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ABSTRACT 

An image processing technique was applied to detect roddon soil features from UK-

DMC2 base data. Roddon soil features represent former watercourses in English 

Fenland, now raised banks with altered soil composition. They can be clearly seen 

on remotely sensed imagery as bright features in contrast to the darker surrounding 

peat land. Based on difference in brightness of roddons and surrounding peat soil 

the Soil Brightness Index (SBI) was applied to detect the roddons. To identify the 

edges of these features where there is a large spectral contrast a non-directional 

filter was applied together with an image enhancing technique to better differentiate 

the roddons form other non-soil features. Understanding the location of roddons will 

allow adaptive farming practices that account for differences in soil properties, and 

help optimizing yields.  

Keywords:  

Agriculture, Digital Soil Mapping, East Anglia, Remote Sensing, Roddon, Soil 

Brightness Index, UK-DMC2  

Word Count: 5450  
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ABSTRACT:  

An image processing technique was applied to detect roddon soil features from UK-

DMC2 base data. Roddon soil features represent former watercourses in English 

Fenland, now raised banks with altered soil composition. They can be clearly seen on 

remotely sensed imagery as bright features in contrast to the darker surrounding peat 

land. Based on difference in brightness of roddons and surrounding peat soil the Soil 

Brightness Index (SBI) was applied to detect the roddons. To identify the edges of 

these features where there is a large spectral contrast a non-directional filter was 

applied together with an image enhancing technique to better differentiate the roddons 

form other non-soil features. Understanding the location of roddons will allow adaptive 

farming practices that account for differences in soil properties, and help optimizing 

yields.  
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1 INTRODUCTION 

Identifying the spatial distribution of soils and soil features is a fundamental 

knowledge of today’s soil science. Process of soil formation has been described 

by Jenny’s (1941) brilliant equation (Jenny, 1941) and laid the foundation of soil 

mapping. Spatial distribution of soil has been described mainly by conventional 

methods including soil surveys and soil sampling. However conventional 

methods of soil mapping are slow and relatively costly (McBratney, et al., 2003) 

and therefore GIS and remote sensing techniques that  recognise differences in 

soils and soil features  allow better and faster approach of soil data extraction 

(Scull, et al., 2003).  

Digital Soil Mapping (DSM) is a valuable and widely use alternative of soil 

mapping to conventional methods. This method involves remote sensing and GIS 

application and deployment of statistical models to predict the spatial distribution 

of soils and various soils characteristics. DSM provide numerous approaches and 

soil information for different data mining techniques and presets new framework 

called Digital Soil Assessment (DSA) a modelling tool designed to describe more 

detailed and difficult to measure soil attributes (McBratney, et al., 2003; Carré, et 

al., 2007).  

Knowledge about soil distribution and the state of vegetation canopy has become 

favoured information to utilize in appropriate economic planning, crop yield 

prediction and optimising management and resource allocation for agricultural 

management (Bastiaanssen, et al., 2000; Haboudane, et al., 2004; Johanson, 

2013; Moran, et al., 1997). The importance of remotely sensed information for 

agricultural management was rapidly up taken since remote sensed data become 

publicly available and their use was demonstrated widely in numerous research 

areas (Jakubauskas, et al., 2002; Ozdogan, 2010; Yan & Roy, 2014). Increasing 

demands on remotely sensed information produce more practical methods of 

data extraction. Today’s image processing techniques working with high 

resolution space born imagery includes various sophisticated methods and are 

able to detect detailed land cover information (Jensen, 2006; Lillesand, et al., 
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2008). Implementation of precise processing algorithms on high resolution data 

is reflected in the ability to detect small differences in the terrain or soil 

characteristics (Weng, 2011). Digital Elevation Model (DEMs) analysis for GIS 

application are often used to detect differences in terrain and landform (Eshani & 

Quiel, 2009; Florinsky, 1998; Klingseisen, et al., 2008). However, identifying soil 

properties and soil features from satellite imagery rely more on differences in 

spectral reflectance of land cover (Dorigo, et al., 2007; Mulder, et al., 2011) rather 

than on DEMs analysis.  

Mixing of different data mining techniques for soils and soil feature detection 

using satellite imagery can be useful, for example combination of  DEMs with 

radiometric data for regional soil mapping (Dobos, et al., 2000) or using 

combination of vegetation transformation indices for vegetation detection (Das, 

et al., 2009). However most recent studies using satellite imagery as data input 

for land cover classification attempts to suppress the soil information and focus 

more on land cover information i.e. the vegetation canopy (Bacoura, et al., 2002; 

Huete, et al., 1984; Huete, et al., 1985; Schmidt & Karnieli, 2001). Consequently 

to describe phonological stage and state of canopy various vegetation indexes 

for example New Vegetation Index (NVI), Normalised Difference Vegetation 

Index (NDVI), Soil-adjusted Vegetation Index (SAVI), Soil and Atmospherically 

Resistant Vegetation Index (SARVI) have been developed (Deering, et al., 1975; 

Huete, 1988; Huete, et al., 1992; Huete, et al., 1997; Huete & Liu, 1994; Qi, et 

al., 1995; Gupta, et al., 2001; Rouse, et al., 1974). Until recently soil related 

research based only on the use of remote sensing data was, with a few 

exceptions, often overlooked. Kauth and Thomas (1976) and Kauth et al. (1979) 

described distribution of spectra for four band spectral data and introduced the 

concept of “soil line” from where the Soil Brightness Index (SBI) was developed. 

SBI is a widely used index for bare soil recognition and therefore can be used for 

soil feature detection or extraction.    

Problems associated with soil information extraction from satellite imagery are 

often connected with signal noise, shadows and change in canopy, which overly 

underlying soil and therefore complicates the soil information extraction. 
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Moreover, remote sensing techniques of soil features detection or extraction are 

affected by many factors, such as vegetation phenology stage, time of satellite 

observation, spectral similarity of different land cover, variations in soil moisture 

and soil composition (Caloz, et al., 1988; Jensen, 2005).  This is especially 

evident in agricultural regions with arable crop rotation where the vegetation 

canopy may change many times during the growing season depending on 

harvest and current management practice reflecting the crop utilization. On the 

other hand certain agricultural practise involving crop rotation includes periods 

with bare soil thus the opportunity to extract soil information. Various approaches 

of object extraction from satellite imagery has been developed (Mayer, 2008; 

Mulder, et al., 2011), but no methodology is directly applicable for soil feature 

detection or extraction from satellite imagery. 

Anthropogenic and natural processes interact to reshape the physical 

characteristics of the landscape (such as soils or landscape features) (Eshani & 

Quiel, 2009) and give rise to relatively new soil features. One of the example of 

these soil features are called Roddons. Roddons (or also Roddamy, Roddens or 

Rodham (Coates, 2005) are mainly bright soil features of the Fenland of eastern 

England. Roddons represents mid to late Holocene tidal deposit creek networks, 

that are now raised banks with altered soil composition due to human activities 

(Smith, et al., 2010). The draining of the Fenland that has enabled the 

establishment of agriculture in the area, has resulted in wind erosion and 

oxidation of the surrounding peat and thus exposed the roddon features (Godwin, 

1978; Waller, 1994). Roddons have been identified into three generations each 

representing a different in period of creation and distribution of clay, silt and sand 

deposition from a marginal salt-marsh environment. Roddons vary in 

composition, depth, width, size, cover brightness and location (Smith, et al., 2010; 

Smith, et al., 2012). Differences in soil composition i.e. sediments of roddons may 

affect how Roddons are displayed (brightness) in remotely sensed data and 

therefore complicates their detection, although difference in brightness of 

roddons to surrounding dark peat soil is significant and essential for this study 

(Palmer, 1996; Smith, et al., 2010). 
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The aim of this study is to investigate the remotely sensed images and GIS 

techniques to rapidly and accurately identify the spatial location of roddon soil 

features. Based on review of existing methods and literature dealing with remote 

sensing of soils and differences in landscape for GIS applications, a methodology 

of roddon detection was developed. The proposed methodology was applied to 

identify the spatial location of roddons based on roddons difference in brightness 

to darker surrounding peat land.  

A semi-automated methodology of roddon soil features detection is presented. 

The methodology requires minimum training, data pre-processing, relatively 

small number of parameters and can be optimised to various scale applications 

and on features with similar remotely sensed attributes. Spatial map of roddons 

detection and processing images are delivered from remotely sensed UK-DMC2 

data series images products. Results are delivered for 11, 858 km x 11.352 km 

(539 x 516 22m pixels) in a predominately agricultural region. 
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2 DATA AND STUDY AREA 

2.1 Study area  

The study area is located in English Fenland of Cambridgeshire. The area is well 

known for its unique geology of basal clay overlain by peat interspersed with 

roddons. The area has been extensively drained transforming the environment 

into intensive and productive agricultural land (Brew, et al., 2000; Pryor, 2013; 

Smith, et al., 2010). Roddon soil features are frequently distributed over the area 

of English Fenland, therefore the test area was selected representing an area of 

contrasting peat and roddons.   

The test area was selected to demonstrate the presence of roddon features. The 

study area is located in predominately agricultural region near Littleport in 

Cambridgeshire covering mainly farmland of G’s growers Ltd.  Current agriculture 

management of G’s growers Ltd. is based on crop rotation over years. Rotation 

cycle of different crops is mainly composed of vegetables (spring onion, lettuce, 

leek and bulb onion) and grain (wheat, barley and maize) (G’s Growers, 2015). 

These crops require individual management practise and therefore optimising the 

current agricultural management through detailed land and soil knowledge would 

ensure sustainability of farming business and benefit the environment. The UK-

DMC2 data series images composed of 539 x 516 pixels covering area of 11. 858 

km x 11.352 km (52.389 to 52.494 North and 0.273 to 0.447 West) shown in 

Figure 2-1 represents landscape cover with specific features including 

agricultural land, communication networks, drainage channels, poly tunnels, 

roddons, solitary farms, urban areas and water bodies (Figure 2-2 (a)). Roddons 

can be clearly seen on remotely sensed imagery as bright river-like features in 

contrast to the darker surrounding peat land (Palmer, 1996) as shown in Figure 

2-1 and Figure 2-2. 
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Figure 2-1 Spatial location of tested area (zoomed) delivered from UK-DMC2 data 

series image in East Anglia. 

2.2 UK – DMC2 data sets 

In this study the UK-DMC2 data subset over one growing season in 2013 were 

selected. The data series images are ortho-rectified DMC level L1R product. They 

were radio metrically normalised to a reference scene by linear regression of the 

co-change pixels between each image and the reference. The reference scene 

(u2003df.img) was first calibrated to top-of-atmosphere reflectance using the 

standard process described in the UK-DMC2 product manual. No-change pixels 

were automatically determined between images using the approach in Canty & 

Nielsen (2008). UK-DMC2 data series images where obtained from the DMC 

International Imagine Ltd. (http://catalogue.dmcii.com/). The base data are 

composed of 3 reflective bands Green, Red and NIR bands (0.77 - 0.90 m NIR, 

0.63 - 0.69 m Red and 0.52 - 0.60 m Green). The spatial resolution of pixel is 

22 m covering the projection area of 539 x 516 pixels. Each selected image 
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represents 7 cloud free different days over a growing period:  02/05/2013; 

03/06/2013; 09/07/2013, 18/07/2013; 19/07/2013; 05/09/2013 and 24/10/2013. 

Figure 2-2 illustrates 4 examples of selected data across the growing season in 

2013. Differences in imagery are caused due to change in vegetation cover as 

the vegetation cover matures and seasonal construction of poly tunnels. The UK-

DMC2 base data have been selected considering relatively easy accessibility, 

simple pre-processing preparation, spatial location of study area and excellent 

compatibility with widely used Landsat 7 ETN+ (DMC International Imaging, 

2013).   

 

Figure 2-2 Comparison of input UK-DMC2 data series images. (a) 3rd June 2013, (b) 

18th July 2013, (c) 5th September and (d) 24th October. 
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3 METHODOLOGY DEVELOPMENT  

3.1 Methodology overview 

A methodology to detect roddon features was developed and was applied in a 

step-wise approach. Coincidental spatial data of UK-DMC2 base data products 

over one growing season were used to determinate the spatial location of roddon 

soil features based on Soil Brightness Index (SBI) and non-directional edge filter 

(Section 3.2). To decrease noise from the SBI image from field edges a mask 

was developed from the normalized difference vegetation index (NDVI) (Section 

3.3) and an edge filter was applied. Further enhancement of the spectral 

difference (i.e. soil brightness of soil features) was achieved using the sum of the 

masked SBI images over one growing season (Section 3.4).  

3.2 Detection of features using the SBI 

The remote sensing detection of soil features over the test area is based on 

defining attribute of roddons from UK-DMC2 base data products. Roddon soil 

features differ in brightness from the relatively dark surrounding peat soils 

(Palmer, 1996; Smith, et al., 2010).  

3.2.1 SBI application 

The Soil Brightness Index (SBI) in various modifications, depending on nature of 

the spatial data and band composition has been used to study soil phenomena 

(Caloz, et al., 1988; Sharma & Bhatt, 1990) including vegetation/crop detection 

(Das, et al., 2009; Choi & Yang, 2012) agricultural management (Deb, et al., 

2010), soil mapping (Nicoletti, et al., 2003) and soil characteristics (Gore & 

Bhagwat, 1991). The spectral difference of roddons soil features was derived by 

the adaptation of the SBI (Eq. (3-1)) calculated from UK-DMC2 base data 

products. The SBI, derived as the sum of 3 bands (green, red and near-infrared), 

is based on enhancing the soil spectral difference over the other land cover 

(Kauth, et al., 1979; Kauth, et al., 1979). The index is defined as follows (Jensen, 

2005):    

𝑆𝐵𝐼 = (0.332 ∗ 𝑔𝑟𝑒𝑒𝑛) + (0.603 ∗ 𝑟𝑒𝑑) + (0.262 ∗  𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑) (3-1) 
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In this study SBI was applied over seven images taken at different times in the 

growing season. Figure 3-1 and Figure 3-2 show examples from two different 

dates. Both large and relatively small roddon features in Figure 3-1 (b) are better 

visible after the application of the SBI. However, this effect is not repeated in other 

images as shown in Figure 3-2 (b). Therefore the change in the vegetation 

canopy during the growing season impedes the detection of roddons from the 

SBI image as the crop cover matures. Although the application of the SBI on UK-

DMC2 base data leads to noticeable changes in roddon visibility some of the 

other features of land cover are evident and can be misrepresent as roddon 

features. To identify the edges of roddon features where there is a large spectral 

contrast between the roddon and the surrounding peat a non-directional filter was 

applied over all seven SBI images to observe change in edge feature visibility 

over the growing season in 2013. 

 

Figure 3-1 Process of roddon detection using SBI. (a) The UK-DMC2 base data set 

from 3rd June 2013, (b) with application of SBI, (c) edge filter. 
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Figure 3-2 Process of roddon detection using SBI. (a) The UK-DMC2 base data set 

from 5th September 2013, (b) with application of SBI, (c) edge filter. 

3.2.2 Application of edge filter 

The spatial image defining the boundaries of features was obtained by applying 

the non-directional edge filter on the SBI image to define the probability of roddon 

features edges. The edge filter is based on Sobel edge detection Eq. (3-2) 

operating with convolution of kernels (Pratt, 2001). The equation is defined as 

follows (Maini & Aggarwal, 2009):  
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Sobel: 

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐼  𝑎𝑛𝑑   𝐺𝑦 = [
1 2 1
0 0 0

−1 −2 −1
] ∗ 𝐼 

 

 (3-2) 

Gradient Magnitude: 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 

 

where Gx and Gy are gradient components in each orientation and I is the source 

image i.e. UK-DMC2 data series images after SBI application. The edge detection 

filter enhanced the edges (i.e. detect the areas with large adjacent spectral 

contrast) of land cover features. This resulted in separation of these objects in 

the SBI image and generated an image of edge features (Suresh, et al., 2014). 

Therefore, the edges of areas such as roddons with large spectral contrast to 

surrounding darker peat soil in the SBI image were detected. The Sobel method 

of edge detection is sensitive to noise and so derived images can include 

degraded information that is also obtained from the procedure. 

Figure 3-1 and Figure 3-2 shows step by step application of SBI index and non-

directional edge filter over two imagery dates. The boundaries of large and 

relatively small roddon features were enhanced as presented in detail in Figure 

3-3. Large roddons features are spatially located over several agricultural field 

due to their large spectral contrast with surrounding peat land while relatively 

small roddon are more clustered on individual agricultural plots and separate by 

noise elements mainly vegetation edges or drainage channels. Although non-

directional edge filter enhanced the edges of roddon features shown in Figure 3-1 

(c) and also in Figure 3-2 (c), the filter also enhanced edges of all kinds of land 

cover features with adjacent spectral contrast including non-soil related ones as 

shown in Figure 3-3. To identify some of the non-soil related edges i.e. vegetation 
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boundaries a development of a mask approach based on NDVI was applied, 

therefore this phenomenon is discussed in following section (Section 3.3). 

 

Figure 3-3 Examples of some features detected by edge filter application. (a) The 

UK-DMC2 base data set from 3rd June 2013, (b) edge filter.  

3.3 Image cleaning   

To reduce noise elements from the SBI image a further image cleaning technique 

was established. One major contribution of the noise on the SBI image after edge 

detection are field boundaries. This is due to the contrast of vegetated to non-

vegetated areas at the edge of agricultural fields. Therefore, the Normalised 

Difference Vegetation Index (NDVI) (Figure 3-4 (b)) was generated from UK-

DMC2 base data to identify some of the noise elements especially crop 

boundaries from SBI edge image (Figure 3-1 (c) and Figure 3-2 (c)). The NDVI is 

the most widespread vegetation index used to analyse vegetation cover or its 

state (Tucker, 1979) from satellite imagery. The NDVI indicates green live 

vegetation over the targeted area and is described as a simple ratio of NIR band 

and Red band in Eq. (3-3) (Huete, et al., 2002; Rouse, et al., 1974). The index is 

defined as follows (Jensen, 2005): 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(3-3) 
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where the NDVI enhances the effect of the vegetation canopies and facilitates 

the identification of changes in the response of the vegetation cover. The NDVI 

has been used to detect agricultural field boundaries (Yan & Roy, 2014) or to 

study various vegetation phenology (Fisher, et al., 2006). The crop plots from 

Figure 3-4 (b) generated by applying the NDVI are assumed to be agriculture field 

at different vegetation stage and field margins. The intensity of index indicates 

the amount of vegetation i.e. values less or close to zero represents sparsely or 

non-vegetated areas while values close to 1 are very dense green vegetated.  

 

Figure 3-4 Process of mask generation. (a) The UK-DMC2 base data set from 3rd 

June 2013, (b) application of the NDVI, (c) edge filter.   

To enhance field boundaries on NDVI image (Figure 3-4 (b)) the non-directional 

edge filter was applied following the procedure from previous section (Section 

3.2). Figure 3-4 (c) shows an example of the edge detection for agricultural field 

boundaries. The agriculture field edges are visually evident. However, some 

other noise features edges such as communications network and drainage 
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channels where enhanced through the procedure as well and this is described 

further in the discussion (Section 4). Figure 3-5 shows a comparison between 

SBI edge filter (a) and NDVI edge filter (b). Enhanced boundaries on example (b) 

are mainly vegetation edges and match with less bright vegetation edges on 

example (a). Consequently the NDVI places more emphasis on vegetation 

information and less on soil information whereas the SBI enhances the latter. 

Therefore, the edge filter applied on NDVI image detected mainly vegetation 

edges that showed high spectral contrast (Figure 3-5 (b)) and on the SBI image 

it detected soil features boundaries (Figure 3-5 (a)).  

 

Figure 3-5 Application of edge filter over UK-DMC2 base data image from 3rd June 

2013. (a) SBI edge filter, (b) NDVI edge filter.  

To minimise the influence of field boundaries generated through edge detection 

on SBI image, the NDVI edge image Figure 3-5 (b) was used as a mask to clip 

out some of the non-soil edge features and clean up the SBI edge image (Figure 

3-1 (c)).  

To set up and an appropriate method to clip out the non-soil features boundaries 

from SBI edge image a mask has been developed. The mask procedure is based 

on creation of a binary mask from the NDVI edge image. Enhanced edges of the 

NDVI edge image have high brightness i.e. their pixel value lies between 0.1 and 

0.6 Therefore all pixels higher than 0.1 where assigned a value 0 and all pixels 

lower than 0.1 where assigned a value 1.  The mask is computed as follow:  
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here 𝐼𝑀(𝑖, 𝑗) is the result image (Figure 3-6 (b)) after mask application based on 

the NDVI edge image, 𝐼𝑆𝐵𝐼(𝑖, 𝑗) is the SBI edge image (Figure 3-6 (a)),  𝐼𝑁𝐷𝑉𝐼(𝑖, 𝑗) 

is the NDVI edge image (Figure 3-5 (b)) and (𝑖, 𝑗) are vertical and horizontal 

coordinates for pixels. The resulting binary mask of values 0 and 1 was 

subsequently summed up with SBI edge image to achieve a cleaned SBI image 

and noise elements connected with vegetation where reduced. Figure 3-6 shows 

example of SBI edge image before (a) and after (b) mask application.  

 

Figure 3-6 Mask application for 3rd June 2013image. (a) SBI before mask 

application, (b) SBI after mask application.  

The mask proves to be successful in removing many of the field boundary. 

Although noise reduction is significant the image cleaning process is imperfect 

as some of the noise elements are still present as well as some of the field edges 

boundaries. In particular, it may be difficult to recognise soil feature boundaries 

from one date imagery as shown in Figure 3-7. 

𝐼𝑀(𝑖, 𝑗) = {
𝐼𝑆𝐵𝐼(𝑖, 𝑗) 𝑖𝑓 𝐼𝑁𝐷𝑉𝐼 (𝑖, 𝑗) < 0.1

       0        𝑖𝑓 𝐼𝑁𝐷𝑉𝐼(𝑖, 𝑗) ≥ 0.1 
 

(3-4) 
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Figure 3-7 The edge features detection over 3 images showing mask application 

for 3 different days in 2013. (a) 3rd June, (b) 9th July, (c) 5th September. 

Figure 3-7 shows that soil features are more temporally static compared to the 

other land cover elements such as canopy boundaries or poly tunnels, which will 

change more significantly over time. The fact that soil feature edges are static 

over different images during the growing season was used to enhance the 

roddons over the other features and minimise the impact of noise from other land 

cover features.  

3.4 Enhancing the soil brightness  

Although the mask procedure applied over single date image decreased 

noise generated by vegetation some noise features are still evident. Therefore 

spectral signature of roddons was enhanced by using mask procedure multiplied 

over satellite time series data. The resulting enhancing of soil brightness was 

refined by application of a simple summing up approach on seven images over 
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growing season 2013 on which the mask approach was applied (as described in 

Section 3.3). The sum is computed as follows:  

𝐼𝑒 (𝑖, 𝑗) =   (𝐼𝑀(𝑖, 𝑗)) (3-5) 

where 𝐼𝑒 (𝑖, 𝑗) is a sum of the SBI edge images over one growing season in 2013 

after mask application, 𝐼𝑀(𝑖, 𝑗) is SBI image after mask application and (𝑖, 𝑗) are 

vertical and horizontal coordinates for pixels. The sum process enhanced the 

spectral response of roddons due to their static time dependant variation and 

other time dependent elements such as vegetation boundaries or poly-tunnels 

with more time variation in spectral response were enhanced less. The result of 

the final image processing is illustrated in Figure 3-8 (b). Similar technique has 

been used to enhance agricultural field boundaries (Yan & Roy, 2014) or to 

enhance change detection (Im & Jensen, 2005). 

 

Figure 3-8 Final result after sum approach application. (a) The original UK-DMC2 

for 3rd June 2013, (b) final result. 

When the result is compared to the original UK-DMC2 date base image (Figure 

3-8 (a)) it demonstrates that the applied methodology works successfully. Both 

roddons features edges (small and large) are relatively well identified and spatial 

distribution of roddons over test area is presented. However noise elements are 

still present and may be misinterpreted with roddon features.  
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4 DISCUSSION AND FUTURE APPLICATIONS 

Discussion is divided into four paragraphs each of them dealing with different 

section of methodology development (section 3) with description of potential 

improvements. Brief overview of Methodology development is described in 

section 4.1 followed by SBI application (section 4.2), reduction of non-soil feature 

generation (section 4.3) and enhancing the soil features over surrounding land 

cover (section 4.4). Fifth paragraph (section 4.5) shortly describes the potential 

future direction of the work. 

4.1 Methodology development overview  

A semi-automated methodology of Roddon soil features detection was 

developed. The methodology is applied on three bands (green, red and NIR) 

images of UK-DMC2 data product over growing season 2013. The SBI was 

applied using three bands from the imagery to enhance the spectral difference of 

bright soil feature so-called roddons to darker surrounding peat soil (Section 3.2.). 

Detection of roddon boundaries is presented by non-directional edge detection 

based on enhancing feature boundaries where large spectral contrast exists 

(Section 3.2). To reduce noise elements generated through the procedure of soil 

feature detection a mask based on the NDVI was created (Section 3.3). By mask 

application the noise reduction (mainly noise generated by enhancing the 

vegetation boundaries that have large spectral difference) was significant. 

Reduction of remaining noise elements was achieved by enhancing the soil 

response i.e. application of procedure over multiple imagery and subsequently 

summing up the results (Section 3.4.).  

Presented methodology was successful and the detection of large and small 

roddon features was achieved. However, noise elements are still present as 

shown in Figure 3-8. Future enhancing of the soil features to increase their 

visibility over the noise elements could be accomplished by repeating the 

procedure over multiple imagery with specific three bands composition. Future 

work to deliver complex map of roddons spatial location is required and potential 

future steps are outlined below. 
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4.2 Application of SBI 

By application of the SBI soil features were enhanced together with some other 

types of land cover. This is due to similar response of different land cover type to 

application of the SBI, thus their spectral signature is close to soil line and 

therefore enhanced object such as poly tunnels, drainage channels, 

communication networks could be similar to soil features (Kauth, et al., 1979; 

Kauth & Thomas, 1976). Figure 3-1 (c) and Figure 3-2 (c) shows application of 

the SBI over two different images over one growing season in 2013. The change 

of vegetation canopy is significant as the crop cover matures and with increasing 

phenology state and as a result the underlying soil features are less visible. 

Obtaining the soil information from these images (mostly from July to October) is 

difficult and therefore their future application in described methodology uncertain. 

Future application of the SBI over cloud free images without vegetation cover or 

cover crop should bring positive results in enhancing the bright roddon features 

over darker surrounding peat soil.  

Boundaries of roddon soil features were enhanced by application of the non-

directional edge filter. This is due to large adjusted spectral contrast between 

bright roddons and surrounding soil features. Although boundaries of these 

features were detected some other noise elements (vegetation boundaries, water 

bodies, communication networks) as a result of similar respond to application of 

the SBI (mentioned above) due to similar respond of different land cover type 

were detected as well.  This is the major contribution of noise generated during 

the process and therefore reduction of noise generation on initial step in 

methodology is essential. Thus by application of the SBI in various modifications 

(Jensen, 2005)  for data with different band composition the reduction of noise 

generation can be achieved (section 4.5.). 

4.3  Further removal of non-soil features   

The mask created as a binary layer designed to clip out some of the noise 

elements from vegetation boundaries (field edges) was computed from the NDVI 

edge image (Figure 3-5 (b)). However some pixels carrying the soil information 



 

   22 

on the SBI edge image were also clipped out where soil boundary features based 

on the NDVI edge filter underlay the vegetation boundaries. Similar information 

loss was found when some non-vegetation boundaries such as water bodies or 

communication network with pixel value between 0.1 - 0.5779 were clipped out 

due to mask application. This may not lead to loss of soil information directly but 

it could be problematic with future applications due to fragmentation of soil 

features as shown in Figure 3-7. To avoid loss of soil information due to mask 

creation a new model (mask) identifying if the pixel is non-soil related should be 

created. Thus pixels originally clipped out by mask application based on NDVI 

can retain in image with their original value of the pixel (value before mask 

application i.e. value of SBI edge image) if the threshold is met and pixel 

represents the soil features pixels. Future removal of other non-vegetation 

features enhanced during the process is described in Section 4.5 To find a 

connection between separate soil features fragment would be difficult due to high 

frequency of agricultural fields plots and their time variability over the growing 

season and therefore appropriate technique of fragment identification and 

connection have to be delivered and this is further discussed in Section 4.5. As 

mentioned above the mask application clipped out some of the boundaries of 

non-vegetation features as their pixel values after edge filter application lay 

between the defying intervals. This is relatively good news however on less 

vegetated images where other noise elements overlying the soil features such 

could be vegetation residues may be detected and pixel value carrying the soil 

information could be lost.  

4.4 Enhancing the soil response 

Loss of pixels carrying the soil information due to mask application was partly 

reduced by final enhancing of soil brightness i.e. summing the images of one 

growing season after mask application. Similar technique was used by Yan & Roy 

(2014) where spatial location of plots of agricultural fields was enhanced by 

summing up weekly data products over five years. Unlike Yan & Roy (2014) the 

vegetation boundaries in the test area changes over the season due to different 

management practise required for various crops and over years due to crop 
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rotation. Technique using multiple imagery from different data sources for 

example various Landsat data (Zhu & Woodcock, 2014) could increase the 

difference of time static soil features to more time variable vegetation boundaries 

and therefore enhance the boundaries of roddons. However problem with 

different spatial resolution of input data may result in errors connected with 

extraction of relatively small and spatially fragmented features (Duveiller & 

Defourny, 2010). Also other static features would be enhanced as well and their 

future removal would be required (Section 4.5). The spatial location of pixel used 

by mask approach to be clipped out depends on change in vegetation cover as 

shown in Figure 3-7. Therefore loss of pixels carrying the soil information wouldn’t 

be large as each image use different mask with different spatial location.  

Although methodology of roddons detection is presented some noise elements 

are still visible. The visibility of noise features generated by vegetation boundaries 

will slightly increase at the beginning of the enhancing of soil brightness process 

as presented in Figure 3-8. However with increasing number of repetitive 

operations of the enhancing approach over multiple imagery the visibility of time-

variable feature boundaries will decrease with comparison to time-static features 

(such as th soil boundaries). Other static features in the landscape are also 

enhanced during the process such as water bodies, urban areas or 

communication networks and can be clipped out by application of a simple GIS 

approach as described in section 4.5. 

4.5 Future recommendations  

To enhance the difference between soil features boundaries and vegetation 

boundaries application of described methodology over multiple imagery can be 

used (Zhu & Woodcock, 2014). The application is possible for all data available 

with 3 bands (green, red, NIR) composition. Therefore for example a variety of 

Landsat data can be used.  

The reduction of noise generated by other static features of landscape (water 

bodies, urban areas or drainage channels) can be achieved by the application of 

simple GIS approach based or known geospatial data layers. Known geospatial 
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data available on on-line (http://digimap.edina.ac.uk/ or 

http://ordnancesurvey.co.uk/) can be used as a base layer (mask) to clip out non-

soil related static elements enhanced during the process of boundary detection.  

Identification of enhanced pixel to ensure that each pixel belong to one selected 

segment can be achieved by application of watershed approach (Bleau & Leon, 

2000). This was used by Yan & Roy (2014) to separate circular agricultural field 

belonging to multiple segments into isolated ones. Future extraction of isolated 

segment can be achieved by the application of object-based analysis or 

unsupervised image classification (Akcay & Aksoy, 2008). Unfortunately 

complexity and time requirements of appropriate method of segment extraction 

is beyond scope and time scale of this study.   

Future map defining the spatial location of roddon soil features can be modified 

for GPS technology on agricultural machinery and utilized to optimising the 

current management practice to increase yields and benefit the environment.  
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5 CONCLUSION 

The roddons detection techniques are important steps to gather further 

knowledge about variations in soils and present a simple model to determinate 

spatial location of roddon soil features. Yet methodology presented in this study 

need an extensive further work to be applicable on site and for benefit through 

soil and crop management through its application.  

This paper has attempted to deliver a methodology for roddon soil feature 

extraction. The scheme below shows a simple step-wise approach of the 

methodology application. The main steps are:  

 

 Application of the SBI on any data composed of 3 spectral bands 

(green, red and NIR) 

 Application of non-directional edge filter to enhance areas where 

there is large  spectral contrast 

 Creation of binary mask based on the edge NDVI approach to clip 

out some of the noise elements  especially features with more 

time variation  

 Enhancing the spectral difference of static features where there is 

large  spectral contrast by repeating the procedure over multiple 

imagery and sum the result together  

 

Detection of soil features such as roddon should provide us with better knowledge 

about soils and their spatial context and therefore help to improve current 

management practise to benefit both environment and product yields. 
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