

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF ELECTRICAL AND ELECTRONIC TECHNOLOGY

TEPLOTNÍ ZÁVISLOST MĚRNÉ VODIVOSTI ELEKTROLYTŮ PRO LITHNO – IONTOVÉ AKUMULÁTORY

THE TEMPERATURE DEPENDENCE OF THE SPECIFIC CONDUCTIVITY OF ELECTROLYTES FOR LITHIUM - ION BATTERIES

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

PETR SVOBODA

VEDOUCÍ PRÁCE SUPERVISOR

Ing. JOSEF MÁCA

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav elektrotechnologie

Bakalářská práce

bakalářský studijní obor Mikroelektronika a technologie

Student:Petr SvobodaRočník:3

ID: 134622 *Akademický rok:* 2013/2014

Termín odevzdání:

5.6.2014

NÁZEV TÉMATU:

Teplotní závislost měrné vodivosti elektrolytů pro lithno – iontové akumulátory

POKYNY PRO VYPRACOVÁNÍ:

Prostudujte literaturu zabývající se problematikou aprotických elektrolytů a lithno – iontových akumulátorů. Připravte vzorky kapalných elektrolytů a stanovte teplotní závislosti pro různé směsi aprotických rozpouštědel a solí s alkalickými kovy. Získané průběhy vyhodnoťte a stanovte zdánlivou aktivační energii pro jednotlivá rozpouštědla a směsi rozpouštědel. Na základě výsledků vyberte nejvhodnější elektrolyt pro lithno – iontové akumulátory.

DOPORUČENÁ LITERATURA:

Podle pokynů vedoucího bakalářské práce.

Termín zadání: 10.2.2014

Vedoucí práce: Ing. Josef Máca Konzultanti bakalářské práce:

doc. Ing. Jiří Háze, Ph.D.

Předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Abstrakt:

Tato bakalářská práce se zabývá měřením teplotní závislosti měrné vodivosti aprotických elektrolytů pro lithno – iontové akumulátory. Byly připraveny vzorky elektrolytů, které se skládaly ze směsi aprotických rozpouštědel a solí s alkalickými kovy. Do směsi rozpouštědel byl ve všech případech použit sulfolan v kombinaci s dalším aprotickým rozpouštědlem. Dále se tato práce zabývá stanovením zdánlivých aktivačních energií jednotlivých rozpouštědel a směsí rozpouštědel.

Abstract:

This thesis deals with the measurement of the temperature dependence of the specific conductivity of aprotic electrolytes for lithium - ion batteries. Samples that consisted of a mixture of aprotic solvents and salts with alkaline metals were prepared. Sulfolane in combination with another aprotic solvent was used in a mixture of solvents in all cases. Furthermore this thesis deals with the determination of the apparent activation energy of solvents and mixtures of solvents.

Klíčová slova:

aprotický elektrolyt, vodivost elektrolytů, rozpouštědla, teplotní závislost, impedanční spektroskopie, aktivační energie

Keywords:

aprotic electrolyte, conductivity of electrolyte, solvents, temperature dependence, impedance spectroscopy, activation energy

Bibliografická citace díla:

SVOBODA, P. *Teplotní závislost měrné vodivosti elektrolytů pro lithno – iontové akumulátory*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2014. 56 s., 28 s. příloh. Vedoucí bakalářské práce Ing. Josef Máca.

Prohlášení autora o původnosti díla

Prohlašuji, že jsem tuto vysokoškolskou kvalifikační práci vypracoval samostatně pod vedením vedoucího bakalářské práce, s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury. Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení.

V Brně dne 3.6.2014

Podpis autora

Poděkování

Děkuji vedoucímu bakalářské práce Ing. Josefu Mácovi za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování projektu.

V Brně dne 3.6.2014

.....

Podpis autora

Obsah

SEZNAM OBRÁZKŮ	7
SEZNAM TABULEK	
ÚVOD	12
1 LITHNO-IONTOVÉ AKUMULÁTORY	13
2 ELEKTROLYTY	15
2.1 Elektrolytická disociace	
2.2 Rozdělení kapalných elektrolytů	15
3 ROZPOUŠTĚDLA	16
3.1 ROZDĚLENÍ ROZPOUŠTĚDEL	16
3.1.1 Nepolárnírozpouštědla	16
3.1.2 Polární rozpouštědla	16
3.2 ZÁKLADNÍ VLASTNOSTI ROZPOUŠTĚDEL	17
3.2.1 Teplota tání a tuhnutí (interval tekutého stavu)	17
3.2.2 Tlak par	
3.2.3 Tepelná kapacita	
3.2.4 Velikost molekul	
3.2.5 Dipólový moment	
3.2.6 Relativní permitivita	
3.2.7 Elektrická vodivost	
3.2.8 Viskozita	
3.2.9 Tepelná vodivost	
3.2.10 Polarita	
3.2.11 Rozpustnost ve vodě	
4 KONDUKTOMETRIE	21
4.1 NÍZKOFREKVENČNÍ KONDUKTOMETRIE	
4.2 VODIVOSTNÍ NÁDOBKY A ZPŮSOBY MĚŘENÍ VODIVOSTI	

5	ELEKTROCHEMICKÁ IMPEDANČNÍ SPEKTROSKOPIE	25							
6	MĚRNÁ ELEKTRICKÁ VODIVOST								
7	ZÁVISLOST RYCHLOSTI REAKCE NA TEPLOTĚ	29							
8	PRAKTICKÁ ČÁST	30							
	8.1 PŘÍPRAVA VZORKŮ	30							
	8.2 MĚŘENÍ MĚRNÉ VODIVOSTI ELEKTROLYTU	32							
	8.3 VÝPOČET MĚRNÉ VODIVOSTI ELEKTROLYTU	36							
	8.4 VÝPOČET AKTIVAČNÍ ENERGIE	41							
9	ZÁVĚR	52							
SE	EZNAM POUŽITÝCH ZDROJŮ	54							
SE	EZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ	55							
SF	EZNAM PŘÍLOH	56							
	Příloha 1	57							
	Příloha 2	64							
	PŘÍLOHA 3	75							

Seznam obrázků

Obr. 1: Řez Li-ion článkem [3]	14										
Obr. 2: Konstrukčního uspořádání ponorné nádobky[5]23											
Obr. 3: Randlesův ekvivalentní obvod – Re je částice reagující na elektrodě, Pr je produkt elektrodové reakce[5]											
Obr. 4: Nyquistovy grafy pro různé ekvivalentní obvody elektrody[5]27											
Obr. 5: Vodivostní cela typu KC 503, detail na termočlánek											
Obr. 6: Potenciostat BioLogic											
Obr. 7: Vzorky v peci připravené na měření											
Obr. 8: Náhradní schéma pro určení odporu elektrolytu[5]											
Obr. 9: Uživatelské rozhraní programu EC – Lab											
Obr. 10: Graf teplotních závislostí měrných vodivostí elektrolytů se solí ClLiO ₄											
Obr. 11: Graf teplotních závislostí měrných vodivostí elektrolytů se solí NaClO ₄											
Obr. 12: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 50 % + EC 50 % + LiClO ₄											
Obr. 13: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + EC + LiClO ₄	orku 44										
Obr. 14: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + DEC + LiClO ₄	orku 45										
Obr. 15: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + DMC + LiClO ₄	orku 46										
Obr. 16: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + DMSO + LiClO ₄	orku 47										
Obr. 17: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + EC + NaClO ₄	orku 48										
Obr. 18: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + PC + NaClO ₄	orku 49										
Obr. 19: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + DEC + NaClO ₄	orku 50										
Obr. 20: Závislost aktivační energie na koncentraci sulfolanu ve směsi vz Sl + DMSO + NaClO ₄	orku 51										

Obr. 21: Teplotní závislost vzorku Sl 20 % + DEC 80 % + LiClO ₄	64
Obr. 22: Teplotní závislost vzorku Sl 50 % + DEC 50 % + LiClO ₄	64
Obr. 23: Teplotní závislost vzorku Sl 80 % + DEC 20 % + LiClO ₄	65
Obr. 24: Teplotní závislost vzorku Sl 20 % + EC 80 % + LiClO ₄	
Obr. 25: Teplotní závislost vzorku Sl 50 % + EC 50 % + LiClO ₄	66
Obr. 26: Teplotní závislost vzorku Sl 50 % + EC 50 % + LiClO ₄	66
Obr. 27: Teplotní závislost vzorku Sl 20 % + DMC 80 % + LiClO ₄	67
Obr. 28: Teplotní závislost vzorku Sl 50 % + DMC 50 % + LiClO ₄	67
Obr. 29: Teplotní závislost vzorku Sl 80 % + DMC 20 % + LiClO ₄	68
Obr. 30: Teplotní závislost vzorku Sl 20 % + DMSO 80 % + LiClO ₄	68
Obr. 31: Teplotní závislost vzorku Sl 50 % + DMSO 50 % + LiClO ₄	
Obr. 32: Teplotní závislost vzorku Sl 80 % + DMSO 20 % + LiClO ₄	
Obr. 33: Teplotní závislost vzorku Sl 20 % + PC 80 % + NaClO ₄	70
Obr. 34: Teplotní závislost vzorku Sl 50 % + PC 50 % + NaClO ₄	70
Obr. 35: Teplotní závislost vzorku Sl 20 % + EC 80 % + NaClO ₄	71
Obr. 36: Teplotní závislost vzorku Sl 50 % + EC 50 % + NaClO ₄	71
Obr. 37: Teplotní závislost vzorku Sl 80 % + 2C 20 % + NaClO ₄	72
Obr. 38: Teplotní závislost vzorku Sl 80 % + DEC 20 % + NaClO ₄	
Obr. 39: Teplotní závislost vzorku Sl 80 % + DMSO 20 % + NaClO ₄	73
Obr. 40: Teplotní závislost vzorku Sl 50 % + DMSO 50 % + NaClO ₄	73
Obr. 41: Teplotní závislost vzorku Sl 20 % + DMSO 80 % + NaClO ₄	74
Obr. 42: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 20 % + DEC 50 % + LiCle	O ₄ 75
Obr. 43: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 50 % + DEC 50 % + LiCle	O ₄ 75
Obr. 44: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 80 % + DEC 20 % + LiCl	O ₄ 76
Obr. 45: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 20 % + EC 80 % + LiClO.	4 76
Obr. 46: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 80 % + EC 20 % + LiClO.	4 77
Obr. 47: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 20 % + DMC 80 % + LiCl	1O ₄ 77
Obr. 48: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 50 % + DMC 50 % + LiCl	1O ₄ 78
Obr. 49: Graf závislosti ln (γ) na 1/ <i>T</i> vzorku Sl 80 % + DMC 20 % + LiCl	1O ₄ 78

Seznam tabulek

Tabulka	1: Složení připravených vzorků	31
Tabulka	2: Měrná vodivost elektrolytů se solí LiClO ₄	38
Tabulka	3: Měrná vodivost elektrolytů se solí NaClO ₄	40
Tabulka	4: Naměřené a vypočtené hodnoty vzorku SI(50 %) + EC(50 %) + ClLiO ₄	42
Tabulka	5: Aktivační energie vzorku sulfolan + ethylenkarbonát + LiClO ₄	43
Tabulka	6: Aktivační energie vzorku sulfolan + diethylkarbonát + LiClO ₄	45
Tabulka	7: Aktivační energie vzorku sulfolan + dimethylkarbonát + LiClO ₄	45
Tabulka	8: Aktivační energie vzorku sulfolan + dimethylsulfoxid + LiClO ₄	46
Tabulka	9: Aktivační energie vzorku sulfolan + ethylenkarbonát + NaClO ₄	47
Tabulka	10: Aktivační energie vzorku sulfolan + propylenkarbonát + NaClO ₄	48
Tabulka	11: Aktivační energie vzorku sulfolan + diethylkarbonát + NaClO ₄	49
Tabulka	12: Aktivační energie vzorku sulfolan + dimethylsulfoxid + NaClO ₄	50
Tabulka	13: Seznam použitých zkratek a symbolů	55
Tabulka	14: Naměřené a vypočtené hodnoty vzorku Sl 20 % + DEC 80 % + LiClO ₄	57
Tabulka	15: Naměřené a vypočtené hodnoty vzorku Sl 50 % + DEC 50 % + LiClO ₄	57
Tabulka	16: Naměřené a vypočtené hodnoty vzorku Sl 80 % + DEC 20 % + LiClO ₄	57
Tabulka	17: Naměřené a vypočtené hodnoty vzorku Sl 20 % + EC 80 % + LiClO ₄	58
Tabulka	18: Naměřené a vypočtené hodnoty vzorku Sl 80 % + EC 20 % + LiClO ₄	58
Tabulka	19: Naměřené a vypočtené hodnoty vzorku Sl 20 % + DMC 80 % + LiClO ₄	58
Tabulka	20: Naměřené a vypočtené hodnoty vzorku Sl 50 % + DMC 50 % + LiClO ₄	59
Tabulka	21: Naměřené a vypočtené hodnoty vzorku Sl 80 % + DMC 20 % + LiClO ₄	59
Tabulka	22: Naměřené a vypočtené hodnoty vzorku Sl 20 % + DMSO 80 % + LiClO ₄	59
Tabulka 1	23: Naměřené a vypočtené hodnoty vzorku Sl 50 % + DMSO 50 % + LiClO ₄	50
Tabulka	24: Naměřené a vypočtené hodnoty vzorku Sl 80 % + DMSO 20 % + LiClO ₄	50
Tabulka	25: Naměřené a vypočtené hodnoty vzorku Sl 20 % + PC 80 % + NaClO ₄	50
Tabulka	26: Naměřené a vypočtené hodnoty vzorku Sl 50 % + PC 50 % + NaClO ₄	51
Tabulka	27: Naměřené a vypočtené hodnoty vzorku Sl 20 % + EC 80 % + NaClO ₄	51

Tabulka 28: Naměřené a vypočtené hodnoty vzorku Sl 50 % + EC 50 % + NaClO₄ 61**Tabulka 29:** Naměřené a vypočtené hodnoty vzorku Sl 80 % + EC 20 % + NaClO₄ 62**Tabulka 30:** Naměřené a vypočtené hodnoty vzorku Sl 80 % + DEC 20 % + NaClO₄ 62**Tabulka 31:** Naměřené a vypočtené hodnoty vzorku Sl 20 % + DMSO 80 % + NaClO₄ 62**Tabulka 32:** Naměřené a vypočtené hodnoty vzorku Sl 50 % + DMSO 50 % + NaClO₄ . 63**Tabulka 33:** Naměřené a vypočtené hodnoty vzorku Sl 80 % + DMSO 20 % + NaClO₄ . 63

Úvod

V současné době jsou hojně používána různá přenosná zařízení. Snad každý z nás dnes používá mobilní telefon nebo jiný přenosný přístroj jako je například notebook, fotoaparát, tablet, Mp3 přehrávač, GPS navigace a mnoho dalších. Všechna tato zařízení spojuje nutnost napájení, ke kterému se používají různé baterie nebo akumulátory. V dnešní době se ve většině případů používají baterie a akumulátory založené na bázi lithia. Snahou v této oblasti je dosáhnout co největší kapacity a co největší životnosti akumulátorů při zachování malé hmotnosti a co možná nejmenších rozměrů. Dalším důležitým aspektem je bezpečnost těchto zdrojů a jejich ekologičnost.

Tato páce se zabývá stanovením teplotních závislostí různých aprotických elektrolytů a výpočtem zdánlivých aktivačních energií těchto vzorků. Složení všech elektrolytů je založeno na bázi sulfolanu v kombinaci s dalším aprotickým rozpouštědlem. Ve směsi těchto rozpouštědel je rozpuštěna alkalická sůl.

Bakalářská práce je rozdělena na teoretickou a praktickou část. V teoretické části jsou popsány lithno – iontové akumulátory, vlastnosti rozpouštědel a rozdělení elektrolytů. Teoretická část se dále zabývá metodami měření vodivosti elektrolytů a výpočtem aktivační energie. V praktické části této práce bylo připraveno celkem 24 vzorků kapalných elektrolytů. Pro přípravu jednotlivých vzorků byly požity různé směsi aprotických rozpouštědel a celkem dvě soli s alkalickými kovy, kdy jedna z nich byl chloristan lithný (LiClO₄) a druhá sůl byl chloristan sodný (NaClO₄). Pro všechny tyto vzorky byla změřena teplotní závislost měrné vodivosti. Měření probíhalo v rozsahu teplot od pokojové teploty do teploty 90 °C. Dále byla u těchto vzorků stanovena jejich zdánlivá aktivační energie.

1 Lithno-iontové akumulátory

Lithno-iontové akumulátory se řadí mezi tzv. moderní proudové zdroje. První komerční lithno-iontové akumulátory se objevily v roce 1991 a za 20 let na trhu se staly hlavními zdroji elektrické energie pro přenosné elektronické přístroje [1].

Díky své vysoké energetické hustotě vytlačuje tento typ současné NiCd a NiMH články z mobilních přístrojů a dalších přenosných přístrojů. Nejdříve se jako materiál pro zápornou elektrodu využívalo kovové lithium. Veliký problém, kvůli kterému se kovové lithium přestalo používat, je ten, že silně reaguje na vzdušnou vlhkost a dochází ke vzniku dendritů na záporné elektrodě vedoucí často ke zkratu. Dnes se používá pouze v primárních článcích. Nyní se využívají jen lithné ionty, které interkalují do aktivních materiálů. Jako kladný aktivní materiál se nejčastěji využívá LiCoO₂ (kobaltitan lithný) nebo LiMn₂O₄, LiFePO₄ či LiNiO₂ a jako záporný materiál uhlík. Tato kombinace dává jmenovité napětí 3,6V [2].

Spojení Li-ion poukazuje na to, že se v akumulátoru nacházejí lithné ionty, které se při nabíjení nebo vybíjení neustále přemisťují z kladné elektrody na zápornou a ze záporné na kladnou [1].

Elektrolyt je založen na bázi lithných solí (nejčastěji LiClO₄ LiPF₆)a agresivních organických rozpouštědel (propylenkarbonát nebo ethylenkarbonát). Pokud vyteče, hrozí poleptání pokožky či koroze uvnitř přístroje. Tomuto nebezpečí čelí většina výrobků uzavřením do stabilního kovového pláště. Separátor, který odděluje elektrody, se obvykle vyrábí buď z tkaného nebo plstěného nylonu. Tento materiál je dostatečně porézní na to, aby mohl zajistit mikroporézní polypropylenovou iontovou vodivou cestu pro elektrolyt. Mikroporézní membrána z polypropylenu se využívá jako plynová bariéra a zároveň nabízí minimální iontový odpor. Pokud je tato plynová bariéra mokrá, je poměrně měkká, a proto je umístěna mezi dvěma vrstvami tkaninového separátoru. Tím je zajištěna její větší pevnost [2]. Řez Li-ion článkem vidíme na Obr. 1.

Tyto akumulátory se nesmí vybíjet pod určité napětí (přibližně 3 V) nebo přebíjet nad určité napětí (přibližně 4,2 V), protože by došlo k narušení struktur aktivních materiálů a tím i ke snížení výkonu nebo zničení článku. Proto v obalu akumulátoru bývá zalit mikročip s potřebnými senzory, který zabraňuje přehřátí a roztržení v případě přebíjení článku. Mají větší vnitřní odpor (až 10x větší než NiCd), a proto nemohou dodávat tak vysoké proudy jako NiCd. Lithno-iontové akumulátory pojmou při stejné velikosti asi třikrát více energie než klasické niklkadmiové akumulátory, jsou lehčí a nemají paměťový efekt, čímž je dána jejich velká přednost. Jejich životnost se pohybuje mezi 500 - 1500 nabíjecími cykly. Před nabíjením je není nutno úplně vybíjet. Za 24 hodin je u nich

samovybíjení zanedbatelně malé, teprve po měsíci postrádají necelých 10 % energie. Avšak jejich vysoká hustota energie není zadarmo, výrobní náklady jsou ve srovnání s typy NiCd a NiMH o 30 % až 50 % vyšší [2].

Obr. 1: Řez Li-ion článkem [3]

2 Elektrolyty

Elektrolyt je roztok nebo tavenina vedoucí elektrický proud. Slovem elektrolyt se označuje soustava, obsahující elektrické ionty. Nejčastějšími elektrolyty jsou roztoky iontové sloučeniny s vhodným rozpouštědlem[4]

Elektrolyty je možné dělit podle použitého rozpouštědla na vodné a aprotické (bezvodé). U vodných elektrolytů je základem voda, která se smíchá s vhodnou kyselinou či hydroxidem. Aprotické elektrolyty jsou roztokem bezvodého organického rozpouštědla a soli. Aprotické elektrolyty mají ve srovnání s vodnými výhodu ve větším potenciálovém okně, ovšem na úkor nižší vodivosti. Na aprotické elektrolyty jsou kladeny tyto požadavky: Dobrá vodivost, velké potenciálové okno, dobrá smáčivost elektrod a velký rozsah pracovních teplot[4].

2.1 Elektrolytická disociace

Je to chemický děj, při kterém polární molekuly rozpouštědla buď štěpí chemické vazby molekul nebo krystalů rozpouštěné látky a nebo naopak jsou štěpeny molekuly elektrolytu, přičemž vzniká roztok obsahující volně pohyblivé ionty[4].

2.2 Rozdělení kapalných elektrolytů

Silné elektrolyty– jsou v roztoku o libovolné koncentraci úplně disociované na ionty (soli anorganických kyselin a soli organických kyselin, hydroxidy a silné kyseliny)[4].

Slabé elektrolyty – jsou v roztoku přítomny částečně ve formě svých nedisociovaných molekul a solvatovaných iontů[4].

3 Rozpouštědla

Rozpouštědla jsou látky, které mají schopnost rozpustit jiné látky, tak že utvoří homogenní směs s jejich částicemi. Výsledná směs potom bývá nazývána roztokem. Hlavním předpokladem rozpouštědla je to, aby nijak nereagovalo s rozpouštěným materiálem. Dalším požadavkem na rozpouštědlo je, aby šlo z roztoku odstranit tak aby nedošlo ke změně původních látek. Fyzikální vlastnosti rozpouštědel jsou důležité pro správný výběr rozpouštědla pro jednotlivé aplikace[6].

Voda bývá nejvíce využívané a užitečné rozpouštědlo, kterému byla věnována velká pozornost ve všech oborech zabývající se touto problematikou. Anorganické rozpouštědla byla dlouhou dobu považována za typická bezvodá rozpouštědla. V minulých desetiletích získaly jen málo pozornosti organické bezvodé rozpouštědla. Velké množství zvláště dvojpólových aprotických rozpouštědel, se začala objevovat až v nových publikacích, nejvíce ve spojení s elektrolyty nebo ionty[4].

3.1 Rozdělení rozpouštědel

- nepolární rozpouštědla (jako hexan a tetrachlorometan)
- rozpouštědla s nízkou polarizací (toluen a chloroform)
- aprotická a dipolární rozpouštědla (aceon a dimethylformamide)
- protické a protogení rozpouštědla (ethanol nebo nitromethan)
- základní rozpouštědla (pyridin, diaminoethan)
- kyselé rozpouštědla (3-methylfenol a butanolová kyselina)

3.1.1 Nepolární rozpouštědla

Jsou látky používané pro rozpouštění nepolárních sloučenin, ve kterých je rozdíl elektronegativit vázaných prvků menší než 0,4. Jsou nemísitelná s vodou a mají nízkou dielektrickou konstantu. Jejich molekula je symetrická.

3.1.2 Polární rozpouštědla

Mají nesymetrickou molekulu, tudíž mají nenulový dipólový moment. Tato rozpouštědla velmi dobře rozpouští soli, nebo jiné polární látky.

Polární rozpouštědla se dále dělí na protická a aprotická. Protická rozpouštědla obsahují odštěpitelný proton. Dále mají atom vodíku vázán s elektronegativním atomem. Ten může být odštěpen, případně může vytvářet vodíkové můstky k jiným molekulám s elektronegativními atomy. Dále může vodíkové vazby vytvářet rozpouštěná látka s atomy rozpouštědla. Oproti tomu aprotická rozpouštědla mají silné vodíkové vazby a nemohou proto darovat atomy vodíku[6].

3.2 Základní vlastnosti rozpouštědel

Při volbě vhodného rozpouštědla pro dané aplikace je nutné znát jeho vlastnosti s ohledem na oblast jeho použití. Vlastnosti rozpouštědel můžeme rozdělit na fyzikální a chemické. Z fyzikálních vlastností rozpouštědel jsou nejdůležitější: teplota tání a tuhnutí (interval tekutého stavu), těkavé vlastnosti, tepelná kapacita, tepelná vodivost, velikost molekul, viskozita a dále zejména elektrické vlastnosti – permitivita, vodivost. Mezi chemické vlastnosti mohou být zařazeny polarita, donicita, schopnost vázat, nebo uvolňovat vodík. Také molekulové charakteristiky jako velikost molekul a jejich orientace a relaxační doba má velký vliv na rozpouštěcí efekt[6].

3.2.1 Teplota tání a tuhnutí (interval tekutého stavu)

Jedním ze základních požadavků na rozpouštědla je to aby teplotní interval kdy je rozpouštědlo v tekutém stavu byl co nejvhodnější pro běžné aplikace. Interval tekutosti leží mezi teplotou tuhnutí a bodem varu. Za normálních podmínek je bod tání tuhého rozpouštědla stejný jako bod tuhnutí tekutého rozpouštědla. Jestliže je plynná fáze v rovnováze s táním nebo tuhnutím rozpouštědla a pokud se skládá jen z páry tohoto rozpouštědla, pak tři fáze, pára, kapalina a pevná látka daného rozpouštědla současně existují v trojném bodu, a ten bývá v těsné blízkosti bodu tání[4].

Teplota tání rozpouštědla stanovená s přesností 0,01 K (odchylka od tabelované hodnoty) potvrzuje, že je rozpouštědlo velmi čisté, protože nečistoty snižují teplotu tání. Znečištění rozpouštědla nečistotami v objemu 0,01% posune bod tání v intervalu $0,01 \div 1,2$ K v závislosti na druhu rozpouštědla[6].

Standardní teplota varu je stanovena pro okolní tlak $P_0 = 101,325$ kPa. S klesajícím tlakem klesá i bod varu. Za působení vnějšího tlaku rozpouštědlo začne vařit jen v případě, že se jeho tlak par vyrovná tomuto vnějšímu tlaku. Nečistoty zvyšují bod varu, ačkoliv účinek je menší než na bod tání. Hustota rozpouštědla závisí na teplotě, tlaku a okolních podmínkách[6].

3.2.2 Tlak par

Je důležitý parametr rozpouštědla, který určuje míru těkavosti. Hodnota tlaku je udávána k teplotě 25 °C a je značně rozdílná pro běžně používaná rozpouštědla. Hodnota tlaku par vykazuje silně rostoucí teplotní závislost. Některá rozpouštědla jsou vysoce těkavá (Diethyl, n-pentan), jiná málo (N-hexadecane)[6].

3.2.3 Tepelná kapacita

Rozpouštědlo je zahříváno v konstantním tlaku a pohlcuje energii. Vibrace a rotace vnitřní struktury souvisí s jeho zvýšením teploty, kinetické energie částic. Velikost vstupní energie potřebné pro zvýšení teploty jednoho molu rozpouštědla o jednu jednotku je molární tepelná kapacita. Molární tepelná kapacita je v rozsahu (50 až 500) $J \cdot K^{-1} \cdot mol^{-1}$ a roste hlavně s počtem vazeb v molekule rozpouštědla[4].

3.2.4 Velikost molekul

Na velikost molekul rozpouštědla je možno nahlížet několika způsoby. V případě, že jsou molekuly kulového tvaru je možné přiřadit jim průměr. Řada rozpouštědel má však molekuly zploštělé, nebo protáhlé. V jiném případě může být průměr definován jako vzdálenost středů molekul, nebo může být charakterizován obsazeným prostorem vlastních molekul v kapalině rozpouštědla. Molekulový průměr hraje velkou roli v.teoriích zabývajících se kapalným stavem rozpouštědel a souvisejícími mechanismy jako je průměrný počet srážek molekul, nebo vzdálenost charakterizující minimální potenciální energii dvou molekul[6].

Všechny tyto výše zmíněné vlastnosti rozpouštědel patří mezi fyzikální vlastnosti. Nyní se budeme zabývat vlastnostmi elektrickými.

3.2.5 Dipólový moment

Dipólový moment (přesněji elektrický dipólový moment) je vektorová veličina popisující nesymetrické rozdělení elektrického náboje, např. v molekule nebo v malé skupině atomů.

Odezva rozpouštědla na působící elektrické pole je závislá jednak na přímém dipólovém momentu molekul, ale i na vzájemném působení jednotlivých dipólů v objemu látky. Dipólový moment vyjadřuje míru oddělení kladného a záporného náboje v molekule. Jednotkou je Debye, $1D = 3.33564 \cdot 10^{-30} \text{ C} \cdot \text{m}$. Rozpouštědla se souměrnými molekulami

mohou vykazovat nulový dipólový moment, avšak elektronegativní atomy připojené k aromatickým jádrům mohou mít za následek vznik dipólového momentu[4].

3.2.6 Relativní permitivita

Relativní permitivita obecně, udává míru polarizovatelnosti materiálu, značí se ɛr. někdy je označována jako dielektrická konstanta. Teplotní závislost permitivity rozpouštědel je obvykle velmi vysoká a má záporný charakter. To je způsobeno následkem zmenšení vzdálenosti mezi dipóly vlivem tepelného pohybu. Podle velikosti permitivity lze rozpouštědla rozdělit[6].

- Rozpouštědla s nízkou permitivitou $\varepsilon_r = 1,9 \div 4$, jsou nepolární.
- Rozpouštědla s permitivitou *ε_r* ≤ 10, mohou být polární, nebo nepolární, ale jsou považována za rozpouštědla s nízkou permitivitou a nemají schopnost štěpit látky.
- Rozpouštědla s $\varepsilon_r \ge 30$ bývají polární a umožňují kompletní disociaci elektrolytu.

3.2.7 Elektrická vodivost

Elektrická vodivost je silně závislá na čistotě látky a je obvykle velmi malá. Při kontaminaci rozpouštědla nečistotami, nebo vodou dojde ke zvýšení jeho vodivosti[6].

3.2.8 Viskozita

Pro viskozitu rozpouštědel platí stejné podmínky jako pro všechny ostatní newtonovské kapaliny. Viskozita určuje míru vnitřního tření molekul a je jednou ze zásadních charakteristik kapaliny. Z hlediska rozpouštědel použitých v lithno-iontových akumulátorech je jedním z nejdůležitějších parametrů, protože přímo ovlivňuje vodivost elektrolytu. Viskozita silně závisí na teplotě[6].

3.2.9 Tepelná vodivost

Důležitá vlastnost co se týče odvodu tepla z exotermických reakcí. Nebo její využití jako kapaliny pro tepelnou výměnu. Tepelná vodivost je závislá na pohyblivosti molekul, a proto je tím vyšší, čím menší molekuly jsou. Pro kulové molekuly v plynné fázi je tepelná vodivost úměrná viskozitě[4].

Nyní se podíváme na chemické vlastnosti rozpouštědel.

3.2.10 Polarita

Polarita je z chemického hlediska součet všech molekulárních vlastností, odpovědných za vzájemné působení mezi rozpouštědlem a rozpuštěnu látkou tak, že způsobí rozpouštěcí schopnost rozpouštědla[6].

3.2.11 Rozpustnost ve vodě

Voda je velmi často používané rozpouštědlo a v mnoha případech je použita směs vody a dalšího rozpouštědla. Z tohoto důvodu je důležitou chemickou vlastností vzájemná rozpustitelnost s vodou. Je mnoho rozpouštědel, které se kompletně rozpustí ve vodě při pokojové teplotě. Mohou se však při určité teplotě opět oddělit na dvě samostatné fáze. Rozpustnost vody v rozpouštědle, se kterým není úplně mísitelný, je vetší než rozpustnost rozpouštědla ve vodě, protože velmi malé molekuly vody se snadněji rozmístí mezi molekuly rozpouštědla. Mnoho rozpouštědel je dosti navlhavých a pohlcují vlhkost ze vzduchu. Je jistá souvislost mezi vzájemnou rozpustností a navlhavostí rozpouštědel[4].

4 Konduktometrie

Analyzovaný roztok je ve vodivostní nádobce mezi dvěma elektrodami, jimiž prochází konstantní elektrický proud *I*. Nádobkou nemůže procházet stejnosměrný proud, pokud je napětí na elektrodách menší než napětí, při němž se některá z komponent roztoku na jedné elektrodě oxiduje a na druhé redukuje. V tomto případě mají reakční impedance $Z_{r,i}$, které jsou použity k charakterizaci elektrodového děje, teoreticky nekonečně vysokou hodnotu. Pokud je napětí na elektrodách dostatečně velké, tak aby na elektrodách mohlo docházet k elektrodové reakci (elektrolýze), reakční impedance mají malou hodnotu a proud obvodem prochází. Je zřejmé, že za těchto podmínek nelze z napětí na elektrodách určit hledanou hodnotu *R*, protože toto napětí je určováno převážně elektrodovými reakcemi, na rozhraní elektroda/roztok[7].

Řešením problému je použití střídavého elektrického proudu. Průchod střídavého proudu vodivostní nádobkou je za těchto podmínek charakterizován impedanci Z, která je rovna vektorovému součtu ohmického odporu nádobky R a kapacitní reaktanci X_c [7].

$$Z = \sqrt{R^2 + Xc^2} \tag{1}$$

Ohmický odpor je na frekvenci střídavého proudu nezávislou složkou impedance. Reaktance, představující příspěvek kapacity nádobky, je složka impedance frekvenčně závislá

$$Xc = \frac{1}{2\pi fC}$$
(2)

kde f je frekvence střídavého proudu. Vztah mezi napětím U změřeným voltmetrem a zjišťovanou impedancí je opět dán Ohmovým zákonem. Je-li střídavý proud konstantní, je měřené napětí přímo úměrné impedanci vodivostní nádobky s analyzovaným roztokem[7].

Rozlišujeme dva typy konduktometrie v závislosti na použité frekvenci:

- nízkofrekvenční konduktometrie (10¹ až 10⁴ Hz)
- vysokofrekvenční konduktometrie (10⁶ až 10⁸ Hz)

Při nízkých frekvencích střídavého proudu se na změně impedance podílejí polarizační jevy jen málo. Změna impedance závisí především na změně množství iontů, tato změna je tedy určována především ohmickým odporem R a je málo závislá na frekvenci[7].

4.1 Nízkofrekvenční konduktometrie

Při nízkofrekvenční konduktometrii je podle vodivosti analyzovaného roztoku měření optimalizováno volbou frekvence střídavého proudu (řádově desetiny až jednotky kHz), jeho amplitudou a konstrukcí vodivostní nádobky, aby dominantní složkou impedance byl ohmický odpor[5].

Odpor, R (Ω), ve vodivostní nádobce mezi elektrodami o ploše A umístěnými ve vzdálenosti l je

$$R = \rho \cdot \frac{l}{A} \tag{3}$$

kde ρ je měrný odpor, který má rozměr $\Omega \cdot m$, *l* je vzdálenost elektrod v m a *A* je plocha elektrod v m². Jelikož odpor mezi elektrodami je nepřímo úměrný koncentraci iontu, je z analytického hlediska výhodnější měřit vodivost, G ($\Omega^{-1} = S$)

$$G = \frac{1}{R} = \gamma \cdot \frac{A}{l} \tag{4}$$

kde *G* je vodivost v S a γ je měrná vodivost v S·m⁻¹. Ta charakterizuje analyzovaný roztok, zatímco podíl *A*/*l* charakterizuje experimentální zařízení neboli vodivostní nádobku[5].

Pro hledanou měrnou vodivost platí:

$$\gamma = G \cdot \Theta \tag{5}$$

kde Θ je tzv. konstanta vodivostní nádobky v m⁻¹. Aby bylo možno ze změřené vodivosti *G* v dané vodivostní nádobce určit měrnou vodivost analyzovaného roztoku, musí být hodnota Θ známa. Ve většině případů ji nelze určit z geometrických rozměrů. Elektrody v nádobkách nejsou přesné planární a paralelní, elektrické pole mezi nimi není přesně ohraničeno jejich rozměry. Proto se danou nádobkou změří vodivost standardního roztoku o známé měrné vodivosti a konstanta Θ se vypočítá z rovnice (5). Často se používá roztok chloridu draselného (KCl) o různých koncentracích[5].

Při řádně optimalizovaném vodivostním měření se nesmí konstanta vodivostní nádobky měnit s frekvencí střídavého proudu. Vhodné geometrické uspořádání nádobky je obvykle zajištěno výrobcem, optimální frekvenci a amplitudu střídavého proudu je třeba nastavit při analýze. Moderní konduktometry optimalizují tyto parametry automaticky[5].

4.2 Vodivostní nádobky a způsoby měření vodivosti

Nádobky k měření vodivosti jsou různých konstrukcí, podle účelu, ke kterému mají sloužit. Pro jednorázová měření vodivosti se používají nádobky ponorné (Obr. 2). Pro kontinuální monitorování vodivosti se používají různé typy nádobek průtokových. Vodivostní elektrody jsou zpravidla pokrývány platinovou černí pro zvětšení povrchu, tím se sníží možnost jejich polarizace. Protože vodivost, závisí výrazně na teplotě, používají se pro přesná měření termostatové nádobky[7].

Obr. 2: Konstrukčního uspořádání ponorné nádobky[5]

Vodivost lze měřit v dvouelektrodovém uspořádání vodivostní nádobky nebo v uspořádávání čtyřelektrodovém. V dvouelektrodovém uspořádání se v důsledku procházejícího proudu mohou na elektrodách vytvářet různé povlaky, které přispívají k celkovému odporu v nádobce, může se projevit i ne zcela eliminovaná polarizace elektrod. Velikost měřeného napětí proto závisí na celkovém odporu v nádobce (roztoku i rozhraní fází) tj. nejen na odporu roztoku, který je analytickým signálem, ale i stavu elektrod, a odporech na rozhraní elektroda/roztok. Ve čtyřelektrodovém uspořádání prochází proud jen jednou dvojicí elektrod a mezi něj e vložena další dvojice elektrod, na nichž je měřeno napětí za potenciometrických podmínek (bezproudového stavu). Takto změřené napětí není ovlivněno jevy, k nimž dochází na elektrodách, jimiž prochází proud, a závisí proto pouze na odporu analyzovaného roztoku[5].

5 Elektrochemická impedanční spektroskopie

V důsledku rozdílu potenciálu mezi elektrodami elektrochemického článku, ať již galvanického nebo elektrolytického, prochází článkem elektrický proud. Prochází-li elektrochemickým článkem proud, dochází na elektrodách k polarizačním jevům, které průchodu proudu brání. Příčinou je malá rychlost některého z kroku, z nichž se skládá elektrodový proces. Jednotlivé kroky, v nejjednodušším případě transport elektroaktivního materiálu mezi povrchem elektrody a roztokem, reakce přenosu náboje a odpor v roztoku elektrolytu, přispívají k celkové polarizaci příspěvky, kterými jsou koncentrační, aktivační a ohmická polarizace. Příspěvky jednotlivých kroků si lze proto představit jako jakési "odpory" či "impedance", které dle aktuálních podmínek v elektrodu tak lze popsat náhradním (ekvivalentním) elektrickým obvodem. Elektrodu ve voltmetrické cele popisuje například tzv. Randlesův ekvivalentní obvod (Obr. 3). Obsahuje kapacitu elektrické dvojvrstvy *Cal*, odpor elektrolytu *R*, reakční odpor *R*_{ct} reprezentující aktivační polarizaci a tzv. Warburgovu impedanci *Zw*, reprezentující transport reagující částice z roztoku k povrchu elektrody[7].

Obr. 3: Randlesův ekvivalentní obvod – Re je částice reagující na elektrodě, Pr je produkt elektrodové reakce[5]

Pokud takto charakterizovanou elektrodou prochází střídavý proud o programově řízené frekvenci (v intervalu řádově jednotek mHz až stovek kHz a o amplitudách řádově jednotek mV), jednotlivé komponenty se projevují při různých frekvencích různě. Fázově citlivým usměrněním proudu, vhodným zobrazením a interpretací získaných dat lze hodnoty jednotlivých komponent náhradního obvodu určit a tak charakterizovat vlastnosti studované elektrody. Tímto se zabývá elektrochemická impedanční spektroskopie[7].

Celková impedance obvodu Z, kterou prochází střídavý proud sinusového tvaru lze vyjádřit součtem reálné a imaginární složky

$$Z = R - jX_c = Z_{real} + Z_{imag} \tag{6}$$

kde *j* je imaginární jednotka. Reálná složka je frekvenčně nezávislá, imaginární složka na frekvenci závisí. V impedanční spektroskopii se zpravidla zobrazuje závislost – Z_{imag} na Z_{real} při různých frekvencích, tzv. Nyquistův graf. Na tomto grafu se různé kombinace odporů a kapacit projevují různě[7].

Odpor v sérii s kapacitou se projevuje jako série bodů (každý odpovídá určité frekvenci) ležících na přímce rovnoběžné s imaginární osou. Při vysokých frekvencích, kdy se impedance kondenzátoru neprojevuje, $X_c \rightarrow 0$, protíná přímka reálnou osu v bodě odpovídajícím hodnotě odporu *R*, (Obr. 4A). Tento případ představuje elektrodu dokonale pokrytou filmem izolantu (dielektrika) ponořenou do roztoku elektrolytu[7].

Odpor a kapacita v paralelním zapojení se projevuje jako polokružnice (Obr. 4B). Při vysokých frekvencích je impedance kondenzátoru malá, takže se paralelní odpor neprojeví. Celkovou impedanci určuje pouze odpor R. Naopak, při velmi malých frekvencích, kdy $X_c \rightarrow \infty$, určuje celkovou impedanci součet $R + R_{ct}$. Maximum na polokružnici je při frekvenci, pro níž platí:

$$\omega = \frac{1}{Rct \cdot Cdl} \tag{7}$$

kde ω je úhlová rychlost v rad·s⁻¹. Z grafu lze pro každou frekvenci určit celkovou impedanci obvodu |Z|, a fázový úhel ω , jimiž se liší registrovaný proud od vstupního sinusového napětí. Tento případ by odpovídal elektrochemické cele, v níž by do elektrodového děje nezasahovaly transportní procesy[7].

Naopak, pokud by byl elektrodový děj řízen čistě difuzí k planární elektrodě a jiné impedance by se neuplatňovaly, určovala by závislost Zimag na Zreal pouze Warburgova

impedance a Nyquistův graf by byl přímkou o směrnici 45° (Obr. 4C). Při vysokých frekvencích transportní impedance klesá, protože pohybující se iont urazí jen velmi malou dráhu, než změní směr. Pokud by se ještě projevoval odpor elektrolytu *R*, protnula by přímka reálnou osu v bodě rovném hodnotě tohoto odporu[7].

V případě reálné voltmetrické elektrody se zpravidla uplatňují všechny uvedené jevy, takže je projeví i na Nyquistově grafu (Obr. 4D). Je nutno podotknout, že elektrody používané v praxi bývají často charakterizovány komplexnějším náhradním obvodem. Na procházející proud mají vliv i jiné než diskutované impedance, např. různé filmy absorbovaných či elektrochemicky vyloučených látek, současně probíhající ať již heterogenní na elektrodě, či homogenní v roztoku, korozní reakce atd. Správným vyhodnocením "elektrochemického impedančního spektra" – Nyquistova grafu, a navržením ekvivalentního obvodu, lze zjistit řadu parametrů tyto jevy charakterizující[7].

Obr. 4: Nyquistovy grafy pro různé ekvivalentní obvody elektrody[5]

6 Měrná elektrická vodivost

Měrná elektrická vodivost (též konduktivita) je fyzikální veličina, která popisuje schopnost látky vést elektrický proud. Látka, která je dobrým vodičem, má vysokou hodnotu konduktivity, špatně vodící látky mají nízkou hodnotu konduktivity.

Měrná elektrická vodivost se značí řeckým písmenem γ . Základní jednotka je siemens na metr (S·m⁻¹). Obvykle se však vyjadřuje v jednotkách S·cm⁻¹ nebo mS·cm⁻¹[8].

Teplotní závislost

Elektrická vodivost roztoků je teplotně velmi závislá, zejména při nízkých hodnotách vodivosti. Teplotní koeficient měrné elektrické vodivosti se pohybuje mezi 2 až 6 % °C a může výrazně ovlivnit přesnost měření[8].

Měrná elektrická vodivost γ (S·m⁻¹) je funkcí teploty. Závislost konduktivity na teplotě pro roztoky o nižších koncentracích je možno vyjádřit vztahem:

$$\gamma_{\upsilon} = \gamma_{\upsilon_0} [1 + \beta_1 (\upsilon - \upsilon_0) + \beta_2 (\upsilon - \upsilon_0)^2]$$
(8)

kde jsou β_1 , β_2 teplotní koeficienty vodivosti, γ_{υ} , $\gamma_{\upsilon 0}$ vodivosti při teplotě υ a υ_0 (např. pro roztok NaCl β_1 = 0,0226 K⁻¹, β_2 = 0,085.10⁻² K⁻²). Při menších teplotních intervalech je člen druhého řádu nevýznamný a teplotní závislost se vyjadřuje jednodušším vztahem:

$$\gamma_{\nu} = \gamma_{\nu_0} [1 + \beta_1 (\nu - \nu_0)] \tag{9}$$

Teplotní koeficienty β_1 jsou pro různé skupiny elektrolytů přibližně stejné. Pro $\upsilon = 20^{\circ}$ C platí:

- $0,016 \text{ K}^{-1}$ pro kyseliny
- 0,019 K⁻¹ pro zásady
- 0,024 K⁻¹ pro soli

Se vzrůstající teplotou υ hodnota koeficientu β_1 rychle klesá[8].

7 Závislost rychlosti reakce na teplotě

Rychlost reakce obvykle rychle roste s teplotou. Ve většině případů můžeme použít v prvním přiblížení van't Hoffovo empirické pravidlo, které říká, že zvýšení teploty o 10 °C vede ke dvoj až čtyřnásobnému zvýšení reakční rychlosti. Kvantititativně popsal vliv teploty na reakční rychlost S. Arrhenius, který zjistil exponenciální závislost rychlostní konstanty reakce na absolutní teplotě[9].

$$k = A \cdot e^{-\frac{E_a}{R \cdot T}} \tag{10}$$

kde: A – frekvenční faktor $[s^{-1}]$

E_a– aktivační energie [eV]

R– univerzální plynová konstanta $\left[\frac{J}{K \cdot mol}\right]$

T – absolutní teplota [K]

Aktivační energie je pro každou reakci charakteristická a v nepříliš širokém rozmezí teplot na teplotě prakticky nezávislá. Z rovnice (10) vyplývá, že s rostoucí teplotou, tj. se zmenšující se hodnotou v exponentu, roste hodnota konstanty[9].

Hodnota aktivační energie je u elementárních reakcí vždy kladná. Lze si ji představit jako energii, kterou je nutné dodat reagujícím molekulám ke vzbuzení valenčních elektronů[10].

Vzhledem k exponenciálnímu charakteru této závislosti lze jen s malým zvýšením teploty dosáhnout poměrně značného zvýšení rychlosti reakce. Z experimentálních údajů je možno pomocí zlogaritmované formy Arrheniovy rovnice zjistit hodnotu aktivační energie[9].

$$\ln(k) = -\frac{E_a}{RT} + \ln(A) \tag{11}$$

Změříme-li hodnotu k při několika teplotách a vyneseme graficky závislost $\frac{1}{T}$, dostaneme přímku, jejíž směrnice je rovna - $\frac{E_a}{R}$ a úsek na ose y je roven ln (A)[9].

8 Praktická část

8.1 Příprava vzorků

V rámci této bakalářské práce bylo připraveno celkem 24 vzorků elektrolytů. Na 12 vzorků byla použita sůl LiClO₄ (chloristan lithný) na dalších 12 vzorků byla požita sůl NaClO₄ (chloristan sodný). Jako rozpouštědlo byl ve všech případech použit sulfolan v kombinaci s dalším rozpouštědlem. Každá kombinace rozpouštědel byla namíchána ve třech různých poměrech koncentrací rozpouštědel v této směsi. V prvním případě bylo použito 80% sulfolanu a 20% dalšího rozpouštědla. Ve druhém případě byla připravena směs, kde bylo použito 50% každého z rozpouštědel a ve třetím případě bylo do směsi použito 20% sulfolanu a 80% dalšího rozpouštědla. Složení všech připravených vzorků je uvedeno v Tabulka 1.

Pomocí pipety bylo připraveno vždy 6 ml každé z uvedených směsí rozpouštědel. Na poměr rozpouštědel 80 : 20 bylo použito 4,8 ml sulfolanu a 1,2 ml druhého rozpouštědla, na poměr rozpouštědel 50 : 50 byly použity 3 ml obou rozpouštědel a na poměr 20 : 80 bylo použito 1,2 ml sulfolanu a 4,8 ml druhého rozpouštědla. Do takto připravených roztoků byla přidána daná sůl o koncentraci 1 mol/l. Hmotnost každé ze solí, která byla do roztoků přidána, byla vypočtena z rovnice (12).

V	zorky	/ 8	V	zorky	<i>י</i> 7	V	zorky	6	Vzorky 5			V	zorky	4	Vzorky 3		V	zorky	2	V	orky	1			
20 % Sulfolan + 80 % Dimethylsulfoxid + 0,735 g NaClO ₄	50 % Sulfolan + 50 % Dimethylsulfoxid + 0,735 g NaClO ₄	80 % Sulfolan + 20 % Dimethylsulfoxid + 0,735 g NaClO ₄	20 % Sulfolan + 80 % Diethylkarbonát + 0,735 g NaClO ₄	50 % Sulfolan + 50 % Diethylkarbonát + 0,735 g NaClO ₄	80 % Sulfolan + 20 % Diethylkarbonát + 0,735 g NaClO ₄	20 % Sulfolan + 80 % Ethylenkarbonát + 0,735 g NaClO ₄	50 % Sulfolan + 50 % Ethylenkarbonát + 0,735 g NaClO ₄	80 % Sulfolan + 20 % Ethylenkarbonát + 0,735 g NaClO ₄	20 % Sulfolan + 80 % Propylenkarbonát + 0,735 g NaClO ₄	50 % Sulfolan + 50 % Propylenkarbonát + 0,735 g NaClO ₄	80 % Sulfolan + 20 % Propylenkarbonát + 0,735 g NaClO ₄	Sada vzorků s chloristanem sodným	20 % Sulfolan + 80 % Dimethylsulfoxid + 0,638 g LiClO ₄	50 % Sulfolan + 50 % Dimethylsulfoxid + 0,638 g LiClO ₄	80 % Sulfolan + 20 % Dimethylsulfoxid + 0,638 g LiClO ₄	20 % Sulfolan + 80 % Dimethylkarbonát + 0,638 g LiClO ₄	50 % Sulfolan + 50 % Dimethylkarbonát + 0,638 g LiClO ₄	80 % Sulfolan + 20 % Dimethylkarbonát + 0,638 g LiClO ₄	20 % Sulfolan + 80 % Ethylenkarbonát + 0,638 g LiClO ₄	50 % Sulfolan + 50 % Ethylenkarbonát + 0,638 g LiClO ₄	80% Sulfolan + 20 % Ethylenkarbonát + 0,638 g LiClO ₄	20 % Sulfolan + 20% Diethylkarbonát + 0,638 g LiClO ₄	50 % Sulfolan + 50 % Diethylkarbonát+ 0,638 g LiClO ₄	80 % Sulfolan + 20 % Diethylkarbonát + 0,638 g LiClO ₄	Sada vzorků s chloristanem lithným

Tabulka 1: Složení připravených vzorků

Výpočet hmotnosti soli:

$$m = M \cdot c \cdot V \tag{12}$$

kde: m – hmotnost rozpouštěné soli [g] M – molekulová relativní hmotnost [g·mol⁻¹] c – koncentrace [mol] V – objem roztoku [1]

Pro LiClO₄ byla odečtena hodnota $M = 106,39 \text{ g} \cdot \text{mol}^{-1}$, V = 6 ml, c = 1 mol

$$m = M \cdot c \cdot V$$

 $m = 106,39 \cdot 1 \cdot 0,006$
 $m = 0,638 g$

Pro NaClO₄ byla odečtena hodnota M=122,44g·mol⁻¹

$$m = 0,735 g$$

Sůl byla navážena pomocí laboratorní analytické váhy KERN ALS 120-4.

8.2 Měření měrné vodivosti elektrolytu

Pro měření vodivosti byly použity vodivostní cely typu KC 503, tyto cely se skládají ze dvou platinových elektrod, zatavených proti sobě do skla, překrytých skleněnou trubkou o standardním průměru 12 mm.

Technické údaje:

- odporová konstanta cely $1,0 \text{ cm}^{-1} \pm 20\%$
- rozsah měření $0,1 \ \mu\text{S} \cdot \text{cm}^{-1}$ až 250 mS $\cdot \text{cm}^{-1}$ (40 Hz až 4 kHz)

Ke každé této vodivostní cele byl přichycen termočlánek typu K, kterým byla měřena teplota elektrolytu (Obr. 5).

Obr. 5: Vodivostní cela typu KC 503, detail na termočlánek

Vodivostní cela byla ponořena do skleněné ampulky s měřeným elektrolytem tak, aby byly obě elektrody a termočlánek ponořeny pod hladinou. Následné měření probíhalo automaticky pomocí elektrochemické impedanční spektroskopie na potenciostatu BioLogic (Obr. 6), kde byly do programu nastaveny tyto parametry:

Mode:	Single Sine
Rozsah frekvencí:	1 MHz do 40 Hz
Napětí:	$U_{p-p} = 10 \text{ mV}$
Průměrný počet měření pro jednu frekvenci:	$N_a = 5$
Počet cyklů:	2

Obr. 6: Potenciostat BioLogic

Měření probíhalo v rozsahu teplot od pokojové teploty (25 °C) do teploty 90 °C. Byly měřeny vždy dva vzorky najednou. Dva měřené vzorky byly vloženy do pece (Obr. 7) a odměřeny při pokojové teplotě. Po odměření pokojové teploty byla zapnuta pec a vzorky byly postupně ohřívány.

Obr. 7: Vzorky v peci připravené na měření

Od teploty 30 °C bylo vždy po deseti stupních Celsia puštěno automatické měření. K vyhodnocení výsledků byl použit program EC – Lab s použitím analýzy Z Fit. Tato analýza vypočte z naměřeného průběhu hodnoty součástek náhradního obvodu. Jako náhradní obvod byl pro toto měření vybrán obvod R1 + Q1, kde R1 je odpor elektrolytu a Q1 je zdroj konstantní fáze (Obr. 8).

Obr. 8: Náhradní schéma pro určení odporu elektrolytu[5]

Nyquistův graf tohoto prvku je přímka v kladné části imaginární osy s úhlem $-\frac{\alpha \pi}{2}$ vůči reálné ose. Impedance prvku s rostoucí frekvencí roste.

Impedance použitého náhradního obvodu lze vypočítat pomocí vzorce:

$$Z(f) = R_1 + \frac{1}{Q_1(j2\pi f)^{\alpha_1}}$$
(13)

Pro analýzu byla vždy vybrána nejlineárnější část změřeného průběhu (Obr. 9).

Obr. 9: Uživatelské rozhraní programu EC – Lab

8.3 Výpočet měrné vodivosti elektrolytu

Jako odpor elektrolytu byla brána hodnota R_I vypočtená pomocí EC – Lab (Obr. 9). Jako kalibrační roztok byl použit jednomolární roztok chloridu draselného. Odpor tohoto roztoku byl pro první celu 16,94 Ω a pro druhou celu 18,39 Ω . Z manuálu k vodivostní nádobce byla odečtena měrná vodivost tohoto roztoku, která má hodnotu 111,8 mS·cm⁻¹ při teplotě 25 °C.

Výpočet konstanty pro vodivostní nádobku:

$$\Theta = R_1 \cdot \gamma \tag{14}$$

kde: γ – měrná vodivost kalibračního roztoku odečtená z manuálu k vodivostní nádobce [S · m⁻¹]

- Θ konstanta vodivostní nádobky[m⁻¹]
- R_{I} odpor kalibračního roztoku [Ω]
Výpočet měrné vodivosti elektrolytu y.

$$\gamma = \frac{\Theta}{R_1} \tag{15}$$

kde: γ -měrná vodivost měřeného elektrolytu [S · m⁻¹]

 Θ – konstanta vodivostní nádobky[m⁻¹]

 R_I – odpor měřeného elektrolytu [Ω]

Příklad výpočtu pro Tabulka 2 vzorek Sl + EC, 50 % Sl, teplota 30 °C:

$$\Theta = R_1 \cdot \gamma \qquad \qquad \gamma = \frac{\Theta}{R_1}$$

$$\Theta = 18,39 \cdot 11,18 \qquad \qquad \gamma = \frac{205,6}{291,9}$$

$$\Theta = 205,6 \text{ m}^{-1} \qquad \qquad \gamma = 6,49 \text{ mS} \cdot \text{cm}^{-1}$$

Dle výše uvedeného příkladu výpočtu byla zpracována všechna naměřená data pro jednotlivé koncentrace rozpouštědel. V Tabulka 2 jsou souhrnně zobrazeny vypočtené hodnoty měrné vodivosti všech vzorků s použitou solí LiClO₄. Stejným způsobem zpracovaná data pro vzorky s použitou solí NaClO₄ jsou uvedena v Tabulka 3.

		SI + DEC			SI + EC	
υ[°C]	20 % SI	50 % SI	80 % SI	20 % SI	50 % SI	80 % SI
	γ [mS·cm⁻¹]	γ [mS·cm ⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]
20	1,45					
25		2,66	3,5			
26				8,96	6,5	4,62
30	1,72	2,83	3,44	9,77	6,49	4,42
40	2	3,34	4,3	11,87	8,07	5,32
50	2,35	3,97	5,13	14,42	9,75	6,54
60	2,72	4,54	6,11	16,67	11,35	8,58
70	3,09	5,13	7,07	19,12	13,1	9,88
80	3,51	5,7	8,01	21,59	14,87	11,19
90	3,88	6,5	9,04	24,12	16,35	12,79
		SI + DMC		SI + DMSO		
υ[°C]	20 % SI	50 % SI	80 % SI	20 % SI	50 % SI	80 % SI
	γ [mS·cm⁻¹]	γ [mS·cm ⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]
25	4,02	5,22	4,25			
30	3,99	5,84	4,72	9,37	7,31	4,73
40	4,53	6,78	5,7	11,28	9,44	5,94
50	5,02	7,64	6,78	13,19	11,74	7,57
60	5,49	8,6	7,98	14,46	13,35	8,9
70	6,06	9,46	8,97	16,16	15,51	10,67
80	6,59	10,34	10,1	17,72	18,23	12,41
90	7,26	11,43	11,31	19,29	20,56	14,4

Tabulka 2: Měrná vodivost elektrolytů se solí LiClO₄

Všechna data z Tabulka 2 jsou graficky zpracována na Obr. 10. Z tohoto grafu je patrné, že měrná vodivost všech vzorků je lineárně závislá na teplotě. U všech vzorků konduktivita roste s teplotou. Nejvyšší hodnota konduktivity vyšla u vzorku namíchaného z dvaceti procent sulfolanu a osmdesáti procent ethylenkarbonátu, naopak nejnižší hodnota konduktivity vyšla u vzorku namíchaného z dvaceti procent sulfolanu a osmdesáti procent diethylkarbonátu.

Obr. 10: Graf teplotních závislostí měrných vodivostí elektrolytů se solí ClLiO₄

		SI + PC			SI + EC	
υ[°C]	20 % SI	50 % SI	80 % SI	20 % SI	50 % SI	80 % SI
	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm ⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]
25	6,24	4,73	N		5,75	2,6
26			N	8,92		
30	6,94	5,34	N	8,85	6,4	2,6
40	8,83	6,68	N	10,71	8,13	3,46
50	10,75	8,21	N	12,77	9,91	5,35
60	12,96	9,99	N	14,79	11,94	7,1
70	15,26	11,67	N	16,58	14,06	8,88
80	17,47	13,39	N	18,65	16,09	10,55
90	19,9	15,21	N	20,75	18,33	12,45
	SI+DEC			SI+DMSO		
υ[°C]	20% SI	50% SI	80% SI	20% SI	50% SI	80% SI
	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]	γ [mS·cm⁻¹]
30	N	N	2,41	13,21	6,97	5,22
40	N	N	3,1	16,08	9,23	5,69
50	N	N	4,22	19,05	11,67	7,39
60	N	N	6,08	23,16	14,28	9,39
70	N	N	7,91	26,97	17,44	11,5
80	N	N	9,37	30,68	19,79	13,61
90	N	N	11,08	34,84	22,82	15,69

Tabulka 3: Měrná vodivost elektrolytů se solí NaClO₄

Grafické zpracování dat z Tabulka 3 je zobrazeno na Obr. 11. I v tomto grafu je konduktivita všech vzorků lineární a roste s teplotou. Nejvyšší hodnota konduktivity vyšla v tomto případě u vzorku namíchaného z dvaceti procent sulfolanu a osmdesáti procent dimethylsulfoxidu. Nejnižší hodnota konduktivity vyšla u vzorku namíchaného z osmdesáti procent sulfolanu a dvaceti procent diethylkarbonátu.

Obr. 11: Graf teplotních závislostí měrných vodivostí elektrolytů se solí NaClO₄

8.4 Výpočet aktivační energie

Postupnými úpravami rovnice (10) byla vypočtena aktivační energii elektrolytu. k z rovnice (10) bylo v našem případě nahrazeno γ neboli konduktivitou.

$$\gamma = A \cdot e^{-\frac{E_a}{R \cdot T}}$$

$$ln(\gamma) = ln(A \cdot e^{-\frac{E_a}{R \cdot T}})$$

$$ln(\gamma) = ln(A) + ln(e^{-\frac{E_a}{R \cdot T}})$$

$$ln(\gamma) = ln(A) - \frac{E_a}{R \cdot T}$$

$$ln(\gamma) = ln(A) - \frac{E_a}{R} \cdot \frac{1}{T}$$

přirozeného logaritmu konduktivity ln (γ) a převrácené Hodnoty hodnoty termodynamické teploty $\frac{1}{\tau}$ jsou uvedeny pro jednotlivé teploty v Tabulka 4.

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	ln γ [-]
26	316,1	6,50	299,15	0,003343	1,8725
30	291,9	6,49	303,15	0,003299	1,8700
40	234,8	8,07	313,15	0,003193	2,0877
50	194,3	9,75	323,15	0,003095	2,2770
60	166,9	11,35	333,15	0,003002	2,4290
70	144,6	13,10	343,15	0,002914	2,5724
80	127,4	14,87	353,15	0,002832	2,6991
90	115,8	16,35	363,15	0,002754	2,7945

Tabulka 4: Naměřené a vypočtené hodnoty vzorku SI(50 %) + EC(50 %) + ClLiO₄

V této fázi výpočtu byl sestrojen graf (Obr. 12) závislosti přirozeného logaritmu konduktivity ln (γ) na převrácené hodnotě termodynamické teploty $\frac{1}{T}$. V tomto grafu byla zobrazena rovnice regrese (neboli rovnice přímky), z níž byla odečtena směrnice. V další fázi výpočtu aktivační energie bylo pracováno s touto směrnicí.

Sulfolan 50 % + Ethylenkarbonát 50 % + LiClO₄

Obr. 12: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 50 % + EC 50 % + LiClO₄

Tabulka 4 a Obr. 12 jsou uvedeny jako příklad pro vzorek složený z padesáti procent sulfolanu a padesáti procent ethylenkarbonátu v kombinaci s chloristanem lithným. Tabulky a grafy závislostí ln (γ) na $\frac{1}{T}$ pro všechny ostatní vzorky viz Příloha 1 a Příloha 3.

Vyjádření aktivační energie:

$$\frac{E_a}{R} = sm \check{e}rnice$$
$$E_a = sm \check{e}rnice \cdot R \qquad [\frac{J}{K \cdot mol}]$$

Aktivační energie byla následně převedena na elektronvolty:

$$E_a = \frac{sm\check{e}rnice \cdot k}{e} \qquad [eV]$$

Příklad výpočtu pro Tabulka 5 třetí řádek:

$$E_{a} = \frac{sm \check{e}rnice \cdot k}{e} \qquad sm \check{e}rnice \text{ viz Obr. 12}$$

$$E_{a} = \frac{1659 \cdot 1,380662 \cdot 10^{-23}}{1,602 \cdot 10^{-19}}$$

$$E_{a} = 0,143 \ eV$$

V Tabulka 5 jsou uvedeny vypočtené hodnoty aktivačních energií vzorku složeného ze sulfolanu a ethylenkarbonátu v kombinaci s chloristanem lithným. Grafické vyjádření této aktivační energie v závislosti na koncentraci sulfolanu ve směsi je zobrazeno na Obr. 13

Tabulka 5: Aktivační energie vzorku sulfolan + ethylenkarbonát + LiClO₄

Koncentrace SI [%]	Koncentrace EC [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,638	0,146
50	50	0,638	0,143
20	80	0,638	0,168
0	100	0,000	0,179

Obr. 13: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku SI + EC + LiClO₄

U této směsi rozpouštědel byla stanovena maximální hodnota aktivační energie u samotného ethylenkarbonátu tato hodnota byla 0,179 eV. Naopak nejnižší hodnota aktivační energie byla stanovena u směsi, která obsahovala přibližně 60 % sulfolanu a 40 % ethylenkarbonátu tato hodnota byla přibližně 0,14 eV.

Stejným způsobem byla zpracována data pro všechny vzorky. Vypočtené aktivační energie jsou uvedeny v jednotlivých tabulkách. Graficky vyjádřená závislost aktivační energie na koncentraci sulfolanu ve směsi je pak znázorněna v jednotlivých grafech. Pro sulfolan a diethylkarbonát v kombinaci s chloristanem lithným (Tabulka 6, Obr. 14), sulfolan a dimethylkarbonát v kombinaci s chloristanem lithným (Tabulka 7, Obr. 15), sulfolan a dimethylsulfoxid v kombinaci s chloristanem lithným (Tabulka 8, Obr. 16), sulfolan a ethylenkarbonát v kombinaci s chloristanem sodným (Tabulka 9, Obr. 17), sulfolan a propylenkarbonát v kombinaci s chloristanem sodným (Tabulka 10, Obr. 18), sulfolan a dimethylkarbonát v kombinaci s chloristanem sodným (Tabulka 11, Obr. 19) a pro sulfolan a dimethylsulfoxid v kombinaci s chloristanem sodným (Tabulka 11, Obr. 20).

Koncentrace SI [%]	Koncentrace DEC [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,638	0,145
50	50	0,638	0,129
20	80	0,638	0,133
0	100	0,000	0,077

Tabulka 6: Aktivační energie vzorku sulfolan + diethylkarbonát + LiClO₄

Sulfolan + Diethylkarbonát + LiClO₄

Obr. 14: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku SI + DEC + LiClO₄

Z Obr. 14 je patrné, že v této směsi rozpouštědel byla nevyšší hodnota aktivační energie stanovena pro samotný sulfolan tato hodnota byla 0,162 eV, nejnižší hodnota aktivační energie byla stanovena u samotného diethylkarbonátu tato hodnota byla 0,077 eV.

Koncentrace SI [%]	Koncentrace DMC [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,638	0,141
50	50	0,638	0,109
20	80	0,638	0,088
0	100	0,000	0,113

Tabulka 7: Aktivační energie vzorku sulfolan + dimethylkarbonát + LiClO₄

Sulfolan + Dimethylkarbonát + LiClO₄

Obr. 15: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku SI + DMC + LiClO₄

Graf na Obr. 15 znázorňuje, že nejvyšší hodnoty aktivační energie bylo v této směsi rozpouštědel dosaženo u samotného sulfolanu (0,162), nejnižší hodnota aktivační energie byla stanovena u směsi, která obsahovala 20 % sulfolanu a 80 % dimethylkarbonátu. Hodnota této aktivační energie byla 0,08eV.

Koncentrace SI [%]	Koncentrace DMSO [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,638	0,112
50	50	0,638	0,162
20	80	0,638	0,176
0	100	0,000	0,139

Tabulka 8: Aktivační energie vzorku sulfolan + dimethylsulfoxid + LiClO₄

Obr. 16: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku Sl + DMSO + LiClO₄

U složení elektrolytu z Obr. 16 byla nejvyšší hodnota aktivační energie stanovena u směsi, která obsahovala 30 % sulfolanu a 70 % dimethylsulfoxidu tato hodnota byla přibližně 0,182 eV. Nejnižší hodnota aktivační energie byla stanovena u směsi, která obsahovala 80 % sulfolanu a 20 % dimethylsulfoxidu tato hodnota byla 0,112 eV.

Koncentrace SI [%]	Koncentrace EC [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,735	0,245
50	50	0,735	0,168
20	80	0,735	0,130
0	100	0,000	0,179

Tabulka 9: Aktivační energie vzorku sulfolan + ethylenkarbonát + NaClO₄

Obr. 17: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku SI + EC + NaClO₄

Graf na Obr. 17 znázorňuje, že nejvyšší hodnoty aktivační energie bylo u tohoto elektrolytu dosaženo u směsi, která obsahovala 80 % sulfolanu a 20 % ethylenkarbonátu tato hodnota byla 0,245 eV, nejnižší hodnota aktivační energie byla stanovena u směsi, která obsahovala 20 % sulfolanu a 80 % ethylenkarbonátu. Hodnota této aktivační energie byla 0,13 eV.

Koncentrace SI [%]	Koncentrace PC [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,735	Sůl se nerozpustila
50	50	0,735	0,169
20	80	0,735	0,168
0	100	0,000	0,143

Tabulka 10: Aktivační energie vzorku sulfolan + propylenkarbonát + NaClO₄

Sulfolan + Propylenkarbonát + NaClO₄

Obr. 18: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku SI + PC + NaClO₄

U elektrolytu složeného ze sulfolanu ve směsi s propylenkarbonátem (Obr. 18) není aktivační energie stanovena pro všechny koncentrace, protože se nám u vzorku, který obsahoval 80 % sulfolanu a 20 % propylenkarbonátu, nerozpustila sůl NaClO₄.

Koncentrace SI [%]	Koncentrace DEC [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,735	0,253
50	50	0,735	Sůl se nerozpustila
20	80	0,735	Sůl se nerozpustila
0	100	0,000	0,077

Tabulka 11: Aktivační energie vzorku sulfolan + diethylkarbonát + NaClO₄

Obr. 19: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku SI + DEC + NaClO₄

U elektrolytu složeného ze sulfolanu ve směsi s dimethylkarbonátem (Obr. 19) není aktivační energie stanovena pro všechny koncentrace, protože se nám u vzorku, který obsahoval 50 % sulfolanu a 50 % dimethylkarbonátu a u vzorku obsahujícího 20 % sulfolanu a 80 % dimethylkarbonátu, nerozpustila sůl NaClO₄.

Koncentrace SI [%]	Koncentrace DMSO [%]	Množství soli [g]	Aktivační energie [eV]
100	0	0,000	0,162
80	20	0,735	0,186
50	50	0,735	0,187
20	80	0,735	0,164
0	100	0,000	0,139

Tabulka 12: Aktivační energie vzorku sulfolan + dimethylsulfoxid + NaClO₄

Obr. 20: Závislost aktivační energie na koncentraci sulfolanu ve směsi vzorku Sl + DMSO + NaClO₄

U složení elektrolytu z Obr. 20 byla nejvyšší hodnota aktivační energie stanovena u směsi, která obsahovala 60 % sulfolanu a 40 % dimethylsulfoxidu tato hodnota byla přibližně 0,191 eV. Nejnižší hodnota aktivační energie byla stanovena u směsi, která obsahovala samotný dimethylsulfoxid tato hodnota byla 0,139 eV.

9 Závěr

Zadáním této práce bylo připravit kapalné vzorky elektrolytů a stanovit teplotní závislosti měrné vodivosti různých směsí aprotických rozpouštědel a solí s alkalickými kovy. Dalším cílem této práce bylo stanovit zdánlivé aktivační energie jednotlivých rozpouštědel a směsí rozpouštědel.

Pro přípravu elektrolytů byla využita rozpouštědla používaná v elektrolytech lithno – iontových akumulátorů. Na všechny vzorky byl použit sulfolan, který byl v různých poměrech kombinován s propylenkarbonátem, ethylenkarbonátem, dimethylkarbonátem, diethylkarbonátem a dimethylsulfoxidem. Použité soli byly chloristan lithný a chloristan sodný.

Při měření teplotní závislosti měrné vodivosti bylo zjištěno, že měrná vodivost u všech vzorků roste se zvyšující se teplotou. Této konduktivitě ve všech případech nejlépe odpovídá lineární závislost, jak je zobrazeno v grafech na Obr. 10 a Obr. 11. Při použití soli LiClO₄ byla stanovena nejvyšší měrná vodivost u vzorku, který obsahoval 20 % sulfolanu a 80 % ethylenkarbonátu, hodnota měrné vodivosti tohoto vzorku byla 24,12 mS·cm⁻¹ při teplotě 90 °C. U vzorků se solí NaClO₄ byla nejvyšší měrná vodivost stanovena u vzorku, který obsahoval 20 % sulfolanu a 80 % dimethylsulfoxidu tato hodnota byla 34,84 mS·cm⁻¹ při teplotě 90 °C. Naopak nejnižší měrné vodivosti dosahovaly v obou případech vzorky složené z diethylkarbonátu. Pro teplotu 90 °C s použitou solí LiClO₄ u vzorku, který obsahoval 20 % sulfolanu a 80 % diethylkarbonátu byla stanovena hodnota konduktivity 3,88 mS cm⁻¹. Pro vzorek obsahující 80 % sulfolanu a 20 % diethylkarbonátu se solí NaClO₄ byla stanovena hodnota konduktivity 11.08 mS·cm⁻¹. Vzorky s použitou solí NaClO₄ obsahující 50 % a 80 % diethylkarbonátu nebo 80% propylenkarbonátu nebyly změřeny, protože se v nich sůl nerozpustila. U vzorků obsahujících NaClO₄ byly stanoveny vyšší hodnoty měrné vodivostí než u vzorků se solí LiClO₄. Tato skutečnost je pravděpodobně zapříčiněná jevem solvatace, kdy v tomto případě na sebe lithium nabaluje více molekul rozpouštědel než sodík. To způsobuje, že pohybující se celek tvořen lithiem a molekulami rozpouštědla je těžký a pomalý. Sodík na sebe molekuly rozpouštědel nabaluje v mnohem menší míře, proto se také hůř rozpouští, což bylo dokázáno tím, že se některé vzorky nerozpustily. Sodík obalený molekulami rozpouštědla je pak lehčí a rychlejší, a proto vykazuje vyšší hodnoty konduktivity.

Obecně by mělo platit, že čím je aktivační energie nižší, tím vyšší by měla být vodivost elektrolytu. V tomto experimentu se aktivační energie měnila v případě obou kovů, lithia i sodíku. Pravděpodobně to bylo zapříčiněno tím, že se měnily koncentrace

rozpouštědel v jednotlivých vzorcích. Mění-li se poměr rozpouštědel, mění se i poměr molekul obalujících daný iont kovu. Tyto shluky (iont kovu a tzv. solvátový obal) pak mají různou hmotnost, a proto i aktivační energii.

Na základě naměřených a vypočtených výsledků jednotlivých vzorků se jako nejvhodnější elektrolyt pro litho – iontové akumulátory jeví elektrolyt, který obsahuje 20 % sulfolanu, 80 % dimethylsulfoxidu a sůl NaClO₄. Elektrolyty složené z dimethylsulfoxidu se však nedají použít u plastových baterií, protože dimethylsulfoxid plasty leptá.

Seznam použitých zdrojů

- [1] DIVÍLEK, P. Materiály pro lithno-iontové akumulátory se zvýšenou bezpečností: bakalářská práce.Brno: FEKT VUT v Brně, 2012. 42s.
- [2] NEJEDLÝ, L. Elektrody pro lithno-iontové baterie na bázi kobaltitanu lithného. Brno, 2011. 61s. Vedoucí diplomové práce doc. Ing. Marie Sedlaříková, CSc. FEKT VUT vBrně.
- [3] Airsoft team Chrudim. [online]. [cit. 2014-04-14]. Dostupné z: http://www.airsoftchrudim.cz/recenze/vyvoj_pohonnych_akumulatoru.html
- [4] POJER, S. Vliv solí na vlastnosti aprotických elektrolytů. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2013. 63 s. Vedoucí diplomové práce Ing. Josef Máca.
- [5] MÁCA, J. Hořlavost aprotických elektrolytů pro lithiové systémy. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2009. 52 s. Vedoucí bakalářské práce doc. Ing. Marie Sedlaříková, CSc.
- [6] Bajer, M. Aprotické elektrolyty pro lithno-iontové akumulátory s vyšší teplotní stabilitou. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2013. 86 s. Vedoucí diplomové práce doc. Ing. Marie Sedlaříková, CSc.
- Barek, J. Opekar, F. Štulík, K. Elektroanalytická chemie. Praha: Univerzita Karlova v Praze, 2005. 190 stran. Karolinum 382-130-05
- [8] MACEŠKA, R. Měření vodivosti kapalin. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2009. 73s. Vedoucí bakalářské práce doc. Ing. Petr Beneš, Ph.D.
- [9] LÁZNÍČKOVÁ, Alice a Vladimír KUBÍČEK. Základy fyzikální chemie: vybrané kapitoly pro posluchače Farmaceutické fakulty. 1. vyd. Praha: Karolinum, 2006, 172 s. ISBN 80-246-0220-2.
- [10] NOVÁK, Josef a Vladimír KUBÍČEK. Fyzikální chemie: bakalářský a magisterský kurz. Vyd. 1. Praha: Vydavatelství VŠCHT, 2008, s. 264-506. ISBN 978-80-7080-675-3.

Seznam použitých zkratek a symbolů

<i>E</i> r	relativní permitivita
Z	Impedance
R	ohmický odpor
X _c	kapacitní reaktance
f	frekvence střídavého proudu
r	měrný odpor
G	Vodivost
γ	měrná vodivost (konduktivita)
Θ	konstanta vodivostní nádobky
j	imaginární jednotka
Z _{imag}	imaginární část impedance
Z _{real}	reálná část impedance
Ø	úhlová rychlost
т	Hmotnost
М	molekulová relativní hmotnost
С	Koncentrace
V	Objem
Uр-р	napětí peak to peak
LiClO ₄	chloristan lithný
NaClO ₄	chloristan sodný
КСІ	chlorid draselný
SL	Sulfolan
DMC	Dimethylkarbonát
РС	Propylenkarbonát
EC	Ethylenkarbonát
DEC	Diethylkarbonát
DMSO	Dimethylsulfoxid
Ea	aktivační energie
R	univerzální plynová konstanta
А	frekvenční faktor
Т	termodynamická teplota
k	boltzmanova konstanta
e	elementární náboi

Tabulka 13: Seznam použitých zkratek a symbolů

Seznam příloh

Příloha 1: Tabulky naměřených a vypočtených hodnot jednotlivých vzorků

Příloha 2: Grafy teplotních závislostí měrných vodivostí jednotlivých vzorků

Příloha 3: Grafy závislostí ln (γ) na $\frac{1}{T}$ jednotlivých vzorků

Příloha 1

υ [°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>T</i> [K]	<i>1/T</i> [1/K]	<i>ln</i> γ [-]
20	1256	1,45	293,15	0,003411	0,3740
30	1059	1,72	303,15	0,003299	0,5446
40	910,8	2,00	313,15	0,003193	0,6954
50	777,5	2,35	323,15	0,003095	0,8536
60	670,1	2,72	333,15	0,003002	1,0023
70	590,3	3,09	343,15	0,002914	1,1291
80	520,5	3,51	353,15	0,002832	1,2549
90	470,7	3,88	363,15	0,002754	1,3555

Tabulka 14: Naměřené a vypočtené hodnoty vzorku Sl 20 % + DEC 80 % + LiClO₄

Tabulka 15: Naměřené a vypočtené hodnoty vzorku Sl 50 % + DEC 50 % + LiClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	ln γ [-]
25	710,9	2,66	298,15	0,003354	0,9799
30	646,2	2,83	303,15	0,003299	1,0386
40	547,1	3,34	313,15	0,003193	1,2051
50	459,8	3,97	323,15	0,003095	1,3789
60	402,3	4,54	333,15	0,003002	1,5125
70	356	5,13	343,15	0,002914	1,6348
80	320,1	5,70	353,15	0,002832	1,7411
90	281	6,50	363,15	0,002754	1,8714

Tabulka 16: Naměřené a vypočtené hodnoty vzorku Sl 80 % + DEC 20 % + LiClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	ln γ [-]
25	587,1	3,50	298,15	0,003354	1,2533
30	530,1	3,44	303,15	0,003299	1,2367
40	424,1	4,30	313,15	0,003193	1,4597
50	356,1	5,13	323,15	0,003095	1,6345
60	298,7	6,11	333,15	0,003002	1,8103
70	258,1	7,07	343,15	0,002914	1,9564
80	228	8,01	353,15	0,002832	2,0804
90	201,9	9,04	363,15	0,002754	2,2019

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
26	211,3	8,96	299,15	0,003343	2,1931
30	193,8	9,77	303,15	0,003299	2,2796
40	159,5	11,87	313,15	0,003193	2,4743
50	131,3	14,42	323,15	0,003095	2,6689
60	113,6	16,67	333,15	0,003002	2,8137
70	99,05	19,12	343,15	0,002914	2,9508
80	87,71	21,59	353,15	0,002832	3,0724
90	78,53	24,12	363,15	0,002754	3,1829

Tabulka 17: Naměřené a vypočtené hodnoty vzorku Sl 20 % + EC 80 % + LiClO₄

Tabulka 18: Naměřené a vypočtené hodnoty vzorku SI 80 % + EC 20 % + LiClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>T</i> [K]	<i>1/T</i> [1/K]	In γ [-]
26	444,8	4,62	299,15	0,003343	1,5309
30	428,4	4,42	303,15	0,003299	1,4863
40	355,7	5,32	313,15	0,003193	1,6723
50	289,4	6,54	323,15	0,003095	1,8786
60	220,8	8,58	333,15	0,003002	2,1491
70	191,6	9,88	343,15	0,002914	2,2910
80	169,2	11,19	353,15	0,002832	2,4153
90	148,1	12,79	363,15	0,002754	2,5485

Tabulka 19: Naměřené a vypočtené hodnoty vzorku Sl 20 % + DMC 80 % + LiClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	ln γ [-]
25	511	4,02	298,15	0,003354	1,3921
30	474,8	3,99	303,15	0,003299	1,3835
40	418,3	4,53	313,15	0,003193	1,5102
50	377,6	5,02	323,15	0,003095	1,6126
60	345,1	5,49	333,15	0,003002	1,7026
70	312,7	6,06	343,15	0,002914	1,8011
80	287,6	6,59	353,15	0,002832	1,8848
90	260,9	7,26	363,15	0,002754	1,9823

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
25	362,9	5,22	298,15	0,003354	1,6523
30	324,1	5,84	303,15	0,003299	1,7653
40	279,5	6,78	313,15	0,003193	1,9134
50	247,8	7,64	323,15	0,003095	2,0338
60	220,3	8,60	333,15	0,003002	2,1514
70	200,2	9,46	343,15	0,002914	2,2471
80	183,1	10,34	353,15	0,002832	2,3364
90	165,7	11,43	363,15	0,002754	2,4362

Tabulka 20: Naměřené a vypočtené hodnoty vzorku Sl 50 % + DMC 50 % + LiClO₄

Tabulka 21: Naměřené a vypočtené hodnoty vzorku Sl 80 % + DMC 20 % + LiClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
25	445,2	4,25	298,15	0,003354	1,4479
30	400,9	4,72	303,15	0,003299	1,5527
40	332	5,70	313,15	0,003193	1,7413
50	279,4	6,78	323,15	0,003095	1,9137
60	237,2	7,98	333,15	0,003002	2,0775
70	211,1	8,97	343,15	0,002914	2,1941
80	187,6	10,10	353,15	0,002832	2,3121
90	167,5	11,31	363,15	0,002754	2,4254

Tabulka 22: Naměřené a vypočtené hodnoty vzorku Sl 20 % + DMSO 80 % + LiClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
30	202,2	9,37	303,15	0,003299	2,2371
40	167,9	11,28	313,15	0,003193	2,4230
50	143,6	13,19	323,15	0,003095	2,5794
60	131	14,46	333,15	0,003002	2,6712
70	117,2	16,16	343,15	0,002914	2,7825
80	106,9	17,72	353,15	0,002832	2,8745
90	98,18	19,29	363,15	0,002754	2,9596

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
31	259,2	259,2 7,31	304,15	0,003288	1,9888
40	200,7	9,44	313,15	0,003193	2,2446
50	161,3	11,74	323,15	0,003095	2,4631
60	141,9	13,35	333,15	0,003002	2,5913
70	122,1	15,51	343,15	0,002914	2,7416
80	103,9	18,23	353,15	0,002832	2,9030
90	92,1	20,56	363,15	0,002754	3,0235

Tabulka 23: Naměřené a vypočtené hodnoty vzorku Sl 50 % + DMSO 50 % + LiClO₄

Tabulka 24: Naměřené a vypočtené hodnoty vzorku SI 80 % + DMSO 20 % + LiClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>T</i> [K]	<i>1/T</i> [1/K]	In γ [-]
30	435	4,73	303,15	0,003299	1,5532
40	346,1	5,94	313,15	0,003193	1,7818
50	271,7	7,57	323,15	0,003095	2,0238
60	231	8,90	333,15	0,003002	2,1861
70	192,6	10,67	343,15	0,002914	2,3679
80	165,7	12,41	353,15	0,002832	2,5183
90	142,8	14,40	363,15	0,002754	2,6671

Tabulka 25: Naměřené a vypočtené hodnoty vzorku SI 20 % + PC 80 % + NaClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>T</i> [K]	<i>1/T</i> [1/K]	In γ [-]
25	329,5	6,24	298,15	0,003354	1,8309
30	296,1	6,94	303,15	0,003299	1,9378
40	232,9	8,83	313,15	0,003193	2,1779
50	191,2	10,75	323,15	0,003095	2,3752
60	158,6	12,96	333,15	0,003002	2,5621
70	134,7	15,26	343,15	0,002914	2,7255
80	117,7	17,47	353,15	0,002832	2,8604
90	103,3	19,90	363,15	0,002754	2,9909

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>T</i> [K]	<i>1/T</i> [1/K]	In γ [-]
25	434,8	4,73	298,15	0,003354	1,5536
30	385,2	5,34	303,15	0,003299	1,6748
40	307,7	6,68	313,15	0,003193	1,8994
50	250,5	8,21	323,15	0,003095	2,1051
60	205,8	9,99	333,15	0,003002	2,3016
70	176,2	11,67	343,15	0,002914	2,4569
80	153,5	13,39	353,15	0,002832	2,5948
90	135,2	15,21	363,15	0,002754	2,7218

Tabulka 26: Naměřené a vypočtené hodnoty vzorku Sl 50 % + PC 50 % + NaClO₄

Tabulka 27: Naměřené a vypočtené hodnoty vzorku Sl 20 % + EC 80 % + NaClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
26	230,4	8,92	299,15	0,003343	2,1887
30	206,4	8,85	303,15	0,003299	2,1799
40	170,5	10,71	313,15	0,003193	2,3710
50	143	12,77	323,15	0,003095	2,5469
60	123,4	14,79	333,15	0,003002	2,6943
70	110,1	16,58	343,15	0,002914	2,8083
80	97,88	18,65	353,15	0,002832	2,9260
90	87,97	20,75	363,15	0,002754	3,0327

Tabulka 28: Naměřené a vypočtené hodnoty vzorku SI 50 % + EC 50 % + NaClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
25	329,5	5,75	298,15	0,003354	1,7488
30	296,1	6,40	303,15	0,003299	1,8557
40	232,9	8,13	313,15	0,003193	2,0958
50	191,2	9,91	323,15	0,003095	2,2931
60	158,6	11,94	333,15	0,003002	2,4800
70	134,7	14,06	343,15	0,002914	2,6433
80	117,7	16,09	353,15	0,002832	2,7783
90	103,3	18,33	363,15	0,002754	2,9088

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
25	729,7	2,60	298,15	0,003354	0,9538
30	728,7	2,60	303,15	0,003299	0,9551
40	547,1	3,46	313,15	0,003193	1,2418
50	354,2	5,35	323,15	0,003095	1,6765
60	266,6	7,10	333,15	0,003002	1,9606
70	213,3	8,88	343,15	0,002914	2,1837
80	179,6	10,55	353,15	0,002832	2,3557
90	152,1	12,45	363,15	0,002754	2,5219

Tabulka 29: Naměřené a vypočtené hodnoty vzorku SI 80 % + EC 20 % + NaClO₄

Tabulka 30: Naměřené a vypočtené hodnoty vzorku Sl 80 % + DEC 20 % + NaClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
30	854,6	2,41	303,15	0,003299	0,8779
40	663,7	3,10	313,15	0,003193	1,1307
50	487,5	4,22	323,15	0,003095	1,4392
60	337,9	6,08	333,15	0,003002	1,8058
70	259,9	7,91	343,15	0,002914	2,0682
80	219,5	9,37	353,15	0,002832	2,2372
90	185,6	11,08	363,15	0,002754	2,4049

Tabulka 31: Naměřené a vypočtené hodnoty vzorku Sl 20 % + DMSO 80 % + NaClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
30	155,6	13,21	303,15	0,003299	2,5812
40	127,9	16,08	313,15	0,003193	2,7773
50	107,9	19,05	323,15	0,003095	2,9473
60	88,77	23,16	333,15	0,003002	3,1425
70	76,23	26,97	343,15	0,002914	3,2948
80	67,02	30,68	353,15	0,002832	3,4235
90	59,02	34,84	363,15	0,002754	3,5506

υ[°C]	<i>R</i> [Ω]	γ [mS·cm⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
30	271,9	6,97	303,15	0,003299	1,9410
40	205,2	9,23	313,15	0,003193	2,2224
50	162,3	11,67	323,15	0,003095	2,4569
60	132,6	14,28	333,15	0,003002	2,6591
70	108,6	17,44	343,15	0,002914	2,8587
80	95,68	19,79	353,15	0,002832	2,9854
90	83,01	22,82	363,15	0,002754	3,1274

Tabulka 32: Naměřené a vypočtené hodnoty vzorku Sl 50 % + DMSO 50 % + NaClO₄

Tabulka 33: Naměřené a vypočtené hodnoty vzorku Sl 80 % + DMSO 20 % + NaClO₄

υ[°C]	<i>R</i> [Ω]	γ [mS·cm ⁻¹]	<i>Т</i> [К]	<i>1/T</i> [1/K]	In γ [-]
30	394,1	5,22	303,15	0,003299	1,6519
40	361,6	5,69	313,15	0,003193	1,7380
50	278,2	7,39	323,15	0,003095	2,0002
60	219	9,39	333,15	0,003002	2,2394
70	178,8	11,50	343,15	0,002914	2,4422
80	151,1	13,61	353,15	0,002832	2,6106
90	131	15,69	363,15	0,002754	2,7533

Obr. 21: Teplotní závislost vzorku Sl 20 % + DEC 80 % + LiClO₄

Obr. 22: Teplotní závislost vzorku Sl 50 % + DEC 50 % + LiClO₄

Obr. 24: Teplotní závislost vzorku Sl 20 % + EC 80 % + LiClO₄

Obr. 25: Teplotní závislost vzorku Sl 50 % + EC 50 % + LiClO₄

Obr. 26: Teplotní závislost vzorku Sl 50 % + EC 50 % + LiClO₄

Obr. 27: Teplotní závislost vzorku Sl 20 % + DMC 80 % + LiClO₄

Obr. 28: Teplotní závislost vzorku Sl 50 % + DMC 50 % + LiClO₄

Obr. 29: Teplotní závislost vzorku Sl 80 % + DMC 20 % + LiClO₄

Obr. 30: Teplotní závislost vzorku Sl 20 % + DMSO 80 % + LiClO₄

Obr. 31: Teplotní závislost vzorku Sl 50 % + DMSO 50 % + LiClO₄

Obr. 32: Teplotní závislost vzorku Sl 80 % + DMSO 20 % + LiClO₄

Obr. 33: Teplotní závislost vzorku Sl 20 % + PC 80 % + NaClO₄

Obr. 34: Teplotní závislost vzorku Sl 50 % + PC 50 % + NaClO₄

Obr. 35: Teplotní závislost vzorku Sl 20 % + EC 80 % + NaClO₄

Obr. 36: Teplotní závislost vzorku Sl 50 % + EC 50 % + NaClO₄

Obr. 37: Teplotní závislost vzorku Sl 80 % + 2C 20 % + NaClO₄

Obr. 38: Teplotní závislost vzorku SI 80 % + DEC 20 % + NaClO₄

Obr. 39: Teplotní závislost vzorku Sl 80 % + DMSO 20 % + NaClO₄

Obr. 40: Teplotní závislost vzorku Sl 50 % + DMSO 50 % + NaClO₄

Obr. 41: Teplotní závislost vzorku Sl 20 % + DMSO 80 % + NaClO₄

Sulfolan 20 % + Diethylkarbonát 80 % + LiClO₄

Obr. 42: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 20 % + DEC 50 % + LiClO₄

Sulfolan 50 % + Diethylkarbonát 50 % + LiClO₄

Sulfolan 80 % + Diethylkarbonát 20 % + LiClO₄

Obr. 44: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 80 % + DEC 20 % + LiClO₄

Obr. 45: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 20 % + EC 80 % + LiClO₄

Obr. 46: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 80 % + EC 20 % + LiClO₄

Obr. 47: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 20 % + DMC 80 % + LiClO₄

Obr. 48: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 50 % + DMC 50 % + LiClO₄

Obr. 49: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 80 % + DMC 20 % + LiClO₄

Obr. 50: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 20 % + DMSO 80 % + LiClO₄

Obr. 51: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 50 % + DMSO 50 % + LiClO₄

Obr. 52: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 80 % + DMSO 20 % + LiClO₄

Sulfolan 20 % + Propylenkarbonát 80 % + NaClO₄

Obr. 53: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 20 % + PC 80 % + NaClO₄

Obr. 54: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 50 % + PC 50 % + NaClO₄

Sulfolan 80 % + Diethylkarbonát 20 % + NaClO₄

Obr. 55: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 80 % + DEC 20 % + NaClO₄

Obr. 56: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 20 % + EC 80 % + NaClO₄

Sulfolan 50 % + Ethylenkarbonát 50 % + NaClO₄

Obr. 57: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 50 % + EC 50 % + NaClO₄

Sulfolan 80 % + Ethylenkarbonát 20 % + NaClO₄

Obr. 58: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 80 % + EC 20 % + NaClO₄

Obr. 59: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 20 % + DMSO 80 % + NaClO₄

Obr. 60: Graf závislosti ln (γ) na $\frac{1}{T}$ vzorku Sl 50 % + DMSO 50 % + NaClO₄

