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Abstract

The concept of Beam theory is extensively studied in the fields of computational and structural
mechanics, with widespread applications in both industry and academia. However, the existing
body of knowledge lacks the derivation of important deformation equations due to the overly
constrained assumptions made by early researchers in this area. This research aims to overcome
these limitations by investigating beam deformation through the study of the centerline beam
deformation theory, thus relaxing the previously adopted assumptions.

To achieve this goal, the energy functionals variational formulation was employed to derive a
classical formulation that avoids the inherent assumptions of the Euler-Bernoulli and Timoshenko
beam model equations. A discrete approach, known as Hencky-Type, was utilized to verify the
inextensibility constraint of the nonlinear Euler-Bernoulli Beam. Furthermore, the linearized case
was derived using variational methods applied to its nonlinear counterpart.

The derived models were then applied to two types of beams: the cantilever or clamped-
Free (CF) beam and the simply supported beam (SS). A comparison was made to evaluate
the superiority of these models. The nonlinear model formulation was solved using the weak
formulation math model of COMSOL Multiphysics software.

This study aims to pave the way for more accurate model formulations and the development
of novel numerical schemes that can effectively handle nonlinear models, which are often avoided
due to their complexity. The findings from this work hold the potential to significantly advance
the field and facilitate the exploration of various practical applications.
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1 Introduction

Beams, which are mathematical abstractions representing slender structural elements that are
elongated in one dimension compared to their other dimensions, hold great significance in various
engineering and structural applications. They serve as vital components in buildings, bridges,
aircraft, automobiles, and numerous other constructions. The primary function of beams is to
support and distribute loads to their supports, ensuring structural stability. Recent research has
also investigated beam deformation in functionally graded materials and additive manufacturing,
both on micro scales, such as Lab-on-a-chip technology, and macro scales, like riser platforms for
oil and gas applications.

A fundamental aspect of beam analysis revolves around accurately predicting the load-bearing
capacity and deformation 1 behavior of these structural elements. This knowledge is crucial for
ensuring the expected structural integrity in diverse structural engineering applications. Over the
years, extensive studies and innovations have been dedicated to comprehending the behavior of
beams, optimizing their design, and exploring novel materials and construction techniques. These
endeavors aim to enhance beam performance, efficiency, and safety in various practical scenarios.

1.1 Beam Theories

Amongst the several deformation theories, the balance of forces and momentum, and centerline
deformation beam theory CBDT are predominantly the industrial and academic accepted formula-
tion. The deformation beam theories are mathematical models used to analyze the behaviour of
beam when subjected to external loading. The ideology is that the deformation of an entire body
can be estimated exactly by considering how the centerline 2 of the body deforms.
Notable of the deformation beam theories are:

Euler-Bernoulli Beam Theory (EBT)

The mathematical statement of the Euler-Bernoulli beam theory is described by the Euler-Bernoulli
beam equation, which relates the bending moment and the curvature of a beam subjected to
transverse loading. The equation is as follows:

𝑑2

𝑑𝑥2

(
𝐸𝐼
𝑑2𝑤
𝑑𝑥2

)
= 𝑞 (1.1)

In this equation:
1Deformation is often described as a displacement field, representing the change in position of a point in the

structure (for the purpose of this work – beam) relative to its original undeformed state. It is mostly referred also as
changes in shape, size and position that occur when a load or force is applied to a structure.

2Centerline of a body is a continuous curve that represents the axis or midline of the body. It is a one-dimensional
geometric representation that runs through the center or midpoint of the body, typically along its longest dimension
or main axis.
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1. 𝐸𝐼 represents the flexural rigidity of the beam, which is the product of the Young’s modulus
(𝐸) and the area moment of inertia (𝐼).

2. 𝑑2𝑤
𝑑𝑥2 denotes the second derivative of the beam deflection (𝑤) with respect to the axial coordinate
𝑥 . It represents the curvature of the beam.

3. 𝑞 is the distributed load on the beam.
The Euler-Bernoulli beam theory assumes several assumptions:
• Planar motion deformation of the beam centerline.
• The axial deformation of the beam is negligible compared to its bending deformation.
• The beam cross-section remain planar and perpendicular to the undeformed centerline.
• EBT is suitable for slender beams with a high aspect ratio (i.e. length to thickness ratio)

These assumptions resulted in the linearisation of the inherent nonlinear deformation measure
in its derivation. This makes the model only befitting for small deformations, and in the large
deformation regime, the model fails drastically.
Remark. The words deflection and displacement will be used interchangeably.

Timoshenko Beam Theory (TBT)

The Timoshenko beam theory provides an extension to the Euler-Bernoulli beam theory by
considering the effect of shear deformation. The mathematical statement of the Timoshenko beam
theory is described by the Timoshenko beam equation, which takes into account both bending
and shear effects. The equation is as follows:

𝑑2

𝑑𝑥2

(
𝐸𝐼
𝑑𝜑

𝑑𝑥

)
= 𝑞(𝑥)

𝑑𝑤

𝑑𝑥
= 𝜑 − 1

^𝐴𝐺

𝑑

𝑑𝑥

(
𝐸𝐼
𝑑𝜑

𝑑𝑥

)
. (1.2)

The displacements of the beam are assumed to be given by:

𝑢𝑥 (𝑥,𝑦, 𝑧) = −𝑧𝜑 (𝑥); 𝑢𝑦 (𝑥,𝑦, 𝑧) = 0; 𝑢𝑧 (𝑥,𝑦) = 𝑤 (𝑥)

Where (𝑥,𝑦, 𝑧) are the coordinates of a point in the beam, 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 are the components of the
displacement vector in the three directions.

In this equation:
1. 𝐸𝐼 represents the flexural rigidity of the beam, similar to the Euler-Bernoulli beam theory.
2. 𝜑 is the angle of rotation of the normal to the mid-surface of the beam
3. 𝑤 is the displacement of the mid-surface in the z-direction
4. ^ is the correction factor based on the cross-section of the beam.
5. 𝐺𝐴 represents the shear rigidity of the beam, where 𝐺 is the shear modulus and 𝐴 is the

cross-sectional area of the beam.
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6. 𝑞(𝑥) denotes the transverse loading acting on the beam as a function of the axial position 𝑥 .
The assumptions utilized in this formulation is as stated below:
• Plane motion deformation of the beam’s centerline.
• Inclusion of both bending and shear deformations.
• The beam cross-section are not necessarily perpendicular to the deformed centerline due to the

effect of shear and rotary inertia.
• TBT is applicable to beams with low aspect ratios and significant shear forces, such as thick

beams or beams with open cross-sections.
Just like Euler-Bernoulli, Timoshenko also considers only the linearized case of the equation.

The essence of this work is to now work with the nonlinear cases of these two models to ensure
the superiority of the nonlinear model when compared to the linearised ones. The Centerline
deformation beam theory is going to be used to define the nonlinear measures of deformation
and the expression relating them are derived from the geometry given below:

Centerline Deformation Beam Theory (CDBT)

The centerline deformation beam theory is a theoretical framework used to describe the nonlinear
deformation behavior of beams. Unlike the traditional Euler-Bernoulli and Timoshenko beam
theories, which assume linearized deformations, the centerline deformation theory considers the
full nonlinear deformation of the beam. It focuses on the changes in the position and orientation
of the beam’s centerline during deformation. In this theory, the centerline of the beam is treated
as a continuous curve, and the displacements and rotations of points along this curve are used to
define the beam’s deformation. The theory takes into account the effect of bending, shear, and
axial deformation on the overall behavior of the beam.

The centerline deformation beam theory provides a more accurate representation of beam
deformations, especially for cases involving large deflections, nonlinear material behavior, or
complex loading conditions. By considering the full nonlinear behavior, this theory allows for
a better understanding and analysis of the structural response of beams in engineering and
mechanical systems.

Expressions and equations are derived to relate the centerline deformation measures, such as
displacements and rotations, to the applied loads, material properties, and geometric character-
istics of the beam. These mathematical formulations provide a basis for numerical simulations,
design optimization, and structural analysis of beams under various conditions.
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Figure 1.1: Plane beam: Initial and deformed configuration [10]

The crux of the centerline deformation beam theories is as explained in [10]. The beam is
imagined as a one dimensional continuum. Its deformed configuration (Fig. 1.1) is described by a
regular curve which is parameterised. The abscissa 𝑥 ∈ [0, 𝐿] is measured on the straight reference
configuration of the beam, 𝑢 (𝑥), 𝑣 (𝑥) represents the axial and transverse displacement components
and 𝑖 and 𝑗 are unit axis vectors. Each point on the beam axis is associated cross-section (𝑆); and
the angle \ (𝑥) which defines the rotation of the cross section in the deformed configuration. The
deformation measures 𝜖, 𝛾, ^ which take values on the current deformed configuration alongside
their constitutive relations are derived from the figure and material properties of the beam. These
deformation measures allow for the proper definition of the total energy functional or Lagrangian
on which analysis is performed to determine the minimum which coincides with the exact solution
of primary deformation parameters.

1.2 Literature Review

Being one of the most exhaustively researched topic in engineering and structural application, it’s
practically impossible to give a thorough literature review on beams and its deformation. The
review presented here is rather restrictive to conform to the relevant areas of review that’s used
in this current report. The categories of large deformation of elastic beams in the framework of
nonlinear elasticity presented is taken from the works of [12].

Concerning the approach to the problem, we must state that two main lines may be identified
based on the strategy employed to determine the governing equations: the variational method
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and the method of the balance of force and momentum. The variational approach, developed
originally by Euler [3] and Lagrange [7, 8], allow the equations ofmotion and stability equilibrium
conditions to be obtained in a relatively simple and efficient manner by minimizing the functional
of energy (an example of the so-called principle of virtual work). The variational technique is
evidently extremely commonly utilized while searching for mechanical system equilibria due to
its ease of application and tremendous capabilities to examine even the most complex structures.

The review will be categorised in the following ways: large deformations of beam, different
loads that can be applied to a beam, and deformation in beams.

Large Deflection of Beams: kinematic, Deformation and Action

To start out in the large deformations of beams, a recourse needs to be done first in analysing
general problems in nonlinear mechanics and elasticity. Various aspects of nonlinear theories are
entrenched in the books such as Antman [1], which focuses mainly on nonlinear problems in
elasticity.

Antman [1] treated exhaustively the case of planar beam deformation and introduced theory
of elastic rods , by assuming variational postulation of mechanics following the ground works of
Euler [3] and Lagrange [7]. He gave a general theory for each kind of elastic body, by formulating
specific problems and introduced the needed mathematical methods for strings, rods, shells and
3D bodies. Large part of his work is devoted to perturbation method, used in solving nonlinear
differential equation, he likewise developed the bifurcation theory for problems of buckling, and
in variational continuum mechanics, he introduced the classical multiplier rule and specifically
the Lagrange multipliers, which are variables which are used predominantly in constrained
optimization problems of beam theories.

Similarly, the works of Reissner [11] further amplified the deformation of nonlinear beams. His
work was instrumental in the generalized form of constitutive relations in terms of axial force strain
𝜖, shear force strain 𝛾 and bending strain ^. These are important measures of deformation used in
almost every aspect of beam deformation theories. He looked into the classical Finite-Strain Beam
Theory (FSBT) with application of the principle of virtual work, formulated a one-dimensional
large strain theory for plane deformation of plane beams. This resulted in a system of non-
linear strain displacement relations which is consistent with exact one-dimensional equilibrium
equations for forces and moments. The article presented a novel way of incorporating transverse
shear deformation into one-dimensional FSBT, this novelty rendered the earlier assumptions of
Euler-Bernoulli classical theory assumption of absence of transverse shearing strain moot.

Distributed and Concentrated External Loads

In the problem of large deformation, while using the variational method approach, the energy due
to external load plays a crucial role in obtaining the equation of motion as the final deformation
shape experienced by a beam is largely dependent on the external applied load.
Following Reissner’s variational principle [11], Humer [4], considered large deformations of
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slender beams (Euler-Bernoulli) under a concentrated force. He gave the representation of
solution in terms of elliptic integrals.

Also, Wang [14, 15] studied the case of deflection of a cantilever and simply supported beam.
He presented the theoretical discussion on the nonlinear equation for the maximum deflection of
the beam, likewise he also formulated a simple numerical method to analyse nonlinear bending
of beams subjected to concentric load.

After an extensive review of the existing literature, it becomes evident that the majority of
beam models still heavily rely on the assumptions put forth by Euler-Bernoulli, which assume that
the beam’s cross-section remains rigid and planar to the neutral axis before and after deformation.
Furthermore, both the Euler-Bernoulli and Timoshenko formulations exhibit linearity, which
can be attributed to the limited computational capabilities available during the time of their
development. These linear models represent simplified versions of their non-linear counterparts,
potentially overlooking more sophisticated deformation behaviors.

Addressing these gaps, the present study takes a novel approach by deriving the deformation
behavior of beams from first principles without resorting to linearization. This approach forms
the foundation for formulating the total energy functional or Lagrangian, capturing the true
deformation characteristics of the beam. By employing the Lagrangian formulation, the classical
model is presented, which offers a more accurate representation of the beam’s deformation
behavior.

This gap identification and rectification in beam analysis research not only challenges the
long-standing assumptions but also strives to improve the understanding and predictive capabilities
of beam behavior. By departing from linear models and incorporating non-linear deformation
behaviors derived from first principles, the study aims to advance the field and pave the way for
more sophisticated computational analyses and design optimizations in the future.

1.3 Variational Formulation

In this section the variational formulation which is the center piece on which this work rested is
described in a rather intuitive and succinct way as contained in the works of [6].

The variational formulation is a generalization of the principle of minimum potential energy,
which states that a system reaches the minimum accessible energy. In this formulation, the
potential energy of a state is described by a functional Φ(𝑢) (Φ(𝑢) : 𝑀 → ℝ). The problem
formulation involves determining the set of admissible states 𝑀 in which the minimum is sought.
The minimization problem for the functional Φ on the set 𝑀 can be expressed as:

Find 𝑢 ∈ 𝑀 such that Φ(𝑢) ≤ Φ(𝑣) ∀𝑣 ∈ 𝑀.
"Variation problem" refers to finding the minimum 𝑢 of the functional Φ(𝑢) by solving the

equation for the first variation (i.e., the first differential) 𝜕𝑣Φ(𝑢) = 0 for all 𝑣 , which has the
same form as the weak formulation. In our context, the variational formulation involves the
minimization of integral functionals Φ(𝑢).
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Weak and Variational Formulation

Consider a Hilbert space𝑊 and its subspace 𝑉 . Let 𝐴(𝑢, 𝑣) be a continuous bilinear form on
𝑊 ×𝑊 , and 𝑏 (𝑣) be a continuous linear functional on𝑊 . We assume that the form 𝑄 (𝑢, 𝑣) is
elliptic on𝑉 , meaning there exists a constant 𝛼 > 0 such that𝑄 (𝑢,𝑢) ≥ 𝛼 ∥𝑢∥2 holds for all 𝑢 ∈ 𝑉 .
For the nonhomogeneous Dirichlet condition, let𝑈 be an element in𝑊 that determines the linear
set 𝑉𝑈 = {𝑣 +𝑈 | 𝑣 ∈ 𝑉 }, which is a subset of𝑊 . We aim to find the solution in the set 𝑉𝑈 . The
weak formulation is given as follows: Find a function 𝑢 ∈𝑊 such that 𝑢 −𝑈 ∈ 𝑉 , or equivalently,
𝑢 ∈ 𝑉𝑈 , and,

𝑎(𝑢, 𝑣) = 𝑏 (𝑣) ∀𝑣 ∈ 𝑉 .

We assume that the form 𝐴(𝑢, 𝑣) is symmetric, satisfying:

𝑎(𝑣,𝑢) = 𝑎(𝑢, 𝑣) ∀𝑢, 𝑣 ∈𝑊 .

Definition 1.1 (Variational formulation Of The Problem). Problem (V) We are looking for
𝑢 ∈ 𝑉𝑈 such that Φ(𝑢) ≤ Φ(𝑣) ∀𝑣 ∈ 𝑉𝑈 .

Let us remark that in the definition the condition Φ(𝑢) ≤ Φ(𝑣) ∀𝑣 ∈ 𝑉𝑈 can be replaced by
any of the following conditions:

1. Φ(𝑢) ≤ Φ(𝑢 + 𝑣) ∀𝑣 ∈ 𝑉 .
2. Φ(𝑢) = inf {Φ(𝑣) | 𝑣 ∈ 𝑉𝑈 } .
3. Φ(𝑢) = inf{Φ(𝑢 + 𝑣) | 𝑣 ∈ 𝑉 }.

Theorem 1.2. (Weak and Variational formulation)
Let𝑊 be the Hilbert space and 𝑸 (𝑢, 𝑣) the symmetric continuous bilinear form on the space𝑊 ×𝑊 ,
which is elliptic on 𝑉 , i.e. 𝑉 -elliptic, 𝑏 ∈ 𝑉 ∗ and Φ(𝑣) the functional Φ(𝑣) = 1

2𝑎(𝑣, 𝑣) − 𝑏 (𝑣). Then
both problems are equivalent: i. e. the function 𝑢 is solution of the weak formulation problem (W), if
and only if the function 𝑢 is the solution of the variational problem (𝑉 ).

Proof. (⇒) Let us prove, that the weak solution is also the variational solution. Let 𝑢 ∈ 𝑉𝑈 be
a solution to the problem (W) and 𝑣 an element of the space 𝑉 . Let us estimate the difference
Φ(𝑢 + 𝑣) − Φ(𝑢). Using linearity of 𝑏, symmetry of 𝑄 (𝑣,𝑢) = 𝑄 (𝑢, 𝑣) and linearity of the form 𝑎

in both variables

Φ(𝑢 + 𝑣) − Φ(𝑢) = 1
2𝑎(𝑢 + 𝑣,𝑢 + 𝑣) − 𝑏 (𝑢 + 𝑣) − 1

2𝑎(𝑢,𝑢) + 𝑏 (𝑢) =

=
1
2 [𝑨(𝑢,𝑢) + 𝑸 (𝑢, 𝑣) +𝑨(𝑣,𝑢) +𝑨(𝑣, 𝑣) −𝑨(𝑢,𝑢)] − 𝑏 (𝑣) =

= 𝑸 (𝑢, 𝑣) − 𝑏 (𝑣) + 1
2𝑸 (𝑣, 𝑣) .

Since 𝑢 is the weak solution, 𝑄 (𝑢, 𝑣) = 𝑏 (𝑣) holds and the first two terms mutually subtracts. Due
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to ellipticity of the form 𝑄 (𝑣, 𝑣) ≥ 𝛼 ∥𝑣 ∥2 on 𝑉 we obtain

Φ(𝑢 + 𝑣) − Φ(𝑢) ≥ 𝛼 ∥𝑣 ∥2.

which implies Φ(𝑢) ≤ Φ(𝑢 + 𝑣). Since 𝑣 was arbitrary, the function 𝑢 is the variational solution.
Moreover the estimate implies that Φ(𝑢+𝑣) attains its minimum in the element𝑢 only, the solution
is unique.

(⇐) Conversely, let us prove that the variational solution is also the weak solution. Let 𝑢 ∈ 𝑉𝑈
be the solution to the problem (V) and 𝑣 ∈ 𝑉 arbitrary. Let us consider the real function,

𝜓 (𝑡) = Φ(𝑢 + 𝑡𝑣) .

Since the functional Φ attains its minimum in 𝑢, the function 𝜓 (𝑡) attains its minimum for 𝑡 = 0.
Since 𝜓 (𝑡) is differentiable, in its minimum 𝜓 ′(0) = 0 holds. Let us compute the derivative

𝜓 ′(𝑡) = d
d𝑡Φ(𝑢 + 𝑡𝑣) = d

d𝑡

[1
2𝑎(𝑢 + 𝑡𝑣,𝑢 + 𝑡𝑣) − 𝑏 (𝑢 + 𝑡𝑣)

]
=

=
d
d𝑡

[1
2𝑎(𝑢,𝑢) +

1
2𝑡𝑎(𝑢, 𝑣) +

1
2𝑡𝑎(𝑣,𝑢) +

1
2𝑡

2𝑸 (𝑣, 𝑣) − 𝑏 (𝑢) − 𝑡𝑏 (𝑣)
]
=

=
1
2𝑸 (𝑢, 𝑣) + 1

2𝑸 (𝑣,𝑢) + 𝑡𝑸 (𝑣, 𝑣) − 𝑏 (𝑣).

Using the symmetry 𝑸 (𝑣,𝑢) = 𝑸 (𝑢, 𝑣), the equality 𝜓 ′(0) = 0 implies 𝑸 (𝑢, 𝑣) − 𝑏 (𝑣) = 0.
Since 𝑣 ∈ 𝑉 was arbitrary, the function 𝑢 is the weak solution.

Theorem 1.3 (Existence and uniqueness of the variational solution). Under the assumptions of
the Theorem 1.2 the functional Φ(𝑢) is bounded from below on 𝑉𝑈 and attains its infimum𝑚 in the
unique point 𝑢, i.e. the variational problem (V) admits unique solution.

1.4 Goal of Thesis

We aim to derive from first principle the nonlinear deformation equation for both Euler-Bernoulli
and Timoshenko beam models and compare them with models in literature.
Similarly, we aim to study the behavior of beam in the non-linear regime using an efficient discrete
model (Hencky-Type)

1.5 Thesis Outline

As earlier presented until now, section 1 looked at the introduction and some literary text on Beam
theories and an important area of gap identified in these literature paved way for this current
study.

Chapter2 looked extensively at the first variation formulation of the strong form equation for
an Euler-Bernoulli Beam catering for the non-linearities that has been oversimplified or downright
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not looked into in literature.
Following same spirit as Chapter 2 , Chapter 3 presented same light but in the case of

Timoshenko-Beam.
Chapter 4 is dedicated to the discrete aspect of the project. As presented in Literature, Henkcy-

Type model has been reported to predict exactly or near exact the behaviour of the non-linear
Euler-Bernoulli beam subjected to pure bending (In-extensibility constraint). So, to affirm this
claim, Section 4 looked extensively in the Discrete description of a beam.

Chapter 5 exhaustively looked into application of the above derived model to 2 separate types
of boundary conditions for beams, the Simply Supported Beam (SS) and, Clamped Free (CF)
or Cantilever Beam. Also, in the same section, the claim of Henkcy-type beam predicting an
Euler-Bernoulli Beam is also presented.

Chapter 6 presents the conclusion of the study and outlines possible future research directions.
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2 Euler- Bernoulli Beam

In the Euler-Bernoulli beam theory, it is assumed that plane cross sections perpendicular to the
axis of the beam remain plane and perpendicular to the axis after deformation [13]

The following assumptions are required to be fulfilled in the formulation of Euler-Bernoulli
Beam theory viz:
1. Assume only planar motion.
2. Cross-section is assumed to be rigid.
3. The Variables of interest - displacement components, and angle of cross-section are continuous

(i.e. 𝑢 (𝑠), 𝑣 (𝑠), 𝜑 (𝑠) ∈ 𝐶0[0, 𝐿]).
4. The cross-section is parallel/collinear to the tangent of the deformation curve, i.e. [𝑐𝑠 ∥ 𝜏𝛾 as

shown in Figure (2.1). This implies that the shear deformation 3 = 0.

2.1 Kinematic Description and Deformation Energy

Figure 2.1: Centerline deformation for Euler-Bernoulli Beam

The beam is imagined as a one dimensional continuum (has high aspect ratio - length to cross-
section area). Its deformed configuration (Fig. 2.1) is described by a regular curve which is

3Shear deformation is the difference between [𝑐𝑠 and 𝜏𝛾
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parameterised. The abscissa 𝑆 ∈ [0, 𝐿] is measured on the straight reference configuration of the
beam 𝛾∗, 𝑢 (𝑆), 𝑣 (𝑆) represents the axial and transverse displacement components. Each point
on the beam axis is associated cross-section (𝑆); and the angle 𝜑 (𝑆) which defines the rotation
of the cross section in the current or deformed configuration 𝛾 . The deformation measures of
an Euler-Bernoulli beam is given as: axial deformation 𝜖, and bending deformation ^ which take
values on the current deformed configuration.

Mathematical Models

In planar motion, there are 3 types of deformation mode that can be introduced to define the
deformation of a beam. These modes are explained as:

• Axial deformation of the beam
Deformation curve of the current configuration 𝛾 can be parameterised as:

𝛾 (𝑆) =

𝑆 + 𝑢 (𝑆),
𝑣 (𝑆) .

(2.1)

The tangent vector to the curve 𝛾 can be expressed from the derivative as:

𝜏𝛾 (𝑆) =

1 + 𝑢′(𝑆),
𝑣′(𝑆) .

(2.2)

The length of the deformed beam in the current configuration is expressed as:

𝐿∗ =

∫ 𝐿

0
∥𝜏𝛾 ∥𝑑𝑆 =

∫ 𝐿

0
𝑔𝑑𝑆.

where,
𝑔 =

√︁
(1 + 𝑢′)2 + (𝑣′)2.

Change of Length
𝐿∗ − 𝐿 =

∫ 𝐿

0
𝑔𝑑𝑆 −

∫ 𝐿

0
𝑑𝑆.

Y =
𝑑 (𝐿∗ − 𝐿)

𝑑𝑠
= (𝑔 − 1) .

The measure of elongation is expressed as

Y =
√︁
(1 + 𝑢′)2 + (𝑣′)2 − 1. (2.3)

• Bending deformation of the beam
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From Figure(2.1), the measure of the cross-section rotation angle 𝜑 is expressed as:

𝜑 = 𝑡𝑎𝑛−1
(
𝑣′

1 + 𝑢′
)
.

Then bending deformation is expressed as:

^ − ^∗ = 𝑑𝜑
𝑑𝑆
.

but, ^∗ = 0 since the reference configuration for the beam is straight.

Performing the differentiation, the bending deformation is thus calculated as:

^ =
𝑣′′ (1 + 𝑢′) − 𝑢′′𝑣′
(1 + 𝑢′)2 + (𝑣′)2

. (2.4)

2.1.1 Euler-Bernoulli (Non-linear Model)

Since we’ve established that the deformation of the beam can be measured by the quantities
(𝑔 − 1) and ^, the associated deformation energy reads as:

ℰ
Def
EB =

∫ 𝐿

0

1
2𝑘𝑒 (𝑔 − 1)2 𝑑𝑠 +

∫ 𝐿

0

1
2𝑘𝑏^

2𝑑𝑠. (2.5)

Substituting the expression of 𝑔 and ^ into Equ.(2.5), we have:

ℰ
Def
EB =

∫ 𝐿

0

1
2𝑘𝑒

(√︃
(1 + 𝑢′)2 + (𝑣′)2 − 1

)2
𝑑𝑠 +

∫ 𝐿

0

1
2𝑘𝑏

[
𝑣′′ (1 + 𝑢′) − 𝑢′′𝑣′
(1 + 𝑢′)2 + (𝑣′)2

]2
𝑑𝑠. (2.6)

The two addends in the above integrals are, respectively, called "extensional energy," and "flexural
energy," and the positive material parameters 𝑘𝑒 and 𝑘𝑏 are the associated stiffness. The total
energy or Lagrangian of Euler-Bernoulli of the system is given as below as:

ℰ
Tot ≡ ℒ =ℰ

Def
EB +𝒲

ext . (2.7)

Where 𝒲 is the potential energy contribution of the external loads applied to the beam. The first
variation of the total energy above is expressed using Theroem 1.2

𝛿ℰTot ≡ 𝛿ℒ = 𝛿ℰDef
EB + 𝛿𝒲ext = 0. (2.8)

The first Variation of the deformation energy for the above deformation energy thus becomes
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𝛿ℰDef
EB =

∫ 𝐿

0

1
2𝑘𝑒 · 2 (𝑔 − 1) × 1

2 · 𝑔 × 2 (1 + 𝑢′) 𝛿𝑢′ +
∫ 𝐿

0

1
2 · 𝑘𝑒 · 2 (𝑔 − 1) × 2𝑣′

2 · 𝑔𝛿𝑣
′

+
∫ 𝐿

0
𝑘𝑏 · ^ · (1 + 𝑢

′) 𝛿𝑣′′
𝑔2

+
∫ 𝐿

0
𝑘𝑏 · ^ · (−𝑣′) 𝛿𝑢

′′

𝑔2

+
∫ 𝐿

0
𝑘𝑏 · ^ ·

(
𝑣′′

(
𝑔2 − 2(1 + 𝑢′)2

)
− 2𝑢′′(1 + 𝑢′)𝑣′

)
𝛿𝑢′

𝑔4

−
∫ 𝐿

0
𝑘𝑏 · ^ ·

(
𝑢′′

(
𝑔2 − 2(𝑣′)2

)
+ 2𝑣′′(1 + 𝑢′)𝑣′

)
𝛿𝑣′

𝑔4
.

Collecting like terms and performing Integration by parts to each term of the above expression
with respect to the test functions 𝛿𝑢′, 𝛿𝑣′, 𝛿𝑢′′, 𝛿𝑣′′, and combining them afterward gives:

𝛿ℰDef
EB =

−
∫ 𝐿

0

( [
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′)

]′
+

[
𝑘𝑏^𝑣

′

𝑔2

]′′
+

[
𝑘𝑏^

𝑔4

(
𝑣′′

(
𝑔2 − 2 (1 + 𝑢′)2

)
− 2𝑢′′ (1 + 𝑢′)2 𝑣′

)]′)
𝛿𝑢𝑑𝑠

−
∫ 𝐿

0

( [
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′
]′
−

[
𝑘𝑏^ (1 + 𝑢′)

𝑔2

]′′
−

[
𝑘𝑏^

𝑔4

(
𝑢′′

(
𝑔2 − 2 (𝑣′)2

)
+ 2𝑣′′ (1 + 𝑢′) 𝑣′

)]′)
𝛿𝑣𝑑𝑠

+
( [
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′)

]
+

[
𝑘𝑏^𝑣

′

𝑔2

]′
+

[
𝑘𝑏^

𝑔4

(
𝑣′′

(
𝑔2 − 2 (1 + 𝑢′)2

)
− 2𝑢′′ (1 + 𝑢′)2 𝑣′

)] )
𝛿𝑢

����𝐿
0

+
( [
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′
]
−

[
𝑘𝑏𝐾 (1 + 𝑢′)

𝑔2

]′
+

[
𝑘𝑏^

𝑔4

(
𝑢′′

(
𝑔2 − 2 (𝑣′)2

)
+ 2𝑣′′ (1 + 𝑢′) 𝑣′

)] )
𝛿𝑣

����𝐿
0

−
[
𝑘𝑏^𝑣

′

𝑔2

]
𝛿𝑢′

����𝐿
0
−

[
𝑘𝑏^ (1 + 𝑢′)

𝑔2

]
𝛿𝑣′

����𝐿
0
= 0 ∀𝛿𝑢, 𝛿𝑣, 𝛿𝑢′, 𝛿𝑣′. (2.9)

Considering a beam Fig.(2.2) subject to [complex loading 4] of all possible external loads that can
be sustained by a beam. This approach is to enable the non-linear model be robust to cater for all
possible combinations of loading a beam can be subjected.
The external work potential for these complex loading subjected to the beam is expressed as.

𝛿𝒲ext = −
∫ 𝐿

0
𝑏1(𝑠)𝛿𝑢 −

∫ 𝐿

0
𝑏2(𝑠)𝛿𝑣 −

∫ 𝐿

0
` (𝑠)𝛿𝜑 − 𝐹𝛿𝑣 |𝐿0 − 𝑁𝛿𝑢 |𝐿0 − 𝑀𝛿𝜑 |𝐿0 = 0. (2.10)

Recall that 𝜑 = 𝑓 (𝑢, 𝑣), hence the first variation of this parameter is given as:

𝛿𝒲ext = −
∫ 𝐿

0
𝑏1(𝑠)𝛿𝑢 −

∫ 𝐿

0
𝑏2(𝑠)𝛿𝑣 −

∫ 𝐿

0
` (𝑠) 𝜕𝜑

𝜕𝑢′
𝛿𝑢′𝑑𝑠

4It’s impossible to have a beam subjected to these hypothetical complex loading simultaneously in real life
application
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−
∫ 𝐿

0
` (𝑠) 𝜕𝜑

𝜕𝑣′
𝛿𝑣′𝑑𝑠 − 𝐹𝛿𝑣 |𝐿0 − 𝑁𝛿𝑢 |𝐿0 −𝑀

𝜕𝜑

𝜕𝑢′
𝛿𝑢′ |𝐿0 −𝑀

𝜕𝜑

𝜕𝑣′
𝛿𝑣′ |𝐿0 = 0. (2.11)

where
1. 𝑏1(𝑠) is the uniform axial load along the length of beam
2. 𝑏2(𝑠) is the uniform transverse load along the length of the beam
3. ` (𝑠) is the uniform couple load along the the length of the beam
4. 𝐹 is the transverse force applied to the end of the beam
5. 𝑀 is the bending moment applied to the free end of the beam
6. 𝑁 is the axial load applied to the free end of the beam

Figure 2.2: Complex Loading of a Clamped-Free Beam

Simplifying the above first variation by incorporating the dependence of 𝑢 and 𝑣 on 𝜑 , we
have:

𝛿𝒲ext = −
∫ 𝐿

0
𝑏1(𝑠)𝛿𝑢 −

∫ 𝐿

0
𝑏2(𝑠)𝛿𝑣 +

∫ 𝐿

0
` (𝑠) 𝑣

′

𝑔2
𝛿𝑢′ −

∫ 𝐿

0
` (𝑠)

(1 + 𝑢′
𝑔2

)
𝛿𝑣′𝑠

− 𝐹𝛿𝑣 |𝐿0 − 𝑁𝛿𝑢 |𝐿0 + 𝑀
(
𝑣′

𝑔2

)
𝛿𝑢′

����𝐿
0
− 𝑀

(1 + 𝑢′
𝑔2

)
𝛿𝑣′

����𝐿
0
= 0.

Performing integration by part on the first variation of external potential to undifferentiate the
test functions 𝛿𝑢′ and 𝛿𝑣′, we have:

𝛿𝒲ext = −
∫ 𝐿

0

(
𝑏1(𝑠) +

(
` (𝑠)𝑣′
𝑔2

)′)
𝛿𝑢 −

∫ 𝐿

0

(
𝑏2(𝑠) −

(
` (𝑠) (1 + 𝑢′)

𝑔2

)′)
𝛿𝑣 +

(
` (𝑠)𝑣′
𝑔2

)
𝛿𝑢

����𝐿
0

−
(
` (𝑆) (1 + 𝑢′)

𝑔2

)
𝛿𝑣

����𝐿
0
+

(
𝑀𝑣′

𝑔2

)
𝛿𝑢′

����𝐿
0
−

(
𝑀 (1 + 𝑢′)

𝑔2

)
𝛿𝑣′

����𝐿
0
= 0 ∀𝛿𝑢, 𝛿𝑣, 𝛿𝑢′, 𝛿𝑣′.

(2.12)

The strong formulation for the system is obtained by substitution Equ.(2.9) and Equ.(2.12) into
Equ.(2.8). Using the test lemma defined in 7.7, performing necessary mathematical manipulation,
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the differential equation and the boundary conditions describing the deformation of Euler-Bernoulli
beam is given below as:

[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′)

]′
+

[
` (𝑠)𝑣′
𝑔2

]′
+

[
𝑘𝑏^𝑣

′

𝑔2

]′′
+

[
𝑘𝑏^

𝑔4

(
𝑣′′

(
𝑔2 − 2 (1 + 𝑢′)2

)
− 2𝑢′′ (1 + 𝑢′) 𝑣′

)]′
+ 𝑏1(𝑠) = 0. (2.13)

[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′
]′
−

[
` (𝑠) (1 + 𝑢′)

𝑔2

]′
−

[
𝑘𝑏^ (1 + 𝑢′)

𝑔2

]′′
+

[
𝑘𝑏^

𝑔4

(
𝑢′′

(
𝑔2 − 2 (𝑣′)2

)
+ 2𝑣′′ (1 + 𝑢′) 𝑣′

)]′
+ 𝑏2(𝑠) = 0. (2.14)

Using the following definition,

𝐵𝑢 :=
[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′)

]
+

[
` (𝑠)𝑣′
𝑔2

]
+

[
𝑘𝑏^𝑣

′

𝑔2

]′
+

[
𝑘𝑏^

𝑔4

(
𝑣′′

(
𝑔2 − 2 (1 + 𝑢′)2

)
− 2𝑢′′ (1 + 𝑢′) 𝑣′

)]
𝐵𝑣 :=

[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′
]
−

[
` (𝑠) (1 + 𝑢′)

𝑔2

]
−

[
𝑘𝑏𝑘 (1 + 𝑢′)

𝑔2

]′
+

[
𝑘𝑏^

𝑔4

(
𝑢′′

(
𝑔2 − 2 (𝑣′)2

)
+ 2𝑣′′ (1 + 𝑢′) 𝑣′

)]
𝐵𝑢𝑝 :=

[
𝑘𝑏^ +𝑀
𝑔2

]
𝑣′

𝐵𝑣𝑝 :=
[
𝑘𝑏^ −𝑀
𝑔2

]
(1 + 𝑢′)

The boundary condition for the system is thus given as:

𝐵𝑢 = 𝑁 or 𝛿𝑢 = 0. (2.15)
𝐵𝑣 = 𝐹 or 𝛿𝑣 = 0. (2.16)
𝐵𝑢𝑝 = 0 or 𝛿𝑢′ = 0. (2.17)
𝐵𝑣𝑝 = 0 or 𝛿𝑣′ = 0. (2.18)

2.1.2 Euler-Bernoulli (Linear Model)

The linear approximation of the Euler-Bernoulli model is achieved by linearising the elongation and
bending measure of deformation of a beam as discussed earlier. The two measures of deformation
are expanded using Taylor’s series and truncated at the linear term. This procedure is as exemplified
below:

Elongation Approximation

Recall that Y =
√︃
(1 + 𝑢′)2 + (𝑣′)2 − 1.
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Y (𝑢′, 𝑣′) = Y |𝑢′=0
𝑣 ′=0

+ 𝜕Y

𝜕𝑢′

����
𝑢′=0
𝑣 ′=0

𝑢′ + 𝜕Y

𝜕𝑣′

����
𝑢′=0
𝑣 ′=0

𝑣′ + · · · + ℎ.𝑜.𝑡 .

Each term of the expansion is as expressed below:

Y |𝑢′=0
𝑣 ′=0

= 0.

𝜕Y

𝜕𝑢′
=

(1 + 𝑢′)√︃
(1 + 𝑢)′)′ + (𝑣′)2

�������
𝑢′=0
𝑣 ′=0

= 1.

𝜕Y

𝜕𝑣′
=

(𝑣′)√︃
(1 + 𝑢)′)′ + (𝑣′)2

�������
𝑢′=0
𝑣 ′=0

= 0.

The linearised elongation term is therefore given as:

Y𝑙𝑖𝑛 = 𝑢
′. (2.19)

Bending Curvature Linear Approximation

Recall that the bending curvature was earlier derived as:

^ =
𝑣′′ (1 + 𝑢′) − 𝑢′′𝑣′
(1 + 𝑢′)2 + (𝑣′)2

.

Performing Taylor’s series expansion of this parameter around the origin we have:

^ (𝑢′, 𝑣′, 𝑢′′, 𝑣′′) = ^ |𝑢′=0
𝑣 ′=0
𝑢′′=0
𝑣 ′′=0

+ 𝜕^

𝜕𝑢′

����𝑢′=0
𝑣 ′=0
𝑢′′=0
𝑣 ′′=0

𝑢′ + 𝜕^

𝜕𝑣′

����𝑢′=0
𝑣 ′=0
𝑢′′=0
𝑣 ′′=0

𝑣′ + 𝜕^

𝜕𝑢′′

����𝑢′=0
𝑣 ′=0
𝑢′′=0
𝑣 ′′=0

𝑢′′ + 𝜕^

𝜕𝑣′′

����𝑢′=0
𝑣 ′=0
𝑢′′=0
𝑣 ′′=0

𝑣′′ + · · · + ℎ.𝑜.𝑡 .

Performing the same procedure as the elongation case, the linearised bending curvature is
evaluated as:

^𝑙𝑖𝑛 = 𝑣
′′. (2.20)

Substituting the evaluated linear approximations into the deformation energy functional, we
have:



2 Euler- Bernoulli Beam 35

ℰ
Def
EB-lin =

∫ 𝐿

0

1
2𝑘𝑒 (𝑢

′)2 𝑑𝑠 +
∫ 𝐿

0

1
2𝑘𝑏 (𝑣

′′)2 𝑑𝑠. (2.21)

Remark. 1. The first term of the linearised energy functional corresponds to the case of elonga-
tion of the beam.

2. The second term caters for the pure bending and (or) the in-extensible characteristics

The first variation of the linearised deformation energy is expressed as:

𝛿ℰDef
EB-lin =

∫ 𝐿

0
𝑘𝑒𝑢

′𝛿𝑢′𝑑𝑠 +
∫ 𝐿

0
𝑘𝑏 (𝑣′′)𝛿𝑣′′𝑑𝑠 = 0 ∀𝛿𝑢′, 𝛿𝑣′′.

Performing integration by part to the expression above, we have the

𝛿ℰDef
EB-lin = −

∫ 𝐿

0
(𝑘𝑒𝑢′)′𝛿𝑢𝑑𝑠 + (𝑘𝑒𝑢′) 𝛿𝑢 |𝐿0 −

∫ 𝐿

0
(𝑘𝑏𝑣′′)′′𝛿𝑣𝑑𝑠 − (𝑘𝑏𝑣′′)′ 𝛿𝑣

��𝐿
0

+ (𝑘𝑏𝑣′′) 𝛿𝑣′|𝐿0 = 0 ∀𝛿𝑢, 𝛿𝑣, 𝛿𝑣′. (2.22)

Utilizing the external work first variation expression derived in Equ.(2.10), and combining with
the Equ.(2.22) and test lemma definition used earlier in the nonlinear case, yields the strong
formulation equation for both the elongation and bending curvature measures of deformation
respectively as:
Axial Elongation Deformation:

𝑘𝑒𝑢
′′ + 𝑏1(𝑠) = 0, 𝑠 ∈ [0, 𝐿] if, 𝑘𝑒 = 𝑐 ∈ ℝ.

Subject to the following boundary conditions
[(𝑘𝑒𝑢′) − 𝑁 ] 𝛿𝑢 |𝐿0 = 0.
This is expressed as:

(𝑘𝑒𝑢′) |0 = 0, or 𝛿𝑢 = 0.
(𝑘𝑒𝑢′) |𝐿 = 𝑁, or 𝛿𝑢 = 0. (2.23)

Similarly the Transverse Deformation is given as:

𝑘𝑏𝑣
′′′′ + ` (𝑠) − 𝑏2(𝑠) = 0, 𝑠 ∈ [0, 𝐿] if, 𝑘𝑏 = 𝑐 ∈ ℝ.

Subject to the following boundary conditions
[𝑘𝑏𝑣′′′ − 𝐹 − `] 𝛿𝑣 |𝐿0 = 0.
[(𝑘𝑏𝑣′′) −𝑀] 𝛿𝑣′|𝐿0 = 0. (2.24)

Careful examination of Equ. 2.24, we can see that it is the recovery of Euler-Bernoulli Beam



36 2 Euler- Bernoulli Beam

theory defined in Equ. 1.1. This is achieved by setting ` (𝑠) = 0, 𝑞(𝑥) = 𝑏2(𝑠), and𝑘𝑏 = 𝐸𝐼

2.2 Application to a Clamped-Free (CF) Beam

Applying the above equation to a Clamped-Free/Cantilever Beam, we have the equation above
reduced to:

Figure 2.3: Cantilever Beam (CF) and its boundary conditions

[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′)

]′
+

[
𝑘𝑏^𝑣

′

𝑔2

]′′
+

[
𝑘𝑏^

𝑔4

(
𝑣′′

(
𝑔2 − 2 (1 + 𝑢′)2

)
− 2𝑢′′ (1 + 𝑢′) 𝑣′

)]′
= 0.

(2.25)[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′
]′
−

[
𝑘𝑏^ (1 + 𝑢′)

𝑔2

]′′
+

[
𝑘𝑏^

𝑔4

(
𝑢′′

(
𝑔2 − 2 (𝑣′)2

)
+ 2𝑣′′ (1 + 𝑢′) 𝑣′

)]′
= 0.

(2.26)

𝐵𝑢 |𝐿 = 0, 𝐵𝑣 |𝐿 = 𝐹 .
𝐵𝑢𝑝 |0 = 0, 𝐵𝑣𝑝 |0 = 0. (2.27)
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2.3 Application to a Simply Supported (SS) Beam

Figure 2.4: Simply Supported Beam (SS) and its boundary conditions

The corresponding Euler-Bernoulli deflection equation and it’s corresponding boundary condition
for the Simply Supported (SS) Beam is expressed below as:[

𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′)

]′
+

[
𝑘𝑏^𝑣

′

𝑔2

]′′
+

[
𝑘𝑏^

𝑔4

(
𝑣′′

(
𝑔2 − 2 (1 + 𝑢′)2

)
− 2𝑢′′ (1 + 𝑢′) 𝑣′

)]′
= 0.

(2.28)[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′
]′
−

[
𝑘𝑏^ (1 + 𝑢′)

𝑔2

]′′
+

[
𝑘𝑏^

𝑔4

(
𝑢′′

(
𝑔2 − 2 (𝑣′)2

)
+ 2𝑣′′ (1 + 𝑢′) 𝑣′

)]′
= 0.

(2.29)

𝑢 (0) = 𝑢 (𝐿) = 0.
𝐵𝑢𝑝 |0 = 0, 𝐵𝑣𝑝 |𝐿 = 𝑀. (2.30)
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3 Timoshenko Beam

3.1 Kinematic Description and Deformation Energy

Figure 3.1: Centerline deformation for Timoshenko Beam

The beam is imagined as a one dimensional continuum (has high aspect ratio - length to
cross-section area). Its deformed configuration (Fig. 3.1) is described by a regular curve which is
parameterised. The abscissa 𝑆 ∈ [0, 𝐿] is measured on the straight reference configuration of the
beam 𝛾∗, and 𝑢 (𝑆), 𝑣 (𝑆), 𝜑 (𝑠) represents the axial and transverse displacement components and
cross-section rotation angle respectively. Each point on the beam axis is associated cross-section
(𝑆); and the angle 𝛽 (𝑆) which defines the shear angle between normal to the cross-section of the
geometry to the tangent to deformed configuration in the current configuration𝛾 . The deformation
measures of an Timoshenko beam is given as: axial deformation 𝜖, bending deformation ^ and
shear deformation 𝛽 which take values on the current deformed configuration.

Mathematical Model

The axial and bending measure of deformation described in Euler-Bernoulli framework is also
valid in the case of Timoshenko beam. The additional measure of deformation that’s considered
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in Timoshenko’s model is that of shear deformation. Also, it’s pertinent to emphasise that the
rotation angle 𝜑 (𝑠) in the case of the present model is independent of the axial and transverse
displacement 𝑢 (𝑠), 𝑣 (𝑠). The shear deformation is expressed from Figure(3.1) as:

𝛽 = 𝑡𝑎𝑛−1
(
𝑣′

1 + 𝑢′
)
− 𝜑. (3.1)

3.1.1 Timoshenko Beam (Non-Linear Model)

Since we’ve established that the deformation of the beam can be measured by the quantities
(𝑔 − 1) , ^, and 𝛽 the associated energy reads as:

ℰTIM =

∫ 𝐿

0

1
2𝑘𝑒 (𝑔 − 1)2 𝑑𝑠 +

∫ 𝐿

0

1
2𝑘𝑏 (𝜑

′)2 𝑑𝑠 +
∫ 𝐿

0

1
2𝑘𝑠𝛽

2𝑑𝑠. (3.2)

where,
𝑔 =

√︃
(1 + 𝑢′)2 + (𝑣′)2.

𝛽 = tan−1
(
𝑣′

1 + 𝑢′
)
− 𝜑.

Substituting the expression of 𝑔, and 𝛽 into Equ.(3.2), we have:

ℰ
Def
TIM =

∫ 𝐿

0

1
2𝑘e

(√︃
(1 + 𝑢′)2 + (𝑣′)2 − 1

)2
𝑑𝑠 +

∫ 𝐿

0

1
2𝑘𝑏 (𝜑

′)2 𝑑𝑠 +
∫ 𝐿

0

1
2𝑘𝑠

[
tan−1

(
𝑣′

1 + 𝑢′
)
− 𝜑

]2
𝑑𝑠.

(3.3)

The three addends in the above integrals are, respectively, called "extensional energy", "flexural
energy", and "shear energy" and the positive material parameters 𝑘𝑒 , 𝑘𝑏 and 𝑘𝑠 are the associated
stiffness.

𝛿ℰDef
TIM =∫ 𝐿

0

1
2𝑘𝑒 · 2

(√︃
(1 + 𝑢′)2 + (𝑣′)2 − 1

)
· 1

2
√︃
(1 + 𝑢′)2 + (𝑣′)2

· 2 (1 + 𝑢′) 𝛿𝑢′𝑑𝑠

+ 1
2 · 𝑘𝑒 · 2

(√︃
(1 + 𝑢′)2 + (𝑣′)2 − 1

)
· 2𝑣′

2
√︃
(1 + 𝑢′)2 + (𝑣′)2

𝛿𝑣′𝑑𝑠 + 1
2𝑘𝑏 · 2 (𝜑

′) 𝛿𝜑′𝑑𝑠

+ 1
2𝑘𝑠 · 2

(
tan−1

(
𝑣′

1 + 𝑢′
)
− 𝜑

)
· 1
1 +

(
𝑣 ′

1+𝑢′
)2 · 𝑣′(−1) (1 + 𝑢′)−2 𝛿𝑢′𝑑𝑠

+ 1
2𝑘𝑠 · 2

(
tan−1

(
𝑣′

1 + 𝑢′
)
− 𝜑

)
· 1
1 +

(
𝑣 ′

1+𝑢′
)2 · 𝛿𝑣′

(1 + 𝑢′) +
1
2𝑘𝑠 · 2

(
tan−1

(
𝑣′

1 + 𝑢′
)
− 𝜑

)
(−1)𝛿𝜑𝑑𝑠.

Performing some necessary housekeeping, using the definition defined above. The above
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expression is simplified as:

𝛿ℰDef
TIM =

∫ 𝐿

0

[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣′

𝑔2

]
𝛿𝑢′𝑑𝑠 +

∫ 𝐿

0

[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

]
𝛿𝑣′𝑑𝑠

+
∫ 𝐿

0
𝑘𝑏𝜑

′𝛿𝜑′𝑑𝑠 −
∫ 𝐿

0
𝑘𝑠𝛽𝛿𝜑𝑑𝑠. (3.4)

Performing integration by parts to undifferentiate the test functions in each variable, yields the
expression below:

𝛿ℰDef
TIM = −

∫ 𝐿

0

[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣

′

𝑔2

]′
𝛿𝑢𝑑𝑠 +

[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣

′

𝑔2

] ����𝐿
0
𝛿𝑢

−
∫ 𝐿

0

[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

]′
𝛿𝑣𝑑𝑠 +

[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

] ����𝐿
0
𝛿𝑣

−
∫ 𝐿

0

[
(𝑘𝑏𝜑′)′ + 𝑘𝑠𝛽

]
𝛿𝜑𝑑𝑠 + [𝑘𝑏𝜑′] |𝐿0 𝛿𝜑 = 0 ∀𝛿𝑢, 𝛿𝑣 𝛿𝜑. (3.5)

Recall that

𝛿ℰ𝑇𝑜𝑡 ≡ 𝛿ℒ = 𝛿ℰDef + 𝛿𝒲ext = 0. (3.6)

The general work potential of external loading subjected to a beam is expressed as:

𝛿𝒲ext = −
∫ 𝐿

0
𝑏1(𝑠)𝛿𝑢𝑑𝑠 −

∫ 𝐿

0
` (𝑠)𝛿𝜑𝑑𝑠 −

∫ 𝐿

0
𝑏2(𝑠)𝛿𝑣𝑑𝑠 − 𝐹𝛿𝑣 |𝐿0 − 𝑁𝛿𝑢 |𝐿0 −𝑀𝛿𝜑 |𝐿0 = 0.

Substitute the above work potential into the Lagrangian expression above we have the following
systems of the differential equation.

[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣

′

𝑔2

]′
+ 𝑏1(𝑠) = 0. (3.7)[

𝑘𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

]′
+ 𝑏2(𝑠) = 0. (3.8)

[𝑘𝑏𝜑′]′ + 𝑘𝑠𝛽 + ` (𝑠) = 0. (3.9)

Using the following definition,

𝐶𝑢 :=
[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣

′

𝑔2

]
.

𝐶𝑣 :=
[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

]
.

𝐶𝜑 := [𝑘𝑏𝜑′] .



3 Timoshenko Beam 41

The boundary condition for the system is thus given as:

𝐶𝑢 = 𝑁 or 𝛿𝑢 = 0. (3.10)
𝐶𝑣 = 𝐹 or 𝛿𝑣 = 0. (3.11)
𝐶𝜑 = 𝑀 or 𝛿𝜑 = 0. (3.12)

3.1.2 Timoshenko Beam (Linear Model)

The linear elongation contribution approximation is as derived in the case of Euler-Bernoulli above.
Timoshenko has its bending curvature case not simplified as it depends only on 𝜑 (i.e. ^𝑙𝑖𝑛 = 𝜑′)
and not 𝑢 and 𝑣 like that of Euler-Bernoulli. The only term that needs further linearization is the
shear term 𝛽.
Recall that the shear angle is earlier derived as:

𝛽 = tan−1
(
𝑣′

1 + 𝑢′
)
− 𝜑.

Linearising this term gives:

𝛽𝑙𝑖𝑛 = 𝑣
′ − 𝜑. (3.13)

Substituting the evaluated linear approximation into the deformation energy functional, we have:

ℰ
Def
TM-lin =

∫ 𝐿

0

1
2𝑘𝑒 (𝑢

′)2 𝑑𝑠 +
∫ 𝐿

0

1
2𝑘𝑏 (𝜑

′)2 𝑑𝑠 +
∫ 𝐿

0

1
2𝑘𝑠 (𝑣

′ − 𝜑)2 𝑑𝑠. (3.14)

Remark. 1. The first term of the linearised energy functional corresponds to the case of elongation
of the beam.

2. The second term caters for the pure bending and (or) the in-extensible characteristics
3. The third term predicts the shear effects of the beam when subjected to external load.

For the first term of the energy functional, the analysis follows similarly as that carried out in
Euler-Bernoulli. Attention is placed on the coupled bending and shear contribution:

ℰ
Def
bs-lin =

∫ 𝐿

0

1
2𝑘𝑏 (𝜑

′)2 𝑑𝑠 +
∫ 𝐿

0

1
2𝑘𝑠 (𝑣

′ − 𝜑)2 𝑑𝑠. (3.15)

The first variation of Equ.(3.15) above becomes:



42 3 Timoshenko Beam

𝛿ℰDef
bs-lin =

∫ 𝐿

0
𝑘𝑏 (𝜑′) 𝛿𝜑′𝑑𝑠 −

∫ 𝐿

0
𝑘𝑠 (𝑣′ − 𝜑) 𝛿𝜑𝑑𝑠 +

∫ 𝐿

0
𝑘𝑠 (𝑣′ − 𝜑) 𝛿𝑣′𝑑𝑠 = 0.

Performing integration by part to the expression above, we have the

𝛿ℰDef
bs-lin = −

∫ 𝐿

0
(𝑘𝑏𝜑′)′𝛿𝜑𝑑𝑠 + (𝑘𝑏𝜑′) 𝛿𝜑 |𝐿0 −

∫ 𝐿

0
𝑘𝑠 (𝑣′ − 𝜑)𝛿𝜑𝑑𝑠

−
∫ 𝐿

0
(𝑘𝑠 (𝑣′ − 𝜑))′ 𝛿𝑣𝑑𝑠 + (𝑘𝑠 (𝑣′ − 𝜑)) 𝛿𝑣 |𝐿0 = 0 ∀𝛿𝑣, 𝛿𝜑. (3.16)

Utilizing the external work first variation expression derived in Equ.(2.10), and combining
with the Equ.(3.16) yields the classical formulation of the coupled bending and shear contribution
given below as:
Bending Deformation:

𝑘𝑠 ((𝑣′ − 𝜑))′ + 𝑏2(𝑠) = 0, 𝑠 ∈ [0, 𝐿] if, 𝑘𝑠 = 𝑐 ∈ ℝ.

Subject to the following boundary conditions
[𝑘𝑠 ((𝑣′ − 𝜑)) − 𝐹 ] 𝛿𝑣 |𝐿0 = 0.

This is expressed as:
𝑘𝑠 ((𝑣′ − 𝜑)) |0 = 0, or 𝛿𝑣 = 0.
𝑘𝑠 ((𝑣′ − 𝜑)) |𝐿 = 𝐹, or 𝛿𝑣 = 0. (3.17)

The Shear Deformation is also expressed as:

𝑘𝑏 (𝜑)′ + 𝑘𝑠 ((𝑣′ − 𝜑)) + ` (𝑠) = 0, 𝑠 ∈ [0, 𝐿] if, 𝑘𝑠, 𝑘𝑏 = 𝑐 ∈ ℝ.

Subject to the following boundary conditions :
[𝑘𝑏𝜑′ −𝑀] 𝛿𝜑 |𝐿0 = 0.
This is expressed as:

(𝑘𝑏𝜑′ −𝑀) |0 = 0, or 𝛿𝜑 = 0.
(𝑘𝑏𝜑′ −𝑀) |𝐿 = 𝑀, or 𝛿𝜑 = 0. (3.18)

3.1.3 Saint-Venants Micro-Macro Identification (Linearised)

The relation between the elongation, bending and shear stiffness 𝑘𝑒, 𝑘𝑏 , and 𝑘𝑠 and its constitutive
properties is given by Saint-Venant and it is as described below:

𝑘𝑒 = 𝑌 · 𝐴. (3.19)
𝑘𝑏 = 𝑌 · 𝐽 . (3.20)
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𝑘𝑠 = 𝑞 ·𝐺 · 𝐴. (3.21)

where,
1. 𝐴 is the cross-section area of the beam.
2. 𝐽 is the second moment of area of the cross-section of the beam.
3. 𝑌 is the Young’s modulus of the beam.
4. 𝐺 is the section modulus of the beam expressed as:

𝐺 =
𝑌

2(1 + a) .

5. 𝑞 is the corrective factor. According to [5], the numerical value for 𝑞 is given as:

𝑞 =
5
6 and 6

7

for rectangular and circular cross-section respectively.
6. a is the poisson’s ratio of the material of the beam.

3.2 Application to Clamped-Free (CF)beam

The differential equation as well as its boundary condition is expressed as:[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣

′

𝑔2

]′
= 0.[

𝑘𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

]′
= 0.

[𝑘𝑏𝜑′]′ + 𝑘𝑠𝛽 = 0.
Subject to the following BCs.:[

𝐾𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣

′

𝑔2

] ����
𝐿

= 0.[
𝐾𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

] ����
𝐿

= 𝐹 .

[𝐾𝑏𝜑′] |𝐿 = 0.

3.3 Application to Simply Supported (SS) Beam[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽𝑣

′

𝑔2

]′
= 0.[

𝑘𝑙

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

]′
= 0.

[𝑘𝑏𝜑′]′ + 𝑘𝑠𝛽 = 0.
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Subject to the following BCs.:[
𝑘𝑒

(
1 − 1

𝑔

)
(1 + 𝑢′) − 𝑘𝑠𝛽

′

𝑔2

] ����
𝐿

= 0.[
𝑘𝑒

(
1 − 1

𝑔

)
𝑣′ + 𝑘𝑠𝛽

𝑔2
(1 + 𝑢′)

����
𝐿

= 0

[𝑘𝑏𝜑′] |𝐿 = 𝑀.
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4 Hencky-Type Discrete Model

4.1 Kinematic Description

To formulate the Hencky-Type model, the following assumptions which are peculiar to continuous
Euler-Bernoulli beam model are used [2]:
1. The conservative part of deformation energy (i.e. elastic energy) depends upon the relative

Hencky-bars rotations (i.e. discrete).
2. The Hencky bars are rigid (i.e. the axis of the Euler beam is inextensible).
3. As a result of the simplicity of the Hencky model then the concept of shear deformation cannot

even be formulated when considering the discrete model, this situation corresponds to the
assumption that the the cross-section with respect to the axis of the beams is negligible; and
that this cross-section must be regarded to be not deformable.

Figure 4.1: Hencky-Type lumped mass-spring model for high flexible beam.

Adapting the Hencky technique, we consider a discrete systemmade of an ’articulated’ sequence
of 𝑁𝑒 (rigid, as the beam is assumed inextensible) rods of length [ which are constrained at their
terminal points by perfect hinges, 𝑖 .𝑒 . hinges which are exerting vanishing couples. Modelling
the elasticity effects which are resistant to the bending of a mechanical system, we assume a
rotational spring is applied at each joint connecting adjacent rods. See Fig. 4.1.
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To fully describe each Lagrangian configuration of the Hencky system, it suffices only to specify
the Lagrangian angular coordinates Φ𝑖 .These coordinates determine the orientation of each of
the considered rigid rods relative to the 𝑥 -axis which is chosen to be horizontal (the applied loads
will be assumed to be vertical). The direction along which the applied loads are assumed to be
directed coincides with the 𝑦-axis, which is oriented vertically upwards.
The set of bars, before the deformation, is assumed to be straight along the 𝑦-axis. The springs will
have their rest length such that this configuration will have the minimum of deformation energy.

4.2 Mathematical Model

4.2.1 Hencky-Type Approximation

The bending deformation energy of the Hencky discrete model is postulated in [2] as:

Ψ𝑒𝑙 =
𝑁𝑒∑︁
𝑖=1

𝑘𝑏𝑖
𝜙2
𝑖

2 . (4.1)

Where,
• 𝑘𝑏𝑖 is the bending stiffness for each section of the rod.
• 𝜙𝑖 is the relative angles between adjacent rods.
• 𝑁𝑒 is the total number of adjacent rods that makes the beam.
Because of clamping constraint, we set 𝜙1 = Φ1, while

𝜙𝑖 = Φ𝑖+1 − Φ𝑖 for 𝑖 ≥ 2

𝜙𝑖 =
Φ𝑖+1 − Φ𝑖

[
[. (4.2)

Substitute the expression above into the quadratic bending deformation energy given in Equ.(4.1),
and evaluating it as [ → 0, we have:

Ψ𝑒𝑙 =
𝑁𝑒∑︁
𝑖=1

𝑘𝑏𝑖

(
Φ𝑖+1 − Φ𝑖

[𝑖

)2 [2𝑖
2 . (4.3)

Ψ𝑒𝑙 = lim
[𝑖→0

(
𝑁𝑒∑︁
𝑖=1

𝑘𝑏𝑖

(
Φ𝑖+1 − Φ𝑖

[𝑖

)2 [2𝑖
2

)
. (4.4)

Using the definition that:
𝜑′ = lim

[𝑖→0

(
Φ𝑖+1 − Φ𝑖

[𝑖

)
.
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The Hencky-discrete model represented by Equ.(4.4), after using the definition above becomes:

Ψ𝑒𝑙 =

∫ 𝐿

0

1
2𝑘𝑏 (𝜑

′)2. (4.5)

Where 𝜑 is the rotation angle as defined in the Euler-Bernoulli continuous framework, and it
retains its earlier definition of

𝜑 = 𝑡𝑎𝑛−1
(
𝑣′

1 + 𝑢′
)
.

As analyzed above, the limit case of the Hencky-type approach gives the inextensibility con-
straint of the Non-linear Euler-Bernoulli model which validates or affirms the claim of Hencky
model as reported in [2].

4.2.2 Inextensibility Constraint (𝑔 − 1) = 0 of Euler-Bernoulli

Let’s recall that the Non-linear Euler-Bernoulli energy functional is given as:

ℰ
Def
EB =

∫ 𝐿

0

1
2𝑘𝑒 (𝑔 − 1)2𝑑𝑠 +

∫ 𝐿

0

1
2𝑘𝑏

[
𝑣′′ (1 + 𝑢′) − 𝑢′′𝑣′
(1 + 𝑢′)2 + (𝑣′)2

]2
𝑑𝑠.

Imposing the inextensibility constraint: (𝑔 − 1) = 0 and 𝑔 is recalled to be

𝑔 =

√︃
(1 + 𝑢′)2 + (𝑣′)2.

The energy functional after imposing the inextensibility constraint thus becomes:

ℰ
Def
EB =

∫ 𝐿

0
𝑁 (𝑔 − 1)𝑑𝑠 +

∫ 𝐿

0

1
2𝑘𝑏

[
𝑣′′ (1 + 𝑢′) − 𝑢′′𝑣′
(1 + 𝑢′)2 + (𝑣′)2

]2
𝑑𝑠. (4.6)

Where,
𝑁 is the lagrange mutliplier which interpretes as the axial force per-unit line that has to be imposed
on the system, in order to satisfy the inextensibility constraint. The first variation of the above
energy thus becomes:

𝛿ℰDef
EB =

∫ 𝐿

0
𝑁𝛿 (𝑔 − 1)𝑑𝑠 +

∫ 𝐿

0

1
2𝑘𝑏𝛿

[
𝑣′′ (1 + 𝑢′) − 𝑢′′𝑣′
(1 + 𝑢′)2 + (𝑣′)2

]2
𝑑𝑠. (4.7)

The second addend’s first variation has been derived earlier in the Euler-Bernoulli case. The
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First addend needs our attention and it’s expressed as:

∫ 𝐿

0
𝑁𝛿 (𝑔 − 1)𝑑𝑠 =

∫ 𝐿

0

𝑁 (1 + 𝑢′)
𝑔

𝛿𝑢′𝑑𝑠 +
∫ 𝐿

0

𝑁𝑣′

𝑔
𝛿𝑣′𝑑𝑠.

Performing Integration by part we have:

= −
∫ 𝐿

0

[
𝑁 (1 + 𝑢′)

𝑔

]′
𝛿𝑢𝑑𝑠 +

[
𝑁 (1 + 𝑢′)

𝑔

]
𝛿𝑢 |𝐿0 −

∫ 𝐿

0

[
𝑁𝑣′

𝑔

]′
𝛿𝑣𝑑𝑠 +

[
𝑁𝑣′

𝑔

]
𝛿𝑣 |𝐿0 .

The first variation of the work potential of the external load the beam can be subjected is expressed
as:

𝛿𝒲𝑒𝑥𝑡 = −
∫ 𝐿

0
𝑏2(𝑠)𝛿𝑣𝑑𝑠 −

∫ 𝐿

0
` (𝑠)𝛿𝜑𝑑𝑠 −𝑀𝛿𝜑 |𝐿0 − 𝐹𝛿𝑣 |𝐿0 = 0. (4.8)

Where 𝑏2, `, 𝑀 𝑎𝑛𝑑 𝐹 retain their definition from the earlier analysed Timoshenko and Euler-
Bernoulli beams

The rotation angle 𝜑 is recalled as:

𝜑 = 𝑡𝑎𝑛−1
(
𝑣′

1 + 𝑢′
)
.

The first variation of the Equ.(4.9) using the first variation of 𝜑 , we have:

𝛿𝒲𝑒𝑥𝑡 = −
∫ 𝐿

0
𝑏2(𝑠)𝛿𝑣𝑑𝑠 −

∫ 𝐿

0
` (𝑠) 𝜕𝜑

𝜕𝑢′
𝛿𝑢′𝑑𝑠 −

∫ 𝐿

0
` (𝑠) 𝜕𝜑

𝜕𝑣′
𝛿𝑣′𝑑𝑠

−𝑀 𝜕𝜑

𝜕𝑢′
𝛿𝑢′ |𝐿0 −𝑀

𝜕𝜑

𝜕𝑣′
𝛿𝑣′ |𝐿0 − 𝐹𝛿𝑣 |𝐿0 = 0. (4.9)

Using the first variation analysis of the complex loading previously analyzed. Combining the
simplification of the first and second addend of Equ.(4.7) alongside the first variation of Equ.(4.9).
The strong formulation recovered after the first variation of the total energy and imploying the
test function lemma, we have:

(
𝑁 (𝑠) (1 + 𝑢′)

𝑔

)′
+

(
𝑘𝑏^𝑣

′

𝑔2

)′′
+

(
𝑘𝑏^

𝑔4
(
𝑣′′

(
𝑔2 − 2(1 + 𝑢′)2

)
− 2𝑢′′(1 + 𝑢′)𝑣′

) )′
+

(
` (𝑠)𝑣
𝑔2

)′
= 0. (4.10)

𝑏2(𝑠) +
(
𝑁 (𝑠)𝑣′
𝑔

)′
−

(
𝑘𝑏^ (1 + 𝑢′)

𝑔2

)′′
−

(
𝑘𝑏^

𝑔4
(
𝑢′′

(
𝑔2 − 2(𝑣′)2

)
+ 2𝑣′′(1 + 𝑢′)

) )′
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−
(
` (𝑠) (1 + 𝑢′)

𝑔2

)′
= 0. (4.11)

𝑔 − 1 = 0. (4.12)

Substituting Equ.(4.12) into Equations (4.10 and 4.11), and defining the inextensible bending
curvature as ¯̂ = 𝑣′′(1 + 𝑢′)2 + (𝑣′)2. The resulting equations and their corresponding boundary
conditions is expressed as:

(𝑁 (𝑠) (1 + 𝑢′))′ + (𝑘𝑏 ¯̂𝑣′)′′ + (` (𝑠)𝑣)′ +
(
𝑘𝑏 ¯̂

(
𝑣′′

(
1 − 2(1 + 𝑢′)2

)
− 2𝑢′′(1 + 𝑢′)𝑣′

) )′
= 0.

(4.13)
𝑏2(𝑠) + (𝑁 (𝑠)𝑣′)′ − (𝑘𝑏 ¯̂(1 + 𝑢′))′′ − (` (𝑠) (1 + 𝑢′))′ −

(
𝑘𝑏 ¯̂

(
𝑢′′

(
1 − 2(𝑣′)2

)
+ 2𝑣′′(1 + 𝑢′)

) )′
= 0.

(4.14)

Subject to the following boundary conditions:[
𝑁 (𝑠) (1 + 𝑢′) + (𝑘𝑏 ¯̂𝑣′)′ + ` (𝑠)𝑣 + 𝑘𝑏 ¯̂(𝑣′′(1 − 2(1 + 𝑢′)2) − 2𝑢′′(1 + 𝑢′)𝑣′)

]
𝛿𝑢 |𝐿0 = 0.[

𝑁 (𝑠)𝑣′ − (𝑘𝑏 ¯̂(1 + 𝑢′))′ − ` (𝑠) (1 + 𝑢′) − 𝑘𝑏 ¯̂(𝑣′′(1 − 2(𝑣′)2) − 2𝑣′′(1 + 𝑢′)) − 𝐹
]
𝛿𝑣 |𝐿0 = 0.

[(𝑀 − 𝑘𝑏 ¯̂) 𝑣′] 𝛿𝑢′|𝐿0 = 0.
[(𝑘𝑏 ¯̂ −𝑀) (1 + 𝑢′)] 𝛿𝑣′|𝐿0 = 0.

(4.15)
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5 Numerical Solution and Results

5.1 Finite Element Methods

The Finite Element Method (FEM) is a numerical technique used to solve differential equations
(DEs) by dividing the problem domain into smaller elements and approximating the solution
within each element using basis functions. The general formulation of FEM involves the following
steps:
1. Discretization: The problem domain is discretized into a collection of elements (e.g., triangles,

quadrilaterals, tetrahedra, hexahedra) that together form a mesh. Each element has a set of
nodes, which serve as the interpolation points for the solution.

2. Basis Functions: The basis functions are chosen to approximate the solution within each
element. Two commonly used types of basis functions in FEM are Lagrange polynomials and
Hermite polynomials.
(a) Lagrange polynomials are simple functions that interpolate the solution values at the

element nodes. They ensure that the approximated solution passes exactly through the
nodal values. The Lagrange polynomials can be of different orders (e.g., linear, quadratic,
cubic), allowing for different levels of accuracy in the approximation.

(b) Hermite polynomials not only interpolate the function values at the nodes but also account
for the derivatives. They accurately represent both the function and its derivatives at
the nodes. Hermite polynomials are particularly useful when high accuracy or gradient-
dependent quantities are involved.

3. Ritz Approximation: The Ritz approximation technique, a specific implementation of the
Galerkin approximation, is employed to determine the coefficients of the basis functions in
order to minimize the error between the actual solution and the approximated solution. The
Ritz method involves choosing trial functions, which are typically a linear combination of the
basis functions, and finding the coefficients that minimize the residual functional. This leads
to a set of algebraic equations that can be solved to obtain the coefficients. The steps taken in
this case is as highlighted below:
(a) Define the Trial Functions: Let’s denote the trial functions as 𝜙𝑖 (𝑥), where 𝑖 ranges from 1

to the total number of unknowns in the problem. The trial functions are typically chosen
as a linear combination of the basis functions.

𝜙𝑖 (𝑥) =
𝑁∑︁
𝑗=1

𝑐𝑖 𝑗𝜓 𝑗 (𝑥) .

Here, 𝑁 represents the total number of basis functions, 𝑐𝑖 𝑗 are the coefficients to be
determined, and 𝜓 𝑗 (𝑥) are the basis functions.

(b) Substitute Trial Functions into the Governing Equation: Replace the unknown function in
the governing equation with the trial functions
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𝐹 (𝜙𝑖 (𝑥)) = 0.

This equation represents the original governing equation (DE) in terms of the trial func-
tions.

(c) Minimize the Residual Functional: The goal is to find the coefficients 𝑐𝑖 𝑗 that minimize
the residual functional, defined as the square of the residual between the actual solution
and the trial solution,

𝑅 =

∫
Ω
[𝐹 (𝜙𝑖 (𝑥))]2𝑑𝑥 .

Here, Ω represents the problem domain.
(d) Variation of the Residual Functional: Take the variation of the residual functional with

respect to the coefficients 𝑐𝑖 𝑗 and set it to zero to find the minimum.

𝜕𝑅

𝜕𝑐𝑖 𝑗
= 0.

This variation gives rise to a set of algebraic equations that can be solved to determine
the coefficients 𝑐𝑖 𝑗 .

(e) Solve the Algebraic Equations: Solve the resulting algebraic equations to obtain the values
of the coefficients 𝑐𝑖 𝑗 . These coefficients determine the approximation of the solution
within each element.

By combining the discretization, basis functions (such as Lagrange or Hermite polynomials),
and Ritz approximation, the FEM allows for the formulation of a system of algebraic equations
that can be solved numerically to obtain the approximate solution to the original DE problem.
This process provides a versatile and efficient approach for analyzing and solving a wide range
of engineering and scientific problems.

5.1.1 What is COMSOL Multiphysics

COMSOL Multiphysics is a modelling and simulation software that allows scientist and engineers
to analyze complex physical systems. It allows the use of in-built Physics package that caters to
the need of engineering and scientific problems worldwide.

For the purpose of this thesis, we’ll be making use of the mathematical package, particularly the
weak formulation capabilities of this software. This is one of the advantage of this software over
other modelling and simulation software. This allows for the proper assignment of regularities of
the field variables to suit the mathematical model’s first variation being considered.

It follows the same usual practices of modelling and simulating process viz: Definition of
geometry (3D, 2D, or 1D), specifying physics (Structural Mechanics, Acoutics, Fluid Flow, Heat
transer, AC/DC, Mathematics etc), meshing, solving(Using sophisticated in-built numerical al-
gorithms that’s constantly updated) and post processing of result (visualization of results and
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also capabilities of exporting the data of plots to be used in other software for a more refined
visualization goals one prefers). [9]

5.1.2 First Variation and Weak Formulation of COMSOL Multiphysics

The weak formulation, derived through the utilization of the first variation of the total energy
or action functional of the system, allows for a more flexible approach to solving deformation
problems. It relaxes the requirements on the differentiability of the solution and permits the
use of piecewise continuous functions, such as finite element shape functions, for approximation.
When utilizing the weak form module of COMSOL Multiphysics, it is important to pay careful
attention to the regularities of the variables or parameters in the energy functional.

COMSOL Multiphysics provides a user-friendly interface and computational environment for
defining the physics, specifying boundary conditions, and setting up the weak form equations
using appropriate variational forms. In the case of axial elongation, the Lagrange polynomial is
employed as the interpolating polynomial, ensuring continuity up to the continuous function.
However, for handling bending deformation, the Lagrange polynomial breaks down in maintaining
continuity to the first derivative. Therefore, the Hermite polynomial is used to arrive at a solution
that effectively handles bending deformation.

5.2 Comparison of Results For Euler-Bernoulli and Timoshenko Beams

To assess the competitive advantage of the non-linear beam models, a comparison between the
linear and non-linear models was conducted. A cantilever beam (Clamped-Free) was subjected to
a transverse force of 10𝑘𝑁 , and the parameters used in COMSOL Multiphysics for this comparison
are presented in Table (5.1) and Table (5.2).

The comparison revealed significant differences in the predictions of the linear and non-linear
models. Fig. 5.1 shows that the linear models predicted zero axial deflection for the beam,
neglecting the inextensibility constraint. In contrast, the non-linear models accurately predicted a
compressive behavior when the beam was loaded. This discrepancy highlights the necessity for
the present study.

Furthermore, Fig. 5.2 focuses on the transverse deflection predicted by both the linear and non-
linear models. The figure clearly demonstrates that the linear case over-predicted the transverse
deflection at the tip of the beam. Consequently, the true measure of deformation at the tip aligns
with the predictions of the non-linear models.

Subsequent figures provide further comparisons of deformation measures and variations in
parameters of interest for the non-linear models, specifically the Timoshenko and Euler-Bernoulli
formulations.
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Table 5.1: The parameters and methods used in COMSOL Simulation

Model Mathematics (Weak Form PDE)
Space Dimension 1D
Study Stationary
Mesh Size Extremely Fine
Number of Elements 550
Iterations 100

Table 5.2: Definition of parameters for weak formulation simulation

Name Expression Value Description
L 100[cm] 1 m Length of Rod
b 5[cm] 0.05 m Cross-section Length
a 2.5[cm] 0.025 m Cross-section Width
Yb 70[GPa] 7E10 Pa Young’s Modulus
Ac a*b 0.00125 m2 Area of Cross-Section
Ke Yb*Ac 8.75E7 N Elastic Stiffness
J 𝑎3𝑏/12 6.5104𝐸 − 8𝑚4 Second Moment of Area
Kb Yb*J 4.5573E6 kg·m3/s2 Bending Stiffness
ML 10[kN*m] 10000 N·m Bending Moment
FL 10[kN] 10000 N Transverse Force
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Figure 5.1: Axial displacement comparison across model
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Figure 5.2: Transverse displacement comparison across model

5.2.1 Clamped-Free (Cantilever) Beam
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Figure 5.3: Axial Force Comparison- Euler-Bernoulli
Vs Timoshenko (CF)
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Figure 5.4: Bending Moment Comparison- Euler-
Bernoulli Vs Timoshenko (CF)

The results obtained from the analysis of the non-linear models, specifically the axial deflection,
transverse deflection, axial force, bending moment, and shear force diagram, demonstrate consis-
tent and comparable predictions. Both the Timoshenko and Euler-Bernoulli models exhibit the
same trends and behavior, as illustrated in the figures.

A noteworthy finding can be observed in the variation of shear angle shown in Fig. 5.7.
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Figure 5.5: Axial Displacement Comparison- Euler-
Bernoulli Vs Timoshenko (CF)
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Figure 5.6: Shear Force Comparison- Euler-
Bernoulli Vs Timoshenko (CF)

It reveals an inverse relationship between the shear stiffness and shear angle. As the shear
stiffness decreases by an order of magnitude, the shear angle increases. Consequently, a significant
difference in the deformation parameters, specifically the axial and transverse deflections (𝑢 and
𝑣), is expected when the shear stiffness is further reduced.

This expectation is confirmed in Fig. (5.8, 5.9, and 5.10), where noticeable changes in the
plots are observed, deviating from the exact predictions of both models. The behavior can be
attributed to the increased shear deformation resulting from the reduced shear stiffness. When the
shear stiffness is high, the beam exhibits high resistance to shear, making the shear deformation
negligible and aligning with the exact predictions. However, reducing the shear stiffness by an
order of magnitude introduces noticeable differences in the recent plots.
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Figure 5.7: Shear angle variation for Timoshenko Beam (CF)
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Figure 5.8: Axial deflection at 𝑘𝑠 = 2.1875 × 105
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Figure 5.9: Transverse deflection at 𝑘𝑠 = 2.1875 × 105
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Figure 5.10: Shear Force at 𝑘𝑠 = 2.1875 × 105
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5.2.2 Simply-Supported Beam
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Figure 5.11: Axial Displacement Comparison- Euler-Bernoulli Vs Timoshenko (SS)
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Figure 5.12: Transverse Displacement Comparison- Euler-Bernoulli Vs Timoshenko (SS)
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Figure 5.13: Transverse Displacement and Axial Displacement Comparison- Euler-Bernoulli Vs Timoshenko
(SS)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-8000

-6000

-4000

-2000

0

2000

4000

Figure 5.14: Axial Force Comparison- Euler-Bernoulli Vs Timoshenko (SS)
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Figure 5.15: Bending Moment Comparison- Euler-Bernoulli Vs Timoshenko (SS)
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Figure 5.16: Shear Force Comparison- Euler-Bernoulli Vs Timoshenko (SS)



5 Numerical Solution and Results 61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Figure 5.17: Shear angle variation for Timoshenko Beam (SS)
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The analysis of the non-linear models for the simply supported beam provides insightful
findings. In Fig. 5.11, a slight axial displacement is observed for both non-linear models, which is
unexpected since the beam is subjected to pure bending.

For the transverse deformation of the beam, both Fig. 5.12 and Fig. 5.13 predict the same
trend. This deformation behavior aligns with the expected physics of a simply supported beam
under pure bending.

The axial force and bending moment distribution on the beam are depicted in Fig. 5.14, and
Fig. 5.15, respectively. The reaction force on the beam is approximately 4𝑘𝑁 , and the highest
bending moment occurs at the end of the beam, as anticipated. The shear force distribution
throughout the beam remains almost constant, as shown in Fig. 5.16.

Furthermore, Fig. 5.17, demonstrates an inverse relationship between the shear angle and the
shear stiffness. Notably, a significant change in the plots is observed when reducing the order of
magnitude of the shear stiffness 𝑘𝑠 . This observation corresponds to the findings observed in the
analysis of the cantilever beam.

Overall, the results from the analysis of the simply supported beam provide valuable insights
into the axial displacement, transverse deformation, axial force, bending moment, and shear force
behavior, further highlighting the influence of shear stiffness on the shear angle.
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6 Conclusion

In conclusion, this thesis introduces an innovative and exact nonlinear classical formulation for
the deformation equations of Euler-Bernoulli and Timoshenko Beam models. Departing from the
prevalent linearized mode descriptions found in literature, this formulation directly incorporates
the nonlinear deformation mode kinematics. By utilizing the first variational formulation derived
from the total energy or Lagrangian functional, a more accurate and comprehensive representation
of beam behavior is achieved.

Furthermore, the thesis validates the assertion that the Hencky-Type discrete model converges
to the inextensibility constraint applied on the nonlinear Euler-Bernoulli beam model. This
affirmation reinforces the reliability and applicability of the proposed formulation.

To investigate the practical implementation of themodels, the weak formulation of the nonlinear
problem is solved using the Finite Element Method (FEM) in the math module of COMSOL
Multiphysics software. Comparative simulations between the linear and nonlinear cases are
performed, and the results are thoroughly analyzed and discussed. The plots demonstrate the
precise prediction of deformation measures and parameters by both nonlinear models. Notably,
when the shear stiffness of a beam is high, the Euler-Bernoulli model precisely aligns with
the Timoshenko model. Conversely, a reduced shear stiffness reveals noticeable differences in
the deformation behavior, aligning with the expected physical characteristics of the problem.
This analysis confirms the superiority of the nonlinear models in accurately estimating the true
deformation experienced by a loaded beam.

Moving forward, a promising avenue for future research involves applying the presented
classical formulation to explore buckling, modal, and harmonic analysis of beams. These analyses
are essential for determining critical loading thresholds until beam failure occurs. Additionally,
the application of these models in areas such as Functionally Graded Materials (FGM), Additive
Manufacturing (3D Printing), Biomedical Engineering (bone structures), and the structural,
automotive, and aviation sectors holds great potential for further advancements. By incorporating
the proposed models, these areas can benefit from improved accuracy and reliability in their
respective analyses and designs.
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7 Appendix

7.1 Mathematical Background and Defintion of Terms

Definition 7.1. A normed space is a pair (𝑉 , ∥ · ∥), where𝑉 is a vector space over a field of scalars
(typically the real numbers or complex numbers), and ∥ · ∥ is a norm on 𝑉 , i.e., a function that
maps each vector 𝑥 in 𝑉 to a non-negative real number ∥𝑥 ∥ such that:

1. ∥𝑥 ∥ = 0 if and only if 𝑥 = 0 (the zero vector).
2. ∥𝛼𝑥 ∥ = |𝛼 |∥𝑥 ∥ for all scalars 𝛼 and all vectors 𝑥 in 𝑉 .
3. ∥𝑥 + 𝑦∥ ≤ ∥𝑥 ∥ + ∥𝑦∥ for all vectors 𝑥 and 𝑦 in 𝑉 (the triangle inequality).

A normed space provides a natural way to measure the size or magnitude of vectors, and
it allows one to define concepts such as convergence, continuity, and completeness, which are
important in the study of analysis and topology. Examples of normed spaces include Euclidean
spaces, function spaces, and sequence spaces.

Definition 7.2. A metric space X is complete if every Cauchy sequence in X converges to a point in
X. A Banach Space is a complete normed space

Definition 7.3. A Hilbert space is a complete inner product space (complete with respect to the
norm | |𝑥 | | =

√︁
⟨𝑥, 𝑥⟩ )

Definition 7.4. The set of measurable functions on a domain Ω with respect to the Lebesgue
measure𝑚(·) will be denoted by Λ(Ω). Let Ω be a domain in ℝ𝑁 . For an exponent 𝑝 ∈ (1,∞)
we define a functional ∥ · ∥𝑝 by the relation

∥𝑢∥𝑝 ≡ ∥𝑢∥𝑝;Ω
def
=

[∫
Ω |𝑢 (𝑥) |𝑝 d𝑥

]1/𝑝
and we consider a subset of the set of measurable functions Λ(Ω)

ℒ
𝑝 (Ω) =

{
𝑢 ∈ Λ(Ω)∥∥𝑢∥𝑝 < ∞

}
.

The functional ∥ · ∥𝑝 on the linear space ℒ𝑝 (Ω) satisfies the first two axioms of the norm: the
homogeneity and the triangle inequality, see Minkowski inequality, but it does not satisfy the third
axiom ∥𝑢∥𝑝 = 0 ⇒ 𝑢 = 0, since ∥𝑢∥𝑝 = 0 is true for each function 𝑢, which is zero on Ω − N ,
where N is a zero measure set.

Using almost everywhere equality (briefly we shall write c.e.
= ) in the spaceℒ𝑝 (Ω), we identify

functions, which mutually differ on a zero measure subset. In this way we obtain the Lebesgue
space 𝐿𝑃 (Ω)

𝐿𝑝 (Ω) = ℒ
𝑝 (Ω) | c.e.

=
.

Its elements are classes of functions, which differ at most on a zero measure set.
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Definition 7.5 (Sobolev Spaces). [6] Sobolev spaces are the basic mean in the theory of gen-
eralized formulation of the boundary value problems. Sobolev spaces are spaces of functions
with integrable generalized derivatives. The Sobolev spaces are usually denoted by𝑊 𝑘,𝑝 (Ω) or
𝐻𝑘,𝑝 (Ω), where
𝑘 - positive integer yielding the highest order of the derivatives, 𝑘 = 1, 2, 3, . . ..
𝑝 - exponent, as in the case of Lebesgue spaces 𝑝 ∈ (1,∞).

To define the Norm on a Sobolev space we introduce (𝑘, 𝑝)-norm, which is equivalent to the
norm:

∥𝑢∥𝑘, 𝑝 =

[∑︁
|𝑎 | ≤ 𝑘 ∥𝐷𝛼𝑢∥ 𝑝𝑝

]1/𝑝
=

[∫
Ω |𝛼 | ≤ 𝑘 |𝐷𝛼𝑢 |𝑝 d𝑥

]1/𝑝
,

The definition of Sobolev space is therefore defined in three different ways namely:

1. Sobolev space𝑊 𝑘,𝑝 (Ω) is the completion of the spaceℰ(Ω) in ∥ · ∥𝑘,𝑝 .

𝑊 𝑘,𝑝 (Ω) def
= ℰ(Ω)∥·∥𝑘,𝑝 .

and𝑊 𝑘,𝑝

0 (Ω) is the completion of the space 𝐶∞
0 (Ω) in the same (𝑘, 𝑝)-norm.

𝑊
𝑘,𝑝

0 (Ω) def
= 𝐶∞

0 (Ω)∥·∥𝑘,𝑝 .

2. The space 𝐻𝑘,𝑝 (Ω) is the space of functions, which have integrable derivatives in the sense of
distributions:

𝐻𝑘,𝑝 (Ω) =
{
𝑢 ∈ Λ(Ω)

��𝜕𝛼𝑢 ∈ 𝐿𝑝 (Ω) ∀
��𝛼 |≤ 𝑘

}
.

3. Beppo-Levi space 𝐵𝐿1𝑝 (Ω) is a space of functions Absolutely Continuous 𝐴𝐶 (Ω), which have
integrable derivative:

𝐵𝐿1,𝑝 (Ω) =
{
𝑢 ∈ 𝐴𝐶 (Ω) | 𝜕𝑢

𝜕𝑥1
. . . ,

𝜕𝑢

𝜕𝑥𝑁
∈ 𝐿𝑝 (Ω)

}
.

Definition 7.6 (Functionals). 1. A function 𝑢 (𝑥) is a rule of correspondence such that for all 𝑥 in
𝐷 there is assigned a unique element𝑢 (𝑥) in 𝑅. A functional 𝐹 [𝑢 (𝑥)] is a rule of correspondence
such that for all 𝑢 (𝑥) in 𝑅 there is assigned a unique element 𝐹 [𝑢 (𝑥)] in Ω in other words, a
functional is a function of a function.

2. Linear functional 𝑙 (𝛼1, 𝑢 + 𝑢2𝑣) = 𝛼1𝑙 (𝑢) + 𝛼2𝑙 (𝑣) .
3. Bilinear functiunal 𝐵 (𝛼1𝑢1 + 𝛼2𝑢2, v) = 𝛼1𝐵 (𝑢1, v) + 𝛼2𝐵 (𝑢2, 𝑣) . 𝐵 (𝑢, 𝛼1𝑣1 + 𝛼2v2) =

𝛼1𝐵 (𝑢, 𝑣1) + 𝛼2𝐵 (𝑢, 𝑣2) .
4. Symmetric bilinear functional: 𝐵(𝑢, v) = 𝐵(v, 𝑢).
5. 𝑢 and 𝑣 can either be scalars or vectors.

Theorem 7.7 (Test Lemma). [6] Let 𝑓 be a continuous function on a domain Ω and let the following
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integral identity hold: ∫
Ω
𝑓 (𝑥)𝜑 (𝑥)d𝑥 = 0 ∀𝜑 ∈ 𝐶∞

0 (Ω)

then 𝑓 = 0 in Ω.

Proof. We prove the lemma by a contradiction. Let us assume that function 𝑓 is not zero on
Ω. Let e.g. 𝑓 (𝑥0) = 𝑘 > 0 for a 𝑥0 ∈ Ω. Since 𝑓 is continuous at 𝑥0, 𝑓 is nonzero also in
some neighborhood. Let us take a smaller neighborhood B (𝑥0, 𝛿), where 𝑓 is bigger than 𝑘/2
: i.e. 𝑓 (𝑥) ≥ 𝑘/2 for 𝑥 ∈ B (𝑥0, 𝛿). Let us insert into the test equality for 𝜑 the function
𝜑 (𝑥) = 𝜑𝛿 (𝑥 − 𝑥0) from the previous proof and we arrive to a contradiction:

0 =

∫
Ω
𝑓 (𝑥)𝜑 (𝑥)d𝑥 =

∫
𝐵(𝑥0,𝛿)

𝑓 (𝑥)𝜑 (𝑥)d𝑥 ≥ 𝑘

2

∫
𝐵(0,𝛿)

𝜑𝛿 (𝑥)d𝑥 =
𝑘

2 > 0.

Theorem 7.8 (On Solvability of Abstract Variational Problem). [6] Let 𝑉 be a reflexive Banach
space,𝑀 its nonempty closed convex subset and Φ(𝑢) a real functional on𝑀 , i.e. Φ : 𝑀 → ℝ, which
is

1. coercive in case when the set 𝑀 is not bounded:

lim
∥𝑢∥→∞

Φ(𝑢) = ∞.

2. weakly lower semi-continuous (w.l.s.c.):

𝑢𝑛 ⇀ 𝑢 =⇒ lim inf
𝑛→∞

Φ (𝑢𝑛) ≥ Φ(𝑢).

Then the functional Φ(𝑢) is bounded from below and attains its minimum, i. e. the variational
problem admits its solution.

Theorem 7.9 (On uniqueness of the solution). [6] Let the functional Φ : 𝑉 → ℝ be strictly
convex, i. e. for each two 𝑢0 ≠ 𝑢1 ∈ 𝑉 and _ ∈ (0, 1) the following inequality holds

Φ ((1 − _)𝑢0 + _𝑢1) < (1 − _)Φ (𝑢0) + _Φ (𝑢1) .

Then there exists at most one 𝑢★ ∈ 𝑉 , where the functional Φ(𝑢) attains its minimum, thus the
variational problem admits at most one solution.

If the functional Φ(𝑢) is only convex, then the points where the functional Φ(𝑢) attains its
minimum, is a convex closed set, which can also be one-point or empty.

Proof. Let Φ(𝑢) attains its minimum 𝑚 in two different functions 𝑢0 ≠ 𝑢1. Then the value of
the strictly convex functional Φ(𝑢) in the middle (𝑢0 + 𝑢1) /2 is smaller. Indeed, for _ = 1/2 the
coercivity condition yields
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Φ

(1
2 (𝑢0 + 𝑢1)

)
<

1
2 [(Φ (𝑢0) + Φ (𝑢1)] =𝑚

which is a contradiction to the assumption that the minimum Φ(𝑢) is𝑚.

Lemma 7.10 (Properties of Coercive Functionals). [6]
1. The coercive functionals form a cone: for coercive functionals Φ𝑖 (𝑢) and positive reals 𝛼𝑖 the

"positive" linear combination
∑
𝑖 𝛼𝑖Φ𝑖 (𝑢) is also the coercive functional.

2. Let Φ0(𝑢) be a coercive functional and Φ1(𝑢) nonnegative functional Φ1(𝑢) ≥ 0, or bounded from
below, i.e. Φ(𝑢) ≥ −𝐾 on the subspace𝑉 or the subset𝑀 . Then their sum Φ0 +Φ1 is also coercive.

3. Let the coercive functional Φ0(𝑢) satisfy Φ0(𝑢) ≥ 𝛼0∥𝑢∥𝑝 − 𝐾0 and Φ1(𝑢) decreases "slower" i.e.
Φ1(𝑢) ≥ −𝛼1∥𝑢∥𝑞 − 𝐾1, where 0 < 𝑞 < 𝑝.

Then their sum Φ0(𝑢) + Φ1(𝑢) is also coercive, i. e. Φ1(𝑢) "does not spoilt" coerciveness of the
functional Φ0(𝑢).

Lemma 7.11 (Properties of W.L.S.C Functionals). [6]
1. If the functional Φ(𝑢) is weakly lower semi-continuous and 𝛼 > 0 positive, then 𝛼Φ(𝑢) is weakly

lower semi-continuous too.
2. Each continuous linear functional is also weakly continuous and thus also weakly lower semi-

continuous and weakly upper semi-continuous.
3. Each continuous convex functional is also weakly lower semi-continuous.
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