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ABSTRACT 
By using molecular modelling it is possible to predict the behaviour of new compounds and 

to help interpreting of the experimental data. The objective of the thesis was the prediction of 
selected properties of polymerization catalysts based on carbenes, the prediction of their 
structures and spectral characteristics and the study of the mechanism of the ring-opening 
polymerization of lactide. 

To confirm the behaviour of carbenes and their precursors based on chlorides selected 
characteristics of a molecule were studied. The calculation of selected molecular orbitals and 
electrostatic potential maps was made. Subsequently, bond distances and bond angles of 
selected imidazole and imidazoline compounds, "free" carbenes and their possible hydrolysis 
products were obtained by using computer programs. Data of structural similar compounds, 
which have already been characterized, were obtained from CCDC (Cambridge 
Crystallographic Data Centre) and were compared with the calculated data. Infrared and 
Raman spectra of the imidazole salt and the infrared spectrum of the appropriate carbene were 
measured. The measured spectra were compared with the predicted ones. For the better 
spectra interpretation the spectra of possible hydrolysis products were calculated. 
Subsequently, the mechanism of the ring-opening polymerization of lactide was investigated. 
Based on calculated energies of stationary points the novel mechanism of polymerization was 
suggested. 

ABSTRAKT 
Pomocí molekulového modelování je možné předpovídat chování nových látek a napomáhá 

při jinak obtížné interpretaci experimentálních dat. Cílem práce byla predikce vybraných 
vlastností polymeračních katalyzátorů na bázi karbenů, predikce jejich struktur a spektrálních 
charakteristik a studie mechanismu polymerace za otevření kruhu laktidu. 

K ověření chování karbenů a jejich prekurzorů ve formě chloridů byly studovány vybrané 
charakteristiky molekuly. Byl proveden výpočet vybraných molekulových orbitalů a 
elektrostatických map. Následně pomocí počítačových programů byly získány teoretické 
vazebné délky a úhly vybraných imidazolových a imidazolinových sloučenin, karbenů a jejich 
možných produktů hydrolýzy. Data strukturně podobných, již charakterizovaných sloučenin, 
byla získána z CCDC (Cambridge Crystallographic Data Centre) a následně byla 
konfrontována s vypočítanými daty. Byla změřena infračervená a Ramanova spektra 
imidazolové soli a infračervené spektrum příslušného karbenů. Tato spektra byla 
konfrontována s napredikovánými. Pro lepší interpretaci spekter byla spočítána spektra 
možných produktů hydrolýzy. Následně byl studován mechanismus polymerace za otevření 
kruhu laktidu. Na základě spočítaných energií stacionárních bodů byl navržen nový 
mechanismus polymerace. 

KEYWORDS 
N-heterocyclic carbenes, ab initio methods, DFT methods, FTIR spectroscopy, Raman 
spectroscopy, transition states 

KLÍČOVÁ SLOVA 
N-heterocyclické karbeny, ab initio metody, DFT metody, FTIR spektroskopie, Ramanova 
spektroskopie, tranzitní stavy 
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1 INTRODUCTION 

Molecular modelling has made a significant progress together with the development of the 
computer technology. It utilizes the results of theoretical chemistry as inputs into efficient 
computer programs to calculate the structures and properties of molecules. First, 
computational quantum chemistry has been developed. The advancement of computer 
softwares has continued in many research groups. John Pople, who made the methods more 
efficient and made their application more popular, was awarded the Nobel Prize7 in 1998. 

On the basis of ab initio methods, which were proved to be competent for the prediction of 
molecular geometry, the carbene (methylene) intermediate in the gas-phase has been studied. 
In 1970, by using of Hartree-Fock calculations by Bender and Schaeffer it was investigated 
that the molecule of methylene is bent. This fact was proved in the next years by experiments. 
Nowadays, the accuracy of these methods is similar or better to that of most experimental 
methods7. 
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2 THEORETICAL PART 

2.1 Definition and classification of carbenes 
The simplest representative of carbenes is methylene (H 2 C:). Generally, carbenes with the 

formula of R R ' C : (Fig. 1) are neutral compounds containing a divalent carbon with only six 
valence electrons. They are classified as singlet and triplet carbenes differing significantly in 
chemical reactivity pattern. Singlet carbenes behave like zwitterions. Triplet carbenes 
participate in chemical reactions similarly like free radicals. Most carbenes have a nonlinear 
triplet ground state; however they have very short life-time. 

Carbenes bonded as ligands to the transition metal centre, could be classified into two 
types: Fischer and Schröck carbenes. The Fischer carbenes are electrophilic at the carbene 
carbon atom and they are in singlet state. On the other hand, the Schröck carbenes have more 
nucleophilic carbene centre. 

Ar > 
Ar 

diaryl carbenes 

-N 
\ -o 

acyclic diaminocarbenes acyclic aminooxycarbenes acyclic aminothiocarbene 

/ / 
-N 

l > : 

\ A 
cyclic diaminocarbenes imidazol-2-ylidenes 

/ 
-N 

fl >: 

1,2,4-triazol-^-ylidenes 
1,3-thiazol-2-ylidenes 

> x > 

acyclic diborycarbenes cyclic diborycarbenes 

> 
A 

phosphinosilyl-
carbenes 

phosphinophosphonios-
carbenes 

F ^ . > F - S . 

F 3 C F 5 S 
sulfenyltrifluoromethyl- sulphenylpentafluorothio-

carbenes carbenes 

F i g . 1 Prepared types of carbenes 

Heterocyclic carbenes contain at least one atom of carbon and at least one heteroatom such 
as oxygen, sulphur or nitrogen in the cycle. Heteroatom donor groups on carbene centre 
render the originally degenerate orbitals on carbon unequal in energy. Consequently, both the 
nucleophilicity of the carbon atom and the thermodynamic stability of the carbene compound 
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are increased. Although several combinations of heteroatoms in carbene ring are possible, 
only singlet carbenes with two nitrogen atoms (N-heterocyclic carbenes) were isolated as 
crystalline compounds2 till 1997. 

N-heterocyclic carbene structures were studied by Wanzlick et al.3 in the early 1960s -
unfortunately without the successful preparation of stable "free" carbenes. Arduengo et al.4 

succeed in preparation of "free" carbene by deprotonation of imidazolium ion in 1991 
(Fig. 2). 

+ NaCI 

F i g . 2 Deprotonation of imidazolium salt 

2.2 N-heterocyclic carbenes 
N-heterocyclic carbenes (NHCs) are classified into the four main types: imidazol-2-

ylidenes, imidazolin-2-ylidenes, l,2,4-triazol-3-ylidenes and l,3-thiazol-2-ylidenes (Fig. 3). 

imidazol in-2-yl idenes i mi dazol-2-yli denes 

1,2,4-triazol-3-ylidenes 1,3-thiazol-2-ylidenes 

F i g . 3 Types of stable N-heterocyclic carbenes 
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NHCs could be synthesized by a variety of ways, for example by deprotonation of 
imidazolium salts4 (Fig. 2), by the elimination of methanol with 5-methoxy-l,3,4-triphenyl-
4,5-dihydro-lH-l,2,4-triazol at higher temperature5 (Fig. 4a) or by reduction of thiones with 
potassium in boiling T H F 6 (Fig. 4b). 

Ph 

a) 
N-

Ph 

-N 

-N 

I 
Ph 

H 10 Pa, 80°C 

OMe " MeOH 

Me Me 

b) 

Me Me 

F i g . 4 The examples of the synthesis of N-heterocyclic carbenes 

The carbenes that can be isolated as stable crystalline compounds at room temperature are 
also known as Arduengo carbenes. NHCs are often colourless crystals thermodynamically 
stable in the absence of oxygen and moisture4. In presence of air moisture imidazoline-2-

7 8 
ylidenes hydrolyze to ring-opened product' , while imidazole-2-ylidenes can hydrolyze to 
two tautomeric ring-opened forms . The reaction of an imidazole-2-ylidene with water in 
aqueous solution formed a stable solution of the corresponding imidazolium-hydroxide. On 
the other hand the hydrolysis of the carbene in a mainly aprotic environment with only traces 
of moisture yields a hydrogen-bridged carbene-water complex that converts slowly to two 
tautomeric ring opened forms (Fig. 5). Moreover, some carbenes are stable only in the form 
of solution9. 
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H H 

Fig. 5 The scheme of hydrolysis of imidazole-2-ylidenes and imidazoline-2-ylidenes 

2.2.1 General properties of NHCs 
NHCs have a pronounced low-energy of HOMO (highest occupied molecular orbital) and a 

high-energy of L U M O (lowest unoccupied molecular orbital)70. Due to the small HOMO-
L U M O gaps carbenes are very reactive. They are stronger electron-pair donors (Lewis bases) 
than amines because of the lower electronegativity of carbon atom. Their electron-accepting 
capabilities are more significant than those of boranes. NHCs properties benefit from a "push-
pull" effect, because the amino groups are 7t-donating (mesomeric effect) and o-withdrawing 
(inductive effect)2. 

The stability of NHCs results mainly from electronic effects (mesomeric +M as well as 
inductive -I effects), although the steric hindrance plays an important role as well. In the 
imidazol-2-ylidenes the nitrogen lone pairs and the C=C double bonds ensure the kinetic 
stability because of their high electron density and 7t-donation from nitrogen lone pairs plays a 
minor role. The aromatic character of these carbenes is less pronounced than that of 
imidazolium salts precursors, but it brings an additional stabilization of ~ 109 kJ-moi"1 

(~ 26 kcal-mol"1)77. 
Generally, the kinetic stability of compounds is crucial for preparative chemistry. Stable 

NHCs are investigated for several reasons. The attention is paid to the structure, reactivity and 
theoretical understanding of these highly Lewis basic (one of the strongest known bases) and 
nucleophilic molecules. Moreover, stable "ylidene" carbenes are used for preparation of main 
group and transitional metal complexes. It is worth mentioning that several "in situ" methods 
for syntheses of metal "ylidene" complexes without the necessity of "free carbenes" or their 
equivalents isolation have also been developed2. 
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2.2.2 NHCs as nucleophilic catalysts 

NHCs belong to naturally occurring nucleophilic catalysts and have found also various 
catalytic applications in synthetic chemistry2. Some of them are utilized in important organic 
synthesis, for example in the formoin condensation reactions converting C2 to C6 
carbohydrates, in oxidative benzoin condensation of aldehydes, alcohols and aromatic nitro 
compounds to yield esters, in the Michael-Stetter reaction yielding 1,4-dicarbonyl derivatives 

12 

and in the benzoin condensation of aldehydes to a-hydroxyketones (Fig. 6). Chiral 
triazolium salts as catalyst precursors are used in asymmetric variants of ylidene-catalyzed 
benzoin condensations and Michael-Stetter reaction73. 

Michael-Stetter reaction benzoin condesation oxidative benzoin reaction formoin reaction 

Fig. 6 Organic transformations of aldehydes catalysed by N-heterocyclic ylidenes 

N-heterocyclic carbenes can catalyze transesterification reactions with a high efficiency for 
a variety of phosphorus esters74 and carboxylic acid esters75. Among them, the catalysed 
synthesis yielding the commercially important polyester poly(ethylene terephthalate) (PET) is 
significant76. It should be reminded that the nature of both the alcohol and carbene is crucial 
for efficiency of transesterification reactions. The N-aryl substituted carbenes are less 
effective than the N-alkyl substituted carbenes, especially for secondary alcohols75. The high 
transesterifications catalytic reactivity of N-heterocyclic carbenes was found out in the case of 
the step-growth polycondesations75 as well as depolymerizations76 of engineering 
thermoplastics. 

NHCs are able to catalyze the ring-opening polymerization (ROP) of cyclic esters as well. 
In 2001, the catalyzed living ROP of lactones was reported. The formed poly lactones had 
controlled molecular weight and narrow polydispersity77. Since this first report, the wide 
platform based on structural and electronic diversity of N-heterocyclic carbenes for the ROP 
of different monomers including lactides, lactones, carbonates, and silyl ethers, has been 
developed. Examples of effective catalysts of ROP are presented in Fig. 7 1 8 . 
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i-Pr i-Pr, 

imidazol-2-ylidenes 

HO 

1,2,4-triazol-3-ylidenes 1,3-thiazol-2-ylidenes 

Fig. 7 Examples of N-heterocyclic carbenes for ROP 

2.2.3 Basicity 

N-heterocyclic carbenes are very strong Lewis bases. In 2002 Denk et al.19 suggested that 
the basicity of NHCs could be related to their catalytic activity. In 2004 Magill et al.20 

predicted values of pKa's of nucleophilic NHCs in dimethyl sulfoxide (DMSO) and 
acetonitrile (MeCN). The substitution at the 4 and 5 position of imidazol-2-ylidene ring with 
electron-withdrawing groups significantly reduces the basicity while that with electron-
donating groups increases the basicity. The aryl-substituents at nitrogen drastically decrease 
the basicity in comparison with alkyl-substituents. Saturated carbene analogue possesses 
slightly increased a basicity . The values of pKa's were summarized in the table, which is 
presented in Appendix. 
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22 23 24 25 26 27 28 29 values of pKa's 

Fig. 8 Values of pKa 's ofNHCs in water (pKa 's ofNH3 is -35) 

2.2.4 Mechanism of ring-opening polymerization 

The ROP is fundamentally a transesterification reaction, therefore two possible 
mechanisms could be assumed: a monomer-activated mechanism mediated by the 
nucleophilic attack of the carbene on the lactide and a chain-end-activated mechanism where 
the carbene activates the alcohol toward nucleophilic attackw. 

Based on the analogy with the known behaviour of pyridine derivatives in acylation 
21 22 

reactions and bensoin and formoin condensation reactions nucleophilic mechanism was 
postulated. Moreover, on the bases of relative pKa's it was found out that the alcohol was 
unlikely able to protonate the l,3-dimesitylimidazol-2-ylidene (IMes) and to initiate an 
anionic polymerization from the alkoxide7 7. On the other hand, it was supposed that hydrogen 
bonding (H-bonding) between the carbene and the alcohol could activate the alcohol toward 
nucleophilic attack2 3 , 2 4. For ROP it corresponds to the chain-end-activated mechanism. 
According to theoretical calculation done for transesterification reactions it was predicted that 
alcohol activation pathway (via H-bonding) has a lower barrier than the nucleophilic 
mechanism24. Consequently chain-end-activated mechanism can be sometimes called as H -
bonding alcohol activation mechanism25. 

The mechanistic competition between the nucleophilic and general-base mechanism is a 
topic of discussion in the case of nucleophilic/basic organic catalysis. For the mechanism of 
ROP, the nature of the catalyst, the monomer, as well as alcohol is essential. Recently, 
regarding the calculations of ROP pathway catalysed by 4-(dimethylamino)pyridine 
( D M A P ) 2 5 , 2 6 it has been predicted that both two types of mechanism are energetically 
possible. In the gas phase or in polar aprotic solvents the basic (H-bonding) pathway was 
proposed to be more favourable than the nucleophilic mechanism26 (Fig. 9). On the other 
hand, if alcohol initiators are absent or at present low concentration (high monomer/initiator 
ratio) nucleophilic pathway can compete25. 
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Fig. 9 Nucleophilic and basic (concerted) routes of DMAP-catalyzed ring-opening oflactide predicted 
at B3LYP/6-3IG(d) level in dichloromethane 

2.2.4.1 Monomer-activated mechanism 

The crucial feature of nucleophilic mechanism is the formation of a zwitterionic 
intermediate, which is generated after the nucleophilic attack of the carbene on the lactide. 
After that the ring-opening of the tetrahedral intermediate follows and the acylimidazolium 
alkoxide zwitterion is formed (Fig. 10). Protonation of the alkoxide of the zwitterion by the 
initiating or end-chain terminated alcohol yields an alkoxide which esterificates the 
acylimidazolium to form the open-chain ester and carbene. The activated monomer (in the 
form of zwitterion) adds the activated monomer to the growing polymer chain. A l l chains 
grow at the same rate, which is a kinetic characteristic of living polymerization78. 
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acylimidazolium alkoxide zwitterions 
R 

carbene 
ester 

Fig. 10 Scheme of nucleophilic monomer-activated mechanism ofROP 

To understand the role of zwitterionic intermediates in ROP, the polymerization of lactide 
without alcohol initiators was investigated and cyclic poly(lactide)s of defined molecular 
weight were obtained (Fig. 11). These NHC-mediated zwitterionic polymerizations showed a 
considerable degree of control and exhibit features of living polymerization27. 
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C H 3 O 

Fig. 11 Scheme of the mechanism of NHC-mediated zwitterionic polymerization oflactide 

2.2.4.2 Chain-end-activated mechanism 
The chain-end-activated mechanism has similar features as a classical anionic 

polymerization. During the anionic mechanism the strong base initially reacts with the alcohol 
initiator (or chain end), which is activated by deprotonation to form an alkoxide. In the next 
step the attack of the alkoxide on the carbonyl carbon of the monomer is followed by acyl-
oxygen bond scission. Subsequently the ester end group and an active alcoholate species 
(which reacts with the further monomer) are generated . 

Milder general bases can activate the alcohol initiator or chain end via H-bonding, which 
causes that bases enhance the nucleophilicity of the initiating or propagating alcohol. 
Subsequently the nucleophilic attack on the lactone monomer is more facile2 4"2 5 (Fig. 12). 

B + H - 0 • * B — H - 0 R ' — 0 (D 

Fig. 12 Scheme of the general chain-end-activated mechanism ofROP 
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2.2.5 Carbene precursors 
Because of difficulty in the synthesis of "free" NHCs which are moisture (oxygen) 

sensitive, a lot of techniques for the generation of carbenes from more readily available 
precursors have been reported. The common method is in situ deprotonation2S of thiazolium, 

29 

imidazolium or triazolium salts. Neat imidazolium-derived ionic liquids are used as catalyst 
sources and solvents for transesterification and ROP. THF/ionic liquid mixtures in which a 
biphasic polymerization proceeds serve as a catalysts reservoir78 (Fig. 13). 

BF 4 

Fig. 13 Polymerization using a biphasic ionic liquid-NHC system 

The other precursors able to generate "free" carbene are silver(I) NHC complexes30, 
chloroform and fluoro-substituted arene NHC adducts37 and alcohol adducts32. NHCs could 
be generated from alcohol adducts by thermolysis5 (Fig. 4a). Alcohol adducts act as single-
component catalyst/initiators for ROP of lactide at room temperature (Fig. 14). Adducts can 
be prepared and isolated simply by the mixing of primary or secondary alcohols with the 
isolated carbene. Moreover, two in situ procedures that eliminate the need for isolation of the 
"free" carbene were developed32 (Fig. 15). 
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Fig. 15 Scheme of the preparation of alcohol adducts 



2.3 Molecular modelling 
Molecular modelling includes all theoretical and computational methods used to model the 

behaviour of molecules, hence for molecular modelling terms as "theoretical chemistry" or 
"computational chemistry" are used . Molecular modelling started a fast progress with 
development in the computing area. Today molecular modelling plays a significant role in 
many research laboratories and enables to predict the behaviour of the new compounds, 
design of new drugs and materials and helps to interpret experimental data. The term "in 
silico" was introduced for research using computer calculations and simulations as an analogy 
to Latin terms "in vivo", "in vitro" and "in situ" used primarily in biology. Today three main 
methods of molecular modelling are distinguished: molecular mechanics, quantum mechanics 
and simulation methods. In a principle simulation methods use both quantum mechanics and 
molecular mechanics, so they will not be discussed. 

2.3.1 General terms 

2.3.1.1 Coordinate systems 

The specification of the position of atoms or molecules in the system to a modelling 
program is one of the most crucial point in molecular modelling. There are two common 
ways. The simpler way is to specify the Cartesian coordinates (x, y, z) of all atoms present. 
The second way is using of internal coordinates, in which the position of each atom is 
described relative to other atoms in system. These coordinates are usually written as a Z-
matrix and are commonly used as input to many quantum mechanics programs. But it is 
necessary mentioned that many programs can convert Cartesian coordinates to internal and 
vice versa33. 

2.3.1.2 Common units 

For molecular modelling it is usual to work with atomic units because properties of atomic 
particles as electrons, protons and neutrons are expressed too small values. In other way the 
values must be multiplied by several powers of 10. Relations between the atomic units and SI 
units (International System of Units) are expressed in Tab. 1: 

Tab. 1 Relations between the atomic units and SI units 

Physical quantity Atomic units SI units 
Charge 1 |e|=1.60219-10"19 C 
Length 1 a0 = 5.29177-10"11 m ( l Bohr) 
Mass 1 me = 9.10593-10"31 kg 

Energy 1 Ea = 4.3598MO" 1 8 J (1 Hartree) 

Non-SI units Angstroms (A) or picometrers (pm) are very often used for bond lengths, 
whereas non-SI units kilocalories (kcal) or kilojoules (kJ) are very often used for energies33. 
Relations are given in Tab. 2. 
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Tab. 2 Units of length and energy 

Length 1 Ä KT 1 0 m 100 pm 
Energy 1 Hartree 2627.34 kJ-mol"1 627.5095 kcal-mol"1 

2.3.1.3 Potential energy surfaces 

Changes in the energy of a system can be specified by movements on a multidimensional 
surface. This surface is called the potential energy surface (PES) and is mathematical 
relationship related molecular structure and the resultant energy. For the simplest molecule 
(diatomic) it is a two-dimensional curve. For a system with /V atoms the potential energy 
surface is 3Af-dimensional (Cartesian coordinates) or (3iV - 6)-dimensional (internal 
coordinates)33'34. 

The most significant points on the potential energy surface are stationary points (the first 
derivative of the energy is zero). One type of stationary points is minimum that can be global, 
local, or saddle point. Global minimum is the lowest point anywhere on the potential surface, 
on the other hand local minimum is the lowest point in some limited region of the potential 
energy surface. Global minimum represents the most stable conformation or structural isomer, 
whereas local minimum represents less stable conformations or structural isomers. The saddle 
point is maximum in one direction and minimum in the other. This point corresponds to a 
transition structure connecting with two equilibrium structures34. 

2.4 Quantum mechanics 

A l l quantum mechanics methods are based on the solution of the Schrodinger equation. The 
well-know form of this equation is: 

HW = EX¥ (2.4-1) 
However, this equation can be exactly solved only for one-electron system (i. e. the 

hydrogen atom), therefore approximations need to be made. According to the nature of 
approximations methods of quantum mechanics can be classified into semi-empirical 
methods, ab initio methods and density functional theory (j)^!)33'34'35. A l l methods will be 
briefly discussed. Mathematical concepts were described in detail in the previous work 3 6. 

2.4.1 Approximations of ab initio methods 

How it was said the Schrodinger equation cannot be solved exactly for any molecular 
systems, hence the Born-Oppenheimer approximation were established. This approximation 
separates the motion of the electrons from the motion of the nuclei because the masses of the 
nuclei are circa 1800 times heavier than masses of the electron and they move slower. Using 
of the Born-Oppenheimer approximation the Schrodinger equation is solved for the electrons 
alone in the field of the nuclei, however for polyelectronic systems further approximations are 
required. 
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First formulation of the wavefunction (orbital) for a polyelectronic system is known as a 
Hartree product, but it does not fulfil the antisymmetry principle. Slater determinant can be 
used to satisfy the antisymmetry principle and is the simplest form of an orbital wavefunction. 
The major problem for the solution of the Schrodinger equation is the presence of interactions 
between the electrons. Fock assumed that each electron moves in a fixed field including the 
nuclei and the other electrons, thus the Hatree-Fock equations express a single electron in the 
spin orbital in the field of the nuclei and the other electrons in their fixed spin orbital. 
However the solutions of Hatree-Fock equations are not unique. The general strategy to solve 
these equations is called as a self-consistent-field (SCF) procedure. The individual electronic 
solutions correspond to lower and lower total energy until results for all electrons are 
unchanged. SCF approaches also include density functional procedures. 

Furthermore, for the solution of Hatree-Fock equations for molecules we must agree to 
an alternative approach and express the molecular orbitals. The most common way is linear 
combination of atomic orbitals (LCAO). The lowest energy of system is determined by using 
Roothaan-Hall equations, which is often written as matrix equation3 3'3 5. 

2.4.2 Electron correlation 

The most essential disadvantage of Hatree-Fock method is that it do not involves the 
electrons correlation. The electrons are assumed to be moving in an average potential of the 
other electrons. However in reality, the motions of electrons are correlated and they tend to 
"avoid" each other. The difference between the Hartree-Fock energy and the exact energy is 
called the correlation energy. If the electron correlation is neglected, we can get some clearly 
anomalous results. The inclusion of the correlation effect is warranted, although Hatree-Fock 
geometries are often in good agreement with experiment. The electron correlation is crucial in 
the study of dispersive effects. It is often discussed in ab initio methods, but effects of 
electron correlation are involving in the semi-empirical methods . 

The position of Hartree-Fock models is illustrated in Fig. 16, where all possible theoretical 
models are placed. The horizontal axis depicted the extent of the separation of electron 
motions (in context the separation of electron motions means that the method is uncorrelated). 
Hartree-Fock models are placed at the extreme left, while fully-correlated models are placed 
at the extreme right. Practical correlated models are found somewhere in between. The 
vertical axis shows the basis set. A minimal basis set is located at the top and contains the 
fewest possible functions (the basis sets will be discussed in the next section), while a 
"complete" basis set is located at the bottom and in Hatree-Fock models is called as Hartree-
Fock limit 3 5. 
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separation of electron motions no separation of electron motions 

^ 

Hart ree-Fock models practical correlated model fully-correlated models 

"complete" bas is set 

Fig. 16 The two-dimensional diagram of all possible theoretical methods 

2.4.3 Basis sets 
The basis sets consist of atomic orbitals, which are used to form molecular orbitals. At first 

the Slater type orbitals (STOs) were used. However with these types of orbitals it is difficult 
to solve three- and four-centre integrals, if the atomic orbitals are located on different atoms. 
Hence the Slater orbitals were replaced by Gaussian type orbitals (GTOs). The advantage of 
these functions is fact that the product of two Gaussians can be expressed as a single 
Gaussian, which is located along the line joining the centres of two Gaussians. For quantum 
mechanics methods a linear combination of Gaussian functions is used3 3. 

The simplest possible atomic orbital representation is a minimal basis set that involves the 
minimum number of functions required to accommodate all the filled orbitals in each atom. 
They contain only one contraction per atomic orbital. The most common minimal basis set is 
STO-nG (Slater type orbital), where n Gaussian functions are used to represent each orbital. 

A double zeta valence basis set (DZV) doubles the number of functions in the minimal 
basis set. The SCF method calculates automatically the basis set coefficients of the contracted 
and the diffuse functions33'36. 

A split valence basis uses a single function for inner shells, but doubles the number of 
functions which are used to describe the valence electrons. The core orbitals do not influence 
chemical properties very much in contrast to the valence orbitals. These basis sets are noted as 
3-21G. It means that three Gaussians describe the core orbitals and other three Gaussians 
describe electrons orbitals, where the contracted part represents two Gaussians and the diffuse 
part represents one Gaussians. The most common split valence basis set is 6-31G. 

Other type of basis sets is a basis with polarisation functions that has higher angular 
quantum number and corresponds to d orbitals for the first- and second-row elements and p 
orbitals for hydrogen. A polarization function is denotes by the asterisk * or by (d) at the end 
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of a basis set. 6-31G* or 6-31G(d) is a 6-31G basis with polarisation functions on heavy 
atoms. Two asterisks ** or (d,p) denotes polarisation functions on hydrogen and helium atom 
in addition to 6-31G(d) or 6-31G*. 

A basis with diffuse functions deals with cations, anions and molecules included lone pairs. 
This basis set is denoted using +. The basis set is denoted using ++, if the diffuse functions 

1 1 I f -y^r 

are included for hydrogen as well as for heavy metals ' ' . 
For correlated models Dunning's cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets are 

commonly used. These basis sets converge systematically to complete-basis-set limit using 
empirical extrapolation techniques. The cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets mean 
"correlation consistent-polarized Valence Double (Triple, Quadruple) Zeta" basis sets. They 
involve larger shells of polarization functions and can be augmented with diffuse functions by 
adding the aug- prefix (aug-cc-pVDZ) 3 5 ' 3 6. 

2.4.4 Using ab initio methods 
In the ab initio methods we do use no empirical data in their calculations. The term ab 

initio means that the calculation is from first principles. This method is based on the laws of 
quantum mechanics and on the values of a small number of physical constants: 

1. The masses and charges of electrons and nuclei 
2. The speed of light 
3. Planck's constant 

The ab initio calculation offers high quality quantitative predictions for many systems, 
however takes on the order of one to a few days, hence is often expansive. It is usual for 
several tens of atoms34. The most popular ab initio methods can be classified into three main 
groups: the Hatree-Fock methods, post-Hartree-Fock methods and multi-reference methods. 
The post-Hartree-Fock methods incorporate correlation effects. The most popular approaches 
Configuration interaction (CI) models and Moller-Plesset perturbation theory (MP2, MP3 or 
MP4) extend the Hatree-Fock model by mixing ground-state and excite-state wavefunctions. 
On the other hand they are more expansive than Hartree-Fock models and are impractical 
(they can be used only for the smallest systems)34'35. Multireference methods can be divided 
into Multi-configurational self-consistent field (MCSCF), Multireference single and double 
configuration interaction (MRDCI) and N-electron valence state perturbation theory 
(NEVPT). For our calculations we will use only Hartree-Fock methods, which involve 
Restricted Hartree Fock (RHF), Unrestricted Hartree Fock (UHF) and Restricted open shell 
Hartree Fock (ROHF) calculation 3 3 ' 3 4 ' 3 5. 

This method can be used for the simple single point calculation as well as for geometry 
optimization, frequency calculation, electric multipoles, total electron density distribution and 
molecular orbitals or thermodynamic properties. The most common calculation but the most 
exacting is geometry optimization, which is a starting step of other calculations. The electron 
density can be visualised as a solid object, whose the surface connects points of equal density. 
On this surface the electrostatic potential or other properties can be mapped. Using the 
electron density distribution of individual molecular orbitals we can determine and plot 

i i 

HOMO and L U M O , which influence reactivity of molecules . 
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2.4.5 Semi-empirical methods 
Semi-empirical methods solve an approximate form of the Schrodinger equations because 

consider only valence electrons of the system (electrons associated with the core are ignored). 
The basis set is restricted to a minimal valence representation35. Further, semi-empirical 
methods use parameters derived from experimental data to simplify the calculation. The most 
popular semi-empirical methods are M N D O (modified neglect of diatomic overlap), A M I 
(Austin Model 1) and PM3 (the name is derived from the fact that it is the third 
parameterization of MNDO) . The A M I and PM3 methods use the same approximations but 
differ in their parameterization. Moreover PM3 method is parametrised for transition metals . 
In contrast to ab initio methods they are relative inexpensive and very large molecules can be 
calculated. We can first calculate semi-empirical optimization to obtain a starting structure for 
Hatree-Fock or Density Functional Theory optimization. These methods can quickly calculate 
molecular orbitals or vibrational normal modes. However they have some problems with 
systems including hydrogen bonding, transitional structures and with molecules containing 
atoms for which they are poor parametrized34. 

2.4.6 Density functional theory 
Density functional theory is similar to ab initio methods. The essential difference is that 

DFT calculates with the general functionals of the electron density instead of the many-
electron wavefunction. Both models use the same basis set as well as the SCF approach35. 
Moreover, DFT includes the effects of electron correlation. DFT methods are generally less 
expensive than Hartree-Fock methods RHF, furthermore they achieve greater accuracy. The 
electronic energy is a sum of the kinetic energy, the electron-nuclear interaction, the Coulomb 
repulsion and the exchange-correlation energy. The most popular functionals are pure density 
functionals and hybrid functionals. The pure density functionals treat the exchange and 
correlation components. Both exponents can be of two types: local functionals depend on the 
electron density, while gradient-corrected depend on the electron densities and their gradient. 
The well-known B L Y P functional connects Becke's gradient-corrected exchange functional 
with the gradient-corrected correlation functional of Lee, Yang and Parr. The hybrid 
functionals include a mixture of Hartree-Fock exchange and DFT exchange along with DFT 
correlation. The popular B3LYP functional is Becke-style three-parameter functional34. In 
Appendix you can see examples of functionals and their descriptions38. 

2.5 Molecular mechanics 
Molecular mechanics is based on Newtonian mechanics to predict the structures and 

properties of molecules. The potential energy of all systems is calculated using force fields, 
which include these components: 

1. A set of equations describing the change of the potential energy of a molecule with the 
location of its component atoms 

2. A series of atom types describing characteristics of an element with specific chemical 
context 

3. One or more parameter sets that fit the equations and atom types to experimental data 
Bonded interactions are treated as "springs" with an equilibrium distance equal to the 

experimental or calculated bond length. These calculations perform computations based upon 
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the interactions among the nuclei. Electronic effects are implicitly involved in force fields 
though parameterization. Hence, molecular mechanics calculations are quite inexpensive 
computationally, and can be used for very large systems (thousands of atoms). Although, it 
carries several limitations as well 3 4 . Molecular mechanics methods differ in the number and 
specific nature of the terms and the parameterization. The most popular methods are S Y B Y L , 
M M F F or A M B E R 3 3 ' 3 5 . 

2.6 Geometry optimization 
An isolated molecule in vacuum is usually taken into account for geometry optimization 

(equilibrium geometry). The crucial point of geometry optimization is the finding of the 
conformation with the lowest energy. A minimalisation algorithm is used to identify 
geometries of the system that correspond to minimum points on the energy surface. Using of 
geometry optimization we can search as well as the saddle points that correspond to the 
transition structures. For quantum mechanics other methods are used than for molecular 
mechanics. Most minimisation algorithms can only go downhill on the energy surface; hence 
they can only locate the nearest minimum to the starting point. When we search the global 
minimum, we must create different starting points and minimise each point . 

In real molecular modelling applications it is impossible to find the exact location of 
minima or saddle points. Hence an approximation of these points is found. The energy is 
monitored from one iteration to the next and the process is stopped when the difference in 
energy between successive steps falls below a specified threshold that is called the 
convergence criteria. A second method is to monitor the change in coordinates and a third 
method is to calculate the root-mean-square gradient. We can distinguish two groups of 
minimisation algorithms: those which use derivatives of the energy with respect to the 
coordinates and those which do not33. Both algorithms were discussed in previous work 3 6. 

2.7 Infrared and Raman spectroscopy 
Infrared (IR) and Raman (RA) spectroscopy provide information about vibratonal motions 

of a molecule and is used to identify compounds and study their structure. A common 
laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) 
spectrometer. For the description of infrared and Raman spectra the approximations were 
established as well. A first approximation separates the total energy into the energy of the 
motion of the electrons in the molecule, the energy of the vibrations of the atoms and energy 
of the rotation of the molecule. If the molecule absorbs energy, the electronic, the rotational 
and vibrational states can change. A transfer of energy will occur, when Bohr's frequency 
condition is satisfied: 

AE = E1-El=hv (2.7-1) 
The transition is allowed, if the selection rules are valid. In IR (Infrared) and R A (Raman) 

spectra vibrational and rotational states change, however the rotational transitions have a little 
signification and they can be measured mainly in the gaseous state. Vibrational transitions 
appear in the 102-104 cm"1 region and originate from vibrations of nuclei, while rotational 
transitions principally appear in the 1-102 cm"1 region (microwave region) because rotational 
levels are relatively close to each other. Below each electronic level there is "zero-point 
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energy" which must exist even at a temperature of absolute zero as a result of Heisenberg's 
uncertainty principle: 

E0=hv (2.7-2) 

In the Born-Oppenheimer and harmonic oscillator approximations the resonance 
frequencies are determined by the normal modes corresponding to the molecular electronic 
ground state potential energy surface39. 

2.7.1 Harmonic oscillator approximation 

For the description of vibrations of diatomic molecule the harmonic oscillator 
approximation was introduced. The frequency of vibration depends on force constant and 
reduced mass. For the harmonic oscillator a potential curve is parabolic, however the actual 
potential curve differs, hence the wavenumber of normal vibration is corrected for 
anharmonicity. This anharmonicity causes the appearance of overtones and combination 

i n 

vibration, which are forbidden in the harmonic oscillator . 
In polyatomic molecules the situation is more complicated because all nuclei perform their 

own harmonic oscillators. Extremely complicated vibrations of the molecule can be 
represented as a superposition of a number of normal vibrations39. The mathematical 
beground was mentioned in previous work . 

Nonlinear molecules have 3N-6 degrees of vibrational modes (called vibrational degrees of 
freedom), because six coordinates describe the translational and rotational motion of the 
molecule as a whole. In contrast linear molecules have 3N-5 degrees of vibrational modes, 
because no rotational freedom exists around the molecular axis. When all the normal 
vibrations are independent of each other, the consideration may be limited to a special case in 
which only one normal vibration is excited. So in the normal vibration, all the nuclei move 
with the same frequency and in phase. 

As result of all approximations we solve the matrix secular equation: 
\GF-EA\ = 0 (2.7-3) 

where G is matrix elements, F is hessian matrix of the force constant and E is the unit matrix. 
We obtain the wavelengths that are converted to the wavenumbers. If the order of the secular 
equation is higher than three, it is too difficult to solve it. Symmetry of a molecule can 
significantly simplify the calculations39. 

2.7.2 Principle of IR and RA spectroscopy 

The principle of IR spectroscopy is the absorption of infrared radiation by molecules. Three 
regions of IR spectroscopy can be distinguished: near-infrared 14000-4000 cm"1, mid-infrared 
4000-400 cm"1 (most common) and far-infrared (400-10 cm"1). The energy of IR radiation is 
not enough for changes electronic ground states, but it causes changes of rotational-
vibrational states of the molecule, however the vibrational transitions predominate. 

Raman spectra originate in the electronic polarization caused by ultraviolet, visible and 
near-IR light. Raman spectroscopy uses the scattering of the monochromatic light (laser) and 
spectra are represented as shifts of the incident frequency in ultraviolet, visible and near-IR 

• 39 
region . 
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The vibrations can be divided into two basic groups: stretching and bending vibrations. The 
examples of vibration are depicted in Fig. 17. The stretching vibrations appear in region 4000-
1500 cm"1 (sometimes called the group frequency region), while bending vibrations appear in 
region 1500-400 cm"1 (called finger print region). This region includes a very complicated 
series of absorptions and it is more difficult to choose individual bonds, however every 
organic compound produces a unique pattern in this part of the spectrum. 

symmetr ica l stretching asymmetr ica l stretching sc issor ing 

rocking: twisting wagging 

Fig. 17 Vibrations of a CH2 group 

The vibrational mode in molecule is IR active, when it is related with changes in the dipole 
moment, whereas the vibrational mode in molecule is Raman active, when it is related with 
changes in the polarization. Symmetrical stretching and bending will be Raman active and IR 
inactive, while asymmetrical stretching and bending will be IR active and Raman inactive in 
molecules with a centre of symmetry. Each vibrational mode may be IR active, Raman active, 
both, or neither for molecules without a centre of symmetry40. 

2.7.3 Prediction of spectra 

Spectra are usually predicted in gaseous phase at 298.15 K. Calculations use an idealized 
view of nuclear position, however in reality, the nuclei in molecules are constantly in motion. 
These vibrations are regular and predictable in equilibrium states. Programs are able to 
compute the vibrational spectra of molecules in their ground and excited states, describe the 
displacements a system and predict the direction and magnitude of the nuclear displacement 
that occurs when a system absorbs a quantum of energy. 
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Molecular frequencies and the distinguishability between minima (discussed in Section 2.6) 
depend on the second derivative of the energy with respect to the nuclear positions. Programs 
calculate analytic second derivatives for the HF and DFT. Frequency calculations are valid 
only at stationary points on the potential energy surface, hence must be done on optimized 
structures34. Computed frequencies at the Hartree-Fock level contain well-known systematic 
errors because of the neglect of electron correlation. Computed frequencies at DFT level 
include the effect of electron correlation, however they contain well-known systematic errors 
as well. Hence it is usual to scale frequency by empirical factors47. 

2.8 Computer programs 

A variety of computer programs are utilized to calculate the structures and properties of 
molecules. Efficient ab initio computer programs are GAUSSIAN, PC GAMESS/Firefly, 
GAMESS (US), GAMESS (UK), M O L C A S , MOLPRO and Spartan. Furthermore they 
usually contain density functional theory (DFT), molecular mechanics or semi-empirical 
methods. 

We will use PC GAMESS/Firefly 4 2 ' 4 3 , ArgusLab 4 4, Titan 4 5 and Spartan4* 
PC GAMESS/Firefly is based on GAMESS (US). GAMESS abbreviates General Atomic and 
Molecular Electronic Structure System. It is able to calculate single-point energies, geometry 
optimizations or predictions of IR and Raman intensities. It does not include a graphical user 
interface, hence softwares for the creating of input files and for the visualization of results 
were used. For that reasons ArgusLab, Titan or Gabedit47 can be perform. Gabedit can 
graphically display many calculation results as molecular orbitals, surfaces from the electron 
density, electrostatic potential or N M R shielding density and UV-Vis , IR and Raman spectra. 
In contrast to Gabedit, ArgusLab and Titan allow simple calculations or pre-optimizations. 
They can calculate and display molecular orbitals or electrostatic potential-mapped electron 
density surfaces. Titan is the older version of Spartan that is the complex program. In addition 
to simple calculations Spartan allows to study of reactions. 

2.8.1 Operating ArgusLab and PC GAMESS/Firefly 

In ArgusLab 4 4 structures of studied compounds were formed and pre-optimized at A M I 
level (Fig. 18). The coordinates obtained by ArgusLab were edited in any text editor, where in 
the next step the input file for PC GAMESS/Firef ly 4 2 ' 4 3 was created. The coordinates were set 
up into PC GAMESS/Firefly format, thus the name of method, the symmetry, the name of 
atom and the nuclear charge was added. Subsequently, these groups were defined: 
$CONTRL, $SYSTEM, $SCF, $GUESS, $BASIS, $ZMAT and $STATPT according to PC 
GAMESS/Firefly documentation3*. The example of the input file for PC GAMESS/Firefly is 
given in Appendix. 
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Geometry Search using BFGS update 
Cycle Energy(au) delE [au] Grad Norm |Max Grad(i]| alpha 

************************************************************************ 

start -77.013049 0.0000e+000 0.000317 0.000095 
1 -77.013049 -3.9204e-000 0.000303 0.000091 4.0000e-001 
2 -77.013049 -3.0711e-007 0.000213 0.000060 4.0000e-001 

Geometry optimization converged !! 
Calculating Properties 
Calculation Finished 

Fig. 18 The optimized structure of carbene at AMI level in ArgusLab 

The input file for PC GAMESS/Firefly was opened in RUNpcg and the calculation was 
run. Subsequently, from the output file of the geometry optimization the ENT file was 
generated. This file was opened in ArgusLab and the selected bond distances and angles were 
measured (Fig. 19). 
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Fig. 19 The measurement of bond distances and bond angles 

Then the input file of spectra prediction was created from the output file of the geometry 
optimization. Spectra calculations were run in RUNpcg as well. Output file was read, 
visualized and converted into X Y format in Gabedit4 7 (Fig. 20). Subsequently, spectra were 
set up in Excel 4 9 . 
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Fig. 20 The visualisation and the conversion of the output file 
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Program WinSCP was used to transfer input files in the INP format between a local and a 
remote computer, while program PuTTy 5 i was used to run a calculation by using the 
command line. Program WinSCP can serve as freeware FTP (File Transfer Protocol) and 
SFTP (Secure File Transfer Protocol) client, while program PuTTy can act as a client for SSH 
(Secure Shell) or raw TCP (Transmission Control Protocol) computing protocol. For more 
detail you can see previous work 3 6. 

2.8.2 Operating Titan and Spartan 
How it was mentioned, Titan 4 5 is the older version of Spartan46, hence both programs have 

similar operations. Both programs include graphical user interface, so they do not need to 
form the input file as PC GAMES S/Firefly. In Titan the structures of carbenes was built as 
well to compare with ones from ArgusLab. The molecule was constructed from atomic 
segments that specify atom type and local environmental (tetrahedral carbon in Fig. 21). 
Subsequently, the structure was minimized at molecular mechanics level by clicking on the 

* I 
icon E I. 

7 Titan - karben:MoleculeOOl i E U E 3 
File Edi t M o d e l G e o m e t r y Bui ld S e t u p D isp lay O p t i o n s He lp 
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Fig. 21 The construction of the molecule in Titan (tetrahedral carbon in model kit is marked black) 
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After that Calculations dialog from Setup menu was opened, the type of calculation was 
selected (Fig. 22) and the job was submitted. At first the molecule was optimized at semi-
empirical level, then at RHF and DFT (B3LYP) level. 

Setup Calculations 

Calculate: 

Start from: 

Subject to: 

Equilibrium Geometri) with Hartree-Fock 31 31 
Initial geometry. 

Constraints V Frozen Atoms 

Compute: \ ~ E. Solvation V Frequencies V Elect. Charges 

Total Ch. 

6-31G" 
6-31G*" 
C C - F V T Z 
L A C V P " 
L A C V P " 

Multiplicity: [Singlet 

Print: \ ~ Orbitals &= E nergies I - Thermodynamics I - Vibrational Modes I - Atomic Charges 

Options: V Converge W Symmetry 

Apply Globally: W Cancel | OK 

Fig. 22 The selection of type of calculation 

In Titan it is possible to calculate vibrational frequencies as well. The option of frequencies 
to right of "Compute" was selected in Calculations dialog from Setup menu and calculation 
was run. Then Vibration List from Display menu was opened (Fig. 23). After the clicking on 
frequency in the Vibration List an individual motion was animated. Furthermore, in Spartan 
calculated and measured spectra can be compared. 

Frequency I Type I 

• 2941.44 A 

• 2947.14 A 

• 2948.43 A 

• 2949.56 A 

• 2950.59 A 

0 3 3 1 9 8 . 9 1 • A 

A • 3218.06 

A 

A 

Amp: [0.500 L Steps: |11 
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Fig. 23 The animation of vibrational frequencies 
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Titan and Spartan are able to study interactions, reactions and their mechanisms. In this 
point the generation of an interaction between the carbene and the alcohol (H-bond) will be 
discussed. In the beginning molecules of the carbene and of the alcohol were constructed in 
other files and both structures were optimized at A M I level. Subsequently, both optimized 
structures were inserted into the same file (in Titan both structures must be constructed and 
optimized in the same file). The icon was used and alcohol hydrogen atom and carbene 
carbon atom were selected . The transition state at molecular mechanics level was generated 

(Fig. 24) by clicking on the icon T I (in Spartan the icon ). The proposed transition state 
was optimized at A M I level. 

Fig. 24 The generation (blue arrow) of transition state at molecular mechanics level in Spartan 
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3 EXPERIMENTAL PART 

3.1 Studied compounds 
The study was focused on a 1,3-di-terc-butylimidazolium chloride NCiH-Cl, 1,3-di-terc-

butylimidazol-2-ylidene NCi as "free" carbene, its possible hydrolysis products N-te/t-butyl-
N-[(2E)-2-(ter?-butylimino)ethyl]formamide (l,4-di(ter?-butyl)-4-formyl-l,4-diaza-but-l-ene) 
N=C-CA and N-ter?-butyl-N-[(Z)-2-(ter?-butylamino)ethenyl]formamide N-C=CA and their 
saturated analogues; 1,3-di-terc-butyl-imidazolinium chloride NC2H-CI, 1,3-di-terc-
butylimidazolin-2-ylidene NC2 and N-ter?-butyl-N-[2-(ter?-butylamino)ethyl]formamide (N-
formyl-N,N'-di-ter?-butylethylenediamine) N-C-CA (Fig. 25). NCiH-Cl was kindly donated 
by Dr. Gerard Mignani from Rhodia Operations - Centre de Recherches de Lyon, France. 
"Free" carbene NCi was prepared from NCiH-Cl according to the published procedure using 
butyllithium1 . Other compounds were studied only at theoretical level by using 
computational studies. N=C-CA was confirmed as a product of hydrolysis which proceeded 
slowly for a period of days and explains the "air sensitivity" of respective carbene7. Recently, 
the possible formation of two ring-opening isomers as the products of the imidazol-2-ylidene 
hydrolysis has been reported*. 
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Fig. 25 Studied compounds 

3.2 Softwares and computational methods 
3.2.1 Fundamental calculations 

Calculations were done in ArgusLab 4 4 and Titan. In ArgusLab methods of molecular 
mechanics (UFF, AMBER) and semi-empirical methods (MNDO, A M I , PM3) were used, 
whereas in Titan 4 5 methods of molecular mechanics (MMFF, S Y B Y L ) , semi-empirical 
methods (MNDO, A M I , PM3), RHF/6-31G(d) and B3LYP/6-31G(d) methods were used. For 
calculations only one isolated molecule in vacuum was taken into account. 
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3.2.2 Geometry optimization 
Calculations were performed in PC G A M E S S/Firefly 4 2 ' 4 3. In previous work 3 6 bond 

distances and bond angles were calculated at RHF and DFT (B3LYP functional) level with 6 
different basis sets. Based on previous calculations different functionals of DFT method with 
6-31G(d) basis set were investigated. Atoms were numbered according to Fig. 26. Energy 
gradients were calculated analytically with the optimization tolerance set to 1 -10"5 

Hatree/Bohr. Since calculations on the computer were too slow (sometimes a number of 
days), the most calculations were continued on the BUT server monkey2.ro.vutbr.cz. 
Programs WinSCP 5 0 and PuTTy 5 i were used for the manipulation on the server (discussed in 
Section 2.8.2). Moreover, a structure of NCi was optimized also at A M I , RHF/6-31G(d) and 
B3LYP/6-31G(d) levels in Spartan46 for comparison with PC GAMESS/Firefly. For 
calculations only one isolated molecule in vacuum was taken into account. 

3.2.3 Spectra prediction 
Calculations were computed in PC GAMESS/Firef ly 4 2 ' 4 3 and B3LYP/6-31G(d) level was 

mainly used. For the comparison of spectra other functionals (03LYP, B H H L Y P and PBEO) 
were used. Computed frequencies contain known systematic errors, therefore it is usual to 
scale frequency47 predicted at B3LYP/6-31G(d) level by empirical factor of 0.9613, at 
03LYP/6-31(d) level by empirical factor of 0.9617, at B H H L Y P level by empirical factor of 
0.9244 and PBEO level by empirical factor of 0.9512. The most calculations were calculated 
on the BUT server monkey2.ro.vutbr.cz. For the comparison the spectrum of NCi was 
calculated and compared with the measured one in Spartan46. For calculations only one 
isolated molecule in gaseous phase at 298.15 K was assumed. 

3.2.3 Study on the mechanism of ROP of lactide 
Calculations were done in Spartan. For the generation of transition state methods of 

molecular mechanics were used. A l l stationary points were optimized at A M I and B3LYP/6-
31G(d) levels. The functions of Transition States, Freeze Center, Constrain Distance and Set 
Torsion were used. Structures were optimized in gaseous phase in vacuum. 

3.3 Gained data 

3.3.1 Databases 
Data of already characterized compounds including N C / , NC2 5 2 , N-C-CA 7 and similar 

precursors (NC1H-F3CSO3 5 3, NC2H-SCN 5 4) were gained from CCDC (Cambridge 
Crystallographic Data Centre) and were used for the comparison with calculated data. 

C(2 )=C(3 ) 

Fig. 26 The numbering of atoms 
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3.3.2 Measurement 

3.3.2.1 FTIR spectra 

FTIR spectra of NCiH-Cl and FTIR spectra of NCi in the region 400-4000 cm"1 were 
recorded on a Bruker TENSOR 27 as KBr pellets prepared in dry a box under nitrogen 
atmosphere. 

3.3.2.2 RA spectra 

R A spectra of NCiH-Cl. R A spectra, which in the region 100-3500 cm"1 were measured on 
a Bruker EQUINOX IFS 55/S equipped with a Raman module FRA 106/S. The excitation 
line was 1 064 nm of a N d : Y A G laser. The solids samples were placed in a Schlenk flask 
under nitrogen atmosphere. 
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4 RESULTS AND DISCUSSION 

4.1 Fundamental calculations 
Initially, selected molecular orbitals and electrostatic potential maps were computed. In 

previous work 3 6 calculations were done in ArgusLab 4 4 with the semi-empirical methods, now 
these calculations were compared with calculations in Titan and were extended by RHF and 
DFT level. 

4.1.1 Orbitals 
Since generally, both the symmetry and the energy of HOMO and L U M O (highest 

occupied and lowest unoccupied molecular orbitals) have a significant influence on the 
mechanisms of reactions of molecules, the energies of molecular orbitals of NCiH-Cl, NCi, 
NC2H-CI, NC2 were initially computed. Selected molecular orbitals and electrostatic 
potential maps were calculated at A M I and PM3 levels in ArgusLab 4 4 and subsequently at the 
same levels and B3LYP/6-31G(d) level in Titan 4 5. Due to the small band gap both the studied 
carbenes NCi and NC2 are very reactive. How it was supposed, calculated molecular orbitals 
at the equal level had the same character in both programs (Fig. 27, Fig. 28). The difference 
between predicted HOMO at A M I level against PM3 level was noticeable (Fig. 28, Fig. 29), 
on the other hand L U M O showed the same character at both levels. The differences are 
caused different experimental sets of data that are included in computational methods 
(discussed in Section 2.4.5). Further, it was illustrated that L U M O predicted at more 
complicated level (B3LYP/6-31G(d)) was almost identical (Fig. 30). 

Fig. 27 The calculation of HOMO (left) and LUMO (right) ofNCi at AMI level inArgusLab 

Fig. 28 The calculation of HOMO (left) and LUMO (right) ofNCi at AMI level in Titan 
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Fig. 29 The calculation of HOMO (left) andLUMO (right) ofNCi at PM3 level in Titan 

Fig. 30 The calculation of HOMO (left) and LUMO (right) ofNCj at B3LYP/6-31G(d) level in Titan 

4.1.2 Electrostatic potential maps 

From the electrostatic potential maps (Fig. 39) it was possible to notice that the electrostatic 
potential on the carbene centre was bigger onto unsaturated carbene than onto saturated 
analogue. This fact could be correlated with catalytic activity. In 2005, Lai et al.23 reported 
that imidazol-2-ylidene against imidazolin-2-ylidene has better catalytic capacity because of 
less activation barrier for transesterification reactions. On the other hand the electrostatic 
potential on the carbene centre of corresponding chlorides NCiH-Cl, NC2H-CI was lower. 
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Fig. 31 The electrostatic potential maps ofNCi predicted at AMI level in Titan 

4.2 Geometry optimization 

4.2.1 Carbenes and their precursors 
Best predictions of selected bond distances and bond angles of NCi, NCiH-Cl, NC2 and 

NC2H-CI are summarized in Appendix. Moreover predicted structures of NCi and NC2 are 
compared with data from CCDC, therefore their tables contain average relative errors E0. In 
Fig. 32 the optimized structure of NC2H-CI was presented. Best calculations were presented 
at 5 t h meeting on Chemistry and Life 2011 5 5. Bond distances and relative errors of C(l)-N(l) 
bond of NCi calculated by different functionals were depicted in Fig. 33. This bond distance 
was best predicted by PBEO, PBE1PW91 and B3PW91 functionals. Based on all calculations 
it was investigated, that the best results of NCi were obtained at 03LYP/6-31G(d) level. 
Good results were achieved with SVWN5 and B H H L Y P functionals aspect to CPU time. In 
contrast, the worse results were obtained with B L Y P functional aspect to big average relative 
error and long CPU time. In summary good results were reached with all hybrid functionals. 
On the other hand only some types of exchange-correlation functionals (SVWN5 functional) 
were successful. NCi was optimized also at A M I , RHF/6-31G(d) and B3LYP/6-31G(d) 
levels in Spartan46. Moreover, in Spartan the symmetry of the molecule can be easily include 
in calculations. Results are summarized in Appendix. The structure with the symmetry C2V is 
about 2.55 kJ-mol"1 more stable than with symmetry C s at B3LYP/6-31G(d) level, which is in 
agreement with the fact that according to C C D C 7 the known symmetry of NCi is C2V. For 
NC2 the similar trends were noticed. C(l)-N(l) bond distance was best predicted by PBEO, 
PBE1PW91 and B3PW91 functionals as well. The best results of NC2 were obtained at 
PBE0/6-31G(d) level. Good results were achieved with SVWN5 functional as well, while the 
worse results were obtained by G L Y P functional. 
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Fig. 32 The structure ofNC2H-Cl optimized at B3LYP/6-31G(d) in ArgusLab 

Calculated data of chloride precursors could not be compared directly, because up till now 
any structural data of these compounds have not been published yet. Therefore selected bond 
distances and bond angles of other known precursors (NC1H-F3CSO3, NC2H-SCN) were 
computed. Best predictions of NC1H-F3CSO3 and NC2H-SCN are summarized in Appendix. 
Bond distances and relative errors of C(l)-N(l) bond of NC1H-F3CSO3 calculated by 
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different functional were depicted in Fig. 34. This bond distance was best predicted by 
B3LYP and X 3 L Y P functionals. Based on all calculation it was noticed, that the best results 
of NC1H-F3CSO3 were obtained with X 3 L Y P functional, whereas the best results of NC 2 H-
SCN were achieved with S V W N 5 functional. Aspect to these results it could be supposed that the 
best functional for unsaturated salts (NCiH-Cl) is X 3 L Y P functional, whereas for saturated salts 
(NC2H-CI) is S V W N 5 functional. Moreover calculations of precursors compared to carbenes took 
more CPU time. 

In summary it was calculated that bonds C(l)-N(l) and N(l)-C(2) cut down against bonds 
of the appropriate carbenes, on the other hand the bond C(2)-C(3) elongated and the angle 
N(l)-C(l)-N(2) increased. The deviation could be the consequence of taking one isolated 
molecule in vacuum into account for the calculation. Compared to previous calculation36 the 
best predictions achieved smaller deviations. To reach a better accuracy the using of the better 
method (MP2, CI) or the better basis set (cc-pVDZ, aug-cc-pVDZ) represents one of possible 
ways. 
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Fig. 34 Bond distances and relative errors ofC(l)-N(l) bond ofNCjH-F3CS03 calculated by different 
functionals 

4.2.2 Hydrolysis products 
Geometry optimization of hydrolysis products were done due to the enhancement of spectra 

interpretation. Best predictions of selected bond distances and bond angles are summarized in 
Appendix. In Fig. 35 the optimized structure of N-C-CA was depicted. Based on the results of 
calculations t the best results of N-C-CA were obtained at B3PW91/6-31G+(d,p) level. It was 
found out that N=C-CA is more stable than N-C=CA due to the fact that N=C-CA is located 
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1 7 8 
about 7.8 kJmol" lower in energy which agrees well with Denk's and Holloczki's works. 
Further, it was calculated that the bond length N(l)-C(2) of N=C-CA is shortened by 0.04 A 
in comparison with that of the corresponding tautomer N-C=CA, whereas the bond C(2)-C(3) 
by 0.17 A. On the other hand, bond length C(3)-N(2) is elongated by 0.12 A and angle value 
is increased by 1.39°. Calculated bonds lengths N(l)-C(2), C(2)-C(3) and C(3)-N(2) of N-C-
CA were the longest ones, which is in the agreement with the fact that single bonds are longer 
than double bonds. 

Fig. 35 The structure ofN-C-CA optimized at B3PW91/6-31G(d) in ArgusLab 

4.3 Spectra prediction 

IR and than R A spectra of NCiH-Cl (Fig. 36) and NCi (Fig. 37) were obtained from data 
of geometry optimization. For the prediction of spectra B3LYP/6-31G(d) level was mainly 
used. The comparison of the spectra predictions at different levels is available in Appendix. 
A l l predicted spectra had the similar character, however differed in wavenumbers. The 
calculated spectra were compared with measured ones. Further, both measured IR spectra of 
NCi (Fig. 38) were confronted with published Leites' data56. These IR spectra did not 
correspond completely, therefore spectra of possible hydrolysis products (N=C-CA, N-
C=CA) were calculated (Fig. 39). In the IR spectrum of the carbene NCi synthesised 
according to Denk7 (1 s t synthesis) the presence of weak absorption band at 1686 cm"1 was 
revealed. Based on the calculated vibrational frequency of 1696 cm"1 belonging to v c = 0 , the 
presence of the hydrolysis product N=C-CA in studied carbene NCi is suggested. Our 
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measured (2n synthesis) IR spectrum corresponded with Leites' IR spectrum . The table 
with compared wavenumbers is available in Appendix. 

We did not found well correlation between calculated and measured (2 n d synthesis) IR 
spectra (Fig. 40), but it is necessary to mention, that for predictions only one isolated 
molecule in gaseous phase was assumed. On the contrary, for the measurement the compound 
in solid state was taken. In Fig. 41 the example of the comparison of both spectra in Spartan46 

is presented. To get deeper insight into this field further research will be done. 

predicted IR spectrum 

predicted RA spectrum 

i i i i l i i i i l i i i i l —i—i—i—n—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i-
3200 3000 2800 1600 1400 1200 1000 600 600 400 

wavenumber (tin'1) 

Fig. 36 The predicted IR spectrum ofNC,H-Cl at B3LYP/6-31(d) level v(cm'): 573 (vw), 651 (vw), 
677 (vw), 731 (vw), 799 (vw), 914 (vw), 982 (vw), 1037 (vw), 1081 (m), 1152 (m), 1180 (vw), 1217 
(vw), 1252 (vw), 1383 (vw), 1415 (vw), 1490 (vw), 1508 (vw), 1532 (vw), 2892 (vs), 2967 (w), 3007 
(w), 3219 (vw) and the predicted RA spectra ofNCjH-Cl at B3LYP/6-31(d) level v (cm1): 575 (vw), 

782 (vw), 909 (vw), 982 (vw), 1028 (vw), 1097 (vw), 1249 (vw), 1369 (vw), 1415 (vw), 1455 (vw), 
2890 (vs), 2958 (m), 3010 (w), 3192 (vw), 3217 (vw) 
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Fig. 37 The predicted IR spectrum ofNCi at B3LYP/6-3I(d) level v (cm1): 425 (vw), 500 (vw), 546 
(vw), 614 (vw), 673 (vw), 800 (vw), 907 (vw), 955 (vw), 1021 (vw), 1076 (vw), 1115 (vw), 1183 (vw), 
1218 (s), 1265 (vw), 1301 (vw), 1366 (w), 1397 (vw), 1470 (vw), 2931 (m), 3009 (m), 3180 (vw) and 

the predicted RA spectrum ofNC, at B3LYP/6-31(d) level v(cm'): 543 (vw), 789 (vw), 902 (vw), 959 
(vw), 1021 (vw), 1075 (vw), 1139 (vw), 1193 (vw), 1285 (vw), 1374 (vw), 1462 (w), 1549 (vw), 2935 

(vs), 3008 (vs), 3170 (w) 
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wave nu m l>e i (cm"1) 

Fig. 38 The measured IR spectrum (1st synthesis) of NCi (KBr) v (cm ): 444 (vw), 519 (vw), 567 (vw), 
633(w), 719 (s), 816 (w), 827 (w), 847 (w), 922 (vw), 970 (w), 986 (w), 1031 (w), 1101 (m), 1136 (w), 
1202 (m), 1234 (vs), 1277 (m), 1319 (m), 1366 (vs), 1387 (s), 1458 (m), 1476 (m), 1555 (w), 1657 (w), 
1672 (w), 1686 (w), 2876 (w), 2909 (m), 2932 (m), 2976 (vs), 3073 (w), 3109 (w) and the measured IR 

spectrum (2nd synthesis) ofNC, (KBr) v(cm'): 444 (vw), 462 (vw), 519 (vw), 567 (vw), 633(w), 
719 (s), 816 (w), 827 (w), 847 (w), 922 (vw), 970 (w), 985 (w), 1031 (w), 1101 (m), 1136 (w), 1186 
(sh), 1203 (m), 1234 (vs), 1279 (w), 1319 (w), 1365 (s), 1387 (m), 1458 (w), 1475 (w), 1555 (vw), 

2875 (w), 2901 (sh), 2931 (m), 2976 (vs), 3072 (w), 3109 (w) 
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N=C-CA 
N-C=CA 

3400 3200 3000 2800 1800 1600 1400 1200 1000 800 600 400 

wave number [cm'1] 

Fig. 39 The predicted IR spectrum ofN=C-CA at B3LYP/6-31(d) level v (cm1): 454 (vw), 468 (vw), 
571 (vw), 931 (vw), 1034 (vw), 1201 (m), 1340 (v), 1479 (vw), 1696 (vs), 2932 (m), 3004 (s) and the 

predicted 1R spectrum ofN-C-CA at B3LYP/6-31(d) level v (cm1): 451 (vw), 516 (vw), 562 (vw), 663 
(vw), 716 (vw), 770 (vw), 861 (vw), 1033 (vw), 1142 (vw), 1212 (m), 1290 (vw), 1369 (w), 1483 (vw), 

1669 (vs), 2929 (v), 3004 (m), 3089 (vw), 3001 (vw) 

measured IR spect rum 
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Fig. 40 The comparison of predicted (B3LYP/6-31(d)) and measured (2nd synthesis) IR spectra ofNCj 
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Fig. 41 The comparison of predicted and measured IR spectra ofNCj in Spartan 

4.4 Study on the mechanism of the ROP of lactide 

Two mechanisms of ROP catalyzed by NHCs are widely accepted as it was discussed in 
Section 2.2.4. Initially, both mechanisms for system l,3-di-terc-butylimidazol-2-ylidene, 
lactide and methanol Si were investigated. At first, nucleophilic monomer-activated 
mechanism was studied according to the proposed schemaw (Fig. 10). Energies of all 
reactants and their intermediates were computed. In this pathway the activation barrier was 
large and the simulation of the ring-opening of lactide was unsuccessful, therefore second 
possible mechanism was intensive studied (chain-end-activated mechanism). 

Initially, all stationary points were optimized at A M I and B3LYP/6-31G(d) level. 
Regarding the calculated energies the novel pathway of chain-end-activated mechanism was 
suggested (Fig. 42). This pathway was divided into two steps including an initiation and the 
ring-opening step. The crucial feature of the initiation step is the formation of H-bond and 
TS1 intermediate which could correspond with alcohol adduct (discussed in Section 2.2.5). 
Based on Tab. 3 it is obvious that both intermediates are located lower in energy than 
separated reactants. In the ring-opening step the four-centre bond in transition state TS2 is 
formed and methanol hydrogen causes the ring-opening of lactide. Chain-end-activated 
mechanism had the lower activation barrier than nucleophilic route and similar features as the 
known basic concerted route of the DMAP-catalyzed ring-opening of lactide with methanol26 

(Fig. 9). The energy profile of both mechanisms was presented in Fig. 43. For comparison the 
same method was applied for system 4-dimethylaminopyridine, lactide and methanol S2. 
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Fig. 42 Proposal of a novel chain-end-mechanism 

Tab. 3 Calculated energies of all stationary points of the novel pathway 

B3LYP/6-31G(d) 
E (au) E rel. (au) E rel. (kJmol 1) 

Carbene +lactide + methanol -1190.762667 0.000000 0.00 

H-bond (+lactide) -1190.784701 -0.022034 -57.84 

TS1 (+lactide) -1190.788041 -0.025374 -66.61 

TS2 optimized -1190.779200 -0.016533 -43.40 

Product complex -1190.803310 -0.040643 -106.69 

Separated product -1190.759300 0.003367 8.84 
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Fig. 43 The energy profile of both mechanisms 

4.4.1 Simulation of the ring-opening of lactide 

The process of the ring-opening of lactide was investigated by using Spartan computer 
program46. An interaction between the carbene and the alcohol (H-bond) was simulated by 
using of a generation of transition state at molecular mechanics level. The proposed transition 
state was optimized at A M I level. Subsequently the influence of modification of OH bond 
distance in alcohol on the changes of the energy of the whole molecule was studied (Fig. 44). 
Two best conformations (with the lowest energy) were optimized by the rotation around OH 
bond at A M I level (12 steps after 30°). The best conformer (the lowest energy, right 
orientation) was optimized at B3LYP/6-31G(d) level. 
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Fig. 44 The modelling of modification of bond distance OH in alcohol 

Then transition state of foregoing best conformer and monomer (lactide) TS2 was 
generated at molecular mechanics level (Fig. 45). Subsequently, transition state was 
optimized at A M I level and B3LYP/6-31G(d) level. 

Fig. 45 The generation (blue arrows) of transition state at molecular mechanic level 

The ring-opening was simulated by the modification of OH bond [O(lactide)—H-
C(carbene)] at A M I level (10 steps). A l l conformers were optimized at B3LYP/6-31G(d) 
level. The final product is the conformer with the lowest energy. 
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5 CONCLUSION 

The energies and shapes of molecular orbitals and electrostatic potential maps of selected 
N-heterocyclic carbenes and their precursors based on chlorides were calculated. Titan 4 5 

offers more possibilities of calculations than ArgusLab 4 4. These calculations are crucial for 
the prediction of properties. Both studied carbenes are very reactive due to a small HOMO-
L U M O band gap. Moreover, electrostatic potential maps could be correlated with the catalytic 
activity, hence the suggestion of the better catalysts will be the subject for further study. 

The geometry optimization of selected chloride precursors, similar precursors, NHCs and 
their possible hydrolysis products was made. Six compounds were calculated at DFT level 
using different seventeen functional. Three compounds were calculated at RHF level with five 
basis sets and at DFT level with three basis sets and with three functionals. The calculated 
structures were in good agreement with the published data and the more stable tautomer of 
hydrolysis products was determined. In next steps post-Hartree-Fock methods including 
electron correlation effect in addition and larger basis sets will be studied and accurate 
energies, enthalpies and entropies of these compounds will be calculated. 

IR and R A spectra of selected imidazole compounds were obtained from data of geometry 
optimization. Subsequently, calculated spectra were compared with measured ones. For better 
spectra interpretation spectra of hydrolysis products were calculated. The finding of the 
efficient cause for the prediction of IR and R A spectra and subsequently their interpretation, 
eventually the obtaining of N M R spectra will be the subject for further study. 

Two possible mechanisms of ROP of lactide catalyzed by NHCs were studied. In the first 
studied pathway, which is postulated by many authors, the activation barrier was too large. 
Therefore the second mechanism was investigated and the novel route was suggested. This 
novel route was more energetically favourable, which means more probable. Moreover the 
simulation of the ring-opening of lactide was successful and it was found out that methanol 
hydrogen causes the ring-opening of lactide. In next steps the experimental research such as 
in situ studies will be done and the influence of temperature and solvent effect on calculation 
will be account. 
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7 LIST OF ABBREVIATIONS 

A M I Austin Model 1 
aug-cc-pVDZ Augmented cc-pVDZ 
cc-pVDZ Correlation Consistent-Polarized Valence Double Zeta 
CCDC Cambridge Crystallographic Data Centre 
CI Configural Interaction 
DFT Density Functional Theory 
DZV Double Zeta Valence 
FTIR Fourier Transform Infrared 
FTP File Transfer Protocol 
GAMESS General Atomic And Molecular Electronic Structure System 
GTO Gaussian Type Orbital 
H-bonding Hydrogen Bonding 
HOMO Highest Occupied Molecular Orbital 
IR Infrared 
L C A O Linear Combination Of Atomic Orbitals 
L U M O Lowest Unoccupied Molecular Orbital 
MCSCF Multi-Configurational Self-Consistent Field 
MeCN Acetonitrile 
MNDO Modified Neglet of Diatomic Overlap 
MP2 Moller-Plesset Pertubation Theory (second-order) 
MRDCI Multireference Single And Double Configuration Interaction 
NEVPT N-electron Valence State Perturbation Theory 
NHC N-heterocyclic Carbene 
PES Potential Energy Surface 
PM3 Third Parametrisation of M N D O 
R A Raman 
RHF Restricted Hartree Fock 
ROHF Restricted Open Shell Hartree Fock 
Si l,3-di-terc-butylimidazol-2-ylidene, lactide and methanol 
s 2 

4-dimethylaminopyridine, lactide and methanol 
SCF Self-Consistent Field 
SFTP Secure File Transfer Protocol 
SI International System of Units 
SSH Secure Shell 
STO Slater Type Orbital 
TCP Transmission Control Protocol 
THF Tetr ahydro fur ane 
UHF Unrestricted Hartree Fock 
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8 NOMENCLATURE LIST 

D M A P 4-dimethylaminopyridine 
DMSO Dimethyl sulfoxide 
IMes 1,3-dimesitylimidazol-2-ylidene 
IMes 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene 
MeCN Acetonitrile 
N C i 1,3-di-terc-butylimidazol-2-ylidene 
N C 2 1,3-di-ŕerc-butylimidazolin-2-ylidene 
N=C-CA [(2E)-2-(řerř-butylimino)ethyl]formamide (l,4-di(fôrŕ-butyl)-4-

formyl-1,4-diaza-but-1 -ene) 
N-C=CA N-řerř-butyl-N-[(Z)-2-(řerř-butylamino)ethenyl]formamide 
N-C-CA N-tórř-butyl-N-[2-(řerř-butylamino)ethyl]formamide (N-formyl-

N,N'-di-řerř-butylethylenediamine) 
N C i H - C l 1,3-di-rerc-butylimidazolium chloride 
N C 1 H - F 3 C S O 3 1,3-di-terc-butylimidazolium trifluoromethanesulfonate 
N C 2 H - C I 1,3-di-rerc-butylimidazolinium chloride 
N C 2 H - S C N 1,3-di-rerc-butylimidazolinium thiocyanate 

Studied carbenes were marked N C i and NC2, where NC reflects N-heterocyclic carbenes 
and numbers differ unsaturated (1) and saturated analogue (2). Their precursors contain 
hydrogen (H) and anion (CI", F 3 C S O 3 " or SCN") in addition. A l l hydrolysis products are based 
on formamide (A abbreviates formamide) and differ in single (-) and double bonds (=) in the 
sequence N C N . Their nomenclatures were generated in chemical software. N=C-CA and N -
C-CA have second names, because these names were used in some publications. The IMes 
abbreviates l,3-dimesitylimidazol-2-ylidene, however mesityl means 2,4,6-trimethylphenyl, 
hence both names were mentioned. 
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9 APPENDIX 

Tab. 4 Examples of pKa's of nucleophilic carbenes in DMSO, MeCN and water 

Carbene DMSO MeCN Water 

27.9 ± 0.23 39.1+0.25 34.0 ± 0.3 

/=\ 

-ISL N-

f = \ 

23.7 + 0.21 

22.6 + 0.09 

22.3 + 0.25 

22.0 + 0.21 

34.9 + 0.21 

33.0 + 0.09 

33.6 + 0.25 

33.3 + 0.21 

29.5 + 0.3 

28.3 + 0.1 

28.5 + 0.4 

28.2 + 0.3 

CI CI 

f = \ 

21.1+0.23 

16.2 + 0.10 

16.1+0.05 

14.5 + 0.16 

32.4 + 0.22 

27.4 + 0.10 

27.4 + 0.07 

25.6 + 0.15 

27.4 + 0.4 

23.4 + 0.2 

22.0 + 0.1 

21.2 + 0.2 



Tab. 5 Types and descriptions of funtionals 

Type Functional Description 
Pure exchange SLATER Slater exchange, no correlation 

Pure correlation L Y P 
Hartree-Fock exchange, Lee-Yang-Parr 1988 
correlation 

Exchange-correlation SLYP Slater exchange, Lee-Yang-Parr 1988 correlation 

Exchange-correlation B L Y P Becke 1988 exchange, Lee-Yang-Parr 1988 
correlation 

Exchange-correlation G L Y P Gi l l 1996 exchange, Lee-Yang-Parr 1988 
correlation 

Exchange-correlation X L Y P Extended exchange functional of Xu and Goddard 
III, Lee-Yang-Parr 1988 correlation 

Exchange-correlation O L Y P OPTX exchange, Lee-Yang-Parr 1988 correlation 
Exchange-correlation SVWN1RPA Slater exchange, V W N formula 1 RPA correlation 

Exchange-correlation BVWN1RPA Becke 1988 exchange, V W N formula 1 RPA 
correlation 

Exchange-correlation SVWN5 Slater exchange, V W N formula 5 RPA correlation 

Exchange-correlation BVWN5 
Becke 1988 exchange, V W N formula 5 RPA 
correlation 

Exchange-correlation PBE96 
Perdew-Burke-Ernzerhof 1996 exchange, Perdew -
Burke-Ernzerhof nonlocal + Perdew-Wang 1991 
L D A correlation 

Exchange-correlation PBEPW91 
Perdew-Burke-Ernzerhof 1996 exchange, Perdew 
1991 nonlocal + Perdew-Wang 1991 L D A 
correlation 

Exchange-correlation PW91 
Perdew-Wang 1991 exchange, Perdew 1991 
nonlocal + Perdew-Wang 1991 L D A correlation 

Hybrid B3LYP 
Becke-style three-parameter functional, using V W N 
formula 5 RPA correlation 

Hybrid X 3 L Y P 
Extended exchange functional f Xu and Goddard III 
+ Hartree-Fock exchange 

Hybrid 0 3 L Y P 
Slater + OPTX + Hartree-Fock exchange, V W N 
formula 5 + Lee-Yang-Parr 1988 correlation 

Hybrid B H H L Y P 
Becke 1988 + Hartree-Fock exchange, Lee-Yang-
Parr 1988 correlation 

Hybrid PBEO 
Perdew-Burke-Ernzerhof 1996 + Hartree-Fock 
exchange, Perdew-Burke-Ernzerhof nonlocal + 
Perdew-Wang 1991 L D A correlation 

Hybrid PBE1PW91 
Perdew-Burke-Ernzerhof 1996 + Hartree-Fock 
exchange, Perdew 1991 nonlocal + Perdew-Wang 
1991 L D A correlation 

Hybrid B3PW91 
Slater + Becke 1988 + Hartree-Fock exchange, 
Perdew 1991 nonlocal + Perdew-Wang 1991 L D A 
correlation 



SCONTRL SCFTYP=RHF RUNTYP=OPTIMIZE MAXIT=200 DFTTYP =B 3LYP NZVAR=99 SEND 
$SYSTEM MWORDS=100 $END 
SSCF DIRSCF=.True. $END 
SGUESS GUESS=HUCKEL SEND 
SBASIS GBASIS=N31 NGAUSS=6 NDFUNC=I SEND 
SZMAT DLC=.TRUE. AUTO=.TRUE. Send 
SSTATPT NSTEP=100000 SEND 
SDATA 

B3LYP/6-
r i 

31G(C0 
•_ ± 
NITROGEN "7 0 29. 2044828342 -19. 5710300026 -1. 9390650357 
CARBON 0 . 0 28. 1115395843 -20. 3413376590 -2. 0509731194 
NITROGEN "7 

•' • 0 27. 05527341B0 -19. 5222015703 -2. 1661542574 
CARBON 6. 0 27. 4027338822 -16. 1130339560 -1. 9677570611 
CARBON 6. 0 28. 9225153335 -16. 1461702059 -2. 1230751225 
CARBON 6. 0 25. 66537744B2 -19. 9924939797 -2. 0429607455 
CARBON 0 . 0 30. 5711900370 -20. 1053934032 -2. 0569251656 
CARBON 6. 0 31. 5449631263 -19. 1759440619 -1. 3210659636 
CARBON 6. 0 30. 6430353343 -21. 4953996429 -1. 4193831165 
CARBON 0 . 0 30. 9676919166 -20. 2061649672 -3. 5399415403 
CARBON 6. 0 24. 7343665314 -19. 0197574995 -2. 7796069445 
CARBON 6. 0 25. 5264572976 -21. 3761624106 -2. 6808983554 
CARBON 6. 0 25. 2667663997 -20. 0732960726 -O. 5610241401 
HYDROGEN 1. 0 26. 940B636900 -17. 4626626336 -2. 7357090169 
HYDROGEN 1. 0 29. 4130047939 -17. 5371134611 -1. 3775480124 
HYDROGEN 1. 0 31. 6159696621 -16. 1966255129 -1. 7871654599 
HYDROGEN 1. 0 32. 5401023309 -19. 6076647968 -1. 3258172629 
HYDROGEN 1. 0 31. 2417536464 -19. 0407142066 -0. 2674697622 
HYDROGEN 1. 0 30. 000B125795 -22. 1993714469 -1. 9278931821 
HYDROGEN 1. 0 31. 6655424009 -21. 6569247465 -1. 4676090378 
HYDROGEN 1. 0 30. 3400674367 -21. 4573269956 -0. 3786373656 
HYDROGEN 1. 0 30. 295BB95204 -20. 6763726541 -4. 0622078049 
HYDROGEN 1. 0 30. 9309315916 -19. 2391457092 -4. 0323275409 
HYDROGEN 1. 0 31. 9796100102 -20. 5662207051 -3. 6426422356 
HYDROGEN 1. 0 23. 7201942357 -19. 4046422261 -2. 7716844836 
HYDROGEN 1. 0 24. 7099726491 -16. 0395302063 -2. 3146186414 
HYDROGEN 1. 0 25. 04044255B0 -16. 6999153636 -3. 8143351242 
HYDROGEN 1. 0 24. 4661410666 -21. 6931616036 -2. 6286899963 
HYDROGEN 1. 0 26. 1365237766 -22. 1116691973 -2. 1740583567 
HYDROGEN 1. 0 25. B266510976 -21. 3554199369 -3. 7229823952 
HYDROGEN 1. 0 25. 3492775240 -19. 1065464195 -0. 0696240504 
HYDROGEN 1. 0 25. 9071642566 -20. 7755643516 -0. 0364166600 
HYDROGEN 1. 0 24. 2363435971 -20. 4076163565 -0. 4570090783 
HYDROGEN 1. 0 27. 0976057720 -17. 7531055666 -1. 0085597662 
HYDROGEN 1. 0 29. 2439153466 -17. 6064604771 -3. 1033639355 

SEND 

Fig. 46 The example of the input file for PC GAMESS/Firefly 



Tab. 6 Selected bond distances and bond angles of NCi and comparison 

6-31G(d) 
Bond distance (A) Bond angle (°) 

E0(%) E (au) CPU time 6-31G(d) 
C(l)-N(l) C(2)-C(3) N(l)-C(2) N(l)-C(l)-N(2) 

E0(%) E (au) CPU time 

exp. data7 1.366(2) 1.341(2) 1.380(2) 102.19(12) - - -

SLATER 1.381 1.375 1.401 101.99 1.27 -529.46 93 min 
L Y P 1.386 1.368 1.407 102.30 1.35 -540.36 115 min 

B L Y P 1.386 1.368 1.407 102.30 1.35 -540.38 83 min 
S L Y P 1.360 1.362 1.381 101.95 0.61 -532.77 84 min 
G L Y P 1.384 1.367 1.402 102.32 1.24 -540.34 85 min 
O L Y P 1.378 1.363 1.393 102.40 0.92 -540.43 84 min 

SVWN1RPA 1.360 1.359 1.377 102.15 0.51 -537.71 201 min 

D
FT

 SVWN5 1.362 1.360 1.380 102.11 0.45 -535.78 87 min 

D
FT

 

PBE96 1.379 1.367 1.395 102.07 1.02 -539.95 127 min D
FT

 

PW91 1.377 1.365 1.394 102.13 0.92 -540.44 134 min 
B 3 L Y P 1.371 1.356 1.392 102.62 0.69 -540.68 235 min 

BHHLYP 1.358 1.341 1.383 103.00 0.40 -540.33 97 min 
X 3 L Y P 1.370 1.355 1.391 102.61 0.64 -540.41 241 min 
03LYP 1.363 1.354 1.380 102.47 0.37 -539.46 257 min 
PBEO 1.365 1.354 1.384 102.48 0.40 -540.04 239 min 

PBE1PW91 1.365 1.353 1.384 102.46 0.38 -540.25 243 min 
B3PW91 1.367 1.356 1.387 102.50 0.50 -540.49 244 min 

Three best results are marked in bold italic 

Tab. 7 Selected bond distances and bond angles of NGH-C1 

6-31G(d) 
Bond distance (A) Bond angle (°) 

E (au) CPU time 6-31G(d) 
C(l)-N(l) C(2)-C(3) N(l)-C(2) N(l)-C(l)-N(2) 

E (au) CPU time 

SLATER 1.347 1.385 1.382 109.26 -987.39 108 min 
L Y P 1.296 1.332 1.355 110.53 -1001.17 122 min 

B L Y P 1.348 1.377 1.389 109.86 -1001.16 202 min 
S L Y P 1.331 1.370 1.363 108.82 -991.43 132 min 
G L Y P 1.345 1.375 1.387 109.97 -1001.16 187 min 
O L Y P 1.340 1.372 1.379 110.08 -1001.25 192 min 

SVWN1RPA 1.359 1.367 1.362 109.10 -997.39 116 min 

D
FT

 SVWN5 1.331 1.369 1.364 109.13 -995.10 113 min 

D
FT

 

PBE96 1.341 1.376 1.380 109.71 -1000.57 159 min D
FT

 

PW91 1.340 1.375 1.379 109.61 -1001.23 164 min 
B 3 L Y P 1.332 1.366 1.376 110.06 -1001.50 83 min 

B H H L Y P 1.318 1.352 1.368 110.18 -1001.14 77 min 
X 3 L Y P 1.331 1.365 1.376 110.04 -1001.18 77 min 
0 3 L Y P 1.326 1.362 1.366 109.83 -1000.05 102 min 
PBEO 1.327 1.364 1.369 109.85 -1000.69 83 min 

PBE1PW91 1.327 1.364 1.369 109.83 -1000.96 81 min 
B3PW91 1.330 1.365 1.371 109.88 -1001.25 82 min 



Tab. 8 Selected bond distances and bond angles of N C 2 and comparison 

6-31G(d) 
Bond distance (A) Bond angle (°) 

E0(%) E (au) CPU time 6-31G(d) 
C(l)-N(l) C(2)-C(3) N(l)-C(2) N(l)-C(l)-N(2) 

E0(%) E (au) CPU time 

exp. data52 1.348(1) 1.542(2) 1.476(1) 106.44(9) - - -

SLATER 1.361 1.537 1.489 106.31 0.91 -530.53 58 min 
L Y P 1.326 1.505 1.440 106.81 1.22 -541.57 52 min 

B L Y P 1.363 1.541 1.504 106.78 1.31 -541.56 57 min 
S L Y P 1.343 1.513 1.462 105.99 0.45 -533.89 69 min 
G L Y P 1.361 1.541 1.502 106.79 1.24 -541.53 85 min 
O L Y P 1.356 1.533 1.487 106.72 0.75 -541.62 49 min 

SVWN1RPA 1.342 1.514 1.464 106.25 0.39 -538.92 57 min 

D
FT

 SVWN5 1.343 1.517 1.466 106.24 0.39 -536.95 57 min 

D
FT

 

PBE96 1.356 1.533 1.489 106.45 0.72 -541.14 58 min D
FT

 

PW91 1.356 1.533 1.489 106.52 0.73 -541.63 57 min 
B 3 L Y P 1.352 1.532 1.483 106.80 0.61 -541.89 55 min 

B H H L Y P 1.342 1.523 1.465 106.83 0.57 -541.54 44 min 
X 3 L Y P 1.351 1.531 1.481 106.76 0.53 -541.60 56 min 
0 3 L Y P 1.343 1.520 1.468 106.59 0.40 -540.65 51 min 
PBEO 1.347 1.524 1.470 106.59 0.33 -540.65 56 min 

PBE1PW91 1.347 1.525 1.470 106.47 0.35 -541.23 56 min 
B3PW91 1.349 1.528 1.475 106.52 0.34 -541.45 55 min 

Three best results are marked in bold italic 

Tab. 9 Selected bond distances and bond angles of NC 2 H-C1 

6-31G(d) 
Bond distance (A) Bond angle (°) 

E (au) CPU time 6-31G(d) 
C(l)-N(l) C(2)-C(3) N(l)-C(2) N(l)-C(l)-N(2) 

E (au) CPU time 

SLATER 1.356 1.544 1.477 111.66 -988.50 450 min 
L Y P 1.294 1.514 1.442 113.88 -1002.43 150 min 

B L Y P 1.350 1.552 1.488 113.05 -1002.39 540 min 
S L Y P 1.346 1.520 1.451 110.20 -992.60 540 min 
G L Y P 1.341 1.546 1.490 113.00 -1002.37 186 min 
O L Y P 1.336 1.535 1.477 112.95 -1002.46 208 min 

SVWN1RPA 1.343 1.522 1.452 110.78 -998.64 450 min 

D
FT

 SVWN5 1.344 1.524 1.455 110.88 -996.31 450 min 

D
FT

 

PBE96 1.350 1.542 1.475 112.14 -1001.79 560 min D
FT

 

PW91 1.349 1.541 1.475 112.07 -1002.46 578 min 
B 3 L Y P 1.328 1.539 1.477 113.22 -1002.73 180 min 

B H H L Y P 1.315 1.530 1.464 113.36 -1002.37 180 min 
X 3 L Y P 1.328 1.537 1.475 113.18 -1003.01 540 min 
0 3 L Y P 1.323 1.525 1.461 112.62 -1001.27 210 min 
PBEO 1.323 1.530 1.466 112.83 -1001.92 210 min 

PBE1PW91 1.324 1.530 1.466 112.83 -1002.19 210 min 
B3PW91 1.326 1.533 1.470 112.92 -1002.49 180 min 



Tab. 10 Symmetry and energy of NCi 

Symmetry 
Energy 

Symmetry 
AMI (kJmol1) RHF/6-31G(d) (au) B3LYP/6-31(d) (au) 

NCi c s 238.36 -537.04829 -540.681976 
NC, C2V 238.39 -537.04762 -540.682946 

Tab. 11 Selected bond distances and bond angles of NC1H-F3CSO3 and comparison 

6-31G(d) 
Bond distance (A) Bond angle (°) 

E 0 ( % ) E(au) CPU time 6-31G(d) 
C(l)-N(l) C(2)-C(3) N(l)-C(2) N(l)-C(l)-N(2) 

E 0 ( % ) E(au) CPU time 

exp. data53 1.336(5) 1.345(5) 1.375(5) 109.8(4) - - -

SLATER 1.344 1.382 1.385 109.17 1.11 -1481.02 509 min 
L Y P 1.300 1.332 1.356 110.56 1.49 -1502.04 580 min 

B L Y P 1.347 1.377 1.390 109.90 1.04 -1502.35 414 min 
S L Y P 1.329 1.368 1.365 108.73 1.04 -1487.18 306 min 
G L Y P 1.346 1.376 1.387 109.91 0.95 -1502.31 432 min 
O L Y P 1.341 1.370 1.380 110.11 0.67 -1502.34 411 min 

SVWN1RPA 1.328 1.365 1.366 109.07 0.91 -1496.12 443 min 

D
FT

 SVWN5 1.330 1.367 1.368 109.01 0.88 -1492.71 441 min 

D
FT

 

PBE96 1.343 1.375 1.380 109.62 0.77 -1501.29 221 min D
FT

 

PW91 1.343 1.374 1.380 109.63 0.75 -1502.33 208 min 
B3LYP 1.333 1.366 1.378 109.99 0.49 -1502.73 441 min 

B H H L Y P 1.319 1.353 1.368 110.11 0.72 -1502.13 446 min 
X3LYP 1.333 1.365 1.377 109.94 0.48 -1502.24 228 min 
0 3 L Y P 1.328 1.362 1.367 109.75 0.68 -1500.45 414 min 
PBE0 1.329 1.363 1.370 109.77 0.62 -1501.39 451 min 

PBE1PW91 1.329 1.362 1.370 109.82 0.60 -1501.82 458 min 
B3PW91 1.332 1.364 1.373 109.88 0.54 -1502.28 448 min 

Three best results are marked in bold italic 



Tab. 12 Selected bond distances and bond angles of N C 2 H - S C N and comparison 

6-31G(d) 
Bond distance (A) Bond angle (°) 

E0(%) E (au) CPU time 6-31G(d) 
C(l)-N(l) C(2)-C(3) N(l)-C(2) N(l)-C(l)-N(2) 

E0(%) E (au) CPU time 

exp. data54 1.313(2) 1.517(3) 1.473(2) 113.80(16) - - -

SLATER 1.333 1.553 1.483 113.95 1.18 -1017.90 361 min 
L Y P 1.289 1.519 1.447 114.84 1.16 -1033.17 375min 

B L Y P 1.333 1.557 1.496 114.86 1.66 -1033.21 262 min 
S L Y P 1.318 1.530 1.458 113.30 0.67 -1022.41 492 min 
G L Y P 1.331 1.556 1.493 114.86 1.56 -1033.18 257 min 
O L Y P 1.326 1.547 1.481 115.09 1.16 -1033.27 308 min 

SVWN1RPA 1.317 1.531 1.459 113.68 0.57 -1029.05 457 min 

D
FT

 SVWN5 1.318 1.532 1.461 113.77 0.55 -1026.49 447 min 

D
FT

 

PBE96 1.328 1.548 1.481 114.44 1.07 -1032.54 263 min D
FT

 

PW91 1.328 1.548 1.481 114.43 1.07 -1033.27 271 min 
B 3 L Y P 1.320 1.546 1.481 114.93 1.00 -1033.57 264 min 

B H H L Y P 1.307 1.536 1.468 114.90 0.75 -1033.15 274 min 
X 3 L Y P 1.319 1.545 1.479 114.85 0.91 -1033.20 265 min 
03LYP 1.314 7.533 1.465 114.55 0.58 -1031.93 269 min 
PBEO 1.315 1.538 1.469 114.54 0.61 -1032.66 277 min 

PBE1PW91 1.315 1.538 1.470 114.61 0.61 -1032.96 278 min 
B3PW91 1.318 1.541 1.473 114.62 0.67 -1033.29 265 min 

Three best results are marked in bold italic 



Tab. 13 Selected bond distances and bond angles of N=C-CA 

Method 
Bond distance (A) Bond angle (°) 

E (au) CPU time Method 
N(l)-C(2) C(2)-C(3) C(3)-N(2) 0=C(1)-N(1) 

E (au) CPU time 

RHF/6-31G(d) 1.464 1.508 1.249 124.25 -613.11 35 min 
RHF/6-31G+(d) 1.465 1.510 1.249 115.74 -613.12 111 min 
RHF/6-311G+ 1.470 1.504 1.259 123.91 -612.97 122 min 

RHF/6-31G+(d,p) 1.464 1.510 1.249 124.24 -613.16 146 min 
RHF/ 

6-311G+(d,p) 
1.465 1.511 1.246 124.56 -613.27 277 min 

B3LYP/6-31G(d) 1.473 1.512 1.269 124.12 -617.15 59 min 
B3LYP/ 

6-31G+(d,p) 
1.473 1.513 1.270 124.21 -617.20 73 min 

B3LYP/ 
6-311G+(d,p) 

1.473 1.512 1.264 124.36 -617.33 112 min 

03LYP/6-31G(d) 1.457 1.501 1.265 124.07 -615.79 62 min 
0 3 L Y P / 

6-31G+(d,p) 
1.456 1.502 1.266 124.17 -615.84 162 min 

0 3 L Y P / 
6-311G+(d,p) 

1.455 1.500 1.261 124.37 -615.96 327 min 

B3PW91/ 
6-31G(d) 

1.465 1.508 1.268 124.07 -616.92 54 min 

B3PW91/ 
6-31G+(d,p) 

1.465 1.508 1.268 124.22 -616.96 151 min 

B3PW91/ 
6-311G+(d,p) 

1.463 1.507 1.264 124.32 -617.09 267 min 



Tab. 14 Selected bond distances and bond angles of N-C=CA 

Method 
Bond distance (A) Bond angle (°) 

E (au) CPU time Method 
N(l)-C(2) C(2)-C(3) C(3)-N(2) 0=C(1)-N(1) 

E (au) CPU time 

RHF/6-31G(d) 1.430 1.326 1.380 125.78 -613.10 75 min 
RHF/6-31G+(d) 1.430 1.328 1.380 125.75 -613.11 289 min 
RHF/6-311G+ 1.434 1.331 1.377 125.32 -612.97 226 min 

RHF/6-31G+(d,p) 1.430 1.329 1.378 125.70 -613.15 364 min 
RHF/ 

6-311G+(d,p) 
1.429 1.326 1.379 125.90 -613.26 132 min 

B3LYP/6-31G(d) 1.430 1.351 1.377 125.69 -617.14 49 min 
B3LYP/ 

6-31G+(d,p) 
1.429 1.353 1.376 125.50 -617.20 172 min 

B3LYP/ 
6-311G+(d,p) 

1.429 1.349 1.475 125.64 -617.33 180 min 

03LYP/6-31G(d) 1.415 1.350 1.365 125.65 -615.78 52 min 
0 3 L Y P / 

6-31G+(d,p) 
1.415 1.351 1.364 125.38 -615.84 189 min 

0 3 L Y P / 
6-311G+(d,p) 

1.413 1.348 1.361 125.62 -615.97 265 min 

B3PW91/ 
6-31G(d) 

1.423 1.351 1.372 125.64 -616.92 49 min 

B3PW91/ 
6-31G+(d,p) 

1.423 1.353 1.371 125.45 -616.96 164 min 

B3PW91/ 
6-31G+(d,p) 

1.422 1.348 1.369 125.65 -617.09 262 min 



Tab. 15 Selected bond distances and bond angles of N - C - C A and comparison 

Method 
Bond distance (A) Bond angle (°) E 0 

(%) 
E (au) CPU time Method 

N(l)-C(2) C(2)-C(3) C(3)-N(2) 0=C(1)-N(1) 
E 0 

(%) 
E (au) CPU time 

exp. data54 1.4729(17) 1.5250(2) 1.4586(18) 123.98(14) - - -

RHF/6-31G(d) I All 1.527 1.453 124.75 0.32 -614.28 67 min 
RHF/6-31G+(d) I All 1.528 1.454 124.88 0.32 -614.29 226 min 

RHF/6-31G+ 1.478 1.529 1.460 124.48 0.28 -614.02 113 min 
RHF/6-311G+ 1.478 1.527 1.460 124.44 0.24 -614.14 245 min 

RHF/6-31G+(d,p) 1.472 1.528 1.453 124.80 0.32 -614.33 306 min 
RHF/ 

6-311G+(d,p) 
1.472 1.528 1.453 125.01 0.37 -614.44 596 min 

B3LYP/6-31G(d) 1.478 1.535 1.464 124.42 0.43 -618.36 227 min 
B3LYP/ 

6-31G+(d,p) 
1.481 1.534 1.466 124.50 0.50 -618.41 261 min 

B3LYP/ 
6-311G+(d,p) 

1.479 1.534 1.465 124.67 0.50 -618.55 489 min 

03LYP/6-31G(d) 1.462 1.523 1.449 124.37 0.46 -616.99 116 min 
0 3 L Y P / 

6-31G+(d,p) 
1.464 1.523 1.451 124.32 0.39 -617.04 286 min 

0 3 L Y P / 
6-311G+(d,p) 

1.463 1.521 1.448 124.62 0.54 -617.17 536 min 

B3PW91/ 
6-31G(d) 

1.471 1.529 1.458 124.42 0.20 -618.13 75 min 

B3PW91/ 
6-31G+(d,p) 

1.473 1.529 1.458 124.43 0.17 -618.18 261 min 

B3PW91/ 
6-311G+(d,p) 

1.471 1.528 1.458 124.62 0.22 -618.31 509 min 

Three best results are marked in bold italic 



Tab. 16 The notation of intensities 

Intensity Abbreviations 
very strong vs 

strong s 
medium m 

weak w 
very weak vw 

3400 3200 

B3LYP 

03LYP 

BHHLYP 

PBEO 

3000 2800 1600 
waveiiumber (cm'1) 

I I I I I I I I I I I I I I L 

1400 1200 

J I I I I I I I I I I I I I I 

1000 800 600 400 

Fig. 47 The predicted IR spectra ofNC, at B3LYP/6-31(d) level v (cm1): 425 (vw), 500 (vw), 546 
(vw), 614 (vw), 673 (vw), 800 (vw), 907 (vw), 955 (vw), 1021 (vw), 1076 (vw), 1115 (vw), 1183 (vw), 
1218 (s), 1265 (vw), 1301 (vw), 1366 (w), 1397 (vw), 1470 (vw), 2931 (m), 3009 (m), 3180 (vw), at 

03LYP/6-31(d) level v (cm1): 426 (vw), 508 (vw), 621 (vw), 667 (vw), 814 (vw), 910 (vw), 958 (vw), 
1069 (vw), 1113 (vw), 1221 (vs), 1364 (m), 1460 (vw), 2941 (m), 3029 (s), 3180 (vw), at BHHLYP/6-

31(d) level v (cm1): 421 (vw), 501 (vw), 617 (vw), 693 (vw), 807 (vw), 956 (vw), 1077 (vw), 1120 (vw), 
1232 (vs), 1317 (vw), 1381 (s), 1467 (vw), 2906 (m), 2980 (vs), 3155 (vw) and at PBE0/6-31(d) level v 
(cm-1): 423 (vw), 500 (vw), 617 (vw), 675 (w), 809 (vw), 952 (vw), 1069 (vw), 1115 (vw), 1215 (vs), 

1359 (s), 1454 (w), 1548 (vw), 2916 (s), 2998 (vs), 3159 (vw) 



Tab. 17 Measured IR spectra of NCi 

1s t synthesis 2 n d synthesis Leites56 

Asingnment56 

Wavenumber (cm1) Wavenumber (cm1) Wavenumber (cm1) 
Asingnment56 

3109(w) 3109(w) 3110(w) as 
V=CH 

3073(w) 3073(w) 3072(w) VS=CH 

2976(vs) 2976(vs) 2972(vs) VCH in Me 
2932(m) 293l(m) 2927(m) VQH in Me 
2909(sh) 2901(sh) 2904(sh) 9 ras 

2876(w) 2875(w) 2870(w) °Me 

1686(w) Vc=0 

1672(w) 
1657(w) 
1555(w) 1554(vw) Vc=c 

1476(m) 1475(w) 
1458(m) 1458(w) 1462(s) r as 

°Me 

1387(s) 1387(s) 1396(m) °Me 

1366(vs) 1365(s) 1366(vs) ras , as 
°=CH + V=C-N 

1319(m) 1319(w) 1319(s) V=C-N + $Me 

1277(m) 1279(w) 1280(m) V=C(II)-N + $Me 

1234(vs) 1234(vs) 1237(vs) $Me + SCH + VC-C 

1202(m) 1203(m) 1203(w) vas 
V=C(II)-N 

1186(sh) 1186(sh) 1186(sh) V=C(II)-N 

1136(w) 1136(w) 1132(w) °=CH + °Me 

1101(m) 1101(m) 1094(m) 8=CH + VC-C 

1031(w) 1031(w) 1031(w) rMe 

986(w) 985(w) 985(w) 8=CH+ 8=C-N 

970(w) 970(w) 969(m) oas , ras 
°=CH+ °=C-N 

922(vw) 922(vw) 
847(w) 847(w) 
827(w) 827(w) 827(m) rMe 

816(w) 816(w) 816(vw) S=CH+ $N-C(exo) 

719(s) 719(s) 721(s) as 
P=CH 

633w 633w 632(s) PS=CH 

567(vw) 567(vw) 568(vw) ring puckering 
519(vw) 519(vw) 518(m) ring puckering 
463(vw) 462(vw) 466(vw) 
444(vw) 444(vw) 443(m) 
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INTRODUCTION 
T h e r m a l l y s t a b l e h e t e r o c y c l i c d i a m i n o c a r b e n e s 
( N H C s ) r e p r e s e n t ve rsa t i l e g r e e n ca ta l ys t s for a var ie ty 
• f r e a c t i o n s . S u c h c o m p o u n d s a r e v e r y s e n s i t i v e to 
moi sture a n d thus they read i Iy h y d r o l y z e . 

H ' H 

N N'K R—N N-R + R-N NH-R 
W \ J \ = / 

-N NH-R 

A n e w a p p r o a c h t o w a r d s c h a r a c t e r i z a t i o n of reac t i on 
c o m p o n e n t s i nc l udes a c o m p u t a t i o n a l s tudy of t h e s e 
c o m p o u n d s a n d the i r p o s s i b l e b y - p r o d u c t s . T h e resu l ts 
o b t a i n e d r e p r e s e n t a b a c k g r o u n d fo r in terpreta t ion of 
e x p e r i m e n t a l d a t a . 

ÍJ 
/ 3%T 

Fig. 1: The efectnjs^tic potefitiaf-mappedeiectmn density surface inArgusLsb 

EXPERIMENTAL 
In this work , t he predic t ion of the st ructures of W-rerf-butyl-
W-[(2E)-2-(rerf-butyl imino)ethyl ] formarnide (1), W-rerf-
butyl-W-[(Z)-2-( tsii- b uty la mi no )ethe nyl]fo rma m ide (2) 
a n d A^rer f - iu ty l -W-[2- ( !er f - iu1y lamino)ethy l ] for rnamide 
(3) as poss ib le N H C s hydro lys is p roduc ts w a s pe r fo rmed . 
A l l s t ructures w e r e o p t i m i z e d a t R H F a n d a t D F T level 
w i t h B 3 L Y P 0 3 L Y P a n d B 3 P W 9 1 func t iona l . 
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RESULTS 
W e l l cor re la t ion b e t w e e n e x p e r i m e n t a l a n d theo re t i ca l 
d a t a w a s f ound o u t fo r 3 by u s i n g B 3 P W 9 1 / 6 -
31+G(d ,p ) . 

Tab. 1: Selectedbend distances and nond angle ra/cufafed af BJPW^I/B-
31+G(dp} level 

B3PW9ir&JHG(d,rj) 
Selectee bond dist once 1 A; Bond angle H 

B3PW9ir&JHG(d,rj) M 0=C-N 

1.4652 1.507E 1.2676 124.22 

r / ^ N H - l — 

0 
1.4227 1.352E 1 3711 125.45 

1.4725 1.5291 1.45S1 124.43 

F r o m o p t i m i z e d s t ruc tures 1-3 v ib ra t iona l f r e q u e n c i e s 
c a l c u l a t i o n a t R H F a n d D F T leve l w e r e p e r f o r m e d . A l l 
p r e d i c t i o n s w e r e c o m p u t e d b y u s i n g P C 
G A M E S S / F i r e f l y . 

1 

r -W^^WK- i— 

^av&numtw-r [cm"1] 

Fig. 2: Predicted tR spectra at B3LYPfi-31G(d) íeve! 
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S u l f u r a n d s e l e n i u m t r i ox ides reac t a s L e w i s a c i d s wi th 
d ia lky l a n d c y c l i c e t h e r s to f o r m d o n o r - a c c e p t o r 
c o m p l e x e s h a v i n g v a r i o u s d e g r e e o f s tab i l i t y a s p r i m a r y 
p roduc ts of this i n te rac t ion . Q u i c k r e a r r a n g e o f d i a l ky l 
e t h e r s c o m p l e x e s to c o r r e s p o n d i n g d i a l ky l su l fa tes o r 
d ia lky l s e l e n a t e s m a k e s the iso la t ion a n d s u b s e q u e n t 
s t ructura l c h a r a c t e r i z a t i o n o f t h e s e p roduc ts m o r e 
dif f icult . 
In o u r p rev ious work , d o n o r - a c c e p t o r c o m p l e x e s wi th 
t h e f o r m u l a E t ^ O - S e O j a n d ( M e ^ O ^ - S e O j w e r e 
s y n t h e s i z e d by the reac t ion of s e l e n i u m t r iox ide wi th 
d ia lky l e t h e r s ( R ^ O , w h e r e R = M e , E t ) 1 . T h e c r ys ta l a n d 
m o l e c u l a r s t ruc tu res of both c o m p l e x e s , w h i c h a r e 
s tab le o n l y b e l o w thei r me l t i ng po in ts , w a s d e t e r m i n e d 
by X - r a y s t ruc tu re a n a l y s i s . Fur ther , c r ys ta l a n d 
m o l e c u l a r s t ruc tu res of a d d u c t s w i th 1 , 4 - d i o x a n e : 
G ^ H J O / S O J a n d 0 ^ , 0 / 2 3 0 , w e r e d e t e r m i n e d by X -
ray s t ruc tu re a n a l y s i s a n d R a m a n s p e c t r o s c o p y ' . 
D o n o r - a c c e p t o r c o m p l e x e s wi th c y c l i c e t h e r s a s for 
e x a m p l e 1 ,4 -d ioxane s u p p o s e d to be more s tab le 
t o w a r d s r e a r r a n g e m e n t to su l fa tes o r s e l e n a t e s but 
f u r t h e r r e a c t i o n s s u c h a s t h e r i n g - o p e n i n g 
p o l y m e r i z a t i o n c o u l d t a k e p l a c e . 

In this wo rk , t he s y n t h e s i s o f d o n o r - a c c e p t o r c o m p l e x e s 
wi th t h e f o rmu la d H j O - S O j a n d C 4 H s 0 S e 0 j w a s 
p e r f o r m e d . Te t rahyd ro fu ran ( T H F ) w a s u s e d in a h i g h 
e x c e s s w i th r e s p e c t to t r iox ide s i n c e it f unc t i ons a s 
s o l v e n t f o r t h e r e a c t i o n as we l l . 
T h e r e a c t i o n of su l fur t r iox ide wi th T H F w a s c a r r i e d o u t 
at - 3 0 °C to p reven t the d e c o m p o s i t i o n o f o r g a n i c 
c o m p o n e n t . Fur ther , the so lub i l i ty o f su l fu r t r iox ide w a s 
still su f f ic ient to f o rm a c l e a r so lu t i on . E v e n a t this low 
t e m p e r a t u r e t h e c o n c o m i t a n t f o rma t i on of g e l o u s 
p o l y m e r i c s u b s t a n c e a l o n g wi th whi te c rys ta l l i ne so l i d 
w a s i m m e d i a t e l y o b s e r v e d . Un fo r tuna te l y , a l l a t t e m p t s 
to de tec t C . H . 0 - S 0 , in r e a c t i o n mix ture f a i l e d . 
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OBJECTIVE 
S o m e rep resen ta t i ves of t h e s e i n t e r m e d i a t e s f o u n d 
the i r a p p l i c a t i o n a l s o o n industr ia l s c a l e . D i m e t h y l 
su l fa te c a n b e m a n u f a c t u r e d a n d o b t a i n e d in a n 
e x c e l l e n t y i e l d a n d pur i ty o n a c o n t i n u o u s b a s i s f r om 
d ime thy l e t h e r a n d l iqu id su l fu r t r i ox ide 1 . C o m p l e x e s of 
su l fur t r iox ide wi th 1 ,4 -d ioxane w e r e u s e d in t he 

Ifo na t ion o f o lefi ns" a nd a no m a t i c c o m p o u n d s 4 5 . 

Fig. 2: Proposed mechanism of CSfp-SQ^dBcompaiilion 

T h e r e a c t i o n o f s e l e n i u m t r iox ide w i th T H F w a s c a r r i e d 
out u n d e r s a m e c o n d i t i o n s . L o n g c o l o u r l e s s n e e d l e 
c r ys ta l s w e r e i so la ted in a quant i ta t i ve y i e l d . H o w e v e r , 
r e g a r d i n g t h e e x t r e m e instabi l i ty of t h e s e a d d u c t , al l 
a t t emp ts to iso la te the c r y s t a l s of C , , H s 0 S e 0 j su i tab le 
for X - r a y s t ruc tu re a n a l y s i s f a i l ed . T h e ident i f ica t ion o f 
the p roduc t C ^ H j O - S e O j w a s p e r f o r m e d b y m e a n s o f 
R a m a n s p e c t r o s c o p y . 
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