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Abstract 
Preprocessing, analysis, and quantification of Magnetic resonance spectroscopy (MRS) 

signals are required for obtaining the metabolite concentrations of the tissue under 

investigation. However, a fast, accurate, and efficient post-acquisition workflow 

(preprocessing, analysis, and quantification) of MRS is challenging.  

This thesis introduces novel deep learning (DL)-based approaches for preprocessing, 

analysis, and quantification of MRS data. The proposed methods achieved the objectives 

of robust data preprocessing, fast and efficient MR spectra quantification, in-vivo 

concentration quantification, and the uncertainty estimation of quantification. The results 

showed that the proposed approaches significantly improved the speed of MRS signal 

preprocessing and quantification in a self-supervised manner. Our proposed methods 

showed comparable results with the traditional methods in terms of accuracy. 

Furthermore, a standard data format was introduced to facilitate data sharing among 

research groups for artificial intelligence applications. The findings of this study suggest 

that the proposed DL-based approaches have the potential to improve the accuracy and 

efficiency of MRS for medical diagnosis. 

The dissertation is structured into four parts: an introduction, a review of state-of-the-art 

research, a summary of the aims and objectives, and a collection of publications that 

showcase the author's contribution to the field of DL applications in MRS. 

Keywords 
MR spectroscopy, inverse problem, deep learning, machine learning, convolutional 

neural network, metabolite quantification, frequency and phase correction. 

 

Abstrakt 

Pro získání koncentrace metabolitů ve vyšetřované tkáni ze signálů magnetické 

rezonanční spektroskopie (MRS) je nezbytné provézt předzpracování, analýzu a 

kvantifikaci MRS signálu. Rychlý, přesný a účinný proces zpracování (předzpracování, 

analýza a kvantifikace) MRS dat je však náročný.  

Tato práce představuje nové přístupy pro předzpracování, analýzu a kvantifikaci MRS 

dat založené na hlubokém učení (DL). Navržené metody potvrdily schopnost použití DL 

pro robustní předzpracování dat, rychlou a efektivní kvantifikaci MR spekter, odhad 

koncentrací metabolitů in vivo a odhad nejistoty kvantifikace. Navržené přístupy výrazně 

zlepšily rychlost předzpracování a kvantifikace MRS signálu a prokázaly možnost použití 

DL bez učitele. Z hlediska přesnosti byly získány výsledky srovnatelné s tradičními 



   

 

 

metodami. Dále byl zaveden standardní formát dat, který usnadňuje sdílení dat mezi 

výzkumnými skupinami pro aplikace umělé inteligence. Výsledky této studie naznačují, 

že navrhované přístupy založené na DL mají potenciál zlepšit přesnost a efektivitu 

zpracování MRS dat pro lékařskou diagnostiku. 

 

Disertační práce je rozdělena do čtyř částí: úvodu, přehledu současného stavu výzkumu, 

shrnutí cílů a úkolů a souboru publikací, které představují autorův přínos v oblasti aplikací 

DL v MRS. 

 

Klíčová slova 
MR spektroskopie, inverzní problém, hluboké učení, strojové učení, konvoluční 

neuronová síť, kvantifikace metabolitů, frekvenční a fázová korekce.  
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1. INTRODUCTION 

Magnetic resonance spectroscopy (MRS) has attracted the magnetic resonance (MR) 

community over the past seven decades [1]–[3]. A significant part of the interest in 

biomedical MRS stems from the possibility of non-invasive measurements of metabolites 

[3]. Information about tissue metabolites can help in clinical diagnostics. For instance, 

the detection of metabolic pathway changes may facilitate diagnosing disease in earlier 

stages before anatomy changes can be observed and thus enable more efficient treatment. 

This is demonstrated in glioma, a decrease of N-acetylaspartate (NAA) and creatine (Cr) 

concentrations and an increase of choline, lipids, and lactate predicts an increase in the 

glioma grade [1], [2]. 

Contrary to other diagnostic techniques such as Computed Tomography (CT) and 

Radionuclide imaging (e.g., Positron Emission Tomography (PET), Gamma camera), 

MRS emits no ionizing radiation to the subject, which enables follow-up studies [2].  

It is possible to get various information using Spectroscopy (MRS) and Spectroscopic 

Imaging (MRSI) for atomic nuclei such as Proton (1H), Phosphorus (31P), Carbon (13C), 

etc. The proton nucleus has the highest natural abundance (>99.9%) and intrinsic nuclear 

magnetic resonance (NMR) sensitivity (high gyromagnetic ratio) among all nuclei for 

MRS. Presently, the primary utilization of MRS in the clinical setting is centered around 
1H, with other nuclei being predominantly applied in preclinical and fundamental 

research. Although a number of brain metabolites can be identified with 1H MRS, the 

quantity of substances assessable under in vivo conditions does not exceed 15-20, and is 

typically much lower. Further MR-visible nuclei with biochemical relevance have also 

demonstrated their value in providing information on tissue physiology and biochemistry 

[1]–[4]. Notably, the incorporation of non-1H MRS in clinical practice has yet to become 

widespread, potentially due to the prerequisite of nonstandard hardware and specialized 

MRS techniques [3]. 

Recently, there has been a resurgence of interest in MRS within the MR community for 

clinical neuroscience and translational purposes [3]. This is largely due to the increased 

availability of high and ultrahigh-field scanners, and a better understanding of the role of 

metabolism in neuroenergetics and neurotransmission. Consequently, there has been a 

rise in the use of MRS for both typical clinical applications and neurological research, 

supported by advancements in acquisition and processing techniques [3].  

However, MRS has some shortcomings that limit its routine use in clinical practice. Some 

of these are (i) MRS requires specialized equipment and software that are not widely 

available or standardized, (ii) MRS is time-consuming and prone to artifacts and noise 

that affect the quality and reliability of the spectra, (iii) MRS data analysis and 

interpretation are complex and require expert knowledge and skills [1], [5].  
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Deep learning (DL) has the potential to enhance the accuracy and efficiency of MRS by 

automating the data analysis, providing more reliable diagnoses, and enabling the use of 

MRS in routine clinical practice. 

A brief introduction to the basic principles of NMR will be given in the following 

Introduction chapter, followed by a review of the existing methods and challenges for 

metabolite quantification of MR spectra. Finally, an overview of DL, including 

principles, the main architectures, and learning processes, will be presented. 

1.1 Basic Principles of NMR Spectroscopy 

MRS relies on the NMR phenomenon to observe the nuclear magnetism of the atoms in 

a sample and how they respond to a magnetic field. Several atomic nuclei, e.g. proton 

(1H), carbon (13C), fluor (19F), and phosphorus (31P), have a nuclear spin quantum number 

of ½, which is manifested by magnetic moment and angular momentum. Their behavior 

can be likened to a miniature cylindrical bar magnet that rotates around its axis and 

exhibits similar magnetic and inertial characteristics. Such characteristics dictate how 

these nuclei behave in the presence of an external magnetic field, where they tend to align 

along this external magnetic field. The spins precess with a specific frequency (i.e. the 

Larmor frequency 𝑓0) around the Z-axis (the axis which is parallel to the direction of the 

magnetic field 𝑩𝟎) which is proportional to the external magnetic field and defined by 

the Larmor equation  

𝑓0 = γ𝐁𝟎 , (1.1) 

where γ represents the gyromagnetic ratio (in Hz/T) of the nuclei of interest, and 𝐁𝟎 is 

the static external magnetic field (in T) [2], [6].  

A macroscopic magnetic moment is created due to an abundance of nuclei with lower-

energy orientation. By utilizing another magnetic field, the net longitudinal magnetization 

in equilibrium (M0) is flipped into the transverse plane (xy-plane) in order to detect the 

nuclear magnetization of a sample. This is achieved by applying a short powerful RF 

pulse, so-called 𝐁𝟏, along the axis perpendicular to the static magnetic field (𝐁𝟎). This 

pulse with a duration of 𝑡𝑝 tips the magnetizations precessing with Larmor frequencies 

approximately in the range of the RF pulse spectrum through an angle given by 

𝜃 =  𝛾𝐁𝟏𝑡𝑝. (1.2) 

After excitation, the flipped magnetization precesses in the xy-plane, generating an 

oscillating signal which can be detected by the receiver coil. This signal is called free 

induction decay (FID). FID has a complicated wave pattern decaying away to zero (see 

Figure 1). Relaxation refers to a process where molecules move randomly, resulting in 

energy transfer and random interactions. T1, also known as the spin-lattice relaxation 

time, is the recovery time of the longitudinal magnetization in the same direction as the 

static magnetic field. The relation between the transverse magnetization and T1 is given 
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by 

Mz(𝑡) = M0 (1 − e
−

𝑡

T1) , (1.5) 

where Mz is the longitudinal net magnetization, and M0 is the steady-state net 

magnetization [2]. 

T2, the so-called spin-spin relaxation time, reflects the time it takes for the transverse 

magnetization to decay in the transverse plane. The relation between the transverse 

magnetization and T2 is given by 

Mxy(𝑡) = Mxy0(e
−

𝑡

T2) , (1.6) 

where Mxy0 is the initial net transverse magnetization. 

T2
∗ (also known as the effective transverse relaxation time) is related to T2 by 1/T2

∗  =

 1/T2  +  1/T2
′, where T2

′ refers to static 𝐁𝟎 inhomogeneities causing dephasing of the 

water protons due to small variations in their local magnetic fields. T2
∗ is always either 

less than or equal to T2. 

 

  

 

Figure 1 Rotations of the macroscopic magnetization vector in the nonrotating 

laboratory frame xyz. The primary magnetic field 𝐵0 along the z axis and the oscillating 

magnetic field B1 (RF pulse) in the xy plane, both exert their respective influences on 

the magnetization, causing it to precess. 

In an ideal situation, all nuclei of the same isotope (1H in our case) would precess at an 

identical frequency in a uniform field 𝐁𝟎. However, a certain frequency range is detected 

in the sample in reality. Electrons around the nucleus in a molecule shield the nucleus 

from the external field and produce nuclear shielding. The amount of shielding 

experienced by a nucleus determines the net magnetic field given by 

𝐁 = 𝐁𝟎(1 − 𝜎′), (1.7) 

where 𝜎′ is the shielding constant that depends on the electrical environment of a nucleus 

[2], [6]. The net magnetic field varies at each nucleus. This phenomenon leads to 

magnetic-moment precession with a small frequency shift from the reference Larmor 

frequency 𝑓0, and therefore the FID contains more components with different frequencies 

The transformation of the FID from the time domain into the frequency domain using the 

Fourier Transform (FT) enables us to observe molecules of metabolites in the form of 
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peaks corresponding to the excited nuclei (see Figure 2).  

 

Figure 2 (Left) Time domain signal representation (i.e., FID) and its projection in two 

planes corresponding to the real (orange) and imaginary (green) components. (Right) 

The graphic shows the real (orange) and imaginary (green) components of the Fourier-

transformed signal 

When adjacent nuclei interact with each other’s magnetic fields, a phenomenon known 

as spin-spin coupling or J-coupling occurs. J-coupling arises when multiple spins are 

within a molecule, producing alterations in the local magnetic field surrounding each 

nucleus. This is reflected in an NMR spectrum as the splitting of peaks into multiplet 

structures [2], [6]. 

In order to increase the SNR of an FID, multiple FIDs are acquired and averaged. The 

resulting FID signal can be described with a complex function [the real part is the 

projection of the magnetization vector on the x-axis, while the imaginary part is the 

projection on the y-axis] as 

𝑓𝑖𝑑(𝑡) =  Mx(𝑡) +  𝑖 M𝑦(𝑡) , (1.3) 

where 𝑅(𝑡) and 𝐼(𝑡) are the real and imaginary components, respectively. The Fourier 

transformation calculates a frequency‐domain spectrum F(ν) from a time‐domain signal 

𝑓𝑖𝑑(𝑡) according to 

𝐹(𝑣) =  ∫ 𝑓𝑖𝑑(𝑡) ∙ 𝑒−2𝜋𝑖𝑣𝑡+∞

−∞
𝑑𝑡.  (1.4) 

Figure 3 illustrates an example of an in-vivo frequency‐domain spectrum. Modern 

scanners are using an analog‐to‐digital converter (ADC), which measures the 

instantaneous value of the FID at equal time intervals. The time interval, also known as 

dwell time, equals 1/spectral bandwidth (SW) [7].  
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Figure 3 Short‐TE 1H MRS of brain acquired by PRESS sequence from rat brain in vivo 

at 9.4 T. 

 

1.2 Metabolite quantification of MR spectra 

1.2.1 Data Preprocessing 

MRS data must be preprocessed once the time domain signals have been obtained in order 

to make the signal correspond as closely as possible to the model used in quantification 

and consequently to get accurate concentration estimations. Data preprocessing in MRS 

involves several steps, including eddy current correction, motion correction, frequency 

and phase correction (FPC), nuisance peak removal, RF coil combination, and signal 

averaging. Some of the preprocessing steps play a crucial role in ensuring the quality of 

the final data [2], [8]. In the following some of the preprocessing steps will be explained; 

moreover, readers can find experts' consensus recommendations on preprocessing 

operations in [8]. 

In an MRI scanner, rapid switching of gradients can result in short-lived fluctuations in 

the main magnetic field, known as eddy current effects. These effects can distort the shape 

of spectral lines and affect the accuracy of further spectral analysis. To correct this, a 

water-unsuppressed spectrum is collected using the same gradient strengths and timings 

as the water-suppressed dataset. The phase of the water-unsuppressed signal is then 

subtracted from both the water-suppressed and water-unsuppressed FID signals to correct 

for eddy currents [8], [9]. 
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In addition, the main magnetic field of an MRI scanner can experience subtle temporal 

drift due to the heating and cooling of the ferromagnetic passive shim elements. This can 

result in frequency drifts during MRS experiments. In addition, physiological or small 

bulk motion can lead to additional frequency and phase shifts during an MRS scan. 

Several FPC approaches have been developed [10]–[16]. If not corrected, these frequency 

and phase shifts can lead to the broadening of spectral peaks, reduction in signal-to-noise 

ratio (SNR), and line shape distortion [8]. A commonly used approach for FPC is to use 

the water peak and estimate the phase and frequency from it [12], [14], [17]. Another 

approach is to fit a certain metabolite peak to a model [18] and then estimate the frequency 

and phase shifts from the model. One approach that has been proposed and evolved 

recently is spectral registration (SR) [10], [11], [15], [16]. It has been shown that DL can 

also be employed for FPC [13], [19], [20] and could speed up FPC once it has been 

successfully trained.  

Nuisance peak removal is performed to minimize signal contamination, such as water, 

lipid, or macromolecule signals. It is important to ensure that the baseline is accurately 

corrected, as it can interfere with the detection of the metabolite signals. The nuisance 

peaks can be removed by fitting a set of line shape functions to peaks and subtracting the 

resulting fit from the spectrum. Alternatively, the nuisance peak can be left in place and 

analysis can be performed using a fitting model that incorporates the nuisance peaks [8], 

[21]. 

In conclusion, MRS data preprocessing is an important step in the analysis of MRS data. 

The preprocessing steps are performed to enhance the quality of data. The success of 

MRS studies largely depends on the quality of acquired data and the preprocessing steps, 

which should be performed carefully and accurately to obtain reliable results. 

1.2.2 Spectral Analysis 

The aim of spectral analysis is to estimate concentrations (often only relative) of 

metabolites [8]. Spectral analysis can be performed in several ways, depending on the 

type of information that is needed. One way is to use the area under the curve of each 

metabolite peak in the spectrum, which is proportional to the concentration of that 

metabolite. This method is simple and straightforward, but it is only recommended for 

MRS signals that have non-overlapping metabolites, well-phased peaks, and no baseline 

or MM contribution [8], [22]. 

More advanced techniques have been developed for MRS quantification, such as spectral 

fitting, which involves the use of mathematical models to simulate the complex spectra 

of multiple metabolites and their interactions [23], [24].  

The most commonly used methods of spectral fitting are (1) linear combination model 

fitting (LCM), and (2) peak fitting. In LCM fitting, each metabolite in the spectrum is 

represented by a "basis spectrum," which is a description of the spectral shape of 

individual metabolite components (see Figure 4) [2], [8], [22], [23] and the MRS signal 
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can be described as a linear combination of amplitude-scaled metabolite signals, the 

baseline, and noise. The simplified model describing a time-domain MRS signal 𝑆(𝑡) as 

a combination of several metabolite profiles is 

𝑆(𝑡) = ( ∑ 𝐴𝑚

M

𝑚=1

𝑋𝑚(𝑡) + 𝐴𝑏𝐵(𝑡)) 𝑒(∆𝛼+2𝑖𝜋∆𝑓)𝑡𝑒𝑖∆𝜃 + 𝜉(𝑡), 

 

(1.11) 

where 𝑖 = √−1 and 𝐴𝑚 and 𝑋𝑚(𝑡) are the scaling factor (amplitude) and the model 

(basis) function (signal) for the 𝑚-th metabolite, respectively. ∆𝛼 , ∆𝑓, and ∆𝜃 are the 

global damping factor, the global frequency shift, and the global phase shift, respectively. 

M is the number of metabolites. 𝐴𝑏 and 𝐵(𝑡) is the scaling factor and the signal for MMs, 

and 𝜉(𝑡) is noise. 

Contrary to LCM fitting, peak fitting uses a simple lineshape model function to fit isolated 

peaks within a spectrum. Peak fitting is highly dependent on the prior knowledge of the 

parameters of peaks, and imposing a large amount of prior knowledge may be 

burdensome in crowded spectra like 1H-MRS of the brain due to the excessive number of 

metabolites and peaks per metabolite [2], [8], [22], [23]. 
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Figure 4 A linear combination of basis spectra is used to quantify in vivo 1H MR 

spectra. The data can be reconstructed by a linear combination of basis spectra. The 

contribution of each basis spectrum to the total spectrum is plotted. 

In addition, LCM fitting is the preferred method according to experts [24] owing to its 

shown efficacy, flexibility, and relative simplicity of usage. Using basis spectra instead 

of individual peak components (peak fitting method) reduces the number of model 

functions needed to accurately represent the spectrum, resulting in fewer fitting 

parameters. Basis spectra are realistic as they are obtained from phantom experiments or 

numerical simulations [2], [8], [22], [23], [25], [26]. 

A long-standing interest in LCM fitting has resulted in the development of numerous 

fitting methods, including time-domain and frequency-domain algorithms [23], such as 

LCModel [27], QUEST [28], TARQUIN [29], FiTAID [30], FSL-MRS [31], and Osprey 

[32]. Even though several software packages and techniques have been introduced over 

the past two decades for spectral analysis [29], [33]–[35], reliable quantification of MRS 

signals is still an issue because of several challenges, such as (i) strongly overlapping 

metabolite peaks, (ii) low signal-to-noise ratio, (iii) peak shape variations at high 

magnetic field strengths, and (iiii) broad and only partially known background from 

macromolecules and lipids, and further improvements are necessary [33], [36]. 
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Despite advancements in MRS spectral analysis, it has been demonstrated that the various 

methods could show different quantification results [37]. Recent attempts to compare and 

verify these tools using gold standard phantoms have shown weak accuracy and 

significant differences between the concentrations recorded by different methods [37], 

[38]. In addition, traditional methods are time-consuming and a computational bottleneck 

in the quantification of large MRS datasets.  

1.2.3 Results of Spectral Analysis 

Results obtained with fitting algorithms are amplitudes or areas representing the relative 

proportion of the metabolite signal in the MRS signals. Therefore results of spectral 

analysis are often expressed as ratios of estimated amplitudes (areas) of metabolites to 

the estimated amplitude (area) of a selected reference metabolite or of water [21]. 

In practice, a reference compound of known concentration [𝑅𝑒𝑓] has to be utilized to 

detect absolute concentration. The metabolite concentration can be calculated according 

to 

Concentration = [𝑅𝑒𝑓] ∙
𝑆𝑀

𝑆𝑅
∙ CF , (1.12) 

 

where 𝑆𝑀, 𝑆𝑅, and CF are the estimated amplitude of the interested compound, the 

estimated amplitude of the reference compound, and a correction factor, respectively [2]. 

However, it is hard and time-consuming to calculate a reliable CF; Thus, it is common to 

use the metabolites ratio rather than the absolute concentration [2].  

1.3 Introduction to Deep learning 

The field of DL has come a long way since its inception. As the world progresses toward 

automation, understanding how computers learn from data has become essential. In this 

chapter, the basic principles of DL will be explored, followed by DL architectures and 

some of the most popular and effective learning processes and algorithms. 

1.3.1 Basic Principles of Deep Learning 

DL is a subset of machine learning that is revolutionizing the field of artificial intelligence 

[39]. It is a powerful approach to building intelligent systems that can learn and make 

decisions on their own. DL algorithms are based on neural networks, which are modeled 

after the structure and function of the human brain [39], [40]. 

DL has proven to be highly effective at solving complex problems that were previously 

thought to be insurmountable. It has been used to achieve state-of-the-art results in a wide 

range of applications, including image and speech recognition, natural language 

processing, autonomous vehicles, and medical diagnosis [39], [41]–[43]. 

One of the key advantages of DL is its ability to automatically learn features from raw 

data. This means that DL algorithms can learn to recognize patterns and relationships in 
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data without the need for explicit feature engineering. This makes DL particularly well-

suited to problems where the underlying structure of the data is complex and difficult to 

capture with traditional approaches [39]. 

However, DL is not a silver bullet and requires large amounts of data and computing 

power to be effective. It also requires careful tuning of hyperparameters and model 

architectures to achieve optimal performance. Despite these challenges, DL has already 

made significant contributions to the field of artificial intelligence and is expected to 

continue to drive innovation and progress in the coming years [44], [45]. 

 

Multilayer perceptron 

MLPs are artificial neural networks that consist of input and output layers, and one or 

more hidden layers of interconnected processing units (see Figure 5). The basic idea of 

an MLP is to use a series of nonlinear transformations to map an input vector to an output 

vector. Each layer of an MLP has multiple nodes, which receive an input vector and 

perform a set of mathematical operations to produce an output vector [39]. 

The input layer of an MLP takes the raw input data and passes it on to the next layer. The 

output of the input layer is fed into a series of hidden layers, which perform nonlinear 

transformations on the input data. The output of each hidden layer is then passed on to 

the next layer, until the final output layer is reached. The output layer produces the final 

output of the network. An MLP can be trained utilizing gradient descent optimization and 

backpropagation algorithms.  

MLPs are commonly used in a wide range of applications, including image recognition, 

speech recognition, natural language processing, and predictive analytics [39], [46]. They 

are popular due to their ability to learn complex non-linear relationships between input 

and output data, and their ability to generalize to new data [39], [47]. 

One of the challenges of using MLPs is selecting the appropriate architecture, such as the 

number of layers and nodes in each layer, as well as the activation functions (nonlinear 

transformations) used in each layer. The choice of these parameters can greatly affect the 

performance of the network, and a trial-and-error approach is often used to find the 

optimal configuration [39]. 
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Figure 5 An MLP with multiple hidden layers. 

Convolutional neural networks 

CNNs are a special type of neural network that have been widely used in recent years for 

various applications, including medical signal analysis. CNNs are designed to 

automatically learn and extract relevant features from input data, by convolving 

convolution kernels with the input signal or image and learning weights that optimize the 

kernels for specific tasks [39], [48], [49]. 

CNNs have shown great success in several medical signal analysis tasks, including 

electroencephalogram (EEG) analysis [50], electromyography (EMG) analysis [51], and 

medical image analysis [45], [52]. In medical image analysis, CNNs can segment and 

classify images of different organs, tumors, and pathologies [45], [52]. 

The formulation of a CNN consists of a series of layers, including convolutional layers 

(1D and 2D convolutional kernels for 1D data (signals) and 2D data (images), 

respectively), pooling layers, and fully connected layers. In the convolutional layer, the 

input signal is convolved with a set of kernels, which are learned by the network during 

training. The output of the convolutional layer is a set of feature maps that represent the 

learned features. In the pooling layer, the feature maps are down-sampled to reduce the 

size and complexity of the data. Finally, the fully connected layer takes the flattened 

feature maps and uses them to make a prediction about the input data [39]. 

LeNet is a CNN architecture (see Figure 6) developed by Yann LeCun in the late 1990s 

for handwritten digit recognition [53]. It was one of the first successful applications of 

DL in computer vision and paved the way for many modern DL models. 

The LeNet architecture consists of seven layers, namely two convolutional layers, two 
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subsampling (pooling) layers, and three fully connected layers. The input to the network 

is a 32×32 grayscale image, and the output is a probability distribution over the 10 

possible digit classes. 

The convolutional layers learn a set of filters that detect local features in the input image, 

such as edges and corners. The subsampling layers reduce the size of the feature maps by 

taking the maximum value over a small window. The fully connected layers combine the 

local features into global features and output the final classification. 

 

 

Autoencoders 

Autoencoders are neural networks that learn to encode data into a low-dimensional 

representation and then decode it back to its original form [39], [54]. They are widely 

used in unsupervised and self-supervised learning tasks as they can learn to represent data 

without explicit labels. The idea behind autoencoders is that by encoding the data into a 

low-dimensional space, they can capture the most important features of the data. Figure 

7 shows a typical design of an autoencoder.  

The autoencoder is trained on the input data, and its objective is to minimize the 

difference between the input and the output. This forces the autoencoder to learn a 

compressed representation of the data that can be used for other tasks. Once the 

autoencoder has learned a good representation of the data, it can be used to train other 

models for a variety of tasks, such as image classification, object detection, and natural 

language processing [39], [54]. 

In self-supervised learning, the task is to learn a useful representation of the data without 

using any explicit labels. This can be done by using an autoencoder to learn a 

representation of the data that captures its most important features.  

 

Figure 6 LeNet architecture. 
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Learning processes 

There are various types of machine learning problem formulations, but the most 

commonly used ones are supervised learning, unsupervised learning, and self-supervised 

learning. 

Supervised learning is a type of machine learning where the model is trained on labeled 

data, which means the training data has already been labeled with the correct answers. 

The goal of supervised learning is to predict the labels of new, unseen data. For example, 

a supervised learning algorithm could be used to predict the price of a house based on its 

features, such as location, number of bedrooms, and square footage [39], [43]. 

Unsupervised learning is a type of machine learning where the model is trained on 

unlabeled data. The goal of unsupervised learning is to find patterns or structures in the 

data. For example, an unsupervised learning algorithm could be used to group similar 

customers together based on their purchasing habits [39], [55]. 

Self-supervised learning is a type of machine learning where the model is trained on data 

that has been labeled by itself. This is often achieved by using a technique called auto-

encoding, where the model learns to encode and decode the input data. The goal of self-

Figure 7 A typical design of an autoencoder. 
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supervised learning is to learn a representation of the data that can be used for other tasks. 

For example, self-supervised learning could be used to learn a representation of images 

that can be used for object detection [56]. 

 

Gradient Descent Optimization and Backpropagation Algorithm 

Gradient descent optimization and backpropagation are two critical components of DL 

algorithms that are used for training neural networks. Gradient descent optimization is 

used to minimize the error between the predicted output and the actual output. The error 

is represented by a cost function that is defined by the choice of the neural network model. 

The goal of gradient descent is to find the optimal set of weights that minimize the cost 

function [39]. 

The algorithm works by calculating the gradient of the cost function with respect to each 

weight in the network. This gradient provides the direction in which the weights should 

be updated (see Figure 8). The learning rate (𝛿) is a hyperparameter that determines how 

much the weights should be changed in each iteration. A higher learning rate can result 

in faster convergence, but it can also lead to overshooting the optimal weights and 

oscillation around the minimum [39]. 

Backpropagation is the process of computing the gradient of the cost function with respect 

to the weights of the neural network. It is an efficient algorithm that allows us to calculate 

the gradient using the chain rule of calculus. The errors are propagated backward through 

the network, and the gradient of the cost function is calculated at each layer [39]. The 

weights are then updated using the gradient descent algorithm, which involves subtracting 

a fraction of the gradient from the current weight value (see Figure 8). The process is 

repeated for many iterations until the cost function converges to a minimum value. 

Gradient descent optimization and backpropagation are critical components of DL 

algorithms that are used for training neural networks. These techniques allow us to 

minimize the error between the predicted output and the actual output and update the 

weights of the network to improve its performance. 

 

Figure 8 A single-layer neural network with a non-linear activation function 

highlighting the feedforward and backpropagation steps 
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2. STATE OF THE ART OF DL IN MRS 

The recent success of DL, one of the latest machine learning approaches, in a variety of 

tasks, including applications with a low signal-to-noise ratio (SNR) [39], [57], suggests 

that it might also handle the spectral analysis of an MRS signal. Supervised DL-based 

approaches have been used for ghosting artifacts detection and removal [58], spectral 

reconstruction [59], automatic peak picking [60], MRSI spatial resolution enhancement 

[61], localized correlated spectroscopy acceleration [62], metabolites and MM separation 

in MRS signals, the quantification and noise removal of MRSI signals [63], [64], and 

poor-quality spectra identification [65].  

It has been shown that supervised DL can also be employed for FPC [13], [19] and could 

speed up FPC once it has been successfully trained. This supervised approach, using two 

separate networks in sequence to estimate frequency and phase, showed encouraging 

results. The first network was trained for frequency shift estimation using the magnitude 

of frequency- and phase-shifted spectrum as the input and the known frequency shift as 

the output. Subsequently, the second network was trained for phase shift estimation using 

real parts of the frequency-corrected spectrum as the input and phase shift as the output. 

In this approach, any error in the first step (frequency correction) may bias the phase shift 

estimation. Training two networks is a computationally expensive task. Moreover, the 

networks were trained in a supervised manner using simulated data. Any discrepancy 

between the in-vivo and the simulated spectra may result in errors in frequency and phase 

shift estimation. The true output values are unknown in MRS data, and obtaining 

hundreds of spectra with labeled frequency and phase shifts is almost infeasible. This 

makes it challenging to use supervised DL methods that rely on labeled transients. Self-

supervised or unsupervised learning may eliminate the drawbacks of supervised learning. 

Moreover, several studies demonstrated the potential of artificial neural networks for 

quantifying MR spectra. Hiltunen et al. [66] have demonstrated the feasibility of 

constructing a quantifying analyzer for long echo time (TE) in vivo proton MRS (1H 

NMR) spectra using artificial neural networks with magnitude spectra. Hatami et al. [67] 

and Lee et al. [68] applied supervised DL approaches to metabolite quantification and 

presented results comparable to conventional LCM approaches. Chandler et al. [69] also 

applied a supervised DL approach to study metabolite quantification in edited human 

brain MRS spectra. These studies utilized supervised learning approaches, in which the 

input and the output were simulated spectra and known values, respectively. The true 

output values are however unknown in in-vivo MRS data. Moreover, a network trained 

in a supervised manner using simulated data might be prone to overfit training data [70]; 

thus, any discrepancy between the in-vivo and the simulated training spectra, such as the 

presence of nuisance peaks, frequency, and phase shifts, and line-broadening, may result 

in errors in metabolite quantification. Self-supervised learning may eliminate the 

drawbacks of supervised learning. Bhat et al. [71] investigated the application of a radial 
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basis function neural network (RBFNN) for the automatic quantification of short echo 

time, multi-voxel, phased spectral data. Gurbani et al. [72] presented a self-supervised 

DL architecture that integrates a CNN with peak fitting for quantifying MR spectra. In 

their approach, a deep autoencoder is used as a framework for self-supervised or 

unsupervised learning. However, their method does not utilize the advantages of LCM 

such as fewer fitting parameters and realistic basis spectra. Table 1 provides a comparison 

of related work on MRS signal quantification using DL. 

Even though DL algorithms have demonstrated equivalent quantitation performance to 

traditional methods, concerns have been raised about their robustness. Moreover, the 

effects of DL architectures, spectroscopic input types, and learning designs for optimal 

quantification in MRS of pathological spectra have not been investigated in previous 

studies and warrant further investigation.  

Table 1 A summary of related work on MRS signal quantification using DL. 

 Model 

architectures 

Input types Learning process Data type 

(training) 

Prior 

metabolite 

resonances 

model 

Hiltunen et 

al. [66] 

Shallow Neural 

Networks 

Magnitude 

spectra (1D) 

Supervised Simulated _ 

Bhat et al. 

[71] 

Radial basis 

function neural 

network 

Real part of 

spectra (1D) 

Self-supervised In-vivo Lorentzian‐

Gaussian 

lineshape 

Hatami et 

al. [67] 

Convolutional 

neural network 

Complex 

spectra (1D) 

Supervised Simulated – 

Lee et al. 

[68] 

Convolutional 

neural network 

Complex 

spectra (1D) 

Supervised Simulated – 

Chandler et 

al. [69] 

 

Convolutional 

neural network 

 

Real, 

imaginary and 

magnitude 

component of 

spectra (2D) 

Supervised Simulated – 

Gurbani et 

al. [72] 

Convolutional 

neural network 

Real part of 

spectra (1D) 

Self-supervised In-vivo Lorentzian‐

Gaussian 

lineshape 
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3. AIMS OF THE DOCTORAL THESIS 

The primary objective of this dissertation is to introduce and verify an advanced approach 

for rapid, efficient, and accurate quantification of metabolites using DL techniques in 

MRS. Moreover, this dissertation aims to construct a deep neural network that extracts 

features from FID signals, i.e., MRS signals in the time domain, for preprocessing and 

analyzing MRS data. The objectives of this research can be summarized as follows: 

 

1. To develop a robust DL method for preprocessing MR data, including frequency and 

phase correction,  

2. To design and implement a fast and appropriate DL-based approach for quantifying 

MR spectra, 

3. To propose a self-supervised approach for quantifying concentrations in in-vivo 

spectra, 

4. To propose a method for estimating the uncertainty of the concentration's estimation 

in DL-based methods. 

5. To compare the effectiveness and reliability of DL-based methods with nonlinear 

least-squares (NLLS) fitting methods for quantification, 

6. To propose a standard data format to facilitate data sharing among research groups 

for artificial intelligence applications. 
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4. SELECTED PUBLICATIONS  

The present thesis is composed of six research papers (4 IF-journal publications, and 2 

conference extended papers), which are interconnected in their scope and theme. The 

central focus of this work is the development of DL approaches for MRS data analysis, 

with a particular emphasis on frequency and phase correction, metabolite quantification, 

and data standardization. 

 

MRS data preprocessing: 

The first paper [20] presents a model-informed unsupervised DL approach to the 

frequency and phase correction of MRS signals. The feasibility and efficiency of physics-

informed DL-based signal processing of MR spectroscopy data in an unsupervised 

manner were investigated. Simulated, phantom, and in vivo MEGA-edited MRS data 

were used in the study. This work aimed to solve the challenge of obtaining spectra with 

labels (i.e. spectra with labeled frequency and phase shifts) for the supervised DL 

approach to FPC. 

 

Metabolite quantification (supervised DL approaches): 

The next three papers focus on the development of supervised DL approaches to MRS 

signal quantification. The second paper [73] proposes a time-frequency analysis approach 

that leverages DL to produce highly accurate and robust MRS signal quantitation. This 

paper verified the hypothesis that DL in combination with time-frequency analysis can 

be used for metabolite quantification and yielded results more robust than DL trained with 

MR signals in the frequency domain [67]. This paper utilizes a CNN, but the training of 

CNNs is computationally intensive and its optimal architecture and hyper-parameters are 

not well understood. To address this issue, the third paper [74] utilizes a Wavelet 

Scattering Convolution Network (WSCN), which is a well-understood and 

computationally cheap. The WSCN approach achieved better quantification accuracy and 

computational efficiency compared to the CNN-based approach proposed in the second 

paper. The fourth paper [75] investigates the quantification of MR spectra by a supervised 

DL approach in an idealized setting, examining various forms of input, network 

architectures, optimization by ensembles of networks, and training bias. This work aimed 

to address concerns about the robustness of DL for MR spectra quantification.  

 

Metabolite quantification (self-supervised DL approaches): 

At the beginning of this Ph.D. study, the author was captivated by the idea of using 

supervised learning to solve complex problems in the quantification of MR spectra. The 

author spent several months exploring different supervised learning techniques and 

experimenting with various datasets. However, as the author delved deeper into the 

subject, the author began to realize the limitations of supervised learning. At first, the 
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author was hesitant to try self-supervised learning, as the author noticed that developing 

a neural network and training it in a self-supervised manner were much more challenging 

than supervised learning. However, the author quickly discovered that self-supervised 

learning offered a wealth of opportunities to explore new ideas and solve problems in 

innovative ways. With self-supervised learning, the author proposed a physics-informed 

DL approach to quantifying human brain metabolites from MRS data in the fifth paper 

[76]. The author ventured to develop an approach in which neural networks can learn in 

a self-supervised manner to solve an inverse problem for human brain metabolite 

concentration estimation.  

The fourth and fifth papers shed light on a comparison between DL-based methods 

(supervised and self-supervised) and traditional methods (nonlinear least-squares fitting 

methods) for MRS data quantification. Additionally, the fifth paper's proposed method 

utilizes a physics-informed DL approach, allowing it to compute the Cramer-Rao lower 

bounds (CRLB) to estimate the uncertainty in concentration estimation. Table 2 provides 

a comparison of the author's work on MRS signal quantification using DL.  

Table 2 A summary of our work on MRS signal quantification using DL. 

 Model 

architectures 

Input types Learning 

process 

Data type 

(training) 

Prior 

metabolite 

resonances 

model 

Output of 

network 

Shamaei 

et al. 

[73] 

Convolutional 

neural network 

Complex time-

frequency 

domain 

scalogram 

(wavelet 

coefficients) 

(2D)  

Supervised Simulated a – Amplitudes 

Shamaei 

et al. 

[77] 

Wavelet 

scattering 

network 

Complex time-

domain signal 

(FID) (1D) 

Supervised Simulated b – Amplitudes 

Rizzo et 

al. [78] 

Convolutional 

neural network 

Complex 

spectra, time-

frequency 

domain 

spectrograms 

(2D) 

Supervised Simulated c – Amplitudes 

Shamaei 

et al. 

[76] 

Physics-

informed 

convolutional 

neural network 

Complex time-

domain signal 

(FID) (1D) 

Self-

supervised 

Simulated d 

and in-vivo 

Quantum-

mechanics 

simulated 

metabolite 

responses 

Parameters 

of a 

complex 

model 

a a combination of amplitude-scaled frequency-shifted damped metabolite basis set signals, the baseline (without 

noise). 
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b a combination of amplitude-scaled frequency-shifted phase-shifted damped metabolite basis set signals, the 

baseline and white noise. 
c a combination of amplitude-scaled damped metabolite basis set signals, the baseline and white noise (all basis 

set signals share the same damping factor). 
d a combination of amplitude-scaled frequency-shifted phase-shifted damped metabolite basis set signals, the 

baseline and white noise (all basis set signals share the same damping factor, frequency shift, and phase shift). 

 

Standard data format to facilitate data sharing among research groups: 

Finally, the sixth paper [79] advocates for a standard data format for MRS, which could 

facilitate data sharing and comparability across research groups for artificial intelligence 

applications.  

 

Taken together, these papers present an overview of the state-of-the-art in DL approaches 

to MRS data analysis. They offer insights into the potential of these methods to improve 

the efficiency, reproducibility, and reliability of MRS data analysis, and highlight some 

of the challenges and opportunities that lie ahead in this rapidly evolving field. The thesis 

concludes with a synthesis of the key findings and recommendations for future research. 
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4.1 Paper 1 – Model-informed unsupervised deep learning 

approaches to frequency and phase correction of MRS 

signals 

Citation 
[1] Shamaei, A, Starcukova, J, Pavlova, I, Starcuk, Z. Model-informed unsupervised 

deep learning approaches to frequency and phase correction of MRS signals. Magn 

Reson Med. 2023; 89: 1221– 1236. doi:10.1002/mrm.29498 

Paper contribution 
The paper proposes and investigates the feasibility and efficiency of two novel 

unsupervised deep learning-based methods for frequency and phase correction (FPC) of 

magnetic resonance spectroscopy (MRS) data. These proposed methods utilize a priori 

physics domain knowledge to improve the performance of FPC. The paper presents the 

training, validation, and evaluation of these methods using simulated, phantom, and in 

vivo MEGA-edited MRS data. This study proposes a new measure to evaluate the FPC 

method performance and compares the performance of the proposed methods with other 

commonly used FPC methods. This study also evaluates the ability of the proposed 

methods to perform FPC at varying signal-to-noise ratios (SNR). Additionally, a Monte 

Carlo study is conducted to investigate the performance of the proposed methods. The 

contribution of the paper lies in the development and evaluation of two novel 

unsupervised deep learning-based FPC methods for MRS data, which can improve the 

accuracy and efficiency of FPC in various MRS applications. 

Author’s contribution 

Conceptualization: The overall research direction and framework were developed by the 

author. 

Methodology: A novel methodology for frequency and phase correction (FPC) of 

magnetic resonance spectroscopy (MRS) data was designed and implemented by the 

author. 

Software: The software in Python programming language used for the research was 

developed and maintained by the author. 

Formal Analysis: The data were analyzed by the author using statistical and 

computational methods. 

Writing - Original Draft: The initial manuscript was written by the author. 



   

 

31 

 

Writing - Review & Editing: The manuscript was reviewed and edited for clarity and 

coherence by the author. 

Visualization: The results were visualized and presented by the author.  

About Journal 
Magnetic Resonance in Medicine, Q1[Radiology, Nuclear Medicine and Imaging, Impact 

factor: 4.108.  

Copyright notice 
© 2022 Ústav přístrojové techniky AV ČR, v. v. i. Magnetic Resonance in Medicine 

published by Wiley Periodicals LLC on behalf of International Society for Magnetic 

Resonance in Medicine. This is an open access article under the terms of the Creative 

Commons Attribution License, which permits use, distribution and reproduction in any 

medium, provided the original work is properly cited. doi:10.1002/mrm.29498. The author 

of the thesis is the main author of the article. 
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4.2 Paper 2 – Deep Learning For Magnetic Resonance 

Spectroscopy Quantification: A Time-Frequency Analysis 

Approach 

Citation 
[2] Shamaei, Amirmohammad. Deep Learning For Magnetic Resonance Spectroscopy 

Quantification: A Time-Frequency Analysis Approach. In: Proceedings II of the 

26st Conference STUDENT EEICT 2020: Selected papers [online]. Vysoké učení 

technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2020, s. 

131-135 [cit. 2023-02-16]. ISBN 978-80-214-5868-0. Dostupné z: 

http://hdl.handle.net/11012/200638 

Paper contribution 
This paper explores the combination of deep learning and time-frequency analysis for 

more reliable metabolite quantification in magnetic resonance spectroscopy (MRS). This 

study verifies the hypothesis that this combination can produce more robust results than 

deep learning trained on MR signals in the frequency domain. The study uses the complex 

matrix of absolute wavelet coefficients for the time-frequency representation of the signal 

and implements convolutional neural networks (CNN) for deep learning. The paper also 

presents a comparison with DL used for the quantification of data in the frequency 

domain. Overall, the paper's contribution lies in providing an innovative approach to MRS 

quantification and advancing the understanding of the potential of deep learning and time-

frequency analysis in this field. 

Author’s contribution 

Conceptualization: The overall research direction and framework were developed by the 

author. 

Methodology: A novel methodology for the combination of deep learning and time-

frequency analysis for quantification of magnetic resonance spectroscopy data was 

designed and implemented by the author. 

Software: The software in MATLAB used for the research was developed and maintained 

by the author. 

Formal Analysis: The data were analyzed by the author using statistical and 

computational methods. 

Writing - Original Draft: The initial manuscript was written by the author. 
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Writing - Review & Editing: The manuscript was reviewed and edited for clarity and 

coherence by the author. 

Visualization: The results were visualized and presented by the author.  

Copyright notice 
This is the published version of the article published in Proceedings II of the 26st 

Conference STUDENT EEICT 2020: Selected Papers. s. 131-135. ISBN 978-80-214-

5868-0, https://conf.feec.vutbr.cz/eeict/EEICT2020. The author of the thesis is the main 

author of the article.  

  

https://conf.feec.vutbr.cz/eeict/EEICT2020
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4.3 Paper 3 – A Wavelet Scattering Convolution Network for 

Magnetic Resonance Spectroscopy Signal Quantitation 

Citation 
[3] Shamaei A., Starčuková J. and Starčuk Jr. Z. (2021). A Wavelet Scattering 

Convolutional Network for Magnetic Resonance Spectroscopy Signal 

Quantitation.In Proceedings of the 14th International Joint Conference on 

Biomedical Engineering Systems and Technologies - Volume 2: BIOSIGNALS, 

ISBN 978-989-758-490-9, pages 268-275. DOI: 10.5220/0010318502680275 

Paper contribution 
The paper's contribution is to explore the use of a Wavelet Scattering Convolutional 

Network (WSCN) for magnetic resonance spectroscopy (MRS) signal quantification. The 

paper highlights that the most widely used network for MRS signal quantification is the 

Convolutional Neural Network (CNN), but that its optimal architecture and hyper-

parameters for MRS are not well understood. The paper shows that a WSCN, which is 

well-understood and computationally cheap, could yield more robust results for 

metabolite quantification than one of the quantitation methods based on model fitting 

(QUEST) and equivalent results to a CNN while being faster. The study investigates the 

effects of phase, noise, and macromolecule variation on the WSCN estimation accuracy. 

Overall, the paper's contribution is to propose an alternative deep learning approach to 

MRS signal quantification that is more computationally efficient and potentially more 

accurate than existing methods. 

Author’s contribution 

Conceptualization: The overall research direction and framework were developed by the 

author. 

Methodology: A novel methodology for the use of a Wavelet Scattering Convolutional 

Network (WSCN) for quantification of magnetic resonance spectroscopy data was 

designed and implemented by the author. 

Software: The software in MATLAB used for the research was developed and maintained 

by the author. 

Formal Analysis: The data were analyzed by the author using statistical and 

computational methods. 

Writing - Original Draft: The initial manuscript was written by the author. 
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Writing - Review & Editing: The manuscript was reviewed and edited for clarity and 

coherence by the author. 

Visualization: The results were visualized and presented by the author.  

Copyright notice 
This is the published version of the article published in Proceedings of the 14th 

International Joint Conference on Biomedical Engineering Systems and Technologies - 

Volume 2: BIOSIGNALS, ISBN 978-989-758-490-9. The author of the thesis is the main 

author of the article. The author of the thesis is the main author of the article. 
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4.4 Paper 4 – Quantification of MR spectra by deep learning 

in an idealized setting: Investigation of forms of input, 

network architectures, optimization by ensembles of 

networks, and training bias. 

Citation 
[4] Rizzo, R, Dziadosz, M, Kyathanahally, SP, Shamaei, A, Kreis, R. Quantification of 

MR spectra by deep learning in an idealized setting: Investigation of forms of input, 

network architectures, optimization by ensembles of networks, and training bias. 

Magn Reson Med. 2022; 1- 21. doi:10.1002/mrm.29561  

Paper contribution 
The paper explores the application of deep learning (DL) architectures, spectroscopic 

input types, and learning designs for optimal quantification in magnetic resonance 

spectroscopy (MRS) of simulated pathological spectra. The study investigates 24 

different DL architectures, with active learning through altered training and testing data 

distributions to optimize quantification performance. Ensembles of networks are explored 

to improve DL robustness and reduce the variance of estimates. The paper compares the 

performance of DL predictions and traditional model fitting (MF) using a set of scores. 

The results show that ensembles of heterogeneous networks that combine 1D frequency-

domain and 2D time-frequency domain spectrograms as input perform best, and dataset 

augmentation with active learning can improve performance but gains are limited. MF is 

more accurate, although DL appears to be more precise at low signal-to-noise ratios 

(SNRs). However, the overall improved precision of DL predictions originates from a 

strong bias for cases with high uncertainty  

toward the dataset the network has been trained with, tending toward its average value. 

The paper also highlights potential intrinsic biases on training sets, which are dangerous 

in a clinical context that requires the algorithm to be unbiased to outliers (i.e., pathological 

data). The contribution of the paper lies in providing a comprehensive evaluation of DL 

architectures and learning designs for MRS quantification, and highlighting the 

importance of unbiased and robust MRS quantification algorithms in a clinical context. 

Author’s contribution 

Conceptualization: The overall research direction and framework were developed by the 

author. 
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Formal Analysis: The data were analyzed by the author using statistical and 

computational methods. 

Writing - Review & Editing: The manuscript was reviewed and edited for clarity and 

coherence by the author. 

About Journal 
Magnetic Resonance in Medicine, Q1[Radiology, Nuclear Medicine and Imaging, Impact 

factor: 4.108.  

Copyright notice 
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals 

LLC on behalf of International Society for Magnetic Resonance in Medicine. 

This is an open access article under the terms of the Creative Commons Attribution-

NonCommercial License, which permits use, distribution and reproduction in any 

medium, provided the original work is properly cited and is not used for commercial 

purposes. 
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4.5 Paper 5 – Physics-informed Deep Learning Approach to 

Quantification of Human Brain Metabolites from 

Magnetic Resonance Spectroscopy Data. 

Citation 
[5] Shamaei, A, Starcukova, J, Starcuk, Z. Physics-informed deep learning approach to 

quantification of human brain metabolites from magnetic resonance spectroscopy 

data. Computers in Biology and Medicine. 2023; 158: 106837. doi: 

10.1016/j.compbiomed.2023.106837 

Paper contribution 
The paper presents a novel, self-supervised deep learning (DL) method for the 

quantification of magnetic resonance spectroscopy (MRS) and magnetic resonance 

spectroscopic imaging (MRSI) data. This method is based on a linear combination model 

(LCM) and uses quantum-mechanics simulated metabolite responses and neural networks 

for the quantification of relative metabolite concentrations. The proposed DL-based 

method is evaluated and compared to traditional methods using simulated and publicly 

accessible in-vivo human brain MRS data. The paper also includes a novel adaptive 

macromolecule fitting algorithm. The performance of the proposed methods is 

investigated in a Monte Carlo study. The contribution of this paper lies in the development 

and evaluation of a self-supervised DL-based method for MRS data analysis that does not 

require ground truth fitted spectra, which is not always practical. This method can 

improve the accuracy and efficiency of MRS data analysis in various applications. To our 

knowledge, this is the first report showing the feasibility of the physics-informed self-

supervised DL method for the quantification of MRS data.  

Author’s contribution 

Conceptualization: The overall research direction and framework were developed by the 

author. 

Methodology: A novel methodology for the quantification of magnetic resonance 

spectroscopy (MRS) utilizing self-supervised deep learning (DL) method was designed 

and implemented by the author. 

Software: The software in Python programming langauge used for the research was 

developed and maintained by the author. 
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Formal Analysis: The data were analyzed by the author using statistical and 

computational methods. 

Writing - Original Draft: The initial manuscript was written by the author. 

Writing - Review & Editing: The manuscript was reviewed and edited for clarity and 

coherence by the author. 

Visualization: The results were visualized and presented by the author.  

. 

About Journal 
Computers in Biology and Medicine, Q1[Computer Science Applications], Impact factor: 

6.698.  

 

Copyright notice 
© 2023 The Authors. Published by Elsevier Ltd.  

This is an open access article distributed under the terms of the Creative Commons CC-

BY license, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited. You are not required to obtain permission to 

reuse this article. The author of the thesis is the main author of the article.  
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4.6 Paper 6 – NIfTI‐MRS: A standard data format for 

magnetic resonance spectroscopy 

Citation 
[6] Clarke, W, Mikkelsen, M, Oeltzschner, G, Bell T.K., Shamaei, A, Soher, B.J., Emir, 

U, Wilson, W. NIfTI-MRS: A standard data format for magnetic resonance 

spectroscopy. Magn Reson Med. 2022; 88: 2358- 2370. doi:10.1002/mrm.29418 

Paper contribution 
The contribution of this paper is the proposal of a standardized format, NIfTI-MRS, for 

magnetic resonance spectroscopy (MRS) data that incorporates essential spectroscopic 

metadata and additional encoding dimensions, and its implementation as an extension to 

the Neuroimaging informatics technology initiative (NIfTI) format. The standard format 

allows for easy data sharing, algorithm development, and integration of MRS analysis 

with other imaging modalities. The paper provides a detailed description of the NIfTI-

MRS format specification, an open-source command-line conversion program to convert 

MRS data to NIfTI-MRS, and a dedicated plugin for FSLeyes, the FMRIB Software 

Library (FSL) image viewer for visualization of data in the proposed format. The paper 

also includes online documentation, 10 example datasets in the proposed format, and code 

examples of NIfTI-MRS readers implemented in common programming languages. 

Author’s contribution 

Conceptualization: The overall research direction and framework were developed by the 

author. 

Methodology: The research methodology was designed and implemented by the author. 

Software: The software in JAVA programming language used for the research was 

developed and maintained by the author. 

Writing - Review & Editing: The manuscript was reviewed and edited for clarity and 

coherence by the author. 

Visualization: The results were visualized and presented by the author. 

About Journal 
Magnetic Resonance in Medicine, Q1[Radiology, Nuclear Medicine and Imaging, Impact 

factor: 4.108.  

 



   

 

41 

 

Copyright notice 
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals 

LLC on behalf of International Society for Magnetic Resonance in Medicine. 

This is an open access article under the terms of the Creative Commons Attribution 

License, which permits use, distribution and reproduction in any medium, provided the 

original work is properly cited. 

 



   

 

42 

 

5. CONCLUSION 

In summary, this dissertation aimed to develop a novel DL-based approach for rapid and 

accurate quantification of metabolites in magnetic resonance spectroscopy.  

The proposed methods achieved the objectives of developing a robust DL method for 

preprocessing MR data [20], designing and implementing a fast and efficient DL-based 

approaches for quantifying MR spectra [73]–[76], investigating the applicability of the 

proposed approaches for quantifying concentrations in in-vivo spectra [76], and 

comparing the effectiveness and reliability of DL-based methods with NLLS fitting 

methods for quantification [75], [76].  

The results of this study demonstrate that the proposed DL-based approaches can improve 

the speed and accuracy of MRS signal preprocessing and quantification in a self-

supervised manner [76]. The performance of our methods on synthetic data is comparable 

with the traditional methods in terms of accuracy in a shorter amount of processing time. 

Furthermore, a standard data format was proposed to facilitate data sharing among 

research groups for artificial intelligence applications [79].  

The results achieved in this research, corresponding to the objectives outlined in the Aims 

of the doctoral thesis section, can be summarized as follows: 

 

1. Two novel unsupervised DL-based FPC methods for MRS data have been 

developed, which can improve the accuracy and efficiency of FPC in various 

MRS applications. The results have been published in an IF journal [Paper 1]. 

 

2. Fast and efficient DL-based solutions for quantifying MR spectra have been 

developed and tested on simulated and in-vivo data, and the results have been 

published in conferences and IF journals [Papers 2, 3, 4, and 5]. 

 

3. The applicability of the proposed self-supervised approach for quantifying 

relative concentrations in in-vivo spectra has been investigated [Paper 5]. 

 

4. The functionality of the proposed self-supervised approach has been extended to 

estimate the uncertainty of the concentration's estimation [Paper 5 and Item 10 in 

Appendix A -(An abstract based on the findings of this thesis has been accepted 

for presentation at International Society for Magnetic Resonance in Medicine 

conference in 2023, in Toronto. Additionally, a manuscript based on this research 

is currently under preparation for submission to a high-impact factor journal.)]. 

 

5. A comprehensive comparison between DL-based methods and traditional NLLS 

fitting methods for MRS data quantification has been made, and the results have 

been published in two IF journals [Papers 4 and 5]. 
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6. In collaboration with an international group of experts, a standard data format has 

been proposed to facilitate data sharing among research groups, and the results 

have been published in an IF journal [Paper 6]. The proposed format has been 

used in the present study for data sharing. 

 

This research opens the door to further exploration of the applications of DL techniques 

in MR spectroscopy and spectroscopic imaging signal processing, potentially leading to 

significant advancements in medical diagnosis. Some potential applications of DL in MR 

spectroscopy and spectroscopic imaging for future work are: 

 

Automated analysis: DL algorithms can be trained to automatically analyze MRS and 

MRSI data, reducing the time and effort required for manual analysis, 

Improved signal-to-noise ratio: DL algorithms can be used to denoise MR signals [Item 

7 in Appendix A (An abstract was presented by the author at the European Society of 

Magnetic Resonance in Medicine and Biology (ESMRMB) conference 2021)], 

improving the signal-to-noise ratio and enabling higher-quality data, 

Quantitative analysis: DL algorithms can be trained to perform quantitative analysis of 

MR spectroscopic data, allowing for the automated calculation of metabolite 

concentrations and other important parameters, 

Image segmentation: DL algorithms can be used for automatic image segmentation, 

allowing for the separation of different tissues and structures within MR spectroscopic 

images, 

Signal classification: DL algorithms can be trained to classify MRS signals based on 

specific features, allowing for improved diagnosis and treatment planning. 

 

Overall, DL has the potential to significantly enhance the capabilities of MR spectroscopy 

and spectroscopic imaging in medical imaging. It is important to note that while DL can 

greatly aid in the analysis and interpretation of MR data, it should be used in conjunction 

with traditional methods and the expertise of experienced radiologists to ensure accurate 

and reliable results. 
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SYMBOLS AND ABBREVIATIONS 

Abbreviations: 

FEEC Faculty of Electrical Engineering and Communications 

BUT Brno University of Technology 

MR Magnetic Resonance 

MRS Magnetic Resonance Spectroscopy 

NMR Nuclear Magnetic Resonance 

RF Radio Frequency 

FID Free Induction Decay 

ppm parts per million 

ADC Analog‐to‐Digital Converter 

MRI Magnetic Resonance Imaging 

CT Computed Tomography 

PET Positron Emission Tomography 

DL Deep Learning 

FPC Frequency and phase correction 

MM Macromolecules 

ECG Electrocardiogram 

EMG Electromyography 

AI Artificial Intelligence 

MLP Multilayer Perceptron 

CNN Convolutional Neural Network 

FT Fourier Transform 

 

Symbols: 

𝐁𝟎 static external magnetic field  

𝛾 gyromagnetic ratio 

M magnetic moments  

ℎ Planck constant  

𝑘 Boltzmann’s constant  

T temperature 

M0 net longitudinal magnetization  

𝐁𝟏 RF pulse  

𝑡𝑝 duration of an RF pulse  

𝜎′ shielding constant 

TE echo time 

TR repetition time 

T1 spin-lattice relaxation time 
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T2 spin-spin relaxation time  

Mxy0 net transversal magnetization 

T2
∗ effective transverse relaxation time 

𝑆𝑀 estimated amplitude of interested compound 

𝑆𝑅 estimated amplitude of the reference compound 

CF correction factor 



   

 

51 

 

Appendix A - Author’s Publications List 
 

IF Journal Publications 

1. Shamaei, A, Starcukova, J, Pavlova, I, Starcuk, Z. Model-informed unsupervised deep 

learning approaches to frequency and phase correction of MRS signals. Magn Reson 

Med. 2023; 89: 1221– 1236. doi:10.1002/mrm.29498. 

 

2. Shamaei, A, Starcukova, J, Starcuk, Z. Physics-informed deep learning approach to 

quantification of human brain metabolites from magnetic resonance spectroscopy data. 

Computers in Biology and Medicine. 2023; 158: 106837. doi: 

10.1016/j.compbiomed.2023.106837. 

 

3. Clarke, W, Mikkelsen, M, Oeltzschner, G, Bell T.K., Shamaei, A, Soher, B.J., Emir, 

U, Wilson, W. A standard data format for magnetic resonance spectroscopy. Magnetic 

Resonance in Medicine 2022; 1- 13. doi:10.1002/mrm.29418. 

 

4. Rizzo, R, Dziadosz, M, Kyathanahally, SP, Shamaei, A, Kreis, R. Quantification of 

MR spectra by deep learning in an idealized setting: Investigation of forms of input, 

network architectures, optimization by ensembles of networks, and training bias. Magn 

Reson Med. 2022; 1- 21. doi:10.1002/mrm.29561.  

 

Peer-reviewed extended papers at international conferences (in WOS): 

5. Shamaei, A, Starcukova, J, Starcuk, Z. A wavelet scattering convolutional network for 

magnetic resonance spectroscopy signal quantitation. BIOSIGNALS 2021 - 14th Int. 

Conf. Bio-Inspired Syst. Signal Process. Part 14th Int. Jt. Conf. Biomed. Eng. Syst. 

Technol. BIOSTEC 2021, pp. 268–275, 2021. 

 

6. Shamaei, A. Deep Learning For Magnetic Resonance Spectroscopy Quantification: A 

Time-Frequency Analysis Approach. in Proceedings II of the 26st Conference 

STUDENT EEICT 2020: Selected papers [online], 2020, pp. 131–135. 

 

Conference abstracts at international conferences: 

7. Shamaei, A.M., Starčuková J., Radim Kořínek, and Starcuk Jr. Z., Magnetic Resonance 

Spectroscopic Imaging Data Denoising by Manifold Learning: An Unsupervised Deep 

Learning Approach, Poster presentation delivered in person at ISMRMB 2022, May, 

2022. London., UK. 

 

8. Shamaei, A.M., Starčuková J. and Starcuk Jr. Z., Frequency and Phase Shift Correction 

of MR Spectra Using Deep Learning in Time Domain, Poster presentation delivered 

virtually at ESMRMB 2021, October, 2021. Online. 



   

 

52 

 

 

9. Clarke, W., Bell, T., Emir, U., Mikkelsen, M., Oeltzschner, G., Rowland, B., Shamaei, 

A.M, Soher, B, Tapper, S., and Wilson, M, NIfTI MRS: A standard format for 

spectroscopic data, Poster presentation delivered in person at ISMRMB 2021, May, 2021. 

Online. 

 

10. Amir M Shamaei, Rudy Rizzo, Physics-Informed Deep Learning Approach to 

Quantifying Magnetic Resonance Spectroscopy Data with Simultaneous Uncertainty 

Estimation, Power pitch (oral and poster) presentation will be delivered in person at 

ISMRMB 2023, June, 2023. Toronto, Canada. Accepted 

 

11. Amir M Shamaei, Jana Starcukova, Jedrek Burakiewicz, Zenon Starcuk Jr, Water 

removal in MR spectroscopic imaging with Casorati Singular Value Decomposition, a 

Poster presentation will be delivered in person at ISMRMB 2023, June, 2023. Toronto, 

Canada. Accepted 

 

12. Shamaei, A.M., Starčuková J., and Starcuk Jr. Z., EigenMRS: A computationally 

cheap data-driven approach to MR spectroscopic imaging denoising, Poster presentation 

will be delivered in person at ISMRMB 2023, June, 2023. Toronto, Canada. Accepted 

 

 



Received: 29 June 2022 Revised: 3 October 2022 Accepted: 3 October 2022 Published on: 11 November 2022

DOI: 10.1002/mrm.29498

R E S E A R C H A R T I C L E

Model-informed unsupervised deep learning approaches to
frequency and phase correction of MRS signals

Amirmohammad Shamaei1,2 Jana Starcukova1 Iveta Pavlova1

Zenon StarcukJr.1

1Institute of Scientific Instruments of the
Czech Academy of Sciences, Brno, Czech
Republic
2Department of Biomedical Engineering,
Brno University of Technology, Brno,
Czech Republic

Correspondence
Amirmohammad Shamaei, Magnetic
Resonance Group, Institute of Scientific
Instruments of the Czech Academy of
Sciences, Kralovopolska 147, CZ 61264,
Brno, Czech Republic.
Email: amirshamaei@isibrno.cz

Funding information
European Union’s Horizon 2020 research
and innovation program under the Marie
Sklodowska-Curie, Grant/Award Number:
813120; Czech Academy of Sciences,
Institute of Scientific Instruments, RVO,
Grant/Award Number: 68081731

Purpose: A supervised deep learning (DL) approach for frequency and phase
correction (FPC) of MRS data recently showed encouraging results, but obtain-
ing transients with labels for supervised learning is challenging. This work
investigates the feasibility and efficiency of unsupervised deep learning–based
FPC.
Methods: Two novel deep learning–based FPC methods (deep learning–based
Cr referencing and deep learning–based spectral registration), which use a priori
physics domain knowledge, are presented. The proposed networks were trained,
validated, and evaluated using simulated, phantom, and publicly accessible in
vivo MEGA-edited MRS data. The performance of our proposed FPC methods
was compared with other generally used FPC methods, in terms of precision
and time efficiency. A new measure was proposed in this study to evaluate the
FPC method performance. The ability of each of our methods to carry out FPC
at varying SNR levels was evaluated. A Monte Carlo study was carried out to
investigate the performance of our proposed methods.
Results: The validation using low-SNR manipulated simulated data demon-
strated that the proposed methods could perform FPC comparably with other
methods. The evaluation showed that the deep learning–based spectral reg-
istration over a limited frequency range method achieved the highest perfor-
mance in phantom data. The applicability of the proposed method for FPC of
GABA-edited in vivo MRS data was demonstrated. Our proposed networks have
the potential to reduce computation time significantly.
Conclusions: The proposed physics-informed deep neural networks trained in
an unsupervised manner with complex data can offer efficient FPC of large MRS
data in a shorter time.
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1 INTRODUCTION

In MRS, typically more transients are acquired and aver-
aged to increase the low SNR.1 However, individual tran-
sients might have different frequency and phase shifts
because of hardware imperfections, physiologic processes,
or other instabilities.2,3 Averaging transients without fre-
quency and phase correction (FPC) would result in
line-broadening and lineshape imperfection of the com-
bined MRS signal. Thus, FPC should be performed for
each transient before averaging. It is even more critical to
use accurate FPC while using spectral-edited MRS1 meth-
ods to prevent artifacts caused by subtraction. Thus, FPC
is a consensus-recommended and effective step4 in MRS
signal processing.

Several FPC approaches have been developed.3,5–10 The
FPC methods can be classified into absolute and rela-
tive methods.7 Absolute approaches correct each individ-
ual transient absolutely, whereas relative methods align
the transients to a reference signal. A commonly used
approach for FPC is to use the water peak and read
the phase and frequency from it.6,8,11 Another approach
is to fit a certain metabolite peak to a model12 and
then estimate the frequency and phase shifts from the
model. One approach that has been proposed and evolved
recently is spectral registration (SR).3,5,9,10 Spectral reg-
istration fits each signal to a reference signal in the
time domain through the adjustment of frequency and
phase terms. Even though SR works very well for small
shifts, it struggles with larger shifts and signals with
low SNR. Modified versions of SR successfully addressed
some of the mentioned problems.5,9,10 Most of these
approaches are time-consuming for large data sets, such
as high-resolution MRSI data sets, which may have thou-
sands of spectra.

The recent success of deep learning (DL), one of the
latest machine learning (ML) approaches, in a wide range
of tasks, including the MR field,13,14 suggests that it could
also handle FPC. Recently, DL-based solutions have been
proposed for metabolite quantification in the frequency
domain,15,16 detecting and removing ghosting artifacts,17

FID reconstruction,18 automatic peak picking,19 enhance-
ment of MRSI spatial resolution,20 and identifying and
filtering out poor-quality spectra.21 It has been shown that
DL can also be used for FPC7,22 and could speed up FPC
once it has been successfully trained. This approach, using
two separate networks in sequence to estimate frequency
and phase, showed encouraging results. The first network
was trained for frequency-shift estimation using the mag-
nitude of frequency-shifted and phase-shifted spectrum as
the input and the known frequency shift as the output.
Subsequently, the second network was trained for phase

shift estimation using real parts of the frequency-corrected
spectrum as the input and phase shift as the output. In
this approach, any error in the first step (frequency cor-
rection) may bias the phase shift estimation. Training two
networks is a computationally expensive task. Moreover,
the networks were trained in a supervised manner using
simulated data. Any discrepancy between the in vivo and
the simulated spectra may result in errors in frequency
and phase shift estimation. The true output values are
unknown in MRS data, and obtaining hundreds of spectra
with labeled frequency and phase shifts is almost infeasi-
ble. Unsupervised learning may eliminate the drawbacks
of supervised learning.

Frequency and phase correction is traditionally
described by adjusting two parameters (frequency and
phase). Therefore, it is natural to expect that the variability
of all the signals in the set acquired for SNR improvement
should have a very low-dimensional representation. One
of the methods for nonlinear dimensionality reduction
is manifold learning, which assumes that the avail-
able high-dimensional data vectors are embedded in
low-dimensional manifolds.23,24 These low-dimensional
manifolds can be learned by deep autoencoders (DAEs),25

which automate feature extraction by merging all relevant
data into a cohesive framework. A DAE with a common
architecture13,25 is not able to learn to estimate the fre-
quency and the phase shift of a transient, as the features
in a low-dimensional space might not be readily inter-
pretable. Therefore, a DAE can be redesigned to have two
functions: a function for nonlinear mapping between the
input and certain features (frequency and phase shifts)
in a two-dimensional space, and another function, for
reconstructing the input from those features. Accordingly,
we designed a DAE network that can learn in an unsuper-
vised manner to estimate the frequency and phase shifts
of MRS data. The proposed method takes advantage of
the parametric analytical approach and embeds it into
the DAE to estimate the frequency and phase shifts of
a transient.

The proposed network was trained and validated
using a simulated data set in which ground-truth knowl-
edge was available and evaluated using phantom and
in vivo MEGA-edited MRS data obtained from the
publicly accessible Big GABA repository.26,27 The FPC
performance of our proposed network was compared
with the commonly used FPC methods, namely, SR,3
spectral registration over a limited frequency range
(SRF),3 frequency domain correlation,5 frequency domain
correlation over a limited frequency range,5 creatine ref-
erencing (CrR),12,28 as well as supervised deep-learning
approaches7,22 in terms of precision and time
efficiency.
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2 METHODS

2.1 Data normalization

In contrast to the application of DL in machine vision or
speech recognition, where the input data can be normal-
ized by a nonlinear transform, MRS signals must be nor-
malized by a linear transform. In this study, each complex
signal S(t) was rescaled as

S(t)normalized =
S(t)

max𝜏(|S(𝜏)|)
. (1)

A similar approach could be dividing the signal by the
absolute value of the first point of the signal, but it would
be less generally applicable because the initial point can be
influenced by the filtering processes in the receive chain,29

or the maximum may occur later in an echo or with cou-
pled resonances.

2.2 Data augmentation

It is known that the sufficient size and diversity of data
are important factors for the effectiveness of most DL
models.13 However, having rich and sufficient data sets is
rare30 in the field of MRS and MRSI. Data augmentation
is a viable option, which simulates credible data by minor
alterations to data in a small existing data set. Data aug-
mentation used in computer vision applications to reduce
the generalization error of models13 applies to flips, trans-
lations, and rotations,13 which would be meaningless in
spectroscopy. To generate credibly varied FID signals, we
chose a set of physics-informed alterations, simulating the
practical data variability:

1. Frequency shift
2. Phase shift
3. Apodization (line broadening)
4. Amplitude change
5. Adding noise
6. Adding a nuisance peak (residual water and lipids)

2.3 Data sets

2.3.1 Simulated data set

A simulated data set was used in in silico ground-truth
information for evaluating the performance of our pro-
posed networks and for comparison with the commonly
used FPC methods. The simulated data set was obtained
by alternating a single MR signal acquired from a rat brain
as described subsequently.

A single-voxel spectroscopy (SVS) MR in vivo sig-
nal was acquired from a rat’s right hippocampus (256

transients, voxel size= 1.5× 1.5× 4 mm3) in a 9.4T small
animal MR system (Bruker BioSpin MRI, Ettlingen, Ger-
many) using a PRESS sequence (spectral width= 4400 Hz,
2048 points, TE= 16.5 ms, TR= 2500 ms) with water and
outer-volume suppression by VAPOR.31 The signal (fur-
ther referred to as the basis signal Sbasis(t)) was created after
transients were corrected for B0 instability due to eddy
currents as well as B0 drift, and averaged using Bruker
proprietary software, Paravision.

All experiments were approved by the Czech Gov-
ernmental Animal Care Committee, in compliance with
Czech Animal Protection.

The simulated data set, containing 24 000 artificial sig-
nals, was generated from Sbasis(t) by an augmentation pro-
cedure. The basis signal was multiplied by factors drawn
from a normal distribution with a mean of 1 and a SD
of 0.1. Then a set of lipid nuisance peak and a set of
unstable residual water nuisance peak, generated using
Equation 2 (parameters are listed in Supporting Infor-
mation Table S1), were added to signals, randomly and
independently:

S(t)nuisance peak = Aae−date−i(2𝜋fat+𝜑a)
, (2)

where i =
√
−1; t is a vector of time points; and Aa, da, fa,

and 𝜑a are the amplitude, the damping factor, the pre-
cession frequency, and the phases of the nuisance peak,
respectively. Signals containing the lipid peak, the unsta-
ble residual water peak, and both peaks were labeled as LC,
UW, and UW & LC, respectively.

All artificial signals were further apodized by nor-
mally distributed random dampings corresponding to
Lorentzian linewidths with a mean of 2 Hz and a SD of
0.2 Hz. Then, uniformly distributed artificial frequency
and phase offsets in the range of −20 to 20 Hz and− 90◦ to
90◦, respectively, were applied to signals. Before the nor-
malizing step, the SNR of signals (time origin magnitude
to noise SD) was set in the range of approximately 9 to 27
by introducing random complex Gaussian white noise. Sig-
nals in the simulated data set were shuffled randomly, and
90% of the data set was allocated to the training subset: 9%
for the validation subset, and the remaining 1% for the test
subset.

2.3.2 Phantom data set

Phantom data were used to assess the performance of our
methods in the absence of a large number of training data
measured during temperature-dependent changes in the
B0 field.

An SVS MR signal was acquired in a phantom of
known metabolite concentrations (N-acetylaspartate
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17.5 mmol/L, glutamate 26.2 mmol/L, myo-Inositol
17.5 mmol/L, creatine [CR] 12.7 mmol/L, taurine
10.1 mmol/L; 2048 transients, voxel size= 3× 3× 3 mm3)
in a 9.4 T small animal MR system (Bruker BioSpin
MRI, Ettlingen, Germany), while the temperature of the
phantom was altered between 35◦C and 40◦C and the fre-
quency adjustment of the scanner was switched off, using
PRESS sequence (spectral width= 4400 Hz, 2048 points,
TE= 16.5 ms, TR= 2500 ms) with water and outer-volume
suppression by VAPOR.31

The phantom data set, containing 24 000 artificial sig-
nals, was generated as follows: We selected 400 (out of
2048) of the acquired transients as basis signals, randomly;
then, a subset of 60 signals was generated from each basis
signal by the same augmentation procedure as used for the
simulated data set except that the basis signal was not mul-
tiplied by factors, the nuisance peaks were not added, and
the SNR of signals was set in the range of about 7 to 70.
Finally, all subsets were stacked together to create the final
training data set. The rest of the 1648 transients were used
as an unseen test subset.

2.3.3 Big GABA data set

Data from the public repository Big GABA26,27 were used
to demonstrate the applicability of the proposed method
on FPC of edited in vivo signals.

We selected 48 GABA-edited MEGA-PRESS sub-
sets (subjects) acquired on Siemens scanners from
four different sites (S1, S5, S6, and S8 [all that we
found public and readable]; 3T field strength; spectral
width= 4000 Hz, 4096 points, TE= 68 ms; ON/OFF edit-
ing pulses= 1.9/7.46 ppm; editing pulse duration= 15 ms,
TR= 2000 ms; 320 averages; 30× 30× 30 mm3; and medial
parietal lobe voxel) because Siemens data3 had greater
median within-participant SD of estimated phase offsets
and larger variance of lipid contamination than data from
Philips and GE, and relatively high average frequency off-
sets, which are undesirable conditions for conventional
FPC methods.5

We allocated 40 of 48 selected in vivo subsets (15 360
transients) to the training subset (12 800 transients), and
the rest of the subsets (2560 transients) were used as an
unseen test subset.

2.4 Deep model

2.4.1 The DAE proposed for deep
learning–based peak referencing

The DAE is a type of deep artificial neural network that
is created to learn the coding of data in an unsupervised

F I G U R E 1 Illustration of a common deep autoencoder (DAE)
architecture with multiple nonlinear hidden layers composed of
rectified linear units (ReLUs) and fully connected (FC) layers to
elicit nonlinear features of the data

manner. The fundamental underlying concept of autoen-
coders is to use the input data as the target (ie, attempting
to reconstruct the input data in the output layer).13 Typ-
ically, a DAE consists of two parts: an encoder and a
decoder.

Figure 1 illustrates the most common architecture
of a DAE. The encoder function h = f (x) maps the
n-dimensional input vector (x ∈ Rn) to the n′-dimensional
latent vector (h ∈ Rn′), while the decoder function x̂ = g(h)
aims to reconstruct the n-dimensional output vector (x̂ ∈
Rn) from the latent space representation. The mathemati-
cal expression of a DAE can be written as follows:

x̂ = g (f (x; 𝜃e) ; 𝜃d) , (3)

where 𝜃e and 𝜃d are the parameters set of encoder and
decoder layers, respectively.

For FPC, the latent space representation must be inter-
pretable parameters, such as frequency and phase shifts.
Frequency and phase shifts can be estimated by fitting a
certain metabolite peak to a model, such as a Lorentzian
lineshape. Then, the frequency and phase shifts can be
read from the model. To this end, we proposed a convo-
lutional encoder/model-decoder15 architecture. Our pro-
posed DAE has a conventional encoder consisting of a
pipeline of a dropout layer,32 convolutional layers,33,34

fully connected layers,13,34 and rectified linear unit lay-
ers,34 which encode a complex input signal into a latent
space, and a decoder that reconstructs a Lorentzian line-
shape of a certain peak in the input signal using the
latent space parameters. The proposed DAE architecture
is depicted in Figure 2. Because it has been shown that
using complex-valued data improves the robustness and
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F I G U R E 2 Illustration of the proposed convolutional
encoder/model-decoder for the deep learning–based Creatine
referencing (dCrR) method. The network’s input is a complex signal
in the time domain, which is fed to the encoder. The encoder
consists of a dropout layer, six convolutional blocks, and an FC layer
(see details in Supporting Information Table S2). A convolutional
block (dashed square) consists of a one-dimensional convolution
(Conv1d) layer followed by a ReLU layer. The model-decoder of the
dCrR (Equation 4) reconstructs the output signal. The DAE was
trained to encode the input vector in the time domain into
parameters that can be used to reconstruct the output vector in the
time domain. The proposed network is trained by minimizing the
mean square error (MSE) between the input and the output. The
input and output signals are depicted in the frequency domain for
the sake of easier understanding. Abbreviations:
AM, amplitude; dM, damping factor; fM, resonance frequency; 𝜑M,
zero-order phase of the Lorentzian lineshape

efficiency of fitting MRS data,35 the input and output of the
proposed DAE were set to be complex signals in the time
domain.

Time-domain fitting of a single Lorentzian lineshape
to a signal with several peaks using our proposed network
is a challenging task in which the optimization algorithm

aims to increase the linewidth to decrease the error. Pre-
vious studies3,12,28 addressed these problems by fitting a
signal in the frequency domain over a limited range and
including a linear baseline in their model. We found that
adding a rough estimate of a baseline, obtained by apodiz-
ing the input signal with Lorentzian kernel with a large
linewidth, into the reconstruction function improves our
fitting. Hence, the decoder part combines a mathemati-
cal model (Lorentzian lineshape) and the input signal, x,
apodized with the Lorentzian kernel. The mathematical
expression of the decoder can be written as follows:

g (x;AM, dM, fM, 𝜑M, t) = AMe−dMte−i(2𝜋fMt+𝜑M) + x(t)e−dLt
,

(4)

where AM, dM, fM, and 𝜑M are the amplitude, the damping
factor, the resonance frequency, and the zero-order phase
of the selected Lorentzian lineshape, respectively, and dL
is the linewidth of the Lorentzian kernel. Experimentally,
dL was set to 500 Hz in this study.

Training our proposed network is an unsupervised
learning task that does not require ground-truth fre-
quency and phase shifts and can be done by minimiz-
ing the differences between the original input and the
consequent reconstruction. In each iteration step of train-
ing, the parameters of the encoders are adjusted accord-
ing to the gradient of the loss function with respect
to the given parameters of the Lorentzian lineshape
(AM, dM, fM, and𝜑M).

In this study, Cr peak at 3.027 ppm was selected to be
fitted by a Lorentzian line shape in the decoder. The FIDs
were truncated to the initial 512 points for limiting the
contribution of noise, which typically predominates in the
later part of FIDs. Then, the truncated FIDs were used as
inputs to the network. After training, the encoder of the
proposed DAE (deep learning–based creatine referencing
[dCrR]) was detached from the network and used to esti-
mate the frequency and phase of the Cr peak in a test
transient. Then the estimates were used for frequency and
phase correction of the test transient. The pipeline of FPC
of GABA-edited MEGA-PRESS transients is provided in
Supporting Information Figure S4.

2.4.2 The DAE proposed for deep
learning–based SR

With a simple modification, the proposed approach could
estimate the relative frequency and phase shifts by fitting
each signal to a reference signal and be applicable to var-
ious MRS experiments. In other words, the SR method
could be used in our proposed encoder/model-decoder
network. This modification is referred to as deep
learning–based spectral registration (dSR). For dSR, the
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1226 SHAMAEI et al.

mathematical expression of the decoder can be written as
follows:

g (fM, 𝜑M, t) = R(t)e−i(2𝜋fMt+𝜑M)
, (5)

where fM and 𝜑M are the frequency and the phase shifts
of the input signal with respect to the reference scan R(t).
Thus, in the dSR, the encoder estimates two parameters
(relative phase and frequency shifts) instead of estimat-
ing the four parameters of a lineshape. The proposed DAE
architecture for dSR is depicted in Supporting Informa-
tion Figure S5. We proposed a new ML-based algorithm
for finding the reference signal in which the k-means
algorithm36 was used to cluster magnitude-valued signals
in the training set. The number of clusters was set to
two: one for samples with nuisance peaks and another for
samples without nuisance peaks. k-Means algorithm is an
unsupervised method; thus, the clusters are not identified.
Based on prior testing, samples containing nuisance peaks
have a higher intensity than samples without nuisance
peaks in the initial points of their mean of the samples in
the cluster. Therefore, the first 10 points of each mean of
samples in the cluster were averaged, and the cluster with
a lower average was identified as the cluster containing
samples without nuisance peaks; then, the signal with the
highest SNR from this cluster was selected as the reference
scan (see details in Supporting Information Text S2 and
Figure S6).

2.4.3 Training the proposed DAEs over a
limited frequency range

The MRS signals may have unstable frequency compo-
nents. Because all frequency components are present at
all time points, unstable frequency components may bring
errors into our proposed method. To avert this situa-
tion, the proposed architectures (dCrR and dSR) were
trained over a limited frequency range (2.5 to 3.5 ppm)
(referred to as dCrRF [deep learning-based creatine refer-
encing over a limited frequency range] and dSRF [deep
learning–based spectral registration over a limited fre-
quency range]). Note that the input of the encoder and the
output of the model-decoder were still in the time domain,
and the discrepancy between fast Fourier transformation
of the input and output was calculated over a limited
frequency range.

2.5 Implementation details
and training

All steps were run on a computer with a dual EPYC
7742 (2× 64 cores) processor and one graphics processing

unit (NVIDIA A100 40 GB). Moreover, all steps were
run on Google Colaboratory (free-to-use hardware).37 The
DAE was implemented in Python with the help of the
Pytorch lightning interface.38,39 The architecture of the
network and training parameters were optimized using the
Bayesian Optimization HyperBand algorithm40 with the
help of the Tune framework.41 The details of the optimiza-
tion are given in Supporting Information Text S1. All train-
ing was performed using the mean-squared error loss and
an Adam optimizer42 with a batch size of 16, a learning rate
of 4× 10−5, and 150 epochs. The training progress for the
simulated data set is provided in Supporting Information
Figures S2 and S3.

An early-stopping strategy38 was performed by mon-
itoring the average error of the validation subset at the
end of every epoch and stopping the training when no
improvement was observed in 10 epochs. The SR and the
SRF methods were tested using the FID-A toolbox,43 the
CrR and the CrRF methods with the Gannet toolbox,28

the frequency domain correlation and frequency domain
correlation over a limited frequency range methods,5 and
previous studies (Tapper et al7 and Ma et al22) with our
in-house code.

All proposed methods (dCrR, dCrRF, dSR, and dSRF)
were trained, validated, and tested using the simulated and
the phantom data set, and the dCrR method was trained
and tested using the big GABA data sets.

2.6 Statistics and quality evaluation

2.6.1 Performance analysis

For the simulated data set, in which the true shifts from
the basis signal were known, the error was defined as the
difference between the estimated and the true shifts. The
accuracy and precision of an FPC method were established
as the average and the SD of the error, respectively. In addi-
tion, the performance of the dCrR method trained with
the simulated data set was investigated beyond the trained
range of frequency and phase (−40 to 40 Hz and−180◦ to
180◦, respectively).

For the phantom and the Big GABA data set,
in which true shifts were not known, the quality of
alignment was measured by comparing the similar-
ity index (SI), which is the sum of all elements of
a similarity matrix. Each element of the similarity
matrix is the normalized scalar product (the equation
as implemented is provided in Supporting Information
Equation S1) for each pair of spectra (fast Fourier trans-
formation of a FID) over a limited frequency range (from
2.5 to 3.5 ppm). Note that higher SI denotes superior
performance.
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SHAMAEI et al. 1227

2.6.2 Performance against noise

The stability of the dCrR, dSR, and SR method against
noise was evaluated. A set of transients was generated
using the following procedure. First, a frequency shift of
5 Hz and a phase shift of 45◦ were added to Sbasis(t). Second,
20 realizations of a random complex Gaussian noise with
a linearly increasing SD were introduced to the shifted sig-
nal such that SNR was in the range of approximately 8 to
110. The frequency and phase shifts of the generated set
were estimated using the networks trained with the sim-
ulated data set. The FPC performance was evaluated as a
function of SNR.

2.6.3 Monte Carlo analysis

Monte Carlo studies were carried out to investigate the
performance of the dCrR, dSR, and SR methods. A set

of transients was generated using the following proce-
dure. First, a frequency shift of 5 Hz and a phase shift of
45◦ were added to Sbasis(t). Second, 256 realizations of a
random complex Gaussian noise with the same SD were
introduced to the shifted signal such that SNR was approxi-
mately 15. The frequency and phase shifts of the generated
set were estimated using the networks trained with the
simulated data set. The FPC performance of dCrR, dSR,
and SR methods was compared.

3 RESULTS

The training and processing time of each proposed net-
work for the simulated data set is listed in Table 1.
Approximately, frequency and phase estimation of one
transient requires approximately 3 ms. The evaluation
of the performance of different methods (precision, SI,
linewidth, the processing time of FPC, and training time

T A B L E 1 Comparison of our proposed method with existing commonly used FPC methods for the simulated data set

dSR dSRF SR SRF dCr dCrF Cr Corr CorrF
Tapper
et al

Ma
et al

Precision of
frequency
estimation (Hz)

All samples 1.02 0.73 1.57 11.46 0.94 0.95 7.92 10.70 11.33 0.71 0.99

Samples without
nuisance peaks

1.00 0.69 1.01 11.02 0.93 0.90 9.62 9.98 9.89 0.56 0.85

Samples with
nuisance peaks

0.97 0.73 1.57 11.68 0.94 0.97 6.51 11.07 11.96 0.78 1.06

Precision of phase
estimation (◦)

All samples 5.87 4.89 7.44 15.92 6.62 6.79 32.34 16.87 17.46 6.78 4.29

Samples without
nuisance peaks

4.16 3.34 2.61 16.75 6.89 7.00 38.80 16.62 16.46 4.64 4.24

Samples with
nuisance peaks

5.75 5.52 8.50 15.34 6.35 6.52 26.68 17.02 18.07 5.89 4.32

SI All samples 0.44 0.44 0.44 0.32 0.42 0.42 0.36 0.34 0.32 0.44 0.44

Crlinewidth (Hz) Averaged signal 10.38 10.22 10.77 15.34 10.14 10.17 10.71 19.14 20.55 10.45 10.53

Training time
(min) CPU

All samples 127 138 — — 328 354 — — — — —

Training time
(min) GPU

All samples 2.26 7.8 — — 8.4 7.3 — — — 20.8 29.64

Training time
(min)

All samples 4.53 10.6 — — 11.1 11.2 — — — — —

Google Colaboratory
Processing time

(ms) CPU
Per signal 3 3 57 71 3 3 53 33 29 15 15

Processing time
(ms) GPU

Per signal 0.1 0.1 — — 0.2 0.2 — — — 0.6 0.6

Note: Bold text indicates the best performance in each metric. The SI of the test subset without FPC was 0.14. Precision: SD of the difference between the
estimated and the true shift.
Abbreviations: Corr, frequency domain correlation; CorrF, frequency domain correlation over a limited frequency range; CPU, central processing unit;
Crlinewidth, linewidth of Cr peak at 3 ppm; CrR, creatine referencing; GPU, graphics processing unit; SI, similarity index; SRF, SR over a limited frequency range.
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1228 SHAMAEI et al.

T A B L E 2 Comparison of our proposed method with existing
commonly used FPC methods for the phantom data set

SI Crlinewidth (Hz)

dCrR 0.66 6.02

dCrRF 0.66 6.00

dSR 0.60 6.80

dSRF 0.67 6.03

SR 0.58 6.75

SRF 0.60 6.46

CrR 0.58 7.03

Note: Bold text indicates the best performance in each metric. The SI of the
test subset without FPC was 0.50.

for DAE) for the test signals of the simulated data set
and of the phantom are summarized in Tables 1 and 2,
respectively.

The Bland–Altman plots in Figure 3A,B show the
accuracy and biases in the estimation of frequency and
phase shifts using dCrR, dCrRF, and dCr. The highest
precision (0.94 Hz and 6.62◦) among the absolute FPC
methods was achieved with the proposed dCrR. Although
dCrRF performed similarly to dCrR, CrR showed the
lowest performance (7.92 Hz and 32.34◦). All of the pro-
posed methods performed well in spectra with and with-
out the simulated nuisance peaks. The agreement, esti-
mated by R2 value, was high for dCrR (R2

frequency = 0.99
and R2

phase = 0.99) and dCrRF (R2
frequency = 0.99 and

R2
phase = 0.99) and moderate for CrR (R2

frequency = 0.61
and R2

phase = 0.75). Figure 3C,D illustrates the results of
dCrR on unseen test signals in which offsets are beyond
trained bound (−40 to 40 Hz and –180◦ to 180◦). The
network showed poor performance beyond its trained
bound (precisions for frequency and phase estimation
were 8.69 Hz and 60.04◦, respectively). Figure 3E,F shows
the spectra and the similarity matrix heatmaps obtained
before and after the FPC tested, respectively. The dCrR
method increased the SI in the visualized test signals from
0.14 to 0.42.

Figure 4 shows a pairwise correlational compari-
son of the relative FPC methods (our proposed dSR
and dSRF with SR and SRF). The R2 value of each
method pair and the true value of shifts are reported
in the corresponding axes. The R2 indicates that there
is a high degree of agreement between the frequency
and phase estimations between methods except for
SRF. The agreement between the estimations of meth-
ods and true values (R2) was high for dSR, dSRF,
and SR and was low for SRF (R2

frequency = 0.03 and
R2

phase = 0.94).

Figure 5 shows spectra from the test signals of the
phantom data set and the corresponding heatmaps of
similarity matrices before and after correction using the
dCrR method. The dCrR method achieved the highest per-
formance and increased the similarity among transients
from 0.50 to 0.66, and decreased the linewidth of Cr peak
at 3 ppm in the averaged spectrum by 1.5 Hz (Table 2).
We observed that changing temperature during measure-
ment altered the amplitude and linewidth of peaks, which
resulted in a decreased similarity index. The dSR method
failed to increase the SI and reduce the Cr linewidth
because dSR tends to correct frequency and phase shifts
of large frequency components, such as the residual
water. However, dSRF overcame this issue and demon-
strated superior performance by limiting the frequency
range.

The link between the absolute error in estimates
and the SNR is shown in Figure 6A,B using a scatter
plot. The comparison of the proposed dSR and dCrR
with SR methods is presented. In low SNR, dSR and
SR methods outperformed dCrR in terms of the preci-
sion of phase shift estimation, but dCrR demonstrated
more resilience in terms of the precision of frequency
estimation.

Figure 6C shows a comparison of the dSR, dCrR,
and SR methods in the Monte Carlo analysis using a
scatter-plot visualization of the joint distribution of fre-
quency and phase. For the simulated data set, the mean
error of dSR (1.36± 0.69 Hz and 0.51± 2.33◦) and SR
(−0.67± 0.81 and 3.15± 2.53◦) showed similar perfor-
mance, whereas dCrR performed less precise phase-shift
estimation (4.69± 0.77 Hz and− 41.27◦ ± 5.827◦). The true
values of the frequency and the phase shifts were
5 Hz and 45◦.

Figure 7 illustrates an unseen test subset of a
GABA-edited in vivo data set (site= 1, subject= 3; 160
edited transients; 160 unedited transients) and a heatmap
of their similarity matrix before and after FPC by the
dCrR method. Our method increased the SI in the visu-
alized test subset from 0.80 and 0.82 to 0.92 for edited
(ON) and unedited (OFF) spectra, respectively. In all
test subsets, the SI was increased from 0.88± 0.05 to
0.93± 0.02.

Figure 8 shows the comparison of the results of
dCrR-based and SR-based correction of ON and OFF
transients of the test subsets. On average, dCrR per-
formed better than SR, as indicated by the mean SI (the
mean SI was increased from 0.88± 0.05 [ON: 0.89± 0.04,
OFF: 0.87± 0.05] to 0.93± 0.02 [ON: 0.93± 0.02, OFF:
0.93± 0.02] and 0.90± 0.04 [ON: 0.91± 0.03 OFF:
0.89± 0.04] by dCrR-based correction and SR-based
correction, respectively).
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SHAMAEI et al. 1229

F I G U R E 3 A, B, Testing
results of the simulated data
set. A, B, Plots of the error in
deep learning (DL)–estimated
phase (A) and frequency (B)
shifts against the actual shifts,
respectively. The R2 values of
the method types are
color-coded. C, D, Testing the
dCrR method beyond the
trained range of phase and
frequency (−180◦ to 180◦

and−40 to 40 Hz, respectively).
Plots of the error in
DL-estimated phase (C) and
frequency (D) shifts against the
actual shifts, respectively, using
dCrR. E, Uncorrected spectra
and their similarity matrix. F,
The same spectra after
frequency and phase correction
(FPC) using dCrR and their
similarity matrix. Dark blue
and green spectra show the
average uncorrected and
corrected spectra, respectively.
Abbreviations: CrR, creatine
referencing; dCrRF, dCrR over
a limited frequency range; Free,
without any nuisance peak; LC,
with lipid peak; UW, with
unstable water peak

(A) (B)

(C)

(E)

(F)

(D)

4 DISCUSSION

In this study, the combination of DL and mathematical
modeling was demonstrated to be able to provide FPC in

simulated, phantom, and in vivo MRS data. We compared
our method with five previously published methods: SR,
SRF, frequency domain correlation, frequency domain cor-
relation over a limited frequency range, and CrR, as well
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1230 SHAMAEI et al.

F I G U R E 4 Pairwise comparison of the results of the spectral registration (SR)–based FPC methods for the test subset of the simulated
data set. The upper triangular shows the correlations of frequency estimations, and the lower triangular shows the correlations of phase
estimations. The fitted lines represent the linear regression model and the 95% confidence interval. The type of simulated nuisance peak is
color-coded. The total R2 values are calculated along the corresponding axes. The dashed gray lines are identity lines. Note that the reference
signals of relative FPC methods were different, which resulted in shifting their scatter plot from the identity line. Abbreviations: dSR, deep
learning–based SR; dSRF, dSR over a limited frequency range; SRF, SR over a limited frequency range

as supervised DL-based methods. We evaluated the abil-
ity of each of these methods to estimate the frequency and
phase shifts in the simulated MRS data set with known
shifts and at varying SNR levels. Our results (Table 1)
indicated an improvement in performance in terms of pre-
cision and the SI, the latter of which is a new measure
proposed in this study for evaluating the FPC performance.
Additionally, we compared our results with those obtained
using other methodologies in terms of the linewidth of

the Cr peak of the averaged signal obtained by summing
corrected transients, and we discovered that the unsu-
pervised DL-based methodology performed comparably to
others.

We found that the traditional FPC over a lim-
ited frequency range performed poorly in spectra
with low SNR (Table 1), whereas our proposed FPC
methods over a limited frequency range (dSRF and
dCrRF) can perform equally (Table 1) to our proposed
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SHAMAEI et al. 1231

F I G U R E 5 Frequency and phase correction of the phantom test subset using the dCrR method. Uncorrected (A) and corrected (B)
spectra from the test subset. Dark blue and green spectra show the average uncorrected and corrected spectra, respectively. The circled inset
shows the zoomed creatine (Cr) peak at 3 ppm. The similarity matrix of 64 samples of the test subset before (C) and after (D) FPC

F I G U R E 6 A, B, Comparison of frequency (A) and phase (B) correction precision of the dSR, dCrR, and SR methods over various SNR
levels. C, The results of Monte Carlo (MC) analysis. Comparison of dSR, dCrR, and SR methods. For the sake of visualization of absolute and
relative methods alike, the estimations from each method were subtracted from their average value. The results of the dCrR method without
subtracting from its average value can be found in Supporting Information Figure S1

methods operating in the time domain (dCrR and dSR).
Our methods also performed well in a Monte Carlo
study, in which the phase-shift and frequency-shift
estimate precisions were found to be very good

and in general accordance with the SR method
(Figure 6C).

While the performance of conventional SR-based FPC
methods can depend on the presence of nuisance peaks
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1232 SHAMAEI et al.

F I G U R E 7 An example of FPC using dCrR for a test set in the GABA-edited in vivo data set. Unedited spectra (A) and their similarity
matrix (B) before FPC. Edited spectra (C) and their similarity matrix (D) before FPC. Unedited spectra (E) and their similarity matrix (F) after
FPC. Edited spectra (G) and their similarity matrix (H) after FPC. (I) Average uncorrected spectra (blue, unedited; red, edited) and their
difference (dark green). (J) Average corrected spectra using dCrR (blue, unedited; red, edited) and their difference (dark green)

(Table 1 and Refs 3,7), our result demonstrated that our
methods functioned effectively in the simulated data set
regardless of the presence of nuisance peaks (Table 1).

Our proposed method can be trained in a few min-
utes (Table 1) because of using a one-dimensional signal
as the input and a relatively tiny network. In the case
of large MRS data sets or repeated measurements with
the same conditions, the training time will be compen-
sated by the FPC processing time, which is significantly
shorter than in methods based on nonlinear least squares
(Table 1). Moreover, the training time can be reduced by
using well-established methods such as few-shot transfer

learning,13,44 in which a network pretrained on large sim-
ulated or in vivo data sets can be trained in a few iterations
using a few samples.

When the SNR of the test signals was lowered, the
performance of our proposed methods (dCrR and dSR)
and SR was reduced. When the SNR was decreased below
the SNR of the training set, the performance deteriorated
even further, as the signal is dominated by noise. We
observed that in low-SNR signals, the dSR and SR meth-
ods performed better in phase-shift estimation, whereas
dCrR worked much better in frequency estimation
(Figure 6).
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SHAMAEI et al. 1233

F I G U R E 8 Similarity index comparing dCrR to SR for test signals of the Big GABA data set

Regardless of performance, the
encoder/model-decoder provides a unique flexibility
advantage. It leverages the underlying prior knowledge,
which can be beneficial for estimating frequency and
phase, independent of the kind of MRS data. Therefore,
this approach may be used immediately to almost any sort
of MRS data with little or no modification.

Contrary to the previous applications7,22 of DL in FPC
that used a supervised way utilizing simulated data, our
proposed network was trained in an unsupervised way.
This is advantageous, as most of the MRS data are unla-
beled, and simulated data sets may not accurately reflect
all in vivo circumstances, such as macromolecules and
artifacts. Additionally, a single network was trained in
this work to deliver both frequency and phase estimations
by including prior knowledge into the decoder, whereas
earlier work failed to train a single network.

It has been demonstrated that traditional FPC meth-
ods can benefit from additional information in a data set,10

addressing the problem of selecting a reference signal in
SR by using a weighted average reference determined by
mutual information in data. The encoder/model-decoder
may assist in extracting patterns and information from
data by introducing more complex models.

Overfitting is a common pitfall in DL.13 We imple-
mented a dropout layer in the input to remove a part
of the input randomly in every training step, which is a
computationally inexpensive and very effective regulariza-
tion strategy for decreasing overfitting and increasing the
generalization of the network.32

Training neural networks for regression problems
necessitates a well-calibrated estimation. The results
revealed a significant linear link between the true and esti-
mated values (Figures 3 and 4), indicating a well-calibrated

estimation, although additional examination of the results
is necessary.

Along with demonstrating the performance of the
proposed approach on simulated and phantom data, the
method was used to carry out FPC and enhance the sim-
ilarity of signals in publicly accessible GABA-edited in
vivo MRS data. It should be emphasized that the proposed
network was fed with both edited and unedited signals
and trained simultaneously. The result shows the same
performance for the edited and the unedited input.

In general, DL-based techniques are restricted in terms
of generalizability,13 especially DL algorithms in the MR
domain due to the fact that their training data might be
confined to a single scanner, a single sequence, and/or a
single vendor.45

In this study, only phantom data and in vivo data sets
gathered from four distinct locations utilizing a single ven-
dor and a single sequence were used to demonstrate the
applicability of our method. A crucial step toward the gen-
eralizability and clinical use of our method is training and
testing using multicenter and multivendor data.

One caveat in this study is that comparing process-
ing time per transient between algorithms might not be
widely valid, as it might be affected by the parameters
and conditions of algorithms. Using FLOPS (floating-point
operations per second) to assess the computing cost46 can
help for a better comparison.

In the present study, we focused primarily on the
validation of our proposed methods using in silico
ground-truth knowledge and showed its application in
GABA-edited in vivo MRS data. We are aware that further
evaluation and comparison with a more robust method10

are needed. In addition, Cr referencing-based approaches,
such as dCrR, are not the optimal way for GABA-edited
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1234 SHAMAEI et al.

in vivo MRS data alignment,47 and dSR or a more sophis-
ticated DL-based method should be investigated in future
researches.

5 CONCLUSIONS

In general, our proposed time-domain FPC method, which
is based on DL networks trained in an unsupervised way
with complex data, may yield results comparable to previ-
ous FPC methods. The proposed approaches can perform
absolute and relative FPC on extensively manipulated data
in a shorter amount of time once the network is trained.
Thus, our proposed approach could aid in the acceleration
of analyzing large MRS data sets. Further study is needed
to evaluate the generalizability of the proposed methods
for multivendor data.
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Abstract: Magnetic resonance spectroscopy (MRS) is a technique capable of detecting chemical 

compounds from localized volumes in living tissues. Quantification of MRS signals is required for 

obtaining the metabolite concentrations of the tissue under investigation. However, reliable quanti-

fication of MRS is difficult. Recently deep learning (DL) has been used for metabolite quantifica-

tion of MRS signals in the frequency domain. In another study, it was shown that DL in combina-

tion with time-frequency analysis could be used for artifact detection in MRS. In this study, we ver-

ify the hypothesis that DL in combination with time-frequency analysis can also be used for me-

tabolite quantification and yields results more robust than DL trained with MR signals in the fre-

quency domain. We used the complex matrix of absolute wavelet coefficients (WC) for the time-

frequency representation of the signal, and convolutional neural network (CNN) implementation 

for DL. The comparison with DL used for quantification of data in the frequency domain is pre-

sented.  

Keywords: magnetic resonance spectroscopy; quantification; deep learning; machine learning;  

1 INTRODUCTION 

Magnetic Resonance Spectroscopy (MRS) has attracted the MR community over the past 7 decades 

[1]. A significant part of the interest in biomedical MRS stems from the possibility of noninvasive 

measurements of metabolites. Information about tissue metabolites can help in clinical diagnostics. 

For example, detection of metabolic pathway changes may facilitate diagnosing disease in earlier 

stages before anatomy changes can be observed [1], [2], and thus enable more efficient treatment. 

E.g., in glioma, a decrease of N-acetylaspartate (NAA) and creatine concentrations of  NAA and 

creatine and an increase of choline, lipids, and lactate predicts an increase of the glioma grade. To 

reach such a goal, at first, we need to quantify metabolic concentrations. Because there are many 

obstacles to reaching an accurate estimate of the metabolite concentrations, the use of MRS in daily 

clinical practice is still not common. The existing MRS quantitation methods are based on model 

fitting of a signal either in the time or the frequency domain [3]. Even though, in theory there is no 

difference in which domain is used for fitting, the reality in practice could be different. 

Deep learning has achieved many accomplishments in a wide range of tasks, including the MRI 

field [4]. Due to the poor signal-to-noise ratio (SNR), chemical shift displacement, and overlapping 

of signal components of the MRS signal, deep learning can be a useful tool. Recentely, Hatami et 

al. showed the first step in this area by using the deep learning approach for MRS signal quantifica-

tion [5]. Kim et al. conducted a comprehensive study on brain metabolite quantification using deep 

learning [6]. The input of both studies is a signal in the frequency domain (metabolite spectra), and 

their network is a 1D convolutional neural network (CNN). As we mentioned earlier, there are dif-

ferences between time and frequency domain quantification in practice. Be a case in point, elimina-

tion of the first few distorted data points of a signal in the time domain does not significantly dis-
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turb the time-domain analysis, whereas the missing time-domain data points can result in compli-

cated modulations throughout the entire spectrum [2]. To overcome the difficulties of the signal 

analysis in a single domain, time-frequency analysis has been carried out for decades in other areas 

[4]. Nevertheless, finding an accurate tool for the time-frequency analysis is fraught with difficulty. 

Here is where deep learning comes to play. Thomas et al. constructed time-frequency images of a 

speech signal and used them as an input to a CNN for classification [7]. Kyathanahally et al. 

learned a CNN with time-frequency data to detect and remove ghosting artifacts in clinical magnet-

ic resonance spectra of human brain [8]. Given the mentioned accomplishments of deep learning 

and time-frequency analysis in a variety of different areas, in particular in MRS for signal artifacts 

detection, this paper describes to our knowledge the first attempt to use this state-of-the-art tech-

nique to quantify MRS signal by deep learning and time-frequency analysis. First, we generate 

simulated MRS signals. Second, we transform the signals to the time-frequency representation. 

Third, we train a CNN with the new time-frequency representation. Finally, the result is compared 

with the previous study. 

2 METHODS 

A framework is created to generate MRS signals with different amplitudes, damping factors, and 

frequency shifts. Second, these one-dimensional signals are transformed into their two-dimensional 

time-frequency representation using wavelet transformation (WT). Finally, the data are split into 

two datasets, the training and testing datasets. The input of the CNN is the time-frequency repre-

sentation of signals, and the output is 21 values, which are the concentration-related amplitudes of 

20 metabolites and the amplitude of the background signal. The CNN is trained with a training da-

taset of signals of known amplitudes. Then, the trained CNN is used to estimate the metabolite am-

plitudes of the test dataset. Finally, the techniques for accuracy evaluation are used. 

2.1 SIGNAL GENERATION 

Deep learning approaches need a considerable amount of data. For this purpose, we need a basis set 

(metabolite signals with known concentrations) either simulated or acquired. To be able to compare 

our results with the previous studies [5], [9], we used the same simulated basis set as used in those 

studies, i.e., the basis set provided for the ISMRM challenge 2016 [10]. The MRS signal is defined 

as a combination of amplitude-scaled phase-shifted metabolite basis set signals, the baseline and 

noise (in this study we use a noisless signal). The mathematical model for the parametric part of the 

MRS signal  is given by: 

       (1) 

where Xm[n] is the n-th sample of the m-th simulated metabolite, ΔT is a sampling period, Am is the 

scaling factor of the metabolite  (Am*Xm[0] is an indication of the metabolite concentration), m 

is the damping factor, Δfm is the frequency shift of the m-th metabolite, and M is the number of 

metabolites. For our signal simulation the values of the amplitude, damping, and frequency shift 

are chosen randomly from a defined range with a uniform distribution 

( ). The known background signal MM is consid-

ered as another metabolite, then is added to S[n] with a random scaling factor, damping, and fre-

quency shift ( ). Ten thousand signals are generated, in which the process of 

value selection is entirely random, thus preventing any bias to our train dataset. The basis set used 

was simulated for sequence PRESS, magnetic field 3T, echo time TE= 30  ms, spectrum width SW 

= 4000 Hz, and 2048 time-domain samples. 
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2.2 SIGNAL PROCESSING 

The time-frequency representation of the 1D signal shows a signal in both the time and frequency 

domain simultaneously. One of the forms of the time-frequency representation of the signal is a 

scalogram (a matrix of absolute values of the continuous wavelet coefficients (CWC) of a signal ) 

that can be plot as a function of time and frequency. The scalogram is calculated using the Matlab 

Wavelet Toolbox (R2019a, Mathworks Inc.,Natick, MA, USA). We use Morse wavelet to compute 

the CWC. The last 512 points of the time signals are cut off to reduce the amount of computation 

for the CWC calculation. The selection of the number of points was decided by visual inspection of 

the signals to ensure that no significant information will be lost. The wavelet coefficients are com-

puted. The minimum and maximum scales are determined automatically based on the energy 

spread of the wavelet in frequency and time by the toolbox. The coefficients matrix is a matrix 

where each row corresponds to one scale, and its column size is equal to the length of signal. Sca-

logram with 340 frequency bins and 1536 time points (340 × 1536 matrix) is created. Finally, the 

real and imaginary parts of 10000 matrices are stored in two channels. 

2.3 CNN 

A convolutional neural network is developed using the Matlab Deep Learning Toolbox (R2019a, 

Mathworks Inc.,Natick, MA, USA) on NVIDIA GTX 1050Ti graphics processing units. The archi-

tecture of the CNN is shown in Fig. 1 . This network includes one input layer with two channels, 

six convolutional layers, five max pool layers, and one regression layer. Rectified linear unit 

(ReLU) activation functions are used between CL and MP layers. The mean square error is imple-

mented as the loss function. The output of regresression layer is 21 parameters which correspond to 

twenty metabolites and one background MM. Using these parameters and Eq (1), the estimated 

signal is reconstructed. 

 

Figure 1: A schematic of the proposed approach. The generated signal based on a linear combination 

of metabolites basis sets is converted to two gray Scalogram images (real and imaginary). These imag-

es feed to CNN as inputs. The CNN includes 6 blocks, which comprise a Convolutional, Rectifier and 

Max-pooling layer. The last layers are a fully connected and a regression layer (which has 21 outputs). 

The estimated signal is reconstructed with the estimated parameters. 

2.4 ACCURACY EVALUATION 

Two methods are used to measure the accuracy of the model. First, the mean absolute error, 

which is the most straightforward regression error metric. MAE is defined as below for each 

metabolite: 

                                                      (2) 

where m, N, A, and A’ are the metabolite index, the number of test datasets, the ground truth, 

and the estimated amplitude, respectively. The second method is the Symmetric mean absolute 

percentage error (SMAPE) which is given by: 
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                                                  (3) 

2.5 RESULTS 

The dataset is separated into two datasets, namely a training dataset and a test dataset. The training 

dataset contains 80% of the data and the remaining 20% are the test dataset. CNNs with different 

hyperparameters such as minimum batch size, initial learning rate, and validation frequency are 

tested, and the CNN with the best result is chosen. The minimum batch size, initial learning rate, 

and validation frequency are 30, 1e-5, and 10, respectively. It has been shown that increasing the 

training sample would decrease the value of loss function [5]. Nonetheless, to be able to compare 

results obtained with our new approach (DL with time-frequency domain input) with the results of 

the Hatami et al approach (DL with frequency domain input)  in a reasonable time, we decided to 

use only 10000 samples for CNN training and testing.  Training and validation loss for the given 

dataset are 0.18 and 0.23, respectively. 

Fig. 2 shows one of the tested  (ground truth) signal, its estimate, and residual. The following con-

clusions may be drawn from this figure. First, the method used is able to estimate the tested signal. 

Second, residuals mainly occur when the signal shows rapid fluctuation. 

 

Figure 2:  Example of the signal estimation – ground truth signal (orange), estimated signal (vio-

let) and residual signal (green). 

 

Figure 3:   (left) Mean absolute error bar of every metabolite and its variance. (right) The symmetric 

mean absolute percentage error of each metabolite for (blue) our study (orange) Hatami et al.[5] 

The mean absolute errors (MAE) of metabolites are shown in Fig. 3 (left). Even though the amount 

of error is not too low compared to the amplitude range ([0, 1]), the variance of the error is small. 

Fig. 3 (right)  shows the comparison of the Symmetric mean absolute percentage error (SMAPE) 

between our approach and Hatami et al. approach. To avoid any bias in comparison, we used 
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the CNN described in this study and train it with our training set but in one case in the form of 

scalogram and in the other case (Hatami et al.) with the data in the frequency domain. The pro-

posed approach shows less amount of error compared to their method. 

3 CONCLUSION 

Quantification of MRS is an important topic where a robust and universal panacea approach to 

quantify signals is needed. It was shown in this study that time-frequency deep learning quantifica-

tion could outperform single domain quantification used in the previous studies [2, 5] and hopeful-

ly as a method using information from both MRS domains be successfully used also for quantifica-

tion of signals with artifact patterns [8]. The next steps may be to verify the tested approach on 1) 

the simulated noisy MRS with different signal-to-noise-ratios and for different pulse sequences 2) 

on real MRS acquired from a phantom, 3) on MRS acquired from a rat, and 4) to implement this 

approach as a plugin in the jMRUI software package [11]. 
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Abstract: Magnetic resonance spectroscopy (MRS) can provide quantitative information about local metabolite 

concentrations in living tissues, but in practice the quantification can be difficult. Recently deep learning (DL) 

has been used for quantification of MRS signals in the frequency domain, and DL combined with time-

frequency analysis for artefact detection in MRS. The networks most widely used in previous studies were 

Convolutional Neural Networks (CNN). Nonetheless, the optimal architecture and hyper-parameters of the 

CNN for MRS are not well understood; CNN has no knowledge about the nature of the MRS signal and its 

training is computationally expensive. On the other hand, Wavelet Scattering Convolutional Network 

(WSCN) is well-understood and computationally cheap. In this study, we found that a wavelet scattering 

network could hopefully be also used for metabolite quantification. We showed that a WSCN could yield 

results more robust than QUEST (one of quantitation methods based on model fitting) and the same as a CNN 

while being faster. We used wavelet scattering transform to extract features from the MRS signal, and a 

superficial neural network implementation to predict metabolite concentrations. Effects of phase, noise, and 

macromolecules variation on the WSCN estimation accuracy were also investigated. 

1 INTRODUCTION 

Magnetic Resonance Spectroscopy (MRS) has 

attracted the MR community over the past seven 

decades (Van Der Graaf, 2010). A significant part of 

the interest in biomedical MRS stems from the 

possibility of noninvasive measurements of 

metabolites. Information about tissue metabolites can 

help in clinical diagnostics. For instance, detection of 

metabolic pathway changes may facilitate diagnosing 

disease in earlier stages before anatomy changes can 

be observed, and thus enable more efficient treatment. 

E.g., in glioma, a decrease of N-acetylaspartate 

(NAA) and creatine concentrations and an increase of 

choline, lipids, and lactate predicts an increase of the 

glioma grade (Robin A. de Graaf, 2019; Van Der 

Graaf, 2010). To detect such changes, quantification 

of MRS signals is required for obtaining the 

metabolite concentrations in the tissue. However, 

 

a  https://orcid.org/0000-0001-8342-3284 
b  https://orcid.org/0000-0003-0337-7893 
c  https://orcid.org/0000-0002-1218-0585 

reliable quantification of MRS is difficult. The 

existing MRS quantitation methods are based on 

model fitting of the signal in either the time or the 

frequency domain (Poullet et al., 2008). In recent 

years, new novel machine learning solutions have 

been proposed for quantification, one of which is 

deep learning (DL). Even though the first usage of 

machine learning dates back to the 1970s, it was 

unpractical until the past decade due to lack of high-

performance hardware and novel algorithms (Chen et 

al., 2020). DL has achieved many accomplishments 

in a wide range of tasks, including the MRI field 

(Alaskar, 2019). Due to the poor SNR, chemical shift 

displacement, and overlapping signal components in 

MRS signals, only recently has DL been used for 

metabolite quantification of MRS signals in the 

frequency domain (Hatami et al., 2018; Lee & Kim, 

2019) 
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Hatami et al. showed the first step in this area by 

using the Convolutional Neural Network (CNN) 

approach for simulated MRS signal quantification 

(Hatami et al., 2018). Kim et al. conducted a 

comprehensive study on brain metabolite 

quantification using DL (Lee and Kim, 2019). 

Nonetheless, the practical application of DL in MRS 

has not been limited to quantifications only. 

Kyathanahally et al. taught a CNN with time-

frequency data to detect and remove ghosting artifacts 

in clinical magnetic resonance spectra of the human 

brain (Kreis & Kyathanahally, 2018). 

However, the optimal architecture and hyper-

parameters of CNN for MRS are not well understood. 

Besides, training a CNN is a computationally 

expensive and time-consuming task, and it usually 

needs a big dataset (Bruna & Mallat, 2013). 

Moreover, in the case of MRS signals, CNN has no 

understanding of the nature of the signal, and 

therefore, any shape difference of the signal under 

investigation from signals in the training data set can 

lead to CNN failure. If we look at a CNN as a 

transformation from the time domain to a features 

domain, due to the nature of MRS signals, the 

transformation should be invariant to time shift, 

deformation in the time domain, and frequency shift. 

To satisfy such requirements, CNN could be designed 

as   

-  an optimized and simple deep architecture 

which pools the features using a nonlinear averaging 

measure. 

-  a network with a fast computational 

algorithm which is stable to time-shifting, 

deformation in the time domain, and frequency shift.  

Wavelet Scattering Convolutional Network 

(WSCN) can be a method of choice. WSCNs are 

well-understood, computationally cheap, and fast for 

a deep learning task (Andén & Mallat, 2014; Bruna & 

Mallat, 2013). Wavelet-based methods have 

previously been used for MRS quantification and 

water removal (Poullet et al., 2008; Suvichakorn et 

al., 2008); but as far as we are aware, wavelet 

transform has not been implemented by a deep 

convolutional neural network to quantify MRS 

signals. 

Given the mentioned accomplishments of 

machine learning in MRS for signal quantification, 

this paper describes to our knowledge the first attempt 

to use this state-of-the-art technique to quantify MRS 

signals by WSCNs. We used wavelet scattering 

transform to extract features from the free induction 

decay (FID, i.e. the MRS signal in the time domain) 

and a superficial neural network implementation to 

predict metabolite concentrations.  

In this study, we used two different basis sets. The 

first basis set was the ISMRM challenge 2016 

simulated basis set for comparing results of our 

method with the results published for a CNN and 

another conventional quantification method, QUEST 

(Graveron-Demilly, 2014). For the second basis set, 

we simulated our own metabolite signals and 

generated different synthetic datasets from them for 

evaluating our method against phase changing, noise, 

and presence of macromolecule signals.  

2 METHODS 

All steps were run on a laptop with a 4-core Intel i7 
processor running at 2.6 GHz and an NVIDIA GTX 
1050Ti graphics processing units using Matlab 
(R2019a, Mathworks Inc., Natick, MA, USA) 
software. 

2.1 Simulation of Metabolites 

To build a basis-set signals, fifteen metabolites  –

Alanine (Ala), Aspartate (Asp), Creatine (Cr), 

Choline (Cho), Gamma Aminobutyric Acid (GABA), 

Glutathione (GSH), Glutamine (Gln), Glutamate 

(Glu), Lactate (Lac), N-Acetylaspartate (NAA), N-

acetyl-aspartyl-glutamate (NAAG), Phosphatidyl-

choline (PC), Phosphocreatine (PCr), Taurine (Tau) 

and myo-Inositol (mIns) – were simulated at 9.4 T 

magnetic field with the PRESS sequence (TE = 20 

ms; TR = 2500 ms; acquisition points: 2048; 

acquisition bandwidth: 4401.41 Hz; three PRESS 

pulses with Hermite shapes and flip angles: P1 = 90°, 

P2 = 180°, P3 = 180°). The simulation was performed 

in NMRScopeB (Starčuk & Starčuková, 2017; Stefan 

et al., 2009). The parameters selected in the sequence 

were taken from an in-vivo experiment, which allows 

reusing the simulated basis set. 

2.2 Baseline and Macromolecule 
Simulation 

The baseline signals were simulated as a linear 

combination of several Gaussian lines identified by 

Osorio-Garcia (Opstad et al., 2008; Osorio-Garcia et 

al., 2011). The number and parameters of Gaussian 

lines were extracted from in-vivo signals using 

inversion recovery (Osorio-Garcia et al., 2011). 

2.3 Signal Generation Framework 

The MRS signal was defined as a linear combination  
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of amplitude-scaled frequency- and phase-shifted 

metabolite signals, the baseline, and noise.  

The model describing a time-domain MRS signal 

s[n] as a combination of several metabolite profiles is 

(Poullet et al., 2007): 
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where 𝑋𝑚[𝑛] is the n-th sample of the m-th simulated 

metabolite, ∆𝑇  is the sampling period, Am is the 

scaling factor of the metabolite, 𝛥𝛼m is the damping 

factor, Δfm is the frequency shift of the m-th 

metabolite affected by the static magnetic field 

inhomogeneity, pH, temperature and chemical 

composition of the tissue, ∆𝜃𝑚 is the phase of the m-

th metabolite, Δt is the time step, and M is the number 

of metabolites. 

Table 1 specifies the range of parameter values 

used for generating different datasets according to 

equation (1). For a comparison of our results with the 

previous study (Hatami et al., 2018), the basis set 

provided for the ISMRM challenge 2016 (ISMRM, 

2016) was used to generate dataset DSS1 (20 

metabolite and one macromolecule components). All 

other datasets were generated using the basis set 

simulated with NMRScopeB (15 metabolites). The 

same parameter ranges that were used in the previous 

study (Hatami et al., 2018) were also used in this 

study for DSS1, but we decided to choose ranges of 

parameters for other datasets (DSS2-DSS7) in the 

same manner as we would do if we evaluated real 

acquired spectra. 

Instead of generating 500 000 signal samples per 

dataset, in our study only 10 000 signal samples were 

generated for validating the hypothesis that our 

network is as robust as Hatami et al.'s approach 

(Hatami et al., 2018) even with a smaller number of 

samples but faster. Parameters were chosen randomly 

from defined ranges with a uniform distribution. In 

DSS1, random complex Gaussian noise was added to 

signal samples based on the previous study (Hatami 

et al., 2018). In the rest of the datasets, the SNR of the 

signal samples was adjusted by adding random noise 

such that the SNR was in the range of ~5 to ~15. In 

this study, we used MATLAB built-in snr function 

which calculates the signal-to-noise ratio (SNR) of an 

MRS signal by computing the ratio of its summed 

squared magnitude to that of the noise. In Table 1, the 

presence of a parameter is marked by a tick and the 

absence of a parameter by a cross. 

2.4 Deep Learning 

2.4.1 Invariant Wavelet Scattering Network 

Invariant wavelet scattering network is a transform 

from the time domain to the features domain, which 

has three stages, namely, Convolution (wavelet), 

Non-linearity, and Averaging (scaling factor).  

In contrast to the classical wavelet transform, the 

Complex wavelet transform is translation invariant. 

In this study, we chose Morlet (Gabor) wavelets, a 

type of complex wavelet transform, because they 

have a simple mathematical representation.  

Figure 1 illustrates the wavelet scattering 

transform processes (see (Andén & Mallat, 2014; 

Bruna & Mallat, 2013) for more details). In practice, 

a scattering decomposition framework was created 

with a signal input length of 1024 samples. 

Table 1: Specification of datasets. 

Name 
Amplitude 

(Am) 

Frequency 

shift(Δfm) 

Damping 

range(𝛥𝛼m) 

Noise 

(𝜖) 

Phase ( ∆𝜃𝑚) MM (𝐴𝑀𝑀) 

Common Separated Constant Changing 

DSS1 

(Hatami et 

al., 2018) 

[0, 1] [-10, 10] [-10, 10]      

DSS2 [0.5 1] [-10, 10] [-5, 2.5]      

DSS3 [0.5 1] [-10, 10] [-5, 2.5]  [−
𝜋

8
,

𝜋

8
]    

DSS4 [0.5 1] [-10, 10] [-5, 2.5]   [−
𝜋

8
,

𝜋

8
]   

DSS5 [0.5 1] [-10, 10] [-5, 2.5]  [−
𝜋

8
,

𝜋

8
]    

DSS6 [0.5 1] [-10, 10] [-5, 2.5]      

DSS7 [0.5 1] [-10, 10] [-5, 2.5]     
Within ±10 percent 

of initial values 
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The framework had two filter banks; in other words, 

the depth of the framework was 3. The quality factor 

(the number of wavelet filters per octave) of the first 

and second filter banks were 8 and 1, respectively. 

For the given signal length and quality factors, the 

output of the framework was a matrix with a size of 

154 by 8 by 2. There were 154 scattering paths and 8 

scattering windows for each of the real and imaginary 

parts of the signal. 

2.4.2 Regression 

 

Figure 1: The process of wavelet scattering network; 

averaging and convolution of a signal with wavelet filters 

are showed by an arrow (green) and a circled star, 

respectively. 

Flattening and fully-connected layers were what we 

had at the last stage of our network. The first step, so-

called flattening, was converting a feature matrix into 

a 1-dimensional array. The matrices from the output 

of WSCN were flattened to create a single long 

feature vector.  The flattening layer was connected to 

a fully-connected layer, which was a feedforward 

artificial neural network for the regression task. 

Neural networks with the different number of neurons 

in hidden layers were investigated. The best fully-

connected layer structure was obtained by trial and 

error on the basis of the lowest error on the training 

and validation dataset. The results showed that one 

hidden-layer network with 20 neurons in the hidden 

layer yielded better results than other network types. 

The modeling performance and training were 

evaluated by the mean square error (MSE) and scaled 

conjugate gradient, respectively. 

Figure 2 demonstrates the process of 

transformation, flattening, and regression. The input 

and output of a fully-connected layer were the 

features vector and the relative amplitudes of various 

metabolite basis spectra, respectively. 

 

Figure 2: A schematic of feature extraction and flattening 

and the training of an artificial neural network. 

2.4.3 Quantification 

80% of each dataset was allocated to the training set, 

10% for validation and the rest 10% for the test set. It 

applied to all datasets, DSS1 to DSS7, and then they 

were fed to the network. First, the network was 

trained with the training dataset; then, it was used to 

predict the test dataset. The output of the network was 

a vector in which each element represents the relative 

amplitude of each metabolite. 

2.5 Accuracy Evaluation 

The Symmetric mean absolute percentage error 

(SMAPE) is used to measure the accuracy of the 

model. SMAPE is defined as below for each 

metabolite: 

 

SMAPE[m] =
∑ |𝐴𝑚𝑛 − 𝐴𝑚𝑛

′  |𝑁
𝑛=1

∑ (𝐴𝑚𝑛 + 𝐴𝑚𝑛
′ ) 𝑁

𝑛=1

 (2) 

 

Where m, N, A, and 𝐴′ are the metabolite index, the 

number of test datasets, the ground truth, and the 

estimated amplitude, respectively. 

3 RESULTS 

3.1 Comparison between the 
Quantification Result of QUEST, 
CNN, and WSCN for ISMRM 
Challenge Dataset 

Figure 3 shows the comparison between different 

methods, namely Quest, CNN, and WSCN, for 

dataset DSS1, where the SNR of signals was set to 10. 

The result for CNN and QUEST were extracted from 

(Hatami et al., 2018). 

 

Flattening

Feature 
Extraction

Signal(s[n])
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Figure 3: Comparison between SMAPEs of each metabolite for the WSCN (red), the CNN (yellow), and Quest (green). 

 

Figure 4: Comparison between SMAPEs of the concentration of all metabolites with fixed phases (DSS2), common phase 

varied (DSS3) and independently varied phases (DSS4) (different phase changes for different metabolites). (Test datasets, 

N=1000). The error bars represent the standard deviation. 

3.2 Effect of Phase Variation and Noise 
on WSCN Estimation Accuracy 

The performance of WSCN was evaluated on 

different datasets (DSS2 to DSS7) in table 1. Figure 

4 shows the effect of metabolite phase variation in the 

signals under test. We compared the result of signals 

with a fixed phase, a common varied phase, and 

independently varied phases. The average of 

SMAPEs for DSS2, DSS3, and DSS4 were 1.13%, 

1.38%, and 1.7%, respectively.  

The results of the metabolite quantification for 

DSS5 (DSS3 with added noise) is shown in Figure 5.   

For all 15 metabolites, the average of SMAPE was 

3.46% ± 2.81%. Asp with SMAPE of 6.00 ± 4.48 and 

NAAG with SMAPE of 13.20% ± 10.12% were 

quantified as highest and lowest SMAPE, 

respectively. The average SMAPE of DSS5 was 

increased by 151% compared to DSS3 (without 

noise). 

3.3 Effect of Macromolecules Variation 
on WSCN Estimation Accuracy 

Figure 6 shows a comparison between DSS6 and 

DSS7. In dataset DSS6, the parameters of baseline 

signals (11 Gaussian lines) are constant, while in 

DSS7, amplitudes of Gaussian lines were randomly 

varied in the range of ±10% of their initial values. For 

all metabolites of DSS6 and DSS7, the average 

SMAPEs were 5.92% ± 4.40% and 6.12% + 4.55%, 

respectively. The average SMAPE of DSS6 and 

DSS7 was increased by 73% compared to DSS5 

(without Macromolecules inclusion).  

0
5

10
15
20
25
30
35
40
45
50

Sy
m

m
et

ri
c 

m
ea

n
 a

b
so

lu
te

 
p

e
rc

en
ta

ge
 e

rr
o

r 
(S

M
A

P
E,

 %
)

WSCN CNN Quest

0

1

2

3

4

5

6

7

Ala Asp Cr Cho GABA GSH Gln Glu Lac NAA NAAG PC PCr Tau mIns

Sy
m

m
et

ri
c 

m
ea

n
 a

b
so

lu
te

 
p

e
rc

en
ta

ge
 e

rr
o

r 
(S

M
A

P
E,

 %
)

DSS2 DSS3 DSS4

BIOSIGNALS 2021 - 14th International Conference on Bio-inspired Systems and Signal Processing

272



 

Figure 5: Symmetric mean absolute percent error (SMAPE) of the concentrations of all metabolites in dataset DSS5, which 

contains noisy signal (N = 5000). The error bars represent the standard deviation. 

 

Figure 6: Comparison between SMAPEs of the concentration of all metabolites in dataset DSS6, and DSS7 (Test datasets, 

N=1000). In DSS6, the amplitudes of macromolecules lines were constant. In contrary, the amplitudes were varying within 

±10% of initial range in DSS7. Both datasets are noisy and with common phase changing. 

4 CONCLUSIONS 

The aim of MRS signal quantification is to estimate 

the amplitudes/areas (in time/frequency domain) of 

different metabolites in the signal. The estimated 

amplitudes/areas then can be converted to meaningful 

numbers as the concentration of metabolites. The 

conventional and widely used approach is to estimate 

amplitudes of single sinusoids (areas of single peaks) 

in MRS signal or to estimate the amplitudes (areas) of 

whole metabolite signals (spectra). In the former 

approach, the model is fitted to data using non-linear 

least-squares analysis; the latter approach uses a basis 

set of metabolite profiles in the model function and 

uses a semi-parametric fitting technique. The oldest 

method, so-called peak integration, is calculating 

peaks area in a selected frequency interval. 

Nonetheless, using these approaches for 

quantification is challenging (Stagg & Rothman, 

2014).  

On the other hand, the quantification of the MRS 

signal using deep learning has attracted huge interest 

in recent years (Chen et al., 2020). DL can detect 

important features in the MRS signal and 

subsequently determine a non-linear mapping 

between these features and the outputs, which can be 

the concentrations of the metabolites. The most 

widely used DL approach for quantification is CNN. 

Nevertheless, this approach has drawbacks, for 

example, poor understanding of the CNN architecture 

and hyper-parameters for MRS, expensive and time-
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consuming computation, and the need of a big dataset 

for CNN training (Bruna and Mallat, 2013).  

These shortages motivated us to develop a deep 

network for MRS signal quantification, which can be 

fast, well-understood, and works with a small dataset 

of training samples. For this purpose, we used a 

WSCN.  

In every DL task, determining the proper input 

and output of the network is an important step. In our 

study, the input is an FID, i.e., time-domain signal, 

and the network estimates amplitudes of the first 

points of metabolite signals (what corresponds to 

areas under metabolite signals in metabolite spectra). 

In this work, we demonstrated that the use of the 

wavelet scattering network could achieve better 

results than the semi-parametric fitting technique 

QUEST and similar results as the computationally 

more demanding CNN (Figure 3).  

It is known that the accuracy of estimation in the 

peak integration approaches is influenced by phases 

of peaks (Stagg & Rothman, 2014), and that phase 

should be included in the model as one of the 

unknown parameters. Therefore, we also investigated 

whether WSCN is capable of estimating amplitudes 

of metabolites in case that metabolite phases change. 

It resulted in an increase in the complexity of the 

model, but WSCN proved to have the capability of 

handling this task. Figure 4 shows the WSCN can 

quantify signals with common varied phases (with 

SMAPE of 1.38%) as well as signals without fixed 

phases (with SMAPE of 1.13%). The average of 

MAPEs for DSS4 is increased by 36% and 17% 

compared to DSS2 and DSS3, respectively. It 

indicates that quantification can be moderately harder 

for a dataset with independently varied phases. 

Another source of error in quantification are 

macromolecular signals, which stem in macro-

molecules present in the tissue under investigation. In 

conventional quantification approaches, macro-

molecule signals can either be removed in the 

preprocessing step or modeled in the quantitation 

step. However, the risk of errors will be increased and 

accumulated in fitting error in the former approach, 

and therefore the latter approach is recommended. 

However, macromolecule signals often overlap with 

metabolite components, for which DL can be a 

method of choice for disentangling. As we showed in 

Figure 3, the WSCN could estimate macromolecules 

better than other approaches. Later in this study, we 

modeled the macromolecules signal as a set of 

Gaussian lines using parameters (like linewidth, 

frequency) measured using the inversion-recovery 

recovery (Osorio-Garcia et al., 2011). Figure 6 

demonstrates that the WSCN showed nearly the same 

error for signals with randomly varied macro-

molecule lines and signals with fixed macromolecule 

lines. This could indicate that despite the changing of 

background signals parameters, the WSCN is stable 

against nuisance components in MRS, such as 

macromolecules. Additional research should be done 

however with simulated signals that will imitate in-

vivo data. 

To compare the learning times of both networks, 

i.e., Hatami et al.'s CNN and our WSCN, we rebuilt 

their CNN and fed both networks with the DSS5 

dataset, and ran both networks in the earlier 

mentioned system. Our proposed approach is 

estimated to be 45 times faster than Hatami et al.'s 

approach (the WSCN’s learning time was 5 min 40 

sec precisely and the CNN’s learning time was 268 

min). The WSCN showed that it could be faster than 

the CNN due to using fixed-size filters and less 

parameter optimization. 

It should be noted that even though deep learning 

showed promising results in areas like speech 

recognition and image processing (Chen et al., 2020), 

this study is one of the very initial steps in the 

application of DL in MRS and more studies are 

needed for proving DL suitability for in-vivo 

spectroscopy. Below some of the limitations and open 

issues are addressed: 

1. In this study, we only quantified simulated 

data. The amplitudes of metabolites in our 

simulated data did not imitate the metabolite 

concentrations in in-vivo data. Quantification of 

simulated data with concentrations close to in-

vivo data should be investigated as the next step 

together with data acquired from a phantom.  

2. Real MRS data is influenced by numerous 

factors such as voxel size, voxel placement, 

radiofrequency (RF) coil sensitivity, receiver 

gain, and other experimental factors. Further 

research must take all factors into account. 

3. A potential application of our proposed 

approach is the quantification of MRSI data, 

where a fast method is needed for quantification 

of a set of MRS signal. Learning a network and 

using it for only a single voxel may not be 

efficient as using it for a set of signals.  
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Purpose: The aims of this work are (1) to explore deep learning (DL) archi-
tectures, spectroscopic input types, and learning designs toward optimal quan-
tification in MR spectroscopy of simulated pathological spectra; and (2) to
demonstrate accuracy and precision of DL predictions in view of inherent bias
toward the training distribution.
Methods: Simulated 1D spectra and 2D spectrograms that mimic an extensive
range of pathological in vivo conditions are used to train and test 24 different DL
architectures. Active learning through altered training and testing data distribu-
tions is probed to optimize quantification performance. Ensembles of networks
are explored to improve DL robustness and reduce the variance of estimates. A
set of scores compares performances of DL predictions and traditional model
fitting (MF).
Results: Ensembles of heterogeneous networks that combine 1D
frequency-domain and 2D time-frequency domain spectrograms as input per-
form best. Dataset augmentation with active learning can improve performance,
but gains are limited. MF is more accurate, although DL appears to be more
precise at low SNR. However, this overall improved precision originates from a
strong bias for cases with high uncertainty toward the dataset the network has
been trained with, tending toward its average value.
Conclusion: MF mostly performs better compared to the faster DL approach.
Potential intrinsic biases on training sets are dangerous in a clinical context that
requires the algorithm to be unbiased to outliers (i.e., pathological data). Active
learning and ensemble of networks are good strategies to improve prediction
performances. However, data quality (sufficient SNR) has proven as a bottleneck
for adequate unbiased performance—like in the case of MF.
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2 RIZZO et al.

1 INTRODUCTION

MR Spectroscopy (MRS) provides a noninvasive means
for extracting biochemical profiles from in vivo tis-
sues. Metabolites are encoded with different resonance
frequency patterns, and their concentrations are directly
proportional to the signal amplitude.1,2 Metabolite quan-
tification is traditionally based on model fitting (MF),
where a parameterized model function is optimized to
explain the data via a minimization algorithm. Metabo-
lite parameters are usually estimated by a nonlinear
least-squares fit (either in time or frequency domain)
using a known basis set of the metabolite signals.3 How-
ever, despite various proposed fitting methods,3–7 robust,
reliable, and accurate quantification of metabolite con-
centrations remains challenging.8 The major problems
influencing the quantitative outcome are: (1) overlapping
spectral patterns of metabolites, (2) low SNR, and (3)
unknown background signals and line shape (no exact
prior knowledge). Therefore, the problem is ill-posed, and
current methods address it with different regularizations
and constraint strategies (e.g., parameter bounds, penal-
izations, choice of the algorithm), with discrepancies in
the results from one method to another.9

Supervised deep learning (DL) utilizes neural net-
works to discover essential features embedded in large
data sets and to determine complex nonlinear mappings
between inputs and outputs.10 Thus, DL does not require
any prior knowledge or traditional assumptions. Given the
success of the method in different areas,10–14 DL has been
introduced into MRS as an alternative to conventional
methods.15–22 Quantification of MRS datasets has been
explored as follows: (1) DL algorithms identify datasets’
features and either help reduce the parameter space
dimension or set reliable starting conditions for the fit (i.e.,
combining knowledge on the physics with DL). It showed
rapid spectral fitting of a whole-brain MRSI datasets.23

(2) Convolutional neural networks (CNNs) have been
deployed to investigate combinations of spectral input of
edited human brain MRS, which showed improved accu-
racy of straight metabolite quantitation when compared
to traditional MF techniques.24 (3) Regression CNNs have
been used to mine the real part of rat brain spectra to
predict highly resolved metabolite basis set spectra with
intensities proportional to the concentrations of the con-
tributions,17 with results comparable to traditional MF
approaches and showing readiness for (pre)clinical appli-
cations.22 (4) Targeting localized correlated spectroscopy
(L-COSY) datasets, DL algorithms have reported faster
data reconstruction and quantification compared to alter-
native acceleration techniques.16

Nevertheless, despite the reported equivalence in
quantitation performance compared to traditional
MF,14,17,22,23 questions arise concerning the robustness of

DL algorithms. A robust use within a clinical MRS context
requires the algorithm to be unbiased also for pathological
spectra. In imaging, DL has shown excellent performance
for classification or segmentation tasks but may suffer
from inherent weaknesses in subsets of representative out-
lier samples.11,25 DL architectures for MRS quantitation
have mostly been investigated for sample distributions of
near-healthy spectral metabolite content. Hence, it can
be suspected that high accuracy and precision are mainly
found when DL is deployed for new entries of similar
near-normal types. However, inaccurate estimates may
result for tests with atypical datasets.26 Here, strongly vari-
able metabolite concentrations that vary uniformly and
independently over the entire plausible parameter space
are used in the training set. This mimics the full range
from healthy to strongly pathological spectra, that is, the
full complexity of a clinical setup.

MRS signals are acquired in time domain but viewed in
frequency domain. Traditional MF works in either of the
two equivalent domains, and fit packages may allow the
user to switch from one to the other for fitting and viewing.
However, DL architectures for MRS quantification have
mainly explored the frequency domain, mostly motivated
by the reduced overlap between the constituting metabo-
lite signals. Spectrograms18 present an extension into a
simultaneous time/frequency domain representation and
offer a 2D signal support that matches the input format for
the original usage of CNN algorithms in computer vision.
This work introduces a dedicated high-resolution spec-
trogram calculation focusing on signal-rich areas in both
domains to be used as input for different CNN architec-
tures. They are compared to other inputs and networks,
inspired by previous MRS publications. Specifically, 24 net-
work designs are investigated with differing input–output
dataset types with a combined focus on depth (i.e., num-
ber of layers) and width (i.e., number of nodes/kernels)
of the networks. This focus was motivated by the fact
that the exploitation of spectrograms in deep learning
has shown top-notch performance for speech and audio
processing when deploying architectures with few lay-
ers and large convolutional kernels.27–29 Moreover, wide
and shallow networks are more suitable to detect simple
and small but fine-grained features. In addition, they are
easier and faster to train.30 Network linearity (i.e., acti-
vation function) and locality (i.e., kernel size) are also
investigated.

Besides investigating multiple architectures and input
formats, two established main strategies for improving the
outcome of predictions are also explored: active learning31

(data augmentation for critical types of spectra) and ensem-
ble learning32,33 (combination of outputs from multiple
architectures).

Active learning can improve labeling efficiency,31,34,35

where the learning algorithm can interactively select a
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RIZZO et al. 3

subset of examples that needs to be labeled. This is an
iterative process where (1) the algorithm selects a sub-
set of examples; (2) the subset is provided with labels;
and (3) the learning method is updated with the new
data.36 Uncertainty sampling37 is a specific strategy used in
active learning that prioritizes selecting examples whose
predictions are more uncertain (i.e., targeted data aug-
mentation). Because these cases are usually close to the
class separation boundaries, they contain most of the infor-
mation needed to separate different classes.38,39 In differ-
ent applications, uncertainty sampling has been shown to
improve the effectiveness of the labeling procedure signif-
icantly.34,35,37,40

DL algorithms are sensitive to the specifics of the train-
ing.41 Hence, they usually find a different set of weights
each time they are trained, producing different predic-
tions.10 A successful approach for reducing the variance
is to train multiple networks instead of one and combine
their predictions.41 This is called ensemble learning, where
the model generalization is maintained, but predictions
improve compared to any of the single models.33 From a
range of different techniques,42–44 here, stacking of models
is implemented.32

To evaluate pros and cons of all these approaches, in
silico ground truth (GT) knowledge is used (and hence no
in vivo data was included in this evaluation) to assess per-
formances via a dedicated set of metrics based on bias and
SD. The CNN-predicted distributions of concentration are
then compared to those from traditional MF. Furthermore,
to emphasize the analysis at the core of the quantifica-
tion task, the focus is placed on an idealized simulated
setting with typical single-voxel spectra that have been pre-
processed to eliminate phase as well as frequency drifts.3
This assumption aims at (1) freeing the MF algorithm
from problems with local 𝜒2 minima and (2) designing DL
models optimized for the quantification task only.

2 METHODS

2.1 Simulations

This work is based on in silico simulations. A dataset of
22,500 entries was randomly split into 18,000 for training,
2000 for validation, and 2500 for testing. Larger dataset
sizes are also explored, see section 2.4.

2.1.1 MR spectra

Brain spectra were simulated using actual RF pulse shapes
for 16 metabolites at 3 T using Vespa45 for a semi-LASER46

protocol with TE = 35 ms, a sampling frequency of 4 kHz,
and 4096 datapoints.

Further specifics of the simulations include: (1) Voigt
line shapes, (2) metabolite concentration range, (3) addi-
tion of macromolecular background signal (MMBG),
(4) noise generation, and (5) spectrum or spectrogram
calculation.47 Metabolite concentrations vary indepen-
dently and uniformly between 0 and twice a normal
reference concentration for healthy human brain.1,48–50

Maximal concentrations in mM units—NAA 25.8, tCr
(1:1 sum of creatine+ phosphocreatine spectra): 18.5,
mI (myo-inositol): 14.7, Glu (glutamate): 20, Glc (glu-
cose): 2, NAAG (N-acetylaspartylglutamate): 2.8, Gln (glu-
tamine): 5.8, GSH (glutathione): 2, sI (syllo-inositol):
0.6, Gly (glycine): 2, Asp (aspartate): 3.5, PE (phos-
phoethanolamine): 3.3, Tau (taurine): 2, Lac (lactate):
1, and GABA (γ-aminobutyric acid): 1.8. The con-
centration for tCho (1:1 sum of glycerophosphoryl-
choline+ phosphorylcholine spectra) ranges from 0 to
5 mM to mimic tumor conditions.51 A constant down-
scaled water reference (64.5 mM) is added at 0.5 ppm
to ease quantitation. Metabolite T2s in ms (and hence
Lorentzian broadening) are fixed to reference values from
literature—tCr (CH2): 111, tCr (CH3): 169, NAA (CH3):
289, and all other protons: 185.49,52,53,54 MMBG content,
shim, and SNR mimicked in vivo acquisitions and varied
independently and uniformly (time-domain water refer-
enced SNR 5–40, Gaussian shim 2–5 Hz, MMBG ampli-
tude ±33%). The MMBG pattern was simulated as a sum
of overlapping Voigt lines as reported in Refs. 49 and 55
(Figure 1A).

2.1.2 Spectrograms

A spectrogram is a complex 2D representation of a spec-
trum, where frequencies vary with time: Every image
column represents the frequency content of a particular
time portion of the FID. Time information is binned along
every row of the image. It is calculated via application of a
short-time Fourier transform,18 where, depending on the
size of the Fourier analysis window, different levels of fre-
quency and time resolution can be achieved. A long win-
dow size modulated via zero-filling combined with a small
overlap interval is chosen to increase frequency resolution
and minimize the expense of time resolution (Figure 1B).
Diagonal downsampling is designed to reduce the spec-
trogram size, keeping the original resolution grid at least
as part of the time-frequency information on consecutive
bins and reducing the spectrogram size (Figure 1C) to
allow reasonable computation time for a CNN architecture
(i.e., 128 frequency bins× 32 time bins) (Figure 1D).

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29561 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 RIZZO et al.

F I G U R E 1 Illustration of input formats. (A) Samples of spectra, real part, view of the central 1024 points. (B) Spectrogram
computation via short-time Fourier transform. Specifically, in datapoints units (corresponding to time and frequency resolution of 0.25 ms
and 1 Hz, respectively): S = 4096, Z = 6000, W = 1024, Ov = 1000, ZW = 1024. Zero-filling is tuned to select the relevant part of the spectrum
with W = 1024 datapoints. (C) (Left) Arrangement on a 2D frame of short-time Fourier transforms over time bins. Color code reference to
windows in part (B). A truncation at 32 bins (200 ms) in time domain is used to limit the matrix space, given an almost complete T∗2 relaxation
of the FID at that point. (C) (Middle) Diagonal undersampling reduces the vertical (frequency domain) matrix size. Size reduction is about a
factor N = 8. (C) (Right) Undersampled spectrogram: 128× 32 datapoints. (D) Example of constructed spectrogram matrix. FFT, fast Fourier
transform; S, support of the signal; Ov, window overlap; W, Hamming window size; Z, zero filling; ZW, truncated support of zero-filled FFT.
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RIZZO et al. 5

2.2 Design and training of CNN
architectures

A total of 24 different CNN architectures combined
with different spectroscopic input representations are
compared for MRS metabolite quantification. Current
state-of-the art networks have been taken as reference
models and adapted to the purpose and datasets used.

Scripts were written in Python56 using Keras library57

on a Tensorflow58 backend. Code ran on either of three
graphic-processing units (GPUs; NVIDIA [Santa Clara,
USA] Titan Xp, Titan RTX, or GeForce RTX 2080 Ti) or
Google [Mountain View, USA] Colaboratory.59 Samples
of the design are reported in Figure 2. Overall network
designs are given in Table S1; Figures S1, S2, S3, S4, S5;
and Text S1.

2.2.1 Architectures for straight numeric
quantification of concentrations

A total of 22 architectures were fed with 1D (spectra) or
2D (spectrograms) input and mapped as output a vector
of 17 normalized concentrations (i.e., in [0–1] interval)
of 16 metabolites and the water reference, as listed in
Table S1. Networks fed with 1D input exploit one chan-
nel with truncated spectra of 1024 datapoints from −0.5
to +6 ppm with concatenated real and imaginary parts
(i.e., 2048× 1× 1 datapoints, Figure 2A). Networks fed
with 2D input can either be configured in two chan-
nels (real and imaginary components of the spectrogram,
32× 128× 2 datapoints) or one channel (real and imag-
inary components concatenated, 64× 128× 1 datapoints,
Figure 2B).

Five networks receive 1D input: two deep convolu-
tional neural networks (DeepNet),60 two residual networks
(ResNet)61 and one inception network (InceptionNet).62–64

This work investigates deep and shallow architectures
either exploiting large or small convolutional kernel sizes.
A total of 10 networks receive two-channel spectrograms
as input. Given the limited size of the input FOV, the archi-
tecture is limited to be shallow (i.e., pooling operations to
downsampling features directly following a convolutional
layer are limited). However, a deeper architecture with
multiple convolutional operations with sparse pooling is
also compared. A further comparison is performed regard-
ing the optimal activation function, comparing batch
normalization+ rectified linear unit (ReLU) versus expo-
nential linear unit (ELU).65,66 Seven networks receive
one-channel spectrograms as input. With this configura-
tion, deeper architectures are explored: two DeepNets, four
ResNets, and one InceptionNet.

Architectures are analyzed either in a preconfig-
ured parameter state or in a parameter space that had been
optimized via Bayesian hyperparameterization.67 The opti-
mization procedure is given in Text S1. In addition, to limit
biases around zero for small concentrations,68 all network
designs are characterized by a final layer with linear acti-
vation, allowing the prediction of negative concentrations.

2.2.2 Architectures for estimation
of metabolite base spectra

1D input (real part only, 0–4.7 ppm, 1406× 1× 1 data-
points after zero-filling of original FID) was used to input
and output to/from the CNNs. U-Net architectures69 anal-
ogous to those of Ref. 22 are implemented here to map
the ideal high-resolved noiseless base spectrum of a tar-
get metabolite as output. CNNs are trained one by one
for each metabolite such that each CNN filters out signals
only from the designated target metabolite. A base U-Net
design (Figure 2C) is optimized for individual metabolites
as follows:

1. UNet-1DR-hp : A total of 17 different networks with the
same base architecture but adapted weights for each
metabolite;

2. Unet-1DR-hp-met: A total of 17 different networks with
adapted Bayesian-optimized architecture and weights
for each metabolite.

Configurations are reported in Figure S5. First,
metabolite concentrations are evaluated by feeding an
input spectrum to the 17 metabolite-specific CNNs. Inte-
gration of the predicted metabolite base spectrum is
then referenced to the integrated water reference to pro-
duce concentrations for a fully automated quantification
pipeline.22

2.2.3 Training

Training and validation sets were randomly assigned for
training the CNN on a maximum of 200 epochs with
batch normalization of 50. The adaptive moment estima-
tion algorithm (ADAM)70 was used with dedicated starting
learning rates for each network.71,72 The loss function was
the mean-squared error (MSE). Visualization of training
and validation loss over epochs combined with imple-
menting an early-stopping criterion monitoring minimiza-
tion of validation loss with patience= 10 has been used for
tuning the network parameter space.57 Training time and
test loss function are listed in Table S1.
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6 RIZZO et al.

F I G U R E 2 Examples of three CNN structures and schematic input–output relationships. (A) and (B) depict architectures for straight
quantification, with metabolites relative concentrations as output. (C) depicts a U-Net architecture similar to what was proposed in Ref. 22
for NAA basis set prediction. Input details: (A) Deep neural network with 1D-spectral input from concatenated real and imaginary parts (-1D).
(B) Shallow neural network with 2D-spectral input from two-channel spectrograms (-2D2c). (C) U-Net architecture fed with only the real part
of a spectroscopic input (-1DR). CNN, convolutional neural network.
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RIZZO et al. 7

2.2.4 Evaluation

Regression plots mapping GT concentrations versus CNN
predicted concentrations from the whole test set are taken
as indicators of the network’s prediction performance.
Four scores are defined:

• a (slope of the regression line): must be close to 1 for
ideal mapping of concentrations over the whole range
of simulated metabolite content;

• q (intercept of the regression line, mM): must be close
to 0 to minimize prediction offsets/biases;

• R2 (coefficient of determination): must be close to 1 to
assess full model explanation of the variability of the
data;

• 𝜎 (RMS error [RMSE] of prediction vs. GT, mM): as
low as possible. However, expected to be comparable to
Cramer Rao Lower Bounds (CRLBs) from MF.73

To easily compare different networks and input setups
quantitatively in the Results section, these scores or com-
binations thereof have been used. The combinations are
referred to as concise scores: a ⋅ R2 as measure of linearity,
𝜎 to compare with CRLBs. q was excluded because it is
mostly negligible.

2.3 Influence of inclusion of water
reference peak

For the evaluation of the potential benefit of includ-
ing a water reference peak, two slightly different
ShallowNet-2D2c-hp networks are compared. Network A
outputs 17 neurons (16 metabolites and water), whereas
network B outputs 16 neurons only (no water output).
Two adapted datasets are used for the investigation, one
with (dataset A), and one without (dataset B) downscaled
water reference at 0.5 ppm. Metabolite concentrations are
calculated for both cases (assuming known water content
in case A). Networks have been independently trained

five times to monitor network variability over multiple
trainings.

2.4 Active learning and dataset size

In this part, data augmentation techniques to smartly gen-
erate training sets are investigated. Subsets with 5000 new
entries of the dataset where predictions scored worst are
defined: specific subsets of spectrally weakly represented
metabolites in either very low or very high concentra-
tions and spectra with low SNR. New weighted datasets
of 25,000 entries (20,000 training – 5000 validation set)
or 40,000 entries (35,000 training – 5000 validation set)
are generated (example in Figure 3, full description in
Figure S6). Datasets with matching size and the testing
set are kept unchanged from the previous simulation,
thus with uniformly distributed concentrations and SNR.
ShallowNet-2D2c-hp is selected as architecture and trained
10 times with a given augmented training set to minimize
training variance.

Complementarily, given the network trained on a uni-
form span of concentrations, active learning is inves-
tigated in the testing phase on three different test
sets where concentrations are clipped to a progres-
sively smaller range of 20%–80%, 20%–80% with SNR
>20, and 40%–60% concentration range relative to the
training set.

2.5 Ensemble of networks

In this section, ensembles of networks are implemented
via stacking of models.32 This consists of designing a DL
architecture called stacking model (a multilayer percep-
tron (MLP) with two hidden layers is selected for this
case) that will take as input the combination of a given
number of independently pretrained models. The stacking
model aims at weighting predictions from single models.
It is trained using the same training and validation sets

F I G U R E 3 Examples of dataset
augmentation techniques representing
sample distributions for two metabolites
(NAA and GABA). (A) Dataset size
increment with uniformly distributed
concentrations. (B) Active learning weighted
on higher occurrences of low and high
concentrations for all metabolites. GABA,
γ-aminobutyric acid.
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8 RIZZO et al.

F I G U R E 4 Illustration of ensemble
learning. (A) Stacking model concept. (B)
Examples of considered models: the
stacking model consists of the two-layer
MLPs (i.e., first layer with 1000 neurons,
second layer with 500 neurons). HybridEns:
an ensemble of two different networks (-2n).
In this study, ShallowNet-2D2c and
ResNet-1D are combined with two or 10
networks. ShallowEns: an ensemble of five
different networks (-5n) of the same type,
specifically ShallowNet-2D2c. HybridEns,
hybrid ensemble; MLP, multi-layer
perceptron; ResNet, residual network;
ShallowNet, shallow network.

used to train single models while keeping the weights of
the pretrained input models fixed. Three different ensem-
bles are investigated: ShallowEns-5n groups five identi-
cal ShallowNet-2D2c-hp architectures, whereas HybridEns
tests heterogeneous inputs grouping either two or 10 dif-
ferent networks (ShallowNet-2D2c-hp and ResNet-1D-hp)
(Figure 4).

2.6 Model fitting

Spectra are fitted using FiTAID7 given its top performance
in the ISMRM fitting challenge9 and to be expected for the
spectra as used in the current setup (in particular, with-
out undefined spurious baseline). The model consists of
a linear combination of the metabolite base spectra with
Voigt lineshape, where the Lorentzian component was
kept fixed at the known GT value. The areas of the metabo-
lites are restricted in a range corresponding to [−0.5 +
2.5 𝜇], where 𝜇 is the average concentration in the test-
ing set distribution (i.e., the normal tissue content). These
bounds mimic the effective boundaries of the DL algo-
rithms. CRLBs are used as a precision measure74 and are
considered for three subgroups of the testing set (high
[SNR > 28.4], medium [16.7< SNR< 28.4], and low [SNR
< 16.7] relative SNR, respectively).

3 RESULTS

3.1 S1Metabolite quantification
referenced to the downscaled water peak

As illustrated for three different networks, Figure 5 shows
that CNN predictions perform better if the spectra are

referenced to a downscaled water peak: Regression slope
a and R2 are closer to 1; 𝜎 is appreciably lower. Moreover,
the spread of the scores is on average reduced, display-
ing improved stability over multiple trainings. Extended
results are presented in Figures S7 and S8.

3.2 Network design

Figure 6 reports CNN predictions versus GT values of
a ResNet-1D-hp architecture for nine metabolites (see
Figures S9 and S10 for extended results on 16 metabo-
lites or different CNN architecture). Distributions of GT
and predicted values are displayed for the test set (as
for all results). Predictions relate very well to the GT
for well-represented metabolites (top row). However, for
metabolites with lower relative SNR, predicted distribu-
tions of concentrations tend to be less uniform and are
biased toward average values of the GT distributions.
Thus, concentrations at distribution boundaries are sys-
tematically mispredicted, particularly for low SNR. This is
reflected in lower a and R2 values and higher𝜎. Figures S11
and S12 include a comparison of multiple networks via bar
graphs (which are ill-suited to express the systematic bias)
and a plot of distributions of predictions.

The performance of all networks and fitting models for
nine metabolites is reported in Figure 7 via a 2D plot of
the concise scores a ⋅ R2 and 𝜎 (see Figure S13 for extended
results on 16 metabolites). Top performance corresponds
to the top-left corner where a ⋅ R2 approaches 1 and 𝜎 is
low. Metabolites can roughly be divided into three groups:

1. Well-represented metabolites: NAA, tCho, tCr, mI, Glu
with averaged DL scores a ⋅ R2

> 0.80 and 𝜎 < 15%, as
well as MF scores a ⋅ R2

> 0.95 and 𝜎 < 10%;
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RIZZO et al. 9

F I G U R E 5 Boxplot statistics of the
prediction scores for four metabolites
showing the effect of water referencing.
Results reported for ShallowNET-2D2c-hp,
ResNet-1D-hp, and U-Net-hp trained and
tested on datasets with (red, black, or blue)
and without (yellow, gray, or green) water
reference (mean values plotted in orange).
On average, water referencing yields better
performance with higher coefficients a and
R2 as well as lower offset q and lower RMSE
𝜎. RMSE, RMS error.

2. Medium-represented metabolites: Glc, NAAG, Gln,
GSH with averaged DL scores 0.50 < a ⋅ R2

< 0.75 and
20% < 𝜎 < 35%, as well as MF scores 0.75 < a ⋅ R2

<

0.90 and 15% < 𝜎 < 35%;
3. Weakly represented metabolites: sI, Gly, Asp, PE, Tau,

Lac, GABA with averaged DL scores a ⋅ R2
< 0.40 and

average 𝜎 > 35%, as well as MF scores a ⋅ R2
< 0.65 and

𝜎 > 35%.

Overall, multiple DL networks perform similarly, but
some general differences are noteworthy. Optimized spec-
trogram representation via two channels combined with
a shallow architecture (i.e., dark blue squares) is found to
be well suited for MRS quantification, showing mostly bet-
ter performances than alternative deeper designs (i.e., light
blue, pink, and gray squares), with one-channel designs
(diamonds) or 1D spectra as signal representation (cir-
cles). Benefits are evident for medium and weakly rep-
resented metabolites. Performances of direct quantifica-
tion and two-step quantification via base spectrum pre-
diction followed by integration (stars) are similar. MF is
found superior to DL for all medium- and weakly repre-
sented metabolites with significant average improvements
for a ⋅ R2

. However, 𝜎 tends to be higher for many cases.
A more detailed presentation of performance is given in
Figures S14 and Text S2.

Figure 8 displays plots of prediction errors (i.e.,
𝛥 = prediction−GT) and their spread 𝜎 as a function

of SNR and shim for tCho, NAAG, and sI. Prediction
uncertainties increase with noise level approxi-
mately linearly with 1/SNR and reach a plateau for
weakly represented metabolites when the spread
represents essentially the whole training range. No
dependence on shim is apparent for the investigated
range.

3.3 Dataset size, active learning,
and ensembles of networks

Figure 9 reports on performance improvements by active
learning in training phase and dataset sizing (part 9A) as
well as by using an ensemble of networks (part 9B) for
four metabolites as reflected by concise scores. Outcomes of
emulated active learning approaches in limiting the test-
ing sets are illustrated through regression plots for Gln in
Figure 9C. Detailed comparisons for 16 metabolites are
given in Figure S15, Table S2, Table S3, Figure S16, and
Table S4.

3.3.1 Dataset size

The performance showed moderate improvements for
most metabolites when dataset size was increased from
25,000 to 40,000 samples (Figure S9).

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29561 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 RIZZO et al.

F I G U R E 6 Maps and marginal distributions of predictions versus GT for a ResNet_1D_hp network. Results for nine metabolites are
arranged in approximate decreasing order of relative SNR from top left to bottom right. RMSE (𝜎) is reported as an overall measure of
variability. A regression model (y = ax+ q) is also provided to judge prediction quality. R2 measures how well a linear model explains the
overall data. Mispredictions can be monitored either by a decrease in a and R2 or by visual biases in distributions of predictions (bell shape).
The prediction bias toward the mean value of the training distribution is evident for medium- to weakly represented metabolites (e.g., sI, Asp,
PE, Tau, Lac). On average, metabolites with lower SNR yield higher errors (q and 𝜎 in mM units). Further metabolite results are shown in
Figure S11 and results for ShallowNet-2D2c-hp in Figure S15. GT, ground truth; Asp, aspartate; Lac, lactate; PE, phosphoethanolamine; sI,
syllo-inositol; Tau, taurine.
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RIZZO et al. 11

F I G U R E 7 Concise scores presented to compare quantification quality for different networks and input setups (all with water
reference). Network identification is chosen as follows: NetworkType-InputType-properties. 1c, 1 channel; 1D, spectra; 2D, spectrograms;
f, factorized convolution; hp, Bayesian hyperparameterized architecture; ks3, convolutional kernel size = 3; R, exploiting ReLU activations;
rb, downsampling via reduction blocks; x2, double convolution before MaxPooling.

3.3.2 Active learning

Dataset augmentation to favor training with combina-
tions of low or high concentrations of weakly repre-
sented metabolites (see Figure S6B–S6D) does not sub-
stantially improve performance (Figure 9A, Figure S15,

Table S2). Mild improvements (<6% for a, q, R2 and 𝜎)
are seen for GABA and sI, respectively, when exploit-
ing metabolite-specifically augmented datasets (GABA-w,
sI-w). Increased dataset size combined with data augmen-
tation to favor high and low concentrations of different
metabolites (GSPT-w) moderately improves performances
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12 RIZZO et al.

F I G U R E 8 Illustration of the SNR and shim dependence of prediction quality. The CNN’s prediction error Δ (prediction – GT) and the
RMSE (𝜎) are plotted as a function of SNR (top row) and shim (bottom row) for four metabolites. Results reported for network type
ShallowNet-2D2c-hp with water reference. RMSE is averaged over bins with an equal number of samples. Bins’ width increases for low SNR
values. Errors scale approximately linearly with 1/SNR and are insensitive to different shim setups.

for the augmented metabolites (GABA, sI, PE, Tau). It
also extends mild improvements to medium- to weakly
represented metabolites that have not undergone data aug-
mentation (e.g., Lac, Gly, Gln). A dataset that is strongly
weighted toward extreme combinations of low or high
concentration for all metabolites (fully-w) or a dataset
weighted toward low SNR (SNR-w) deteriorated perfor-
mances.

Clipping the test set to 20%–80% or 40%–60% of the
concentration range in training renders improved per-
formances (on average a+ 4.5%, q−10.2%, 𝜎 −23.9% and
a+ 4%, q−37.5%, 𝜎 −36.2%, respectively), which is even
enhanced further when the testing set includes sam-
ples with higher SNR (on average a+ 15.4%, q−45.4%,

𝜎 −36.2%). Given the limited range on the y-axis, R2 is less
representative (Figure 9C, Table S3).

3.3.3 Ensemble of networks

Ensembles of Bayesian-optimized networks show consis-
tent and relevant a ⋅ R2 improvements for medium- to
weakly represented metabolites without deteriorating per-
formance for well-defined metabolites. A hybrid ensem-
ble outperforms the ensemble of networks of the same
type. The performance of the ensemble increases with
the number of combined networks (Figures 9B, S16)
(Table S4).
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RIZZO et al. 13

F I G U R E 9 Outcome comparison for the influence of dataset size, active learning approaches, and ensemble of networks (all with
water reference). Concise scores evaluated on the same testing set for tCr, Glu, sI, and GABA in different setups: (A) Dataset size and active
learning on the training set (for abbreviations alluding to types of active learning extensions, see Results 3.3.2). (B) Ensemble of networks (for
naming, see Figures 3 and 4). Ensemble models improve predictions for weakly to medium-represented metabolites without worsening the
already good single-network performances for well-represented metabolites (higher a ⋅ R2 and lower 𝜎). (C) Active learning on the testing set
monitored via maps and marginal distribution of predictions versus GT for glutamine. Improvements for clipped concentration ranges can be
monitored via scores. However, the 40%–60% interval shows a significant number of outliers. Prediction distributions are still far from being
uniform. GABA, γ-aminobutyric acid; Glu, glutamate; sI, syllo-inositol; tCr, total creatine.

3.4 CNN predictions versus model
fitting estimates

A general juxtaposition of CNN and MF performance is
contained in Figure 7. In Figure 10, detailed results are pre-
sented for two metabolites in the form of regression plots
for ShallowNet-2D2c-hp and MF with FiTAID. In addition,

the estimated CRLBs from MF are displayed and then com-
pared in subgroups of SNR with the variance found in MF
estimates and CNN predictions.

Area-constrained MF shows biases at the parameter
boundaries for weakly represented metabolites (e.g., Asp).
However, traditional MF outperforms quantification via
DL: regression lines show less bias (a and q), and the
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14 RIZZO et al.

F I G U R E 10 Comparison of performance for deep learning and model fitting reported for two illustrative metabolites. (Left) DL
prediction versus GT mapped via ShallowNet-2D2c-hp with water reference. (Middle) Estimates versus GT for the MF approach. (Right)
CRLBs evaluated on the fitted estimates. Histograms on the right group three subsets of an equal number of samples with different levels of
SNR—group 1: SNR< 16.7, group 2: 16.7< SNR< 28.4, and group 3: SNR> 28.4 displaying the distribution of estimated CRLBs. For group 1,
given the skewness of distribution, mode (Mo) and mean (𝜇) values are reported. For comparison, RMSEs (𝜎s) are reported as estimated for
each SNR group for both DL and MF. DL’s RMSEs (𝜎s) underestimate CRLBs for low relative SNR metabolites.

distribution shape of estimates is closer to a uniform pat-
tern within the GT range. RMSEs (𝜎s) are higher in the
case of MF for medium- to weakly represented metabo-
lites (e.g., Asp) but lower for well-defined metabolites
(e.g., Glu) (as formerly noted in Figure 7). Consequently,
although 𝜎s of MF are bigger than the CRLBs estimated for
their SNR reference group, 𝜎s of DL overestimate CRLBs
for well-defined metabolites and underestimate CRLBs for
weakly represented metabolites.

4 DISCUSSION

Quantitation of brain metabolites using deep learning
methods with spectroscopy data in 1D, 2D, and a com-
bined input format was implemented in multiple network
architectures. The main aim of the investigation was to
compare the core performance of quantification in an ide-
alized setting of simulated spectra. In fact, the analysis of
the optimal performance of both, MF and DL, may other-
wise be blurred by additional experimental inaccuracies or

artifacts from actual in vitro or in vivo spectra. Moreover,
these nuisance contributors may be tackled in separate
traditional or DL preprocessing steps that are beyond the
current analysis. Many of the methods proved successful in
providing absolute concentration values even when using
a very large concentration range for the tested metabolites
that goes way beyond the near-normal range that has often
been used in the past. In addition, different forms of net-
work input were tested, including a specifically tailored
time-frequency domain representation and a downscaled
water peak for easing of quantification. Whereas data aug-
mentation by active learning schemes showed only modest
improvements, ensembles of heterogeneous networks that
combine both input representation domains improve the
quantitation tasks substantially.

Results from DL predictions were compared to esti-
mates from traditional MF, where it was found that
MF is more accurate than DL at high and modest rela-
tive noise levels. MF yields higher variance at low SNR,
with estimated concentrations artificially aggregated at
the boundaries of the fitting parameter range. Predictions
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RIZZO et al. 15

obtained with DL algorithms delusively appear more
precise (lower RMSE) in the low SNR regime, which
may misguide nonexperts to believe that the DL predic-
tions are reliable even at low SNR. However, these pre-
dicted concentrations are strongly biased by the dataset
the network has been trained with. Hence, in case of
high uncertainty (e.g., metabolites with low relative SNR
or present in concentrations at the edge of the param-
eter/training space), the predicted concentration tends
toward the most likely value: the average value from the
training set.

4.1 Forms of input to networks

Previously, 1D spectra have mostly been used as input
for DL algorithms. Here, they have been compared and
combined with 2D time-frequency domain spectrograms
that had explicitly been designed to be of manageable
size while retaining those areas of the high-resolved stan-
dard spectrogram that contain the most relevant informa-
tion, that is, rich in detail in frequency domain to dis-
tinguish overlapping spectral features but also maintain-
ing enough temporal structure to characterize T∗2 signal
decay. This comes at the cost that the spectrogram cre-
ation cannot be reversed mathematically. However, this
is irrelevant when serving as input to a DL network. It
was found that this tailored time-frequency representation
as input in combination with a shallow CNN architec-
ture performs best and outperforms the use of traditional
1D frequency-domain input for straight quantification or
for metabolite basis spectrum isolation with subsequent
integration. Furthermore, DL quantitation performance
improved upon the inclusion of a downscaled water peak
for reference, likely solving scaling issues if no reference is
provided.

4.2 Active learning

Active learning has been explored by extending the train-
ing dataset with cases that appeared challenging to pre-
dict in the original setup. In particular, new training data
with nonequal distribution of metabolite concentrations
have been used with a predominance of single or mul-
tiple metabolites at low or high concentrations. None of
these trials led to substantial improvements, although it
might be helpful if specific metabolites are targeted pri-
marily. Such data augmentation for all metabolites simul-
taneously even deteriorated the overall network perfor-
mance. This can be understood given that augmentation at
the border of the concentration range inherently leads to
an underrepresentation of intermediate cases, which are

equally relevant for the overall performance. Extending
the size of the training set even further in an unspecific
manner appears to still yield modest improvements.75 In
addition, an unconventional way of active learning was
probed by using unequal dataset ranges in training and
testing by limiting testing on the central portion of the
training range. This setup clearly ameliorated some of the
issues at the edges of the testing range found in the typical
setup. This approach was only implemented by reducing
the test range rather than expanding the training range,
which would yield better comparable outcome scores (e.g.,
R2). However, expanding the training range to negative
concentrations may be questionable.

While data augmentation with a bigger proportion of
low SNR spectra leads to worse performance, the theo-
retical prediction limits for good SNR data are probed in
the noiseless scenario in which training and testing are
run with GT data. Example results for a ShallowNet archi-
tecture are reported in Figure S17 for NAA, GSH, and
Lac. This, combined with the results discussed, suggests
that the bottleneck that limits higher prediction perfor-
mances is SNR, just like in traditional MF, regardless of
the implementation of state-of-the-art networks, network
optimization, or dataset augmentation. It thus reflects lim-
itations in clinical applications where high enough SNR
is just not available. According to this study, DL cannot
do miracles unless one accepts the bias toward training
conditions.73

4.3 Ensemble of networks

An ensemble of networks has been implemented, and it
shows improvements for quantifying metabolites. A com-
bination of networks is less sensitive to the specifics of
the training and helps reduce the variance in the predic-
tions. Furthermore, ensembles of networks where mul-
tiple noise-sensitive predictions are weighted are more
robust to noise. However, even the thus optimized net-
works underperform in comparison to MF. For MF, CRLBs
clearly indicate limits for the confidence in the fit results.
For DL, including the optimized ensemble of networks,
such limits can only vaguely be deduced from the distri-
butions of predicted values with the major danger of bias
toward training data norms.76,77 The CRLB would pro-
vide good guidance for the valid range of DL predictions
as well—although of course they are not readily available
without the model. New tools to estimate precision and
replace CRLB in the case of DL76,77 still have to prove their
value in practice. The situation will be different again if the
DL quantification is trained to include cleaning of spectra
from artifacts (ghosts, baseline interference) where CRLBs
are not available.
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16 RIZZO et al.

4.4 Low SNR regime

Both MF and DL show lower reliability in quantifying
metabolites in the low SNR regime. Clear-cut SNR lim-
its for validity of concentration estimates are not avail-
able, neither for MF nor for DL, although SNR values
are often indicated as measure of spectral quality. While
CRLBs provide a widely used and easy-to-interpret relia-
bility measure that includes the influence of SNR, a sim-
ilar widely accepted concept does currently not extend
to DL approaches.77 Obviously, a SNR threshold for DL
reliability would have to be metabolite-SNR specific, but
already the definition of a meaningful metabolite-specific
SNR would be cumbersome given that peak-splitting pat-
terns and number of contributing protons as well as
lineshape introduce ambiguity. On top, such a metabo-
lite SNR would depend on the estimated metabolite con-
tent, whose reliability is at stake. Therefore, just like for
MF, global or metabolite-specific SNR will not be infor-
mative enough. An uncertainty measure is needed that
is based on the predictions and noise distribution but
also integrating the uncertainty propagation of the DL
model prediction78,79 (like the inverse of the Fisher infor-
mation matrix used in the CRLB definition74). Despite
flourishing literature,80,81 addressing uncertainty estima-
tion as a complementary tool for DL interpretability, a
full-scale analysis of the robustness and reliability of such
models is still challenging.82–84 First attempts to extend
these concepts in DL for MRS quantification are just
subject of recent investigations76,77 but far from general
acceptance.

4.5 Limitations

The current investigation focused on probing multiple DL
techniques and input forms for a full range of metabo-
lite concentrations but a limited range of spectral quality.
In particular, the shim remained in a broadly acceptable
range, no phase or frequency jitter was considered, and
no artifactual data was included. Such features could have
been integrated in the current setup to arrive at a more
realistic framework. However, the core of the findings (per-
formance of the actual quantification step) is expected to
remain in place. In addition, it is recommended to add
separate preprocessing steps to prepare the data for the
presented algorithms rather than to combine processing
and quantification in a single process.3 They could be real-
ized in the form of dedicated DL networks, such as those
proposed for phase and frequency drift corrections,20,85,86

and stacked before the quantification model. This would
also ensure the essential gain in speed expected from DL
quantification models.

Direct comparison with previously proposed suc-
cessful DL quantification implementations like Ref.
22 was not possible or meaningful for lack of open
access network details and differences in the considered
spectra.

Our particular implementation used to create spectro-
grams was optimized to maintain relevant resolution but
downweights the initial part of the FID (initialization of
Hamming window). CNN inputs may thus not be fully sus-
ceptible to changes in broad signals. Alternative recipes
with, for example, prefilled filters or circular datasets, were
not explored.

Furthermore, active learning has been explored for a
single network type and could in principle be more bene-
ficial for other networks or types of input than what has
been found here.

5 CONCLUSIONS

Quantification of MR spectra via diverse and optimized DL
algorithms and using 1D and 2D input formats have been
explored and have shown adequate performance as long as
the metabolite-specific SNR is sufficient. However, as soon
as SNR becomes critical, CNN predictions are strongly
biased to the training dataset structure.

Traditional MF requires parameter tuning and
algorithm convergence, making it more time consuming
than DL-based estimates. On the other hand, we have
shown that ideally (i.e., with simulated cases) and sta-
tistically (i.e., within a variable cohort of cases), it can
achieve higher performances when compared to a faster
DL approach. DL does not require feature selection by
the user, but the potential intrinsic biases at training set
boundaries act like soft constraints in traditional mod-
eling,9 leading estimated values to the average expected
concentration range, which is dangerous in a clinical con-
text that requires the algorithm to be unbiased to outliers
(i.e., pathological data).

Active learning and ensemble of networks are attrac-
tive strategies to improve prediction performances. How-
ever, data quality (i.e., high SNR) has proven as bottleneck
for adequate unbiased performance.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Table S1. List of probed networks for straight quan-
tification of metabolites and some of their charac-
teristics. The listed characteristics includes the com-
plexity (defined as number of trainable parameters),
test loss performance, and training time in sec/epoch.
The network identifications were chosen as follows:
NetworkType-InputType-properties. 1D: spectra, 2D: spec-
trograms, 1c: 1 channel, ks3: convolutional kernel size= 3,
hp: Bayesian hyper-parameterized architecture, R: exploit-
ing ReLU activations, x2: double convolution before Max-
Pooling, f: factorized convolution, rb: down-sampling via
Reduction-Blocks
Figure S1. Schemes of Residual Network configurations
with 1D (a) and 2D (b) inputs, as well as a deep resid-
ual network (c). The basic network structure is sketched
on the left, the architectures of Residual, Identity, and
Convolutional Blocks are reported on the right, while spec-
ifications are detailed in the tables in the middle, and
symbols are explained near the bottom. The deeper Resid-
ual Network configuration has two convolutional layers at
the beginning without pooling.
Figure S2. Schemes of Deep CNN configurations with 2D
(a) and 1D (b) inputs, as well as an InceptionNet with
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1D inputs (c). Network specifications are detailed in the
tables, while the architectures of Reduction Blocks are
reported on the bottom right. Symbols are explained near
the bottom.
Figure S3. Schemes of InceptionNet configurations with
2D inputs on 2 channels. Networks (a) and (b) share the
same configuration but (b) exploits convolutional factor-
ization to speed-up training time. (c) Simple concatena-
tion in architectures (a) and (b) are replaced by Reduc-
tion Blocks. The architectures of the Reduction Blocks are
reported in Figure-S6. Symbols are explained on the right.
Figure S4. Schemes of (a) InceptionNet with 2D inputs
and 1 channel, (b) EfficientNetB7, (c) ResNet50 and (d–f)
Shallow Network configurations. Networks (a), (b) and (c)
are modified from [1–3], respectively. (d) Implements ELU
activations, (e) implements RELU activations, whereas (f)
implements a deeper configuration with consecutive con-
volutional layers with sparse pooling. Network specifica-
tions are detailed in the tables. Symbols are explained near
the bottom.
Figure S5. Scheme and detail of U-Net-1DR-hp
configurations for metabolite basis-set prediction.
Metabolite-specific network specifications are detailed in
the tables. Symbols are explained at the bottom left.
Text S1. Details of Bayesian hyper-parameterization
Figure S6. Examples of dataset augmentation techniques
representing sample distributions for two metabolites
(NAA and GABA). (a) Dataset size increment with uni-
form distributed concentrations. (b) and (c) Active Learn-
ing weighted on higher occurrences of small and high
concentrations for all metabolites in (b) and for selected
metabolites in (c). (d) Active Learning weighted on more
occurrences of low SNR entries whereas concentration
distributions are kept uniform.
Figure S7. Comparison of prediction scores for
well-represented and medium-represented metabolites for
three CNN architectures with datasets with (red, black, or
blue) and without (yellow, gray, or green) water reference.
Mean values in orange. On average, water referencing
yields higher coefficients a and R2 and lower offset q and
RMSE 𝜎.
Figure S8. Comparison of prediction scores for
medium-represented and weakly-represented metabolites
for three CNN architectures with datasets with (red,
black, or blue) and without (yellow, gray, or green) water
reference. Mean values in orange. On average, water refer-
encing yields higher coefficients a and R2 and lower offset
q and RMSE 𝜎.
Figure S9. Maps and marginal distributions of predic-
tions vs. GT for a ResNet_1D_hp network. Results for 16
metabolites are arranged in approximate decreasing order
of relative SNR from top left to bottom right. RMSE (𝜎) is
reported as an overall measure of variability. A regression

model (y = ax+ q) is also provided to judge prediction
quality. R2 measures how well a linear model explains the
overall data. Mis-predictions can be monitored either by
a decrease in a and R2 or by visual biases in distributions
of predictions (bell-shape). The prediction bias towards
the mean value of the training distribution is evident for
medium- to weakly-represented metabolites (e.g., sI, Gly,
Asp, PE, Tau, Lac, GABA). On average, metabolites with
lower SNR yield higher errors. (q and 𝜎 in mM units.).
Figure S10. Maps and marginal distributions of predic-
tions vs. GT for a ShallowNet-2D2c-hp network. Results
for 16 metabolites are arranged in approximate decreas-
ing order of relative SNR from top left to bottom right.
RMSE (𝜎) is reported as an overall measure of variability.
A regression model (y = ax+ q) is also provided to judge
prediction quality. R2 measures how well a linear model
explains the overall data. Mis-predictions can be moni-
tored either by a decrease in a and R2 or by visual biases
in distributions of predictions (bell-shape). The prediction
bias towards the mean value of the training distribution
is evident for medium- to weakly-represented metabo-
lites (e.g., sI, Gly, Asp, PE, Tau, Lac, GABA). On average,
metabolites with lower SNR yield higher errors. (q and 𝜎
in mM units.)
Figure S11. Boxplots comparing the distributions of pre-
dictions for 8 metabolites via 7 different CNN architec-
tures vs. Model Fitting estimate distributions (MF) and
uniform Ground Truth (GT) distributions. Mis-prediction
is evident for medium- to weakly-represented metabolites
(e.g., sI, Asp, Tau, Lac) and can be monitored by different
degrees of skewness of the boxplot. However, the bias to
training distribution is not evident given the visual limita-
tion of boxplots. For better visibility of this outcome, see
Figure S14.
Figure S12. Comparison of distributions of predictions
for 8 metabolites via 7 different CNN architectures vs.
Model Fitting’s estimate distributions (MF) and Ground
Truth (GT) uniform distributions. Mis-prediction is evi-
dent for medium- to weakly-represented metabolites (e.g.,
sI, Asp, Tau, Lac) and can be monitored by visual biases
(bell-shape) towardstoward the mean value of the train-
ing distribution (i.e., regression to the mean). Note: y-axes
scale inhomogeneously between different networks. How-
ever, all distributions integrate to 1.
Figure S13. Concise scores presented to compare quan-
tification quality for different networks and input setups
for 16 metabolites. Results reported using the proposed
artificial water signal reference. Network identification
is chosen as follows: NetworkType-InputType-properties.
Keywords: 1D: spectra, 2D: spectrograms, 1c: 1 chan-
nel, ks3: convolutional kernel size = 3, hp: Bayesian
hyper-parameterized architecture, R: exploiting ReLU
activations, x2: double convolution before MaxPooling, f:
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factorized convolution, rb: down-sampling via
Reduction-Blocks.
Figure S14. Comparison of performance scores from
different networks for 16 metabolites. Model fitting is
included in the comparison.
Text S2. Comparison of predictions from different CNNs.
Figure S15. Comparison of outcomes of Active Learning
approaches using concise scores.
Figure S16. Quantification outcome as reflected by con-
cise scores for differently trained single networks and
three ensembles of networks (identical training set for 16
metabolites).
Figure S17. Maps and marginal distributions of pre-
dictions vs. GT obtained for three metabolites using
ShallowNet-2D2c-hp as contrasted for a realistic and noise-
less dataset.
Table S2. Results of Active Learning on training set: scores
of 16 metabolites for every augmented training set.

Table S3. Results of emulated Active Learning on test
set: scores of 16 metabolites for every concentration range
considered.
Table S4. Outcome for ensemble learning: scores for 16
metabolites for average network or ensemble of network
considered.
Table S5. MRSinMRS checklist.87
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Physics-informed deep learning approach to quantification of human brain 
metabolites from magnetic resonance spectroscopy data 
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A B S T R A C T   

Purpose: While the recommended analysis method for magnetic resonance spectroscopy data is linear combi
nation model (LCM) fitting, the supervised deep learning (DL) approach for quantification of MR spectroscopy 
(MRS) and MR spectroscopic imaging (MRSI) data recently showed encouraging results; however, supervised 
learning requires ground truth fitted spectra, which is not practical. Moreover, this work investigates the 
feasibility and efficiency of the LCM-based self-supervised DL method for the analysis of MRS data. 
Method: We present a novel DL-based method for the quantification of relative metabolite concentrations, using 
quantum-mechanics simulated metabolite responses and neural networks. We trained, validated, and evaluated 
the proposed networks with simulated and publicly accessible in-vivo human brain MRS data and compared the 
performance with traditional methods. A novel adaptive macromolecule fitting algorithm is included. We 
investigated the performance of the proposed methods in a Monte Carlo (MC) study. 
Result: The validation using low-SNR simulated data demonstrated that the proposed methods could perform 
quantification comparably to other methods. The applicability of the proposed method for the quantification of 
in-vivo MRS data was demonstrated. Our proposed networks have the potential to reduce computation time 
significantly. 
Conclusion: The proposed model-constrained deep neural networks trained in a self-supervised manner can offer 
fast and efficient quantification of MRS and MRSI data. Our proposed method has the potential to facilitate 
clinical practice by enabling faster processing of large datasets such as high-resolution MRSI datasets, which may 
have thousands of spectra.   

1. Introduction 

Accurate spectral analysis of in vivo magnetic resonance spectros
copy (MRS) data is complicated by overlapping of resonance lines from 
different metabolites, which precludes or inhibits accurate identification 
of low-concentration metabolites, and also by the presence of a broad 
background of rapidly decaying macromolecule (MM) and lipid signals 
[1,2]. 

Linear combination model (LCM) fitting, peak fitting, and peak 
integration are the three most often used methods for spectral analysis of 
an MRS signal [3]. In LCM fitting, each metabolite in the spectrum is 
represented by a "basis spectrum," which is a description of the spectral 
shape of an individual metabolite [2–5]. Contrary to LCM fitting, peak 
fitting uses a simple lineshape model function to fit isolated peaks within 

a spectrum. Peak fitting is highly dependent on the prior knowledge of 
the parameters of peaks, and imposing a large amount of prior knowl
edge may be burdensome in crowded spectra like 1H-MRS of the brain 
due to the excessive number of metabolites and peaks per metabolite 
[2–5]. 

LCM fitting is the expert-recommended approach [6] owing to its 
shown efficacy, adaptability, and relative simplicity of usage. The choice 
of basis spectra over individual peak components (peak fitting method) 
reduces the number of model functions necessary to adequately describe 
the spectrum, which leads to fewer fitting parameters. Basis spectra are 
realistic since they are derived directly from phantom experiments or 
numerical simulations [2–5,7,8]. 

A long-standing interest in LCM fitting has resulted in the develop
ment of a variety of fitting techniques, including time-domain and 
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frequency-domain algorithms [4,9–15]. 
The recent success of deep learning (DL), one of the latest machine 

learning approaches, in a variety of tasks, including applications with a 
low signal-to-noise ratio (SNR) [16,17], suggests that it might also 
handle the spectral analysis of an MRS signal. 

Moreover, supervised DL-based approaches have been used for 
ghosting artifacts detection and removal [18], spectral reconstruction 
[19], automatic peak picking [20], magnetic resonance spectroscopic 
imaging (MRSI) spatial resolution enhancement [21], localized corre
lated spectroscopy acceleration [22], frequency and phase correction of 
MRS signals [23,24], and poor-quality spectra identification [25]. 

These studies showed results competitive with traditional methods 
using supervised learning, in which the input and the output were 
simulated spectra and known values, respectively. The true output 
values are unknown in in-vivo MRS data. Moreover, a network trained in 
a supervised manner using simulated data might be prone to overfit 
training data [26]; thus, any discrepancy between the in-vivo and the 
simulated training spectra, such as the presence of nuisance peaks, fre
quency, and phase shifts, and line-broadening, may result in errors in 
metabolite quantification. Self-supervised learning may eliminate the 
drawbacks of supervised learning. 

A deep autoencoder (DAE) is typically designed to encode the input 
into a low-dimensional embedding space and then reconstruct the input 
from the encoding in a self-supervised manner [16]. A DAE has also been 
successfully used for metabolite and MM separation in MRS signals, as 
well as for quantification and noise removal of MRSI signals [27,28]. 

A common belief among traditional statisticians and DL practitioners 
is that "more data is always better" [29]. The effects of model complexity, 
dataset size, and data augmentation were empirically investigated in 
computer vision and natural language processing [29,30]; however, 
these effects have not been investigated in MRS data quantification 
using DL. 

2. Authors’ contributions 

In this paper, we present a novel DL-based LCM algorithm for MRS 
data quantification, which uses the advantages of LCM and the capa
bilities of DAE in self-supervised learning. We designed a DAE network 
that can learn in a self-supervised manner to fit a linear combination of 
quantum-mechanically simulated basis spectra to the acquired MR 
spectrum. We utilize the LCM fitting and integrate it into a DAE to es
timate relative concentrations of metabolites. We trained, validated, and 
evaluated our proposed network using simulated MRS data, and in-vivo 
MRS data obtained from the publicly accessible Big GABA repository 
[31,32]. We compared the performance of our proposed model with 
other LCM packages, namely, QUEST [13] and FiTAID [9], in terms of 
accuracy and time efficiency. 

In addition, we designed an experiment to evaluate the effect of the 
dataset size and neural network architecture in our proposed model. 

3. Related work 

Hiltunen et al. [33] have demonstrated the feasibility of constructing 
a quantifying analyzer for long echo time (TE) in vivo proton magnetic 
resonance spectroscopy (1H NMR) spectra using artificial neural net
works with magnitude spectra. 

Bhat et al. [34] investigated the application of a radial basis function 
neural network (RBFNN) for the automatic quantification of short echo 
time, multi-voxel, and phased spectral data. 

Hatami et al. [35] and Lee et al. [36] applied supervised DL ap
proaches to metabolite quantification and presented results comparable 
to conventional LCM approaches. Chandler et al. [37] also applied a 
supervised DL approach to study metabolite quantification in edited 
human brain MRS spectra. 

Gurbani et al. [38] presented a self-supervised DL architecture that 
integrates a convolutional neural network (CNN) with peak fitting. In 

their approach, a DAE, introduced by Hinton et al. [39] as a specific type 
of neural network, is used as a framework for unsupervised learning. 

Shamaei et al. [40] extracted characteristics from the MRS data using 
a wavelet scattering transform and predicted metabolite concentrations 
using a shallow neural network implementation. 

Rizzo et al. [41] explored the effect of DL architectures, spectro
scopic input types, and learning designs on the quantification of simu
lated MR spectroscopy. A list of related work is provided in Table 1. 

4. Material and methods 

4.1. Data sets 

4.1.1. The simulated dataset 
One significant challenge in metabolite quantification is that the 

ground truth values are unknown; thus, it is hard to compare the results 
of different quantification methods. This problem can be addressed by 
creating a dataset with known ground truth values using prior physical 
knowledge and basis spectra. 

The MRS signal can be described as a linear combination of 
amplitude-scaled metabolite signals, the baseline, and noise. The 
simplified model describing a time-domain MRS signal S(t) as a com
bination of several metabolite profiles is: 

S(t)=

(
∑M

m=1
AmXm(t)+AbB(t)

)

e(Δα+2iπΔf )teiΔθ + ξ(t), [1]  

where i =
̅̅̅̅̅̅̅
− 1

√
and Am and Xm(t) are the scaling factor (amplitude) and 

the model (basis) function (signal) for the m-th metabolite, respectively. 
Δα , Δf , and Δθ are the global damping factor, the global frequency 
shift, and the global phase shift, respectively. M is the number of me
tabolites. Ab and B(t) is the scaling factor and the signal for MMs, and 
ξ(t) is noise. 

Our simulated dataset, containing 96000 signals, was generated 
using Eq. (1) and the publicly available metabolite basis set from the 
ISMRM MRS study group’s fitting challenge [43] (19 metabolites signals 
(see Table 2) and one MM signal, 3T, PRESS, TE = 30 ms, spectral width 
= 4000 Hz, 2048 points). The range of parameters (Am,Δα , Δf , and Δθ) 
were determined according to the literature [2,44] (listed in Table 2). 
The parameters were chosen randomly from the defined ranges with a 
uniform distribution. The mean SNR of the dataset (largest metabolite 
peak height in the magnitude spectrum to standard deviation of noise in 
the frequency domain) was set to 67 ± 15 by introducing random 
complex Gaussian white noise (ξ). Signals in the simulated dataset were 
shuffled randomly, and 90% of each dataset was allocated to the training 
subset, 9% to the validation subset, and the rest 1% to the test subset. 

4.1.2. The in vivo dataset 
Data from the public repository Big GABA [31,32] were used to 

demonstrate the applicability of the proposed model for the quantifi
cation of in-vivo signals. 

We selected 48 single-voxel short-TE PRESS brain datasets (subjects) 
from 48 healthy volunteers acquired on Siemens scanners from 4 
different sites (S1, S5, S6, and S8, 3 T field strength, spectral width =
4000 Hz, 4096 points, TE = 35 ms, TR = 2000 ms; 64 transients; 30 ×
30 × 30 mm3; medial parietal lobe voxel). Water reference scans without 
water suppression were obtained with similar parameters, except for 
8–16 averages. It is well recognized that the sufficient size and diversity 
of data are crucial for the success of the majority of DL models [16]. 
However, rich and adequate datasets are uncommon [27] in the field of 
MRS and MRSI. Data augmentation is a possible technique for simu
lating realistic data by making slight modifications to a small existing 
dataset. 

A two-step data augmentation was applied. In the first step, 16 
transients of 64 transients of each subject dataset were randomly 
selected. Then, the transients were frequency- and phase-aligned using 
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the spectral registration method [45,46] and were processed into an 
averaged signal. Eddy-current effects in the averaged signal were cor
rected using the corresponding water reference signal. Then, the resid
ual water components were removed from the averaged signal with the 
Hankel Lanczos singular value decomposition (HLSVD) method [47]. 
The first step was repeated 64 times, producing 64 signals for each 
subject and thus producing a new extended subject dataset [47]. 

Totally, 3072 (48 × 64) signals, each representing a corrected 16- 
transient average, were generated and stacked together to create a 
new in vivo dataset from all subjects. 

In the second step of augmentation, first, each complex signal S(t)
from the new in vivo dataset generated in step 1 was rescaled as 

S(t)normalized =
S(t)

max
τ

(|S(τ)|) . [2] 

Then five extended subject datasets (320 (5 × 64) signals) were 
included in a test dataset and excluded from the in vivo dataset. Signals 
with substantial lipid contamination were removed from the in vivo 
dataset in the following way: Time-domain signals were Fourier- 
transformed, then the mean of the magnitude of each signal between 
0 and 1.85 ppm was calculated. Finally, based on prior testing on the 
dataset, signals with a mean value above six were labeled as strongly 
contaminated signals and discarded from the dataset. Further, we 
denote this dataset as the filtered dataset (2624 signals). 

In the following, ten signals were generated from each signal of the 
filtered dataset, such that signals were apodized by dampings corre
sponding to Lorentzian linewidths drawn from a uniform distribution 
over [0 Hz, 2 Hz]. Then artificial frequency and phase offsets were 
drawn from a uniform distribution in the ranges of − 3 to 3 Hz and 
− 9◦–9◦, respectively, and added to apodized signals (ranges were 
extracted from in vivo brain spectra subjected to spectral fitting). The 
final training dataset consisted of 28864 (10 × 2624 + 2624) signals. 
The mean SNR of the training dataset was set to 256 ± 72 by introducing 
random complex Gaussian noise with a uniform spectral power. Finally, 
all signals were dedicated to the training set. 

To decrease the complexity of the network (number of weights) and 
the contribution of noise, which typically predominates in the later part 
of time domain signals (FIDs), the FIDs were shortened to maintain the 
first 1024 points. 

Example spectra from the simulated dataset and the in-vivo dataset 
are provided in Fig. 1. 

4.2. The deep model 

4.2.1. The proposed DAE 
DAE is a sort of deep artificial neural network designed to learn an 

efficient data coding in a self-supervised way [16,39]. The basic idea 
behind DAEs is to utilize the input data as the target that should be 
reconstructed in the output layer [16]. A DAE is typically composed of 
two parts: an encoder and a decoder. The encoder function h = f(x)
maps the n-dimensional input vector (x ∈ Rn) to the n′ -dimensional 
latent vector (h ∈ Rn′

), while the decoder function x̂ = g(h) aims to 
reconstruct the n-dimensional output vector (x̂ ∈ Rn) from the latent 
space representation. Typically, the latent space representation has 
significantly lower dimension than the input (n′ ≪n). 

Interestingly, the LCM approach toward the quantification of MRS 
signal can be seen as a DAE, where the few parameters of a model are the 
interpretable latent space parameters, and the metabolites basis set and 

Table 1 
A summary of related work.   

Model architectures Input types Learning 
process 

Data type 
(training) 

Prior metabolite resonances 
model 

Hiltunen et al. 
[33] 

Shallow Neural Networks Magnitude spectra (1D) Supervised Simulated _ 

Bhat et al. [34] Radial basis function neural 
network 

Real components of spectra (1D) Self- 
supervised 

In-vivo Lorentzian-Gaussian lineshape 

Hatami et al. 
[35] 

Convolutional neural network Complex spectra (1D) Supervised Simulated – 

Lee et al. [36] Convolutional neural network Complex spectra (1D) Supervised Simulated – 
Chandler et al. 

[37] 
Convolutional neural network Real, imaginary, and magnitude components of 

spectra (2D) 
Supervised Simulated – 

Gurbani et al. 
[38] 

Convolutional neural network Real components of spectra (1D) Self- 
supervised 

In-vivo Lorentzian-Gaussian lineshape 

Shamaei et al. 
[42] 

Convolutional neural network Time-frequency domain scalogram (wavelet 
coefficients) (2D) 

Supervised Simulated – 

Shamaei et al. 
[40] 

Wavelet scattering network Complex time-domain signal (FID) (1D) Supervised Simulated – 

Rizzo et al. 
[41] 

Convolutional neural network Real and imaginary components of spectra, time- 
frequency domain spectrograms (2D) 

Supervised Simulated – 

Our work Physics-informed 
convolutional neural network 

Complex time-domain signal (FID) (1D) Self- 
supervised 

Simulated and 
in-vivo 

Quantum-mechanics simulated 
metabolite responses  

Table 2 
Parameters used in the simulated dataset. A(.), Δα , Δf , and Δθ are the 
metabolite amplitudes, the global damping factor, the global frequency shift, 
and the global phase shift, respectively.  

Parameter Min Max 

A(Ala) 0.1 1.8 
A(Asc) 0.2 1.8 
A(Asp) 1 2 
A(Cr) 4.5 10.5 
A(GABA) 1 2 
A(Glc) 1 2 
A(Gln) 3 6 
A(Glu) 6 12.5 
A(GPC) 0.5 1.8 
A(GSH) 1.5 3 
A(Gly) 0.2 1 
A(Ins) 4 9 
A(Lac) 0.2 1 
A(NAA) 7.5 17 
A(NAAG) 0.5 2.5 
A(PCho) 0.2 1 
A(PCr) 3 5.5 
A(PE) 1 2 
A(sIns) 0.2 0.5 
A(Tau) 3 6 
Ab 14 17 
Δα (s¡1) 0 15 
Δf (Hz) − 3 3 
Δθ (◦) -π/10 +π/10  
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prior knowledge are the decoders. For the DAE to be useable for quan
tifying MRS signals, its latent-space representation must be interpretable 
as metabolite concentrations. Therefore, it is natural to desire that it 
includes parameters such as all individual relative metabolite concen
trations (amplitudes), damping factors, frequencies, and phases. How
ever, a DAE with the typical architecture [39] is not useful for 
quantifying MRS signals. 

To this end, a convolutional encoder–model decoder [38] was 
employed, incorporating a parametric analysis into a DL model. Our 
proposed DAE consisted of a conventional encoder and a model decoder. 
The encoder was composed of sequential layers of convolutional layers 
[48,49], Gaussian error linear units (GELU) [50], and a fully connected 
(FC) layer [16,49]. Furthermore, a Softplus function [16] was applied to 
estimated amplitudes to ensure that the relative metabolite concentra
tions (amplitudes) were non-negative. The model decoder was 
composed of a model function (Eq. (1)) that reconstructs the represen
tation of the input signal using the assigned latent space parameters and 
basis spectra. The proposed DAE architecture is depicted in Fig. 2a. The 
encoder computes four types of parameters: amplitude, frequency, 
phase, and damping. The input and output of the proposed DAE were 
complex signals in the time domain. 

Training our proposed network is a self-supervised learning task that 

does not require ground truth values. It minimized the differences be
tween the original input and the consequent reconstruction. In each 
iteration step of training, the parameters of the encoders were adjusted 
according to the gradient of the loss function with respect to the given 
parameters of the model (Am, Ab, Δα, Δf , and Δθ). The mathematical 
representation of training can be written as follows: 

ŵ = argmin
w

L(x, x̂(w)), [3]  

∂L(x, x̂)
∂wi

=
∑

ρ∈P

∂L(x, x̂)
∂x̂

•
∂x̂
∂ρ •

∂ρ
∂wi

, [4]  

where x and x̂ are the n-dimensional input vector (x ∈ Cn) and the 
n-dimensional output vector (x̂ ∈ Cn), respectively. Eq. (3) is the 
objective function of training, L is the loss function, wi is an element of 
the parameters set (weights and biases) of the encoder, and P =

{A1,A2, ...,AM,Ab,Δα,Δf ,Δθ}. Gradients were computed with the help of 
Pytorch using its automatic gradient computation [51], which is a 
reverse automatic differentiation system. 

4.2.2. Modeling of macromolecules 
Short-TE MRS signals contain a contribution of MMs that overlap 

with metabolites [52]. Thus, MM modeling or MM removal from the 
signal should be included in the spectra analysis. 

The presence of MMs may be accounted for in a variety of ways [6]. 
MMs can be included as a numerical pattern (found, for instance, from 
metabolite-nulling inversion recovery measurements) [53]. Another 
approach is to include a set of parametric patterns in the spectral fitting 
algorithm [2,3]. 

We implemented both approaches to MM handling in the proposed 
DAE, which resulted in two models. The first model (referred to as deep 
learning-based quantification using a numeric MM pattern [DQ-nMM]) 
includes a MM signal as a numerical pattern [53] in Eq. (1). The second 
model (referred to as deep learning-based quantification using para
metric MM components [DQ-pMM]) includes a MM signal as a combi
nation of parametric MM components in Eq. (1) (the detailed model is 
provided in Supporting Information Text S1). 

However, the increased number of fitted parameters without con
straints increases the risk of over-parametrization [42] in the DQ-pMM 
model. Another approach to handling MM is to remove the initial part of 
the FID [4], which eliminates MM signals thanks to their decay being 
faster than that of metabolites. Nevertheless, the disadvantages of this 
approach are neglecting important information in the early part of the 
time domain signal and difficulty in determining the number of removed 
initial points [4]. 

To overcome these disadvantages and handle the over- 
parametrization problem in the DQ-pMM model, we proposed a novel 
approach for MM modeling, which resulted in the third model (referred 
to as deep learning-based quantification using parametric MM compo
nents and a regularization term [DQ-rpMM]). 

DQ-rpMM includes a combination of parametric MM components in 
Eq. (1) and adds a regularization term (Eq. (5)) to the loss function. 
⃦
⃦
⃦
⃦

(
xinput(t) − x̂metabolites(t)

)
(

1 + sgn(t − tr)

2

)⃦
⃦
⃦
⃦

2

2
+ λ‖tr‖1, [5]  

where sgn is a sign function, its shift tr is a parameter determined by the 
network, xinput and x̂metabolites are the input signal and the reconstructed 
signal from the metabolite components, respectively. Parameter λ tunes 
the significance of the regularization term. Brackets ‖.‖2

2 and ‖.‖1 
represent squared L2-norm and L1-norm, respectively. 

The first term promotes consistency between x̂metabolites and xinput. 
Intuitively, the cutoff time tr should increase to a point where the 
contribution of MM is low, and the contribution of metabolites is 
reasonably high. Excessive cutoff of useful signal (that would lead to 
fitting the non-informative end tail of x̂metabolites to the noisy part of xinput) 

Fig. 1. Example spectra from (a) the simulated dataset and (b) the in- 
vivo dataset. 
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Fig. 2. (a) Illustration of the proposed convolutional encoder–model decoder network. The input of the network is a complex signal (x) in the time domain, which is 
fed to the encoder. The encoder consisted of eight convolutional blocks and an FC layer (see details in Supporting Information Table S2). A convolutional block is 
composed of a 1D convolution (Conv1d) layer followed by a GELU layer. The model decoder reconstructs the output signal (x̂) using Eq. (1), basis set, and MM prior 
knowledge. The DAE was trained to encode the input vector x in the time domain into parameters (the amplitudes, damping factor, resonance frequency, and zero- 
order phase of the basis spectra) that can be used to reconstruct the output vector x̂ in the time domain. The proposed network is trained by minimizing the mean 
square error (MSE) between x and x̂. 
(b) Illustration of three proposed models (DQ-nMM, DQ-pMM, and DQ-rpMM). 
(c) Illustration of three variants of the DQ-rpMM model with different encoder architectures (ConvNext, MLP-Mixer, and our proposed network with FC layers). 
CNN, Convolutional Neural Network; Conv1d, (in channels » out channels, kernel size, stride); FC, Fully Connected; GELU, Gaussian Error Linear Unit; MM PK, 
Macromolecule prior knowledge; DQ-nMM, deep learning-based quantification using a numeric MM; DQ-pMM, deep learning-based quantification using parametric 
MM; DQ-rpMM, deep quantification using parametric MM and a regularization term. 
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should be prevented by the contradictory force of the second term. The 
architectures of the proposed models are depicted in Fig. 2b. 

4.3. Implementation details and training 

All steps were run on a computer with a dual EPYC 7742 (2 × 64 
cores) processor and one graphics processing unit (NVIDIA A100 40 GB). 
The DAE was implemented in Python programming language [51] with 
the help of the Pytorch lightning interface [54]. 

The initial architecture of the network and the training parameters 
were optimized using the Bayesian Optimization HyperBand algorithm 
[55] with the help of the Tune framework [56]. The optimization details 
are given in Supporting Information Text S2. All training was performed 
using the mean-squared error loss (MSE) and the Adam optimizer [57] 
with a batch size of 128, a learning rate of 0.001, and 200 epochs. An 
early-stopping strategy [51] was performed by monitoring the MSE of 
the validation subset at the end of every epoch and stopping the training 
when no improvement was observed in 50 epochs. As reported [58], 
reducing the learning rate is beneficial when learning becomes stagnant. 
The learning was reduced twice by a factor of 10 during training. Our 
source codes and data (in NIfTI-MRS format [59]) are available at https 
://github.com/isi-nmr/Deep-MRS-Quantification. 

All proposed models (DQ-nMM, DQ-pMM, and DQ-rpMM) were 
tested on the simulated dataset. Moreover, The DQ-rpMM model was 
tested on the in vivo dataset to show the applicability of our method to 
in-vivo data in which a numeric pattern of MMs is not available. For the 
simulated dataset, the basis set and the numeric pattern of MMs from the 
ISMRM MRS study group’s fitting challenge [43] were utilized in the 
model decoder. The provided numeric pattern of MMs was parametrized 
using AMARES [60] algorithm and utilized in the models with param
etrized MMs, i.e., DQ-pMM and DQ-rpMM (the details of the parame
trization are provided in Supporting Information Table S1). For the in 
vivo dataset (Big GABA), the publicly available metabolite basis set [61] 
consisted of 19 metabolites was used in the model decoder: alanine 
(Ala), aspartate (Asp), creatine (Cr), negative creatine methylene 
(-CrCH2), γ-aminobutyric acid (GABA), glycerophosphocholine (GPC), 
glutathione (GSH), glutamine (Gln), glutamate (Glu), water (H2O), 
myo-inositol (mI), lactate(Lac), NAA, N-acetylaspartylglutamate 
(NAAG), phosphocholine (PCho), PCr, phosphoethanolamine, 
scyllo-inositol, and taurine. MM components (13 gaussian lineshapes, 
previously reported in Ref. [62]) were used to generate the lipid and MM 
basis signals. 

4.4. Accuracy analysis (for the simulated data set) 

For the simulated data set, in which the true amplitudes were known, 
we compared the results, i.e., the estimated amplitudes, obtained with 
our approach with those obtained by traditional LCM methods using 
mean absolute percentage error (MAPE) and the coefficient of deter
mination (R2) metrics. It has been reported that R2 is more informative 
than MAPE [63]. In fact, MAPE does not reveal much information about 
the effectiveness of regression with regard to the distribution of the 
ground truth values. 

4.5. Monte Carlo analysis 

Monte Carlo (MC) studies were carried out to investigate the bias and 
the standard deviation of the proposed DQ-nMM estimates. A signal 
without noise was generated using Eq. (1) with known global frequency 
(2 Hz), phase (45◦), damping (5 Hz), and known amplitudes of metab
olites and MMs. Second, 256 realizations of a normally distributed 
random complex noise were added to the signal such that SNR was in the 
range of ~50. 

Finally, the amplitudes of metabolite components were estimated for 
the 256 signals using the network trained with the simulated dataset, 
and the estimation errors (MAPE) were measured. 

4.6. Data size effects 

In this experiment, five variants of the simulated dataset with 
different sizes (1000, 12000, 24000, 96000, and 384000 signals) were 
generated using the same procedure mentioned for generating the 
simulated dataset. 90% of each dataset was allocated to the training 
subset and 10% to the validation subset. Then, the first proposed model 
(DQ-nMM) was trained using each training dataset. The performance of 
each dataset in terms of R2 of each metabolite and the reconstruction 
loss (MSE) was monitored using its validation subset during training. 

4.7. The regularization term effects 

The significance of the regularization term (i.e., λ) in Eq. (5) de
termines from which time point, x̂metabolites and xinput must be consistent. 
An experiment was designed to address the effect of λ on the perfor
mance of the proposed model. DQ-rpMM methods were trained seven 
times with varying λ ({0,1,2, 3,4, 6,8}). All runs used the simulated 
dataset with a size of 24000 (90% of each dataset was allocated to the 
training subset and 10% to the validation subset) and were trained for 
65000 iterations. All other training parameters were identical to those 
indicated in the Implementation Details section. 

4.8. The architecture effects 

To test the applicability of successful machine-vision architectures, 
we used two cutting-edge architectures, ConvNext [64] and MLP-Mixer 
[65], as the encoder of the DQ-rpMM model, which resulted in two 
variants of the DQ-rpMM model. 

To test the effect of convolutional layers on the performance of our 
proposed models, we substituted FC layers for the convolutional layers 
in the DQ-rpMM model, which resulted in the third variant of the DQ- 
rpMM model. 

We modified ConvNext [64] and MLP-Mixer [65] architectures to 
process 1D signals. The architectures of the proposed variants are 
depicted in Fig. 2c. The details of ConvNext, MLP-Mixer, and our pro
posed network with FClayers architectures are provided in Supporting 
Information Tables S3, S4, and S5. 

These three variants of the DQ-rpMM model were trained for 100 
epochs using the simulated dataset and the parameters mentioned in 
section 2.4 for DQ-rpMM, except that the initial learning was decreased 
to 1 × 10− 4. 

Table 3 gives a list of the experiments that were carried out in this 
study. 

5. Results and discussion 

All proposed models were validated using 128 signals selected 
randomly from the test signals of the simulated dataset, and the DQ- 
rpMM model was evaluated using the test subset of the in vivo data
sets (320 signals). 

Based on the results and interpretation of the fitting challenge con
ducted by the MRS study group of ISMRM [43], in this work, two LCM 
fitting methods were used, namely, QUEST [13,66] and FiTAID [9], in 
order to compare the results obtained for the simulated data and 

Table 3 
A list of experiments.  

Experiment Dataset Models 

Monte Carlo analysis Simulated DQ-nMM 
Data size effects Simulated DQ-nMM 
Regularization term effects Simulated DQ-rpMM 
Architecture effects Simulated DQ-rpMM(CNN) 

DQ-rpMM(FC) 
DQ-rpMM(MLP-Mixer) 
DQ-rpMM(ConvNext)  
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determine whether our proposed models are generally comparable to 
existing fitting procedures. 

The purpose of utilizing QUEST was for its optimal performance in 
the challenge for the artifact-free healthy-brain-like dataset [43]. 
FiTAID performed close to the top in the challenge [43] and also offers 
fitting in both time and frequency domains, allowing for a wider 
comparison. 

The simulated test signals were processed using the QUEST method 
(the QUASAR plugin in the jMRUI software package [66]) in two distinct 
ways. The first procedure (labeled as QUEST) included the numeric MM 
signal in the basis set. In the second procedure (labeled as 
QUEST-Subtract), the MM signal was not included in the basis set but 
estimated with the QUEST subtract technique [13] (the first 100 points 
were cut off). 

The simulated test signals were processed using the FiTAID software 
in the time (labeled as FiTAID [time]) and frequency (labeled as FiTAID 
[freq.]) domains over specified ranges (TD = [1.1024]) points, FD =
[0,5] ppm). Eq. (1) was utilized as a model in the QUEST and the FiTAID 
software for quantification. Table 4 contains a list of used methods. 

Table 5 and Fig. 3 illustrate a comparison of our DL-based proposed 
models and traditional methods using the test signals of the simulated 
dataset. On average, DQ-nMM produced better performance in terms of 
R2 and MAPE than QUEST and FiTAID (time and freq.). QUEST-Subtract 
showed the worst performance in terms of R2 and MAPE. DQ-rpMM 
presented a slightly better performance compared with DQ-pMM in all 
terms. The DQ-pMM method with parametrized MM showed poor 
performance. 

DQ-nMM outperformed other methods in the quantification of most 
metabolite concentrations. DL-based methods showed an excellent 
performance in the estimation of Cr concentration. However, DQ-pMM 
and DQ-rpMM struggled to estimate NAA concentration. In general, all 
methods reported relatively high MAPEs in the estimation of GPC, PCho, 
Tau, and NAAG concentrations. All methods showed a poor performance 
in estimating low-concentration metabolites, for example, Ala, Asp, 
GABA, Gly, and PE. The effect of damping, frequency, phase, and SNR of 
spectra on quantification accuracy is provided in Supporting Informa
tion Fig. S1. 

The training time for DQ-nMM, DQ-pMM, and DQ-rpMM were 40.7, 
73.9, and 89.6 min, respectively. The processing time per signal for DQ- 
nMM, DQ-pMM, and DQ-rpMM were 0.031, 0.507, and 0.517 ms, 
respectively. The processing time per signal for FiTAID (time), FiTAID 
(freq.), QUEST, and QUEST-Subtract were 2500, 2500, 560, and 1518 
ms, respectively. 

Table 4 
A list of all utilized models in this study.  

Model Dataset MM model Fitting 
domain 

simulated in 
vivo 

DQ-nMM 
(ours) a 

✓ – Numerical pattern Time 

DQ-pMM 
(ours) a 

✓ – Parametric MM components Time 

DQ-rpMM 
(ours) a 

✓ ✓ Parametric MM components 
and regularization term  

FiTAID 
[time] b 

✓ – Pumerical pattern Time 

FiTAID 
[freq.] b 

✓ – Pumerical pattern Frequency 

QUESTb ✓ – Pumerical pattern Time 
QUEST- 

Subtract b 
✓ – Subtract technique [13] Time  

a The source code is available at https://github.com/isi-nmr/Deep 
-MRS-Quantification. 

b QUEST and FiTAID software are available in the jMRUI software package 
(version 7) at http://www.jmrui.eu/. Ta
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Fig. 3 illustrates scatterplots between estimated and ground truth 
values for eight metabolites (Cr, Gln, GPC, Glu, Ins, NAA, NAAG, PCho, 
PCr, and Tau). The values of R2, MSE, and tr during training are reported 
in Supporting Information Fig. S3. DQ-nMM revealed a very good 
performance in the estimation of Cr (R2 = 0.88), Glu (R2 = 0.68), 
GPC (R2 = 0.67), Ins (R2 = 0.71), NAA 

(R2 = 0.98), PCho (R2 = 0.62), PCr (R2 = 0.54), and Tau (R2 = 0.66) 
concentration and a good performance in estimation of NAAG (R2 = 0.46). 
Interestingly, DQ-nMM outperformed QUEST in the estimation of 

GPC (R2 = 0.10), Ins (R2 = 0.35), PCho (R2 = 0.10), PCr (R2 = 0.19), and 
Tau (R2 = 0.42). 

Fig. 4 illustrates example spectra from the test signals of the simu
lated dataset quantified by DQ-nMM, DQ-pMM, and DQ-rpMM, along 
with the ground truth spectra. On visual inspection, DQ-pMM and DQ- 
rpMM showed higher residual compared with DQ-nMM. 

Fig. 5 shows the results of the MC analysis for the DQ-nMM method. 
Fig. 5a shows the distribution of estimated concentrations as histogram 
plots. In most metabolites, the histogram peak is close to the true value, 

Fig. 3. Testing the results of the simulated dataset. Plots of estimated concentrations against the ground truth concentrations in arbitrary units (a.u.). Algorithms are 
color-coded. 
DQ-nMM, deep learning-based quantification using a numeric MM; DQ-pMM, deep learning-based quantification using parametric MM; DQ-rpMM, deep quantifi
cation using parametric MM and a regularization term; Quest (Sub.), Subtract-QUEST; FiTAID (freq.), FiTAID with frequency domain fit. 
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except that the concentration of NAAG was slightly underestimated. 
Fig. 5b shows a scatter visualization of a joint distribution of estimated 
frequencies and dampings of spectra, illustrating the bias and variance 
of the DQ-nMM method for individual metabolites in the test subset of 
MC analysis. Results revealed robust performance in detecting dampings 
and frequencies of spectra. Fig. 5c shows a heatmap of a correlation 
matrix representing the correlation between estimated concentrations in 
the test subset of MC analysis. The heat map highlighted a high corre
lation between PCr and Cr, and GPC and PCho. 

Fig. 6a shows the effect of dataset size during the training of the DQ- 
nMM method using the validation subset. The mean R2 value is calcu
lated across selected metabolites (Cr, GPC, Ins, NAA, PCho, Tau). Fig. 6b 
highlights the effect of λ on the performance of the DQ-rpMM method. 
The mean R2 value is calculated across the selected metabolites (Cr, 
GPC, Ins, NAA, PCho, Tau). Moreover, the trend of tr in the DQ-rpMM 
method with seven different λ during training is shown. 

The influence of the encoder architecture on the performance of the 
proposed model (DQ-rpMM) is illustrated in Fig. 7. The performance of 
the proposed networks with convolutional layers was superior to those 
with fully connected layers. 

Fig. 8 illustrates four example spectra from the test subset of the in 
vivo dataset quantified by DQ-rpMM. The reconstruction capability of 
our proposed model is clearly shown. The mean, standard deviation 
(SD), and coefficient of variation (CV) of each metabolite-to-creatine 
ratio for five subjects are summarized in Table 6 for in-vivo data. The 
CV was lowest for Glx (0.9%) and highest for tCho (10.6%) in subject 3. 
The means of the tNAA-to-Cr ratio were relatively consistent among 
subjects. Moreover, the SDs of the tNAA-to-Cr ratio were found to be 
minimal. 

Given the recent agreement on using LCM fitting [3] and several 
pioneering research highlighting the possible use of DL in MRS [18,25, 
36,38], this work demonstrates that an LCM fitting-based self-
supervised DL approach can be used to quantify both simulated and 
in-vivo MRS data. 

No labels or ground truth were required during training since the 
proposed method maximized the use of prior knowledge in a deep neural 
network to limit a model solution. The network can identify the 
contribution of basis metabolite spectra and MM to crowded MRS 
spectra such as those in Figs. 4 and 8. The network can reconstruct the 
input signal by a linear combination of basis spectra, therefore high
lighting the contribution of each basis spectrum to the total spectrum 
(Figs. 4 and 8). Moreover, the difference between the data and fit can be 
calculated and served as an indicator of whether the fitting operation 
was successful or not [5]. 

The network was validated using simulated data in which in-silico 
ground truth values were available. A comparison between this novel 
DL-based LCM and traditional LCM fitting algorithms, namely QUEST, 
QUEST-Subtract, and FiTAID, was performed (Fig. 3, Table 5). The re
sults show that the DL-based algorithm can achieve comparable per
formance with a significantly shorter amount of time for quantification 
of an MRS signal (0.031 ms) compared with traditional methods (560 
ms). 

For metabolites such as NAA, Ins, Glu, Tau, and Cr, which have 
relatively high concentration levels, all methods provided with a 
numeric MM pattern (DQ-nMM, QUEST, FiTAID) showed good perfor
mance (Fig. 3 and Table 5). Noteworthy, DQ-nMM showed remarkable 
results for metabolites such as PCho (R2 = 0.62, MAPE = 18.2%) and PCr 
(R2 = 0.54, MAPE = 9.12%) which overlap with GPC (R2 = 0.67, MAPE 
= 16.27%) and Cr (R2 = 0.88, MAPE = 6.02%), respectively, while 
traditional method, such as QUEST struggled with quantification of GPC 
(R2 = 0.1, MAPE = 26.06%), PCr (R2 = 0.19, MAPE = 11.79%) and 
PCho (R2 = 0.10, MAPE = 25.75%). Moreover, DQ-nMM showed a good 
performance in the decomposition of NAA and NAAG, which is notori
ously challenging owing to the low concentration of NAAG and spectral 
overlap [67]. 

DQ-rpMM showed better performance than DQ-pMM and QUEST- 

Fig. 4. Example spectra from the test subset of the simulated dataset quantified 
by (a) DQ-nMM, (b) DQ-pMM, and (c) DQ-rpMM. Spectra are color-coded. The 
contribution of each basis spectrum to the total spectrum was illustrated in 
Supporting Information Figure S6. 
GT, ground truth; DQ-nMM, deep learning-based quantification using a numeric 
MM; DQ-pMM, deep learning-based quantification using parametric MM; DQ- 
rpMM, deep quantification using parametric MM and a regularization term. 
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Subtract. The use of the regularization terms in DQ-rpMM almost 
doubled performance compared to DQ-pMM in the quantification of 
metabolites such as GPC and Ins and PCho in terms of R2. The reported 
MAPEs also support our observation (Table 5). Our proposed model DQ- 
nMM also performed well in an MC analysis where the performance of 
estimations of metabolites level was found to be very good, and no 
significant bias was observed (Fig. 6). 

The main drawback of supervised deep learning quantification of 
MRS data is (i) the lack of model interpretability and (ii) the need for 
ground truth data. Introducing prior knowledge and a model function to 
a deep neural network can provide a self-supervised interpretable deep 
learning approach to MRS data quantification. Gurbani et al. [38] pre
viously presented a model-informed self-supervised neural network in 
which the information of peak components was required as prior 

knowledge; however, their method depends heavily on prior informa
tion of the excessive number of metabolites and peaks per metabolite 
which is time-consuming in particular for spectra acquired in higher 
magnetic fields. Our approach incorporates realistic 
quantum-mechanics simulated metabolite responses, eliminating the 
need for the information of peak components, e.g., the location of NAA 
resonance, or any other constraints. 

The computational bottleneck in processing volumetric MRSI is ac
curate quantification, partly because the current LCM approaches rely 
on iterative algorithms. Since our method showed comparable perfor
mance compared with QUEST and FiTAID, once trained, our proposed 
method can simply be implemented on scanner computers, allowing for 
fast (10000 spectra in 80 s using a standard computer) and accurate 
quantification. As reported in Ref. [68], our findings confirm that when 

Fig. 5. The results of the MC analysis. Spectra are quantified by the DQ-nMM method. (a) Histograms of the estimated concentrations. The vertical lines are true 
values. (b) A scatter visualization of a joint distribution of estimated frequencies (Hz) and dampings (Hz) of spectra. The dashed vertical and horizontal lines are the 
true frequency and damping, respectively. 
(c) A graphical representation of the correlation matrix representing the correlations between estimated concentrations. A strip plot of estimated concentration is 
provided in Supporting Information Figure S2. DQ-nMM, deep learning-based quantification using a numeric MM; MC, Monte Carlo. 
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a numerical MM pattern is available, methods that are equipped with 
this type of pattern, such as DQ-nMM, should be utilized due to their 
good performance. 

In general, one of the main weaknesses of DL models is that they 
cannot perform well on new data acquired using different acquisition 
parameters. In the case of the same pulse sequence with either longer or 
shorter TE, it is necessary for our method to be retrained using a new 
basis set; however, transfer learning methods can mitigate this issue. 

Along with demonstrating the performance of the proposed 
approach on simulated data, the method DQ-rpMM was used to conduct 
quantification in publicly accessible in-vivo MRS data (Big GABA). 
Moreover, we demonstrated the generalizability of the proposed model 
to unseen in-vivo data (Fig. 8 and Table 6). 

Our results (Table 6) highlighted that CVs for tNAA, mIns, and Glx 
were consistent among subjects. For tCho and Tau, CVs were less 
consistent. In general, our proposed model showed stability in the 
quantification of spectra within subjects. 

We observed that the performance of our method could also be 
affected by the parameters of the network and prior knowledge (Figs. 6 
and 7). Our results indicate that the accuracy of our proposed method 
trained on a dataset with 1000 samples is suboptimal, and a training 
dataset with a minimum size of 12000 samples is necessary for optimal 
quantification. As reported by Nakkiran et al. [29], our results verify 
that increasing the number of training samples reduces test perfor
mance. It is interesting since big datasets are rare in MRS applications. 

In the field of machine learning, it is typical to estimate the 
computation cost using FLOPS (floating-point operations per second) 
[64]. The computational cost of our CNN was 2.66 M FLOPS. The 
computational costs (notated with O) of the iterative 
Levenberg-Marquardt method based on the QR factorization as the 
linear solver is [69]: O(n×m) + k(O(m3)+O(n×m)+O(m3)) where n is 

the number of data points and m is the number of model parameters, and 
k is the number of the Levenberg-Marquardt damping parameters that 
are being used [69]. By setting k to 1 for the sake of simplicity, m to 24, 
and n to 2048, the total cost of Levenberg-Marquardt at every iteration is 
1.4 M FLOPS. For example, FiTAID [53] requires 100 iterations by 
default, and the computational cost of a fitting procedure using tradi
tional LCM is above 100 MFLOPS. 

We investigated the influence of deep neural network design by 
comparing our proposed network to existing architectures for machine 
vision tasks. As depicted in Fig. 7, substituting convolutional layers with 
FC layers resulted in a substantial drop in performance and an increase 
in computational cost (4.52 MFLOPs). The results (Fig. 7) indicate that 
MLP-Mixer with extremely deep designs may perform worse. Further
more, ConvNext demonstrated the same performance as our proposed 
convolutional network. However, ConvNext and MLP-Mixer demanded 
greater computational power (FLOPs for ConvNext and MLP-Mixer were 
710 MFLOPs and 2.4 GFLOPs, respectively). Our results suggest that (i) 
networks with simple and shallow design can perform optimal quanti
fication of MRS data and (ii) using convolutional layers are necessary. 

Because of using a model-decoder as the decoder, our proposed 
method can calculate the Cramér-Rao lower bounds to estimate uncer
tainty. However, additional work is required to extend the capability of 
the proposed method for quantifying MRS data with simultaneous un
certainty estimation. Additionally, it is important to evaluate how the 
distribution of parameters in the training set affects the performance of 
the network. 

In this work, we utilized a simplified model for describing a time- 
domain MRS signal (Eq. (1)); however, we can expand the capabilities 
of our proposed DAE to handle more complex models. 

While the proposed DL-based method for quantification of MR 
spectroscopy data shows promising results, there are some limitations to 

Fig. 6. (a) The mean R2 value calculated across the 
selected metabolites (NAA, Cr, PCho, GPC, and Ins), 
and the R2 value for each of the selected metabolites 
obtained (a) from the DQ-nMM model trained with 
datasets with sizes of 1000, 12000, 24000, and 
96000, and 384000, (b) from DQ-rpMM trained with 
different λ. The figure shows that the choice of λ can 
affect the performance of quantification of a specific 
metabolite. For instance, lambda with a high value 
resulted in a good performance in the quantification 
of PCho, and Cr, and, conversely, a poor performance 
in the quantification of NAA and GPC. 
DQ-nMM, deep learning-based quantification using a 
numeric MM; DQ-rpMM, deep learning-based quan
tification using parametric MM and a regularization 
term; R2, coefficient of determination; λ, the signifi
cance of the regularization term.   
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Fig. 7. Online monitoring of metrics during training of DQ-rpMM with ConvNext (dark blue), MLP-mixer (red), our proposed convolutional (Conv.) network (light 
blue), and our proposed fully connected (FC) network (pink). The mean R2 value calculated across the selected metabolites (Cr, GPC, Ins, NAA, PCho, Tau) and the R2 

values for NAA, Cr, and Tau against training steps are plotted. 
DQ-rpMM, deep learning-based quantification using parametric MM components with a regularization term; R2, coefficient of determination. 

Fig. 8. Two example spectra from the test subset of the in vivo dataset quantified by DQ-rpMM. Spectra are color-coded. A strip plot of the estimated relative 
concentration within subjects and two more example spectra are provided in Supporting Information Figures S4 and S7. 
GT, ground truth; DQ-rpMM, deep learning-based quantification using parametric MM and a regularization term. 
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consider: 
First, the proposed method was validated using simulated and pub

licly accessible in-vivo human brain MRS data, which may not fully 
represent the variability and complexity of clinical data. Therefore, 
further validation with a larger dataset that includes more diverse pa
tient populations is needed to evaluate the generalizability of the 
method. 

Second, the proposed method relies on quantum-mechanics simu
lated metabolite responses, which may not fully capture the variability 
of in-vivo metabolite responses. This may result in some inaccuracies in 
the quantification of metabolite concentrations. 

Third, the proposed method is constrained by the LCM model, which 
may limit its ability to detect and quantify metabolites that are not 
included in the model. Therefore, the proposed method may not be 
suitable for the analysis of MRS data that contains metabolites that are 
not well characterized by the LCM model. 

Lastly, the proposed method requires a large amount of training data 
to optimize the neural network, which may limit its applicability in 
certain settings where obtaining large datasets is challenging. 

6. Conclusions 

In this study, we presented a self-supervised deep learning technique 
for accurate quantification of in-vivo and simulated MRS data using 
linear combination modeling. Our proposed approach eliminates the 
need for labeled data during training and highlights the contribution of 
each basis spectrum in the overall spectrum. We compared our method 
with conventional approaches and observed that it quantified MRS 
signals with comparable performance but in a significantly shorter 
amount of time. Moreover, we demonstrated that more complex and 
deeper architectures did not improve the performance of our shallower 
architecture. 

We proposed a novel approach for MM modeling which increased the 
performance of our method. Our results indicated that a training dataset 
with a minimum size of 12000 is required for precise quantification, and 
larger datasets do not improve quantification accuracy. 

In conclusion, our study presents a self-supervised DL-based 
approach for accurate MRS data quantification, offering a faster alter
native to conventional techniques. Our findings could be of significant 
value in accelerating the quantification of large MRS datasets. Future 
studies should investigate the clinical relevance of our proposed 
method. 
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A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an 
imperative style, high-performance deep learning library, Adv. Neural Inf. Process. 
Syst. 32 (2019). 

[52] C. Cudalbu, K.L. Behar, P.K. Bhattacharyya, W. Bogner, T. Borbath, R.A. de Graaf, 
R. Gruetter, A. Henning, C. Juchem, R. Kreis, P. Lee, H. Lei, M. Marjańska, 
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Purpose: Multiple data formats in the MRS community currently hinder data
sharing and integration. NIfTI-MRS is proposed as a standard spectroscopy data
format, implemented as an extension to the Neuroimaging informatics technol-
ogy initiative (NIfTI) format. This standardized format can facilitate data sharing
and algorithm development as well as ease integration of MRS analysis alongside
other imaging modalities.
Methods: A file format using the NIfTI header extension framework incor-
porates essential spectroscopic metadata and additional encoding dimen-
sions. A detailed description of the specification is provided. An open-source
command-line conversion program is implemented to convert single-voxel and
spectroscopic imaging data to NIfTI-MRS. Visualization of data in NIfTI-MRS is
provided by development of a dedicated plugin for FSLeyes, the FMRIB Software
Library (FSL) image viewer.
Results: Online documentation and 10 example datasets in the proposed format
are provided. Code examples of NIfTI-MRS readers are implemented in common
programming languages. Conversion software, spec2nii, currently converts 14
formats where data is stored in image-space to NIfTI-MRS, including Digital
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Imaging and Communications in Medicine (DICOM) and vendor proprietary
formats.
Conclusion: NIfTI-MRS aims to solve issues arising from multiple data formats
being used in the MRS community. Through a single conversion point, process-
ing and analysis of MRS data are simplified, thereby lowering the barrier to
use of MRS. Furthermore, it can serve as the basis for open data sharing, col-
laboration, and interoperability of analysis programs. Greater standardization
and harmonization become possible. By aligning with the dominant format in
neuroimaging, NIfTI-MRS enables the use of mature tools present in the imag-
ing community, demonstrated in this work by using a dedicated imaging tool,
FSLeyes, for visualization.

K E Y W O R D S

MRS, MRSI, open data format, spectroscopy, visualization

1 INTRODUCTION

MRS is a highly flexible technique that can generate a
wide range of sensitive and specific imaging contrasts
complementary to the typically water-derived contrasts
of MRI. MRS allows simultaneous measurement of mul-
tiple in vivo metabolite concentrations that, when com-
bined with additional dynamic contrast-encoding tech-
niques, can be used to derive metabolite concentration
time courses, metabolite diffusion properties, or in vivo
chemical kinetics.1–3

In vivo MRS data typically requires a complex data stor-
age array containing multiple dimensions, including spec-
tral frequency (equivalently encoded as a time dimension),
spatial encoding, and any dimensions required for “dy-
namic” encoding. Before preprocessing, additional array
dimensions may be required, for example, to separately
store signals from multi-channel receive coils, or multi-
ple transients.4 In addition, any information about the
acquisition that is required for interpretation needs to be
stored, too, including the transmitter frequency and the
signal dwell time, as well as information on the spatial
dimensions and orientation of the measurement volume.

To date, there is no established standardized data for-
mat for communicating MRS and MRSI data. Whereas
a Digital Imaging and Communiations in Medicine
(DICOM) standard for MRS(I) exists,5 it is not fully imple-
mented by the vendors. Crucially, DICOM does not pro-
vide an intuitive way to store spectroscopic data or a
standardized method to encode data that requires two or
more additional encoding dimensions. As a result, vendors
have developed their own separate, proprietary (closed)
formats to store raw and processed spectroscopic data. The
specific format used is dependent on the scanner software
version and local practice. These proprietary formats vary

greatly in the degree in which data has been subjected to
inline processing, that is, whether data has been spatially
reconstructed, which (and how) metadata is stored, and
how the storage is formatted.

The lack of a standard data format hinders the use of
MRS in several ways:

1 It impedes integration with other imaging modalities.
Without standardized encoding of spatial orienta-

tion and position, registration with other modalities
requires a per-data-format solution. This hinders both
co-analysis of spectroscopic data with other modalities,
and leveraging of other modalities in reconstruction
and processing of the typically low-signal MRS.

2 It impedes the consistent analysis of data.
Any spectroscopic analysis program must imple-

ment dedicated interpretation modules for each format.
Development of new modules is time consuming and
relies on expert knowledge of a format. This results in
incomplete coverage of the formats by any one analysis
pipeline. Thus, consistent (and comparable) analysis is
prevented.

3 It impedes the creation of new, discrete, specialized
tools.

Without a standard storage format, processing and
analysis of spectroscopic data often occurs in a single
monolithic process, frequently relying on local analy-
sis pipelines and depending on the local MRS expert to
create them. This impedes modular processing, which
is important for development and uptake of new acqui-
sition and analysis methods, as well as improving exist-
ing ones. The barrier to creating new tools is high if
implementation of all processing steps is required. Fur-
thermore, quantifying improvements from modifying a
discrete step is difficult if it is inseparable from other
steps.
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4 It raises the difficulty of sharing data.
Compared to other modalities, sharing MRS data

is not straightforward. With the diversity of storage
formats, especially across platforms, users cannot reli-
ably read and interpret data received from other users.
Data-sharing repositories are required to handle mixed
data types, which are processed to varying levels and
have varying metadata. This creates enormous shar-
ing friction and discourages researchers from sharing.
Anonymization tools required for ethical public shar-
ing of data require per-format implementation.

Combined, these factors significantly raise the barrier
to adoption and use of MRS, especially for nonexpert users.
Compared to other MRI modalities, MRS analysis work-
flows remain highly customized and specific and require
unique MRS expertise on site.

To address these issues, we propose a single data for-
mat based on the Neuroimaging Informatics Technology
Initiative (NIfTI) format6 for storing single-voxel, spectro-
scopic imaging, and unlocalized spectral data. We call the
proposed format NIfTI-MRS. The NIfTI file format is the
standard format for storing anatomical, functional, dif-
fusion, and quantitative MRI and arterial spin labeling
data in the MR neuroimaging research domain. NIfTI has
provided a cornerstone for analysis across neuroimaging,
allowing integrated analysis of modalities.

The proposed format will:

• provide a simplified pathway from scanner to final anal-
ysis;

• enable interoperability and modularity of analysis pro-
grams;

• enable easier display and co-interpretation with other
modalities, and

• establish a format for data sharing.

In addition, the proposed format is designed to provide
a simple anonymization procedure and flexible storage of
meta-data, further removing friction from the process of
sharing.

To facilitate adoption, this work describes the imple-
mentation of an open-source command-line conversion
program capable of converting many original formats
to the proposed format. The program, spec2nii, provides
single-point conversion for all spatially reconstructed data
(including single-voxel data) from 14 different formats
alongside anonymization scripts and manual editing tools
for NIfTI-MRS.

By aligning MRS with the most widely used neu-
roimaging format, NIfTI-MRS will also allow researchers
to create comprehensive MRS research designs that incor-
porate different modalities with ease. To demonstrate this,

we have created an FSLeyes (FMRIB Software Library,
University of Oxford, Oxford, UK)7 plugin to visualize
multi-dimensional NIfTI-MRS data alongside structural
MRI and results from MRS fitting.

2 METHODS

2.1 The NIfTI-MRS data format

A brief description of the proposed standard (version 0.6) is
included here. The full standard is provided as Supporting
Information, and the latest version can be found in Ref. 8.

2.1.1 Design

The NIfTI-MRS format is designed to contain single-voxel,
contiguous multi-voxel, and unlocalized (or partially local-
ized) time-domain MRS data in up to three spatial dimen-
sions (i.e., MRSI-encoded data). Optionally, NIfTI-MRS
can encode up to three additional data dimensions, for
example, for arrays of interrelated signals. The stan-
dard is designed with low minimum-conformance meta-
data requirements to simplify adoption, while providing
for more complicated metadata requirements in the full
format.

The NIfTI format contains three sections: the
data header, optional header extensions, and the data
block. The proposed NIfTI-MRS format comprises a
NIfTI-2-formatted file with a mandatory header extension
formatted according to the JavaScript Object Notation
(JSON) standard.9,10

In NIfTI-MRS (Figure 1), the NIfTI data header11,12

structure is identical to the one used for structural
or functional MRI data, although some values are
constrained or re-utilized for spectroscopy-specific pur-
poses. For example, the dwell time of the time domain
data is stored in pixdim4 (with units are specified in
the xyzt_units field). Spatial position encoding, that is,
dimensions and orientation of the measurement vol-
ume, is implemented as in the NIfTI specification, and
a default value of pixdim is specified for unlocalized
data. Finally, only complex datatypes may be speci-
fied in the datatype field (e.g., “DT_COMPLEX”, 32).
The NIfTI-MRS standard is versioned, and the version
is specified in the intent_name field (in the format
mrs_v{major}_{minor}).

The NIfTI-MRS data block is used to store up to 7D
complex time-domain data. The first four dimensions are
required for a valid NIfTI-MRS file: the first three dimen-
sions are used for spatial encoding (x, y, and z coordinates),
and the fourth dimension is used to store the time-domain
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CLARKE et al. 2361

F I G U R E 1 Schematic representation of the proposed NIfTI-MRS format. The format utilizes the native NIfTI header and data block,
whereas using a JSON-formatted NIfTI header extension to store additional required metadata. The NIfTI data block encodes spatial
dimensions (dimensions 1–3), a time domain (dimension 4), and up to three further dimensions (total limited to seven by the NIfTI format
definition). By default, the additional dimensions encode uncombined receive coil information (dimension 5), repeated measurements
(dimension 6), and an “indirect” frequency dimension, that is, for 2D-NMR (dimension 7). The purpose of these dimensions can be explicitly
coded and changed by using the “dim_… ” keys in the header extension. JSON, JavaScript object notation.

FID (or echo). All three spatial dimensions have a size
of one for single-voxel data. The NIfTI(-MRS) format is
only suitable to store spatially reconstructed data; that
is, data that has been reconstructed from the acquired
k(t)-space representation. The remaining three dimen-
sions (fifth, sixth, and seventh) are optional. They flex-
ibly encode different dynamic aspects, with the specific
purpose and interpretation of each dimension being doc-
umented in the header extension. NIfTI-MRS is limited
to seven dimensions by the definition of the parent NIfTI
format. Modification of the data storage format to extend

the number of dimensions would break compatibility with
existing imaging software tools.

The header extension has the official NIfTI iden-
tification code 44, “NIFTI_ECODE_MRS.” It comprises
key-value pairs formatted according to the JSON stan-
dard, which can be arbitrarily nested, if necessary. The
header extension contains the minimum necessary meta-
data required for meaningful interpretation of the spec-
troscopic data, additional information about the optional
higher encoding dimensions, and further MRS-specific
metadata.
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2362 CLARKE et al.

2.1.2 Header extension metadata

The header extension contains 4 types of metadata key:

1 The two mandatory keys SpectrometerFrequency
and ResonantNucleus. These must be present in all
NIfTI-MRS formatted files because they are a nec-
essary requirement for correct reconstruction and
interpretation of the time-domain data.

2 Higher encoding dimension information. Three keys
are defined per additional encoding dimension (n = 5,
6, 7): dim_{n}, dim_{n}_info, and dim_{n}_header. The
first, dim_{n}, is mandatory if the dimension is used.
Dim_{n} takes the value of a list of predefined tags
(e.g., DIM_COIL or DIM_EDIT) to identify the purpose
of the dimension. A DIM_USER_{0–2} tag allows for
user-specified purposes, which can be described using
the dim_{n}_info field. The dim_{n}_header tag enables
each element of a dimension to be associated with
different values of metadata keys.

3 Standard-defined metadata. These keys correspond to
well-defined and frequently used sequence, hardware,
or subject data. They are defined in the NIfTI-MRS
standard and may not be redefined. These keys are
optional.

4 User-defined metadata. Keys can be arbitrarily defined
by users to store unusual metadata not foreseen in the
standard or for which no fixed format or recommenda-
tions exist. User-defined JSON metadata permits addi-
tional fields for user-defined keys, encouraging in-place
documentation to aid interpretation of the keys. These
keys are optional.

2.1.3 Spatial information

Orientation, position, and voxel size information are
stored in the NIfTI-MRS header in accordance with the
NIfTI standard. NIfTI encodes the spatial information
using one, or both, of two (4× 4) affine matrices: qform and
sform. The former is stored using a series of header keys
(pixdim, quatern_b, quatern_c, quatern_d, qoffset_x, qoff-
set_y, qoffset_z, qfac), whereas the latter is stored directly.
These t affine matrices each encode the relationship
between the data stored in the 3D spatial grid and a mean-
ingful coordinate system. The most common coordinate
system is that of scanner–anatomical ({qs}form_code = 1),
that is, relative to the position of the subject in the scanner;
however, it can also be relative to just the physical scan-
ner, the scanner table, or a defined standard interpretation
space ({qs}form_code= 4), for example, “MNI_152.”13 Two
different coordinate systems can be encoded by using each
affine matrix. NIfTI-MRS follows the original NIfTI stan-
dard and emphasizes the use of qform as the default.

As such, for NIfTI-MRS, conformance is achieved in
the header either when:

1 qform_code is set >0,
2 The second to fourth elements of pixdim are set to the

appropriate voxel dimensions, or to a default of 10 m,
3 quatern_b, quatern_c, quatern_d, qoffset_x, qoffset_y,

qoffset_z are set,
4 A valid value of qfac is set.

Or:
1 qform_code is set = 0 (NIfTI_XFORM_UNKNOWN),
2 The second to fourth elements of pixdim are set to the

appropriate voxel dimensions or to a default of 10 m.

The former pixdim option is suitable for data that has
a meaningful spatial position, and the latter for data with
no real-world position, for example, simulated data. Use of
the default pixdim size (10 m) indicates a dimension has
no unlocalization, or that it has poorly defined extent (e.g.,
unlocalization provided only by the limited extent of coil
sensitivity).

The NIfTI format in general (and therefore also
NIfTI-MRS) cannot store spatially noncontiguous data
(i.e., data with a gap between voxels or slices) in a sin-
gle file. Distinct contiguous volumes need to be stored
separately.

2.1.4 Anonymization of protected health
information

To ease the process of anonymization, all standard-defined
metadata keys are marked as privacy-sensitive or not
privacy-sensitive in the standard. User-defined metadata
may be self-marked as privacy-sensitive by appending
“private_” to the start of the key or any nested key within
the definition.

Anonymization of data stored as NIfTI-MRS is simpli-
fied through two features:

1 Only a subset of metadata is retained in the conver-
sion to NIfTI-MRS. This metadata is selected and only
incorporates that which is well defined.

2 Anonymization tools acting on NIfTI-MRS can reliably
identify sensitive fields that have been converted using
their definition in the standard.

2.1.5 Processing provenance

Preprocessing steps applied to the data can be optionally
recorded in the header extension. The type of preprocess-
ing applied, the program used, the program version, and
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CLARKE et al. 2363

any additional information provided by the preprocessing
algorithm can be stored sequentially in the “ProcessingAp-
plied” field. Provenance is not provided by the NIfTI-MRS
data standard itself but either requires adequate imple-
mentation in relevant software packages or manual addi-
tion by users.

2.1.6 Phase and frequency conventions

The NIfTI-MRS standard defines a strict frequency and
phase convention for data. This convention follows the
conventions of Levitt.14 In this convention, the absolute
frequency scale should increase from left to right. For
nuclei with a gyromagnetic ratio greater than zero, this
corresponds to resonances from nuclei with less shielding
(more deshielding), which therefore experience a higher
magnetic field, appearing on the left; that is, they have
more negative (higher magnitude) Larmor frequencies,
noting 𝜔 = −𝛾B0. This results in a typically displayed
chemical shift (“ppm”) axis increasing from right to left. A
description of this convention in the spectral time domain
is provided in the specification.

2.2 Software implementation

To promote the use of NIfTI-MRS, the standard has been
implemented into software for conversion, visualization,
and data input–output (I/O). Functions for loading, writ-
ing, and visualizing NIfTI-MRS data have been created
for common programming languages and integrated into
open-source analysis packages.

2.2.1 Conversion to NIfTI-MRS

An open-source conversion program spec2nii has
been created. Spec2nii reads vendor-proprietary,
DICOM, and processing toolbox formats and generates
NIfTI-MRS-formatted files. The program can also inspect,
edit, and anonymize existing NIfTI-MRS files. The pro-
gram operates on the command line; is written in Python;
and is developed as a public, open-source resource

2.2.2 Visualization using FSLeyes

To enable visualization of the multi-dimension NIfTI-MRS
format, an FSLeyes plugin has been created. FSLeyes is the
free, open-source FMRIB Software Library (FSL) image
viewer. The developed plugin extends FSLeyes to interpret

the NIfTI-MRS format and enables display of single and
multi-voxel spectroscopy stored in the format.

3 RESULTS

3.1 The NIfTI-MRS data format

The specification for the NIfTI-MRS data format is avail-
able with this document as Supporting Information and
online at Ref. 8. To assist in the interpretation of the stan-
dard, both online explanatory documentation (wtclarke.
github.io/mrs_nifti_standard/) and example data15 have
been created. Figure 2 shows extracts of NIfTI-MRS header
extensions from 4 of the 10 example datasets. These
four examples demonstrate the structure of the header
extension, the flagging of privacy-sensitive data, dynamic
header values describing different conditions in one of
the additional data dimensions (here spectral editing),
and records of processing provenance. Additional exam-
ples are given in the specification and in the example
data (at Ref. 15), including an example of “Fingerprint-
ing” (example_09.nii.gz) where four different changing
acquisition parameters would exceed the number of avail-
able data dimensions and do not form a densely filled
rectilinear grid. In this case, a single additional dimen-
sion (dimension 5) is used, and arrays of each changing
parameter are stored in the dim_5_header field.

3.2 Software implementation

3.2.1 Conversion to NIfTI-MRS

The conversion program spec2nii has been created and
released as a Python package. The package is devel-
oped online (https://github.com/wtclarke/spec2nii) and is
available from the PyPI and Conda package managers.
Spec2nii provides automatic or semi-automatic conversion
of 14 data formats (vendor-proprietary and DICOM) to
NIfTI-MRS (Table 1).

Figure 3 outlines the proposed use cases of spec2nii and
NIfTI-MRS enabled by this work:

1 Varied input data is passed to spec2nii.
2 spec2nii identifies the appropriate reconstruction and

conversion pathway.
3 Conversion is carried out, and a NIfTI-MRS file is

returned.
4 Preprocessing is carried out using NIfTI-MRS as an

intermediary format.
5 Preprocessed data is stored or further analyzed (fitted).
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F I G U R E 2 Extracts of NIfTI-MRS JSON-formatted header extensions for 4 different pieces of example data. The full example data is
available from Ref.15. Each example demonstrates a different aspect of the header extension format. Figure annotations are shown as blue
italicized text. (A) Structure of a header extension of 1H single-voxel data before preprocessing. (B) Header extension for processed 31P MRSI,
including fields that are marked for anonymization (red). (C) Example of dynamic header fields indicating an editing condition stored in the
seventh dimension. (D) Extract of the processing provenance in a MEGA-PRESS16 sequence preprocessed using FSL-MRS17 . 1H,
hydrogen-1; 31P, phosphorus-31; FSL, FMRIB Software Library; MEGA-PRESS, Mescher-Garwood point resolved spectroscopy.
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T A B L E 1 List of spec2nii supported formats in version 0.3.4

Spectroscopy Formats HandledVendor/
Software Format

File
Extension SVS MRSI FID

Automatic
Orientation Notes

Siemens Twix .dat ✓ × ✓ ✓ VB and VE baselines

Siemens DICOM .ima ✓ ✓ ✓ ✓

Philips SPAR/SDAT .SPAR/.SDAT ✓ × ✓ ✓

Philips data-list .data/.list ✓ × ✓ ✓

Philips DICOM .dcm ✓ × ✓ WIP

GE pfile .7 ✓ ✓ ✓ ✓ Per-sequence mapping required

UIH DICOM .dcm ✓ ✓ ✓ ✓

Bruker 2dseq – ✓ ✓ ✓ ✓ PV 5.1, 6.0, 6.0.1, 7.0.0, 360

Bruker fid – ✓ × ✓ WIP PV 5.1, 6.0, 6.0.1, 7.0.0, 360

Varian fid – ✓ × ✓ WIP

LCModel RAW/H2O .RAW/.H2O ✓ × ✓ ×

jMRUI Text .txt ✓ × ✓ ×

jMRUI MRUI .mrui ✓ × ✓ ×

– ASCII .txt ✓ × ✓ ×

✓ = included fully; FID, free induction decay; WIP = work in progress, X = not yet included (inclusion dependent on the availability of test data and information
on interpretation of the data-format). SVS, single voxel spectroscopy

The data at any stage after conversion (stage 3) can be
shared, whether that is the unprocessed converted data,
fully preprocessed, or partially processed data.

For this work, only the conversion of spatially recon-
structed data has been implemented in spec2nii. Data that
are stored in a k-space representation cannot currently be
converted. In the future, some spatially unreconstructed
data from standard vendor-supplied MRSI sequences will
be handled by spec2nii. For data requiring specialist recon-
struction, for example, those with non-Cartesian trajecto-
ries, we propose a future pathway incorporating conver-
sion to International Society for Magnetic Resonance in
Medicine raw data format (ISMRMRD)18 and third-party
reconstruction provided by the sequence developers. To
ease use of NIfTI-MRS with custom or “offline” recon-
struction routines, we have provided minimal code exam-
ples of NIfTI-MRS input/output (I/O) (see next section),
which could be used to output NIfTI-MRS directly.

The formats supported by spec2nii are summarized in
Table 1. Spec2nii carries out automatic spatial orientation
calculations for 7 of the 14 supported formats.

3.2.2 NIfTI-MRS I/O and compatibility

In Ref.19, minimal examples of NIfTI-MRS file read-
ers have been provided in 4 common programming

languages (Java, MatLab [MathWorks, Natick, MA],
Python, and R). The examples exploit the availabil-
ity of robust NIfTI I/O libraries in those programming
languages.

Support for NIfTI-MRS has been established in five
open-source spectroscopy analysis packages: FSL-MRS,17

Osprey,20 Spant,21,22 Vespa23 (https://github.com/vespa-
mrs/vespa), and FID-A.24 Each package has I/O compat-
ibility with the standard. Example short-TE STEAM and
water reference data at 7 tesla, provided in the NIfTI-MRS
format and processed in FSL-MRS, Spant, and Osprey
(with Osprey using FID-A as foundation), are shown in
Figure 4. The spatial location of the single voxel is shown
overlaid on a NIfTI structural image in each package. This
demonstrates the benefit for interoperability of different
software solutions, and the potential to form the foun-
dation of a mutually compatible, multi-language analysis
software ecosystem.

3.2.3 Visualization in FSLeyes

Visualization of NIfTI-MRS-formatted data is possible
using FSLeyes and the NIfTI-MRS plugin for FSLeyes. The
plugin implements:

• a pannable and zoomable display for spectra;
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F I G U R E 3 Proposed MRS and MRSI
processing pipelines using NIfTI-MRS and
incorporating conversion in spec2nii. In the
proposed pipeline, raw data from a variety of
formats (e.g., DICOM, Siemens “Twix.dat”, GE
“p-file,” or Philips “SDAT/SPAR”) are
converted to NIfTI-MRS using spec2nii.
Subsequently preprocessing can be applied,
with both the input and results stored in
NIfTI-MRS. Data can be shared with other
users or a data repository in a format-agnostic
way at any stage of the preprocessing pipeline.
The preprocessed NIfTI-MRS file can then be
passed on to modeling software. Spec2nii can
convert unlocalized, single-voxel, and spatially
reconstructed MRSI. In the future, spec2nii will
also convert MRSI stored in k-space for certain
common supported sequences. For other
sequences (e.g., those with non-Cartesian
trajectories), a pipeline incorporating the
ISMRMRD format18 and third-party
reconstruction is proposed. The red box
indicates software yet to be implemented.
DICOM, Digital Imaging and Communications
in Medicine.

• display of NIfTI-MRS headers;
• automatic calculation of the chemical shift axis;
• display of individual spectra stored in the higher dimen-

sions (5th–7th dimensions);
• interactive zeroth and first-order phasing of spectra, and
• easy comparison of spectra from different voxels.

The plugin is maintained at https://git.fmrib.ox.ac.
uk/wclarke/fsleyes-plugin-mrs and is available from
the Pypi and Conda package managers. It operates
using the FSLeyes interface, is written in python, is
open source, and is available under the BSD 3-clause
license. FSLeyes is available under the Apache License,
version 2.0.7

This work enables NIfTI-MRS formatted data to be dis-
played alongside arbitrary MRI and other modality imag-
ing data formatted as NIfTI. It also enables the visualiza-
tion of multidimensional NIfTI-MRS data. Figure 5 shows
two examples of NIfTI-MRS data displayed in FSLeyes
using the plugin.

4 DISCUSSION

In this work, we have proposed NIfTI-MRS as a new stan-
dard data storage format for MRS and MRSI. The stan-
dard was initially developed and agreed by a group of
MRS physicists and researchers with experience in MRS
analysis software use and development. Following a draft
specification, feedback was sought from MRS software
developers, experts in the field, and the wider technical
MRS community. The standard and associated files are
maintained online at Ref.19.

NIfTI-MRS can provide a simplified analysis pathway
and a path for interoperability of analysis programs, and
greatly simplifies display and co-interpretation of MRS
data alongside other modalities. In addition, the standard
fulfills several other desirable objectives:

• A standard data storage format is a prerequisite for
incorporating MRS data into standardized data struc-
turing schemes, such as in the Brain Imaging Data
Structure (BIDS).25
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F I G U R E 4 NIfTI-MRS single voxel spectroscopy data processed in 3 spectroscopy toolboxes supporting input and output of NIfTI-MRS
data. (A) Raw data converted to NIfTI-MRS format by spec2nii was loaded and preprocessed in each of the toolboxes before being written back
out to NIfTI-MRS. Comparison of water-suppressed (B) and water-reference (C) data processed in each toolbox is simple using the pipeline in
(A). The output NIfTI-MRS data is easy to present alongside structural data stored in NIfTI format using a variety of MRS analysis software (D)

• Similarly, a standard format allows for exten-
sive and easy data archiving and sharing in open
science databases, such as OpenNEURO26,27 or
MRS-specific databases.28 One study29 has already uti-
lized NIfTI-MRS for the purpose of releasing study
data on XNAT central (https://central.xnat.org/data/
projects/PN21). And another has recently submitted
data formatted as NIfTI-MRS to the National Institute
of Mental Health Data Archive (National Institutes of
Health, Rockville, MD).30

• Standard header definitions and processing provenance
make it easier for users to comply with minimum
reporting standards consensus statements,31 and to
reproduce and recreate data analysis workflows sim-
ply by extracting the provenance information from a
NIfTI-MRS file users received

The developers of NIfTI-MRS have sought to make the
standard as accessible as possible. Spec2nii implements
a mature open-source program suitable for both one-off
and batch conversion tasks. NIfTI I/O libraries are avail-
able in all common programming languages, and minimal

examples of readers have been provided. Support for
NIfTI-MRS is already available in five analysis packages
(with further packages implementing the standard cur-
rently). This represents a critical mass of actively devel-
oped processing tools.

To date, spec2nii handles 14 different formats; how-
ever, complete coverage of sequences across such a
diverse range of formats cannot be guaranteed. Cur-
rently, data must be in a spatially reconstructed format
before conversion. Development of spec2nii has relied on a
community-led model, with users contributing examples,
test data, and code contributions to the developers.

In this work, FSLeyes has been extended with a plu-
gin to create an NIfTI-MRS compatible data viewer. The
authors consider this just an example of the existing tools
present in the MR imaging community that can be eas-
ily leveraged for MRS and MRSI by using NIfTI-MRS.
NIfTI-MRS mitigates the difficulty of aligning and register-
ing MRSI data with MRI (and other modality) data, easing
the simultaneous use of imaging and spectroscopic data
to further methodological and analysis techniques in both
fields.
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F I G U R E 5 (A) MRSI data displayed in FSLeyes using the NIfTI-MRS plugin. In addition to the NIfTI-MRS data, results from spectral
fitting (also stored in NIfTI format) are displayed overlaid on the spectrum, to the left a metabolite map of total choline is displayed overlaid
on a T1w structural image. The spectrum display automatically displays voxel-wise spectrum and fits as the cursor is moved over the
orthographic display. (B) Partially preprocessed single voxel data displayed in FSLeyes alongside corresponding structural data. Beneath the
main spectral view panel, an additional panel “NIfTI-MRS” (bottom-right) displays a summary of the MRS specific header information
contained in the file, and a slider UI element to allow the user to view each spectrum stored in the higher (5th–7th) dimensions. Here the
tenth (of 64) temporal averages stored in dimension 5 is displayed

The NIfTI-MRS standard is versioned, enabling
backward-compatible future extension of the standard.
The authors propose that the International Society for
Magnetic Resonance in Medicine MRS Study Group Com-
mittee for Code and Data Sharing (www.mrshub.org/),
established in 2020 as a permanent standing commit-
tee with rotating members, helps maintain oversight of
the standard and any future development alongside the
original authors.

Establishing a standardized data format for MRS
is a requirement for MRS to be used for large scale
cross-center, or population, studies. The NIfTI format pro-
vided this for neuroimaging studies such as the Human
Connectome Project.32 Furthermore, the uptake of the
NIfTI-MRS standard shows the possibility of establishing
an ecosystem of open-source analysis toolboxes similar to
that which has benefitted functional neuroimaging (e.g.,
AFNI, FSL, SPM).33–35 Nonetheless, this work does not
tackle other key aspects such as communication of MRS
fitting results.

5 CONCLUSION

NIfTI-MRS has been designed to both promote the use of
MRS in biomedical research and ease the technical devel-
opment of MRS analysis in the wider field of biomedical
imaging. The standard and associated tools are developed
in an open-research context. Further use and develop-
ment of NIfTI-MRS and associated tools are dependent on
the expertise and contributions of the community, includ-
ing MR hardware vendors. To date, the community has
enthusiastically done so, enabling the rapid development
of the standard and its inclusion in multiple software
tools.
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