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Abstract 
Classifying network packets is a crucial task in networking systems, as it allows for efficient 
routing and filtering of data. Probabilistic filters are a classification method that uses 
different techniques to approximate the membership of a packet in a set of rules. This work 
investigates three algorithms: Bloom, cuckoo, and xor filter. The main aim is to compare 
the performance of these three methods when implemented as hardware components in 
F P G A systems. The evaluation criteria include error rate, maximal frequency, and F P G A 
resource usage, primarily focusing on memory. The results indicate that the xor filter 
outperforms the others regarding error rate, which is superior in any error rate category. 
The Bloom filter is the fastest option for smaller and quicker components where a higher 
error rate is tolerable. The cuckoo filter is the most resource-efficient when F P G A logic is the 
primary concern. These findings contribute to the development of optimised classification 
systems and provide valuable insights into the possibilities of implementing probabilistic 
filters in hardware architectures. 

Abstrakt 
Klasifikace síťových paketů je klíčovým úkolem v síťových systémech, protože umožňuje 
efektivní směrování a filtrování dat. Pravděpodobnostní filtry jsou klasifikační metoda, 
která používá různé techniky k aproximaci členství paketu v sadě pravidel. Tato práce 
zkoumá tři algoritmy: Bloomův filtr, cuckoo filtr a xor filtr. Hlavním cílem je porovnat 
výkon těchto tří metod při implementaci jako hardwarové komponenty v F P G A systémech. 
Kritéria hodnocení zahrnují chybovost, maximální frekvenci a využití zdrojů F P G A se za
měřením na paměť. Výsledky ukazují, že xor filtr překonává ostatní v oblasti chybovosti, 
ve všech kategoriích. Bloomův filtr je nejrychlejší volbou pro menší a rychlejší kompo
nenty, kde je vyšší chybovost tolerovatelná. Cuckoo filtr je nejefektivnější z hlediska využití 
F P G A logiky. Tyto poznatky přispívají k vývoji optimalizovaných klasifikačních systémů a 
poskytují cenné informace o možnostech implementace pravděpodobnostních filtrů v hard
warových architekturách. 
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Chapter 1 

Introduction 

Packet classification is crucial in networking, as it allows the packets to be routed, prioritised 
or blocked. Furthermore, with the growing amount of data, it becomes increasingly essential 
to study algorithms that deal with this problem efficiently. 

The classification boils down to comparing an element against a set of rules and finding 
an appropriate match. This is commonly done exactly, using various approaches such as 
linked lists or tree data structures. However, with the ruleset increasing in size, it may be 
better to sacrifice perfect matching for better space efficiency. Ideally, this introduced error 
should only be a false positive; if the result of the match is false, it is undoubtedly not in 
the ruleset. 

One of the most well-known approximate set membership algorithms is a Bloom filter [1]. 
This algorithm is known for its speed and ability to add a new rule to an already constructed 
filter. It has many variations [16] and can even be implemented in hardware [17]. Other 
methods include a cuckoo filter, capable of adding and removing rules [6]. On the other 
hand, xor probing algorithms, which cannot be changed after construction, can achieve the 
best memory efficiency [7, 8, 4]. 

As only the hardware implementation of Bloom filters was studied, this work focuses on 
implementing Bloom, cuckoo and a xor filter in F P G A design. The resulting components 
should reveal the merits and drawbacks of the presented algorithms, not limited to their 
construction speed and memory efficiency But also their resource usage and throughput 
in hardware design. 

The thesis begins with a short outline of computer networks and packet classification, 
followed by a theoretical description of exact and probabilistic techniques, focusing on 
probabilistic. Three algorithms are then introduced Bloom, cuckoo and xor filter, all de
scribed in detail and followed by their design and implementation on an F P G A . Finally, 
the implemented designs are compared against each other. 
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Chapter 2 

Packet classification 

2.1 Networking and packets 
When a device wants to send data over the network, it encapsulates this data into small 
segments called packets and transmits them. The computer network is made of routers 
that then route the sent packets to their destination. To correctly get everything to its 
destination, routers make forward decisions by comparing the destination address to their 
forwarding table. Also, packets can get different treatments, some can get prioritised, and 
others can be dropped entirely. Hence, routers need to have a way to distinguish between 
packets [5]. This ability to differentiate packets is called packet classification. 

The classification is based on attributes in the packet header. This header is created by 
gradually encapsulating higher layers to lower layers of the network model, adding different 
information about the packet. Application data are first encapsulated with the transport 
layer, creating either a T C P or U D P packet with its destination and source ports. The IP 
header is then attached to this data layer with the appropriate source and destination IP 
address. Finally, this IP datagram is inserted into the appropriate network interface layer 
header and receives its address for this layer [11]. Each header stores many more values 
about the packet, but they are only rarely used when categorising packets. A simplified 
packet header with some of the fields used for classification is shown in figure 2.1 [5]. 

Link layer Network layer Transport layer 

L2 
Destination 

address 

L2 
Source 
address 

L3 
Protocol 

L3 
Destination 

address 

L3 
Source 
address 

L4 
Protocol 

L4 
Destination 

port 

L4 
Source 

Port 

Figure 2.1: Example packet header. Only layers with interesting values for packet classifi
cation are shown. 

As was said, it is frequently the case that we want to select only a specific subset of 
packets based on the packet header attributes. To achieve this packet header is compared to 
a ruleset, and based on membership in this ruleset, packets are categorised. However, packet 
classification can be performed simultaneously on one or multiple header fields, creating a 
multi-dimensional problem [14]. Moreover, with the increasing demand for performance, 
simple algorithms such as sequential search are hardly used. Therefore, the need for faster 
and more space-efficient algorithms forms. 
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2.2 Classification methods 

With the increasing number of rules in the classifier and the need to search with multiple 
fields simultaneously, the classification algorithms face a significant challenge [9]. Classi
fication methods use a given set of rules to construct a filter which is then used to find 
matches in incoming packets. Different approaches are used to achieve this. 

Today's techniques construct an optimised data structure from the ruleset and then try 
to match the searched attributes to the rules [10]. As these methods search with all the 
rules, they will always respond correctly. We can label them as exact methods. 

In contrast, algorithms that do not store all the rules wholly also exist, saving on 
performance and space. However, they also introduce a small error rate when querying this 
data structure. These are called probabilistic methods. 

Exact methods 

The main idea is to search the rules with the packet header attributes until we get an exact 
match for all the values. The rules are saved in different data structures allowing for fast 
and efficient search [10]. 

One of the most straightforward data structures is sorted linear search. A sorted linked 
list is created from the ruleset, and every incoming packet is compared to each element 
sequentially. Searching through a linked list has a linear time complexity; therefore, a 
linear search must also have a linear time complexity [14]. However, given that the ruleset 
can contain hundreds of thousands of rules, a more efficient solution is needed. 

Algorithms like the trie structure try to combat this by traversing through a tree data 
structure, lowering the time complexity. Hardware-oriented algorithms like Ternary C A M 
exploit parallelism on hardware to implement multi-dimensional classification allowing for 
constant time complexity [5]. Other algorithms based on geometry perspective and heuris
tics also exist. 

Probabilistic methods 

It is possible to allow a representation of the ruleset that only stores each rule partially. 
In other words, the filter becomes lossy. Wi th this, lossy filters dramatically improve 
storage requirements. This feature of incomplete filters is the main idea behind probabilistic 
methods [16]. 

The probabilistic nature of the filter can be implemented in many different ways. How
ever, all implementations aim for the same, a filter with a size approaching the informational 
theoretic lower bound [12], ideally with the ability to dynamically modify elements and with 
the least error rate possible. 

Minimising the filter size is tricky, as with the data size closing on the theoretical 
bound, the algorithms tend to get more complex and have less dynamicity. The most space-
efficient algorithms generate only static filters, where nothing can be added or removed after 
creation [4]. The dynamic filters often only implement dynamic adding to the rules, with 
exceptions even allowing for dynamic removal. 

The probabilistic filter must also ensure that the negative result, not in the ruleset, is 
always correct and that only the presence of the queried element in the ruleset is occasionally 
incorrectly assumed. In other words, false positives are acceptable, but false negatives are 
not. 
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Many methods satisfy this requirement. Burton Bloom, in 1970 [1] described a method 
called Bloom filter that is the foundation of many methods currently used. Cuckoo filters 
make use of cuckoo hashing to construct a probabilistic filter. Moreover, recently proposed 
methods use xor probing to construct static filters with high space efficiency. These methods 
and more will be described in detail in the next chapter. 
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Chapter 3 

Probabilistic methods 

3.1 Bloom filter 
Bloom filter is a simple method of querying an element in a set with an allowable error, 
described by Burton H . Bloom in 1970 [1]. A Bloom filter provides a compact representation 
of a set and two operations, element query and element insert. When querying an element 
in the Bloom filter, the query either returns "definitely not in set" or "possibly in the set". 
The more elements are added to the Bloom filter, the higher the false positive rate will 
become. However, the Bloom filter can be adjusted to guarantee a specific false positive 
rate until a given number of items are inserted. This results in an all-around filter that can 
be used in various situations. 

Detailed description 

Bloom filter is an array of m bits initially set to zero. The main idea is to encode an element 
by uniformly setting k bits to one. The positions of k bits in the array are calculated using 
k hash functions. 

When querying for an element, if one of the k bits is zero, the element is undoubtedly 
not in the set. If all of the queried bits are set to one, an element could be part of the set 
but does not have to be. One can imagine a short array with too many inserted elements, 
resulting in all bits being set to one. By querying for any element, the query will always 
return a positive result, even if the element is not in the set. In contrast, if an array is 
blank and all bits are set to zero, any query will result in a negative result. 

Figure 3.1 presents a practical example of inserting an element into a Bloom filter. 
Firstly all k hash functions are calculated for the inserted element. Then indexes to the bit 
array are obtained by taking array size modulo from each hash and writing ones to each 
index in the array. 

Element query is similar to inserting an element. First, elements are hashed with k 
hash functions, and then positions are calculated in the array. Lastly, if at least one bit in 
calculated positions is zero, it is not in the set. If all bits are one, the queried element will 
likely be in the set. 

As stated many times, queried elements are only likely to be in the set, never absolutely 
in the set. This is the weak point of Bloom filters, called false positives, in other words, 
elements that are reported to be in the set but are not in the set. A n example of a false 
positive is shown in figure 3.2. Elements A and B are inserted into the Bloom filter, but a 
query for element C results in success, even if C is not part of the set. 
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New element 

Hash function 1 Hash function 2 Hash function 3 

Mod 8 Mod 8 Mod 8 

1 0 1 0 0 0 1 0 

Bloom filter array 

Figure 3.1: Bloom filter insert example. 

Inserted elements Queried element 

1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 

\ Collisions | 

Figure 3.2: False positive query. 

False positive query 

As shown in figure 3.2, a collision happens when the same index is calculated for different 
elements, writing one to the same place in the array. The collisions are the main reason 
a Bloom filter cannot remove elements. If we would try to delete an element, similarly 
to inserting a new element, we could set a common bit of multiple elements to zero and 
unintentionally remove multiple elements. 

A l l o w a b l e e r ro r s 

One of the most beneficial features of Bloom filters is that we can calculate the false 
positive rate e based on the number of inserted elements n, the array size in bits m and 
the number of hash functions k, given by the following formula number (3.1). A l l following 
formulas (3.1) (3.2) (3.3) are taken from the analysis of the Bloom filter in [16]. 
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We can minimise the probability of false positives for the number of hash functions k 
in formula (3.1), leading to a formula number (3.2), fixing the number of hash functions 
based on the array size m and the number of elements n. 

optimal 
m , 
— In 2 
n 

9m 
13n 

(3.2) 

Wi th the number of hash functions fixed by the array size and the number of inserted 
elements, it is possible to calculate the ideal array size of the Bloom filter given only the 
number of inserted elements n and the desired false probability p, as shown in formula 
number (3.3). 

rn 
nlnp 

(3.3) 

It is necessary to note that this analysis is optimistic and only suitable for large Bloom 
filters [16]. 

Bloom filter variants 

The standard Bloom filter is simple and powerful. However, many other variants exist, 
improving various characteristics of Bloom filters, including deletion support, improved 
space efficiency and more. For a good summary of Bloom filter variants, consult [16]. 

In a standard Bloom filter, numerous hash functions index one array. This can be a 
problem in some situations. For example, if operations on the Bloom filter are parallelised, 
it is essential not to read and write on the same memory simultaneously. We can split 
the array into k blocks, each block for each hash function. Wi th this simple change, race 
conditions are mitigated. 

Hash function 3 

\ 

0 0 0 1 0 0 0 0 

Array block 1 Array block 2 Array block 3 

Figure 3.3: Split Bloom filter insert example. 

Overall, Bloom filters are fast, small, and easily parallelised. Capable of querying and 
inserting elements without removing capability. The following methods often address Bloom 
filters and try to surpass them in various ways. 

3.2 Cuckoo filter 

A cuckoo filter is a probabilistic set membership method based on a cuckoo hash table [13] 
storing only the fingerprint of inserted elements instead of the elements themselves. The 
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size of the fingerprint is determined by the target false positive probability. The cuckoo 
filter table can be filled with fingerprints up to 95%, reaching high space efficiency. A 
cuckoo filter also supports the removal of inserted elements. Authors of this method claim 
that a cuckoo filter is practically better than a Bloom filter based on its space efficiency 
and support for removals [6]. First, cuckoo hashing is described as the foundation of the 
cuckoo filters, and then the cuckoo filter itself is presented. 

C u c k o o h a s h i n g 

Cuckoo hashing is a technique to eliminate collisions in a hash table. A cuckoo hash table 
consists of two independent tables. When inserting an element into a cuckoo hash table, 
the inserted element is hashed using two hash functions, one for each table. The element is 
then inserted into one of two hash tables. If the element cannot be inserted into any table, 
the existing element in the first table is removed and inserted into the other table using 
the appropriate hash function. If the removed element has a collision in the other table, we 
can repeat this process until both tables are reorganised [13]. A maximum of relocations 
for one inserted element is set beforehand to mitigate an infinite loop. If the maximum of 
relocations is passed, the table is considered full. 

A 

c c 

X 

A 

B 

Table 1 Table 2 Table 1 Table 2 Table 1 Table 2 

Figure 3.4: Cuckoo hash table insertion. Arrows show alternative element locations. 

To query an element in the cuckoo hash table. Firstly hash the element with both hash 
functions and check for the presence in both tables. If the element is not present in any of 
the tables, it is naturally not in the set. If the element is in one of the two tables, it is in 
the set. 

The number of tables in the cuckoo hash can be more than two. We can implement 
multiple tables, each with its hash functions. Alternatively, we can simplify the cuckoo 
hash table by using only one table with two or more indexing hash functions. The cuckoo 
filter uses this approach. 

D e t a i l e d d e s c r i p t i o n o f c u c k o o f i l te r 

Due to being based on a cuckoo hash table, a cuckoo filter is similar in many aspects. 
The cuckoo filter also uses two hash functions to determine an element's position in the 
table. Moreover, it also has to reorganise the table similarly if a collision is encountered. 
However, instead of storing elements themself in the table, the cuckoo filter stores only a 
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fingerprint, which is also a result of a hash function. The fingerprint is usually very short, 
never surpassing more than 8 bits. In cuckoo filters, an inserted fingerprint is called an 
entry, and in contrast to cuckoo hash tables, one address in a cuckoo filter table can store 
multiple entries, called a bucket. A bucket usually contains 4 or 8 entries [6]. To summarise, 
a cuckoo filter table is an array of buckets that individually store entries called fingerprints. 

Inserting an element into a cuckoo filter consists of three steps. Firstly, indexes to both 
buckets h\(x) and h,2(x) are calculated using hashing scheme described in [6] as follows: 

h\(x) = hash(x), 

^2(2) = h\{x) ®hash(x ' s fingerprint). 

(3.4) 

(3.5) 

Secondly, if both buckets have an empty entry, one of the two buckets is chosen, and 
the fingerprint of the new element is inserted in a random entry in the bucket. If only one 
bucket is empty, the fingerprint is stored in a random entry in this bucket. 

Thirdly, if both buckets are full, one of the two buckets is chosen, and a random entry 
in that bucket will be relocated. It is possible to compute the alternative location j of the 
inserted element only using its fingerprint and the current location i as shown by: 

j = i © hash(fingerprint). (3-6) 

Reorganising the table without needing the original element is possible with the above 
property. Note that this substantial property is only possible due to the xor operation 
when calculating the location of the buckets in (3.4). One can notice that the fingerprint 
is hashed again, even though the fingerprint is a result of a hash function. If we use the 
fingerprint without the second hash, the two calculated locations will land close to each 
other in the table. This is an unwanted behaviour that lowers uniformity in the table, 
therefore increasing the probability of collisions. Thus a hash of the fingerprint is used. 
Figure 3.5 shows an example of inserting an element into the cuckoo filter. 

Entries 

h 2 (D) 

f(C) f(B) f(A) 

X X X X 
Buckets h i ( x ) 

h,(X) 

«D) f(C) f(B) f(A) 

X X X X 

f(X) f(C) «B) f(A) 

X X X X 
f(D) 

Figure 3.5: Cuckoo filter insert example. Crossed entries are full, and yellow-coloured 
entries are random decisions. 

A n element query is the same as in a cuckoo hash table. Wi th two bucket indexes 
calculated, every entry in both buckets is then searched for the fingerprint of the queried 
element. If the fingerprint is not found, the queried element is not in the set. Given that 
the fingerprint is only a compact representation of the original element, if the fingerprint is 
present in one of two buckets, it is only likely that the queried element is in the set. 

To delete an element from the cuckoo filter. First, we locate the desired element by 
performing a query operation. Then we remove a copy of a found fingerprint. It is important 
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to note that two elements can hash to the same fingerprint and reside in the same bucket. 
Wi th that in mind, only one fingerprint copy must be deleted. For example, elements 
X and Y hash to the same fingerprint and are stored in the same bucket. If we would 
perform a delete operation on element X and delete both fingerprints, a query for element 
Y would result in a false negative. Therefore only one fingerprint copy is deleted. The 
critical consequence is that after the deletion of one fingerprint, a query for element X will 
still return a positive result, which is, of course, a false positive [6]. 

In summary, a cuckoo filter is an approximate set membership method improving on 
Bloom filters by supporting dynamic deletions, better query performance and better space 
efficiency for applications with low false positive probability as stated by the authors [6]. 

3.3 Xor probing niters 

A l l filters using hashing can be categorised into three groups: 

• And probing filters: A n element is found when all locations match. A Bloom filter is 
an example of this. 

• Or probing filters: A n element is found when one of the locations matches. A cuckoo 
filter is an example of this. 

• Xor probing filters: A n element is found when a bitwise xor of all locations is a match. 

A Bloom filter and a cuckoo filter are both dynamic filters capable of changing elements 
in the filter. In contrast, xor probing is only known to work with static filters, incapable 
of adding or removing elements. However, xor probing filters can achieve better space 
efficiency than any other dynamic counterpart. The key idea is to match a fingerprint from 
the queried element to a bitwise xor of values in hashed positions of an array. Xor filter [7], 
binary fuse filter [8] and a Ribbon filter [4] are all implementations of a xor probing filter. 

X o r f i l t e r 

The xor filter is an array B containing the &-bit values calculated during the filter's con
struction from the inserted elements. Three hash functions ho, hi, and hi are chosen during 
the filter construction to index in the array B. A fingerprint function is used to query an 
element in a filter. The fingerprint function is assumed to be independent of the ho, hi, 
hi. The longer the fingerprint is, the lower the false-positive probability of the xor filter. 
In most applications, keys are between 8 to 20 bits [7]. 

A n element is likely in the xor filter if the following equation is satisfied: 

B[ho(x)] xor B[hi(x)] xor B[h2(x)] = fingerprint (a;). (3-7) 

In other words, to query an element in the filter, values from the array B indexed by the 
hash functions ho, hi, and hi are aggregated using the xor function and compared to the 
fingerprint of the queried element. If the xor aggregation reconstructs a fingerprint, the 
element is likely in a set. Otherwise, it is not in the set. For this query operation to work 
properly, we must ensure that the equation (3.7) holds for every element in the xor filter. 

This is ensured in the construction of the filter. The construction of the xor filter can 
be split into two parts: 
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• The mapping step: Appropriate hash functions and the order in which we must 
calculate the values in the array B are found. 

• The assigning step: The values of the array B are calculated and inserted into the 
array. 

Firstly three hash functions are picked randomly and independently from the fingerprint 
function. The mapping step is then performed with the hash functions and the set of 
elements that we want to contain in our filter. 

The key idea behind the mapping step is to find out if the three chosen hash functions 
can ensure the property (3.7) on the set of inserted elements. If so, then for each element x, 
an index i is found. This index i will result from one of the three hash functions. For each 
index i, the assigning step then computes a value according to: 

B[i] <— fingerprint(x) xor B[ho(x)] xor B\h\(x)] xor B[h,2(x)]. (3-8) 

However, from the equation (3.8), we can see that the value B[i] must be calculated 
before it will be used in a different calculation as a B[ho(x)], B[h\{x)] or a B[h,2(x)]. The 
mapping step must also ensure this property and therefore returns the pairs of elements 
and indexes ordered so that all values are known. 

The mapping step can fail, and three new hash functions must be picked. This cycle 
repeats until we find three hash functions that satisfy our needs. The probability of success 
rate is estimated to be greater than 80%. To achieve this probability of success, the array B 
must be larger than the number of the inserted elements, approximately 1.23x larger. 

After the mapping and the assigning step are done, the xor filter is successfully con
structed. Naturally, insert and remove operations are impossible, as writing in the array B 
would likely change the resulting aggregated xor used to compare with fingerprints. 

Only a general idea of the construction algorithm is described; details regarding the 
construction of the xor filter can be found in [7]. 

O t h e r i m p l e m e n t a t i o n s o f x o r p r o b i n g f i l ters 

The construction of the xor filter is very demanding and can take approximately 4x longer 
to construct than to fill a Bloom filter with the same elements [7]. Also, the space overhead 
for the xor filter could be improved by different methods. 

Improved implementation of the xor filter called binary fuse filter exists, improving the 
construction time and the storage requirements. The construction algorithm is similar to 
a xor filter but simpler [8]. 

Another recent implementation of xor probing filters is a ribbon filter. It also improves 
the construction time and storage requirements. The construction algorithm solves a linear 
system with their proposed solver to construct the ribbon filter [4]. 
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Chapter 4 

Design 

Newly proposed filters often describe the filter algorithm only theoretically, and the exam
ple implementation, along with the target implementation, is usually only in the software 
domain. 

In contrast to the software solutions, the hardware implementation also needs to consider 
the complexity of the filter and the resulting usage of the F P G A circuitry, which means that 
faster and better filters can result in practically inferior filters. Moreover, newly proposed 
xor probing filters are only implemented in software applications. 

A design was developed for Bloom, cuckoo, and xor filters with a shared environment to 
explore the usage of hardware filters further. The final design and implementation surpassed 
the scope of the original thesis assignment as three solutions were created. Moreover, all 
techniques were created based on the specified algorithms and were refined for optimal 
hardware implementation. The following section describes the design of these developments. 

4.1 Bloom filter design 

Due to the Bloom filter's simple algorithm and parallel nature, the Bloom filter has been 
successfully implemented many times in hardware applications [15] [17] and is used not only 
in packet classification. 

The previous research on the hardware implementations of the Bloom filter mainly 
studies the optimisation of the hash functions used in the filter. Many propose new hash 
function algorithms for efficient calculation and function generation. Hash function gener
ation is essential to achieve the best result in filtering, as the number of hash functions k 
cannot be constant and should be changed based on the number of maximal inserted ele
ments n and the cumulative array size m according to koptimai = ^ In 2 « Due to this, 
a hash function generator is designed to adjust the number of hash functions on the filter's 
creation. 

One way of generating hash functions is double hashing. Double hashing implements 
two independent hash functions, multiplying one of the outputs by any function and then 
summing the outputs. By altering the parameters of the multiplying function, we can 
generate any number of hash functions [16]. Another option is to implement k number of 
the same hash function, and then bit shift the input to each hash function so that each 
hash function has different input, as shown in figure 4.1. 
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Figure 4.1: The hash functions generation example. 

The latter option was chosen for the final design as it seems more straightforward and 
efficient for hardware implementation. However, it is essential to note that the Bloom filter 
can need ten or more hash functions, which can be expensive to implement. 

Another critical part of the Bloom filter is memory access. The design is a variant of 
the classic Bloom filter that splits the memory array into multiple arrays, one for each hash 
function. Splitting the memory is essential as each hash function will be computed in par
allel along with memory access. This approach is also used by the existing implementations 
of the Bloom filter [15] [17]. 

The whole Bloom filter design then functions as follows. The inputs and outputs of the 
design are: 

• Input key: String of bits to be searched or written. 

• Match: The key is present in the filter. 

• Configuration interface: Used to change memory values in the filter externally. 

When the input is a valid key, indexes for every memory block are calculated by rotating, 
hashing and performing the modulo operation. The values at each index are read and 
accumulated with an and operation. The result is then written to the match signal output. 
This figure 4.2 reflects this behaviour. From the block diagram is also clear that this reflects 
the split Bloom filter variant shown in the Bloom filter variants description 3.1. 

Input key -

0 bit rotation Hash function Mod m/k Memory block 1 

-H 1 bit rotation Hash function j »^ Mod m/k j >^ Memory block 2 ' — > ^ A N D j -> Match 

k -1 bit rotation j—( Hash function Mod m/k Memory block k -1 J-Mod m/k Memory block k -1 J-

configuration 

Figure 4.2: The Bloom filter block diagram. 

To sum up, the design consists of k number of pipelines for calculating the index with a 
memory block, input and output logic. Input bit rotation creates a new hash function for 
each pipeline when needed. 

14 



4.2 Cuckoo filter design 

As previously mentioned, the cuckoo filter streamlines cuckoo hashing by employing just 
one table rather than multiple hash tables with two hash functions. Nonetheless, accessing 
the same memory can be problematic in hardware applications. Consequently, the memory 
was split into two identical tables, one for each hash function. 

Since this modification divides the filter's memory model, it is not expected to impact 
the efficiency or false positive probability. Still, this will need to be tested to confirm this 
belief. 

The resulting design then has an identical interface to the Bloom filter. Firstly, indexes 
to each table are calculated using the cuckoo filter hashing scheme. Additionally, a finger
print must be constructed from the input to calculate the second index and later to compare 
it to the memory result. This fingerprint function will merely be another hash function. 
These fingerprints are stored in buckets in every memory row, meaning one record can 
contain multiple fingerprints. After each memory returns a bucket, all fingerprints must be 
extracted from the buckets and compared to the constructed fingerprint, strictly following 
the cuckoo filter algorithm. A match is transmitted on the output if any fingerprint from 
the two buckets is equivalent to the input key fingerprint. The whole split cuckoo filter is 
illustrated in 4.3. 

configuration 

Hash function 1 

Hash function 1 

{ Mod '—*f Memory block 1 

XOR K Memory block 2 

—>^ Bucket comparator j  

—>^ Bucket comparator j — > 

Input key - Fingerprint function 

Figure 4.3: The cuckoo filter block diagram. 

The cuckoo illustration also shows that the hashing scheme used in hardware is the same 
as discussed in theory. For comparison, the cuckoo index calculation approach is shown 
in (4.1). 

hi(x) = hash(x), (4.1) 

h-2(x) = h\{x) ©hash(x ' s fingerprint). (4-2) 

Compared to the Bloom filter, where the false positive rate depends on the number of 
inserted rules, the cuckoo's error rate only depends on the fingerprint size. Due to this, the 
hash function implemented for this purpose will need to have a configurable width. 

4.3 Xor filter design 

Xor probing filters are statics filters, meaning nothing can be added or removed once the 
filter is constructed. Moreover, because the filter's construction is only done once in its 
lifetime, there is little to no reason to implement the construction algorithm in the hardware 
as it would only waste hardware resources and be particularly tricky to implement. 
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If only the query for the filter needs to be implemented in hardware. Then the hardware 
component's design is very straightforward, containing only the query condition for the xor 
filter with the same interface as the Bloom and the cuckoo filter, as depicted in figure 4.4. 

Similar to the designs already presented, firstly, indexes and fingerprints are calculated, 
then memory access is made, followed by the bitwise xor of the results and a final comparison 
with the input key fingerprint. 

configuration configuration 

Hash function ] 1 j—> M o d —>r M e m o r y block 1 

— > Hash function 2 ~ J — M o d j—>r M e m o r y block 2 

Hash func t ion ; 3 ~ J — » ' M o d j—> M e m o r y block 3 

Input key - * Fingerprint function 

XOR M Comparator • Match 

Figure 4.4: The xor filter block diagram. 

The design also splits the memory array into three blocks, one for each indexing hash 
function. At first glance, this change is similar to the one made in the cuckoo's design. 
However, it is essential to note that the xor filter construction algorithm is much more 
complex than others. Furthermore, this change will require changes in this construction 
algorithm as the original xor filter uses only one array. This could affect the filter space 
efficiency as three arrays instead of one will need to be scaled for the filter to construct 
successfully. How much will the arrays need to be scaled, and how will this affect the filter 
construction probability will need to be tested experimentally. 

Also, one can see that the design shown on 4.4 is a hardware equivalent to the xor query 
equation presented in the xor filter algorithm (4.3). It is important to note that array B 
has been split. 

Bi[h\{x)] xor #2^2 0*0] xor Bs[h3(x)] = fingerprint(x). (4-3) 

Similarly to the cuckoo filter, the false positive rate of the xor filter only depends on the 
fingerprint's size, so the fingerprint's hash must also be width configurable. In addition, 
the hashes for indexing each memory array must be configurable if the xor construction 
algorithm fails with the current hash configuration. 

4.4 Filter environment design 

As three filters will be implemented, configuring and using them as one would be ideal, 
simplifying the construction algorithms and overall filter design. Also, there is no point in 
querying an uninitialised filter. A shared filter environment was designed to solve all these 
problems. This environment should achieve the following: 

• Load keys to be inserted. 

• Construct filter model in software. 
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• Configure the filter memories with constructed filter. 

• Read filters statistics about matched and unmatched keys. 

• Disable and enable the filter. 

This shared design can be split into software and hardware parts, where the user inter
acts with the software part, which constructs and communicates with the hardware. The 
hardware part then configures the filter according to the software commands. This flow is 
illustrated in figure 4.5. 

Software 

Inserted keys • Constructor 
Configure 

Input key 

_ J l _ 
-£>• Filter 

Match 

Figure 4.5: Filter environment block diagram. 

To describe this environment in detail. Firstly the F P G A is configured with desired filter 
and specified parameters. Wi th the prepared filter, the software configurator is presented 
with a ruleset. Filter parameters are read from the F P G A so that the software can construct 
a filter model. If the model construction is successful, the configurator will begin data 
transfer to set all memories in the filter required for operation. After this process, the filter 
is ready for use. 

It is important to note that even though Bloom and cuckoo filters are dynamic and can 
be changed during operation, above mentioned environment does not include these features 
and threat all filters as static. 

This environment will not be entirely identical for all filters. A l l filters require very 
different construction processes and values to be written to hardware. For example, one 
memory record in Bloom always has one bit. The same memory record is a product of the 
bucket and fingerprint sizes in cuckoo filtering. Moreover, the xor filter needs not only filter 
memory arrays to be transferred but also the configuration of each hash function. 

The following section describes how this environment is precisely implemented and how 
it affects the filtering. 
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Chapter 5 

Implementation 

5.1 Filter environment implementation 
Firstly, all three filters were implemented using V H D L according to the design, and their 
appropriate construction algorithms were written in C. The software constructor was split 
into two parts. 

• F i l te rCTL: Specific filter application made by the user. 

• FilterLIB: Filter construction algorithms and hardware communication backend. 

As any filter can be used based on any key type, with the split implementation, it is up to 
the user to decide the filtering criteria. 

To demonstrate the FilterLIB interface, an example implementation of F i l te rCTL was 
created. This implementation consists of parsing IPv4 and IPv6 addresses from a file 
and converting them to their binary form. The chosen filter type is then instantiated 
and configured with the parsed addresses. F i l t e rCTL can also enable and disable filtering 
behaviour, read the number of matched and unmatched keys and write a ruleset id to 
distinguish between different configurations, fully utilising the FilterLIB interface. A n 
example of the software flow is illustrated in figure 5.1. 

r~sc 

Commands 

Software 

N 
Ruleset 

IPv4 or IPv6 

f Bloom J 

FilterCTL FilterLIB 

Ml 

Cuckoo j 

1 V ) 
! Xor 

. J 

Figure 5.1: Software environment flowchart. 
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The Fil terLIB itself has three implementations, one for each algorithm. Nonetheless, 
as all filters are treated as static, the interfaces are equivalent. Each implementation is 
internally split into two parts, construction algorithm and hardware communication back-
end. When a filter model is initialised in software, the communication backend finds the 
hardware filter and reads its configured properties as filter size, fingerprint size, bucket size, 
and the like. Depending on the filter type. Properties are saved into a software filter model. 

The construction algorithm starts when the Fil terTL sends an array containing the 
ruleset. The construction succeeds if the hardware filter matches the ruleset's requirements. 
After the software model is constructed, it should be identical to the hardware filter. This 
property enables the communication backend to only copy this model to the hardware. The 
communication with hardware is done through a PCIe bus decoded to an MI interface with 
the help of libraries and hardware components developed by the C E S N E T association [3]. 

This communication backend does not configure the hardware filter itself. Instead, a 
configurator component, shared among all three filters, receives the software requests and 
performs the required read or write operations. This component contains the necessary 
registers for the MI protocol and configures the filter by writing memory records in each 
table individually. The hardware environment can be seen in figure 5.2. 
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Output 
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Control 
signals 
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Bloom Cuckoo Xor 
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Figure 5.2: Hardware environment flowchart. 

Apart from the configurator, the three filters have more in common. Mainly, write con
troller, status register, output and input logic. The write controller interprets the address 
and value from the configurator and correctly executes a write operation to a specified 
memory table. Status registers store the number of matched and unmatched keys. Lastly, 
the input and output logic mainly drives control signals like destination and source ready. 

The implementation of filter logic and its construction algorithm is entirely different for 
each filtering method and therefore is described separately. 
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5.2 Bloom filter 

The Bloom filter logic was implemented according to the design. However, some parts of 
the design were slightly changed to decrease the false positive rate and increase throughput. 

The key idea is the same. Bloom has only one parameter, the number of hashes. For each 
hash, create a pipeline, where firstly, the input key will be bit shifted, hashed, transformed 
into a memory index, read from memory and lastly, all memory results will be accumulated. 
Creating a match output. 

C R C family hashes, provided by the C E S N E T association [2], were used to avoid im
plementing a new hash function. This is ideal as the randomness of the C R C is more than 
enough for filtering usage, as stated in [16]. Moreover, a software implementation of these 
hashes was also provided, making it easy to integrate into the software constructor. This 
implementation is crucial as the same hash function must be used in software construction 
to ensure the output tables work identically. 

Nevertheless, the Bloom filter performed below expectations when using only a 1-bit 
rotation for every hash. It was experimentally tested that at least a 4-bit rotation is needed 
to overcome this issue. Rotating every hash function input by 4 bits is functioning as 
expected. However, when many hash functions are needed, the bit shift can quickly become 
longer than the input key. For example, in a fifteen-hash bloom filter with 32-bit wide rules, 
the last rotation must be shifted by 56 bits. Conseqenting in repeating the same input and 
creating identical hash functions that drastically decrease the filter's performance. 

The hardware implementation combats this by using two different implementations of 
CRC32 hash, increasing the shift for every other hash. This change results in an 18-bit 
shift on the last hash function in the last example, which is acceptable for the 32-bit 
input. Effectively a third compared to the original number of rotated bits. A n example 
implementation of 4-hash Bloom can be seen in figure 5.3. 

0 bit left rotation CRC32 Ethernet Cut high bits — > Memory block 1 

Input key - bit left rotation CRC32 Koopman M Cut high bits Memory block 2 AND 

— c 4 bit left rotation CRC32 Ethernet M Cut high bits — > Memory block 3 

4 bit left rotation CRC32 Koopman M Cut high bits Memory block 4 

configuration 

Figure 5.3: Block diagram of the Bloom filter logic. 

Another change is a replacement for the modulo operation. Instead of finding the 
modulo of the resulting hash with the memory size, the hash is cut according to the address 
width of the memory. However, only powers of 2 must be allowed as the memory size to 
ensure this property works. 

The software construction of the memory tables above is a question of many bitwise 
operators in C that simulate the hardware behaviour, as the read and write operations in 
Bloom are very similar. 
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5.3 Cuckoo filter 

Cuckoo filter implementation uses the same hashing functions as presented before. In 
contrast to the Bloom filter, the cuckoo's algorithm does not require different hashes for 
each index, as one index is calculated via the fingerprint. 

The cuckoo, however, requires another hash for the fingerprint function. The fingerprint 
hash is particularly important as this function's size will determine the filter's false positive 
rate. Five possible hash functions were implemented to achieve a broad spectrum of false 
positive rates—precisely, 4, 8, 16, 32 and 64-bit C R C hashes. To achieve a fingerprint 
length between 1 and 64-bit, the closest widest hash is first used and then cut according to 
memory fingerprint sizes. 

What hash will be used for the fingerprint depends on the filter configuration, and only 
one will be generated in the final design. The whole cuckoo implementation is depicted 
on 5.4. 

Input key -
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Figure 5.4: Block diagram of the cuckoo filter logic. 

In order to simplify the software construction algorithm, the output fingerprint gets 
enlarged to 64 bits before the index hash is performed. This enlargement adds zeroes 
regardless of the fingerprint size, which is easily transferable to C when working with 64-bit 
integers. Without this, the following hash function would otherwise give different results in 
software and hardware. 

Unlike the Bloom filter, this construction algorithm involves all problems related to 
cuckoo hashing. This means first filling the filter and reorganising the tables when a collision 
happens, as was shown in the cuckoo filter algorithm description 3.2. One important 
thing to realise is that no matter how the software reorganises the tables, the hardware 
architecture will always work as expected, as any key inserted in the table will always sit 
on either index i or j in their respective tables, given by the hashing scheme. 

The software then fills all tables and resolves conflicts by pushing other keys into alter
native locations according to xor duality property (5.1). 

j = i © hash(fingerprint). (5-1) 

The insertion is repeated until all keys are inserted, in which case the memory tables are 
sent to the hardware component, or otherwise, the filter reaches maximal key concentration, 
and the construction will fail. The tables are considered full if a key cannot be inserted 
after some predetermined amount of relocations. 
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5.4 Xor filter 

Like the cuckoo filtering algorithm, the xor filter's false probability rate depends only on 
the fingerprint size. The original xor filter example implementation only used 8 or 16 bits 
long fingerprints. The hardware design uses the same fingerprint generation described in 
the cuckoo filter implementation, expanding the original approach to any fingerprint from 
1 to 64 bits. 

On the other hand, the indexes required for memory access are calculated similarly to 
the Bloom filter. However, unlike the Bloom filter, the three hashes used to calculate the 
memory indexes must be configurable. This reconfigurability is achieved through a seed 
register. The inputs are always offset by four bits, and this seed is added to each input 
rotator. So if the construction algorithm fails, the seed is incremented, and all three hashes 
are changed. 

This implementation is more convenient than configuring each hash, allowing the trans
fer of only one value to the hardware component and thus controlling the filter, as seen 
in 5.5. This approach limits the possible amount of hashes. However, as the construction 
algorithm has a high chance of success, it should not run out of possible hashes. 
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Figure 5.5: Block diagram of the xor filter logic. 

Theoretically, the construction algorithm may fail many times in a row, and the seed reg
ister can shift the input out of bounds. However, the chance of this happening is improbable 
as the construction algorithm has a high success rate when scaled correctly. Furthermore, 
even if this happened, the software would consider the current ruleset too large, and the 
construction would fail, avoiding any unexpected states. 

Moreover, to avoid adding any new functionality to the filter environment, the seed 
register behaves like a memory table, and from the software's point of view, the xor filter has 
four tables, except that the seed register only has one value. The write controller described 
in the filter environment implementation 5.1 ensures the seed register is appropriately used. 

C o n s t r u c t i o n a l g o r i t h m 

The biggest challenge in any xor probing algorithm is the construction. As the construction 
of the xor filter follows an algorithm to build acyclic 3-partite random hypergraphs [7], 
attempting to split the filter's memory array into multiple arrays for each hash function 
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is no trivial task and requires substantial changes to the xor filter construction algorithm 
itself. 

The construction algorithm contains four data structures. 

• Array H: This array contains all keys after the hashes or three elements per one key. 
This array can contain multiple elements in one index. 

• Queue Q: Queue containing elements alone in one index in the array H. 

• Stack a: Stack containing pairs with indexes in H and their values. Element ready 
to be inserted into the final array. 

• Array B: The constructed xor filter. 

To provide a concise summary of the algorithm, first define the sizes of H and B as 1.23 * 
n + 32, where n represents the number of keys inserted. Next, fill H with all the keys to 
be inserted. Only add keys to Q if they hash to an index in H exclusively. Once Q is 
populated, process each key individually, removing all three hashed key variants from H. 

As these elements are removed from H, new elements suitable for Q may be generated 
and added to Q. When an element is removed from H, consider it complete and add it to the 
stack a. Continue this process until the size of a equals the number of keys. Lastly, iterate 
through a to map the values with their corresponding fingerprints in the final array B. 

The new split xor construction algorithm works in the same way. However, the array H 
and the final array B must be split, as both arrays are accessed via the three hash functions. 
Both array sizes are allocated a third of the original 1.23 * n + 32 xor filter memory budget 
to ensure the same space efficiency The filter size 1.23 * n + 32 was experimentally found 
out by the original xor filter authors [7]. Any size smaller than this will likely fail the 
construction process. The splitting is illustrated on H in 5.6. 

2 1 0 2 0 2 0 1 1 1 0 2 

HI H2 H3 H 

Figure 5.6: The splitting of array H. 

The same hash functions are drawn with the same colour, and the number in the array 
indicates the number of elements in H. Wi th this change, it is clear that the size of the filter 
stays the same, and each array will be accessed only using its hash function. However, this 
will only work assuming the number of alone elements stays the same, as the construction 
algorithm success rate depends on this property. 

To better visualise the success rate consider the example in 5.7. Two filters with the 
same size and the same elements are to be constructed. However, the filter on the right 
hashed the elements, making the construction impossible. 
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Figure 5.7: The success rate visualisation. 

This inability of construction is usually solved by rehashing the elements with different 
hashes. However, this split algorithm could result in the construction failing most of the 
time, making the filter useless. A unit test for the xor library was created to see if this 
change influenced the success rate. A l l tested filters were successfully built in this testing 
environment, and no difference in success rate was found. 

The last change in the xor construction is in the mapping step. Stack a now contains 
the element and two indexes, one index i for the three arrays and the second index j for 
indexing in the array. The mapping step goes through this stack and evaluates the xor 
fingerprint for each element according to the new split xor equation (5.2). 

Bi[j] <— fingerprint(x) xor Bo[ho(x)] xor Bi[h\{x)] xor ^ [^(a?) (5.2) 

As can be seen from the equation, every array B is now only indexed using its hash 
function, similar to the hardware implementation. Lastly, with all three tables filled, the 
split xor filter is constructed and ready to be transferred to the hardware component. 

5.5 Verification 

As the filtering algorithms were not just implemented but changed to improve their perfor
mance for hardware architectures, proper testing was needed to ensure that the changes did 
not cause any unexpected behaviour. For this reason, this work expanded on the original 
thesis assignment and a U V M verification environment was built to test the filters and their 
construction algorithms. 
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This U V M environment was built using components provided by the C E S N E T associa
tion. Thanks to this, only a few verification parts, mainly the sequences, tests, model and 
scoreboard, had to be written. 

The verification test functions as follows. Firstly the Fi l te rCTL program is built. A 
specified number of IPv4 or IPv6 rules are generated and saved to a file and the generating 
sequence. The filter constructor is then run with this file ruleset, and the filter is configured. 
The test sends the internally saved ruleset to the model. This model is the simplest filter 
with an array containing the ruleset and a matching function that checks if the input key is 
in this array. The result from the model is then compared to the response of the simulated 
component. 

When the filter is configured and the model has the ruleset, the test sends transactions 
to the filter input signals. These transactions are often only a random combination of inputs 
created by the provided sequences. However, as a random IP address would hardly match 
against even a large ruleset, the test also sends transactions from a rule sequence configured 
with random addresses from the ruleset. This ensures that both negative and positive 
matches are generated. Furthermore, as the verification model is an exact matching filter, 
only a false negative is considered an error, and all false positives are counted to evaluate 
the filter's false positive rate. 

The filter's status is read when all transactions are sent, containing the number of 
matched and unmatched transactions according to the hardware component. This is then 
compared to the same values in the verification to ensure all transactions were accepted 
correctly. 

Moreover, this environment also allows one to compute the filter's size and compare 
it to the number of inserted keys, which can be used to calculate the space efficiency of 
the filter. This U V M verification was used to test all filter's false positive rates and space 
efficiency, making the calculations and evaluations of the results much more convenient. 
The actual measured results and comparisons are introduced in the next section. 

Apart from the simulations, all hardware filters were synthesised and tested in a hard
ware application using a simple design for writing into the filter's input and reading the 
resulting match signal. 
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Chapter 6 

Evaluation 

In order to measure the all-around usability of mentioned methods, four evaluation criteria 
are used. The first two focus on the error rate and the ruleset compression efficiency, and 
the other pair represents the hardware requirements: 

• false positive rate, 

• bits per element, 

• maximal frequency, 

• configurable logic blocks or C L B s usage. 

A false positive rate is used to measure the accuracy of the filter. This criterion is 
enough, as false negatives are not generated in the methods mentioned earlier. This false 
positive rate will decline as the filter's size enlarges with the same-sized ruleset. In other 
words, a filter with more bits representing one element will make fewer mistakes. This 
can be enumerated by the bits per element value representing the ability to compress the 
ruleset. The bits per element measure and the false positive rate are often used together. 
Luckily, both criteria can be measured using simulation and the verification environment. 

However, various methods will use the hardware resources differently. Moreover, supe
rior filters can become unpractical due to their hardware usage. Synthesis is performed on 
each tested design to measure the hardware occupancy of each filter. From the resulting 
reports, the worst negative slack, C L B s usage and the number of different R A M resources 
were gathered. The maximal operating frequency was then calculated using each design's 
known clock period and the worst negative slack. 

A l l presented synthesis results were measured using the Xil inx Vivado 2019.1 and tar
geted a Virtex UltraScale+ X C V U 7 P device. 

To make the best use of all the measured criteria. The most favourable configurations 
for Bloom and cuckoo filters had to be chosen to compare the filters against each other. 
This is important as the only shared parameter is the filter size. Other parameters are 
different for each method, like the number of hashes and fingerprint sizes. However, there 
was no need to pick any unique configurations in xor filtering, as the fingerprint size is 
the only parameter influencing the false positive rate and thus, no parameter needed to 
be fixated. How and why these configurations were picked and how much each parameter 
changes the filter performance is discussed below. 
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6.1 Bloom filter configurations 
Apart from the filter size, the Bloom filter has only one parameter, the number of hashes. 
This parameter determines the number of pipelines in the hardware architecture, each with 
one hash and a memory. More pipelines result in more complex logic as more hash functions 
must be generated. 

It is also important to note that the only parameter influencing the bits per element in 
the Bloom filter is the number of inserted rules. This is a speciality of the Bloom algorithm 
because changing the number of inserted elements in other filters does not change the false 
positive probability. The Bloom filter is a fingerprint-less method with a perfect 0% false 
positive rate when empty and steadily increasing until 100% when the whole Bloom filter is 
filled with ones. Therefore it is possible to insert any number of rules into any configuration. 
The number of hashes then only optimises this false positive rate growth for specific ranges 
of inserted elements. 

From the figure 6.1, we can see how using a different number of hashes impacts the false 
positive rate. 

Figure 6.1: The impact of the number of hashes in the Bloom filter. 

As expected, there is no best configuration. The graph confirms that increasing the 
number of hashes in the filter is better for more precise filtering. We can also calculate the 
optimal number of hashes koptimai with the number of inserted rules n and the filter size m 
using (6.1), as was discussed in the analysis of the Bloom filter 3.1. 

m 9m 
^optimal = In Z ~ — V" - 1) 

n 13n 
The most interesting configuration seems to be the Bloom filter with seven hashes 

(green), as it performs the best ranging from a 2% false positive rate to around 0.1%. 
Moreover, it stands reasonably in a high false positive rate of around 10% and low rates of 
around 0.01%. 
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The 3-hash configuration (yellow) is the best for a high false positive rate. However, 
unlike the 7-hash, this configuration starts to branch off quickly. 

On the other hand, when using the Bloom filter mainly for low false positive rate 
applications below 0.1%, the 15-hash Bloom filter (red) is compelling, clearly beating the 
7-hash in this category. Therefore the 7-hash and 15-hash were chosen as the prominent 
Bloom filter representatives. 

On top of this, thanks to the analysis of the Bloom filter in [16], it is possible to estimate 
the false positive rate for every configuration with the same parameters as in the optimal 
hash function formula using (6.2). 

e » ( l -e-kn/my (6.2) 

Using this equation, we can confirm that the Bloom filter design performs according to 
expectations, as seen in figure 6.2. 

Figure 6.2: The expected and measured false positive rate of the Bloom filter. 

We can see that the implemented Bloom filter's false positive rate is always below the 
expected rate. This is interesting as the estimation is targeted for the standard Bloom 
filter algorithm rather than the implemented memory-split version. We can assume from 
this that the implemented variant of the Bloom filter performs on par with the classic 
implementation. 

Also, the inconsistencies in the actual false positive rate at around 20 bits per element 
are caused by insufficient transactions in simulation and thus can be ignored. 
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6.2 Cuckoo filter configurations 

The cuckoo filter has two different parameters fingerprint and bucket size. Compared to 
the Bloom filter, the cuckoo's false positive rate can only be changed by adjusting the 
fingerprint size. Therefore the fingerprint size is used to modify the false positive rate. 
However, to only have one best configuration for the final comparison with other filters. 
The bucket size needed to be set to a constant, which achieves the best performance. To 
determine how the bucket size influences the false positive rate. Five bucket sizes were 
tested. 

The false positive rate was gradually changed for each bucket size configuration by 
incrementing the fingerprint size. Each configuration was filled with the maximum number 
of rules to ensure that the bits per element measure was as favourable as possible, making 
the number of rules constant for every configuration. 

Moreover, one configuration is represented as a dot in contrast to the Bloom filter, where 
one configuration is a line. This was because, in Bloom, changing the false positive rate is 
possible without changing the filter configuration. Therefore one Bloom configuration can 
experience any false positive rate. In contrast, cuckoo and xor filter configurations have 
predetermined false positive rates. 

The original cuckoo filter authors recommend using 4 or 8 as the primary bucket size. 
However, to expand on this, 1, 2, 4, 8 and 16-sized buckets were tested, each with fingerprint 
size ranging from 1 to 64. 
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Figure 6.3: The impact of the number of buckets in the cuckoo filter. 

As seen in the figure 6.3, the filter performance is similar when the number of fingerprints 
in the bucket is not one. This result makes sense, as with only one fingerprint in the bucket 
(blue). The construction algorithm is forced to make more table reconstruction. Therefore 
the maximum number of reconstructions is reached faster, and the filter is assumed at 
maximum capacity, resulting in inferior bits per element rating. 

Other configurations performed better. Nonetheless, the filter with bucket size 2 (yellow) 
experienced a significant spread across the same false positive rate. This means that even 
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though the configuration had a wider fingerprint and should perform better, it performed 
worse than expected. This is mainly visible in around 20 bits per element on the cuckoo 
with bucket size two. 

The spreading can be caused by the fact that all simulations were run only once, and 
due to the cuckoo construction being heavily influenced by the random decisions in table 
reconstruction, some configurations can appear inferior. 

Nevertheless, a configuration with four fingerprints per bucket (green) looks most effi
cient overall and is also recommended by the original authors as a good default and therefore 
was chosen for the final comparison. 

6.3 Filter comparison 

After the most favourable configurations for all filters were picked, we can compare their 
performance regarding the false positive rate and space efficiency. 

To summarise, the following configurations were picked: the 7-hash and 15-hash Bloom 
filters, the cuckoo filter with each bucket sized for four fingerprints and the xor filter. In 
order to change the false positive rate, the Bloom filters were slowly filled with rules, and 
the cuckoo and xor filters' fingerprint sizes were changed. 

The final results are shown in the figure 6.4. 

Bits/Element 

Figure 6.4: Picked configurations of all three filters compared. 

Given the results, it is clear that the xor filter (blue) is superior to others in any false 
positive rate category. This is especially visible in the practical range of around 0.3% false 
positive rate, where the xor filter achieves an exceptional 10 bits per element. Apart from 
this, the xor filter performs very well in all categories, as was expected from a xor probing 
filter. 

Bloom (red) performs better than the cuckoo filter (green) when the false positive rate 
exceeds 0.2%. Below this boundary, even the more precise 15-hash Bloom fails to match 
the error rate of the cuckoo filter. This switch was expected as Bloom is considered better 
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than the cuckoo filter, only for a higher false positive rate. This switch between Bloom and 
cuckoo is also visible in other studies [7]. 

Another expected switch should happen somewhere below 0.001% false positive rate. 
Theoretically, the cuckoo filter should be ahead of the xor filter in this category. However, 
this was not measured. This is likely because the simulation result must be more precise 
to capture this very low false positive rate. The number of tested transactions needed to 
be increased to make the results more precise and suitable for higher error rates. 

Nevertheless, as the number of transactions reached millions, it became almost impos
sible to simulate these extremely precise filters. Testing these configurations directly on 
hardware would be ideal, as hundreds of millions of transactions are not a problem. This 
problem is left open for future work. 

F P G A u t i l i s a t i o n 

One configuration for cuckoo and xor filter and both 7-hash and 15-hash Blooms were picked 
to compare each method regarding their used resources on F P G A . Each configuration was 
scaled from small filter sizes to around 4000 K b filters. To put this size into perspective. The 
number of inserted rules ranged from under a hundred to over 2 million. The granularity 
of this increase was limited by the fact that the address sizes needed to be a power of 2, 
as was described in the implementation. For every configuration, the hardware usage was 
gathered and plotted in relation to the filter size as illustrated in figure 6.5. The picked 
configurations were selected with around a 0.3% false probability rate. Specifically, cuckoo 
with bucket size four and 12-bit fingerprint, xor filter with 8-bit fingerprint and both Bloom 
configurations are present. 
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Figure 6.5: C L B usage of the picked configurations. 

We can see that the cuckoo filter is the most efficient method regarding F P G A resources, 
especially in small filter sizes. This makes the cuckoo filter an interesting pick as it uses less 
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than half F P G A logic compared to the xor filter and hash-7 Bloom. Moreover, compared 
to Bloom with 15 hashes, the cuckoo filter uses less than a third CLBs . 

Regarding other filters, the xor filter is on par with hash-7 Bloom. Moreover, from the 
difference between the hash-15 and hash-7 Bloom configurations, we can see that additional 
hash functions come at a price. Precisely the hash-15 configuration is around 1.8x more 
expensive than then hash-7. 

F i l t e r con f igu ra t i ons s u m m a r y 

The table 6.1 shows the best filter configuration for 5%, 0.3%, 0.02% and 0.005% false 
positive rate categories. Each configuration was picked because it had the lowest bits per 
element value in each category. Also, the false positive rates are not entirely the same, as 
guessing the suitable parameters for each filter to get the same false positive rate is almost 
impossible. 

The names in the table indicate the configuration of each filter. The Bloom filter's name 
indicates the number of hashes. The number of buckets is first shown in the cuckoo filters, 
followed by the fingerprint size. Lastly, the xor filters' suffix also follows the fingerprint 
size. 

Best filter configurations <30000 rules 

False positive rate bits\element max freq (Mhz) C L B s 
Bloom7 4.2% 6.5 810 1048 

Cuckoo4-7 4.7% 8.8 500 417 
Xor4 5.2% 5 336 693 

Bloom7 0.29% 12 810 1048 
Cuckoo4-12 0.21% 14 370 508 

Xor8 0.33% 10 400 1164 

Bloom7 0.027% 17 810 1876 
Cuckoo4-15 0.02% 17 420 523 

Xor 12 0.022% 15 405 1213 

Blooml5 0.008% 19.2 810 1876 
Bloom7 0.005% 23.1 810 1048 

Cuckoo4-17 0.0051% 18.1 456 506 
Xor l4 0.005% 17.4 362.8 1022 

Table 6.1: Picked configurations overview. 

From the shown configurations, we can again observe that the xor filter has the best 
bits per element in all categories, and the cuckoo filter is the most moderate considering 
its resource usage. Moreover, both Bloom configurations achieve the fastest maximal fre
quencies of around 800 MHz and can operate at almost double the frequency compared to 
other filters. 

Bloom also has better bits per element in the 5% and 0.3% false positive categories 
than the cuckoo filter. As expected, the bits per element are more or less equal in the 
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0.02% category, and lastly, the cuckoo filter beats the Bloom filter in the last most precise 
category. 

The goal was to achieve 100 Gbps and higher speeds since the filter is planned for use 
in C E S N E T projects focused on high-speed networks. According to achieved frequencies, 
it can handle 100 and 200 Gbps. 400 Gbps is a future work plan and can be achieved with 
multi-packet processing per clock cycle. 

From the findings above, it is clear that the xor filter fulfilled its expectations as the most 
efficient filter. However, when the false positive rate is not a problem, Bloom can achieve 
much higher throughput than the others. Lastly, the cuckoo filter is a good alternative 
when F P G A resources are the primary concern. 

We can also compare the probabilistic filters to their exact counterparts. It is clear that 
an exact matching filter, when configurated with 32-bit rules (IPv4), requires a 32-bit per 
element. Likewise, when 128-bit rules (IPv6) are used, 128 bits will be needed for each 
element. Wi th this in mind, a xor filter with a false positive rate of around 0.3%, in the 
table 6.1, will need three times less memory when compared to the exact filter with 32-bit 
rules and less than twelve times memory when 128-bit rules are used. This difference can 
be enlarged further by matching multiple concatenated fields that create a new key. 
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Chapter 7 

Conclusion 

This thesis discussed the theory and design of probabilistic filters for hardware applications. 
Three methods were presented: the Bloom filter, cuckoo filter, and xor probing filter. These 
algorithms are used to efficiently store and query large sets of data in a space and time-
efficient manner, with the trade-off of a certain probability of false positives. 

The basic principles of each algorithm and their advantages and limitations were de
scribed. Furthermore, hardware design changes to each filter were presented to make them 
more viable for hardware implementation. The most changed method was the xor filter, 
where the fingerprint size was generalised, and the construction algorithm was changed to 
split the memory into three independent tables. Additionally, all designs were verified using 
the developed verification environment. 

The final results revealed that the xor filter outperformed the other filters regarding 
space efficiency and false positive rate. In the practical range of around 0.3% false positive 
rate, the xor filter achieved an exceptional 10 bits per element. The Bloom filter was more 
efficient than the cuckoo filter when the false positive rate exceeded 0.2%, while the cuckoo 
filter was the most resource-efficient on F P G A , especially for smaller filter sizes. These 
results and the whole work were also presented at the Excel@FIT 2023 student conference. 

In terms of future work, several improvements can be made to enhance the performance 
of these filters. Implementing multi-packet processing per clock cycle will allow for 400 
Gbps processing. Making Bloom and cuckoo filters dynamic will enable adding and remov
ing rules. Other potential enhancements include implementing counting Bloom filters to 
support deletion, adding more tables to the cuckoo filter to improve the false positive rate, 
and updating the xor construction to the latest binary fuse filter to increase space efficiency 
and reduce the false positive rate. 

In summary, probabilistic filters are a powerful tool for various applications in computer 
networks, and their hardware design can improve their performance and efficiency. However, 
it is crucial to carefully evaluate the trade-offs between accuracy and efficiency and choose 
the most appropriate algorithm for a specific application. 
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