of night tests without F P U opt imizat ion performance restriction. 

The significant improvements of second night tests run (see Figure B.2) i n other phases 
then x87 FPU register analysis are not caused by new F P U opt imizat ion. The improve­
ments are the product of the latest developments in the project released since the previous 
measured night test run. 
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Decompiler Tests 
Test 
experimental_-_2020-05-04 (x87-fpu-analysis #2} • experimental_-_2020-04-09 (x87_fpu_analysis #1} Swap 

Basic Info Success Running Time Phases Runtime Memory Usage Program Exits Syntax Errors Build Warnings 

Test ID: 
Test name: 
Diffing with: 
Test description: 
Test series: 
Tested commit: 
Start date: 
End date: 
Overall running time: 
Max active processes: 
Timeout: 
Decompilations: 

Value 
19 
experimental_-_20 20-05-04 
experimental_-_20 20-04-0 9 
x87-fpu-analysis #2 
experimental tests 
[e 93960] 
2020-05-04 21:19:29 
2020-05-05 01:20:42 
04h 01m 13s 
48 
300 
110051 

-8.5% 
0.0% 
0.0%. 
+0.1% 

Significant Worsenings 

Phases Runtime 

• bin2llvmir - LLVM instruction optimization using RDA: trom 00h 00m 00s 
to 02h 01m 49s (+100.0%) 

Memory Usage 

• web-service (binary) - arm64/macho: from 650 MB to 826 MB (+27.1%) 

Program Exits 

. Ilvmir2hll - RC 134 (abort): from 53 to 65 (+22.6%) 

Significant Improvements 

Success 

• mips/ihex - gcc/O0 - C syntax result: from 13.8% to 91.4% (+562.2%) 
• mips/ihex - gcc/Ol - C syntax result: from 13.8% to 91.1% (+560.0%) 
• mips/ihex - gcc/02 - C syntax result: from 12.9% to 89.6% (+595.2%) 
• mips/ihex - gcc/03 - C syntax result: from 12.9% to 89.0% (+590.5%) 

Running Time 

• mips/ihex - gcc/O0: from OOh 35m 45s to OOh 24m 56s (-30.3%) 
• mips/ihex - gcc/Ol: from OOh 30m 57s to OOh 20m 25s (-34.0%) 
. x86/pe - gcc/03: from OOh 34m 53s to OOh 22m 10s (-36.5%) 
• malware (binary) - x86/elf: from Olh 05m 18s to OOh 39m 48s (-39.1%) 
• web-service (binary) - arm/pe: from OOh 34m 36s to OOh 24m 24s (-29.5%) 
• web-service (binary) - x86/pe: from 15h 09m 42s to lOh 15m 00s (-32.4%) 
• Overall running time: from 04h 23m 37s to 04h 01m 13s (-8.5%) 

Phases Runtime 

• bin2llvmir - Input binary to LLVM IR decoding: from 12h 58m 40s to 09h 
28m 46s (-27.0%) 

• bin2llvmir - Simple types recovery optimization: from Olh 29m 24s to OOh 
35m 05s (-60.7%) 

• bin2llvmir - Assembly mapping instruction removal: from OOh 36m 27s to 
OOh 20m 52s (-42.8%) 

• bin2Hvmir - x87 fpu register analysis: from 04h 27m 59s to OOh 19m 00s 
(-92.9%) 

Program Exits 

• Unpacking - RC 4 (unpacker failed, other not succeeded): from 19 to 5 
(-73.7%) 

. bin2llvmir - RC 134 (abort): from 19 to 17 (-10.5%) 

. bin2llvmir - RC 137 (timeout): from 98 to 67 (-31.6%) 

. bin2llvmir - RC 139 (sigsegv): from 13 to 5 (-61.5%) 
• C Syntax - RC 1 (syntax error): from 17438 to 14431 (-17.2%) 

Syntax Errors 

• Generated C: from 129103 to 101353 (-21.5%) 

Figure B .2 : Results of night tests w i th F P U opt imizat ion performance restriction. 
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