
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

NAT64 PERFORMANCE EVALUATION
TEST VÝKONNOSTI NAT64

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR JAN POKORNÝ
AUTOR PRÁCE

SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2018/2019

Master's Thesis Specification lllllllllllllllllllllllll
21826

Student: Pokorný Jan, Be.
Programme: Information Technology Field of study: Computer Networks and Communication
Title: NAT64 Performance Evaluation
Category: Networking
Assignment:

1. Study IPv6 transition mechanism - NAT64.
2. Get familiar with current NAT64 implementations (e.g., tayga, jool, Cisco, etc.).
3. Compare NAT64 implementations with regards of supported features and networking performance.
4. Integrate selected NAT64 mechanism to NetX router platform used on BUT core network.
5. Analyse performance bottlenecks of the solution and propose an improvement to increase the

performance.
Recommended literature:

• Bao, C, Huitema, C, Bagnulo, M., Boucadair, M., and X. Li, "IPv6 Addressing of IPv4/IPv6 Translators",
RFC 6052, DOI 10.17487/RFC6052, October 2010

• Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful NAT64: Network Address and Protocol
Translation from IPv6 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146, April 2011

• Chen, G., Cao, Z., Xie, O, and D. Binet, "NAT64 Deployment Options and Experience", RFC 7269, DOI
10.17487/RFC7269, June 2014

Requirements for the semestral defence:
• Items 1 to 3.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Grégr Matěj, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: October 31, 2018

Master's Thesis Specification/21826/2018/xpokor67 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
This thesis is focused on the challenges of the transi t ion between IP protocol version 4
and I P protocol version 6. The transi t ion can be solved by many transi t ion mechanisms
and this thesis thoroughly describe Stateful N A T 6 4 transi t ion mechanism. The thesis aims
to test various implementations of N A T 6 4 and find a suitable implementat ion for N E T X
router. The goal is to find an implementat ion that would achieve traffic throughput of
about l O G b p s .

Several N A T 6 4 implementations were evaluated i n a testbed environment. Iperf and
P F R i n g tools were used for throughput examination. Several different network traffic
types have been measured to show the performance impact of each of the tested implemen
tations.

The results showed that the most suitable implementat ion of N A T 6 4 is Joo l . Jool
reached the required throughput, its development is s t i l l active and offers other advanced
features, thus Joo l was integrated into the N E T X router. A command line extension for
manipulat ing Joo l instance was designed, implemented and integrated to N E T X command
line. Addi t ional ly , a package dis t r ibut ion process was developed through the R P M package
system to fit the N E T X bui ld system.

The thesis outcome is full support of N A T 6 4 transi t ion mechanism in N E T X platform
achieving close to 10 Gbps .

Abstrakt
Tato p r á c e se zabývá problematikou p ř e c h o d u mezi IP protokolem verze 4 a IP protokolem
verze 6. P ř e c h o d je m o ž n é řeši t více mechanismy a tato p r á c e je z a m ě ř e n á na p ř e c h o d o v ý
mechanismus Stateful N A T 6 4 . C í l em p r á c e je otestovat r ů z n é implementace N A T 6 4 a naj í t
vhodnou implementaci pro router N E T X . Z a cíl bylo stanoveno na j í t implementaci, k t e r á
bude dosahovat propustnosti 10 Gbps .

Několik N A T 6 4 i m p l e m e n t a c í bylo z k o u m á n o v t e s tovac ím p ros t ř ed í . Měřen í p rob íha lo
p o m o c í n á s t r o j ů Iperf a P F R i n g . B y l o z m ě ř e n o několik různých d r u h ů síťového provozu
tak, aby bylo z výs ledku p a t r n é , j a k ý v ý k o n n o s t n í dopad m á k a ž d á z t e s tovaných imple
men tac í .

Z n a m ě ř e n ý c h výs ledků Joo l vyšlo jako ne jvhodně jš í N A T 6 4 řešení . Joo l splni l p o ž a d o v a n o u
propustnost a zá roveň k r o m ě s tá le a k t i v n í h o vývoje nab íz í i dalš í pokroč i lé vlastnosti . Jool
by l in teg rován do routeru N E T X . B y l a navrhnuta s t ruktura př íkazové ř á d k y pro manipulaci
s Joo l ins tanc í , k t e r á byla posléze i m p l e m e n t o v á n a jako rozší ření N E T X př íkazové řádky .
Dá le by l v y t v o ř e n postup distribuce p o t ř e b n ý c h ba l íčku skrze bal íčkovácí s y s t é m R P M , tak
aby zapadl do a u t o m a t i z o v a n é h o s y s t é m u platformy N E T X .

Výs ledkem p r á c e je p l n á podpora p řechodového mechanismu N A T 6 4 na p l a t fo rmě N E T X
dosahuj íc í propustnosti bl ízké 10 Gbps .

Keywords
IPv6, N A T 6 4 , t ransi t ion mechanisms, Jool , Tayga, N E T X , throughput evaluation, 10 Gbps

Klíčová slova
IPv6, N A T 6 4 , p řechodové mechanismy, Jool , Tayga, N E T X , m ě ř e n í propustnosti , 10 Gbps

Reference
P O K O R N Ý , Jan. NAT64 Performance Evaluation. Brno , 2019. Master 's thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor Ing. M a t ě j
Grégr , P h . D .

N A T 6 4 Performance Evaluation

Declaration
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of M r . Ing. M a t ě j Grégr , P h . D . A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

Jan P o k o r n ý
M a y 18, 2019

Acknowledgements
I want to thank my supervisor M r . Ing. M a t ě j Grégr , P h . D . for the professional help and
care he has provided me. Thanks also to Ing. Alber to Le iva Popper from Joo l team for
cooperation. Last but not least, I thank F I T V U T B R for the resources for my work.

Contents

1 Introduction 2

2 Transit ion mechanisms and N A T 6 4 3
2.1 Stateful N A T 6 4 4

3 Available N A T 6 4 implementations 10
3.1 Open-source implementations of Stateful N A T 6 4 10
3.2 Stateful N A T 6 4 support by well-known network router vendors 16

4 Measurement methodology and results 20
4.1 The measurement process and its challenges 22
4.2 Evalua t ion of measured results 23

5 Joo l N A T 6 4 integration into N E T X router 27
5.1 Netc - N E T X command line integration 27
5.2 Package bui ld ing and dis t r ibut ion v ia R P M 34

6 Jool's performance bottlenecks analysis 37
6.1 Performance analysis using perf tool 37
6.2 IPv4 identification field and fragmentation issues 38

6.3 Cooperat ion wi th developers and the resulting performance gain 40

7 Conclusion and results summary 41

Bibl iography 43

A U D P traffic measured by P F _ R I N G on Cisco 2911 IOS 15.3(3)M6 46

B N E T X N A T 6 4 documentation 47

C Content of the attached data carrier 55

1

Chapter 1

Introduction

This thesis deals w i th the Stateful N A T 6 4 transi t ion mechanism, which acts as a gateway
between the old I P protocol version 4 (IPv4) and the new IP protocol version 6 (IPv6).

IPv6 solves some IPv4 scalabili ty problems (insufficient address space), but at the cost of
backward compatibil i ty. Th is creates a new challenge to migrate the t radi t ional widespread
IPv4 network to the new protocol. The flag d a y 1 opt ion turned out to be unrealistic, so it
was necessary to figure out how to make the transi t ion gradually. In principle, there are two
solutions: R u n both protocols simultaneously or run only one and offer the second protocol
as a service on top of the first one. In my thesis, I deal w i t h the second variant, when
the network is running IPv6 , and network hosts can s t i l l reach IPv4 services i n a fashion
that everything works transparently and the hosts have not recognized the difference. One
mechanism that meets these requirements is called Stateful N A T 6 4 , and you can read more
about it i n chapter 2.

Stateful N A T 6 4 is a software that translates packets from IPv6 to IPv4 and vice versa.
N A T 6 4 can be part of a network device, or it is possible to run one of the open-source
implementations. In my thesis, I deal w i th open-source N A T 6 4 implementations, that are
described i n chapter 3. A t the same time, I conducted a smal l survey of N A T 6 4 support
by well-known network router vendors.

Chapter 4 describes measurement methodology. The goal is to measure open-source
implementations of N A T 6 4 , examine their throughput, and find their advantages and weak
nesses. Th is work tries to find a solution, that can achieve l O G b p s throughput.

In chapter 5, based on the measured results, a N A T 6 4 implementat ion w i l l be selected
and integrated into the N E T X router. The N E T X is a special L i n u x dis t r ibut ion, that is
being developed at B U T . Th is L i n u x dis t r ibut ion runs on specialized hardware and servers
like a router in a network. The goal is to find appropriate N A T 6 4 solutions for N E T X
router and make N E T X able to serve as the N A T 6 4 gateway i n IPv6 only networks.

Chapter 6 deals w i t h opt imiz ing the chosen solution. There were several bottlenecks
found i n an analysis. There is also a description of how these bottlenecks have been opti
mized and how they impacted the overall performance of the solution.

Chapter 7 summaries and discuss future work.

xFlag day - A global shutdown of one protocol and turning on the other at a specific moment.

2

Chapter 2

Transition mechanisms and NAT64

If a network administrator wants to deploy IPv6 i n its network while sustaining the avail
abi l i ty of IPv4 only services, there are following options [24].

• Dual-Stack — R u n both protocols independently of each other i n parallel .

• Translating — R u n only one protocol and translate packets from the other one.

• Tunnel ing — R u n only one protocol and encapsulate packets from the other one.

Dual-Stack

W i t h Dual-Stack or D u a l I P Layer Operat ion, we create two independent logical networks
on the top of one physical topology. E a c h node i n the network then can natively com
municate on both protocols based on its preference. This dual i ty has an advantage that,
for example, if a problem wi th IPv6 network occurs, then the problem may not affect
the IPv4 network. Thanks to this, IPv6 deployment can be done in full operation wi th
out impact ing network performance. The major drawback of this solution is management,
maintenance, and troubleshooting. Rou t ing protocol instances, firewall rule bases, layer 2
security features, and others often require ind iv idua l management. The maintenance and
troubleshooting need to be done twice. For example, i f there is an issue wi th the network,
one of the first questions is whether the issue is IPv4 , IPv6 or both related.

The Dual-Stack solution brings a full-fledged native experience from both protocols,
without the need for compromise, but at the expense of difficult administrat ion. Thanks to
these features, the Dual-Stack is suitable for example in data centers, where high availabil i ty
is needed, and it is the recommended approach by I E T F R F C 6180 [11].

Address family transition

In this setup, we use just one address family i n the core network, but we also offer a gateway
(A F T R 1) , where packets from the other protocol are passed to their native network and
vice versa. The other protocol's packet can be encapsulated into the core network protocol
packets (Figure 2.1a) and then the A F T R de-encapsulates these packets and passes them
to their native network, or the packets can be in the core network protocol format, and the
A F T R translates them to the other protocol format (Figure 2.1b). The question is whether
to run the core network on IPv4 or IPv6 .

X A F T R - Address Family Transition Router. In the context of this work, the term A F T R is used for
both tunneling and translating gateways.

3

Layer 4

Protocol B

Layer 2

Layer 4

Protocol A

Layer 2

Layer 4

Protocol B

Protocol A

Layer 2

0>

(a) Protocol encapsulation

Layer 4

Protocol A o Protocol B

Layer 2

(b) Protocol translation

Layer 4

Protocol B

Layer 2

Layer 4

Protocol B

Layer 2

Figure 2.1: Difference between packet encapsulation and translation. P ro toco l A is the core
network protocol.

If we already have an existing IPv4 network and we want to offer IPv6 features to
network hosts, running the IPv4 protocol as the core protocol seems to be an option. In
practice, it is easy to put it into operation, and there exist many mechanisms for this
method like 6rd, 6in4 or others, see R F C 7059 [26]. However, a problem wi th the lack of
IPv4 addresses and the need for N A T in the network s t i l l persist. Also , if IPv6 adoption
w i l l increase i n the future, the importance and burden of A F T R w i l l increase. For these
reasons, running the core IPv4 network and A F T R for IPv6 is not a long-lasting solution.

In contrast, IPv6 core network w i l l solve the problem wi th the lack of IPv4 addresses.
W i t h the assumption that IPv4 traffic w i l l dwindle in the future un t i l it reaches the point
where A F T R and N A T w i l l not be needed anymore.

Compared to Dual-Stack, running only one protocol i n the core network is easier to
manage. O n the other hand, it is always necessary to make several compromises w i t h the
protocol that is provided as a service. We can not afford these compromises, for example,
in data center networks wi th an emphasis on high availability, but for internet service
providers, affected by lack of IPv4 addresses, this could be a good choice for future growth.

2.1 Stateful N A T 6 4

Stateful N A T 6 4 belongs to the transi t ion mechanisms that translates IPv6 packets to IPv4
and vice versa.

The IPv6 only network and the N A T 6 4 transi t ion mechanism are especially attractive
for Internet service providers. It should be attractive for providers that are h i t t ing their
l imits due to lack of IPv4 addresses. Th i s solution is very similar to carrier-grade N A T s .
Network w i t h carrier-grade N A T is a si tuation where providers are unable to allocate a
single public IPv4 address to each customer, so the address translation is not performed at
the customer's network boundary, but instead, a large central N A T is done at the provider's

4

network boundary. Cent ra l N A T becomes a cr i t ica l point of the provider's network and a
single point of failure. The end-to-end principle is lost for good.

In this case, N A T 6 4 would replace the carrier-grade N A T w i t h the expectation that,
i n the case of greater adoption of IPv6 , the importance of N A T 6 4 would be subdued.
Compared to carrier-grade N A T , Stateful N A T 6 4 should be less resource intensive by the
traffic that could be already made over protocol IPv6 .

The word N A T 6 4 may be interpreted i n several ways. In my work, unless otherwise
stated, I a m concerned wi th the Stateful N A T 6 4 variant as defined in R F C 6146 [23].

2.1.1 Mapping IPv4 address in IPv6 address

Before we describe N A T 6 4 in detail , the basics of mapping IPv4 to IPv6 address needs to
be clarified.

One of the benefits of IPv6 protocol is its huge address space. The address space is so
much larger than the IPv4 address space that we can take an IPv6 address prefix and make
it encode every single IPv4 address.

The IPv4 address is 32 bits long, and IPv6 address is 128 bits long. It is possible to
concatenate a 96 bit IPv6 prefix w i th an IPv4 address and make an IPv6 address, that
maps an IPv4 address see l is t ing 2.1.

+ — + + -— + + + + + + + — - + + + + + + + — - +
| P L | 0 — 32—40—48—56—64- -72—80—88—96—104 -1

+ — + + -
1

— + + + + + + + —
v6(96) prefix

- + + + + + + + —
1 v4(32)

- +
1

+ — + + -
1

— + + + + + + + —
64:ff9b::

- + + + + + + + —
I 192.0.2.1

- +
1

+ — + + -— + + + + + + + —
Lis t ing 2.1: A diagram indicating

- + + + + + + + —
I IPv4 address mapping in IPv6

- +

64:ff9b::/96 + 192.0.2.1 = 64:ff9b::192.0.2.1 2 = 64:ff9b::c000:201

This approach is not the only one how to map an IPv4 address in IPv6 address, but it
is the one that is used wi th the N A T 6 4 . More different approaches and information about
mapping IPv4 address in IPv6 address can be found i n R F C 6052 [33]. The importance of
these addresses w i l l be explained in the following section 2.1.2.

The IPv6 prefix can be allocated from address space of an internal network - Network-
Specific prefix or W e l l - K n o w n Prefix 64:ff9b/96 can be chosen [33].

Choosing the W e l l - K n o w n Prefix has some benefits. It is a simple solution that does
not require concessions i n an address plan. Configurations are also simplified as N A T 6 4
components already have this prefix superseded. Y o u can use public D N S 6 4 servers that
use Well-know prefix, for example, Google D N S 6 4 server [7]. The role of D N S 6 4 w i l l be
described i n the following section 2.1.3. There are also some restrictions w i th the Wei l -
K n o w n Prefix as well described i n R F C 6052 [33], but they are not fundamental to this
work.

5

PC B
192.0.2.1

PC A PC C
2001:db8:a::1 2001 :db8:c::1

Figure 2.2: Network topology wi th Stateful N A T 6 4 . Communica t ion between host A and
C is native over protocol IPv6 . Packets between host A and B are translated on N A T 6 4
gateway.

2.1.2 Basic principles of Stateful N A T 6 4

Figure 2.2 shows a simplified diagram of a network w i t h N A T 6 4 gateway. Host A is con
nected to an internal IPv6 only network. The internal network has connectivity to the
external network, for example, the internet. The external network is logically divided into
two parts. F i r s t part is a network wi th IPv6 connectivity and the second part is a network
without IPv6 connectivity - IPv4 only network. In the external network there two hosts.
Host B is connected to IPv4 only network, host C has IPv6 connectivity.

W h e n host A wants to communicate w i th host C , the communicat ion is native over
protocol IPv6 .

W h e n host A wants to send a packet to host B , it misses a destination IPv6 address.
Host B has no IPv6 connectivity, therefore no IPv6 address. In this case, host B IPv6
connectivity is simulated, and IPv6 address for host B is crafted. The host B IPv4 address
192.0.2.1 is taken and is appended to the Well-know N A T 6 4 prefix 64:ff9b::/96. The result is
64:ff9b::192.0.2.1 The packet w i th this destination address is routed v i a an internal routing
protocol to the N A T 6 4 gateway. N A T 6 4 gateway extracts the destination IPv4 address from
the crafted destination IPv6 address. A destination port on a higher layer is preserved. The
source address and port are chosen in the same way as a regular IPv4 N A T does. F ina l ly ,
the translated IPv4 packet is forwarded to the external network. See figure 2.3.

2Please note the 64:ff9b:: 192.0.2.1 syntax. It is a simplified syntax, that makes the address more readable
and easy to construct. The IPv4 part of the address will be expanded to the hexadecimal form.

6

src:[2001:db8:a::1]:1024
dst: [64:ff9b::192.0.2.1]:80

PC A
2001:db8:a::1

src:147.16.2.1:2248
dst:192.0.2.1:80

Stateful
NAT64

PC B
192.0.2.1

NAT64 prefix: 64:ff9b::/96
IPv4 pool: 147.16.2.0/24

Active binding:
[2001 :db8:a::1]:1024 - 147.16.2.1:2248

Figure 2.3: Packet passage through the N A T 6 4 gateway. IPv6 packet from P C A is trans
lated by N A T 6 4 before is forwarded to P C B . A new connection session on N A T 6 4 is
created.

W h e n host B responds to host A , an IPv4 packet is forwarded to the N A T 6 4 gateway.
The gateway searches for a session i n the state table that matches incoming packets address
and port. If the record is found, the destination IPv6 address and destination port are taken
from the record. Source IPv6 address is crafted again from the N A T 6 4 prefix and source
IPv4 address. Translated IPv6 packet is forwarded to host B .

N A T 6 4 , as defined i n R F C 6146 [23], can translate packets, that carries T C P , U D P and
I C M P protocols. The above-described translat ion process has been simplified and d id not
neglect, for example, work wi th fragmentation and translat ion of I C M P messages. Further
information about translating packets can be found i n R F C 6145 [32].

2.1.3 Role of DNS64 or 4 6 4 X L A T

In the N A T 6 4 description above, we assumed that the computer automatical ly creates
an IPv6 packet w i th a transformed IPv4 address when communicates w i th an IPv4 only
network. However, this behavior is not self-acting and needs to be achieved. Two scenarios
can occur. The end host network is aware of the existence of the N A T 6 4 gateway and sends
the IPv4 - IPv6 translated packets directly towards the N A T 6 4 gateway, or the end host
network is not aware of the existence of the N A T 6 4 gateway, but the network pretends,
that a l l services are reachable over IPv6 .

Let 's start w i th the first variant. We need a component that accepts an IPv4 packet and
translates it into an IPv6 packet w i th a synthesized IPv4 i n IPv6 address. Then the packet
can be sent v i a the IPv6 only internal network towards the N A T 6 4 gateway. Back then a
component that receives the translated packet from the N A T 6 4 gateway and translates it
back to the IPv4 packet. The component is called C L A T , and it is a part of a technique
called 4 6 4 X L A T [17]. 4 6 4 X L A T combines Stateful N A T 6 4 and a component that could be
called N A T 4 6 . In 4 6 4 X L A T terminology, it is a P L A T and a C L A T . The operating principle
is shown i n Figure 2.4. The C L A T component could be part of an operating system of a
device or could be integrated into S O H O 3 router of end users network.

3 SOHO - Small office/home office

7

src: [2001:db8:a::1]:1024
dsi: [2001:db8c::1]:80

C u s t o m e r s n e t w o r k ISP n e t w o r k In ternet

Figure 2.4: 4 6 4 X L A T example network diagram. Host A and Host B communicate w i th
each other natively over IPv6 protocol - blue packet numbers. Host B has no IPv6 con
nectivity. Host A crafts IPv4 packet for host B and forward it to C L A T . C L A T translates
the IPv4 packet to IPv6 and forwards the packet to the P L A T through the ISP (Internet
Service Provider) IPv6 only network. P L A T translates the packet back to IPv4 and
forwards it to host C .

The second variant uses a D N S 6 4 [22]. A s the name implies, it is a recursive D N S 1 server
w i th special functionality. If a domain name translation request arrives at the server, and
the server finds the corresponding A A A A ' ' record to the domain name, it sends the response
to the querier in the same manner as the regular recursive D N S server does. If the domain
name does not have a corresponding A A A A record, it is a service without IPv6 connectiv
ity, and D N S 6 4 synthesizes the answer. D N S 6 4 resolves the corresponding A 6 record and
creates A A A A from it by jo in ing the pre-defined IPv6 prefix and the IPv4 address from
the A record. It is the same method described in Section 2.1.1. For end host perspective,
each domain name appears to have the corresponding A A A A record. If a domain query is
preceded before each connection, the host works i n the belief that each server is available
v i a IPv6 . This assumes the disadvantage that i f the D N S query does not take place before
work wi th IP address literals, the system fails. There may be problems wi th applications
that have straight-encoded IPv4 literals instead of domain names. Another disadvantage is
the manipulat ion wi th D N S records. Due to this manipulat ion, D N S S E C is violated. In
the way that a user delegates the D N S S E C check to the D N S 6 4 server, the problem does
not occur, but if the user wants to check the synthesized record itself, the corresponding
D N S S E C signature w i l l be missing, and the validat ion fails. O n the other hand, trans-

4 DNS - Domain Name System
5 A A A A - IPv6 address record
6 A - IPv4 address record
7 DNSSEC -Domain Name System Security Extensions. Protection against malicious manipulation with

DNS records based on cryptography and chains of trust [25].

8

parency is a big advantage. N o extra configuration is required on the end host. The only
condit ion is a proper D N S server (DNS64) address set up.

B o t h D N S 6 4 and 4 6 4 X L A T can be combined. In the Internet-Draft Deployment Guide
lines in Operator and Enterprise Networks of J . Palet Mar t inez [16] the various combina
tions of these techniques and their advantages and disadvantages are well described.

Chapter 3

Available NAT64 implementations

In my work, I am looking for suitable N A T 6 4 solution for integration into N E T X router.
Therefore, this chapter is pr imar i ly dedicated to existing N A T 6 4 implementations. A t the
same time, I conducted a smal l survey of N A T 6 4 support by well-known network equipment
vendors.

3.1 Open-source implementations of Stateful N A T 6 4

After research of existing open-source N A T 6 4 solutions, I found four candidates - Tayga
[15], Joo l [12], WrapS ix [31] and Ecdysis [29]. I el iminated the Ecdysis solution as it is a
kernel-space implementat ion where kernel support is important , and this solution does not
seem to be updated for several years, therefore without the support of the current kernels.
WrapS ix seemed to be a promising solution, but after several attempts, I d id not get it
into a working state. Th is left us w i th two solutions - T a y g a and Joo l bo th described i n the
following sections.

For each solution, there is a configuration example. The configuration is based on the
topology that is shown in Figure 3.1. The same topology and configuration are used for
testing i n chapter 4.

NAT64 prefix:

2001:db8:1::/96-
2001:db8:2::/96-
2001:db8:4::/96-

Tayga
Jool
JoolNS

i

/ ::2 2001:db8:111::/64

.2 192.168.111.0/24

::1 ::1

.1

2001:db8:112:/64

192.168.112.0/24

::2

.2

p c - g e n r t r - n e t x p c - c o l

Figure 3.1: Used topology for N A T 6 4 implementations testing.

10

3.1.1 Tayga

Tayga is an out-of-kernel stateless N A T 6 4 implementat ion for L i n u x that uses T U N driver
to exchange IPv4 and IPv6 packets w i th the kernel [15].

The information from the official website shows that only one developer manages Tayga
and the last release took place already a couple of years ago. Tayga claims to be fast,
flexible, secure, and easy to instal l .

Most of these statements could be agreed because they stem from the nature of the
implementation. Tayga runs i n user-space and uses a T U N driver for the packet exchange.
Thanks to this approach Tayga does not require its kernel module. Therefore the instal lat ion
is easy, and further system updates w i l l be without worry about kernel support. Tayga also
does not demand root rights, which contributes to security. O n the other hand, it can be
assumed that implementat ion i n the user space w i l l not achieve the required performance.

Tayga is only a stateless N A T 6 4 implementation, that means it does not overload I P
addresses. For full stateful N A T 6 4 behavior, Tayga needs to be used w i t h common IPv4
N A T . Therefor Tayga is ordinar i ly used w i t h iptables masquerade 2 - S N A T 3 .

Installation

Source code can be downloaded from official website . After unpacking the archive, source
code needs to be compiled.

[root@rt-netx-e tayga-0 9 2] . /configure
[root@rt-netx-e tayga-0 9 2] make
[root@rt-netx-e tayga-0 9 2] make i n s t a l l

A directory for persistent storage should be created. Tayga stores N A T 6 4 bindings in
the storage and therefore translations persist potential restarts.

[root@rt-netx-e tayga-0.9.2] mkdir -p /var/db/tayga

Now a configuration file should be created.

[root@rt-netx-e tayga-0.9.2] cat /usr/local/etc/tayga.conf
tun-device nat64
ipv4-addr 192.168.112.3
prefix 2001:db8:l::/96
dynamic-pool 10.64.0.0/16
data-dir /var/db/tayga

Tun-device is a name of a tun device, that w i l l be created below. The ipv4-address
is an IPv4 address dedicated for Tayga. It must not be assigned to any interface. Prefix
is the N A T 6 4 prefix.

Dynamic-pool is a poo l of IPv4 addresses. Tayga maps IPv6 source addresses to these
address 1:1. The pool should be big enough to handle a l l possible request from the IPv6
network. Dynamic map records are val id for 124 minutes after the last matching packet is
seen. This dynamic mapping is stored i n the persistent storage.

1 T U N - virtual network kernel interface
2Iptables masquerade is an IPv4 NAT implementation in Linux iptables module.
3 S N A T - Source Network Address Translation
4littp://www.litecli.org/tayga/

11

http://www.litecli.org/tayga/

Data-dir is the directory wi th persistent storage, that was created above.
Now it is t ime to create the T U N interface, and set it up.

[root@rt-netx-e tayga-0.9.2] tayga —mktun # Creates device named NAT64
[root@rt-netx-e tayga-0.9.2] ip l i n k set nat64 up

Next step is to create proper routes. The N A T 6 4 prefix and dynamic-pool have to be
forwarded to the T U N device.

[root@rt-netx-e tayga-0 9.2] ip route add 10.64.0.0/16 dev nat64
[root@rt-netx-e tayga-0 9.2] ip route add 2001:db8:l::/96 dev nat64

W h e n it is done, we can start the Tayga daemon and verify its functionality. We can t ry
ping P C - C O L at address 2001:db8:l::192.168.112.2 from P C - G E N . A s we can see from the
Taygas output, a new binding has been created. IPv6 address 2001 :db8 : l l l : : 3 is mapped
to 10.64.205.46 and P C - C O L is from P C - G E N reachable.

[rootOPC-GEN ~] ping6 2001:db8:1::192.168.112.2
PING 2001:db8:l::192.168.112.2(2001:db8:1::c0a8:7002) 56 data bytes
64 bytes from 2001:db8:1::c0a8:7002: icmp_seq=65 ttl=61 time=0.353 ms

[root@rt-netx-e tayga-0.9.2] tayga -d
starting TAYGA 0.9.2
Using tun device nat64 with MTU 1500
TAYGA>s IPv4 address: 192.168.112.3
TAYGA's IPv6 address: 2001:db8:1::c0a8 7003
NAT64 prefix: 2001:db8:1::/96
Dynamic pool: 10.64.0.0/16
assigned new pool address 10.64.205.46 (2001:db8:lll::3)

3.1.2 Jool

Joo l is another N A T 6 4 implementation. It is a kernel space solution, that is being developed
under the auspices of N I C M E X I C O . Joo l is well documented on his official website and
development is s t i l l active. Joo l is not just a Stateful N A T 6 4 , but it also supports many
other R F C s associated w i t h IPv6 - IPv4 translations.

Because Joo l is a kernel space application, working wi th it is a bit more difficult than
wi th Tayga. Joo l consists of two applications a kernel module and a user-space applicat ion,
that manages the kernel module. Th is makes it more difficult to insta l l and update wi th
the need to check compat ibi l i ty w i th the used L i n u x kernel.

Joo l is a Netfilter module, like for example iptables, and hooks into the prerouting chain.
Because Netfilter is not comfortable w i th packets changing layer-3 protocols, Joo l has its
own forwarding pipeline, which only translat ing packets traverse [12]. The architecture is
shown i n Figure 3.2.

12

[JOOL FORWARD + ROUTE]

PREROUTING FORWARD
Conntrack Mangle

>- Mangle — [R O U T E] — > ~ Filter
NAT (Dst)
Jool

[ROUTE]

INPUT
Conntrack
Mangle

OUTPUT
Conntrack
Mangle
NAT(Dst)
Filter

POSTROUTING
Mangle
NAT (Src)
Conntrack

Figure 3.2: Joo l Netfiler architecture, (taken from [12])

A s you can see from Figure 3.2 w i t h Joo l architecture, Joo l skips the forwarding chain.
Skipping the forwarding chain violates the standard packet flow in L inux , resulting in some
constraints. For example, i f the router simultaneously filters traffic using rules i n iptables,
rules i n the F O R W A R D chain w i l l not apply to N A T 6 4 traffic. In other words, Joo l skips
forward rules i n iptables, and the N A T 6 4 traffic cannot be filtered in the t radi t ional manner.
This unwanted feature can be circumvented by running Joo l in its network namespace. The
setup w i t h a namespace w i l l be described later.

Installation

Installation of Joo l depends on a dis t r ibut ion of L i n u x and Joo l version. The following
instal lat ion is shown on Centos 7 (N e t X O S release 7.5.1804 (Core)) and Joo l v4.0.0.

After downloading the Jool , for this example from an official git repository, some de
pendencies need to be installed.

[root@rt-netx-e Jool] yum i n s t a l l automake kernel-devel kernel-headers
libnl3-devel iptables-devel dkms

The instal lat ion is separated for the kernel module and the user-space applicat ion. The
userspace applicat ion is i n usr directory and is bu i ld and installed v i a common bu i ld tools.

[root@rt-netx-e Jool] cd usr
[root@rt-netx-e usr] ./autogen.sh
[root@rt-netx-e usr] ./configure
[root@rt-netx-e usr] make
[root@rt-netx-e urs] make i n s t a l l

The kernel module could be installed v i a K b u i l d or D K M S 5 . The D K M S is more user-
friendly and straightforward and is officially recommended.

[root@rt-netx-e Jool] dkms i n s t a l l

3 D K M S - Dynamic Kernel Module Support. Linux framework/subsystem that manages kernel modules.

13

After successful installat ion, the kernel module can be inserted into the L i n u x kernel.

[root@rt-netx-e Jool] modprobe j o o l

W h e n the kernel module is mode probed, a new Joo l instance can be created w i t h the
userspace C L I tool . A N A T 6 4 prefix it is the only required parameter, that needs to be
assigned to the instance.

[root@rt-netx-e usr] j o o l instance add — n e t f i l t e r —pool6 2001:db8:2::/96

This is a min ima l setup, and the connectivity from P C - G E N to P C - C O L should be
achieved.

[root@rt-netx-f -] ping6 2001:db8:2::192.168.112.2
PING 2001:db8:2::192.168.112.2(2001:db8:2::c0a8:7002) 56 data bytes
64 bytes from 2001:db8:2::c0a8:7002: icmp_seq=l ttl=63 time=0.192 ms

3.1.3 Translating in a virtual network namespace

A network namespace is a L i n u x feature that allows creating network vi r tual iza t ion. A
network namespace is a set of network interfaces, rout ing table, Netfilter chains, and other
related components. The default network set up of a L i n u x machine is also a namespace and
is called a regular namespace. O n a single L i n u x machine, many other network namespaces
can be created. Network interfaces in newly created namespaces can be taken from the
regular namespace, i n other words, the physical interfaces from the machine can be assigned
to a namespace. If we want to connect namespaces together, a special v i r tua l pair interface
is used. The v i r tua l pair interface is a pair of two interfaces. One interface from the pair is
assigned to one namespace and the second to another namespace, and these two interfaces
creates a bridge.

To understand the following text, imagine network namespace as a connected v i r tua l
router as shown i n Figure 3.3.

NetX router

Figure 3.3: Visua l iza t ion of an intra-router topology w i t h v i r tua l network namespace. Ne tx
router is connected w i t h its physical interfaces to the IPv4 and IPv6 network - regular
namespace. Besides the regular namespace, a v i r tua l namespace wi th a Joo l instance exists
- Joo l namespace. The two namespaces are connected wi th a v i r tua l pair interface. Subnet
172.16.64.0/30 and 2001:db8:f::/64 is used for subnetting as noted in the figure.

6 CLI - Command line interface

14

This k ind of v i r tua l iza t ion can be used while working wi th Joo l . Joo l instance can be
placed into a namespace. This concept w i l l separate the address translation logic from
the router's core, making it easier to manage. The solution is very similar to Tayga. In
both solutions, there is a v i r tua l interface that accepts a packet for translat ion a sends it
translated back. The problem wi th N A T 6 4 traffic filtering is solved because now we can
apply filter rules when the packet is forwarded to the namespace and when it translated
returns.

The configuration is shown below. Fi rs t , we create a network namespace joolNS and
pair interface to JoolNS and toRegularNS. The toRegularNS interface is added to the newly
created namespace.

[root@rt-netx-e -] ip netns add joolNS
[root@rt-netx-e -] ip l i n k add name toJoolNS type veth peer name toRegularNS
[root@rt-netx-e -] ip l i n k set dev toRegularNS netns joolNS

We set up the toJoolNS interface and add IP addresses.

[rootOrt -netx-e -] ip l i n k set toJoolNS up
[rootOrt -netx-e -] ip addr add 172.16.64.1/30 dev toJoolNS
[rootOrt -netx-e -] ip addr add 2001:db8:f::1/64 dev toJoolNS

Then we switch to the joolNS and s imilar ly set up the toRegularNS interface.

[rootOrt--netx--e -] ip netns exec joolNS bash
[rootOrt--netx--e -] ip l i n k set toRegularNS up
[rootOrt--netx--e -] ip addr add 172.16.64.2/30 dev toRegularNS
[rootOrt--netx--e -] ip addr add 2001:db8:f::2/64 dev toRegularNS

Proper routes need to be created; we forward a l l traffic from the namespace v ia the
toRegularNS interface.

[root@rt-netx-e -] ip route add 0 0.0.0/0 v i a 172 16 64.1
[root@rt-netx-e -] ip route add : /0 v i a 2001 db8 f: 1

W h e n addressing and routing is done a Joo l instance can be started and we can exit
the joolNS namespace.

[root@rt-netx-e ~] j o o l instance add — n e t f i l t e r —pool6 2001:db8:4::/96
[root@rt-netx-e ~] exit

Now, i n the regular namespace, we add a route, that forward N A T 6 4 traffic to the
namespace. Then the connectivity should be secured as shows the ping result.

[root@rt-netx-e -] ip route add 2001:db8:4::/96 v i a 2001:db8:f::2

[root@rt-netx-f -] ping6 2001:db8:4::192.168.112.2
PING 2001:db8:4::192.168.112.2(2001:db8:4::c0a8:7002) 56 data bytes
64 bytes from 2001:db8:4::c0a8:7002: icmp_seq=l ttl=61 time=0.313 ms

The packet flow is shown i n Figure 3.4. If we compare traceroute between native Jool
and namespaced Jool , we can see two extra hops, which corresponds to the packet transfer
between the namespaces.

15

Figure 3.4: Packet passing i n a topology w i t h N A T 6 4 translat ion inside a v i r tua l network
namespace. The blue IPv6 packet arrives at the N E T X router. Regular network namespace
forwards the packet to the Joo l network namespace, where the translat ion is done. The
translated red IPv4 packet is returned from the Joo l network namespace and passed to the
IPv4 network.

[root@rt-netx-f -] traceroute6 2001:db8:2::192.168.112.2
traceroute to 2001:db8:2::192.168.112.2 (2001:db8:2::c0a8:7002),
1 2001:db8:111::1 (2001:db8:111::1) 0.247 ms 0.230 ms 0.240 ms
2 2001:db8:2::c0a8:7002 (2001:db8:2::c0a8:7002) 0.258 ms 0.260 ms 0.259 ms

[root@rt-netx-f -] traceroute6 2001:db8:4::192.168.112.2
traceroute to 2001:db8:4::192.168.112.2 (2001:db8:4::c0a8:7002),
1 2001:db8:111::1 (2001:db8:111::1) 0.254 ms 0.198 ms 0.208 ms
2 2001:db8:f
3 2001:db8:4
4 2001:db8:4

:2 (2001:db8:f::2) 0.412 ms 0.415 ms 0.407 ms
:c0a8:7002 (2001:db8:4::c0a8:7002) 0.451 ms 0.428 ms 0.427 ms
:c0a8:7002 (2001:db8:4::c0a8:7002) 0.453 ms 0.461 ms 0.418 ms

3.2 Stateful N A T 6 4 support by well-known network router
vendors

This section describes a list of well-known network router vendors and their N A T 6 4 support.
The list of manufacturers was created based on personal experience and references.

Direct Stateful N A T 6 4 support was investigated. If N A T 6 4 was not available, at least
N A T - P T support was sought. N A T - P T is a deprecated predecessor of Stateful N A T 6 4 [27].
Stateful N A T 6 4 is a reduced N A T - P T algori thm, and therefore the core of Stateful N A T 6 4
is included in N A T - P T .

For a device that I could personally t ry out, an example of configuration is given.
The information found is from commonly available manufacturers websites and is valid

as of M a r c h 19, 2019.

Cisco

According to data from the Cisco feature navigator, Stateful N A T 6 4 is supported on higher
IRS series and A S R routers [4].

16

Cisco also supports N A T - P T . The N A T - P T support is through several router series
w i th IOS 12.3 and higher. Dur ing my work, I had the opportuni ty to t ry a Cisco router
2911 wi th IOS 15.3. A n example of N A T 6 4 (N A T - P T) configuration can be seen in 3.1.

no ipv6 cef
ipv6 unicast-routing
!

interface GigabitEthernetO/0.Ill
encapsulation dotlQ 111
ipv6 address 2001:DB8:111::4/64
ipv6 enable
ipv6 nat

!

interface GigabitEthernetO/0.112
encapsulation dotlQ 112
ip address 192.168.112.4 255.255.255.0
ipv6 enable
ipv6 nat

!

!

ipv6 nat v6v4 source l i s t NAT64_SRC_IPV6_ACL interface gO/0.112 overload
ipv6 nat prefix 64:ff9b::/96 v4-mapped NAT64_DST_IPV6_ACL
!

ipv6 access-list NAT64_SRC_IPV6_ACL
permit ipv6 2001:DB8:111::/64 any

!

ipv6 access-list NAT64_DST_IPV6_ACL
permit ipv6 any 64:ff9b::/96

Lis t ing 3.1: Example of Cisco N A T 6 4 (N A T - P T) configuration

Address translat ion is allowed for traffic w i th a source address in 2001 :DB8: 111: :/64
subnet and destination address wi th 64:ff9b: :/96 prefix. The translat ion is done on
the GigabitEthernetO/0.112 interface, w i t h its IPv4 address - without a pool . IPv6
C E F 7 must be turned off for proper N A T 6 4 functionality. The ipv6 enable and ipv6 nat
commands must be specified at the par t ic ipat ing interfaces.

This router was also included i n the performance testing.

Juniper

Juniper supports Stateful N A T 6 4 on S R X [13] and M X [14] series. D u r i n g my work, I had
the opportuni ty to t ry an S R X 240 Services Gateway. A n example of N A T 6 4 configuration
can be seen i n 3.2.

7Cisco Express Forwarding - optimizes network performance and scalability for networks with large and
dynamic traffic patterns [3].

17

nat {
source {

rule-set trust-to-untrust {
from zone trust;
to zone untrust;
rule nat64src {

match {
source-address 2001 db8:0:0::/64;
destination-address 0.0.0.0/0;

}
then {

source-nat {
interface;

}
}

>
>

}
s t a t i c {

rule-set nat64 {
from zone trust;
rule i p v 6 - c l i e n t s l {

match {
destination-address 64:ff9b::/96;

}
then {

static-nat {
inet;

}
}

}
>

}
>

Lis t ing 3.2: Example of Juniper S R X N A T 6 4 configuration [34]

The translation takes place i n two steps. In the first step, the static destination N A T
is executed - the destination IPv4 address is derived from the destination IPv6 address.
In the second step, the dynamic source N A T is executed. A n IPv6 transport address is
replaced by the outgoing interface IPv4 address and dynamic port.

Hewlett Packard Enterprise (H P E)

Unfortunately, I haven't found a reliable way to verify N A T 6 4 support w i t h H P E . A tool
like a feature navigator was not found. I haven't encountered the N A T 6 4 keyword when
I search the company website and command references. However, commands for N A T - P T
configuration have been found i n the command reference for M S R series routers [8]. In any
case, insufficient documentation was found.

18

Huawei

Huawei supports N A T 6 4 on N E 4 0 E series routers [9].

Arista

A r i s t a supports N A T 6 4 on 7170 Series routers [2].

Extreme networks, Mikrot ik

No support found.

19

Chapter 4

Measurement methodology and
results

The goal of the measurement is to examine the performance of ind iv idua l N A T 6 4 solutions
and find a solution that w i l l be suitable for integration into the N E T X router. Appropr ia te
solutions must reach, first and foremost, sufficient traffic throughput. The target through
put was set at 10 Gbps for both T C P and U D P protocol flows at the m a x i m u m packet
size (M T U 1500). Apa r t from the throughput itself, the performance impact of ind iv idua l
solutions w i l l be measured. The chosen solution must also be stable and sustainable i n the
future.

Measurements w i l l be performed i n a laboratory on the topology shown i n Figure 4.1.
We w i l l use a N E T X router as a N A T 6 4 gateway. We w i l l ins ta l l and configure a l l chosen
N A T 6 4 implementations on the router. P C - G E N (generator) w i l l generate packets to P C -
C O L (collector) v ia the N E T X router. The hardware topology parameters are shown in
Table 4.1.

Besides the throughput of each N A T 6 4 solution, we w i l l examine the impact on the
network performance. Therefore, i n addi t ion to measuring the N A T 6 4 traffic itself, we w i l l
measure even throughput of pure routing (without address translation) and routing wi th
regular IPv4 N A T using iptables. A t the same time, for a l l scenarios besides a throughput,
we w i l l measure the ut i l iza t ion of processor threads during the tests. F r o m the chart of
the ut i l iza t ion of ind iv idua l threads and their average wages, we can compare the resource
impact of ind iv idua l traffic types.

Original ly the testing was planned using Iperf3. Since Iperf3 performance problems
occurred at 10 Gbps l ink speed, Iperf was replaced by P F R I N G and testing has focused
mainly on U D P traffic.

P F _ R I N G adds a new k ind of network sockets to L i n u x kernel, making it able to
work very efficiently and at much higher speeds [21]. P F R I N G also offers applications
(P F _ C O U N T and P F S E N D) that are buil t over the P F R I N G A P I , and we w i l l use
them for our measurements. Similar to Iperf, P F C O U N T and P F S E N D is a client-
server architecture. The P F S E N D ut i l i ty can read a pcap fi le 1 and play it directly to
the network card. Thanks to this straightforward approach, we can generate intrusive
traffic w i th low C P U load. O n the other side, P F C O U N T tool listens on a network
card, calculates incoming packets, and generates a status report. For a l l tested scenarios, a

xPcap is a file format that is capable of storing network traffic (packets). It is used, for example, in
network communication capturing and its subsequent analysis.

20

NAT64 prefix:

2001:db8:1::/96 - Tayga
2001:db8:2::/96 - Jool
2001:db8:4::/96 - JoolNS

pc-gen rtr-netx pc-col
(a) L3 topology

switch

pc-gen rtr-netx pc-col
(b) L2 topology

Figure 4.1: L 2 and L 3 testbed topology.

Intel(R) Xeon(R) C P U D-1537 @ 1.70GHz
4x 4 G B D D R 4 2133MHz
Ethernet Connect ion X552 10 G b E S F P +
L i n u x 4.4.178-1.el7.netx.x86_64
Intel(R) Xeon(R) C P U D-1587 @ 1.70GHz
4x 4 G B D D R 4 2133MHz

P C - G E N Ethernet Controller X L 7 1 0 for 4 0 G b E Q S F P
L i n u x 3.10.0-693.17.1.el7.netx.x86_64
iperf 3.1.7
Intel(R) C o r e (T M) i3-4160 C P U @ 3.60GHz
2x 4 G B D D R 3 1600MHz R A M

P C - C O L 2x Ethernet Controller X710 for l O G b E S F P +
L i n u x 3.10.0-327.36.2.el7.x86_64
iperf 3.1.31

S W I T C H H P E 5 9 0 0 A F - 4 8 X G - 4 Q S F P +
P C - C O L <=>rtr-netx 10-Gig ethernet
P C - G E N <=>rtr-netx 40-Gig ethernet

Table 4.1: Testbed topology H W and S W parameters

21

long pcap file containing mult iple U D P traffic flows was generated, and then played to the
network card at the rate of 10 Gbps . O n the other side, the number of successfully reached
packets was count.

4.1 The measurement process and its challenges

The whole measuring process can be divided into three phases. In the first stage, a con
nection to the elements i n the topology is made from a control station (personal laptop),
and the necessary settings are made - running the N A T 6 4 variant, executing the Iperf or
P F C O U N T . In the second phase, traffic generation starts and the C P U threads load is
being captured. In the final step, the results are collected, the configuration is cleared, and
charts generating is done.

Dur ing the measurements, several problems had to be solved. A t the start of the tests,
it was found that the measured throughput d id not reach the order of expected results.
The reason was packet processing at stations. The packets that came from the network
card queue were processed only in a single thread. It was because the scheduler hash
function, which determined the dis t r ibut ion of packets from the network card queue, took
into account only the source and destination addresses of the packet. However, i n the chosen
topology, a l l packets have the same source and destination addresses and therefore fall into
the same thread. The solution was to switch the scheduler into a mode where it calculates
the hash from the source and destination ports. A t the same time, it was necessary to
generate packets f rom/to mult iple source ports. Changing the scheduler hashing function
had to be done on a l l par t ic ipat ing ethernet interfaces. The change had to be made for
both IPv6 and IPv4 T C P and U D P , see l is t ing 4.1.

[root@rt-netx-d -]# ethtool -u tge3 rx-flow-hash udp6
UDP over IPV6 flows use these f i e l d s for computing Hash flow key:
IP SA
IP DA

[root@rt-netx-d ~]# ethtool -U tge3 rx-flow-hash udp6 sdfn
[root@rt-netx-d -]# ethtool -u tge3 rx-flow-hash udp6
UDP over IPV6 flows use these f i e l d s for computing Hash flow key:
IP SA
IP DA
L4 bytes 0 & 1 [TCP/UDP src port]
L4 bytes 2 & 3 [TCP/UDP dst port]

Lis t ing 4.1: Sample before and after applicat ion change of hash function for U D P IPv6
traffic.

Testing wi th Iperf was problematic. Using the Iperf tool , there was a problem wi th
the performance of the measuring stations. Single Iperf3 instance is unable to use more
than one C P U thread during traffic generation. Therefore, when examining 10 Gbps , the
measuring stations were at the edge of their capabilities and the results are distorted. Iperf
results were unstable wi th a large deviation. Therefore T C P results are tentative and for a
better overview results from U D P are used.

Testing wi th P F R I N G required smal l topological change. W h e n tested using Iperf
traffic flowed from V L A N 111 to V L A N 112 see L 2 topology Figure 4.1b. However, when

22

working wi th P F R I N G , we work on a lower layer and tagging ethernet frames no longer
happen automatically. The way to guarantee frame tagging could not be found. Therefore
it was necessary to make changes so that traffic could flow through native V L A N - untagged.
Furthermore, it was necessary to use a zero-copy mode and set up a static mapping between
IP and M A C addresses on the N A T 6 4 router. W h i l e running P F C O U N T i n zero-copy
mode, the N I C 2 is fully occupied by P F R I N G and other communicat ion like A R P or
I C M P v 6 is stopped, and records from the ip neighbor table expired over time, which led to
problems.

4.2 Evaluation of measured results

The evaluation is d ivided into two parts - T C P and U D P .

T C P

Tayga + Iptables

Figure 4.2: T C P throughput comparison

Figure 4.2 compares the average throughput of a l l measured variants and we can see
that the testbed setup is capable of 10 Gbps throughput. It is also possible to observe that
regular IPv4 N A T has a min ima l performance impact and is paradoxical (due to measuring
error) higher than pure routing. Tayga barely reaches 1 Gbps throughput. Joo l attacks the
10 Gbps level and adding v i r tua l network namespace has some performance impact.

However, as already mentioned, these results need to be taken as a proposal. More
accurate data is provided by U D P measurements.

U D P

Ent i re range of packet sizes was tested in U D P tests. The packet size range is (64 B , 128 B ,
512 B , 1024 B , 1024 B , 1280 B , 1500 B) and the size does not include inter-frame gap 12 B
and mac preambule 8 B . Beside throughput i n bps the number of packets (pps) that the
router can forward were captured.

2 NIC - Network interface controller

23

Theoretical maximum Pure Ipv4 Pure IPv4 Pure IPv6 N A T 4 4 Tayga Jool Jool namespace
64 14.88 10 2.6 1.4 2.3 1.2 2.4 1.3 0.000235 0.000122 0.7 0.3 0.35 0.2

13
y
t
e
s

128 8.45 10 2.6 ~27 2.3 2.4 2.4 2.6 0.000235 0.000224 0.7 0.6 0.35 0.4 13
y
t
e
s

256 4.53
2.35

10
10

2.6
2.3

5.3
9.6

2.3
2.2

4.7
9.0

2.4
2.3

5.1
9.5

0.000240
0.000250

0.000457
0.000973

0.7
0.7

1.2
2.9

0.35
0.36

0.7
1.5

13
y
t
e
s

512
4.53
2.35

10
10

2.6
2.3

5.3
9.6

2.3
2.2

4.7
9.0

2.4
2.3

5.1
9.5

0.000240
0.000250

0.000457
0.000973

0.7
0.7

1.2
2.9

0.35
0.36

0.7
1.5

13
y
t
e
s

1024 1.20
0.96
0.82

10 1.2 9.8 1.1 9.8 1.2 9.8 0.051 0.41 0.7 5.9 0.36 2.9

13
y
t
e
s 1280

1.20
0.96
0.82

10
10

~0l)
0.8

9.8
9.8

~0l)
0.8

9.8
9.8

~0l)
0.8

9.8
9.8

0.068
0.076

0.68
0.91

0.7
0.7

7.4
8.6

0.36
0.41

3.7
4.9

13
y
t
e
s

1500

1.20
0.96
0.82

10
10

~0l)
0.8

9.8
9.8

~0l)
0.8

9.8
9.8

~0l)
0.8

9.8
9.8

0.068
0.076

0.68
0.91

0.7
0.7

7.4
8.6

0.36
0.41

3.7
4.9

13
y
t
e
s

Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s

Table 4.2: U D P traffic - measured by P F R I N G . In the throughput i n Gbps , the used tool
does not include inter-frame gap and mac preambule into the calculation. Therefore, the
max imum throughput is 9.8 Gbps instead of 10 Gbps .

bps = (packet_size + 20) * pps * 8

The throughput results are i n charts 4.3a, 4.3b and table 4.2. Char t 4.3a shows average
throughput i n gigabits per second depending on the packet size, and chart 4.3b shows
average throughput i n packets per second.

In addi t ion to these values, processor load during the 1500 B packet size test was mea
sured. W i t h 1500 B packet size, the 10 Gbps line should already be saturated, and the
C P U load should no longer be 100%. Based on these values, it is possible to compare the
effectiveness of ind iv idua l solutions. Results are available i n chart 4.4.

The results confirm the testbed abi l i ty to operate at 10-gigabit throughput and also
confirm the min ima l impact of using common IPv4 N A T . For pure routing and common
IPv4 N A T , the theoretical m a x i m u m is reached wi th a packet length around 512 bytes.

Tayga does not reach the desired throughput. In Tayga test, we may notice a dramatic
drop i n performance for packets smaller than 1024 B . Tayga is sensitive to congestion.
Since the test generates traffic flow at the rate of 10 Gbps Tayga is overwhelmed, and
its performance drops dramatically. The best result at 10 Gbps input rate was 70kpps.
148 kpps was reached i f the sending rate was reduced to Tayga's capability. However, even
148kpps is a low result. The reason is apparent from the C P U load chart see 4.4f. Tayga
works only i n a single thread. There is no parallelism, and Tayga performance is l imited
by the performance of one core.

Joo l is i n the 700 kpps area, which means that 10-gigabit is not reached. Joo l compared
to common IPv4 N A T has a th i rd of the performance. In a 1500 B packet test, the C P U
load is s t i l l overloaded. The reasons and solutions for the high C P U usage are described in
chapter 6.

Using v i r tua l network namespace reduce Joo l performance by an addi t ional 350 kpps to
350 kpps.

In the A p p e n d i x A , there is also a U D P test w i th Cisco router 2911. Cisco 2911 is only
a gigabit router that is not suitable for comparing w i t h the N E T X router, so the results
are listed here only as interest. In the results, you may notice that the Cisco router in
N A T 6 4 mode does not support C E F 3 and its N A T 6 4 performance is a smal l fraction of
pure routing.

3 Cisco Express Forwarding - optimizes network performance and scalability for networks with large and
dynamic traffic patterns [3].

24

20
19
18
17
16
15
14

2J 13
(J 12

11 ZS
Q. 10
sz ai 9
ZS
O 8
i _

sz 7
\— 6

5
4
3
2
1
0

1 1 r
Theoretical maximum
Without any NAT IPv6
Without any NAT IPv4

Iptables NAT
Jool

Jool in namespace
Tayga and Iptables NAT

- X -

- e -

400 600 800 1000
Packet length [Bytes]

(a) Average throughput in Gbps

1200 1400 1600

Q_
Q_

C o u CD
Ln
i—
QJ
Q-

U
Q-

100

10 -

1 7

0.1

0.01

o - e - - e - - e -

1 1 r

Theoretical maximum
Without any NAT IPv6
Without any NAT IPv4

Iptables NAT
Jool

Jool in namespace
Tayga and Iptables NAT

e - - e -

- B -

- e -

- o

200 400 600 800 1000
Packet length [Bytes]

(b) Average throughput in Mpps

1200 1400 1600

Figure 4.3: U D P traffic - measured by P F _ R I N G

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread num [-] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread num [-]

(a) Without any N A T IPv4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread num [-]

(c) Jool
100 I 1 1 1 1 1 1 1 1 r

90 -

80 -

70 -

£. 60 r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread num [-]

(b) Without any N A T IPv6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread num [-]

(d) Jool in namespace

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread num [-]

(e) Iptables N A T (f) Tayga and Iptables N A T

Figure 4.4: C P U threads ut i l iza t ion during U D P test w i th packet size 1500 B

26

Chapter 5

Jool NAT64 integration into
N E T X router

N E T X is a dis t r ibut ion based on enterprise L i n u x , that i n combination wi th the appropriate
hardware (both physical or vir tual) , forms a network router. N E T X is a B U T university
project. One of the goals of this work was to find and integrate a stateful N A T 6 4 solution
into the project.

Joo l N A T 6 4 i n a v i r tua l network namespace was selected for integration. Joo l results
were far from ideal. The required 10 Gbps throughput was not met. S t i l l , Joo l is the
best possible solution, and w i t h the opt imizat ion described in the following chapter 6 the
performance is significantly better, and the 10 Gbps throughput is achieved.

Using the v i r tua l network namespace option has several advantages. Especial ly:

• Al lows N A T 6 4 traffic filtering.

• Simplifies integrat ion/adminis t rat ion through logical separation.

• Al lows to generate/test N A T 6 4 traffic directly from the router.

• Offers statistics from the interface between v i r tua l and regular namespaces.

• Creates routes for redistr ibution.

Because of these advantages, it was a good idea to use v i r tua l network namespace at
the cost of overhead and lower pps. If m a x i m u m performance is needed and overhead of
v i r tua l network namespace would be too high, the classic setup method is s t i l l available
through the shell.

Two of the key parts of the N E T X dis t r ibut ion are a package repository and netc -
N E T X command line. The selected N A T 6 4 solution had to be integrated into these two
parts.

5.1 Netc — N E T X command line integration

One of the certain benefits of N E T X is its command line - netc. N E T X is a collection of
L i n u x programs and tools and thanks to netc it is possible to control them a l l i n a uniform
and standardized way. Netc can be called Industry Standard C L I or Cisco-like command
line. It follows that even though L i n u x is running i n the background, the configuration

27

process works like in any conventional network device. A network administrator works
wi th a familiar configuration syntax, but if he encounters an advanced task, he can switch
to L i n u x shell. In the shell environment, he can take full advantage of the L i n u x system.
A simple example of netc syntax and the t ransi t ion to the bash can be seen i n l is t ing 5.1.

rt-netx-d# show interface
INTERFACE STATE RX TX

b/s p/s b/s p/s
gel A 100M-FD 3.6k 5.9 13.0k 4.5
ge2 down 0.0 0.0 0.0 0.0

rt-netx-d# interface gel ipv6 address 2001:db8:42:42: :1/126
rt-netx-d# s h e l l
[root@rt-netx-d ~]# uname -a
Linux rt-netx-d.net.vutbr.cz 3.10.0-862.el7.x86_64 #1

Lis t ing 5.1: Example of netc syntax and transi t ion to L i n u x shell

The netc command line language has a tree structure. Each word i n the command line
moves through a syntactic tree and specifies the command to be nailed. Commands are of
three types: set, unset, show. The semantic meaning of the set command is to perform an
action/configuration and is not introduced by any prefix. B y contrast, the unset command
is used to negate the set command and is introduced by the word no. The show is used to
view the status and is introduced by the word show. For example:

1. ipv6 route ::/0 2001:db8:0:l::l

2. show ipv6 route

3. no ipv6 route ::/0 2001:db8:0:l::l

The above example demonstrates work w i t h IPv6 routes. A l l three commands are based in
the same ipv6 route subtree. C o m m a n d 1) performs a configuration, and command 3) then
undo it w i th the keyword no. C o m m a n d 2) uses the keyword show and shows the current
status.

5.1.1 Netc command line design for N A T 6 4 section

Work ing wi th N A T 6 4 w i l l be placed i n ipv6 nat64 subtree. There w i l l be four more main
sections: instance, pool4, bib, and options.

Instance

1. ipv6 nat64 instance <nat64-pref ix> <p2p-ipv61> <p2p-ipv4>

2. no ipv6 nat64 instance

3. show ipv6 nat64 instance

The instance subtree is the cornerstone of the N A T 6 4 configuration. It creates/destroys
a Joo l instance and the entire v i r tua l network namespace.

XP2P - Point to point

28

http://-netx-d.net
http://vutbr.cz

C o m m a n d 1) is the only command that is required to put the entire N A T 6 4 into op
eration. <nat64-pref ix> specifies the N A T 6 4 prefix of the translated traffic - typical ly
64: ff9b::/ 96. <p2p-ipv6> and <p2p-ipv4> are the address ranges from which to address
the point-to-point l ink between the regular and v i r tua l N A T 6 4 network namespaces. After
performing this command, the following actions are performed:

1. Mode probing the Joo l kernel module.

2. Creat ing a v i r tua l network namespace.

3. Creat ing a v i r tua l P 2 P interfaces.

4. Assigning one of the interface to the namespace.

5. Setting up the interfaces and setting up the addresses.

6. Creat ing a Joo l instance wi th the N A T 6 4 prefix i n the namespace.

7. Setting IPv4 and IPv6 default routes from the namespace.

8. Setting route w i th the N A T 6 4 prefix to the namespace.

C o m m a n d 2) removes the Joo l instance and the v i r tua l network namespace. The v i r tua l
P 2 P interfaces and routes are removed automatical ly w i th the namespace.

C o m m a n d 3) shows N A T 6 4 status summary information and serves pr imar i ly to verify
the configuration and its deployment.

rt-netx-d# ipv6 nat64 instance 64:ff9b::/96 2001:db8:0:64::/64 192.0.64.0/3C
rt-netx-d# show ipv6 nat64 instance
Stateful NAT64 instance i s runnnig
Is enabled: Yes
NAT64 prefix: 64:ff9b::/96
Pool4: 192.0.64.4/30
Pool4 route inserted: Yes
Pool4 Jools IPv4 counts: TCP 4, UDP 4, ICMP 4
BIB Jools entry counts: TCP 1, UDP 1, ICMP 1

Lis t ing 5.2: Example of working wi th netc i n instance section

Pool4

1. ipv6 nat64 pool4 <pool-v4>

2. no ipv6 nat64 pool4 <pool-v4>

3. show ipv6 nat64 pool4

Pool4 defines an IPv4 subnet that is used for translation.
Pool4 configuration is not required. If pool4 is not specified, the IPv4 address that

is configured on the interface i n the v i r tua l namespace is used. However, a configuration
without pool4 is not recommended, as the number of transport addresses is then l imi ted.
For address translation without pool4, port numbers 61001 to 65535 are then allocated.

29

Joo l divides Pool4 into three categories, depending on which higher layer protocol is
used - T C P , U D P , I C M P . A n d for each address individual ly, it requires specifying the po r t 2

numbers that are intended for translations. This detailed approach is too complicated for
our purposes. Therefore, when configuring pool4 wi th netc, each IPv4 address from the
subnet is used for a l l higher layer protocols w i th a l l available ports. It is the same approach
we encounter w i th conventional routers.

C o m m a n d 1) assign every IPv4 address from the subnet to the pool . IPv4 addresses
are assigned to a l l three higher layer protocols w i t h port numbers 1-65535. The assigned
subnet needs to be routed to the v i r tua l namespace. Therefore, after adding pool4, a static
route is generated.

C o m m a n d 2) flushes Jool 's pool4 and removes the static route.
C o m m a n d 3) shows the pool4 from Jool 's point of view. Sequentially displays addresses

and ports for T C P , U D P , and I C M P .

rt-netx--d# ipv6 nat64 pool4 192.0.64.4/30
rt-netx--d# show ipv6 nat64 pool4

i

1 Mark | Proto | Max iterations 1 Address 1 Ports 1

1 0 1 TCP I 2047 (auto) 1 192.0.64.4 1 1 -65535
+
1

1 1 1 1 192.0.64.5 1 1 -65535 1
1 1 1 1 192.0.64.6 1 1 -65535 1
1 1 1 1 192.0.64.7 1

+
1 -65535 1

+

1 Mark | Proto | Max iterations 1 Address
+

1 Ports
+

1
i

1 0 1 UDP | 2047 (auto) 1 192.0.64.4
X
1 1 -65535

X
1

1 1 1 1 192.0.64.5 1 1 -65535 1
1 1 1 1 192.0.64.6 1 1 -65535 1
1 1 1 1 192.0.64.7 1 1 -65535 1

I I I -I + +

1 Mark | Proto | Max iterations 1 Address 1 Ports 1

1 0 I ICMP | 2047 (auto) 1 192.0.64.4 1 1 -65535
+
1

1 1 1 1 192.0.64.5 1 1 -65535 1
1 1 1 1 192.0.64.6 1 1 -65535 1

1 1 1 1 192.0.64.7 1 1 -65535 1

+ + + _ + + +

Lis t ing 5.3: Example of working wi th netc i n pool4 section.

2 Identifier in case of ICMP

30

B I B

1. ipv6 nat64 bib <ip-port-v4> <ip-port-v6>

2. no ipv6 nat64 bib <ip-port-v4> <ip-port-v6>

3. show ipv6 nat64 bib

B i n d i n g Information Base (BIB) is a table (collection of tables for T C P , U D P , I C M P)
that keeps a binding between a source IPv6 transport address and a source IPv4 transport
address. Entries to the table are dynamical ly inserted based on active connections. It is
also possible to add a static record to the table and create a permanent binding. A static
record is used i f a connection from the IPv4 network needs to be established without prior
communicat ion — an analogy of IPv4 port forwarding.

C o m m a n d 1) adds a static record to B I B tables. Jool , like in pool4, distinguishes
between B I B for T C P , U D P , and I C M P . To facilitate configuration and more significant
analogy to conventional routers, the command adds a record to a l l three tables.

C o m m a n d 2) removes a l l three entries from the B I B tables.
C o m m a n d 3) sequentially displays B I B records for T C P , U D P , I C M P .

rt-netx-d# ipv6 nat64 bib 192.0.64.5:80 2001:db8:0:42::5.80
rt-netx-d# ping 64:ff9b::8.8.8.8
rt-netx-d# show ipv6 nat64 bib
[Static TCP] 192.0.64.5*80 - 2001:db8:0:42::5#80
[Static UDP] 192.0.64.5*80 - 2001:db8:0:42::5#80
[Static ICMP] 192.0.64.5*80 - 2001:db8:0:42::5#80
[Dynamic ICMP] 192.0.64.5*606 - 2001:db8:0:64::1*16363

Lis t ing 5.4: Example of working wi th netc i n bib section

Options

1. ipv6 nat64 options <option-key> <option-value>

2. no ipv6 nat64 options <option-key> option-value>

3. show ipv6 nat64 options

The options subtree serves to configure Joo l instance properties. The properties are
defined as key/value pairs. Through the netc ipv6 nat64 options command it is possible
to configure a l l available Joo l properties except N A T 6 4 prefix and properties related to
state sharing across mult iple Joo l instances. Configuring N A T 6 4 prefix takes place i n the
instance subtree, see above, and the state sharing between mult iple Joo l instances is not
supported by netc. The complete list of a l l available options and its meaning can be found
in Jool 's official documentat ion 3 .

C o m m a n d 1) sets the value for the selected key.
C o m m a n d 2) sets a default value for the selected key.
C o m m a n d 3) shows a l l instance properties.

3https: / / www.jool.mx/en/usr-flags-global.html

31

http://www.jool.mx/

configuration

NETC 3rd party CLI router state

running configuration gathering

Figure 5.1: Netc operation flow diagram

rt-netx-d# ipv6 nat64 options address-dependent-filtering TRUE
rt-netx-d# show ipv6 nat64 options

manually-enabled: true
z e r o i z e - t r a f f i c - c l a s s : false
override-tos: false
tos: 0
mtu-plateaus: 65535,32000,17914,8166,4352,2002,1492,1006,508,296,68
address-dependent-filtering: true
drop-icmpv6-info: false

Lis t ing 5.5: Example of working wi th netc i n bib section

5.1.2 Details of N A T 6 4 section implementation

Since version 1.14.0, netc has focused more on modular i ty and has started to use Y A M L
files for module definitions. The Y A M L files are used to define a command line structure
and to specify the actions to be performed. E a c h logical unit should be defined i n its Y A M L
file. In our case, the whole ipv6 nat64 subtree is defined in netc.d/jool-nat64.yml.

NODE: 'ipv6/nat64/bib/'
DESCR: 'Binding Information Base*
SHOW: 'xcfg-netc-jool bib show'

NODE: ' ipv6/nat64/bib/°/.IP4P0RT/'
GET: 'xcfg-netc-jool bib get ip4port'

NODE: ' ipv6/nat64/bib/7„IP4P0RT/7„IP6P0RT/'
GET: 'xcfg-netc-jool bib get ip6port'
SET: 'xcfg-netc-jool bib set %1 7o2'
UNSET: 'xcfg-netc-jool bib unset %1 7o2'

Lis t ing 5.6: Sample from the Y A M L definition file for B I B subtree.

Sample 5.6 shows the definition for the ipv6 nat64 bib subtree. In addi t ion to the set
unset and show items, the significance of which has already been highlighted above, there
is another necessary entry - get.

The configuration process through netc is shown i n Figure 5.1.

4 Y A M L - human-readable data serialization language.

32

W h e n a netc command is called, netc translates this command to a th i rd party u t i l i ty
cal l that handles the called part. For example, when ipv6 route ::/0 2001:db8::cafe is
entered, the netc command is translated to the ip u t i l i ty cal l , specifically to ip -6 route add
::/0 200l:db8::cafe. The result of the operation is a new state of the router, namely the
default route is inserted into the routing table. The process is shown in Figure 5.1 w i t h a
blue arrow and corresponds to the set unset and show command types.

A t the same time, there must also be a backward mapping. Netc must be able to
determine from the state of the router which commands have it entered into this state.
This backward mapping is required to determine the running-config. Running-config is a
sequence of commands that lead to the current configuration state. Saved running-config
becomes a startup-config, which is a sequence of commands to be executed to put router it
into the configured state after a boot. Netc by default does not hold any configuration state.
Configuration state is derived by reverse transformations. For example, i f the default route
as mentioned above is configured directly to by the ip route u t i l i ty without using netc, netc
would include the command to the running-config because it would be reversed mapped
from the routers state. The process is shown i n Figure 5.1 w i th an orange arrow and
corresponds to the get command type.

The action get is called when gathering the running-config. The result of the cal l must
be a l l configured entries for the called non-terminal. In the above example 5.6, the get
action i n the first case returns a l l configured IPv4 transport addresses and in the second
case corresponding IPv6 transport addresses.

rt-netx-d# show running-config
!
ipv6 nat64 instance 64:ff9b::/96 2001:db8:0:64::/64 192.0.64.0/30
ipv6 nat64 options address-dependent-filtering TRUE
ipv6 nat64 pool4 192.0.64.4/30
ipv6 nat64 bib 192.0.64.5:80 2001:db8:0:42::5.80
!

Lis t ing 5.7: Sample from running-config section N A T 6 4 .

Translat ion of commands between netc and third-party u t i l i ty can be simple, and i n this
case, it is possible to perform mapping directly i n a Y A M L file. However, i n most cases, it
is not so straightforward, and an auxi l iary script is used. The script can be programmed
in any language, typical ly Pe r l or Bash, to mainta in a unified platform. In the case of Jool
integration, the . /bin/xcfg-netc-jool Pe r l script is used to cover a l l netc calls.

33

sub actionBibSet {
if (system("ip netns exec nat64NS jool — i netc instance display & > /dev/null") != 0){

syslog(LOG_INFO, "Jool instance is not running — bib set canceled");
print("NAT64 instance has to be running!");
return:

}

my $trans4Arg = shift @ A R G V ;
my $trans6Arg = shift @ A R G V ;

my $trans4 = $trans4Arg =~ s/\:/\#/r;
my $trans6 = $trans6Arg =~ s/\./\#/r;

my ScommandBase = "ip netns exec nat64NS jool — i netc bib add";

system(sprintf("$commandBase %s %s tcp", $trans6, $trans4));
system(sprintf("$commandBase %s %s udp 2>&1 | logger", $trans6, $trans4));
system(sprintf("$commandBase %s %s icmp 2>&1 | logger", $trans6, $trans4)):

}

Lis t ing 5.8: Code sample from . /bin/xcfg-netc-jool - procedure for show ipv6 nat64 bib
ntec cal l

In the code example 5.8, a procedure that serves a set action in the B I B section is shown.
Generally, these operating procedures consist of three parts: checking input conditions,
transforming input, cal l ing third-party uti l i ty. In example 5.8, a check is made to see i f the
Joo l instance is active. If the instance is not active, it is not possible to continue. Then , a
transformation of the input transport addresses is performed. Netc uses a notat ion other
than Joo l C L I by default. In our case, the transformation is performed by a simple regular
expression. F ina l ly , a Joo l C L I ca l l is made. It can also be seen i n the example that, as
already mentioned, Joo l makes the B I B for T C P , U D P and I C M P different, so the cal l
is made three times. One of the advantages of the configuration script is that it logs to
the syslog i n detail . In case of a problem, it is possible to check the syslog where every
configuration step is verbosely recorded.

5.2 Package building and distribution via R P M

Software dis t r ibut ion and updates to N E T X installations are done through the R P M pack
age system. N E T X manages its own R P M repositories. Since N E T X is based on the L i n u x
dis tr ibut ion Cen tOS, the core repository content is the same as the Cen tOS . In addi t ion to
the usual packages, N E T X builds its own packages whether its a specially adjusted kernel,
the netc command line, or modified standard package.

Package bui ld i n R P M is controlled by a S P E C file. S P E C file is a prescription that
defines how to create an instal lat ion package from the source code. In most cases, it is as
follows. The source applicat ion is translated, and the resulting binary files are included in
the R P M package. A l o n g wi th binary files, information, where the binary files should be
copied on the destination station, is also stored. The R P M installer dur ing the instal lat ion
copies the files as prescribed in the package. O f course, translat ion and binary files are
not required, and any file can be subject to the R P M package. R P M can also run scripts

34

during installat ion, in addi t ion to copying files. More information about R P M packaging
can be found in [1] [30].

Joo l does not provide pre-built software packages and is only available as source code.
For these reasons, it was necessary to include the assembly of the Joo l packages into the
N E T X packages assembly process. It means devising the instal lat ion process and describing
it w i th the S P E C file and harmonize it w i th the automatic system in N E T X .

5.2.1 Building Jool R P M package

To bu i ld a Joo l package, two components need to be resolved, the userspace C L I and the
kernel module. The userspace C L I can be packed i n the usual way. O n the other hand, the
kernel module has several issues to be solved. Since it is a kernel module, it cannot be buil t
in a kernel environment other than the one that the module is targeted to. The solution
is to bu i ld the module separately for each version of the kernel or bu i ld the module on the
target station. Joo l offers the possibil i ty to bu i ld the module using D K M S . D K M S was
used throughout the testing. Thus, this method has proven itself and has made the bu i ld
of the module considerably easier. For this reason, D K M S is the preferred method when
assembling the package.

Dynamic Kerne l Module Support (D K M S) is a L i n u x framework/subsystem that man
ages kernel modules that are not a direct part of the kernel. The source code of the module is
registered in the D K M S , and the system then takes care of its compilat ion and instal lat ion.
W h e n the kernel is updated, the system re-compiles and installs the module itself.

[root@rt--netx--e -] cp - r $module-$version /usr/src/
[root@rt--netx--e -] dkms add $module/$version
[root@rt--netx--e -] dkms build $module/$version
[root@rt--netx--e -] dkms i n s t a l l $module/$version

Lis t ing 5.9: Demonstrat ion of work wi th D K M S

Example 5.9 shows steps to instal l a module through D K M S . The source code for mod
ules is located in the /usr/src directory by default. Keeping the correct naming convention
- name-version is important . If there is a configuration file for D K M S in the module source
code, the module can be installed.

The creation of a package relying on D K M S looks like this. A package is created
that does not contain any binary files, only includes the complete source code. W h e n the
package is install ing, it copies the source codes to /usr/src directory and runs the D K M S
commands i n post-install hook, see example 5.9.
D K M S offers command dkms $module/$version mkrpm —source-only to create such an
R P M package automatically. However, this package would not contain the necessary Jool
C L I applicat ion, and in the end, this method would not fit into the N E T X automatic
package assembly flow, see Chapter 5.2.2.

Final ly , the Joo l package bui ld and instal lat ion process is as follows. The Joo l C L I
source code is compiled, and the result binary files are included in the package. Besides,
the complete source is added to the package. The final package is placed i n the repository
where the N E T X router w i l l download it . W h e n instal l ing the package, the Joo l C L I
binaries are copied to the required locations and the source code is copied to /usr/src.
After that, the post-installation hook runs and adds the module to D K M S and starts the
D K M S instal lat ion. In case of uninstall ing, the package manager w i l l delete the copied

35

files (C L I binaries and the source code), but before that, a pre-uninstall hook triggers the
module remove from the D K M S .

5.2.2 N E T X automatic package build flow

N E T X has an automated package assembly system. The main idea of the system is to bu i ld
packages in containers, specifically i n Docker. There are many advantages to packaging in
containers. One of the great benefits is the independence of the operating system. The
N E T X (CentOS) package can thus be buil t on any operating system running Docker. A
further advantage is that a clean environment is prepared for each assembly and disappear
upon completion of the work. However, we also encounter certain l imi ts . Because the
container shares a kernel w i th a host P C , we are l imi ted i n kernel module translations. In
case of a kernel module, it would be possible to translate and bu i ld the package only for
the same kernel as the host P C kernel.

In the case of Jool , we decided to translate the kernel module during the instal lat ion on
a target station, and therefore this problem is not cr i t ical . The principle works as follows.
A n essential Docker image is created, based on the target platform. In our case, the image
is based on Cen tOS 7.5. The essential image includes only the basic utili t ies that are needed
in most package bu i ld cases. W h e n assembling the package, a container is created from the
image. Source code folder and a folder for the resulting package are mounted. The system
detects from the S P E C file which tools and libraries w i l l be needed to bui ld , and those that
are missing from the base image are downloaded. T h e n it builds the packages and returns
the result to the prepared folder. Once the process is complete, the container is removed.

To automate the entire process, N E T X uses the docker-rpm-builder [6] tool to take care
of the entire process. Package source codes are managed i n a G I T repository. Including
a new package in the system means creating a new folder i n the repository. If the correct
directory structure is followed, the system w i l l take care of everything else.

— j o o l
I — SOURCES
I '— jool-4.0.0.tar.gz
' — SPECS

'— jool.spec
— Makefile

Lis t ing 5.10: Joo l directory in N E T X package bu i ld repository.

In example 5.10, a Joo l section of the package bui ld repository structure can be seen.
The package is buil t w i th the make jo o l command.

36

Chapter 6

JooPs performance bottlenecks
analysis

The Joo l solution has been selected for N E T X platform integration. However, from U D P
results, Joo l d id not achieve the expected packet throughput. The same pps result as
regular IPv4 N A T was expected. For this reason, bottleneck inspection was performed.

6.1 Performance analysis using perf tool

Figure 6.1a shows perf results dur ing test execution - under the full load of the N A T 6 4
traffic. F r o m the results it is evident, that processor spends a huge por t ion of t ime wait ing
for access to a cr i t ica l section. We are working wi th a stateful a lgori thm where each packet
that flows through N A T 6 4 creates a state so that a l l packets of the same flow are mapped
to the same transport addresses and packets that flow back into the network are passed to
the host who ini t ia ted the connection. Since packets are processed in parallel , the need for
cr i t ical sections and mutual exclusion is expected.

In a further analysis, Figure 6.1b indicates that the C P U threads are wait ing at the lock
in the rfc6056_f function. W h e n analyzing this function, it was found that the function
is used to count an M D 5 checksum based on packet header data. A s the name of the
function suggests, it is an implementat ion of R F C 6056, which describes how to randomly
assign port numbers, so that they cannot be predicted and its knowledge cannot be used in
network attacks [19]. Here, the M D 5 checksum is calculated using the crypto_shash family
functions in a cr i t ica l section. A n explanation of why call ing these functions inside the
cr i t ical section is missing. A cr i t ica l section would be meaningful i f cal l ing these functions
is not thread-safe. Th is would mean that a parallel cal l to the same function could lead
to data inconsistency. However, no indications have been found to inoculate this problem
during analysis. Also , there is a commentary where the author himself suggests that it
would be appropriate to examine this part of the code to improve performance. For the
experiment, the need for a cr i t ica l section was removed.

The result was almost no performance increase i n output. Figure 6.1c shows the perf
output after removing the cr i t ica l section. We may notice that now the threads are wait
ing i n the get_random_bytes function. The get_random_bytes function is part of the C
standard l ibrary and is used to generate random values. It is a quali ty random number
generator. Qua l i ty random number generators can generate reliably random values but at
a low pace. get_random_bytes is used to generate a random identifier i n the IPv4 packet

37

headers. Since every translated packet needs its IPv4 identification, it is l ikely that the used
random number generator w i l l not be able to generate values fast enough. Challenges wi th
generating IPv4 identification when translating packet w i l l be discussed i n the following
section. For the test, a static value was used instead of random values for the experiment.
Pps performance growth was about 50%.

In the next analysis by the perf tool , Figure 6.Id, it was found that the threads are
now wait ing on the lock, which controls access to a table that manages connection records.
This s i tuat ion is already in line w i th expectations, and the next step would be to optimize
the work wi th in the cr i t ica l section.

6.2 IPv4 identification field and fragmentation issues

IPv4 identification (IPv4-ID) is a 16-bit value in the IPv4 packet header. The purpose
of this value is to identify packets in a flow. The flow is defined as a source/destination
address and an upper layer protocol. Every packet in the flow needs a unique identifier
for the t ime it can occur in the network. There was a big discussion about the usage
of these unique numbers. F ina l ly , R F C 6864 clearly la id down rules for using the field.
R F C 6864 says IPv4- ID can only be used for packet fragmentation purposes [28]. In IPv4 ,
fragmentation can occur in two modes. If a flag do not fragment (IPv4-DF) is set to 0
in an IPv4 packet, routers along the path w i l l do fragmentation if required. If the IPv4-
D F is set to 1, the fragmentation is done by the t ransmit t ing side and if the router is
unable to forward the packet for reasons of packet size it informs the t ransmit t ing side by
I C M P v 4 message. If the I P v 4 - D F is set to 1 and the t ransmit t ing side is responsible for
the packet fragmentation, R F C 6864 says the IPv4- ID is opt ional and can be arbitrary.
Otherwise, IPv4- ID is mandatory, and its uniqueness requirement remains. However, R F C
6864 admits that the need for the uniqueness of this value is difficult to accomplish and is
often overlooked. For example, if we consider a 1500 byte packet flow at a 1 Gbps rate,
the 16-bits space is exhausted in less than seconds. R F C 4963 suggests that the most
appropriate approach to the IPv4- ID is to generate a random value for the first packet in
the flow and then increment it w i t h each packet [18]. Th is ensures that the 16-bit space is
used as effectively as possible.

IPv6 approach to fragmentation is different. In IPv6 , the t ransmit t ing side is always
responsible for the fragmentation - the equivalent to I P v 4 - D F set to 1. The m i n i m u m M T U
in IPv6 is 1280 bytes - 68 bytes in IPv4 . IPv4- ID i n IPv6 header (without extension) has no
equivalent. These differences lead to many fragmentation problems. The R F C that defines
packet translat ion has been released i n three versions: R F C 2765 [20], R F C 6145 [32], R F C
7915 [5], and approach to fragmentation and IPv4- ID generation i n packet translations
has been modified in each version. In the original R F C 2765, it was determined that the
translated IPv4 packet would always have the I P v 4 - D F set to 1 and the IPv4- ID set to 0.
This eased approach turned out to be a problem mainly due to different min ima l M T U s
between protocol versions. Therefore, in the following R F C 6145, it was determined that
this approach is only suitable for packets w i t h a size > 1280 bytes or < = 88 bytes. In
current R F C 7915, this option remains only to I P v 4 - D F flag and IPv4- ID must always be
generated.

Examin ing Tayga's implementation and Cisco N A T 6 4 solution, it was found that they
always set I P v 4 - D F flag to 1 and sets IPv4- ID to 0. Joo l adheres to the latest R F C but
generates an IPv4- ID for each packet randomly. A s a result, the IPv4- ID is repeated before
it is necessary and at the same time, it reduces performance.

38

Samples: 1M of event ' c y c l e s : ppp', Event count (approx.): 6504586738265934
Overhead Shared O b j e c t Symbol

[ke r n e l] [k] n a t i v e queued s p i n l o c k slowpath
3,88% [ke r n e l] [k] md5 t r a n s f o r m
3,39% [k e r n e l] [k] i p 6 t do t a b l e

(a) Quick result before experimentation. The native_queued_spin_lock_slowpath indi
cates a large wait for access to the critical section.

0,00% swapper [k e r n e l . k a l l s y m s] [k] h o o k _ i p v 6
- h o o k _ i p v 6

- l l r 1 7 % c o r e _ 6 t o 4
- 11,17% corecommon

- 8,05% f i l t e r i n g a n d u p d a t i n g
- 8,05% i p v 6 _ s i m p l e

- 7,03% f i n d m a s k d o m a i n . i s r a . 1 5
- 7,03% mask domain f i n d

- 6,88% r f c 6 0 5 6 f

(b) More detailed result before experimenting. The result indicates waiting in the function
rjc6056_$.

0,00% swapper [k e r n e l . k a i l s y m s] [k] core 6to4
- 18,05% core_6to4

- 17,90% core common
- 9,85% t r a n s l a t i n g the packet

- 9,21% t t p 6 4 i p v 4
- 9,21% get random bytes

- 4,86% c r n g _ b a c k t r a c k _ p r o t e c t
- 4,86% _ c r n g _ b a c k t r a c k _ p r o t e c t

+ 4,80% r a w s p i n l o c k i r q s a v e
- 4,35% e x t r a c t c r n g

- _ e x t r a c t _ c r n g
+ 4 r 0 2 % r a w s p i n l o c k i r q s a v e

- 4,89% f i l t e r i n g a n d u p d a t i n g
- 4,89% i p v 6 _ s i m p l e

+ 1,66% find_mask_domain.isra.15
1,35% b i b a d d e
1,06% rfc6052_6to4

+ 1,64% k f r e e skb
+ 1,35% s e n d p k t s e n d

(c) Result after removing critical section while working with an M D 5 checksum. The
result indicates waiting in the function get_random_bytes
+ 0,10% swapper [k e r n e l , k a l l s y m s] [k] core 6to4
- 0,00% swapper [k e r n e l , k a l l s y m s] [k] core_common

- 13,13% core common
- 9,29% f i l t e r i n g and updating

- 8,96% i p v 6 simple
- 6,40% b i b adds

+ 4,79% raw s p i n l o c k bh
0,75% t s t o s e
0,65% f i n d b i b s e s s i o n 6

+ 1,65% f i n d mask domain.isra.15
+ 0,67% mask domain put

+ 2,39% s e n d p k t s e n d
+ 1,35% t r a n s l a t i n g the packet

(d) Result after excluding random IPv4 packet identifier generation. The threads are now
waiting to work with state table of the algorithm.

;ure 6.1: Perf outputs during tests execution - under the full load of the N A T 6 4 traffic.
39

http://find_mask_domain.isra.15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Thread num [-] Thread hum [-]

(a) Standard Jool version 4.0.0 (b) Jool with proposed optimization

Figure 6.2: Compar ison between C P U threads ut i l iza t ion during U D P test w i th packet size
1500 B before and after opt imizat ion

6.3 Cooperation with developers and the resulting perfor
mance gain

The above findings have been consulted w i t h Joo l developer Ing. Albe r to Leiva Popper
[10]. It was confirmed that closing the crypto_shash functions to the cr i t ica l section was
unnecessary. The use of a cr i t ica l section was preventive, and there is no reason for i t .
A n IPv4- ID generation has been discussed, and improvement has been proposed. The
IPv4- ID generating is now done as the kernel does it when sending IPv4 packets. The
get_random_bytes was replaced by ip_select__ident. Funct ion ip_select_ident gen
erates only one random number for each flow and then increments it w i th each subsequent
packet. Th is method is i n line w i th R F C 4963 and R F C 7915. A l o n g wi th those changes,
another cal l to get_random_bytes has been removed, which has proved to be unnecessary.

Using the ip_select_ident function demanded a higher version of the kernel > =
4.2. The used N E T X router was therefore upgraded to 4.4.178-1.el7.elrepo.x86_64 kernel.
Tests showed a 58.3 % increase i n pps performance compared to standard 4.0.0 version.
Pps throughput rose from 0.72 M p p s to 1.14 M p p s . This noticeable increase in performance
can also be seen i n the process load decrease, see Figure 6.2.

The changes were declared successful and are scheduled for the next Joo l 4.0.1 release.

40

Chapter 7

Conclusion and results summary

A t the beginning of my work, I introduced readers to the problems of transi t ion algorithms
between I P protocols. I introduced the conceptual problems associated w i t h transi t ion
algorithms and what are their general solutions. Based on these concepts, I described the
Stateful N A T 6 4 . I t r ied to capture a l l the fundamental properties, and the residues refer
to the appropriate R F C s . In the N A T 6 4 excerpt, I have included a l l essentials such as
address mapping, D N S 6 4 , 4 6 4 X L A T , so that the reader has a complete understanding of
how N A T 6 4 works.

In my research on existing N A T 6 4 implementations, I came across four open-source
candidates - Tayga, Jool , Ecdysis , WrapS ix . Three solutions were carefully examined and
tested on the lab router. The two solutions that have proved to be acceptable (Tayga
and Jool) have been described i n the document. The Ecdysis solution was el iminated at
the beginning because it has not been developed for some time, so it does not support
new kernels. The WrapS ix solution even after several attempts s t i l l had errors i n the
form of duplicate packets and was therefore also eliminated. W i t h the remaining solutions,
besides the descriptions, necessary procedures for put t ing the solutions into operation were
introduced. I have also been slightly devoted to L i n u x network namespaces, which are an
interesting option for running N A T 6 4 solutions.

In addi t ion to open-source solutions, I also explored the support for N A T 6 4 wi th well-
known network router vendors. The research has shown that there is already a ready-made
solution on the market. For example, Juniper supports N A T 6 4 on two device series (S R X
and M X) and provides excellent documentation.

I have passed two chosen solutions to performance tests. I have used a methodology that,
in addi t ion to examining a traffic throughput, has also revealed the network performance
impact and resource impact on the router's processor.

I encountered several challenges during testing because of the relatively high l O G b p s
throughput requirements. The use of the Iperf tool proved to be almost unusable at such
speeds. The examined router was not fully ut i l ized, but the test stations could not generate
more intense traffic. Overal l , Iperf's results were unstable wi th a large deviation. For U D P
tests, I was recommended to use the P F R I N G tool , which d id not suffer from these
problems, and the U D P results are far more accurate.

F rom the measured results, I concluded that a solution that can reach the specified
10-gigabit throughput must be able to uti l ize mult iple C P U threads. Unfortunately, it
turned out that Tayga does not meet this feature. Tayga's unmistakable strength is its
simplicity, but un t i l Tayga is not able to harness mult iple processor threads, it can not be
recommended for N E T X router. A t the same time, Tayga is very sensitive to congestion.

41

W h e n congested, its performance drops dramatically. Joo l w i th opt imizat ion meets the
required throughput, but its packet per second performance is s t i l l not ideal. Joo l is a
comprehensive solution wi th many advanced features, and its development is s t i l l active.
For these reasons, Joo l was elected for integration.

Integration into N E T X was successful. A command line scheme for Joo l control has
been designed. The scheme was programmed and integrated into the netc command line.
Netc now supports working wi th Joo l instance, pool and B I B configurations, translation
parameters tuning, and several verifications commands. Joo l has been included i n the
N E T X package repositories. B o t h the Joo l C L I applicat ion and the Joo l kernel module
were included i n one R P M package. The C L I applicat ion is distr ibuted i n binary form; the
kernel module is compiled during instal lat ion using D K M S .

Joo l performance bottlenecks analysis has been performed. The findings have been con
sulted wi th Joo l developers. In collaboration wi th the developers, a significant performance
increase of 58.3 % was achieved.

In the follow-up work, it would be possible to extend the netc command line wi th
addi t ional features — for example, mult iple IPv4 pools, state synchronization support or
mult iple instances. In addit ion, it would be possible to t ry to find more opt imizat ion to
achieve even better performance results. Joo l also offers a stateless N A T 6 4 (SIIT) variant
that could also be integrated into N E T X .

42

Bibliography

[1] A d a m Mi l l e r , M . D . , M a x i m Svistunov: R P M Packaging Guide . 2019.
Retrieved from: h t t p s : / / r p m - p a c k a g i n g - g u i d e . g i t h u b . i o /

[2] Ar i s t a : A r i s t a 7170 Series.
Retrieved from: h t t p s : / / w w w . a r i s t a . c o m / e n / p r o d u c t s / 7 1 7 0 - s e r i e s

[3] Cisco: Cisco Express Forwarding Overview.
Retrieved from: h t t p s : / / w w w . c i s c o . c o m / c / e n / u s / t d / d o c s / i o s / 1 2 _ 2 / s w i t c h /
conf i g u r a t i o n / g u i d e / f swt c h _ c / x c f ce f .html

[4] Cisco: Cisco Feature Navigator.
Retrieved from:
h t t p s : / / c f n . c loudapps . c i s c o . com/ ITDIT/CFN / j sp /by - f e a t u r e - t e c h n o l o g y . j s p

[5] Congxiao Bao, F . B . T . A . F . G . , X i n g L i : I P / I C M P Translat ion A l g o r i t h m . R F C
7915. June 2016. doi :10.17487/RFC7915.

[6] Franzoni , A . : docker-rpm-builder.
Retrieved from: h t t p s : / / g i t h u b . c o m / a l a n f r a n z / d o c k e r - r p m - b u i l d e r

[7] Google: Google P u b l i c D N S 6 4 . 2018.
Retrieved from: h t t p s : / / d e v e l o p e r s . g o o g l e . c o m / s p e e d / p u b l i c - d n s / d o c s / d n s 6 4

[8] Hewlet t -Packard: H P A - M S R Router Series Layer 3 - IP Services C o m m a n d
Reference.
Retrieved from:
h t t p s : / / s u p p o r t . h p e . c o m / h p s c / d o c / p u b l i c / d i s p l a y ? d o c l d = e m r _ n a - c 0 2 6 5 9 2 9 7

[9] Huawei: N E 4 0 E V800R010C00 Configurat ion Guide - N A T and IPv6 Transi t ion 01.
Retrieved from:
h t t p s : / / s u p p o r t .huawei. com/enterpr i se /en /doc/EDOC1100028531?sec t ion=
j 04v&topicName=nat64-overv iew

[10] J an Pokorný , A . L . P. : I C M x / J o o l - Issue 282: N A T 6 4 performance evaluation. 2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / N I C M x / J o o l / i s s u e s / 2 8 2

[11] Ja r i A r k k o , F . B . : Guidelines for Us ing IPv6 Transi t ion Mechanisms dur ing IPv6
Deployment. R F C 6180. M a y 2011. doi :10.17487/RFC6180.

[12] Jool : Introduction to Joo l . 2018.
Retrieved from: h t t p s : / / w w w . j o o l . m x / e n / i n t r o - j o o l . h t m l

43

https://rpm-packaging-guide.github.io/
https://www.arista.com/en/products/7170-series
http://www.cisco.com/c/en/us/td/docs/ios/12_2/switch/
https://github.com/alanfranz/docker-rpm-builder
http://developers.google.com/
https://support
https://support
https://github.com/NICMx/Jool/issues/282
https://www.jool.mx/en/intro-jool.html

[13] Juniper: IPv6 N A T 6 4 .
Retrieved from:
https: / / apps. juniper .net/f eature-explorer/f eature-inf o.html?f Key=
3635&fn=IPv6°/„20NAT6

[14] Juniper: N A T 6 4 support for M S - M I C and M S - M P C interface cards.
Retrieved from: https:
/ / apps. juniper .net/f eature-explorer/f eature-inf o.html?fKey=6055&fn=
NAT64y020supporty020fory020MS-MICy„20andy020MS-MPCy„20interface0/020cards

[15] Lutchansky, N . : T A Y G A - Simple, no-fuss N A T 6 4 for L i n u x . 2011.
Retrieved from: http://www.litech.org/tayga/

[16] Mar t inez , J . P. : N A T 6 4 / 4 6 4 X L A T Deployment Guidelines in Operator and
Enterprise Networks, draft. A p r i l 2018.
Retrieved from:
https://tools.ietf.org/html/draft-ietf-v6ops-nat64-deployment-03

[17] Masa taka Mawata r i , C . B . , Masanobu Kawashima: 4 6 4 X L A T : Combina t ion of
Stateful and Stateless Translat ion. R F C 6877. A p r i l 2013. doi :10.17487/RFC6877.

[18] M a t t Math i s , J . H . , B e n Chandler: IPv4 Reassembly Errors at H i g h D a t a Rates.
R F C 4963. Ju ly 2007. doi :10.17487/RFC4963.

[19] Michae l Larsen, F . G . : Recommendations for Transport -Protocol Port
Randomiza t ion . R F C 6056. January 2011. doi :10.17487/RFC6056.

[20] Nordmark , E . : Stateless I P / I C M P Translat ion A l g o r i t h m (SIIT) . R F C 2765.
February 2000. doi :10.17487/RFC2765.

[21] ntop: P F R I N G - High-speed packet capture, filtering and analysis.
Retrieved from: https: //www.ntop.org/products/packet-capture/pf_ring/

[22] P h i l i p Mat thews, I. v. B . M . B . , A n d r e w Sull ivan: D N S 6 4 : D N S Extensions for
Network Address Translat ion from IPv6 Clients to IPv4 Servers. R F C 6147. A p r i l
2011. doi :10.17487/RFC6147.

[23] P h i l i p Mat thews, M . B . , Iljitsch van Bei jnum: Stateful N A T 6 4 : Network Address and
Pro toco l Translat ion from IPv6 Clients to IPv4 Servers. R F C 6146. A p r i l 2011.
doi :10.17487/RFC6146.

[24] Rober t E . Gi l l igan , E . N . : Basic Transi t ion Mechanisms for IPv6 Hosts and Routers.
R F C 4213. October 2005. doi :10.17487/RFC4213.

[25] Scott Rose, D . M . R . A . R . A . , M a t t Larson: D N S Security Introduction and
Requirements. R F C 4033. M a r c h 2005. doi :10.17487/RFC4033.

[26] S . J . M . Steffann, R . v. R . , Iljitsch van Bei jnum: A Compar ison of IPv6-over-IPv4
Tunnel Mechanisms. R F C 7059. November 2013. doi :10.17487/RFC7059.

[27] Srisuresh, P. ; Tsirtsis, G . : Network Address Translat ion - P ro toco l Translat ion
(N A T - P T) . R F C 2766. February 2000. doi :10.17487/RFC2766.

44

http://www.litech.org/tayga/
https://tools.ietf.org/html/draft-ietf-v6ops-nat64-deployment-03
http://www.ntop.org/products/packet-capture/pf_ring/

[28] Touch, D . J . D . : Upda ted Specification of the IPv4 I D F ie ld . R F C 6864. February
2013. doi :10.17487/RFC6864.

[29] Viagenie: Ecdysis: open-source implementat ion of a N A T 6 4 gateway.
Retrieved from: https://ecdysis.viagenie.ca/

[30] Vrbanec, M . : Packaging kernel modules/drivers using D K M S . 2015.
Retrieved from: https:
/ / sch.neide.blog/2015/08/ 10/packaging-kernel-modulesdrivers-using-dkms/

[31] xHi re : WrapSix .
Retrieved from: https://www.wrapsix.org/

[32] X i n g L i , C . B . , Fred Baker: I P / I C M P Translat ion A l g o r i t h m . R F C 6145. A p r i l 2011.
doi :10.17487/RFC6145.

[33] X i n g L i , C . H . M . B . C . B . , Mohamed Boucadair : IPv6 Addressing of I P v 4 / I P v 6
Translators. R F C 6052. October 2010. doi :10.17487/RFC6052.

[34] Y i l m a z , G . : How do N A T 6 4 and D N S 6 4 work?
Retrieved from: http:
/ / r t odto.net/how-do-nat64-and-dns64-work-in-ipv6-world-and-srx-config/

45

https://ecdysis.viagenie.ca/
http://sch.neide.blog/2015/
https://www.wrapsix.org/
http://odto.net/how-do-nat64-and-dns64-work-in-ipv6-world-and-srx-config/

Appendix A

U D P traffic measured by
P F _ R I N G on Cisco 2911 IOS
15.3(3)M6

100
200 400 600 800 1000

Packet length [Bytes]

1200 1400

(b) Average packet per second

Figure A . l : U D P traffic measured by P F R I N G on Cisco 2911 IOS 15.3(3)M6

46

Appendix B

N E T X NAT64 documentation

Copy of the created N A T 6 4 documentation for router N E T X available at
ht tps: / /docs.netx.as/ .

Command reference

For Stateful N A T 6 4 (R F C 6146) the N E T X platform uses Joo l developed by N I C M E X I C O
and Tecnologico de Monterrey

Joo l is integrated into the N E T X platform using v i r tua l network namespace. After you
create a new N A T 6 4 instance, the following v i r tua l topology is created.

NetX router

The Joo l system is integrated into the netc interface. A l l N A T 6 4 related commands are
available in ipv6 nat64 context.

Instance

Instance command creates a new v i r tua l network namespace wi th a Joo l instance. For
communicat ion between regular network namespace and Jool 's network namespace, v i r tua l
interfaces are used, which need to be addressed.

netx# ipv6 nat64 instance <NAT64 prefix> <IPv6 P2P subnet> <IPv4 P2P subnet>
netx# no ipv6 nat64
netx# show ipv6 nat64
netx# show ipv6 nat64 session
netx# show ipv6 nat64 stats

47

https://docs.netx.as/

For example:

netx# ipv6 nat64 instance 64:ff9b::/96 2001:db8:0:64::/64 192.0.64.0/30
netx# show ipv6 nat64
Stateful NAT64 instance i s runnig
Is enabled: Yes
NAT64 prefix: 64:ff9b::/96
Pool4: not set. P2P address i s used!
BIB Jools entry counts: TCP 0, UDP 0, ICMP 0

The first command argument is a N A T 6 4 prefix. It is possible to use W e l l - K n o w n prefix
64:ff9b::/96 or any other prefix w i th length /96 . A static route to the Jool 's v i r tua l network
namespace is automatical ly created for the selected N A T 6 4 prefix.

The second argument is an IPv6 subnet, that is used for addressing the P 2 P network
between namespaces.

The th i rd argument is an IPv4 subnet, that is used for addressing the P 2 P network
between namespaces.

In this step, N A T 6 4 is already running, and translations are taking place. For transla
t ion, the IPv4 address used on the P 2 P l ink between the namespaces is used. However, the
number of usable ports is l imi ted (61001 to 65535) therefore it is advisable to add an IPv4
pool.

show ipv6 nat64 displays information about nat64. Displays whether the instance and
the v i r tua l network namespace are running and i f it is enabled. Instance and the v i r tua l
network namespace can be running but can be manually disabled v i a ipv6 nat64 options
manually-enabled false, no ipv6 nat64 destroys the instance a deletes N A T 6 4 configura
t ion. Manua l ly disabling is good for temporary disabling the N A T 6 4 without losing current
configuration.

Furthermore, you can see i f the IPv4 pool is used and how many addresses are available
in the pool . If an IPv4 pool is configured the commands check i f a proper route is installed.

Pool4: not set. P2P address i s used!

vs

Pool4: 80.254.236.128/25
Pool4 route inserted: Yes

The last line of the show command displays the current number of entries i n the B I B
table. The number of records = number of static records + number of currently opened
connections.

show ipv6 nat64 session shows currently active sessions/connections.
show ipv6 nat64 stats show some N A T 6 4 stats.

I P v 4 pool

Adds a poo l of IPv4 address for translating IPv6 sources.

netx# ipv6 nat64 pool4 <ipv4 pool>
netx# no ipv6 nat64 pool4 <ipv4 pool>
netx# show ipv6 nat64 pool4

18

For example:

netx# ipv6 nat64 pool4 192.0.64.128/25

A static route to the Jool 's v i r tua l network namespace is automatical ly created for the
selected IPv4 pool.

show ipv6 nat64 pool4 shows IPv4 addresses i n the pool i n detai l as Joo l internally
manages them.

B I B

B i n d i n g Information Base (BIB) is a table that keeps a b inding between a source IPv6
transport address and a source IPv4 transport address. Entries to the table are dynamical ly
inserted based on active connections. It is also possible to add a static record to the table
and create a permanent binding. A static record is used i f a connection from the IPv4
network needs to be established without prior communicat ion — an analogy of IPv4 port
forwarding.

netx# ipv6 nat64 bib <ipv4 transport address> <ipv6 transport address>
netx# no ipv6 nat64 bib <ipv4 transport address> <ipv6 transport address>
netx# show ipv6 nat64 bib

For example:

netx# ipv6 nat64 bib 192.0.64. 129:80 2001:db8 0:42::5.80
netx# ping 64:ff9b::8.8.8.8
netx# show ipv6 nat64 bib
[Static TCP] 192.0.64.129*80 - 2001:db8:0:42: 5*80
[Static UDP] 192.0.64.129*80 - 2001:db8:0:42: 5*80
[Static ICMP] 192.0.64.129*80 - 2001:db8:0:42 :5#80
[Dynamic ICMP] 192.0.64.5*606 - 2001:db8:0:64 :1*16363

B.0.1 Jool's instance options

Mantains subset of supported Jool 's instance options.
Supported options are:

• address-dependent-filtering

• drop-externally-initiated-tcp

• drop-icmpv6-info

• f-args

• handle-rst-during-fin-rcv

• icmp-timeout

• logging-bib

• logging-session

• manually-enabled

• maximum-simultaneous-opens

49

• mtu-plateaus

• override-tos

• source-icmpv6-errors-better

• tcp-est-timeout

• tcp-trans-timeout

• tos

• udp-timeout

• zeroize-traffic-class

The option meanings are listed i n the official Joo l documentation h t tps : / /www. joo l .mx/en /us r -
flags-global.html

B . l N E T X N A T 6 4 basic tutorial

This example shows a simple configuration that connects IPv6 only network wi th the rest of
the Internet. IPv4 only hosts are s t i l l reachable through N A T 6 4 A F T R running on N E T X
router.

Whenever an IPv6 host wants to contact a host on the Internet, it asks D N S 6 4 for
address translation. If the D N S 6 4 server detects that the requested service does not have
a matching A A A A record, the response is created by concatenation of N A T 6 4 prefix and
queried host IPv4 address. A l l hosts now seem to have IPv6 connectivity. The used D N S 6 4
server in this example is public Google D N S 6 4 server 2001:4860:4860::64.

D N S resolution must take place before work with IP literals. Some applica
tions with hard-coded IPv4 literal could have problems.

There is also a static record i n the B I B table so that a web server inside the internal
IPv6 only network is also available for external IPv4 only clients.

50

https://www.jool.mx/en/usr-

Topology

www4.fit.vutbr.cz

Address plan

N E T X router uses the following interfaces and addresses:

• Internet connectivity: interface gel, 80.254.236.1/30 2a07:6881:0:l : : l /64

• L o c a l IPv6 only network: interface ge3, 2a07:6881:0:2::l/64

• N A T 6 4 prefix: 64:ff9b::/96

• IPv4 pool : 80.254.236.128/25

• P 2 P subnets for N A T 6 4 v i r tua l namespace: 80.254.236.4/30 2a07:6881:0:64::/64

51

http://www4.fit.vutbr.cz

The following commands can be used to set up IP addresses:

! set up gel addresses
netx# interface gel ipv4 address 80.254.236.1/30
netx# interface gel ipv6 address 2a07:6881:0:1::1/64
netx# ipv4 route 0.0.0.0/0 80.254.236.2
netx# ipv6 route ::/0 2a07:6881:0:1::2

! set up tge3 addresses
netx# interface tge3 ipv6 address 2a07:6881:0:2::1/64

H o s t config (L inux)

host* ip addr add 2a07:6881:0:2::2/64 dev enol
host* ip route add ::/0 2a07:6881:0:2 :1
host* cat "nameserver 2001:4860:4860: 64" > /etc/resolv.conf

Basic address, default route and D N S server assignment.

W e b s e r v e r config (L i n u x)

host* ip addr add 2a07:6881:0:2::80/64 dev enol
host* ip route add ::/0 2a07:6881:0:2::1
host* cat "nameserver 2001:4860:4860::64" > /etc/resolv.conf

Basic address, default route and D N S server assignment.

N E T X N A T 6 4 config

N A T 6 4 instance creation

netx* ipv6 nat64 instance 64:ff9b::/96 2a07:6881:0:64::0/64 80.254.236.4/30

IPv4 pool adding

netx* ipv6 nat64 pool4 80.254.236.128/25

T h e pool4 subnet has to be properly routed towards the N E T X router.

Static B I B record for webserver adding

netx* ipv6 nat64 bib 80.254.236.129:80 2a07:6881:0:2::80.80

Webserver is now reachable v ia 80.254.236.129.

52

Veri f i ca t ion

Instance verification

netx# show ipv6 nat64
Stateful NAT64 instance i s runnig
Is enabled: Yes
NAT64 prefix: 64:ff9b::/96
Pool4: 80.254.236.128/25
Pool4 route inserted: Yes
Pool4 Jools IPv4 counts: TCP 128, UDP 128, ICMP 128
BIB Jools entry counts: TCP 1, UDP 1, I CMP 1

D N S 6 4 verification

host# dig AAAA +noall +answer www4.fit.vutbr.cz
www4.fit.vutbr.cz. 14399 IN CNAME tereza.fit.vutbr.cz.
tereza.fit.vutbr.cz. 14399 IN AAAA 64:ff9b::93e5:916

traceroute6 verification

host# traceroute6 www4.fit.vutbr.cz
traceroute to www4.fit.vutbr.cz (64:ff9b::93e5:916), 30 hops max, 80 byte
1 2a07:6881:0:l::1 (2a07:6881:0:1::1) 0.175ms 0.163ms 0.152ms
2
3
4
5
6
7
8
9
10
11

2a07:6881:0:64::2 (2a07:6881
64:ff9b
64:ff9b
64:ff9b
64:ff9b
64:ff9b
64:ff9b
64:ff9b
64:ff9b
64:ff9b

50fe:ec05 (64:ff9b
50fe:ec01 (64:ff9b
b901:1904 (64:ff9b
93e5:fc71 (64:ff9b
93e5:fd35 (64:ff9b
93e5:fd38 (64:ff9b
93e5:fd3b (64:ff9b
:93e5:feda (64:ff9b
:93e5:916 (64:ff9b:

0:64::2) 0.336 ms 0.339 ms 0.280 ms
50fe:ec05) 0.265 ms 0.269 ms 0.252 ms
50fe:ec01) 0.431 ms 0.423 ms 0.415 ms
b901:1904) 0.380 ms 0.351 ms 0.339 ms
93e5:fc71) 1.993 ms 2.583 ms 1.342 ms
93e5:fd35) 0.777 ms 1.141 ms 1.327 ms
93e5:fd38) 0.799 ms 0.812 ms 0.691 ms
93e5:fd3b) 2.993 ms
:93e5:feda) 9.291 ms 9.316 ms 9.445 ms
93e5:916) 0.546 ms 0.510 ms 0.513 ms

1 L o c a l network gataway
2 Joo l network namespace interface
3 Regular network namespace interface (64:ff9b::80.254.236.5)
4 Internet network gateway (64:ff9b::80.254.236.1)

53

http://www4.fit.vutbr.cz
http://www4.fit.vutbr.cz
http://tereza.fit.vutbr.cz
http://tereza.fit.vutbr.cz
http://www4.fit.vutbr.cz
http://www4.fit.vutbr.cz

B I B and session verification

host# wget www4.fit.vutbr.cz

netx# show ipv6 nat64 bib
[Static TCP] 80.254.236.129*80 - 2a07:6881:0:2::80#80
[Dynamic TCP] 80.254.236.129*62916 - 2a07:6881:0:2::2#54228
[Static UDP] 80.254.236.129*80 - 2a07:6881:0:2::80*80
[Static ICMP] 80.254.236.129*80 - 2a07:6881:0:2::80*80
[Dynamic ICMP] 80.254.236.191*60559 - 2001:db8:111::2*14787

rt-netx-d# show ipv6 nat64 session
TCP

UDP

ICMP

rt-netx-d# show ipv6 nat64 session
TCP

(V4_FIN_V6_FIN_RCV) Expires i n 00:01:40.949
Remote: tereza.fit.vutbr.cz#http 2a07:6881:0:2::2*54228
Local: 80.254.236.129*62916 64:ff9b::93e5:916*80

UDP

ICMP

Expires i n 00:00:59.494
Remote: 147.229.9.22*536702001:db8:111::2*15786
Local: 80.254.236.188*5367064:ff9b::93e5:916*15786

54

http://www4.fit.vutbr.cz

Appendix C

Content of the attached data
carrier

I— t h e s i s - l a t e x

I — measuring

I— sources

I— n e t x - d o c s

I— n e t x - n e t c

' — netx -rpm

For more information, see the R E A D M E files i n each folder.

55

