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ABSTRACT 
 By using molecular modelling it is possible to predict the behaviour of new compounds and 

to help interpreting of the experimental data. The objective of the thesis was the prediction of 

selected properties of polymerization catalysts based on carbenes, the prediction of their 

structures and spectral characteristics and the study of the mechanism of the ring-opening 

polymerization of lactide. 

 To confirm the behaviour of carbenes and their precursors based on chlorides selected 

characteristics of a molecule were studied. The calculation of selected molecular orbitals and 

electrostatic potential maps was made. Subsequently, bond distances and bond angles of 

selected imidazole and imidazoline compounds, “free” carbenes and their possible hydrolysis 

products were obtained by using computer programs. Data of structural similar compounds, 

which have already been characterized, were obtained from CCDC (Cambridge 

Crystallographic Data Centre) and were compared with the calculated data. Infrared and 

Raman spectra of the imidazole salt and the infrared spectrum of the appropriate carbene were 

measured. The measured spectra were compared with the predicted ones. For the better 

spectra interpretation the spectra of possible hydrolysis products were calculated. 

Subsequently, the mechanism of the ring-opening polymerization of lactide was investigated. 

Based on calculated energies of stationary points the novel mechanism of polymerization was 

suggested. 

 

ABSTRAKT 
Pomocí molekulového modelování je možné předpovídat chování nových látek a napomáhá 

při jinak obtížné interpretaci experimentálních dat. Cílem práce byla predikce vybraných 

vlastností polymeračních katalyzátorů na bázi karbenů, predikce jejich struktur a spektrálních 

charakteristik a studie mechanismu polymerace za otevření kruhu laktidu.  

 K ověření chování karbenů a jejich prekurzorů ve formě chloridů byly studovány vybrané 

charakteristiky molekuly. Byl proveden výpočet vybraných molekulových orbitalů a 

elektrostatických map. Následně pomocí počítačových programů byly získány teoretické 

vazebné délky a úhly vybraných imidazolových a imidazolinových sloučenin, karbenů a jejich 

možných produktů hydrolýzy. Data strukturně podobných, již charakterizovaných sloučenin, 

byla získána z CCDC (Cambridge Crystallographic Data Centre) a následně byla 

konfrontována s vypočítanými daty. Byla změřena infračervená a Ramanova spektra 

imidazolové soli a infračervené spektrum příslušného karbenu. Tato spektra byla 

konfrontována s napredikovanými. Pro lepší interpretaci spekter byla spočítána spektra 

možných produktů hydrolýzy. Následně byl studován mechanismus polymerace za otevření 

kruhu laktidu. Na základě spočítaných energií stacionárních bodů byl navržen nový 

mechanismus polymerace. 

 

KEYWORDS 
N-heterocyclic carbenes, ab initio methods, DFT methods, FTIR spectroscopy, Raman 

spectroscopy, transition states 
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1 INTRODUCTION 

 Molecular modelling has made a significant progress together with the development of the 

computer technology. It utilizes the results of theoretical chemistry as inputs into efficient 

computer programs to calculate the structures and properties of molecules. First, 

computational quantum chemistry has been developed. The advancement of computer 

softwares has continued in many research groups. John Pople, who made the methods more 

efficient and made their application more popular, was awarded the Nobel Prize
1
 in 1998. 

 On the basis of ab initio methods, which were proved to be competent for the prediction of 

molecular geometry, the carbene (methylene) intermediate in the gas-phase has been studied. 

In 1970, by using of Hartree-Fock calculations by Bender and Schaeffer it was investigated 

that the molecule of methylene is bent. This fact was proved in the next years by experiments. 

Nowadays, the accuracy of these methods is similar or better to that of most experimental 

methods
1
. 
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2 THEORETICAL PART 

2.1 Definition and classification of carbenes 

The simplest representative of carbenes is methylene (H2C:). Generally, carbenes with the 

formula of RR´C: (Fig. 1) are neutral compounds containing a divalent carbon with only six 

valence electrons. They are classified as singlet and triplet carbenes differing significantly in 

chemical reactivity pattern. Singlet carbenes behave like zwitterions. Triplet carbenes 

participate in chemical reactions similarly like free radicals. Most carbenes have a nonlinear 

triplet ground state; however they have very short life-time. 

Carbenes bonded as ligands to the transition metal centre, could be classified into two 

types: Fischer and Schrock carbenes. The Fischer carbenes are electrophilic at the carbene 

carbon atom and they are in singlet state. On the other hand, the Schrock carbenes have more 

nucleophilic carbene centre. 

 

 

Fig. 1 Prepared types of carbenes 

 

Heterocyclic carbenes contain at least one atom of carbon and at least one heteroatom such 

as oxygen, sulphur or nitrogen in the cycle. Heteroatom donor groups on carbene centre 

render the originally degenerate orbitals on carbon unequal in energy. Consequently, both the 

nucleophilicity of the carbon atom and the thermodynamic stability of the carbene compound 
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are increased. Although several combinations of heteroatoms in carbene ring are possible, 

only singlet carbenes with two nitrogen atoms (N-heterocyclic carbenes) were isolated as 

crystalline compounds
2
 till 1997. 

N-heterocyclic carbene structures were studied by Wanzlick et al.
3
 in the early 1960s - 

unfortunately without the successful preparation of stable “free” carbenes. Arduengo et al.
4 

succeed in preparation of “free” carbene by deprotonation of imidazolium ion in 1991      

(Fig. 2). 

 

 

Fig. 2 Deprotonation of imidazolium salt 

 

2.2 N-heterocyclic carbenes 

N-heterocyclic carbenes (NHCs) are classified into the four main types: imidazol-2-

ylidenes, imidazolin-2-ylidenes, 1,2,4-triazol-3-ylidenes and 1,3-thiazol-2-ylidenes (Fig. 3).  

 

 

Fig. 3 Types of stable N-heterocyclic carbenes 
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 NHCs could be synthesized by a variety of ways, for example by deprotonation of 

imidazolium salts
4 

(Fig. 2), by the elimination of methanol with 5-methoxy-1,3,4-triphenyl-

4,5-dihydro-1H-1,2,4-triazol at higher temperature
5
 (Fig. 4a) or by reduction of thiones with 

potassium in boiling THF
6
 (Fig. 4b). 

 

 

 

Fig. 4 The examples of the synthesis of N-heterocyclic carbenes 

 

 

 The carbenes that can be isolated as stable crystalline compounds at room temperature are 

also known as Arduengo carbenes. NHCs are often colourless crystals thermodynamically 

stable in the absence of oxygen and moisture
4
. In presence of air moisture imidazoline-2-

ylidenes hydrolyze to ring-opened product
7,8

, while imidazole-2-ylidenes can hydrolyze to 

two tautomeric ring-opened forms
8
. The reaction of an imidazole-2-ylidene with water in 

aqueous solution formed a stable solution of the corresponding imidazolium-hydroxide. On 

the other hand the hydrolysis of the carbene in a mainly aprotic environment with only traces 

of moisture yields a hydrogen-bridged carbene-water complex that converts slowly to two 

tautomeric ring opened forms
8 

(Fig. 5). Moreover, some carbenes are stable only in the form 

of solution
9
. 
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Fig. 5 The scheme of hydrolysis of imidazole-2-ylidenes and imidazoline-2-ylidenes 

 

2.2.1 General properties of NHCs 

NHCs have a pronounced low-energy of HOMO (highest occupied molecular orbital) and a 

high-energy of LUMO (lowest unoccupied molecular orbital)
10

. Due to the small HOMO-

LUMO gaps carbenes are very reactive. They are stronger electron-pair donors (Lewis bases) 

than amines because of the lower electronegativity of carbon atom. Their electron-accepting 

capabilities are more significant than those of boranes. NHCs properties benefit from a “push-

pull” effect, because the amino groups are π-donating (mesomeric effect) and σ-withdrawing 

(inductive effect)
2
. 

 The stability of NHCs results mainly from electronic effects (mesomeric +M as well as 

inductive -I effects), although the steric hindrance plays an important role as well. In the 

imidazol-2-ylidenes the nitrogen lone pairs and the C=C double bonds ensure the kinetic 

stability because of their high electron density and π-donation from nitrogen lone pairs plays a 

minor role. The aromatic character of these carbenes is less pronounced than that of 

imidazolium salts precursors, but it brings an additional stabilization of ~ 109 kJmol
-1

 

(~ 26 kcalmol
-1

)
11

. 

 Generally, the kinetic stability of compounds is crucial for preparative chemistry. Stable 

NHCs are investigated for several reasons. The attention is paid to the structure, reactivity and 

theoretical understanding of these highly Lewis basic (one of the strongest known bases) and 

nucleophilic molecules. Moreover, stable “ylidene” carbenes are used for preparation of main 

group and transitional metal complexes. It is worth mentioning that several “in situ” methods 

for syntheses of metal “ylidene” complexes without the necessity of “free carbenes” or their 

equivalents isolation have also been developed
2
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2.2.2 NHCs as nucleophilic catalysts 

 NHCs belong to naturally occurring nucleophilic catalysts and have found also various 

catalytic applications in synthetic chemistry
2
. Some of them are utilized in important organic 

synthesis, for example in the formoin condensation reactions converting C2 to C6 

carbohydrates, in oxidative benzoin condensation of aldehydes, alcohols and aromatic nitro 

compounds to yield esters, in the Michael-Stetter reaction yielding 1,4-dicarbonyl derivatives 

and in the benzoin condensation of aldehydes to -hydroxyketones
12

 (Fig. 6). Chiral 

triazolium salts as catalyst precursors are used in asymmetric variants of ylidene-catalyzed 

benzoin condensations and Michael-Stetter reaction
13

. 

 

 

Fig. 6 Organic transformations of aldehydes catalysed by N-heterocyclic ylidenes 

 

 N-heterocyclic carbenes can catalyze transesterification reactions with a high efficiency for 

a variety of phosphorus esters
14

 and carboxylic acid esters
15

. Among them, the catalysed 

synthesis yielding the commercially important polyester poly(ethylene terephthalate) (PET) is 

significant
16

. It should be reminded that the nature of both the alcohol and carbene is crucial 

for efficiency of transesterification reactions. The N-aryl substituted carbenes are less 

effective than the N-alkyl substituted carbenes, especially for secondary alcohols
15

. The high 

transesterifications catalytic reactivity of N-heterocyclic carbenes was found out in the case of 

the step-growth polycondesations
15

 as well as depolymerizations
16

 of engineering 

thermoplastics. 

 NHCs are able to catalyze the ring-opening polymerization (ROP) of cyclic esters as well. 

In 2001, the catalyzed living ROP of lactones was reported. The formed polylactones had 

controlled molecular weight and narrow polydispersity
17

. Since this first report, the wide 

platform based on structural and electronic diversity of N-heterocyclic carbenes for the ROP 

of different monomers including lactides, lactones, carbonates, and silyl ethers, has been 

developed. Examples of effective catalysts of ROP are presented in Fig. 7 
18
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Fig. 7 Examples of N-heterocyclic carbenes for ROP 

 

2.2.3 Basicity 

 N-heterocyclic carbenes are very strong Lewis bases. In 2002 Denk et al.
19

 suggested that 

the basicity of NHCs could be related to their catalytic activity. In 2004 Magill et al.
20

 

predicted values of pKa’s of nucleophilic NHCs in dimethyl sulfoxide (DMSO) and 

acetonitrile (MeCN). The substitution at the 4 and 5 position of imidazol-2-ylidene ring with 

electron-withdrawing groups significantly reduces the basicity while that with electron-

donating groups increases the basicity. The aryl-substituents at nitrogen drastically decrease 

the basicity in comparison with alkyl-substituents. Saturated carbene analogue possesses 

slightly increased a basicity
20

. The values of pKa’s were summarized in the table, which is 

presented in Appendix.
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Fig. 8 Values of pKa’s of NHCs in water (pKa’s of NH3 is ~ 35) 

 

2.2.4 Mechanism of ring-opening polymerization 

 The ROP is fundamentally a transesterification reaction, therefore two possible 

mechanisms could be assumed: a monomer-activated mechanism mediated by the 

nucleophilic attack of the carbene on the lactide and a chain-end-activated mechanism where 

the carbene activates the alcohol toward nucleophilic attack
18

. 

 Based on the analogy with the known behaviour of pyridine derivatives in acylation 

reactions
21

 and bensoin and formoin condensation reactions
22

 nucleophilic mechanism was 

postulated. Moreover, on the bases of relative pKa’s it was found out that the alcohol was 

unlikely able to protonate the 1,3-dimesitylimidazol-2-ylidene (IMes) and to initiate an 

anionic polymerization from the alkoxide
17

. On the other hand, it was supposed that hydrogen 

bonding (H-bonding) between the carbene and the alcohol could activate the alcohol toward 

nucleophilic attack
23,24

. For ROP it corresponds to the chain-end-activated mechanism. 

According to theoretical calculation done for transesterification reactions it was predicted that 

alcohol activation pathway (via H-bonding) has a lower barrier than the nucleophilic 

mechanism
24

. Consequently chain-end-activated mechanism can be sometimes called as H-

bonding alcohol activation mechanism
25

. 

 The mechanistic competition between the nucleophilic and general-base mechanism is a 

topic of discussion in the case of nucleophilic/basic organic catalysis. For the mechanism of 

ROP, the nature of the catalyst, the monomer, as well as alcohol is essential. Recently, 

regarding the calculations of ROP pathway catalysed by 4-(dimethylamino)pyridine 

(DMAP)
25,26

 it has been predicted that both two types of mechanism are energetically 

possible. In the gas phase or in polar aprotic solvents the basic (H-bonding) pathway was 

proposed to be more favourable than the nucleophilic mechanism
26

 (Fig. 9). On the other 

hand, if alcohol initiators are absent or at present low concentration (high monomer/initiator 

ratio) nucleophilic pathway can compete
25

. 
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Fig. 9 Nucleophilic and basic (concerted) routes of DMAP-catalyzed ring-opening of lactide predicted 

at B3LYP/6-31G(d) level in dichloromethane 

 

2.2.4.1 Monomer-activated mechanism 

 The crucial feature of nucleophilic mechanism is the formation of a zwitterionic 

intermediate, which is generated after the nucleophilic attack of the carbene on the lactide. 

After that the ring-opening of the tetrahedral intermediate follows and the acylimidazolium 

alkoxide zwitterion is formed (Fig. 10). Protonation of the alkoxide of the zwitterion by the 

initiating or end-chain terminated alcohol yields an alkoxide which esterificates the 

acylimidazolium to form the open-chain ester and carbene. The activated monomer (in the 

form of zwitterion) adds the activated monomer to the growing polymer chain. All chains 

grow at the same rate, which is a kinetic characteristic of living polymerization
18

.  
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Fig. 10 Scheme of nucleophilic monomer-activated mechanism of ROP 

 

 To understand the role of zwitterionic intermediates in ROP, the polymerization of lactide 

without alcohol initiators was investigated and cyclic poly(lactide)s of defined molecular 

weight were obtained (Fig. 11). These NHC-mediated zwitterionic polymerizations showed a 

considerable degree of control and exhibit features of living polymerization
27
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Fig. 11 Scheme of the mechanism of NHC-mediated zwitterionic polymerization of lactide 

 

2.2.4.2 Chain-end-activated mechanism 

 The chain-end-activated mechanism has similar features as a classical anionic 

polymerization. During the anionic mechanism the strong base initially reacts with the alcohol 

initiator (or chain end), which is activated by deprotonation to form an alkoxide. In the next 

step the attack of the alkoxide on the carbonyl carbon of the monomer is followed by acyl-

oxygen bond scission. Subsequently the ester end group and an active alcoholate species 

(which reacts with the further monomer) are generated
25

. 

 Milder general bases can activate the alcohol initiator or chain end via H-bonding, which 

causes that bases enhance the nucleophilicity of the initiating or propagating alcohol. 

Subsequently the nucleophilic attack on the lactone monomer is more facile
24,25

 (Fig. 12). 

 

 

Fig. 12 Scheme of the general chain-end-activated mechanism of ROP 

 N N
R R

. .

+
O

O

O

O

 

  ki O

O

O

 

 
O

-

 N

N

R

R

+

O

O

O

O

 

 

O

O

O

 

 

O

 N

N

R

R

OCH3

O
-

+

2n

O

O O

O

OO

O  

O

 

O

 

O 

O

 

O

 

n-1

kp

 N N
R R

. .

kc



 

 - 18 - 

 

2.2.5 Carbene precursors 

 Because of difficulty in the synthesis of “free” NHCs which are moisture (oxygen) 

sensitive, a lot of techniques for the generation of carbenes from more readily available 

precursors have been reported. The common method is in situ deprotonation
28

 of thiazolium, 

imidazolium or triazolium salts.
 
Neat imidazolium-derived ionic liquids

29
 are used as catalyst 

sources and solvents for transesterification and ROP. THF/ionic liquid mixtures in which a 

biphasic polymerization proceeds serve as a catalysts reservoir
18 

(Fig. 13). 

 

 

Fig. 13 Polymerization using a biphasic ionic liquid-NHC system 

 

 The other precursors able to generate “free” carbene are silver(I) NHC complexes
30

, 

chloroform and fluoro-substituted arene NHC adducts
31

 and alcohol adducts
32

. NHCs could 

be generated from alcohol adducts by thermolysis
5
 (Fig. 4a). Alcohol adducts act as single-

component catalyst/initiators for ROP of lactide at room temperature (Fig. 14). Adducts can 

be prepared and isolated simply by the mixing of primary or secondary alcohols with the 

isolated carbene. Moreover, two in situ procedures that eliminate the need for isolation of the 

“free” carbene were developed
32 

(Fig. 15). 
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Fig. 14 Proposed nucleophilic mechanism for ROP of lactide with alcohol adducts 

 

 

 

Fig. 15 Scheme of the preparation of alcohol adducts 
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2.3 Molecular modelling 

Molecular modelling includes all theoretical and computational methods used to model the 

behaviour of molecules, hence for molecular modelling terms as “theoretical chemistry” or 

“computational chemistry” are used
33

. Molecular modelling started a fast progress with 

development in the computing area. Today molecular modelling plays a significant role in 

many research laboratories and enables to predict the behaviour of the new compounds, 

design of new drugs and materials and helps to interpret experimental data. The term “in 

silico” was introduced for research using computer calculations and simulations as an analogy 

to Latin terms “in vivo”, “in vitro” and “in situ” used primarily in biology. Today three main 

methods of molecular modelling are distinguished: molecular mechanics, quantum mechanics 

and simulation methods. In a principle simulation methods use both quantum mechanics and 

molecular mechanics, so they will not be discussed. 

 

2.3.1 General terms 

2.3.1.1 Coordinate systems 

The specification of the position of atoms or molecules in the system to a modelling 

program is one of the most crucial point in molecular modelling. There are two common 

ways. The simpler way is to specify the Cartesian coordinates (x, y, z) of all atoms present. 

The second way is using of internal coordinates, in which the position of each atom is 

described relative to other atoms in system. These coordinates are usually written as a Z-

matrix and are commonly used as input to many quantum mechanics programs. But it is 

necessary mentioned that many programs can convert Cartesian coordinates to internal and 

vice versa
33

. 

 

2.3.1.2 Common units 

For molecular modelling it is usual to work with atomic units because properties of atomic 

particles as electrons, protons and neutrons are expressed too small values. In other way the 

values must be multiplied by several powers of 10. Relations between the atomic units and SI 

units (International System of Units) are expressed in Tab. 1: 

 

Tab. 1 Relations between the atomic units and SI units 

Physical quantity Atomic units SI units 

Charge 1     1. 021  10-1  C 

Length 1 a0 = 5.2917710
-11

 m (1 Bohr) 

Mass 1 me = 9.1059310
-31

 kg 

Energy 1 Ea = 4.3598110
-18

 J (1 Hartree) 

 

Non-SI units Ångströms (Å) or picometrers (pm) are very often used for bond lengths, 

whereas non-SI units kilocalories (kcal) or kilojoules (kJ) are very often used for energies
33

. 

Relations are given in Tab. 2. 
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Tab. 2 Units of length and energy 

Length 1 Å 10
-10

 m 100 pm 

Energy 1 Hartree 2627.34 kJmol
-1

 627.5095 kcalmol
-1

 

 

2.3.1.3 Potential energy surfaces 

Changes in the energy of a system can be specified by movements on a multidimensional 

surface. This surface is called the potential energy surface (PES) and is mathematical 

relationship related molecular structure and the resultant energy. For the simplest molecule 

(diatomic) it is a two-dimensional curve. For a system with N atoms the potential energy 

surface is 3N-dimensional (Cartesian coordinates) or (3N  6)-dimensional (internal 

coordinates)
33,34

. 

The most significant points on the potential energy surface are stationary points (the first 

derivative of the energy is zero). One type of stationary points is minimum that can be global, 

local, or saddle point. Global minimum is the lowest point anywhere on the potential surface, 

on the other hand local minimum is the lowest point in some limited region of the potential 

energy surface. Global minimum represents the most stable conformation or structural isomer, 

whereas local minimum represents less stable conformations or structural isomers. The saddle 

point is maximum in one direction and minimum in the other. This point corresponds to a 

transition structure connecting with two equilibrium structures
34

. 

 

2.4 Quantum mechanics 

 All quantum mechanics methods are based on the solution of the Schrödinger equation. The 

well-know form of this equation is: 

  EH 


 (2.4-1) 

However, this equation can be exactly solved only for one-electron system (i. e. the 

hydrogen atom), therefore approximations need to be made. According to the nature of 

approximations methods of quantum mechanics can be classified into semi-empirical 

methods, ab initio methods and density functional theory (DFT)
33,34,35

. All methods will be 

briefly discussed. Mathematical concepts were described in detail in the previous work
36

. 

 

2.4.1 Approximations of ab initio methods 

How it was said the Schrödinger equation cannot be solved exactly for any molecular 

systems, hence the Born-Oppenheimer approximation were established. This approximation 

separates the motion of the electrons from the motion of the nuclei because the masses of the 

nuclei are circa 1800 times heavier than masses of the electron and they move slower. Using 

of the Born-Oppenheimer approximation the Schrödinger equation is solved for the electrons 

alone in the field of the nuclei, however for polyelectronic systems further approximations are 

required. 
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 First formulation of the wavefunction (orbital) for a polyelectronic system is known as a 

Hartree product, but it does not fulfil the antisymmetry principle. Slater determinant can be 

used to satisfy the antisymmetry principle and is the simplest form of an orbital wavefunction. 

The major problem for the solution of the Schrödinger equation is the presence of interactions 

between the electrons. Fock assumed that each electron moves in a fixed field including the 

nuclei and the other electrons, thus the Hatree-Fock equations express a single electron in the 

spin orbital in the field of the nuclei and the other electrons in their fixed spin orbital. 

However the solutions of Hatree-Fock equations are not unique. The general strategy to solve 

these equations is called as a self-consistent-field (SCF) procedure. The individual electronic 

solutions correspond to lower and lower total energy until results for all electrons are 

unchanged. SCF approaches also include density functional procedures. 

 Furthermore, for the solution of Hatree-Fock equations for molecules we must agree to 

an alternative approach and express the molecular orbitals. The most common way is linear 

combination of atomic orbitals (LCAO). The lowest energy of system is determined by using 

Roothaan-Hall equations, which is often written as matrix equation
33,35

. 

 

2.4.2 Electron correlation 

The most essential disadvantage of Hatree-Fock method is that it do not involves the 

electrons correlation. The electrons are assumed to be moving in an average potential of the 

other electrons. However in reality, the motions of electrons are correlated and they tend to 

“avoid” each other. The difference between the Hartree-Fock energy and the exact energy is 

called the correlation energy. If the electron correlation is neglected, we can get some clearly 

anomalous results. The inclusion of the correlation effect is warranted, although Hatree-Fock 

geometries are often in good agreement with experiment. The electron correlation is crucial in 

the study of dispersive effects. It is often discussed in ab initio methods, but effects of 

electron correlation are involving in the semi-empirical methods
33

. 

The position of Hartree-Fock models is illustrated in Fig. 16, where all possible theoretical 

models are placed. The horizontal axis depicted the extent of the separation of electron 

motions (in context the separation of electron motions means that the method is uncorrelated). 

Hartree-Fock models are placed at the extreme left, while fully-correlated models are placed 

at the extreme right. Practical correlated models are found somewhere in between. The 

vertical axis shows the basis set. A minimal basis set is located at the top and contains the 

fewest possible functions (the basis sets will be discussed in the next section), while a 

“complete” basis set is located at the bottom and in Hatree-Fock models is called as Hartree-

Fock limit
35

. 
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Fig. 16 The two-dimensional diagram of all possible theoretical methods 

 

 

2.4.3 Basis sets 

The basis sets consist of atomic orbitals, which are used to form molecular orbitals. At first 

the Slater type orbitals (STOs) were used. However with these types of orbitals it is difficult 

to solve three- and four-centre integrals, if the atomic orbitals are located on different atoms. 

Hence the Slater orbitals were replaced by Gaussian type orbitals (GTOs). The advantage of 

these functions is fact that the product of two Gaussians can be expressed as a single 

Gaussian, which is located along the line joining the centres of two Gaussians. For quantum 

mechanics methods a linear combination of Gaussian functions is used
33

.  

 The simplest possible atomic orbital representation is a minimal basis set that involves the 

minimum number of functions required to accommodate all the filled orbitals in each atom. 

They contain only one contraction per atomic orbital. The most common minimal basis set is 

STO-nG (Slater type orbital), where n Gaussian functions are used to represent each orbital. 

 A double zeta valence basis set (DZV) doubles the number of functions in the minimal 

basis set. The SCF method calculates automatically the basis set coefficients of the contracted 

and the diffuse functions
33,36

. 

 A split valence basis uses a single function for inner shells, but doubles the number of 

functions which are used to describe the valence electrons. The core orbitals do not influence 

chemical properties very much in contrast to the valence orbitals. These basis sets are noted as 

3-21G. It means that three Gaussians describe the core orbitals and other three Gaussians 

describe electrons orbitals, where the contracted part represents two Gaussians and the diffuse 

part represents one Gaussians. The most common split valence basis set is 6-31G. 

 Other type of basis sets is a basis with polarisation functions that has higher angular 

quantum number and corresponds to d orbitals for the first- and second-row elements and p 

orbitals for hydrogen. A polarization function is denotes by the asterisk * or by (d) at the end 
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of a basis set. 6-31G* or 6-31G(d) is a 6-31G basis with polarisation functions on heavy 

atoms. Two asterisks ** or (d,p) denotes polarisation functions on hydrogen and helium atom 

in addition to 6-31G(d) or 6-31G*. 

 A basis with diffuse functions deals with cations, anions and molecules included lone pairs. 

This basis set is denoted using +. The basis set is denoted using ++, if the diffuse functions 

are included for hydrogen as well as for heavy metals
33,35,36

. 

 For correlated models Dunning’s cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets are 

commonly used. These basis sets converge systematically to complete-basis-set limit using 

empirical extrapolation techniques. The cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets mean 

“correlation consistent-polarized Valence Double (Triple, Quadruple) Zeta” basis sets. They 

involve larger shells of polarization functions and can be augmented with diffuse functions by 

adding the aug- prefix (aug-cc-pVDZ)
35,36

. 

 

2.4.4 Using ab initio methods 

 In the ab initio methods we do use no empirical data in their calculations. The term ab 

initio means that the calculation is from first principles. This method is based on the laws of 

quantum mechanics and on the values of a small number of physical constants: 

1. The masses and charges of electrons and nuclei 

2. The speed of light 

3. Planck’s constant 

 The ab initio calculation offers high quality quantitative predictions for many systems, 

however takes on the order of one to a few days, hence is often expansive. It is usual for 

several tens of atoms
34

. The most popular ab initio methods can be classified into three main 

groups: the Hatree-Fock methods, post-Hartree-Fock methods and multi-reference methods. 

The post-Hartree-Fock methods incorporate correlation effects. The most popular approaches 

Configuration interaction (CI) models and Møller-Plesset perturbation theory (MP2, MP3 or 

MP4) extend the Hatree-Fock model by mixing ground-state and excite-state wavefunctions. 

On the other hand they are more expansive than Hartree-Fock models and are impractical 

(they can be used only for the smallest systems)
34,35

. Multireference methods can be divided 

into Multi-configurational self-consistent field (MCSCF), Multireference single and double 

configuration interaction (MRDCI) and N-electron valence state perturbation theory 

(NEVPT). For our calculations we will use only Hartree-Fock methods, which involve 

Restricted Hartree Fock (RHF), Unrestricted Hartree Fock (UHF) and Restricted open shell 

Hartree Fock (ROHF) calculation
33,34,35

. 

 This method can be used for the simple single point calculation as well as for geometry 

optimization, frequency calculation, electric multipoles, total electron density distribution and 

molecular orbitals or thermodynamic properties. The most common calculation but the most 

exacting is geometry optimization, which is a starting step of other calculations. The electron 

density can be visualised as a solid object, whose the surface connects points of equal density. 

On this surface the electrostatic potential or other properties can be mapped. Using the 

electron density distribution of individual molecular orbitals we can determine and plot 

HOMO and LUMO, which influence reactivity of molecules
33

. 

 



 

 - 25 - 

2.4.5 Semi-empirical methods 

 Semi-empirical methods solve an approximate form of the Schrödinger equations because 

consider only valence electrons of the system (electrons associated with the core are ignored). 

The basis set is restricted to a minimal valence representation
35

. Further, semi-empirical 

methods use parameters derived from experimental data to simplify the calculation. The most 

popular semi-empirical methods are MNDO (modified neglect of diatomic overlap), AM1 

(Austin Model 1) and PM3 (the name is derived from the fact that it is the third 

parameterization of MNDO)
33

. The AM1 and PM3 methods use the same approximations but 

differ in their parameterization. Moreover PM3 method is parametrised for transition metals
35

. 

In contrast to ab initio methods they are relative inexpensive and very large molecules can be 

calculated. We can first calculate semi-empirical optimization to obtain a starting structure for 

Hatree-Fock or Density Functional Theory optimization. These methods can quickly calculate 

molecular orbitals or vibrational normal modes. However they have some problems with 

systems including hydrogen bonding, transitional structures and with molecules containing 

atoms for which they are poor parametrized
34

. 

 

2.4.6 Density functional theory 

 Density functional theory is similar to ab initio methods. The essential difference is that 

DFT calculates with the general functionals of the electron density instead of the many-

electron wavefunction. Both models use the same basis set as well as the SCF approach
35

. 

Moreover, DFT includes the effects of electron correlation. DFT methods are generally less 

expensive than Hartree-Fock methods RHF, furthermore they achieve greater accuracy. The 

electronic energy is a sum of the kinetic energy, the electron-nuclear interaction, the Coulomb 

repulsion and the exchange-correlation energy. The most popular functionals are pure density 

functionals and hybrid functionals. The pure density functionals treat the exchange and 

correlation components. Both exponents can be of two types: local functionals depend on the 

electron density, while gradient-corrected depend on the electron densities and their gradient. 

The well-known BLYP functional connects Becke’s gradient-corrected exchange functional 

with the gradient-corrected correlation functional of Lee, Yang and Parr. The hybrid 

functionals include a mixture of Hartree-Fock exchange and DFT exchange along with DFT 

correlation. The popular B3LYP functional is Becke-style three-parameter functional
34

. In 

Appendix you can see examples of functionals and their descriptions
38

. 

 

2.5 Molecular mechanics 

Molecular mechanics is based on Newtonian mechanics to predict the structures and 

properties of molecules. The potential energy of all systems is calculated using force fields, 

which include these components: 

1. A set of equations describing the change of the potential energy of a molecule with the 

location of its component atoms 

2. A series of atom types describing characteristics of an element with specific chemical 

context 

3. One or more parameter sets that fit the equations and atom types to experimental data 

Bonded interactions are treated as “springs” with an equilibrium distance equal to the 

experimental or calculated bond length. These calculations perform computations based upon 

http://en.wikipedia.org/wiki/Force_field_%28chemistry%29
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the interactions among the nuclei. Electronic effects are implicitly involved in force fields 

though parameterization. Hence, molecular mechanics calculations are quite inexpensive 

computationally, and can be used for very large systems (thousands of atoms). Although, it 

carries several limitations as well
34

. Molecular mechanics methods differ in the number and 

specific nature of the terms and the parameterization. The most popular methods are SYBYL, 

MMFF or AMBER
33,35

. 

 

2.6 Geometry optimization 

 An isolated molecule in vacuum is usually taken into account for geometry optimization 

(equilibrium geometry). The crucial point of geometry optimization is the finding of the 

conformation with the lowest energy. A minimalisation algorithm is used to identify 

geometries of the system that correspond to minimum points on the energy surface. Using of 

geometry optimization we can search as well as the saddle points that correspond to the 

transition structures. For quantum mechanics other methods are used than for molecular 

mechanics. Most minimisation algorithms can only go downhill on the energy surface; hence 

they can only locate the nearest minimum to the starting point. When we search the global 

minimum, we must create different starting points and minimise each point
33

. 

 In real molecular modelling applications it is impossible to find the exact location of 

minima or saddle points. Hence an approximation of these points is found. The energy is 

monitored from one iteration to the next and the process is stopped when the difference in 

energy between successive steps falls below a specified threshold that is called the 

convergence criteria. A second method is to monitor the change in coordinates and a third 

method is to calculate the root-mean-square gradient. We can distinguish two groups of 

minimisation algorithms: those which use derivatives of the energy with respect to the 

coordinates and those which do not
33

. Both algorithms were discussed in previous work
36

. 

 

2.7 Infrared and Raman spectroscopy  

 Infrared (IR) and Raman (RA) spectroscopy provide information about vibratonal motions 

of a molecule and is used to identify compounds and study their structure. A common 

laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) 

spectrometer. For the description of infrared and Raman spectra the approximations were 

established as well. A first approximation separates the total energy into the energy of the 

motion of the electrons in the molecule, the energy of the vibrations of the atoms and energy 

of the rotation of the molecule. If the molecule absorbs energy, the electronic, the rotational 

and vibrational states can change. A transfer of energy will occur, when Bohr’s frequency 

condition is satisfied: 

 hvEEE  12  (2.7-1) 

The transition is allowed, if the selection rules are valid. In IR (Infrared) and RA (Raman) 

spectra vibrational and rotational states change, however the rotational transitions have a little 

signification and they can be measured mainly in the gaseous state. Vibrational transitions 

appear in the 10
2
-10

4
 cm

-1
 region and originate from vibrations of nuclei, while rotational 

transitions principally appear in the 1-10
2
 cm

-1
 region (microwave region) because rotational 

levels are relatively close to each other. Below each electronic level there is “zero-point 
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energy” which must exist even at a temperature of absolute zero as a result of Heisenberg’s 

uncertainty principle: 

 
hvE
2

1
0   (2.7-2) 

In the Born-Oppenheimer and harmonic oscillator approximations the resonance 

frequencies are determined by the normal modes corresponding to the molecular electronic 

ground state potential energy surface
39

. 

  

2.7.1 Harmonic oscillator approximation 

 For the description of vibrations of diatomic molecule the harmonic oscillator 

approximation was introduced. The frequency of vibration depends on force constant and 

reduced mass. For the harmonic oscillator a potential curve is parabolic, however the actual 

potential curve differs, hence the wavenumber of normal vibration is corrected for 

anharmonicity. This anharmonicity causes the appearance of overtones and combination 

vibration, which are forbidden in the harmonic oscillator
39

.  

 In polyatomic molecules the situation is more complicated because all nuclei perform their 

own harmonic oscillators. Extremely complicated vibrations of the molecule can be 

represented as a superposition of a number of normal vibrations
39

. The mathematical 

beground was mentioned in previous work
36

. 

Nonlinear molecules have 3N-6 degrees of vibrational modes (called vibrational degrees of 

freedom), because six coordinates describe the translational and rotational motion of the 

molecule as a whole. In contrast linear molecules have 3N-5 degrees of vibrational modes, 

because no rotational freedom exists around the molecular axis. When all the normal 

vibrations are independent of each other, the consideration may be limited to a special case in 

which only one normal vibration is excited. So in the normal vibration, all the nuclei move 

with the same frequency and in phase.  

As result of all approximations we solve the matrix secular equation: 

 0 EGF  (2.7-3) 

where G is matrix elements, F is hessian matrix of the force constant and E is the unit matrix. 

We obtain the wavelengths that are converted to the wavenumbers. If the order of the secular 

equation is higher than three, it is too difficult to solve it. Symmetry of a molecule can 

significantly simplify the calculations
39

. 

 

2.7.2 Principle of IR and RA spectroscopy 

 The principle of IR spectroscopy is the absorption of infrared radiation by molecules. Three 

regions of IR spectroscopy can be distinguished: near-infrared 14000-4000 cm
-1

, mid-infrared 

4000-400 cm
-1

 (most common) and far-infrared (400-10 cm
-1

). The energy of IR radiation is 

not enough for changes electronic ground states, but it causes changes of rotational-

vibrational states of the molecule, however the vibrational transitions predominate. 

 Raman spectra originate in the electronic polarization caused by ultraviolet, visible and 

near-IR light. Raman spectroscopy uses the scattering of the monochromatic light (laser) and 

spectra are represented as shifts of the incident frequency in ultraviolet, visible and near-IR 

region
39

.  
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 The vibrations can be divided into two basic groups: stretching and bending vibrations. The 

examples of vibration are depicted in Fig. 17. The stretching vibrations appear in region 4000-

1500 cm
-1

 (sometimes called the group frequency region), while bending vibrations appear in 

region 1500-400 cm
-1

 (called finger print region). This region includes a very complicated 

series of absorptions and it is more difficult to choose individual bonds, however every 

organic compound produces a unique pattern in this part of the spectrum. 

 

 

Fig. 17 Vibrations of a CH2 group 

 

 The vibrational mode in molecule is IR active, when it is related with changes in the dipole 

moment, whereas the vibrational mode in molecule is Raman active, when it is related with 

changes in the polarization. Symmetrical stretching and bending will be Raman active and IR 

inactive, while asymmetrical stretching and bending will be IR active and Raman inactive in 

molecules with a centre of symmetry. Each vibrational mode may be IR active, Raman active, 

both, or neither for molecules without a centre of symmetry
40

. 

 

2.7.3 Prediction of spectra 

 Spectra are usually predicted in gaseous phase at 298.15 K. Calculations use an idealized 

view of nuclear position, however in reality, the nuclei in molecules are constantly in motion. 

These vibrations are regular and predictable in equilibrium states. Programs are able to 

compute the vibrational spectra of molecules in their ground and excited states, describe the 

displacements a system and predict the direction and magnitude of the nuclear displacement 

that occurs when a system absorbs a quantum of energy. 
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  Molecular frequencies and the distinguishability between minima (discussed in Section 2.6) 

depend on the second derivative of the energy with respect to the nuclear positions. Programs 

calculate analytic second derivatives for the HF and DFT. Frequency calculations are valid 

only at stationary points on the potential energy surface, hence must be done on optimized 

structures
34

. Computed frequencies at the Hartree-Fock level contain well-known systematic 

errors because of the neglect of electron correlation. Computed frequencies at DFT level 

include the effect of electron correlation, however they contain well-known systematic errors 

as well. Hence it is usual to scale frequency by empirical factors
41

. 

 

2.8 Computer programs 

 A variety of computer programs are utilized to calculate the structures and properties of 

molecules. Efficient ab initio computer programs are GAUSSIAN, PC GAMESS/Firefly, 

GAMESS (US), GAMESS (UK), MOLCAS, MOLPRO and Spartan. Furthermore they 

usually contain density functional theory (DFT), molecular mechanics or semi-empirical 

methods.  

We will use PC GAMESS/Firefly
42,43

, ArgusLab
44

, Titan
45

 and Spartan
46

. 

PC GAMESS/Firefly is based on GAMESS (US). GAMESS abbreviates General Atomic and 

Molecular Electronic Structure System. It is able to calculate single-point energies, geometry 

optimizations or predictions of IR and Raman intensities. It does not include a graphical user 

interface, hence softwares for the creating of input files and for the visualization of results 

were used. For that reasons ArgusLab, Titan
 
or Gabedit

47
 can be perform. Gabedit can 

graphically display many calculation results as molecular orbitals, surfaces from the electron 

density, electrostatic potential or NMR shielding density and UV-Vis, IR and Raman spectra. 

In contrast to Gabedit, ArgusLab and Titan allow simple calculations or pre-optimizations. 

They can calculate and display molecular orbitals or electrostatic potential-mapped electron 

density surfaces. Titan is the older version of Spartan that is the complex program. In addition 

to simple calculations Spartan allows to study of reactions. 

 

2.8.1 Operating ArgusLab and PC GAMESS/Firefly 

 In ArgusLab
44

 structures of studied compounds were formed and pre-optimized at AM1 

level (Fig. 18). The coordinates obtained by ArgusLab were edited in any text editor, where in 

the next step the input file for PC GAMESS/Firefly
42,43

 was created. The coordinates were set 

up into PC GAMESS/Firefly format, thus the name of method, the symmetry, the name of 

atom and the nuclear charge was added. Subsequently, these groups were defined: 

$CONTRL, $SYSTEM, $SCF, $GUESS, $BASIS, $ZMAT and $STATPT according to PC 

GAMESS/Firefly documentation
38

. The example of the input file for PC GAMESS/Firefly is 

given in Appendix. 
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Fig. 18 The optimized structure of carbene at AM1 level in ArgusLab 

 

 The input file for PC GAMESS/Firefly was opened in RUNpcg
48

 and the calculation was 

run. Subsequently, from the output file of the geometry optimization the ENT file was 

generated. This file was opened in ArgusLab and the selected bond distances and angles were 

measured (Fig. 19).  
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Fig. 19 The measurement of bond distances and bond angles 

 

Then the input file of spectra prediction was created from the output file of the geometry 

optimization. Spectra calculations were run in RUNpcg as well. Output file was read, 

visualized and converted into XY format in Gabedit
47

 (Fig. 20). Subsequently, spectra were 

set up in Excel
49

. 

 

 

Fig. 20 The visualisation and the conversion of the output file 
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Program WinSCP
50

 was used to transfer input files in the INP format between a local and a 

remote computer, while program PuTTy
51

 was used to run a calculation by using the 

command line. Program WinSCP can serve as freeware FTP (File Transfer Protocol) and 

SFTP (Secure File Transfer Protocol) client, while program PuTTy can act as a client for SSH 

(Secure Shell) or raw TCP (Transmission Control Protocol) computing protocol. For more 

detail you can see previous work
36

. 

 

2.8.2 Operating Titan and Spartan 

How it was mentioned, Titan
45

 is the older version of Spartan
46

, hence both programs have 

similar operations. Both programs include graphical user interface, so they do not need to 

form the input file as PC GAMESS/Firefly. In Titan the structures of carbenes was built as 

well to compare with ones from ArgusLab. The molecule was constructed from atomic 

segments that specify atom type and local environmental (tetrahedral carbon in Fig. 21). 

Subsequently, the structure was minimized at molecular mechanics level by clicking on the 

icon . 

 

 

Fig. 21 The construction of the molecule in Titan (tetrahedral carbon in model kit is marked black) 
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After that Calculations dialog from Setup menu was opened, the type of calculation was 

selected (Fig. 22) and the job was submitted. At first the molecule was optimized at semi-

empirical level, then at RHF and DFT (B3LYP) level. 

 

 

Fig. 22 The selection of type of calculation 

 

In Titan it is possible to calculate vibrational frequencies as well. The option of frequencies 

to right of “Compute” was selected in Calculations dialog from Setup menu and calculation 

was run. Then Vibration List from Display menu was opened (Fig. 23). After the clicking on 

frequency in the Vibration List an individual motion was animated. Furthermore, in Spartan 

calculated and measured spectra can be compared. 

 

 

Fig. 23 The animation of vibrational frequencies 
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Titan and Spartan are able to study interactions, reactions and their mechanisms. In this 

point the generation of an interaction between the carbene and the alcohol (H-bond) will be 

discussed. In the beginning molecules of the carbene and of the alcohol were constructed in 

other files and both structures were optimized at AM1 level. Subsequently, both optimized 

structures were inserted into the same file (in Titan both structures must be constructed and 

optimized in the same file). The icon  was used and alcohol hydrogen atom and carbene 

carbon atom were selected . The transition state at molecular mechanics level was generated 

(Fig. 24) by clicking on the icon  (in Spartan the icon ). The proposed transition state 

was optimized at AM1 level. 

 

 

Fig. 24 The generation (blue arrow) of transition state at molecular mechanics level in Spartan 
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3 EXPERIMENTAL PART 

3.1 Studied compounds 

The study was focused on a 1,3-di-terc-butylimidazolium chloride NC1H-Cl, 1,3-di-terc-

butylimidazol-2-ylidene NC1 as “free” carbene, its possible hydrolysis products N-tert-butyl-

N-[(2E)-2-(tert-butylimino)ethyl]formamide (1,4-di(tert-butyl)-4-formyl-1,4-diaza-but-1-ene) 

N=C-CA and N-tert-butyl-N-[(Z)-2-(tert-butylamino)ethenyl]formamide N-C=CA and their 

saturated analogues; 1,3-di-terc-butyl-imidazolinium chloride NC2H-Cl, 1,3-di-terc-

butylimidazolin-2-ylidene NC2 and N-tert-butyl-N-[2-(tert-butylamino)ethyl]formamide (N-

formyl-N,N’-di-tert-butylethylenediamine) N-C-CA (Fig. 25). NC1H-Cl was kindly donated 

by Dr. Gerard Mignani from Rhodia Operations – Centre de Recherches de Lyon, France. 

“Free” carbene NC1 was prepared from NC1H-Cl according to the published procedure using 

butyllithium
10

. Other compounds were studied only at theoretical level by using 

computational studies. N=C-CA was confirmed as a product of hydrolysis which proceeded 

slowly for a period of days and explains the “air sensitivity” of respective carbene
7
. Recently, 

the possible formation of two ring-opening isomers as the products of the imidazol-2-ylidene 

hydrolysis has been reported
8
. 

 

 

Fig. 25 Studied compounds 

 

3.2 Softwares and computational methods 

3.2.1 Fundamental calculations 

Calculations were done in ArgusLab
44

 and Titan. In ArgusLab methods of molecular 

mechanics (UFF, AMBER) and semi-empirical methods (MNDO, AM1, PM3) were used, 

whereas in Titan
45

 methods of molecular mechanics (MMFF, SYBYL), semi-empirical 

methods (MNDO, AM1, PM3), RHF/6-31G(d) and B3LYP/6-31G(d) methods were used. For 

calculations only one isolated molecule in vacuum was taken into account. 
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3.2.2 Geometry optimization 

Calculations were performed in PC GAMESS/Firefly
42,43

. In previous work
36

 bond 

distances and bond angles were calculated at RHF and DFT (B3LYP functional) level with 6 

different basis sets. Based on previous calculations different functionals of DFT method with 

6-31G(d) basis set were investigated. Atoms were numbered according to Fig. 26. Energy 

gradients were calculated analytically with the optimization tolerance set to 110
-5

 

Hatree/Bohr. Since calculations on the computer were too slow (sometimes a number of 

days), the most calculations were continued on the BUT server monkey2.ro.vutbr.cz. 

Programs WinSCP
50 

and PuTTy
51 

were used for the manipulation on the server (discussed in 

Section 2.8.2). Moreover, a structure of NC1 was optimized also at AM1, RHF/6-31G(d) and 

B3LYP/6-31G(d) levels in Spartan
46

 for comparison with PC GAMESS/Firefly. For 

calculations only one isolated molecule in vacuum was taken into account. 

 

 

Fig. 26 The numbering of atoms 

 

3.2.3 Spectra prediction 

 Calculations were computed in PC GAMESS/Firefly
42,43

 and B3LYP/6-31G(d) level was 

mainly used. For the comparison of spectra other functionals (O3LYP, BHHLYP and PBE0) 

were used. Computed frequencies contain known systematic errors, therefore it is usual to 

scale frequency
41

 predicted at B3LYP/6-31G(d) level by empirical factor of 0.9613, at 

O3LYP/6-31(d) level by empirical factor of 0.9617, at BHHLYP level by empirical factor of 

0.9244 and PBE0 level by empirical factor of 0.9512. The most calculations were calculated 

on the BUT server monkey2.ro.vutbr.cz. For the comparison the spectrum of NC1 was 

calculated and compared with the measured one in Spartan
46

. For calculations only one 

isolated molecule in gaseous phase at 298.15 K was assumed. 

 

3.2.3 Study on the mechanism of ROP of lactide 

Calculations were done in Spartan. For the generation of transition state methods of 

molecular mechanics were used. All stationary points were optimized at AM1 and B3LYP/6-

31G(d) levels. The functions of Transition States, Freeze Center, Constrain Distance and Set 

Torsion were used. Structures were optimized in gaseous phase in vacuum. 

 

3.3 Gained data 

3.3.1 Databases 

Data of already characterized compounds including NC1
7
, NC2

52
, N-C-CA

7
 and similar 

precursors (NC1H-F3CSO3
53

, NC2H-SCN
54

) were gained from CCDC (Cambridge 

Crystallographic Data Centre) and were used for the comparison with calculated data.  

 

C(1)

 N(1)

C(2) C(3)

N(2)
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 - 37 - 

3.3.2 Measurement 

3.3.2.1 FTIR spectra 

 FTIR spectra of NC1H-Cl and FTIR spectra of NC1 in the region 400-4000 cm
-1 

were 

recorded on a Bruker TENSOR 27 as KBr pellets prepared in dry a box under nitrogen 

atmosphere. 

 

3.3.2.2 RA spectra 

RA spectra of NC1H-Cl. RA spectra, which in the region 100-3500 cm
-1

 were measured on 

a Bruker EQUINOX IFS 55/S equipped with a Raman module FRA 106/S. The excitation 

line was 1 064 nm of a Nd:YAG laser. The solids samples were placed in a Schlenk flask 

under nitrogen atmosphere.  
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4 RESULTS AND DISCUSSION 

4.1 Fundamental calculations 

Initially, selected molecular orbitals and electrostatic potential maps were computed. In 

previous work
36

 calculations were done in ArgusLab
44

 with the semi-empirical methods, now 

these calculations were compared with calculations in Titan and were extended by RHF and 

DFT level.  

 

4.1.1 Orbitals 

 Since generally, both the symmetry and the energy of HOMO and LUMO (highest 

occupied and lowest unoccupied molecular orbitals) have a significant influence on the 

mechanisms of reactions of molecules, the energies of molecular orbitals of NC1H-Cl, NC1, 

NC2H-Cl, NC2 were initially computed. Selected molecular orbitals and electrostatic 

potential maps were calculated at AM1 and PM3 levels in ArgusLab
44

 and subsequently at the 

same levels and B3LYP/6-31G(d) level in Titan
45

. Due to the small band gap both the studied 

carbenes NC1 and NC2 are very reactive. How it was supposed, calculated molecular orbitals 

at the equal level had the same character in both programs (Fig. 27, Fig. 28). The difference 

between predicted HOMO at AM1 level against PM3 level was noticeable (Fig. 28, Fig. 29), 

on the other hand LUMO showed the same character at both levels. The differences are 

caused different experimental sets of data that are included in computational methods 

(discussed in Section 2.4.5). Further, it was illustrated that LUMO predicted at more 

complicated level (B3LYP/6-31G(d)) was almost identical (Fig. 30).  

 

 

Fig. 27 The calculation of HOMO (left) and LUMO (right) of NC1 at AM1 level in ArgusLab 

 

 

Fig. 28 The calculation of HOMO (left) and LUMO (right) of NC1 at AM1 level in Titan 



 

 - 39 - 

 

 

 

Fig. 29 The calculation of HOMO (left) and LUMO (right) of NC1 at PM3 level in Titan 

 

 

 

Fig. 30 The calculation of HOMO (left) and LUMO (right) of NC1 at B3LYP/6-31G(d) level in Titan 

 

 

4.1.2 Electrostatic potential maps 

From the electrostatic potential maps (Fig. 39) it was possible to notice that the electrostatic 

potential on the carbene centre was bigger onto unsaturated carbene than onto saturated 

analogue. This fact could be correlated with catalytic activity. In 2005, Lai et al.
23

 reported 

that imidazol-2-ylidene against imidazolin-2-ylidene has better catalytic capacity because of 

less activation barrier for transesterification reactions. On the other hand the electrostatic 

potential on the carbene centre of corresponding chlorides NC1H-Cl, NC2H-Cl was lower. 
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Fig. 31 The electrostatic potential maps of NC1 predicted at AM1 level in Titan 

 

4.2 Geometry optimization 

4.2.1 Carbenes and their precursors 

 Best predictions of selected bond distances and bond angles of NC1, NC1H-Cl, NC2 and 

NC2H-Cl are summarized in Appendix. Moreover predicted structures of NC1 and NC2 are 

compared with data from CCDC, therefore their tables contain average relative errors E. In 

Fig. 32 the optimized structure of NC2H-Cl was presented. Best calculations were presented 

at 5
th
 meeting on Chemistry and Life 2011

55
. Bond distances and relative errors of C(1)-N(1) 

bond of NC1 calculated by different functionals were depicted in Fig. 33. This bond distance 

was best predicted by PBE0, PBE1PW91 and B3PW91 functionals. Based on all calculations 

it was investigated, that the best results of NC1 were obtained at O3LYP/6-31G(d) level. 

Good results were achieved with SVWN5 and BHHLYP functionals aspect to CPU time. In 

contrast, the worse results were obtained with BLYP functional aspect to big average relative 

error and long CPU time. In summary good results were reached with all hybrid functionals. 

On the other hand only some types of exchange-correlation functionals (SVWN5 functional) 

were successful. NC1 was optimized also at AM1, RHF/6-31G(d) and B3LYP/6-31G(d) 

levels in Spartan
46

. Moreover, in Spartan the symmetry of the molecule can be easily include 

in calculations. Results are summarized in Appendix. The structure with the symmetry C2v is 

about 2.55 kJ mol
-1

 more stable than with symmetry Cs at B3LYP/6-31G(d) level, which is in 

agreement with the fact that according to CCDC
7
 the known symmetry of NC1 is C2v. For 

NC2 the similar trends were noticed. C(1)-N(1) bond distance was best predicted by PBE0, 

PBE1PW91 and B3PW91 functionals as well. The best results of NC2 were obtained at 

PBE0/6-31G(d) level. Good results were achieved with SVWN5 functional as well, while the 

worse results were obtained by GLYP functional.  
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Fig. 32 The structure of NC2H-Cl optimized at B3LYP/6-31G(d) in ArgusLab 

 

 

Fig. 33 Bond distances and relative errors of C(1)-N(1) bond of NC1 calculated by different 

functionals 

 

Calculated data of chloride precursors could not be compared directly, because up till now 

any structural data of these compounds have not been published yet. Therefore selected bond 

distances and bond angles of other known precursors (NC1H-F3CSO3, NC2H-SCN) were 

computed. Best predictions of NC1H-F3CSO3 and NC2H-SCN are summarized in Appendix. 

Bond distances and relative errors of C(1)-N(1) bond of NC1H-F3CSO3 calculated by 
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different functionals were depicted in Fig. 34. This bond distance was best predicted by 

B3LYP and X3LYP functionals. Based on all calculation it was noticed, that the best results 

of NC1H-F3CSO3 were obtained with X3LYP functional, whereas the best results of NC2H-

SCN were achieved with SVWN5 functional. Aspect to these results it could be supposed that the 

best functional for unsaturated salts (NC1H-Cl) is X3LYP functional, whereas for saturated salts 

(NC2H-Cl) is SVWN5 functional. Moreover calculations of precursors compared to carbenes took 

more CPU time. 

In summary it was calculated that bonds C(1)-N(1) and N(1)-C(2) cut down against bonds 

of the appropriate carbenes, on the other hand the bond C(2)-C(3) elongated and the angle 

N(1)-C(1)-N(2) increased. The deviation could be the consequence of taking one isolated 

molecule in vacuum into account for the calculation. Compared to previous calculation
36

 the 

best predictions achieved smaller deviations. To reach a better accuracy the using of the better 

method (MP2, CI) or the better basis set (cc-pVDZ, aug-cc-pVDZ) represents one of possible 

ways. 

 

 

Fig. 34 Bond distances and relative errors of C(1)-N(1) bond of NC1H-F3CSO3 calculated by different 

functionals 

 

4.2.2 Hydrolysis products 

 Geometry optimization of hydrolysis products were done due to the enhancement of spectra 

interpretation. Best predictions of selected bond distances and bond angles are summarized in 

Appendix. In Fig. 35 the optimized structure of N-C-CA was depicted. Based on the results of 

calculations t the best results of N-C-CA were obtained at B3PW91/6-31G+(d,p) level. It was 

found out that N=C-CA is more stable than N-C=CA due to the fact that N=C-CA is located 
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about 7.8 kJmol
-1

 lower in energy which agrees well with Denk’s
7
 and  Holloczki’s

8
 works. 

Further, it was calculated that the bond length N(1)-C(2) of N=C-CA is shortened by 0.04 Å 

in comparison with that of the corresponding tautomer N-C=CA, whereas the bond C(2)-C(3) 

by 0.17 Å. On the other hand, bond length C(3)-N(2) is elongated by 0.12 Å and angle value 

is increased by 1.3 °. Calculated bonds lengths N(1)-C(2), C(2)-C(3) and C(3)-N(2) of N-C-

CA were the longest ones, which is in the agreement with the fact that single bonds are longer 

than double bonds. 

 

 

Fig. 35 The structure of N-C-CA optimized at B3PW91/6-31G(d) in ArgusLab 

 

4.3 Spectra prediction 

 IR and than RA spectra of NC1H-Cl (Fig. 36) and NC1 (Fig. 37) were obtained from data 

of geometry optimization. For the prediction of spectra B3LYP/6-31G(d) level was mainly 

used. The comparison of the spectra predictions at different levels is available in Appendix. 

All predicted spectra had the similar character, however differed in wavenumbers. The 

calculated spectra were compared with measured ones. Further, both measured IR spectra of 

NC1 (Fig. 38) were confronted with published Leites’ data
56

. These IR spectra did not 

correspond completely, therefore spectra of possible hydrolysis products (N=C-CA, N-

C=CA) were calculated (Fig. 39). In the IR spectrum of the carbene NC1 synthesised 

according to Denk
7
 (1

st
 synthesis) the presence of weak absorption band at 1686 cm

-1
 was 

revealed. Based on the calculated vibrational frequency of 1696 cm
-1

 belonging to     , the 

presence of the hydrolysis product N=C-CA in studied carbene NC1 is suggested. Our 
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measured (2
nd

 synthesis) IR spectrum corresponded with Leites’ IR spectrum
56

. The table 

with compared wavenumbers is available in Appendix. 

 We did not found well correlation between calculated and measured (2
nd

 synthesis) IR 

spectra (Fig. 40), but it is necessary to mention, that for predictions only one isolated 

molecule in gaseous phase was assumed. On the contrary, for the measurement the compound 

in solid state was taken. In Fig. 41 the example of the comparison of both spectra in Spartan
46

 

is presented. To get deeper insight into this field further research will be done. 

 

 

 

Fig. 36 The predicted IR spectrum of NC1H-Cl at B3LYP/6-31(d) level  (cm
-1

): 573 (vw), 651 (vw), 

677 (vw), 731 (vw), 799 (vw), 914 (vw), 982 (vw), 1037 (vw), 1081 (m), 1152 (m), 1180 (vw), 1217 

(vw), 1252 (vw), 1383 (vw), 1415 (vw), 1490 (vw), 1508 (vw), 1532 (vw), 2892 (vs), 2967 (w), 3007 

(w), 3219 (vw) and the predicted RA spectra of NC1H-Cl at B3LYP/6-31(d) level  (cm
-1

): 575 (vw), 

782 (vw), 909 (vw), 982 (vw), 1028 (vw), 1097 (vw), 1249 (vw), 1369 (vw), 1415 (vw), 1455 (vw), 

2890 (vs), 2958 (m), 3010 (w), 3192 (vw), 3217 (vw) 
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Fig. 37 The predicted IR spectrum of NC1 at B3LYP/6-31(d) level  (cm
-1

): 425 (vw), 500 (vw), 546 

(vw), 614 (vw), 673 (vw), 800 (vw), 907 (vw), 955 (vw), 1021 (vw), 1076 (vw), 1115 (vw), 1183 (vw), 

1218 (s), 1265 (vw), 1301 (vw), 1366 (w), 1397 (vw), 1470 (vw), 2931 (m), 3009 (m), 3180 (vw) and 

the predicted RA spectrum of NC1 at B3LYP/6-31(d) level  (cm
-1

): 543 (vw), 789 (vw), 902 (vw), 959 

(vw), 1021 (vw), 1075 (vw), 1139 (vw), 1193 (vw), 1285 (vw), 1374 (vw), 1462 (w), 1549 (vw), 2935 

(vs), 3008 (vs), 3170 (w) 
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Fig. 38 The measured IR spectrum (1
st
 synthesis) of NC1 (KBr)  (cm

-1
): 444 (vw), 519 (vw), 567 (vw), 

633(w), 719 (s), 816 (w), 827 (w), 847 (w), 922 (vw), 970 (w), 986 (w), 1031 (w), 1101 (m), 1136 (w), 

1202 (m), 1234 (vs), 1277 (m), 1319 (m), 1366 (vs), 1387 (s), 1458 (m), 1476 (m), 1555 (w), 1657 (w), 

1672 (w), 1686 (w), 2876 (w), 2909 (m), 2932 (m), 2976 (vs), 3073 (w), 3109 (w) and the measured IR 

spectrum (2
nd

 synthesis) of NC1 (KBr)  (cm
-1

): 444 (vw), 462 (vw), 519 (vw), 567 (vw), 633(w), 

719 (s), 816 (w), 827 (w), 847 (w), 922 (vw), 970 (w), 985 (w), 1031 (w), 1101 (m), 1136 (w), 1186 

(sh), 1203 (m), 1234 (vs), 1279 (w), 1319 (w), 1365 (s), 1387 (m), 1458 (w), 1475 (w), 1555 (vw), 

2875 (w), 2901 (sh), 2931 (m), 2976 (vs), 3072 (w), 3109 (w) 

 



 

 - 47 - 

 

Fig. 39 The predicted IR spectrum of N=C-CA at B3LYP/6-31(d) level  (cm
-1

): 454 (vw), 468 (vw), 

571 (vw), 931 (vw), 1034 (vw), 1201 (m), 1340 (v), 1479 (vw), 1696 (vs), 2932 (m), 3004 (s) and the 

predicted IR spectrum of N-C=CA at B3LYP/6-31(d) level  (cm
-1

): 451 (vw), 516 (vw), 562 (vw), 663 

(vw), 716 (vw), 770 (vw), 861 (vw), 1033 (vw), 1142 (vw), 1212 (m), 1290 (vw), 1369 (w), 1483 (vw), 

1669 (vs), 2929 (v), 3004 (m), 3089 (vw), 3001 (vw) 

 

 

Fig. 40 The comparison of predicted (B3LYP/6-31(d)) and measured (2
nd

 synthesis) IR spectra of NC1 
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Fig. 41 The comparison of predicted and measured IR spectra of NC1 in Spartan 

 

4.4 Study on the mechanism of the ROP of lactide 

Two mechanisms of ROP catalyzed by NHCs are widely accepted as it was discussed in 

Section 2.2.4. Initially, both mechanisms for system 1,3-di-terc-butylimidazol-2-ylidene, 

lactide and methanol S1 were investigated. At first, nucleophilic monomer-activated 

mechanism was studied according to the proposed schema
18

 (Fig. 10). Energies of all 

reactants and their intermediates were computed. In this pathway the activation barrier was 

large and the simulation of the ring-opening of lactide was unsuccessful, therefore second 

possible mechanism was intensive studied (chain-end-activated mechanism). 

 Initially, all stationary points were optimized at AM1 and B3LYP/6-31G(d) level. 

Regarding the calculated energies the novel pathway of chain-end-activated mechanism was 

suggested (Fig. 42). This pathway was divided into two steps including an initiation and the 

ring-opening step. The crucial feature of the initiation step is the formation of H-bond and 

TS1 intermediate which could correspond with alcohol adduct (discussed in Section 2.2.5). 

Based on Tab. 3 it is obvious that both intermediates are located lower in energy than 

separated reactants. In the ring-opening step the four-centre bond in transition state TS2 is 

formed and methanol hydrogen causes the ring-opening of lactide. Chain-end-activated 

mechanism had the lower activation barrier than nucleophilic route and similar features as the 

known basic concerted route of the DMAP-catalyzed ring-opening of lactide with methanol
26

 

(Fig. 9). The energy profile of both mechanisms was presented in Fig. 43. For comparison the 

same method was applied for system 4-dimethylaminopyridine, lactide and methanol S2. 
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Fig. 42 Proposal of a novel chain-end-mechanism 

  

 

Tab. 3 Calculated energies of all stationary points of the novel pathway 

 B3LYP/6-31G(d) 

E (au) E rel. (au) E rel. (kJ·mol
-1

) 

Carbene +lactide + methanol -1190.762667 0.000000 0.00 

H-bond (+lactide) -1190.784701 -0.022034 -57.84 

TS1 (+lactide) -1190.788041 -0.025374 -66.61 

TS2 optimized -1190.779200 -0.016533 -43.40 

Product complex -1190.803310 -0.040643 -106.69 

Separated product -1190.759300 0.003367 8.84 
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Fig. 43 The energy profile of both mechanisms 

 

4.4.1 Simulation of the ring-opening of lactide 

The process of the ring-opening of lactide was investigated by using Spartan computer 

program
46

. An interaction between the carbene and the alcohol (H-bond) was simulated by 

using of a generation of transition state at molecular mechanics level. The proposed transition 

state was optimized at AM1 level. Subsequently the influence of modification of OH bond 

distance in alcohol on the changes of the energy of the whole molecule was studied (Fig. 44). 

Two best conformations (with the lowest energy) were optimized by the rotation around OH 

bond at AM1 level (12 steps after 30°). The best conformer (the lowest energy, right 

orientation) was optimized at B3LYP/6-31G(d) level.  
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Fig. 44 The modelling of modification of bond distance OH in alcohol 

 

Then transition state of foregoing best conformer and monomer (lactide) TS2 was 

generated at molecular mechanics level (Fig. 45). Subsequently, transition state was 

optimized at AM1 level and B3LYP/6-31G(d) level. 

 

 

Fig. 45 The generation (blue arrows) of transition state at molecular mechanic level 

 

The ring-opening was simulated by the modification of OH bond [O(lactide)---H-

C(carbene)] at AM1 level (10 steps). All conformers were optimized at B3LYP/6-31G(d) 

level. The final product is the conformer with the lowest energy. 
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5 CONCLUSION 

 The energies and shapes of molecular orbitals and electrostatic potential maps of selected 

N-heterocyclic carbenes and their precursors based on chlorides were calculated. Titan
45

 

offers more possibilities of calculations than ArgusLab
44

. These calculations are crucial for 

the prediction of properties. Both studied carbenes are very reactive due to a small HOMO-

LUMO band gap. Moreover, electrostatic potential maps could be correlated with the catalytic 

activity, hence the suggestion of the better catalysts will be the subject for further study. 

 

 The geometry optimization of selected chloride precursors, similar precursors, NHCs and 

their possible hydrolysis products was made. Six compounds were calculated at DFT level 

using different seventeen functional. Three compounds were calculated at RHF level with five 

basis sets and at DFT level with three basis sets and with three functionals. The calculated 

structures were in good agreement with the published data and the more stable tautomer of 

hydrolysis products was determined. In next steps post-Hartree-Fock methods including 

electron correlation effect in addition and larger basis sets will be studied and accurate 

energies, enthalpies and entropies of these compounds will be calculated. 

 

 IR and RA spectra of selected imidazole compounds were obtained from data of geometry 

optimization. Subsequently, calculated spectra were compared with measured ones. For better 

spectra interpretation spectra of hydrolysis products were calculated. The finding of the 

efficient cause for the prediction of IR and RA spectra and subsequently their interpretation, 

eventually the obtaining of NMR spectra will be the subject for further study. 

 

 Two possible mechanisms of ROP of lactide catalyzed by NHCs were studied. In the first 

studied pathway, which is postulated by many authors, the activation barrier was too large. 

Therefore the second mechanism was investigated and the novel route was suggested. This 

novel route was more energetically favourable, which means more probable. Moreover the 

simulation of the ring-opening of lactide was successful and it was found out that methanol 

hydrogen causes the ring-opening of lactide. In next steps the experimental research such as 

in situ studies will be done and the influence of temperature and solvent effect on calculation 

will be account. 
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7 LIST OF ABBREVIATIONS 

AM1 Austin Model 1 

aug-cc-pVDZ Augmented cc-pVDZ 

cc-pVDZ Correlation Consistent-Polarized Valence Double Zeta 

CCDC Cambridge Crystallographic Data Centre 

CI Configural Interaction 

DFT Density Functional Theory 

DZV Double Zeta Valence 

FTIR Fourier Transform Infrared 

FTP File Transfer Protocol 

GAMESS General Atomic And Molecular Electronic Structure System 

GTO Gaussian Type Orbital 

H-bonding Hydrogen Bonding 

HOMO Highest Occupied Molecular Orbital 

IR Infrared 

LCAO Linear Combination Of Atomic Orbitals 

LUMO Lowest Unoccupied Molecular Orbital 

MCSCF Multi-Configurational Self-Consistent Field 

MeCN Acetonitrile 

MNDO Modified Neglet of Diatomic Overlap 

MP2 Møller-Plesset Pertubation Theory (second-order) 

MRDCI Multireference Single And Double Configuration Interaction 

NEVPT N-electron Valence State Perturbation Theory 

NHC N-heterocyclic Carbene 

PES Potential Energy Surface 

PM3 Third Parametrisation of MNDO 

RA Raman 

RHF Restricted Hartree Fock 

ROHF Restricted Open Shell Hartree Fock 

S1 1,3-di-terc-butylimidazol-2-ylidene, lactide and methanol 

S2 4-dimethylaminopyridine, lactide and methanol 

SCF Self-Consistent Field 

SFTP Secure File Transfer Protocol 

SI International System of Units 

SSH Secure Shell 

STO Slater Type Orbital 

TCP Transmission Control Protocol 

THF Tetrahydrofurane 

UHF Unrestricted Hartree Fock 
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8 NOMENCLATURE LIST 

DMAP 4-dimethylaminopyridine 

DMSO Dimethyl sulfoxide 

IMes 1,3-dimesitylimidazol-2-ylidene 

IMes 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene 

MeCN Acetonitrile 

NC1 1,3-di-terc-butylimidazol-2-ylidene 

NC2 1,3-di-terc-butylimidazolin-2-ylidene 

N=C-CA [(2E)-2-(tert-butylimino)ethyl]formamide (1,4-di(tert-butyl)-4-

formyl-1,4-diaza-but-1-ene) 

N-C=CA N-tert-butyl-N-[(Z)-2-(tert-butylamino)ethenyl]formamide 

N-C-CA N-tert-butyl-N-[2-(tert-butylamino)ethyl]formamide (N-formyl-

N,N’-di-tert-butylethylenediamine) 

NC1H-Cl 1,3-di-terc-butylimidazolium chloride 

NC1H-F3CSO3 1,3-di-terc-butylimidazolium trifluoromethanesulfonate 

NC2H-Cl 1,3-di-terc-butylimidazolinium chloride 

NC2H-SCN 1,3-di-terc-butylimidazolinium thiocyanate 

 

 Studied carbenes were marked NC1 and NC2, where NC reflects N-heterocyclic carbenes 

and numbers differ unsaturated (1) and saturated analogue (2). Their precursors contain 

hydrogen (H) and anion (Cl
-
, F3CSO3

-
 or SCN

-
) in addition. All hydrolysis products are based 

on formamide (A abbreviates formamide) and differ in single (-) and double bonds (=) in the 

sequence NCN. Their nomenclatures were generated in chemical software. N=C-CA and N-

C-CA have second names, because these names were used in some publications. The IMes 

abbreviates 1,3-dimesitylimidazol-2-ylidene, however mesityl means 2,4,6-trimethylphenyl, 

hence both names were mentioned. 

 



 

 

 

9 APPENDIX 

Tab. 4 Examples of pKa’s of nucleophilic carbenes in DMSO, MeCN and water 

Carbene DMSO MeCN Water 

 
27.9  0.23 39.1  0.25 34.0  0.3 

 

23.7  0.21 34.9  0.21 29.5  0.3 

 

22.6  0.09 33.0  0.09 28.3  0.1 

 
22.3  0.25 33.6  0.25 28.5  0.4 

 

22.0  0.21 33.3  0.21 28.2  0.3 

 

21.1  0.23 32.4  0.22 27.4  0.4 

 

16.2  0.10 27.4  0.10 23.4  0.2 

 

16.1  0.05 27.4  0.07 22.0  0.1 

 

14.5  0.16 25.6  0.15 21.2  0.2 

 

  

N N

NN

NN

NN

NN

NN

NN

ClCl

NN

NS



 

 

Tab. 5 Types and descriptions of funtionals 

Type Functional Description 

Pure exchange SLATER Slater exchange, no correlation 

Pure correlation LYP 
Hartree-Fock exchange, Lee-Yang-Parr 1988 

correlation 

Exchange-correlation SLYP Slater exchange, Lee-Yang-Parr 1988 correlation 

Exchange-correlation BLYP 
Becke 1988 exchange, Lee-Yang-Parr 1988 

correlation 

Exchange-correlation GLYP 
Gill 1996 exchange, Lee-Yang-Parr 1988 

correlation 

Exchange-correlation XLYP 
Extended exchange functional of Xu and Goddard 

III, Lee-Yang-Parr 1988 correlation 

Exchange-correlation OLYP OPTX exchange, Lee-Yang-Parr 1988 correlation 

Exchange-correlation SVWN1RPA Slater exchange, VWN formula 1 RPA correlation 

Exchange-correlation BVWN1RPA 
Becke 1988 exchange, VWN formula 1 RPA 

correlation 

Exchange-correlation SVWN5 Slater exchange, VWN formula 5 RPA correlation 

Exchange-correlation BVWN5 
Becke 1988 exchange, VWN formula 5 RPA 

correlation 

Exchange-correlation PBE96 

Perdew-Burke-Ernzerhof 1996 exchange, Perdew-

Burke-Ernzerhof nonlocal + Perdew-Wang 1991 

LDA correlation 

Exchange-correlation PBEPW91 

Perdew-Burke-Ernzerhof 1996 exchange, Perdew 

1991 nonlocal + Perdew-Wang 1991 LDA 

correlation 

Exchange-correlation PW91 
Perdew-Wang 1991 exchange, Perdew 1991 

nonlocal + Perdew-Wang 1991 LDA correlation 

Hybrid B3LYP 
Becke-style three-parameter functional, using VWN 

formula 5 RPA correlation 

Hybrid X3LYP 
Extended exchange functional f Xu and Goddard III 

+ Hartree-Fock exchange 

Hybrid O3LYP 
Slater + OPTX + Hartree-Fock exchange, VWN 

formula 5 + Lee-Yang-Parr 1988 correlation 

Hybrid BHHLYP 
Becke 1988 + Hartree-Fock exchange, Lee-Yang-

Parr 1988 correlation 

Hybrid PBE0 

Perdew-Burke-Ernzerhof 1996 + Hartree-Fock 

exchange, Perdew-Burke-Ernzerhof nonlocal + 

Perdew-Wang 1991 LDA correlation 

Hybrid PBE1PW91 

Perdew-Burke-Ernzerhof 1996 + Hartree-Fock 

exchange, Perdew 1991 nonlocal + Perdew-Wang 

1991 LDA correlation 

Hybrid B3PW91 

Slater + Becke 1988 + Hartree-Fock exchange, 

Perdew 1991 nonlocal + Perdew-Wang 1991 LDA 

correlation 

 



 

 

 

Fig. 46 The example of the input file for PC GAMESS/Firefly 

  



 

 

Tab. 6 Selected bond distances and bond angles of NC1 and comparison 

6-31G(d) 
Bond distance (Å) Bond angle (°) 

E (%) E (au) CPU time 
C(1)-N(1) C(2)-C(3) N(1)-C(2) N(1)-C(1)-N(2) 

exp. data
7
 1.366(2) 1.341(2) 1.380(2) 102.19(12) - - - 

D
F

T
 

SLATER 1.381 1.375 1.401 101.99 1.27 -529.46 93 min 

LYP 1.386 1.368 1.407 102.30 1.35 -540.36 115 min 

BLYP 1.386 1.368 1.407 102.30 1.35 -540.38 83 min 

SLYP 1.360 1.362 1.381 101.95 0.61 -532.77 84 min 

GLYP 1.384 1.367 1.402 102.32 1.24 -540.34 85 min 

OLYP 1.378 1.363 1.393 102.40 0.92 -540.43 84 min 

SVWN1RPA 1.360 1.359 1.377 102.15 0.51 -537.71 201 min 

SVWN5 1.362 1.360 1.380 102.11 0.45 -535.78 87 min 

PBE96 1.379 1.367 1.395 102.07 1.02 -539.95 127 min 

PW91 1.377 1.365 1.394 102.13 0.92 -540.44 134 min 

B3LYP 1.371 1.356 1.392 102.62 0.69 -540.68 235 min 

BHHLYP 1.358 1.341 1.383 103.00 0.40 -540.33 97 min 

X3LYP 1.370 1.355 1.391 102.61 0.64 -540.41 241 min 

O3LYP 1.363 1.354 1.380 102.47 0.37 -539.46 251 min 

PBE0 1.365 1.354 1.384 102.48 0.40 -540.04 239 min 

PBE1PW91 1.365 1.353 1.384 102.46 0.38 -540.25 243 min 

B3PW91 1.367 1.356 1.387 102.50 0.50 -540.49 244 min 

* Three best results are marked in bold italic 

 

Tab. 7 Selected bond distances and bond angles of NC1H-Cl 

6-31G(d) 
Bond distance (Å) Bond angle (°) 

E (au) CPU time 
C(1)-N(1) C(2)-C(3) N(1)-C(2) N(1)-C(1)-N(2) 

D
F

T
 

SLATER 1.347 1.385 1.382 109.26 -987.39 108 min 

LYP 1.296 1.332 1.355 110.53 -1001.17 122 min 

BLYP 1.348 1.377 1.389 109.86 -1001.16 202 min 

SLYP 1.331 1.370 1.363 108.82 -991.43 132 min 

GLYP 1.345 1.375 1.387 109.97 -1001.16 187 min 

OLYP 1.340 1.372 1.379 110.08 -1001.25 192 min 

SVWN1RPA 1.359 1.367 1.362 109.10 -997.39 116 min 

SVWN5 1.331 1.369 1.364 109.13 -995.10 113 min 

PBE96 1.341 1.376 1.380 109.71 -1000.57 159 min 

PW91 1.340 1.375 1.379 109.61 -1001.23 164 min 

B3LYP 1.332 1.366 1.376 110.06 -1001.50 83 min 

BHHLYP 1.318 1.352 1.368 110.18 -1001.14 77 min 

X3LYP 1.331 1.365 1.376 110.04 -1001.18 77 min 

O3LYP 1.326 1.362 1.366 109.83 -1000.05 102 min 

PBE0 1.327 1.364 1.369 109.85 -1000.69 83 min 

PBE1PW91 1.327 1.364 1.369 109.83 -1000.96 81 min 

B3PW91 1.330 1.365 1.371 109.88 -1001.25 82 min 

 



 

 

Tab. 8 Selected bond distances and bond angles of NC2 and comparison 

6-31G(d) 
Bond distance (Å) Bond angle (°) 

E (%) E (au) CPU time 
C(1)-N(1) C(2)-C(3) N(1)-C(2) N(1)-C(1)-N(2) 

exp. data
52

 1.348(1) 1.542(2) 1.476(1) 106.44(9) - - - 

D
F

T
 

SLATER 1.361 1.537 1.489 106.31 0.91 -530.53 58 min 

LYP 1.326 1.505 1.440 106.81 1.22 -541.57 52 min 

BLYP 1.363 1.541 1.504 106.78 1.31 -541.56 57 min 

SLYP 1.343 1.513 1.462 105.99 0.45 -533.89 69 min 

GLYP 1.361 1.541 1.502 106.79 1.24 -541.53 85 min 

OLYP 1.356 1.533 1.487 106.72 0.75 -541.62 49 min 

SVWN1RPA 1.342 1.514 1.464 106.25 0.39 -538.92 57 min 

SVWN5 1.343 1.517 1.466 106.24 0.39 -536.95 57 min 

PBE96 1.356 1.533 1.489 106.45 0.72 -541.14 58 min 

PW91 1.356 1.533 1.489 106.52 0.73 -541.63 57 min 

B3LYP 1.352 1.532 1.483 106.80 0.61 -541.89 55 min 

BHHLYP 1.342 1.523 1.465 106.83 0.57 -541.54 44 min 

X3LYP 1.351 1.531 1.481 106.76 0.53 -541.60 56 min 

O3LYP 1.343 1.520 1.468 106.59 0.40 -540.65 51 min 

PBE0 1.347 1.524 1.470 106.59 0.33 -540.65 56 min 

PBE1PW91 1.347 1.525 1.470 106.47 0.35 -541.23 56 min 

B3PW91 1.349 1.528 1.475 106.52 0.34 -541.45 55 min 

* Three best results are marked in bold italic 

 

Tab. 9 Selected bond distances and bond angles of NC2H-Cl 

6-31G(d) 
Bond distance (Å) Bond angle (°) 

E (au) CPU time 
C(1)-N(1) C(2)-C(3) N(1)-C(2) N(1)-C(1)-N(2) 

D
F

T
 

SLATER 1.356 1.544 1.477 111.66 -988.50 450 min 

LYP 1.294 1.514 1.442 113.88 -1002.43 150 min 

BLYP 1.350 1.552 1.488 113.05 -1002.39 540 min 

SLYP 1.346 1.520 1.451 110.20 -992.60 540 min 

GLYP 1.341 1.546 1.490 113.00 -1002.37 186 min 

OLYP 1.336 1.535 1.477 112.95 -1002.46 208 min 

SVWN1RPA 1.343 1.522 1.452 110.78 -998.64 450 min 

SVWN5 1.344 1.524 1.455 110.88 -996.31 450 min 

PBE96 1.350 1.542 1.475 112.14 -1001.79 560 min 

PW91 1.349 1.541 1.475 112.07 -1002.46 578 min 

B3LYP 1.328 1.539 1.477 113.22 -1002.73 180 min 

BHHLYP 1.315 1.530 1.464 113.36 -1002.37 180 min 

X3LYP 1.328 1.537 1.475 113.18 -1003.01 540 min 

O3LYP 1.323 1.525 1.461 112.62 -1001.27 210 min 

PBE0 1.323 1.530 1.466 112.83 -1001.92 210 min 

PBE1PW91 1.324 1.530 1.466 112.83 -1002.19 210 min 

B3PW91 1.326 1.533 1.470 112.92 -1002.49 180 min 



 

 

Tab. 10 Symmetry and energy of NC1 

 
Symmetry 

Energy 

AM1 (kJ·mol
-1

) RHF/6-31G(d) (au) B3LYP/6-31(d) (au) 

NC1 Cs 238.36 -537.04829 -540.681976 

NC1 C2v 238.39 -537.04762 -540.682946 

 

Tab. 11 Selected bond distances and bond angles of NC1H-F3CSO3 and comparison 

6-31G(d) 
Bond distance (Å) Bond angle (°) 

E (%) E (au) CPU time 
C(1)-N(1) C(2)-C(3) N(1)-C(2) N(1)-C(1)-N(2) 

exp. data
53

 1.336(5) 1.345(5) 1.375(5) 109.8(4) - - - 

D
F

T
 

SLATER 1.344 1.382 1.385 109.17 1.11 -1481.02 509 min 

LYP 1.300 1.332 1.356 110.56 1.49 -1502.04 580 min 

BLYP 1.347 1.377 1.390 109.90 1.04 -1502.35 414 min 

SLYP 1.329 1.368 1.365 108.73 1.04 -1487.18 306 min 

GLYP 1.346 1.376 1.387 109.91 0.95 -1502.31 432 min 

OLYP 1.341 1.370 1.380 110.11 0.67 -1502.34 411 min 

SVWN1RPA 1.328 1.365 1.366 109.07 0.91 -1496.12 443 min 

SVWN5 1.330 1.367 1.368 109.01 0.88 -1492.71 441 min 

PBE96 1.343 1.375 1.380 109.62 0.77 -1501.29 221 min 

PW91 1.343 1.374 1.380 109.63 0.75 -1502.33 208 min 

B3LYP 1.333 1.366 1.378 109.99 0.49 -1502.73 441 min 

BHHLYP 1.319 1.353 1.368 110.11 0.72 -1502.13 446 min 

X3LYP 1.333 1.365 1.377 109.94 0.48 -1502.24 228 min 

O3LYP 1.328 1.362 1.367 109.75 0.68 -1500.45 474 min 

PBE0 1.329 1.363 1.370 109.77 0.62 -1501.39 451 min 

PBE1PW91 1.329 1.362 1.370 109.82 0.60 -1501.82 458 min 

B3PW91 1.332 1.364 1.373 109.88 0.54 -1502.28 448 min 

* Three best results are marked in bold italic 

  



 

 

 

Tab. 12 Selected bond distances and bond angles of NC2H-SCN and comparison 

6-31G(d) 
Bond distance (Å) Bond angle (°) 

E (%) E (au) CPU time 
C(1)-N(1) C(2)-C(3) N(1)-C(2) N(1)-C(1)-N(2) 

exp. data
54

 1.313(2) 1.517(3) 1.473(2) 113.80(16) - - - 

D
F

T
 

SLATER 1.333 1.553 1.483 113.95 1.18 -1017.90 361 min 

LYP 1.289 1.519 1.447 114.84 1.16 -1033.17 375min 

BLYP 1.333 1.557 1.496 114.86 1.66 -1033.21 262 min 

SLYP 1.318 1.530 1.458 113.30 0.67 -1022.41 492 min 

GLYP 1.331 1.556 1.493 114.86 1.56 -1033.18 257 min 

OLYP 1.326 1.547 1.481 115.09 1.16 -1033.27 308 min 

SVWN1RPA 1.317 1.531 1.459 113.68 0.57 -1029.05 457 min 

SVWN5 1.318 1.532 1.461 113.77 0.55 -1026.49 447 min 

PBE96 1.328 1.548 1.481 114.44 1.07 -1032.54 263 min 

PW91 1.328 1.548 1.481 114.43 1.07 -1033.27 271 min 

B3LYP 1.320 1.546 1.481 114.93 1.00 -1033.57 264 min 

BHHLYP 1.307 1.536 1.468 114.90 0.75 -1033.15 274 min 

X3LYP 1.319 1.545 1.479 114.85 0.91 -1033.20 265 min 

O3LYP 1.314 1.533 1.465 114.55 0.58 -1031.93 269 min 

PBE0 1.315 1.538 1.469 114.54 0.61 -1032.66 277 min 

PBE1PW91 1.315 1.538 1.470 114.61 0.61 -1032.96 278 min 

B3PW91 1.318 1.541 1.473 114.62 0.67 -1033.29 265 min 

* Three best results are marked in bold italic 

  



 

 

 

Tab. 13 Selected bond distances and bond angles of N=C-CA 

Method 
Bond distance (Å) Bond angle (°) 

E (au) CPU time 
N(1)-C(2) C(2)-C(3) C(3)-N(2) O=C(1)-N(1) 

RHF/6-31G(d) 1.464 1.508 1.249 124.25 -613.11 35 min 

RHF/6-31G+(d) 1.465 1.510 1.249 115.74 -613.12 111 min 

RHF/6-311G+ 1.470 1.504 1.259 123.91 -612.97 122 min 

RHF/6-31G+(d,p) 1.464 1.510 1.249 124.24 -613.16 146 min 

RHF/ 

6-311G+(d,p) 
1.465 1.511 1.246 124.56 -613.27 277 min 

B3LYP/6-31G(d) 1.473 1.512 1.269 124.12 -617.15 59 min 

B3LYP/ 

6-31G+(d,p) 
1.473 1.513 1.270 124.21 -617.20 73 min 

B3LYP/ 

6-311G+(d,p) 
1.473 1.512 1.264 124.36 -617.33 112 min 

O3LYP/6-31G(d) 1.457 1.501 1.265 124.07 -615.79 62 min 

O3LYP/ 

6-31G+(d,p) 
1.456 1.502 1.266 124.17 -615.84 162 min 

O3LYP/ 

6-311G+(d,p) 
1.455 1.500 1.261 124.37 -615.96 327 min 

B3PW91/ 

6-31G(d) 
1.465 1.508 1.268 124.07 -616.92 54 min 

B3PW91/ 

6-31G+(d,p) 
1.465 1.508 1.268 124.22 -616.96 151 min 

B3PW91/ 

6-311G+(d,p) 
1.463 1.507 1.264 124.32 -617.09 267 min 

 

  



 

 

Tab. 14 Selected bond distances and bond angles of N-C=CA 

Method 
Bond distance (Å) Bond angle (°) 

E (au) CPU time 
N(1)-C(2) C(2)-C(3) C(3)-N(2) O=C(1)-N(1) 

RHF/6-31G(d) 1.430 1.326 1.380 125.78 -613.10 75 min 

RHF/6-31G+(d) 1.430 1.328 1.380 125.75 -613.11 289 min 

RHF/6-311G+ 1.434 1.331 1.377 125.32 -612.97 226 min 

RHF/6-31G+(d,p) 1.430 1.329 1.378 125.70 -613.15 364 min 

RHF/ 

6-311G+(d,p) 
1.429 1.326 1.379 125.90 -613.26 132 min 

B3LYP/6-31G(d) 1.430 1.351 1.377 125.69 -617.14 49 min 

B3LYP/ 

6-31G+(d,p) 
1.429 1.353 1.376 125.50 -617.20 172 min 

B3LYP/ 

6-311G+(d,p) 
1.429 1.349 1.475 125.64 -617.33 180 min 

O3LYP/6-31G(d) 1.415 1.350 1.365 125.65 -615.78 52 min 

O3LYP/ 

6-31G+(d,p) 
1.415 1.351 1.364 125.38 -615.84 189 min 

O3LYP/ 

6-311G+(d,p) 
1.413 1.348 1.361 125.62 -615.97 265 min 

B3PW91/ 

6-31G(d) 
1.423 1.351 1.372 125.64 -616.92 49 min 

B3PW91/ 

6-31G+(d,p) 
1.423 1.353 1.371 125.45 -616.96 164 min 

B3PW91/ 

6-31G+(d,p) 
1.422 1.348 1.369 125.65 -617.09 262 min 

 

  



 

 

 

Tab. 15 Selected bond distances and bond angles of N-C-CA and comparison 

Method 
Bond distance (Å) Bond angle (°) E 

(%) 
E (au) CPU time 

N(1)-C(2) C(2)-C(3) C(3)-N(2) O=C(1)-N(1) 

exp. data
54

 1.4729(17) 1.5250(2) 1.4586(18) 123.98(14) - - - 

RHF/6-31G(d) 1.471 1.527 1.453 124.75 0.32 -614.28 67 min 

RHF/6-31G+(d) 1.472 1.528 1.454 124.88 0.32 -614.29 226 min 

RHF/6-31G+ 1.478 1.529 1.460 124.48 0.28 -614.02 113 min 

RHF/6-311G+ 1.478 1.527 1.460 124.44 0.24 -614.14 245 min 

RHF/6-31G+(d,p) 1.472 1.528 1.453 124.80 0.32 -614.33 306 min 

RHF/ 

6-311G+(d,p) 
1.472 1.528 1.453 125.01 0.37 -614.44 596 min 

B3LYP/6-31G(d) 1.478 1.535 1.464 124.42 0.43 -618.36 227 min 

B3LYP/ 

6-31G+(d,p) 
1.481 1.534 1.466 124.50 0.50 -618.41 261 min 

B3LYP/ 

6-311G+(d,p) 
1.479 1.534 1.465 124.67 0.50 -618.55 489 min 

O3LYP/6-31G(d) 1.462 1.523 1.449 124.37 0.46 -616.99 116 min 

O3LYP/ 

6-31G+(d,p) 
1.464 1.523 1.451 124.32 0.39 -617.04 286 min 

O3LYP/ 

6-311G+(d,p) 
1.463 1.521 1.448 124.62 0.54 -617.17 536 min 

B3PW91/ 

6-31G(d) 
1.471 1.529 1.458 124.42 0.20 -618.13 75 min 

B3PW91/ 

6-31G+(d,p) 
1.473 1.529 1.458 124.43 0.17 -618.18 261 min 

B3PW91/ 

6-311G+(d,p) 
1.471 1.528 1.458 124.62 0.22 -618.31 509 min 

* Three best results are marked in bold italic 

  



 

 

Tab. 16 The notation of intensities 

Intensity Abbreviations 

very strong vs 

strong s 

medium m 

weak w 

very weak vw 

- 

 

Fig. 47 The predicted IR spectra of NC1 at B3LYP/6-31(d) level ν (cm
-1

): 425 (vw), 500 (vw), 546 

(vw), 614 (vw), 673 (vw), 800 (vw), 907 (vw), 955 (vw), 1021 (vw), 1076 (vw), 1115 (vw), 1183 (vw), 

1218 (s), 1265 (vw), 1301 (vw), 1366 (w), 1397 (vw), 1470 (vw), 2931 (m), 3009 (m), 3180 (vw), at 

O3LYP/6-31(d) level ν (cm
-1

): 426 (vw), 508 (vw), 621 (vw), 667 (vw), 814 (vw), 910 (vw), 958 (vw), 

1069 (vw), 1113 (vw), 1221 (vs), 1364 (m), 1460 (vw), 2941 (m), 3029 (s), 3180 (vw), at BHHLYP/6-

31(d) level ν (cm
-1

): 421 (vw), 501 (vw), 617 (vw), 693 (vw), 807 (vw), 956 (vw), 1077 (vw), 1120 (vw), 

1232 (vs), 1317 (vw), 1381 (s), 1467 (vw), 2906 (m), 2980 (vs), 3155 (vw) and at PBE0/6-31(d) level ν 

(cm-1): 423 (vw), 500 (vw), 617 (vw), 675 (w), 809 (vw), 952 (vw), 1069 (vw), 1115 (vw), 1215 (vs), 

1359 (s), 1454 (w), 1548 (vw), 2916 (s), 2998 (vs), 3159 (vw) 

  



 

 

Tab. 17 Measured IR spectra of NC1 

1
st
 synthesis 2

nd
 synthesis Leites

56
 

Asingnment
56

 
Wavenumber (cm

-1
) Wavenumber (cm

-1
) Wavenumber (cm

-1
) 

3109(w) 3109(w) 3110(w)     
   

3073(w) 3073(w) 3072(w)     
  

2976(vs) 2976(vs) 2972(vs)    
   in Me 

2932(m) 2931(m) 2927(m)    
  in Me 

2909(sh) 2901(sh) 2904(sh) 2   
    

2876(w) 2875(w) 2870(w)    
  

1686(w)        

1672(w)    

1657(w)    

1555(w) 1554(vw)       

1476(m) 1475(w)   

1458(m) 1458(w) 1462(s)    
   

1387(s) 1387(s) 1396(m)    
  

1366(vs) 1365(s) 1366(vs)     
   +      

   

1319(m) 1319(w) 1319(s)      
   +     

1277(m) 1279(w) 1280(m)          
   +     

1234(vs) 1234(vs) 1237(vs)    
  +     +      

1202(m) 1203(m) 1203(w)          
   

1186(sh) 1186(sh) 1186(sh)          
  

1136(w) 1136(w) 1132(w)     
   +     

1101(m) 1101(m) 1094(m)     
  +      

1031(w) 1031(w) 1031(w)     

986(w) 985(w) 985(w)     
 +      

  

970(w) 970(w) 969(m)     
  +      

   

922(vw) 922(vw)   

847(w) 847(w)   

827(w) 827(w) 827(m)     

816(w) 816(w) 816(vw)      +           

719(s) 719(s) 721(s)     
   

633w 633w 632(s)     
  

567(vw) 567(vw) 568(vw) ring puckering 

519(vw) 519(vw) 518(m) ring puckering 

463(vw) 462(vw) 466(vw)  

444(vw) 444(vw) 443(m)  

 



 

 

 



 


