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Abstract
This thesis is focused on the challenges of the transition between IP protocol version 4
and IP protocol version 6. The transition can be solved by many transition mechanisms
and this thesis thoroughly describe Stateful NAT64 transition mechanism. The thesis aims
to test various implementations of NAT64 and find a suitable implementation for NETX
router. The goal is to find an implementation that would achieve traffic throughput of
about 10Gbps.

Several NAT64 implementations were evaluated in a testbed environment. Iperf and
PF_Ring tools were used for throughput examination. Several different network traffic
types have been measured to show the performance impact of each of the tested implemen-
tations.

The results showed that the most suitable implementation of NAT64 is Jool. Jool
reached the required throughput, its development is still active and offers other advanced
features, thus Jool was integrated into the NETX router. A command line extension for
manipulating Jool instance was designed, implemented and integrated to NETX command
line. Additionally, a package distribution process was developed through the RPM package
system to fit the NETX build system.

The thesis outcome is full support of NAT64 transition mechanism in NETX platform
achieving close to 10 Gbps.

Abstrakt
Tato práce se zabývá problematikou přechodu mezi IP protokolem verze 4 a IP protokolem
verze 6. Přechod je možné řešit více mechanismy a tato práce je zaměřená na přechodový
mechanismus Stateful NAT64. Cílem práce je otestovat různé implementace NAT64 a najít
vhodnou implementaci pro router NETX. Za cíl bylo stanoveno najít implementaci, která
bude dosahovat propustnosti 10Gbps.

Několik NAT64 implementací bylo zkoumáno v testovacím prostředí. Měření probíhalo
pomocí nástrojů Iperf a PF_Ring. Bylo změřeno několik různých druhů síťového provozu
tak, aby bylo z výsledku patrné, jaký výkonnostní dopad má každá z testovaných imple-
mentací.

Z naměřených výsledků Jool vyšlo jako nejvhodnější NAT64 řešení. Jool splnil požadovanou
propustnost a zároveň kromě stále aktivního vývoje nabízí i další pokročilé vlastnosti. Jool
byl integrován do routeru NETX. Byla navrhnuta struktura příkazové řádky pro manipulaci
s Jool instancí, která byla posléze implementována jako rozšíření NETX příkazové řádky.
Dále byl vytvořen postup distribuce potřebných balíčku skrze balíčkovácí systém RPM, tak
aby zapadl do automatizovaného systému platformy NETX.

Výsledkem práce je plná podpora přechodového mechanismu NAT64 na platformě NETX
dosahující propustnosti blízké 10 Gbps.
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Chapter 1

Introduction

This thesis deals with the Stateful NAT64 transition mechanism, which acts as a gateway
between the old IP protocol version 4 (IPv4) and the new IP protocol version 6 (IPv6).

IPv6 solves some IPv4 scalability problems (insufficient address space), but at the cost of
backward compatibility. This creates a new challenge to migrate the traditional widespread
IPv4 network to the new protocol. The flag day1 option turned out to be unrealistic, so it
was necessary to figure out how to make the transition gradually. In principle, there are two
solutions: Run both protocols simultaneously or run only one and offer the second protocol
as a service on top of the first one. In my thesis, I deal with the second variant, when
the network is running IPv6, and network hosts can still reach IPv4 services in a fashion
that everything works transparently and the hosts have not recognized the difference. One
mechanism that meets these requirements is called Stateful NAT64, and you can read more
about it in chapter 2.

Stateful NAT64 is a software that translates packets from IPv6 to IPv4 and vice versa.
NAT64 can be part of a network device, or it is possible to run one of the open-source
implementations. In my thesis, I deal with open-source NAT64 implementations, that are
described in chapter 3. At the same time, I conducted a small survey of NAT64 support
by well-known network router vendors.

Chapter 4 describes measurement methodology. The goal is to measure open-source
implementations of NAT64, examine their throughput, and find their advantages and weak-
nesses. This work tries to find a solution, that can achieve 10Gbps throughput.

In chapter 5, based on the measured results, a NAT64 implementation will be selected
and integrated into the NETX router. The NETX is a special Linux distribution, that is
being developed at BUT. This Linux distribution runs on specialized hardware and servers
like a router in a network. The goal is to find appropriate NAT64 solutions for NETX
router and make NETX able to serve as the NAT64 gateway in IPv6 only networks.

Chapter 6 deals with optimizing the chosen solution. There were several bottlenecks
found in an analysis. There is also a description of how these bottlenecks have been opti-
mized and how they impacted the overall performance of the solution.

Chapter 7 summaries and discuss future work.

1Flag day – A global shutdown of one protocol and turning on the other at a specific moment.
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Chapter 2

Transition mechanisms and NAT64

If a network administrator wants to deploy IPv6 in its network while sustaining the avail-
ability of IPv4 only services, there are following options [24].

∙ Dual-Stack — Run both protocols independently of each other in parallel.

∙ Translating — Run only one protocol and translate packets from the other one.

∙ Tunneling — Run only one protocol and encapsulate packets from the other one.

Dual-Stack

With Dual-Stack or Dual IP Layer Operation, we create two independent logical networks
on the top of one physical topology. Each node in the network then can natively com-
municate on both protocols based on its preference. This duality has an advantage that,
for example, if a problem with IPv6 network occurs, then the problem may not affect
the IPv4 network. Thanks to this, IPv6 deployment can be done in full operation with-
out impacting network performance. The major drawback of this solution is management,
maintenance, and troubleshooting. Routing protocol instances, firewall rule bases, layer 2
security features, and others often require individual management. The maintenance and
troubleshooting need to be done twice. For example, if there is an issue with the network,
one of the first questions is whether the issue is IPv4, IPv6 or both related.

The Dual-Stack solution brings a full-fledged native experience from both protocols,
without the need for compromise, but at the expense of difficult administration. Thanks to
these features, the Dual-Stack is suitable for example in data centers, where high availability
is needed, and it is the recommended approach by IETF RFC 6180 [11].

Address family transition

In this setup, we use just one address family in the core network, but we also offer a gateway
(AFTR1), where packets from the other protocol are passed to their native network and
vice versa. The other protocol’s packet can be encapsulated into the core network protocol
packets (Figure 2.1a) and then the AFTR de-encapsulates these packets and passes them
to their native network, or the packets can be in the core network protocol format, and the
AFTR translates them to the other protocol format (Figure 2.1b). The question is whether
to run the core network on IPv4 or IPv6.

1AFTR – Address Family Transition Router. In the context of this work, the term AFTR is used for
both tunneling and translating gateways.
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Figure 2.1: Difference between packet encapsulation and translation. Protocol A is the core
network protocol.

If we already have an existing IPv4 network and we want to offer IPv6 features to
network hosts, running the IPv4 protocol as the core protocol seems to be an option. In
practice, it is easy to put it into operation, and there exist many mechanisms for this
method like 6rd, 6in4 or others, see RFC 7059 [26]. However, a problem with the lack of
IPv4 addresses and the need for NAT in the network still persist. Also, if IPv6 adoption
will increase in the future, the importance and burden of AFTR will increase. For these
reasons, running the core IPv4 network and AFTR for IPv6 is not a long-lasting solution.

In contrast, IPv6 core network will solve the problem with the lack of IPv4 addresses.
With the assumption that IPv4 traffic will dwindle in the future until it reaches the point
where AFTR and NAT will not be needed anymore.

Compared to Dual-Stack, running only one protocol in the core network is easier to
manage. On the other hand, it is always necessary to make several compromises with the
protocol that is provided as a service. We can not afford these compromises, for example,
in data center networks with an emphasis on high availability, but for internet service
providers, affected by lack of IPv4 addresses, this could be a good choice for future growth.

2.1 Stateful NAT64
Stateful NAT64 belongs to the transition mechanisms that translates IPv6 packets to IPv4
and vice versa.

The IPv6 only network and the NAT64 transition mechanism are especially attractive
for Internet service providers. It should be attractive for providers that are hitting their
limits due to lack of IPv4 addresses. This solution is very similar to carrier-grade NATs.
Network with carrier-grade NAT is a situation where providers are unable to allocate a
single public IPv4 address to each customer, so the address translation is not performed at
the customer’s network boundary, but instead, a large central NAT is done at the provider’s
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network boundary. Central NAT becomes a critical point of the provider’s network and a
single point of failure. The end-to-end principle is lost for good.

In this case, NAT64 would replace the carrier-grade NAT with the expectation that,
in the case of greater adoption of IPv6, the importance of NAT64 would be subdued.
Compared to carrier-grade NAT, Stateful NAT64 should be less resource intensive by the
traffic that could be already made over protocol IPv6.

The word NAT64 may be interpreted in several ways. In my work, unless otherwise
stated, I am concerned with the Stateful NAT64 variant as defined in RFC 6146 [23].

2.1.1 Mapping IPv4 address in IPv6 address

Before we describe NAT64 in detail, the basics of mapping IPv4 to IPv6 address needs to
be clarified.

One of the benefits of IPv6 protocol is its huge address space. The address space is so
much larger than the IPv4 address space that we can take an IPv6 address prefix and make
it encode every single IPv4 address.

The IPv4 address is 32bits long, and IPv6 address is 128 bits long. It is possible to
concatenate a 96bit IPv6 prefix with an IPv4 address and make an IPv6 address, that
maps an IPv4 address see listing 2.1.

+--+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|PL| 0-------------32--40--48--56--64--72--80--88--96--104---------|
+--+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| v6(96) prefix | v4(32) |
+--+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 64:ff9b:: | 192.0.2.1 |
+--+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Listing 2.1: A diagram indicating IPv4 address mapping in IPv6
64:ff9b::/96 + 192.0.2.1 = 64:ff9b::192.0.2.12 = 64:ff9b::c000:201

This approach is not the only one how to map an IPv4 address in IPv6 address, but it
is the one that is used with the NAT64. More different approaches and information about
mapping IPv4 address in IPv6 address can be found in RFC 6052 [33]. The importance of
these addresses will be explained in the following section 2.1.2.

The IPv6 prefix can be allocated from address space of an internal network – Network-
Specific prefix or Well-Known Prefix 64:ff9b/96 can be chosen [33].

Choosing the Well-Known Prefix has some benefits. It is a simple solution that does
not require concessions in an address plan. Configurations are also simplified as NAT64
components already have this prefix superseded. You can use public DNS64 servers that
use Well-know prefix, for example, Google DNS64 server [7]. The role of DNS64 will be
described in the following section 2.1.3. There are also some restrictions with the Well-
Known Prefix as well described in RFC 6052 [33], but they are not fundamental to this
work.
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Internal  
IPv6 network

External  
IPv6 network

External  
IPv4 network

Stateful
NAT64

PC A
2001:db8:a::1

PC C
2001:db8:c::1

PC B
192.0.2.1

Figure 2.2: Network topology with Stateful NAT64. Communication between host A and
C is native over protocol IPv6. Packets between host A and B are translated on NAT64
gateway.

2.1.2 Basic principles of Stateful NAT64

Figure 2.2 shows a simplified diagram of a network with NAT64 gateway. Host A is con-
nected to an internal IPv6 only network. The internal network has connectivity to the
external network, for example, the internet. The external network is logically divided into
two parts. First part is a network with IPv6 connectivity and the second part is a network
without IPv6 connectivity – IPv4 only network. In the external network there two hosts.
Host B is connected to IPv4 only network, host C has IPv6 connectivity.

When host A wants to communicate with host C, the communication is native over
protocol IPv6.

When host A wants to send a packet to host B, it misses a destination IPv6 address.
Host B has no IPv6 connectivity, therefore no IPv6 address. In this case, host B IPv6
connectivity is simulated, and IPv6 address for host B is crafted. The host B IPv4 address
192.0.2.1 is taken and is appended to the Well-know NAT64 prefix 64:ff9b::/96. The result is
64:ff9b::192.0.2.1 The packet with this destination address is routed via an internal routing
protocol to the NAT64 gateway. NAT64 gateway extracts the destination IPv4 address from
the crafted destination IPv6 address. A destination port on a higher layer is preserved. The
source address and port are chosen in the same way as a regular IPv4 NAT does. Finally,
the translated IPv4 packet is forwarded to the external network. See figure 2.3.

2Please note the 64:ff9b::192.0.2.1 syntax. It is a simplified syntax, that makes the address more readable
and easy to construct. The IPv4 part of the address will be expanded to the hexadecimal form.
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PC A
2001:db8:a::1

PC B
192.0.2.1

src:147.16.2.1:2248 
dst:192.0.2.1:80 

src: [2001:db8:a::1]:1024 
dst: [64:ff9b::192.0.2.1]:80 

1 2

NAT64 prefix: 64:ff9b::/96
IPv4 pool: 147.16.2.0/24
 
Active binding:
[2001:db8:a::1]:1024 - 147.16.2.1:2248

Stateful
NAT64

Figure 2.3: Packet passage through the NAT64 gateway. IPv6 packet from PC A is trans-
lated by NAT64 before is forwarded to PC B. A new connection session on NAT64 is
created.

When host B responds to host A, an IPv4 packet is forwarded to the NAT64 gateway.
The gateway searches for a session in the state table that matches incoming packets address
and port. If the record is found, the destination IPv6 address and destination port are taken
from the record. Source IPv6 address is crafted again from the NAT64 prefix and source
IPv4 address. Translated IPv6 packet is forwarded to host B.

NAT64, as defined in RFC 6146 [23], can translate packets, that carries TCP, UDP and
ICMP protocols. The above-described translation process has been simplified and did not
neglect, for example, work with fragmentation and translation of ICMP messages. Further
information about translating packets can be found in RFC 6145 [32].

2.1.3 Role of DNS64 or 464XLAT

In the NAT64 description above, we assumed that the computer automatically creates
an IPv6 packet with a transformed IPv4 address when communicates with an IPv4 only
network. However, this behavior is not self-acting and needs to be achieved. Two scenarios
can occur. The end host network is aware of the existence of the NAT64 gateway and sends
the IPv4 - IPv6 translated packets directly towards the NAT64 gateway, or the end host
network is not aware of the existence of the NAT64 gateway, but the network pretends,
that all services are reachable over IPv6.

Let’s start with the first variant. We need a component that accepts an IPv4 packet and
translates it into an IPv6 packet with a synthesized IPv4 in IPv6 address. Then the packet
can be sent via the IPv6 only internal network towards the NAT64 gateway. Back then a
component that receives the translated packet from the NAT64 gateway and translates it
back to the IPv4 packet. The component is called CLAT, and it is a part of a technique
called 464XLAT [17]. 464XLAT combines Stateful NAT64 and a component that could be
called NAT46. In 464XLAT terminology, it is a PLAT and a CLAT. The operating principle
is shown in Figure 2.4. The CLAT component could be part of an operating system of a
device or could be integrated into SOHO3 router of end users network.

3SOHO – Small office/home office
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PC A
2001:db8:a::1 

192.0.46.1 

PC C 
2001:db8:c::1 

src: [2001:db8:a::1]:1024 
dst: [2001:db8:c::1]:80 

2

NAT64 prefix: 64:ff9b::/96
IPv4 pool: 147.16.2.0/24
 
Active binding:
[2001:db8:a::46]:1024 - 147.16.2.1:2248

PLAT 
(NAT64) 

CLAT 
(NAT46) 

PC B
192.0.2.1

src:192.0.46.1:1024 
dst:192.0.2.1:80 

src:147.16.2.1:2248 
dst:192.0.2.1:80 

src: [2001:db8:a::46]:1024 
dst: [64:ff9b::192.0.2.1]:80

NAT64 prefix: 64:ff9b::/96
 
Active binding:
192.0.46.1:1024 - [2001:db8:a::46]:1024

1

2 3 4 5

2 3

Internal IPv6 only
network

External 
IPv6 network

External 
IPv4 network

Customers network ISP network Internet

1

Figure 2.4: 464XLAT example network diagram. Host A and Host B communicate with
each other natively over IPv6 protocol - blue packet numbers. Host B has no IPv6 con-
nectivity. Host A crafts IPv4 packet for host B and forward it to CLAT. CLAT translates
the IPv4 packet to IPv6 and forwards the packet to the PLAT through the ISP (Internet
Service Provider) IPv6 only network. PLAT translates the packet back to IPv4 and
forwards it to host C.

The second variant uses a DNS64 [22]. As the name implies, it is a recursive DNS4 server
with special functionality. If a domain name translation request arrives at the server, and
the server finds the corresponding AAAA5 record to the domain name, it sends the response
to the querier in the same manner as the regular recursive DNS server does. If the domain
name does not have a corresponding AAAA record, it is a service without IPv6 connectiv-
ity, and DNS64 synthesizes the answer. DNS64 resolves the corresponding A6 record and
creates AAAA from it by joining the pre-defined IPv6 prefix and the IPv4 address from
the A record. It is the same method described in Section 2.1.1. For end host perspective,
each domain name appears to have the corresponding AAAA record. If a domain query is
preceded before each connection, the host works in the belief that each server is available
via IPv6. This assumes the disadvantage that if the DNS query does not take place before
work with IP address literals, the system fails. There may be problems with applications
that have straight-encoded IPv4 literals instead of domain names. Another disadvantage is
the manipulation with DNS records. Due to this manipulation, DNSSEC7 is violated. In
the way that a user delegates the DNSSEC check to the DNS64 server, the problem does
not occur, but if the user wants to check the synthesized record itself, the corresponding
DNSSEC signature will be missing, and the validation fails. On the other hand, trans-

4DNS – Domain Name System
5AAAA – IPv6 address record
6A – IPv4 address record
7DNSSEC –Domain Name System Security Extensions. Protection against malicious manipulation with

DNS records based on cryptography and chains of trust [25].
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parency is a big advantage. No extra configuration is required on the end host. The only
condition is a proper DNS server (DNS64) address set up.

Both DNS64 and 464XLAT can be combined. In the Internet-Draft Deployment Guide-
lines in Operator and Enterprise Networks of J. Palet Martinez [16] the various combina-
tions of these techniques and their advantages and disadvantages are well described.
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Chapter 3

Available NAT64 implementations

In my work, I am looking for suitable NAT64 solution for integration into NETX router.
Therefore, this chapter is primarily dedicated to existing NAT64 implementations. At the
same time, I conducted a small survey of NAT64 support by well-known network equipment
vendors.

3.1 Open-source implementations of Stateful NAT64
After research of existing open-source NAT64 solutions, I found four candidates – Tayga
[15], Jool [12], WrapSix [31] and Ecdysis [29]. I eliminated the Ecdysis solution as it is a
kernel-space implementation where kernel support is important, and this solution does not
seem to be updated for several years, therefore without the support of the current kernels.
WrapSix seemed to be a promising solution, but after several attempts, I did not get it
into a working state. This left us with two solutions –Tayga and Jool both described in the
following sections.

For each solution, there is a configuration example. The configuration is based on the
topology that is shown in Figure 3.1. The same topology and configuration are used for
testing in chapter 4.

pc-gen pc-col

NAT64 prefix:
 
2001:db8:1::/96 - Tayga
2001:db8:2::/96 - Jool 
2001:db8:4::/96 - JoolNS 

rtr-netx

192.168.111.0/24 192.168.112.0/24

2001:db8:111::/64 2001:db8:112:/64

.1 .1.2 .2

::2 ::2::1 ::1

Figure 3.1: Used topology for NAT64 implementations testing.
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3.1.1 Tayga

Tayga is an out-of-kernel stateless NAT64 implementation for Linux that uses TUN1 driver
to exchange IPv4 and IPv6 packets with the kernel [15].

The information from the official website shows that only one developer manages Tayga
and the last release took place already a couple of years ago. Tayga claims to be fast,
flexible, secure, and easy to install.

Most of these statements could be agreed because they stem from the nature of the
implementation. Tayga runs in user-space and uses a TUN driver for the packet exchange.
Thanks to this approach Tayga does not require its kernel module. Therefore the installation
is easy, and further system updates will be without worry about kernel support. Tayga also
does not demand root rights, which contributes to security. On the other hand, it can be
assumed that implementation in the user space will not achieve the required performance.

Tayga is only a stateless NAT64 implementation, that means it does not overload IP
addresses. For full stateful NAT64 behavior, Tayga needs to be used with common IPv4
NAT. Therefor Tayga is ordinarily used with iptables masquerade2 – SNAT3.

Installation

Source code can be downloaded from official website4. After unpacking the archive, source
code needs to be compiled.

[root@rt-netx-e tayga-0.9.2] ./configure
[root@rt-netx-e tayga-0.9.2] make
[root@rt-netx-e tayga-0.9.2] make install

A directory for persistent storage should be created. Tayga stores NAT64 bindings in
the storage and therefore translations persist potential restarts.

[root@rt-netx-e tayga-0.9.2] mkdir -p /var/db/tayga

Now a configuration file should be created.

[root@rt-netx-e tayga-0.9.2] cat /usr/local/etc/tayga.conf
tun-device nat64
ipv4-addr 192.168.112.3
prefix 2001:db8:1::/96
dynamic-pool 10.64.0.0/16
data-dir /var/db/tayga

Tun-device is a name of a tun device, that will be created below. The ipv4-address
is an IPv4 address dedicated for Tayga. It must not be assigned to any interface. Prefix
is the NAT64 prefix.

Dynamic-pool is a pool of IPv4 addresses. Tayga maps IPv6 source addresses to these
address 1:1. The pool should be big enough to handle all possible request from the IPv6
network. Dynamic map records are valid for 124 minutes after the last matching packet is
seen. This dynamic mapping is stored in the persistent storage.

1TUN – virtual network kernel interface
2Iptables masquerade is an IPv4 NAT implementation in Linux iptables module.
3SNAT – Source Network Address Translation
4http://www.litech.org/tayga/
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Data-dir is the directory with persistent storage, that was created above.
Now it is time to create the TUN interface, and set it up.

[root@rt-netx-e tayga-0.9.2] tayga --mktun # Creates device named NAT64
[root@rt-netx-e tayga-0.9.2] ip link set nat64 up

Next step is to create proper routes. The NAT64 prefix and dynamic-pool have to be
forwarded to the TUN device.

[root@rt-netx-e tayga-0.9.2] ip route add 10.64.0.0/16 dev nat64
[root@rt-netx-e tayga-0.9.2] ip route add 2001:db8:1::/96 dev nat64

When it is done, we can start the Tayga daemon and verify its functionality. We can try
ping PC-COL at address 2001:db8:1::192.168.112.2 from PC-GEN. As we can see from the
Taygas output, a new binding has been created. IPv6 address 2001:db8:111::3 is mapped
to 10.64.205.46 and PC-COL is from PC-GEN reachable.

[root@PC-GEN ~] ping6 2001:db8:1::192.168.112.2
PING 2001:db8:1::192.168.112.2(2001:db8:1::c0a8:7002) 56 data bytes
64 bytes from 2001:db8:1::c0a8:7002: icmp_seq=65 ttl=61 time=0.353 ms

[root@rt-netx-e tayga-0.9.2] tayga -d
starting TAYGA 0.9.2
Using tun device nat64 with MTU 1500
TAYGA’s IPv4 address: 192.168.112.3
TAYGA’s IPv6 address: 2001:db8:1::c0a8:7003
NAT64 prefix: 2001:db8:1::/96
Dynamic pool: 10.64.0.0/16
assigned new pool address 10.64.205.46 (2001:db8:111::3)

3.1.2 Jool

Jool is another NAT64 implementation. It is a kernel space solution, that is being developed
under the auspices of NIC MEXICO. Jool is well documented on his official website and
development is still active. Jool is not just a Stateful NAT64, but it also supports many
other RFCs associated with IPv6 – IPv4 translations.

Because Jool is a kernel space application, working with it is a bit more difficult than
with Tayga. Jool consists of two applications a kernel module and a user-space application,
that manages the kernel module. This makes it more difficult to install and update with
the need to check compatibility with the used Linux kernel.

Jool is a Netfilter module, like for example iptables, and hooks into the prerouting chain.
Because Netfilter is not comfortable with packets changing layer-3 protocols, Jool has its
own forwarding pipeline, which only translating packets traverse [12]. The architecture is
shown in Figure 3.2.
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Figure 3.2: Jool Netfiler architecture. (taken from [12])

As you can see from Figure 3.2 with Jool architecture, Jool skips the forwarding chain.
Skipping the forwarding chain violates the standard packet flow in Linux, resulting in some
constraints. For example, if the router simultaneously filters traffic using rules in iptables,
rules in the FORWARD chain will not apply to NAT64 traffic. In other words, Jool skips
forward rules in iptables, and the NAT64 traffic cannot be filtered in the traditional manner.
This unwanted feature can be circumvented by running Jool in its network namespace. The
setup with a namespace will be described later.

Installation

Installation of Jool depends on a distribution of Linux and Jool version. The following
installation is shown on Centos 7 (NetXOS release 7.5.1804 (Core)) and Jool v4.0.0.

After downloading the Jool, for this example from an official git repository, some de-
pendencies need to be installed.

[root@rt-netx-e Jool] yum install automake kernel-devel kernel-headers
libnl3-devel iptables-devel dkms

The installation is separated for the kernel module and the user-space application. The
userspace application is in usr directory and is build and installed via common build tools.

[root@rt-netx-e Jool] cd usr
[root@rt-netx-e usr] ./autogen.sh
[root@rt-netx-e usr] ./configure
[root@rt-netx-e usr] make
[root@rt-netx-e urs] make install

The kernel module could be installed via Kbuild or DKMS5. The DKMS is more user-
friendly and straightforward and is officially recommended.

[root@rt-netx-e Jool] dkms install .

5DKMS – Dynamic Kernel Module Support. Linux framework/subsystem that manages kernel modules.

13



After successful installation, the kernel module can be inserted into the Linux kernel.

[root@rt-netx-e Jool] modprobe jool

When the kernel module is mode probed, a new Jool instance can be created with the
userspace CLI6 tool. A NAT64 prefix it is the only required parameter, that needs to be
assigned to the instance.

[root@rt-netx-e usr] jool instance add --netfilter --pool6 2001:db8:2::/96

This is a minimal setup, and the connectivity from PC-GEN to PC-COL should be
achieved.

[root@rt-netx-f ~] ping6 2001:db8:2::192.168.112.2
PING 2001:db8:2::192.168.112.2(2001:db8:2::c0a8:7002) 56 data bytes
64 bytes from 2001:db8:2::c0a8:7002: icmp_seq=1 ttl=63 time=0.192 ms

3.1.3 Translating in a virtual network namespace

A network namespace is a Linux feature that allows creating network virtualization. A
network namespace is a set of network interfaces, routing table, Netfilter chains, and other
related components. The default network set up of a Linux machine is also a namespace and
is called a regular namespace. On a single Linux machine, many other network namespaces
can be created. Network interfaces in newly created namespaces can be taken from the
regular namespace, in other words, the physical interfaces from the machine can be assigned
to a namespace. If we want to connect namespaces together, a special virtual pair interface
is used. The virtual pair interface is a pair of two interfaces. One interface from the pair is
assigned to one namespace and the second to another namespace, and these two interfaces
creates a bridge.

To understand the following text, imagine network namespace as a connected virtual
router as shown in Figure 3.3.

Jool namespace

Regular namespace

NetX router

IPv4 networkIPv6 network
toRegularNS

toJoolNS

.2 
::2 

.1 
::1 

172.16.64.0/30 
2001:db8:f::/64 

Figure 3.3: Visualization of an intra-router topology with virtual network namespace. Netx
router is connected with its physical interfaces to the IPv4 and IPv6 network – regular
namespace. Besides the regular namespace, a virtual namespace with a Jool instance exists
– Jool namespace. The two namespaces are connected with a virtual pair interface. Subnet
172.16.64.0/30 and 2001:db8:f::/64 is used for subnetting as noted in the figure.

6CLI – Command line interface
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This kind of virtualization can be used while working with Jool. Jool instance can be
placed into a namespace. This concept will separate the address translation logic from
the router’s core, making it easier to manage. The solution is very similar to Tayga. In
both solutions, there is a virtual interface that accepts a packet for translation a sends it
translated back. The problem with NAT64 traffic filtering is solved because now we can
apply filter rules when the packet is forwarded to the namespace and when it translated
returns.

The configuration is shown below. First, we create a network namespace joolNS and
pair interface toJoolNS and toRegularNS. The toRegularNS interface is added to the newly
created namespace.

[root@rt-netx-e ~] ip netns add joolNS
[root@rt-netx-e ~] ip link add name toJoolNS type veth peer name toRegularNS
[root@rt-netx-e ~] ip link set dev toRegularNS netns joolNS

We set up the toJoolNS interface and add IP addresses.

[root@rt-netx-e ~] ip link set toJoolNS up
[root@rt-netx-e ~] ip addr add 172.16.64.1/30 dev toJoolNS
[root@rt-netx-e ~] ip addr add 2001:db8:f::1/64 dev toJoolNS

Then we switch to the joolNS and similarly set up the toRegularNS interface.

[root@rt-netx-e ~] ip netns exec joolNS bash
[root@rt-netx-e ~] ip link set toRegularNS up
[root@rt-netx-e ~] ip addr add 172.16.64.2/30 dev toRegularNS
[root@rt-netx-e ~] ip addr add 2001:db8:f::2/64 dev toRegularNS

Proper routes need to be created; we forward all traffic from the namespace via the
toRegularNS interface.

[root@rt-netx-e ~] ip route add 0.0.0.0/0 via 172.16.64.1
[root@rt-netx-e ~] ip route add ::/0 via 2001:db8:f::1

When addressing and routing is done a Jool instance can be started and we can exit
the joolNS namespace.

[root@rt-netx-e ~] jool instance add --netfilter --pool6 2001:db8:4::/96
[root@rt-netx-e ~] exit

Now, in the regular namespace, we add a route, that forward NAT64 traffic to the
namespace. Then the connectivity should be secured as shows the ping result.

[root@rt-netx-e ~] ip route add 2001:db8:4::/96 via 2001:db8:f::2

[root@rt-netx-f ~] ping6 2001:db8:4::192.168.112.2
PING 2001:db8:4::192.168.112.2(2001:db8:4::c0a8:7002) 56 data bytes
64 bytes from 2001:db8:4::c0a8:7002: icmp_seq=1 ttl=61 time=0.313 ms

The packet flow is shown in Figure 3.4. If we compare traceroute between native Jool
and namespaced Jool, we can see two extra hops, which corresponds to the packet transfer
between the namespaces.

15



src:172.16.64.2 
dst:192.168.112.2 

src: 2001:db8:111::3 
dst: 2001:db8:4::192.168.112.2 

1

2
3

4

Jool namespace

Regular namespace

NetX router

IPv4 networkIPv6 network

Figure 3.4: Packet passing in a topology with NAT64 translation inside a virtual network
namespace. The blue IPv6 packet arrives at the NETX router. Regular network namespace
forwards the packet to the Jool network namespace, where the translation is done. The
translated red IPv4 packet is returned from the Jool network namespace and passed to the
IPv4 network.

[root@rt-netx-f ~] traceroute6 2001:db8:2::192.168.112.2
traceroute to 2001:db8:2::192.168.112.2 (2001:db8:2::c0a8:7002),
1 2001:db8:111::1 (2001:db8:111::1) 0.247 ms 0.230 ms 0.240 ms
2 2001:db8:2::c0a8:7002 (2001:db8:2::c0a8:7002) 0.258 ms 0.260 ms 0.259 ms

[root@rt-netx-f ~] traceroute6 2001:db8:4::192.168.112.2
traceroute to 2001:db8:4::192.168.112.2 (2001:db8:4::c0a8:7002),
1 2001:db8:111::1 (2001:db8:111::1) 0.254 ms 0.198 ms 0.208 ms
2 2001:db8:f::2 (2001:db8:f::2) 0.412 ms 0.415 ms 0.407 ms
3 2001:db8:4::c0a8:7002 (2001:db8:4::c0a8:7002) 0.451 ms 0.428 ms 0.427 ms
4 2001:db8:4::c0a8:7002 (2001:db8:4::c0a8:7002) 0.453 ms 0.461 ms 0.418 ms

3.2 Stateful NAT64 support by well-known network router
vendors

This section describes a list of well-known network router vendors and their NAT64 support.
The list of manufacturers was created based on personal experience and references.

Direct Stateful NAT64 support was investigated. If NAT64 was not available, at least
NAT-PT support was sought. NAT-PT is a deprecated predecessor of Stateful NAT64 [27].
Stateful NAT64 is a reduced NAT-PT algorithm, and therefore the core of Stateful NAT64
is included in NAT-PT.

For a device that I could personally try out, an example of configuration is given.
The information found is from commonly available manufacturers websites and is valid

as of March 19, 2019.

Cisco

According to data from the Cisco feature navigator, Stateful NAT64 is supported on higher
IRS series and ASR routers [4].
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Cisco also supports NAT-PT. The NAT-PT support is through several router series
with IOS 12.3 and higher. During my work, I had the opportunity to try a Cisco router
2911 with IOS 15.3. An example of NAT64 (NAT-PT) configuration can be seen in 3.1.

no ipv6 cef
ipv6 unicast-routing
!
interface GigabitEthernet0/0.111
encapsulation dot1Q 111
ipv6 address 2001:DB8:111::4/64
ipv6 enable
ipv6 nat

!
interface GigabitEthernet0/0.112
encapsulation dot1Q 112
ip address 192.168.112.4 255.255.255.0
ipv6 enable
ipv6 nat

!
!
ipv6 nat v6v4 source list NAT64_SRC_IPV6_ACL interface g0/0.112 overload
ipv6 nat prefix 64:ff9b::/96 v4-mapped NAT64_DST_IPV6_ACL
!
ipv6 access-list NAT64_SRC_IPV6_ACL
permit ipv6 2001:DB8:111::/64 any

!
ipv6 access-list NAT64_DST_IPV6_ACL
permit ipv6 any 64:ff9b::/96

Listing 3.1: Example of Cisco NAT64 (NAT-PT) configuration

Address translation is allowed for traffic with a source address in 2001:DB8:111::/64
subnet and destination address with 64:ff9b::/96 prefix. The translation is done on
the GigabitEthernet0/0.112 interface, with its IPv4 address – without a pool. IPv6
CEF7 must be turned off for proper NAT64 functionality. The ipv6 enable and ipv6 nat
commands must be specified at the participating interfaces.

This router was also included in the performance testing.

Juniper

Juniper supports Stateful NAT64 on SRX [13] and MX [14] series. During my work, I had
the opportunity to try an SRX 240 Services Gateway. An example of NAT64 configuration
can be seen in 3.2.

7Cisco Express Forwarding – optimizes network performance and scalability for networks with large and
dynamic traffic patterns [3].
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nat {
source {

rule-set trust-to-untrust {
from zone trust;
to zone untrust;
rule nat64src {

match {
source-address 2001:db8:0:0::/64;
destination-address 0.0.0.0/0;

}
then {

source-nat {
interface;

}
}

}
}

}
static {

rule-set nat64 {
from zone trust;
rule ipv6-clients1 {

match {
destination-address 64:ff9b::/96;

}
then {

static-nat {
inet;

}
}

}
}

}
}

Listing 3.2: Example of Juniper SRX NAT64 configuration [34]

The translation takes place in two steps. In the first step, the static destination NAT
is executed - the destination IPv4 address is derived from the destination IPv6 address.
In the second step, the dynamic source NAT is executed. An IPv6 transport address is
replaced by the outgoing interface IPv4 address and dynamic port.

Hewlett Packard Enterprise (HPE)

Unfortunately, I haven’t found a reliable way to verify NAT64 support with HPE. A tool
like a feature navigator was not found. I haven’t encountered the NAT64 keyword when
I search the company website and command references. However, commands for NAT-PT
configuration have been found in the command reference for MSR series routers [8]. In any
case, insufficient documentation was found.
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Huawei

Huawei supports NAT64 on NE40E series routers [9].

Arista

Arista supports NAT64 on 7170 Series routers [2].

Extreme networks, Mikrotik

No support found.
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Chapter 4

Measurement methodology and
results

The goal of the measurement is to examine the performance of individual NAT64 solutions
and find a solution that will be suitable for integration into the NETX router. Appropriate
solutions must reach, first and foremost, sufficient traffic throughput. The target through-
put was set at 10Gbps for both TCP and UDP protocol flows at the maximum packet
size (MTU 1500). Apart from the throughput itself, the performance impact of individual
solutions will be measured. The chosen solution must also be stable and sustainable in the
future.

Measurements will be performed in a laboratory on the topology shown in Figure 4.1.
We will use a NETX router as a NAT64 gateway. We will install and configure all chosen
NAT64 implementations on the router. PC-GEN (generator) will generate packets to PC-
COL (collector) via the NETX router. The hardware topology parameters are shown in
Table 4.1.

Besides the throughput of each NAT64 solution, we will examine the impact on the
network performance. Therefore, in addition to measuring the NAT64 traffic itself, we will
measure even throughput of pure routing (without address translation) and routing with
regular IPv4 NAT using iptables. At the same time, for all scenarios besides a throughput,
we will measure the utilization of processor threads during the tests. From the chart of
the utilization of individual threads and their average wages, we can compare the resource
impact of individual traffic types.

Originally the testing was planned using Iperf3. Since Iperf3 performance problems
occurred at 10Gbps link speed, Iperf was replaced by PF_RING and testing has focused
mainly on UDP traffic.

PF_RING adds a new kind of network sockets to Linux kernel, making it able to
work very efficiently and at much higher speeds [21]. PF_RING also offers applications
(PF_COUNT and PF_SEND) that are built over the PF_RING API, and we will use
them for our measurements. Similar to Iperf, PF_COUNT and PF_SEND is a client-
server architecture. The PF_SEND utility can read a pcap file1 and play it directly to
the network card. Thanks to this straightforward approach, we can generate intrusive
traffic with low CPU load. On the other side, PF_COUNT tool listens on a network
card, calculates incoming packets, and generates a status report. For all tested scenarios, a

1Pcap is a file format that is capable of storing network traffic (packets). It is used, for example, in
network communication capturing and its subsequent analysis.
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pc-gen pc-col

NAT64 prefix:
 
2001:db8:1::/96 - Tayga
2001:db8:2::/96 - Jool 
2001:db8:4::/96 - JoolNS 

rtr-netx

192.168.111.0/24 192.168.112.0/24

2001:db8:111::/64 2001:db8:112:/64

.1 .1.2 .2

::2 ::2::1 ::1

(a) L3 topology

pc-gen pc-colrtr-netx

Vlan 111 Vlan 112
Trunk (111,112)

switch

(b) L2 topology

Figure 4.1: L2 and L3 testbed topology.

rtr-netx

Intel(R) Xeon(R) CPU D-1537 @ 1.70GHz
4x 4GB DDR4 2133MHz
Ethernet Connection X552 10 GbE SFP+
Linux 4.4.178-1.el7.netx.x86_64

PC-GEN

Intel(R) Xeon(R) CPU D-1587 @ 1.70GHz
4x 4GB DDR4 2133MHz
Ethernet Controller XL710 for 40GbE QSFP
Linux 3.10.0-693.17.1.el7.netx.x86_64
iperf 3.1.7

PC-COL

Intel(R) Core(TM) i3-4160 CPU @ 3.60GHz
2x 4GB DDR3 1600MHz RAM
2x Ethernet Controller X710 for 10GbE SFP+
Linux 3.10.0-327.36.2.el7.x86_64
iperf 3.1.31

SWITCH HPE 5900AF-48XG-4QSFP+
PC-COL <=>rtr-netx 10-Gig ethernet
PC-GEN <=>rtr-netx 40-Gig ethernet

Table 4.1: Testbed topology HW and SW parameters
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long pcap file containing multiple UDP traffic flows was generated, and then played to the
network card at the rate of 10 Gbps. On the other side, the number of successfully reached
packets was count.

4.1 The measurement process and its challenges
The whole measuring process can be divided into three phases. In the first stage, a con-
nection to the elements in the topology is made from a control station (personal laptop),
and the necessary settings are made - running the NAT64 variant, executing the Iperf or
PF_COUNT. In the second phase, traffic generation starts and the CPU threads load is
being captured. In the final step, the results are collected, the configuration is cleared, and
charts generating is done.

During the measurements, several problems had to be solved. At the start of the tests,
it was found that the measured throughput did not reach the order of expected results.
The reason was packet processing at stations. The packets that came from the network
card queue were processed only in a single thread. It was because the scheduler hash
function, which determined the distribution of packets from the network card queue, took
into account only the source and destination addresses of the packet. However, in the chosen
topology, all packets have the same source and destination addresses and therefore fall into
the same thread. The solution was to switch the scheduler into a mode where it calculates
the hash from the source and destination ports. At the same time, it was necessary to
generate packets from/to multiple source ports. Changing the scheduler hashing function
had to be done on all participating ethernet interfaces. The change had to be made for
both IPv6 and IPv4 TCP and UDP, see listing 4.1.

[root@rt-netx-d ~]# ethtool -u tge3 rx-flow-hash udp6
UDP over IPV6 flows use these fields for computing Hash flow key:
IP SA
IP DA

[root@rt-netx-d ~]# ethtool -U tge3 rx-flow-hash udp6 sdfn
[root@rt-netx-d ~]# ethtool -u tge3 rx-flow-hash udp6
UDP over IPV6 flows use these fields for computing Hash flow key:
IP SA
IP DA
L4 bytes 0 & 1 [TCP/UDP src port]
L4 bytes 2 & 3 [TCP/UDP dst port]

Listing 4.1: Sample before and after application change of hash function for UDP IPv6
traffic.

Testing with Iperf was problematic. Using the Iperf tool, there was a problem with
the performance of the measuring stations. Single Iperf3 instance is unable to use more
than one CPU thread during traffic generation. Therefore, when examining 10Gbps, the
measuring stations were at the edge of their capabilities and the results are distorted. Iperf
results were unstable with a large deviation. Therefore TCP results are tentative and for a
better overview results from UDP are used.

Testing with PF_RING required small topological change. When tested using Iperf
traffic flowed from VLAN 111 to VLAN 112 see L2 topology Figure 4.1b. However, when
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working with PF_RING, we work on a lower layer and tagging ethernet frames no longer
happen automatically. The way to guarantee frame tagging could not be found. Therefore
it was necessary to make changes so that traffic could flow through native VLAN - untagged.
Furthermore, it was necessary to use a zero-copy mode and set up a static mapping between
IP and MAC addresses on the NAT64 router. While running PF_COUNT in zero-copy
mode, the NIC2 is fully occupied by PF_RING and other communication like ARP or
ICMPv6 is stopped, and records from the ip neighbor table expired over time, which led to
problems.

4.2 Evaluation of measured results
The evaluation is divided into two parts – TCP and UDP.
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Figure 4.2: TCP throughput comparison

Figure 4.2 compares the average throughput of all measured variants and we can see
that the testbed setup is capable of 10Gbps throughput. It is also possible to observe that
regular IPv4 NAT has a minimal performance impact and is paradoxical (due to measuring
error) higher than pure routing. Tayga barely reaches 1 Gbps throughput. Jool attacks the
10 Gbps level and adding virtual network namespace has some performance impact.

However, as already mentioned, these results need to be taken as a proposal. More
accurate data is provided by UDP measurements.

UDP

Entire range of packet sizes was tested in UDP tests. The packet size range is (64B, 128B,
512B, 1024B, 1024B, 1280B, 1500B) and the size does not include inter-frame gap 12B
and mac preambule 8B. Beside throughput in bps the number of packets (pps) that the
router can forward were captured.

2NIC – Network interface controller
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Theoretical maximum Pure Ipv4 Pure IPv4 Pure IPv6 NAT44 Tayga Jool Jool namespace
64 14.88 10 2.6 1.4 2.3 1.2 2.4 1.3 0.000235 0.000122 0.7 0.3 0.35 0.2
128 8.45 10 2.6 2.7 2.3 2.4 2.4 2.6 0.000235 0.000224 0.7 0.6 0.35 0.4
256 4.53 10 2.6 5.3 2.3 4.7 2.4 5.1 0.000240 0.000457 0.7 1.2 0.35 0.7
512 2.35 10 2.3 9.6 2.2 9.0 2.3 9.5 0.000250 0.000973 0.7 2.9 0.36 1.5
1024 1.20 10 1.2 9.8 1.1 9.8 1.2 9.8 0.051 0.41 0.7 5.9 0.36 2.9
1280 0.96 10 0.9 9.8 0.9 9.8 0.9 9.8 0.068 0.68 0.7 7.4 0.36 3.7
1500 0.82 10 0.8 9.8 0.8 9.8 0.8 9.8 0.076 0.91 0.7 8.6 0.41 4.9

B
y
t
e
s

Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s Mpp/s Gb/s

Table 4.2: UDP traffic – measured by PF_RING. In the throughput in Gbps, the used tool
does not include inter-frame gap and mac preambule into the calculation. Therefore, the
maximum throughput is 9.8Gbps instead of 10 Gbps.

𝑏𝑝𝑠 = (𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒+ 20) * 𝑝𝑝𝑠 * 8

The throughput results are in charts 4.3a, 4.3b and table 4.2. Chart 4.3a shows average
throughput in gigabits per second depending on the packet size, and chart 4.3b shows
average throughput in packets per second.

In addition to these values, processor load during the 1500B packet size test was mea-
sured. With 1500B packet size, the 10Gbps line should already be saturated, and the
CPU load should no longer be 100 %. Based on these values, it is possible to compare the
effectiveness of individual solutions. Results are available in chart 4.4.

The results confirm the testbed ability to operate at 10-gigabit throughput and also
confirm the minimal impact of using common IPv4 NAT. For pure routing and common
IPv4 NAT, the theoretical maximum is reached with a packet length around 512 bytes.

Tayga does not reach the desired throughput. In Tayga test, we may notice a dramatic
drop in performance for packets smaller than 1024B. Tayga is sensitive to congestion.
Since the test generates traffic flow at the rate of 10 Gbps Tayga is overwhelmed, and
its performance drops dramatically. The best result at 10 Gbps input rate was 70 kpps.
148 kpps was reached if the sending rate was reduced to Tayga’s capability. However, even
148 kpps is a low result. The reason is apparent from the CPU load chart see 4.4f. Tayga
works only in a single thread. There is no parallelism, and Tayga performance is limited
by the performance of one core.

Jool is in the 700 kpps area, which means that 10-gigabit is not reached. Jool compared
to common IPv4 NAT has a third of the performance. In a 1500B packet test, the CPU
load is still overloaded. The reasons and solutions for the high CPU usage are described in
chapter 6.

Using virtual network namespace reduce Jool performance by an additional 350 kpps to
350 kpps.

In the Appendix A, there is also a UDP test with Cisco router 2911. Cisco 2911 is only
a gigabit router that is not suitable for comparing with the NETX router, so the results
are listed here only as interest. In the results, you may notice that the Cisco router in
NAT64 mode does not support CEF3 and its NAT64 performance is a small fraction of
pure routing.

3Cisco Express Forwarding – optimizes network performance and scalability for networks with large and
dynamic traffic patterns [3].
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Figure 4.3: UDP traffic – measured by PF_RING
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Figure 4.4: CPU threads utilization during UDP test with packet size 1500B
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Chapter 5

Jool NAT64 integration into
NETX router

NETX is a distribution based on enterprise Linux, that in combination with the appropriate
hardware (both physical or virtual), forms a network router. NETX is a BUT university
project. One of the goals of this work was to find and integrate a stateful NAT64 solution
into the project.

Jool NAT64 in a virtual network namespace was selected for integration. Jool results
were far from ideal. The required 10 Gbps throughput was not met. Still, Jool is the
best possible solution, and with the optimization described in the following chapter 6 the
performance is significantly better, and the 10 Gbps throughput is achieved.

Using the virtual network namespace option has several advantages. Especially:

∙ Allows NAT64 traffic filtering.

∙ Simplifies integration/administration through logical separation.

∙ Allows to generate/test NAT64 traffic directly from the router.

∙ Offers statistics from the interface between virtual and regular namespaces.

∙ Creates routes for redistribution.

Because of these advantages, it was a good idea to use virtual network namespace at
the cost of overhead and lower pps. If maximum performance is needed and overhead of
virtual network namespace would be too high, the classic setup method is still available
through the shell.

Two of the key parts of the NETX distribution are a package repository and netc -
NETX command line. The selected NAT64 solution had to be integrated into these two
parts.

5.1 Netc – NETX command line integration
One of the certain benefits of NETX is its command line - netc. NETX is a collection of
Linux programs and tools and thanks to netc it is possible to control them all in a uniform
and standardized way. Netc can be called Industry Standard CLI or Cisco-like command
line. It follows that even though Linux is running in the background, the configuration
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process works like in any conventional network device. A network administrator works
with a familiar configuration syntax, but if he encounters an advanced task, he can switch
to Linux shell. In the shell environment, he can take full advantage of the Linux system.
A simple example of netc syntax and the transition to the bash can be seen in listing 5.1.

rt-netx-d# show interface
INTERFACE STATE RX TX

b/s p/s b/s p/s
ge1 A 100M-FD 3.6k 5.9 13.0k 4.5
ge2 down 0.0 0.0 0.0 0.0

rt-netx-d# interface ge1 ipv6 address 2001:db8:42:42::1/126
rt-netx-d# shell
[root@rt-netx-d ~]# uname -a
Linux rt-netx-d.net.vutbr.cz 3.10.0-862.el7.x86_64 #1 ...

Listing 5.1: Example of netc syntax and transition to Linux shell

The netc command line language has a tree structure. Each word in the command line
moves through a syntactic tree and specifies the command to be nailed. Commands are of
three types: set, unset, show. The semantic meaning of the set command is to perform an
action/configuration and is not introduced by any prefix. By contrast, the unset command
is used to negate the set command and is introduced by the word no. The show is used to
view the status and is introduced by the word show. For example:

1. ipv6 route ::/0 2001:db8:0:1::1

2. show ipv6 route

3. no ipv6 route ::/0 2001:db8:0:1::1

The above example demonstrates work with IPv6 routes. All three commands are based in
the same ipv6 route subtree. Command 1) performs a configuration, and command 3) then
undo it with the keyword no. Command 2) uses the keyword show and shows the current
status.

5.1.1 Netc command line design for NAT64 section

Working with NAT64 will be placed in ipv6 nat64 subtree. There will be four more main
sections: instance, pool4, bib, and options.

Instance

1. ipv6 nat64 instance <nat64-prefix> <p2p-ipv61> <p2p-ipv4>

2. no ipv6 nat64 instance

3. show ipv6 nat64 instance

The instance subtree is the cornerstone of the NAT64 configuration. It creates/destroys
a Jool instance and the entire virtual network namespace.

1P2P – Point to point
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Command 1) is the only command that is required to put the entire NAT64 into op-
eration. <nat64-prefix> specifies the NAT64 prefix of the translated traffic – typically
64: ff9b::/ 96. <p2p-ipv6> and <p2p-ipv4> are the address ranges from which to address
the point-to-point link between the regular and virtual NAT64 network namespaces. After
performing this command, the following actions are performed:

1. Mode probing the Jool kernel module.

2. Creating a virtual network namespace.

3. Creating a virtual P2P interfaces.

4. Assigning one of the interface to the namespace.

5. Setting up the interfaces and setting up the addresses.

6. Creating a Jool instance with the NAT64 prefix in the namespace.

7. Setting IPv4 and IPv6 default routes from the namespace.

8. Setting route with the NAT64 prefix to the namespace.

Command 2) removes the Jool instance and the virtual network namespace. The virtual
P2P interfaces and routes are removed automatically with the namespace.

Command 3) shows NAT64 status summary information and serves primarily to verify
the configuration and its deployment.

rt-netx-d# ipv6 nat64 instance 64:ff9b::/96 2001:db8:0:64::/64 192.0.64.0/30
rt-netx-d# show ipv6 nat64 instance
Stateful NAT64 instance is runnnig
Is enabled: Yes
NAT64 prefix: 64:ff9b::/96
Pool4: 192.0.64.4/30
Pool4 route inserted: Yes
Pool4 Jools IPv4 counts: TCP 4, UDP 4, ICMP 4
BIB Jools entry counts: TCP 1, UDP 1, ICMP 1

Listing 5.2: Example of working with netc in instance section

Pool4

1. ipv6 nat64 pool4 <pool-v4>

2. no ipv6 nat64 pool4 <pool-v4>

3. show ipv6 nat64 pool4

Pool4 defines an IPv4 subnet that is used for translation.
Pool4 configuration is not required. If pool4 is not specified, the IPv4 address that

is configured on the interface in the virtual namespace is used. However, a configuration
without pool4 is not recommended, as the number of transport addresses is then limited.
For address translation without pool4, port numbers 61001 to 65535 are then allocated.
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Jool divides Pool4 into three categories, depending on which higher layer protocol is
used - TCP, UDP, ICMP. And for each address individually, it requires specifying the port2

numbers that are intended for translations. This detailed approach is too complicated for
our purposes. Therefore, when configuring pool4 with netc, each IPv4 address from the
subnet is used for all higher layer protocols with all available ports. It is the same approach
we encounter with conventional routers.

Command 1) assign every IPv4 address from the subnet to the pool. IPv4 addresses
are assigned to all three higher layer protocols with port numbers 1-65535. The assigned
subnet needs to be routed to the virtual namespace. Therefore, after adding pool4, a static
route is generated.

Command 2) flushes Jool’s pool4 and removes the static route.
Command 3) shows the pool4 from Jool’s point of view. Sequentially displays addresses

and ports for TCP, UDP, and ICMP.

rt-netx-d# ipv6 nat64 pool4 192.0.64.4/30
rt-netx-d# show ipv6 nat64 pool4
+------------+-------+--------------------+-----------------+-------------+
| Mark | Proto | Max iterations | Address | Ports |
+------------+-------+--------------------+-----------------+-------------+
| 0 | TCP | 2047 ( auto) | 192.0.64.4 | 1-65535 |
| | | | 192.0.64.5 | 1-65535 |
| | | | 192.0.64.6 | 1-65535 |
| | | | 192.0.64.7 | 1-65535 |
+------------+-------+--------------------+-----------------+-------------+
+------------+-------+--------------------+-----------------+-------------+
| Mark | Proto | Max iterations | Address | Ports |
+------------+-------+--------------------+-----------------+-------------+
| 0 | UDP | 2047 ( auto) | 192.0.64.4 | 1-65535 |
| | | | 192.0.64.5 | 1-65535 |
| | | | 192.0.64.6 | 1-65535 |
| | | | 192.0.64.7 | 1-65535 |
+------------+-------+--------------------+-----------------+-------------+
+------------+-------+--------------------+-----------------+-------------+
| Mark | Proto | Max iterations | Address | Ports |
+------------+-------+--------------------+-----------------+-------------+
| 0 | ICMP | 2047 ( auto) | 192.0.64.4 | 1-65535 |
| | | | 192.0.64.5 | 1-65535 |
| | | | 192.0.64.6 | 1-65535 |
| | | | 192.0.64.7 | 1-65535 |
+------------+-------+--------------------+-----------------+-------------+

Listing 5.3: Example of working with netc in pool4 section.

2Identifier in case of ICMP
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BIB

1. ipv6 nat64 bib <ip-port-v4> <ip-port-v6>

2. no ipv6 nat64 bib <ip-port-v4> <ip-port-v6>

3. show ipv6 nat64 bib

Binding Information Base (BIB) is a table (collection of tables for TCP, UDP, ICMP)
that keeps a binding between a source IPv6 transport address and a source IPv4 transport
address. Entries to the table are dynamically inserted based on active connections. It is
also possible to add a static record to the table and create a permanent binding. A static
record is used if a connection from the IPv4 network needs to be established without prior
communication — an analogy of IPv4 port forwarding.

Command 1) adds a static record to BIB tables. Jool, like in pool4, distinguishes
between BIB for TCP, UDP, and ICMP. To facilitate configuration and more significant
analogy to conventional routers, the command adds a record to all three tables.

Command 2) removes all three entries from the BIB tables.
Command 3) sequentially displays BIB records for TCP, UDP, ICMP.

rt-netx-d# ipv6 nat64 bib 192.0.64.5:80 2001:db8:0:42::5.80
rt-netx-d# ping 64:ff9b::8.8.8.8
rt-netx-d# show ipv6 nat64 bib
[Static TCP] 192.0.64.5#80 - 2001:db8:0:42::5#80
[Static UDP] 192.0.64.5#80 - 2001:db8:0:42::5#80
[Static ICMP] 192.0.64.5#80 - 2001:db8:0:42::5#80
[Dynamic ICMP] 192.0.64.5#606 - 2001:db8:0:64::1#16363

Listing 5.4: Example of working with netc in bib section

Options

1. ipv6 nat64 options <option-key> <option-value>

2. no ipv6 nat64 options <option-key> option-value>

3. show ipv6 nat64 options

The options subtree serves to configure Jool instance properties. The properties are
defined as key/value pairs. Through the netc ipv6 nat64 options command it is possible
to configure all available Jool properties except NAT64 prefix and properties related to
state sharing across multiple Jool instances. Configuring NAT64 prefix takes place in the
instance subtree, see above, and the state sharing between multiple Jool instances is not
supported by netc. The complete list of all available options and its meaning can be found
in Jool’s official documentation3.

Command 1) sets the value for the selected key.
Command 2) sets a default value for the selected key.
Command 3) shows all instance properties.

3https://www.jool.mx/en/usr-flags-global.html
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Figure 5.1: Netc operation flow diagram

rt-netx-d# ipv6 nat64 options address-dependent-filtering TRUE
rt-netx-d# show ipv6 nat64 options

manually-enabled: true
zeroize-traffic-class: false
override-tos: false
tos: 0
mtu-plateaus: 65535,32000,17914,8166,4352,2002,1492,1006,508,296,68
address-dependent-filtering: true
drop-icmpv6-info: false
---

Listing 5.5: Example of working with netc in bib section

5.1.2 Details of NAT64 section implementation

Since version 1.14.0, netc has focused more on modularity and has started to use YAML4

files for module definitions. The YAML files are used to define a command line structure
and to specify the actions to be performed. Each logical unit should be defined in its YAML
file. In our case, the whole ipv6 nat64 subtree is defined in netc.d/jool-nat64.yml.

NODE: ’ipv6/nat64/bib/’
DESCR: ’Binding Information Base’
SHOW: ’xcfg-netc-jool bib show’
---
NODE: ’ipv6/nat64/bib/%IP4PORT/’
GET: ’xcfg-netc-jool bib get ip4port’
---
NODE: ’ipv6/nat64/bib/%IP4PORT/%IP6PORT/’
GET: ’xcfg-netc-jool bib get ip6port’
SET: ’xcfg-netc-jool bib set %1 %2’
UNSET: ’xcfg-netc-jool bib unset %1 %2’

Listing 5.6: Sample from the YAML definition file for BIB subtree.

Sample 5.6 shows the definition for the ipv6 nat64 bib subtree. In addition to the set
unset and show items, the significance of which has already been highlighted above, there
is another necessary entry – get.

The configuration process through netc is shown in Figure 5.1.
4YAML – human-readable data serialization language.
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When a netc command is called, netc translates this command to a third party utility
call that handles the called part. For example, when ipv6 route ::/0 2001:db8::cafe is
entered, the netc command is translated to the ip utility call, specifically to ip -6 route add
::/0 2001:db8::cafe. The result of the operation is a new state of the router, namely the
default route is inserted into the routing table. The process is shown in Figure 5.1 with a
blue arrow and corresponds to the set unset and show command types.

At the same time, there must also be a backward mapping. Netc must be able to
determine from the state of the router which commands have it entered into this state.
This backward mapping is required to determine the running-config. Running-config is a
sequence of commands that lead to the current configuration state. Saved running-config
becomes a startup-config, which is a sequence of commands to be executed to put router it
into the configured state after a boot. Netc by default does not hold any configuration state.
Configuration state is derived by reverse transformations. For example, if the default route
as mentioned above is configured directly to by the ip route utility without using netc, netc
would include the command to the running-config because it would be reversed mapped
from the routers state. The process is shown in Figure 5.1 with an orange arrow and
corresponds to the get command type.

The action get is called when gathering the running-config. The result of the call must
be all configured entries for the called non-terminal. In the above example 5.6, the get
action in the first case returns all configured IPv4 transport addresses and in the second
case corresponding IPv6 transport addresses.

rt-netx-d# show running-config
!
ipv6 nat64 instance 64:ff9b::/96 2001:db8:0:64::/64 192.0.64.0/30
ipv6 nat64 options address-dependent-filtering TRUE
ipv6 nat64 pool4 192.0.64.4/30
ipv6 nat64 bib 192.0.64.5:80 2001:db8:0:42::5.80
!

Listing 5.7: Sample from running-config section NAT64.

Translation of commands between netc and third-party utility can be simple, and in this
case, it is possible to perform mapping directly in a YAML file. However, in most cases, it
is not so straightforward, and an auxiliary script is used. The script can be programmed
in any language, typically Perl or Bash, to maintain a unified platform. In the case of Jool
integration, the ./bin/xcfg-netc-jool Perl script is used to cover all netc calls.
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sub actionBibSet {
if (system("ip netns exec nat64NS jool −i netc instance display &> /dev/null") != 0){

syslog(LOG_INFO, "Jool instance is not running − bib set canceled");
print("NAT64 instance has to be running!");
return;

}

my $trans4Arg = shift @ARGV;
my $trans6Arg = shift @ARGV;

my $trans4 = $trans4Arg =~ s/\:/\#/r;
my $trans6 = $trans6Arg =~ s/\./\#/r;

my $commandBase = "ip netns exec nat64NS jool −i netc bib add";

system(sprintf("$commandBase %s %s −−tcp", $trans6, $trans4));
system(sprintf("$commandBase %s %s −−udp 2>&1 | logger", $trans6, $trans4));
system(sprintf("$commandBase %s %s −−icmp 2>&1 | logger", $trans6, $trans4));

}

Listing 5.8: Code sample from ./bin/xcfg-netc-jool – procedure for show ipv6 nat64 bib
ntec call

In the code example 5.8, a procedure that serves a set action in the BIB section is shown.
Generally, these operating procedures consist of three parts: checking input conditions,
transforming input, calling third-party utility. In example 5.8, a check is made to see if the
Jool instance is active. If the instance is not active, it is not possible to continue. Then, a
transformation of the input transport addresses is performed. Netc uses a notation other
than Jool CLI by default. In our case, the transformation is performed by a simple regular
expression. Finally, a Jool CLI call is made. It can also be seen in the example that, as
already mentioned, Jool makes the BIB for TCP, UDP and ICMP different, so the call
is made three times. One of the advantages of the configuration script is that it logs to
the syslog in detail. In case of a problem, it is possible to check the syslog where every
configuration step is verbosely recorded.

5.2 Package building and distribution via RPM
Software distribution and updates to NETX installations are done through the RPM pack-
age system. NETX manages its own RPM repositories. Since NETX is based on the Linux
distribution CentOS, the core repository content is the same as the CentOS. In addition to
the usual packages, NETX builds its own packages whether its a specially adjusted kernel,
the netc command line, or modified standard package.

Package build in RPM is controlled by a SPEC file. SPEC file is a prescription that
defines how to create an installation package from the source code. In most cases, it is as
follows. The source application is translated, and the resulting binary files are included in
the RPM package. Along with binary files, information, where the binary files should be
copied on the destination station, is also stored. The RPM installer during the installation
copies the files as prescribed in the package. Of course, translation and binary files are
not required, and any file can be subject to the RPM package. RPM can also run scripts
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during installation, in addition to copying files. More information about RPM packaging
can be found in [1] [30].

Jool does not provide pre-built software packages and is only available as source code.
For these reasons, it was necessary to include the assembly of the Jool packages into the
NETX packages assembly process. It means devising the installation process and describing
it with the SPEC file and harmonize it with the automatic system in NETX.

5.2.1 Building Jool RPM package

To build a Jool package, two components need to be resolved, the userspace CLI and the
kernel module. The userspace CLI can be packed in the usual way. On the other hand, the
kernel module has several issues to be solved. Since it is a kernel module, it cannot be built
in a kernel environment other than the one that the module is targeted to. The solution
is to build the module separately for each version of the kernel or build the module on the
target station. Jool offers the possibility to build the module using DKMS. DKMS was
used throughout the testing. Thus, this method has proven itself and has made the build
of the module considerably easier. For this reason, DKMS is the preferred method when
assembling the package.

Dynamic Kernel Module Support (DKMS) is a Linux framework/subsystem that man-
ages kernel modules that are not a direct part of the kernel. The source code of the module is
registered in the DKMS, and the system then takes care of its compilation and installation.
When the kernel is updated, the system re-compiles and installs the module itself.

[root@rt-netx-e ~] cp -r $module-$version /usr/src/
[root@rt-netx-e ~] dkms add $module/$version
[root@rt-netx-e ~] dkms build $module/$version
[root@rt-netx-e ~] dkms install $module/$version

Listing 5.9: Demonstration of work with DKMS

Example 5.9 shows steps to install a module through DKMS. The source code for mod-
ules is located in the /usr/src directory by default. Keeping the correct naming convention
- name-version is important. If there is a configuration file for DKMS in the module source
code, the module can be installed.

The creation of a package relying on DKMS looks like this. A package is created
that does not contain any binary files, only includes the complete source code. When the
package is installing, it copies the source codes to /usr/src directory and runs the DKMS
commands in post-install hook, see example 5.9.
DKMS offers command dkms $module/$version mkrpm --source-only to create such an
RPM package automatically. However, this package would not contain the necessary Jool
CLI application, and in the end, this method would not fit into the NETX automatic
package assembly flow, see Chapter 5.2.2.

Finally, the Jool package build and installation process is as follows. The Jool CLI
source code is compiled, and the result binary files are included in the package. Besides,
the complete source is added to the package. The final package is placed in the repository
where the NETX router will download it. When installing the package, the Jool CLI
binaries are copied to the required locations and the source code is copied to /usr/src.
After that, the post-installation hook runs and adds the module to DKMS and starts the
DKMS installation. In case of uninstalling, the package manager will delete the copied
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files (CLI binaries and the source code), but before that, a pre-uninstall hook triggers the
module remove from the DKMS.

5.2.2 NETX automatic package build flow

NETX has an automated package assembly system. The main idea of the system is to build
packages in containers, specifically in Docker. There are many advantages to packaging in
containers. One of the great benefits is the independence of the operating system. The
NETX (CentOS) package can thus be built on any operating system running Docker. A
further advantage is that a clean environment is prepared for each assembly and disappear
upon completion of the work. However, we also encounter certain limits. Because the
container shares a kernel with a host PC, we are limited in kernel module translations. In
case of a kernel module, it would be possible to translate and build the package only for
the same kernel as the host PC kernel.

In the case of Jool, we decided to translate the kernel module during the installation on
a target station, and therefore this problem is not critical. The principle works as follows.
An essential Docker image is created, based on the target platform. In our case, the image
is based on CentOS 7.5. The essential image includes only the basic utilities that are needed
in most package build cases. When assembling the package, a container is created from the
image. Source code folder and a folder for the resulting package are mounted. The system
detects from the SPEC file which tools and libraries will be needed to build, and those that
are missing from the base image are downloaded. Then it builds the packages and returns
the result to the prepared folder. Once the process is complete, the container is removed.

To automate the entire process, NETX uses the docker-rpm-builder [6] tool to take care
of the entire process. Package source codes are managed in a GIT repository. Including
a new package in the system means creating a new folder in the repository. If the correct
directory structure is followed, the system will take care of everything else.

.
|-- jool
| |-- SOURCES
| | ‘-- jool-4.0.0.tar.gz
| ‘-- SPECS
| ‘-- jool.spec
|-- Makefile
| ...

Listing 5.10: Jool directory in NETX package build repository.

In example 5.10, a Jool section of the package build repository structure can be seen.
The package is built with the make jool command.
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Chapter 6

Jool’s performance bottlenecks
analysis

The Jool solution has been selected for NETX platform integration. However, from UDP
results, Jool did not achieve the expected packet throughput. The same pps result as
regular IPv4 NAT was expected. For this reason, bottleneck inspection was performed.

6.1 Performance analysis using perf tool
Figure 6.1a shows perf results during test execution - under the full load of the NAT64
traffic. From the results it is evident, that processor spends a huge portion of time waiting
for access to a critical section. We are working with a stateful algorithm where each packet
that flows through NAT64 creates a state so that all packets of the same flow are mapped
to the same transport addresses and packets that flow back into the network are passed to
the host who initiated the connection. Since packets are processed in parallel, the need for
critical sections and mutual exclusion is expected.

In a further analysis, Figure 6.1b indicates that the CPU threads are waiting at the lock
in the rfc6056_f function. When analyzing this function, it was found that the function
is used to count an MD5 checksum based on packet header data. As the name of the
function suggests, it is an implementation of RFC 6056, which describes how to randomly
assign port numbers, so that they cannot be predicted and its knowledge cannot be used in
network attacks [19]. Here, the MD5 checksum is calculated using the crypto_shash family
functions in a critical section. An explanation of why calling these functions inside the
critical section is missing. A critical section would be meaningful if calling these functions
is not thread-safe. This would mean that a parallel call to the same function could lead
to data inconsistency. However, no indications have been found to inoculate this problem
during analysis. Also, there is a commentary where the author himself suggests that it
would be appropriate to examine this part of the code to improve performance. For the
experiment, the need for a critical section was removed.

The result was almost no performance increase in output. Figure 6.1c shows the perf
output after removing the critical section. We may notice that now the threads are wait-
ing in the get_random_bytes function. The get_random_bytes function is part of the C
standard library and is used to generate random values. It is a quality random number
generator. Quality random number generators can generate reliably random values but at
a low pace. get_random_bytes is used to generate a random identifier in the IPv4 packet
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headers. Since every translated packet needs its IPv4 identification, it is likely that the used
random number generator will not be able to generate values fast enough. Challenges with
generating IPv4 identification when translating packet will be discussed in the following
section. For the test, a static value was used instead of random values for the experiment.
Pps performance growth was about 50%.

In the next analysis by the perf tool, Figure 6.1d, it was found that the threads are
now waiting on the lock, which controls access to a table that manages connection records.
This situation is already in line with expectations, and the next step would be to optimize
the work within the critical section.

6.2 IPv4 identification field and fragmentation issues
IPv4 identification (IPv4-ID) is a 16-bit value in the IPv4 packet header. The purpose
of this value is to identify packets in a flow. The flow is defined as a source/destination
address and an upper layer protocol. Every packet in the flow needs a unique identifier
for the time it can occur in the network. There was a big discussion about the usage
of these unique numbers. Finally, RFC 6864 clearly laid down rules for using the field.
RFC 6864 says IPv4-ID can only be used for packet fragmentation purposes [28]. In IPv4,
fragmentation can occur in two modes. If a flag do not fragment (IPv4-DF) is set to 0
in an IPv4 packet, routers along the path will do fragmentation if required. If the IPv4-
DF is set to 1, the fragmentation is done by the transmitting side and if the router is
unable to forward the packet for reasons of packet size it informs the transmitting side by
ICMPv4 message. If the IPv4-DF is set to 1 and the transmitting side is responsible for
the packet fragmentation, RFC 6864 says the IPv4-ID is optional and can be arbitrary.
Otherwise, IPv4-ID is mandatory, and its uniqueness requirement remains. However, RFC
6864 admits that the need for the uniqueness of this value is difficult to accomplish and is
often overlooked. For example, if we consider a 1500 byte packet flow at a 1 Gbps rate,
the 16-bits space is exhausted in less than seconds. RFC 4963 suggests that the most
appropriate approach to the IPv4-ID is to generate a random value for the first packet in
the flow and then increment it with each packet [18]. This ensures that the 16-bit space is
used as effectively as possible.

IPv6 approach to fragmentation is different. In IPv6, the transmitting side is always
responsible for the fragmentation - the equivalent to IPv4-DF set to 1. The minimum MTU
in IPv6 is 1280 bytes - 68 bytes in IPv4. IPv4-ID in IPv6 header (without extension) has no
equivalent. These differences lead to many fragmentation problems. The RFC that defines
packet translation has been released in three versions: RFC 2765 [20], RFC 6145 [32], RFC
7915 [5], and approach to fragmentation and IPv4-ID generation in packet translations
has been modified in each version. In the original RFC 2765, it was determined that the
translated IPv4 packet would always have the IPv4-DF set to 1 and the IPv4-ID set to 0.
This eased approach turned out to be a problem mainly due to different minimal MTUs
between protocol versions. Therefore, in the following RFC 6145, it was determined that
this approach is only suitable for packets with a size > 1280 bytes or <= 88 bytes. In
current RFC 7915, this option remains only to IPv4-DF flag and IPv4-ID must always be
generated.

Examining Tayga’s implementation and Cisco NAT64 solution, it was found that they
always set IPv4-DF flag to 1 and sets IPv4-ID to 0. Jool adheres to the latest RFC but
generates an IPv4-ID for each packet randomly. As a result, the IPv4-ID is repeated before
it is necessary and at the same time, it reduces performance.
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(a) Quick result before experimentation. The native_queued_spin_lock_slowpath indi-
cates a large wait for access to the critical section.

(b) More detailed result before experimenting. The result indicates waiting in the function
rfc6056_f.

(c) Result after removing critical section while working with an MD5 checksum. The
result indicates waiting in the function get_random_bytes

(d) Result after excluding random IPv4 packet identifier generation. The threads are now
waiting to work with state table of the algorithm.

Figure 6.1: Perf outputs during tests execution - under the full load of the NAT64 traffic.
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(b) Jool with proposed optimization

Figure 6.2: Comparison between CPU threads utilization during UDP test with packet size
1500 B before and after optimization

6.3 Cooperation with developers and the resulting perfor-
mance gain

The above findings have been consulted with Jool developer Ing. Alberto Leiva Popper
[10]. It was confirmed that closing the crypto_shash functions to the critical section was
unnecessary. The use of a critical section was preventive, and there is no reason for it.
An IPv4-ID generation has been discussed, and improvement has been proposed. The
IPv4-ID generating is now done as the kernel does it when sending IPv4 packets. The
get_random_bytes was replaced by __ip_select_ident. Function __ip_select_ident gen-
erates only one random number for each flow and then increments it with each subsequent
packet. This method is in line with RFC 4963 and RFC 7915. Along with those changes,
another call to get_random_bytes has been removed, which has proved to be unnecessary.

Using the __ip_select_ident function demanded a higher version of the kernel >=
4.2. The used NETX router was therefore upgraded to 4.4.178-1.el7.elrepo.x86_64 kernel.
Tests showed a 58.3 % increase in pps performance compared to standard 4.0.0 version.
Pps throughput rose from 0.72Mpps to 1.14Mpps. This noticeable increase in performance
can also be seen in the process load decrease, see Figure 6.2.

The changes were declared successful and are scheduled for the next Jool 4.0.1 release.
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Chapter 7

Conclusion and results summary

At the beginning of my work, I introduced readers to the problems of transition algorithms
between IP protocols. I introduced the conceptual problems associated with transition
algorithms and what are their general solutions. Based on these concepts, I described the
Stateful NAT64. I tried to capture all the fundamental properties, and the residues refer
to the appropriate RFCs. In the NAT64 excerpt, I have included all essentials such as
address mapping, DNS64, 464XLAT, so that the reader has a complete understanding of
how NAT64 works.

In my research on existing NAT64 implementations, I came across four open-source
candidates – Tayga, Jool, Ecdysis, WrapSix. Three solutions were carefully examined and
tested on the lab router. The two solutions that have proved to be acceptable (Tayga
and Jool) have been described in the document. The Ecdysis solution was eliminated at
the beginning because it has not been developed for some time, so it does not support
new kernels. The WrapSix solution even after several attempts still had errors in the
form of duplicate packets and was therefore also eliminated. With the remaining solutions,
besides the descriptions, necessary procedures for putting the solutions into operation were
introduced. I have also been slightly devoted to Linux network namespaces, which are an
interesting option for running NAT64 solutions.

In addition to open-source solutions, I also explored the support for NAT64 with well-
known network router vendors. The research has shown that there is already a ready-made
solution on the market. For example, Juniper supports NAT64 on two device series (SRX
and MX) and provides excellent documentation.

I have passed two chosen solutions to performance tests. I have used a methodology that,
in addition to examining a traffic throughput, has also revealed the network performance
impact and resource impact on the router’s processor.

I encountered several challenges during testing because of the relatively high 10Gbps
throughput requirements. The use of the Iperf tool proved to be almost unusable at such
speeds. The examined router was not fully utilized, but the test stations could not generate
more intense traffic. Overall, Iperf’s results were unstable with a large deviation. For UDP
tests, I was recommended to use the PF_RING tool, which did not suffer from these
problems, and the UDP results are far more accurate.

From the measured results, I concluded that a solution that can reach the specified
10-gigabit throughput must be able to utilize multiple CPU threads. Unfortunately, it
turned out that Tayga does not meet this feature. Tayga’s unmistakable strength is its
simplicity, but until Tayga is not able to harness multiple processor threads, it can not be
recommended for NETX router. At the same time, Tayga is very sensitive to congestion.
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When congested, its performance drops dramatically. Jool with optimization meets the
required throughput, but its packet per second performance is still not ideal. Jool is a
comprehensive solution with many advanced features, and its development is still active.
For these reasons, Jool was elected for integration.

Integration into NETX was successful. A command line scheme for Jool control has
been designed. The scheme was programmed and integrated into the netc command line.
Netc now supports working with Jool instance, pool and BIB configurations, translation
parameters tuning, and several verifications commands. Jool has been included in the
NETX package repositories. Both the Jool CLI application and the Jool kernel module
were included in one RPM package. The CLI application is distributed in binary form; the
kernel module is compiled during installation using DKMS.

Jool performance bottlenecks analysis has been performed. The findings have been con-
sulted with Jool developers. In collaboration with the developers, a significant performance
increase of 58.3 % was achieved.

In the follow-up work, it would be possible to extend the netc command line with
additional features — for example, multiple IPv4 pools, state synchronization support or
multiple instances. In addition, it would be possible to try to find more optimization to
achieve even better performance results. Jool also offers a stateless NAT64 (SIIT) variant
that could also be integrated into NETX.
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Appendix A

UDP traffic measured by
PF_RING on Cisco 2911 IOS
15.3(3)M6
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Figure A.1: UDP traffic measured by PF_RING on Cisco 2911 IOS 15.3(3)M6
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Appendix B

NETX NAT64 documentation

Copy of the created NAT64 documentation for router NETX available at
https://docs.netx.as/.

Command reference
For Stateful NAT64 (RFC 6146) the NETX platform uses Jool developed by NIC MÉXICO
and Tecnológico de Monterrey

Jool is integrated into the NETX platform using virtual network namespace. After you
create a new NAT64 instance, the following virtual topology is created.

The Jool system is integrated into the netc interface. All NAT64 related commands are
available in ipv6 nat64 context.

Instance

Instance command creates a new virtual network namespace with a Jool instance. For
communication between regular network namespace and Jool’s network namespace, virtual
interfaces are used, which need to be addressed.

netx# ipv6 nat64 instance <NAT64 prefix> <IPv6 P2P subnet> <IPv4 P2P subnet>
netx# no ipv6 nat64
netx# show ipv6 nat64
netx# show ipv6 nat64 session
netx# show ipv6 nat64 stats
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For example:

netx# ipv6 nat64 instance 64:ff9b::/96 2001:db8:0:64::/64 192.0.64.0/30
netx# show ipv6 nat64
Stateful NAT64 instance is runnig
Is enabled: Yes
NAT64 prefix: 64:ff9b::/96
Pool4: not set. P2P address is used!
BIB Jools entry counts: TCP 0, UDP 0, ICMP 0

The first command argument is a NAT64 prefix. It is possible to use Well-Known prefix
64:ff9b::/96 or any other prefix with length /96. A static route to the Jool’s virtual network
namespace is automatically created for the selected NAT64 prefix.

The second argument is an IPv6 subnet, that is used for addressing the P2P network
between namespaces.

The third argument is an IPv4 subnet, that is used for addressing the P2P network
between namespaces.

In this step, NAT64 is already running, and translations are taking place. For transla-
tion, the IPv4 address used on the P2P link between the namespaces is used. However, the
number of usable ports is limited (61001 to 65535) therefore it is advisable to add an IPv4
pool.

show ipv6 nat64 displays information about nat64. Displays whether the instance and
the virtual network namespace are running and if it is enabled. Instance and the virtual
network namespace can be running but can be manually disabled via ipv6 nat64 options
manually-enabled false. no ipv6 nat64 destroys the instance a deletes NAT64 configura-
tion. Manually disabling is good for temporary disabling the NAT64 without losing current
configuration.

Furthermore, you can see if the IPv4 pool is used and how many addresses are available
in the pool. If an IPv4 pool is configured the commands check if a proper route is installed.

Pool4: not set. P2P address is used!

vs

Pool4: 80.254.236.128/25
Pool4 route inserted: Yes

The last line of the show command displays the current number of entries in the BIB
table. The number of records = number of static records + number of currently opened
connections.

show ipv6 nat64 session shows currently active sessions/connections.
show ipv6 nat64 stats show some NAT64 stats.

IPv4 pool

Adds a pool of IPv4 address for translating IPv6 sources.

netx# ipv6 nat64 pool4 <ipv4 pool>
netx# no ipv6 nat64 pool4 <ipv4 pool>
netx# show ipv6 nat64 pool4
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For example:

netx# ipv6 nat64 pool4 192.0.64.128/25

A static route to the Jool’s virtual network namespace is automatically created for the
selected IPv4 pool.

show ipv6 nat64 pool4 shows IPv4 addresses in the pool in detail as Jool internally
manages them.

BIB

Binding Information Base (BIB) is a table that keeps a binding between a source IPv6
transport address and a source IPv4 transport address. Entries to the table are dynamically
inserted based on active connections. It is also possible to add a static record to the table
and create a permanent binding. A static record is used if a connection from the IPv4
network needs to be established without prior communication — an analogy of IPv4 port
forwarding.

netx# ipv6 nat64 bib <ipv4 transport address> <ipv6 transport address>
netx# no ipv6 nat64 bib <ipv4 transport address> <ipv6 transport address>
netx# show ipv6 nat64 bib

For example:

netx# ipv6 nat64 bib 192.0.64.129:80 2001:db8:0:42::5.80
netx# ping 64:ff9b::8.8.8.8
netx# show ipv6 nat64 bib
[Static TCP] 192.0.64.129#80 - 2001:db8:0:42::5#80
[Static UDP] 192.0.64.129#80 - 2001:db8:0:42::5#80
[Static ICMP] 192.0.64.129#80 - 2001:db8:0:42::5#80
[Dynamic ICMP] 192.0.64.5#606 - 2001:db8:0:64::1#16363

B.0.1 Jool’s instance options

Mantains subset of supported Jool’s instance options.
Supported options are:

∙ address-dependent-filtering

∙ drop-externally-initiated-tcp

∙ drop-icmpv6-info

∙ f-args

∙ handle-rst-during-fin-rcv

∙ icmp-timeout

∙ logging-bib

∙ logging-session

∙ manually-enabled

∙ maximum-simultaneous-opens
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∙ mtu-plateaus

∙ override-tos

∙ source-icmpv6-errors-better

∙ tcp-est-timeout

∙ tcp-trans-timeout

∙ tos

∙ udp-timeout

∙ zeroize-traffic-class

The option meanings are listed in the official Jool documentation https://www.jool.mx/en/usr-
flags-global.html

B.1 NETX NAT64 basic tutorial
This example shows a simple configuration that connects IPv6 only network with the rest of
the Internet. IPv4 only hosts are still reachable through NAT64 AFTR running on NETX
router.

Whenever an IPv6 host wants to contact a host on the Internet, it asks DNS64 for
address translation. If the DNS64 server detects that the requested service does not have
a matching AAAA record, the response is created by concatenation of NAT64 prefix and
queried host IPv4 address. All hosts now seem to have IPv6 connectivity. The used DNS64
server in this example is public Google DNS64 server 2001:4860:4860::64.

DNS resolution must take place before work with IP literals. Some applica-
tions with hard-coded IPv4 literal could have problems.

There is also a static record in the BIB table so that a web server inside the internal
IPv6 only network is also available for external IPv4 only clients.
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Topology

Address plan

NETX router uses the following interfaces and addresses:

∙ Internet connectivity: interface ge1, 80.254.236.1/30 2a07:6881:0:1::1/64

∙ Local IPv6 only network: interface ge3, 2a07:6881:0:2::1/64

∙ NAT64 prefix: 64:ff9b::/96

∙ IPv4 pool: 80.254.236.128/25

∙ P2P subnets for NAT64 virtual namespace: 80.254.236.4/30 2a07:6881:0:64::/64
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The following commands can be used to set up IP addresses:

! set up ge1 addresses
netx# interface ge1 ipv4 address 80.254.236.1/30
netx# interface ge1 ipv6 address 2a07:6881:0:1::1/64
netx# ipv4 route 0.0.0.0/0 80.254.236.2
netx# ipv6 route ::/0 2a07:6881:0:1::2

! set up tge3 addresses
netx# interface tge3 ipv6 address 2a07:6881:0:2::1/64

Host config (Linux)

host# ip addr add 2a07:6881:0:2::2/64 dev eno1
host# ip route add ::/0 2a07:6881:0:2::1
host# cat "nameserver 2001:4860:4860::64" > /etc/resolv.conf

Basic address, default route and DNS server assignment.

Webserver config (Linux)

host# ip addr add 2a07:6881:0:2::80/64 dev eno1
host# ip route add ::/0 2a07:6881:0:2::1
host# cat "nameserver 2001:4860:4860::64" > /etc/resolv.conf

Basic address, default route and DNS server assignment.

NETX NAT64 config

NAT64 instance creation

netx# ipv6 nat64 instance 64:ff9b::/96 2a07:6881:0:64::0/64 80.254.236.4/30

IPv4 pool adding

netx# ipv6 nat64 pool4 80.254.236.128/25

The pool4 subnet has to be properly routed towards the NETX router.

Static BIB record for webserver adding

netx# ipv6 nat64 bib 80.254.236.129:80 2a07:6881:0:2::80.80

Webserver is now reachable via 80.254.236.129.
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Verification

Instance verification

netx# show ipv6 nat64
Stateful NAT64 instance is runnig
Is enabled: Yes
NAT64 prefix: 64:ff9b::/96
Pool4: 80.254.236.128/25
Pool4 route inserted: Yes
Pool4 Jools IPv4 counts: TCP 128, UDP 128, ICMP 128
BIB Jools entry counts: TCP 1, UDP 1, ICMP 1

DNS64 verification

host# dig AAAA +noall +answer www4.fit.vutbr.cz
www4.fit.vutbr.cz. 14399 IN CNAME tereza.fit.vutbr.cz.
tereza.fit.vutbr.cz. 14399 IN AAAA 64:ff9b::93e5:916

traceroute6 verification

host# traceroute6 www4.fit.vutbr.cz
traceroute to www4.fit.vutbr.cz (64:ff9b::93e5:916), 30 hops max, 80 byte
1 2a07:6881:0:1::1 (2a07:6881:0:1::1) 0.175 ms 0.163 ms 0.152 ms
2 2a07:6881:0:64::2 (2a07:6881:0:64::2) 0.336 ms 0.339 ms 0.280 ms
3 64:ff9b::50fe:ec05 (64:ff9b::50fe:ec05) 0.265 ms 0.269 ms 0.252 ms
4 64:ff9b::50fe:ec01 (64:ff9b::50fe:ec01) 0.431 ms 0.423 ms 0.415 ms
5 64:ff9b::b901:1904 (64:ff9b::b901:1904) 0.380 ms 0.351 ms 0.339 ms
6 64:ff9b::93e5:fc71 (64:ff9b::93e5:fc71) 1.993 ms 2.583 ms 1.342 ms
7 64:ff9b::93e5:fd35 (64:ff9b::93e5:fd35) 0.777 ms 1.141 ms 1.327 ms
8 64:ff9b::93e5:fd38 (64:ff9b::93e5:fd38) 0.799 ms 0.812 ms 0.691 ms
9 64:ff9b::93e5:fd3b (64:ff9b::93e5:fd3b) 2.993 ms
10 64:ff9b::93e5:feda (64:ff9b::93e5:feda) 9.291 ms 9.316 ms 9.445 ms
11 64:ff9b::93e5:916 (64:ff9b::93e5:916) 0.546 ms 0.510 ms 0.513 ms

1 Local network gataway
2 Jool network namespace interface
3 Regular network namespace interface (64:ff9b::80.254.236.5)
4 Internet network gateway (64:ff9b::80.254.236.1)
...

53



BIB and session verification

host# wget www4.fit.vutbr.cz

netx# show ipv6 nat64 bib
[Static TCP] 80.254.236.129#80 - 2a07:6881:0:2::80#80
[Dynamic TCP] 80.254.236.129#62916 - 2a07:6881:0:2::2#54228
[Static UDP] 80.254.236.129#80 - 2a07:6881:0:2::80#80
[Static ICMP] 80.254.236.129#80 - 2a07:6881:0:2::80#80
[Dynamic ICMP] 80.254.236.191#60559 - 2001:db8:111::2#14787

rt-netx-d# show ipv6 nat64 session
TCP
---------------------------------
UDP
---------------------------------
ICMP
---------------------------------
rt-netx-d# show ipv6 nat64 session
TCP
---------------------------------
(V4_FIN_V6_FIN_RCV) Expires in 00:01:40.949
Remote: tereza.fit.vutbr.cz#http 2a07:6881:0:2::2#54228
Local: 80.254.236.129#62916 64:ff9b::93e5:916#80
---------------------------------
UDP
---------------------------------
ICMP
---------------------------------
Expires in 00:00:59.494
Remote: 147.229.9.22#536702001:db8:111::2#15786
Local: 80.254.236.188#5367064:ff9b::93e5:916#15786
---------------------------------
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Appendix C

Content of the attached data
carrier

.
|-- thesis-latex
|-- measuring
|-- sources

|-- netx-docs
|-- netx-netc
‘-- netx-rpm

For more information, see the README files in each folder.
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