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Abstract 
In this work, we study ways to improve the performance of network intrusion detectors. In 
detail, we focus on behavioral analysis, which uses data extracted from ind iv idua l network 
connections. Such data is used by the described framework for obfuscation of targeted 
network attacks that exploit a set of contemporary vulnerable services. We select vulnerable 
services by scraping the Na t iona l Vulnerabi l i ty Database of N I S T while l imi t ing the search 
for years 2018 and 2019. A s a result, we create a novel dataset that consists of direct 
and obfuscated attacks executed on selected vulnerable services as well as their legitimate 
traffic counterparts. We evaluate the dataset using a few classification techniques, and we 
demonstrate the importance of t ra ining these classifiers using obfuscated attacks i n order 
to prevent evasion of the classifiers (i.e., false negatives). Final ly , we perform the cross 
dataset evaluation using the state-of-the-art A S N M - N P B O dataset and our dataset. The 
results indicate the importance of retraining the classifiers w i th the novel vulnerabili t ies 
while s t i l l preserving a high detection performance of attacks on older vulnerabilit ies. 

Abstrakt 
V t é t o p rác i se z a b ý v á m e vy lepšen ím s y s t é m ů pro o d h a l e n í síťových p r ů n i k ů . K o n k r é t n ě 
se z a m ě ř u j e m e na behav io rá ln í ana lýzu , k t e r á využ ívá data e x t r a h o v a n á z j edno t l i vých 
síťových spojen í . T y t o informace využ ívá p o p s a n ý framework k obfuskaci cí lených síťových 
ú t o k ů , k t e r é zneužívaj í z r an i t e lnos t í v s adě soudobých z ran i t e lných s lužeb. Z N á r o d n í 
d a t a b á z e z ran i t e lnos t í od N I S T v y b í r á m e z ran i t e lné služby, p ř i čemž se omezujeme jen na 
roky 2018 a 2019. Ve výs ledku v y t v á ř í m e nový dataset, k t e r ý ses tává z p ř í m ý c h a obfusko-
vaných ú t o k ů , p rovedených prot i v y b r a n ý m z r a n i t e l n ý m s l u ž b á m , a t a k é z jejich p ro tě j šků 
ve formě l eg i t imního provozu. Nový dataset vyhodnocujeme za použ i t í někol ika klasi­
fikačních technik, a demonstrujeme, jak dů lež i té je t r é n o v a t tyto klas i f ikátory na obfusko-
vaných ú toc ích , aby se zab rán i lo jejich p r ů n i k u bez p o v š i m n u t í . Nakonec p r o v á d í m e křížové 
v y h o d n o c e n í d a t a s e t ů p o m o c í ne jmoderně j š ího datasetu A S N M - N P B O a na šeho datasetu. 
Výs ledky ukazuj í dů lež i tos t o p ě t o v n é h o t r énován í k las i f ikátorů na nových zranitelnostech 
př i zachování d o b r ý c h schopnos t í detekovat ú t o k y na s t a r é zranitelnosti . 
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Rozšířený abstrakt 
Síťově o r i en tované s y s t é m y pro o d h a l e n í p r ů n i k u , k t e r é jsou za ložené s t ro jovém učení , 

jsou schopny p o m o c í behav io rá ln í ana lýzy síťové komunikace detekovat i pro ně n e z n á m é 
útoky, a to i bez nah l ížen í na v n i t ř n í data j edno t l i vých p a k e t ů . P r o b l é m e m je, že p o m o c í 
obfuskačních metod lze tyto klas i f ikátory oklamat, a t u d í ž je m o ž n é pro obfuskovaný ú t o k 
přes t akové s y s t é m y proniknout bez p o v š i m n u t í . 

V t é t o p rác i se řeší , jak vylepš i t schopnost k las i f ikátorů detekovat adve r sa r i á ln í ú t o k y 
založené na obfuskacích a zjistit, jak se od sebe n a v z á j e m liší j edno t l ivé klasif ikátory. Dá le 
je c í lem zjistit, jak d o b ř e d o k á ž o u detekci obej í t r ů z n é obfuskační techniky a jak odo lné 
jsou klas i f ikátory vůči n e z n á m ý m obfuskačn ím t e c h n i k á m . K e konci je p r áce se z a m ě ř e n a 
na to, j a k ý v l iv m á použ i t í r ů z n ý c h d a t a s e t ů pro t r énován í a t e s tován í d a n ý c h klasi f ikátorů. 

V r á m c i p r á c e byly v N á r o d n í d a t a b á z i z r an i t e lnos t í N á r o d n í h o ins t i tu tu s t a n d a r d ů a 
technologie, k t e r ý s p a d á pod Ministers tvo obchodu Spojených s t á t ů amer ických , d o h l e d á n y 
zranitelnosti z roku 2018 a 2019. N á s l e d n ě byly v d a t a b á z i od spo lečnos t i Offensive Secu-
ri ty nalezeny exploity, k t e r é d a n ý c h z ran i t e lnos t í zneužívaj í k p r ů n i k u do cílového sy s t ému . 
K e k a ž d é z ran i t e lné s lužbě by l v y t v o ř e n v i r t uá ln í stroj, na k t e r ý byla s lužba nainstalo­
vaná . K v i r t u á l n í m s t r o j ů m by l p ř ipo j en ú t o č n ý p o č í t a č , k t e r ý použ íva l n á s t r o j Metas-
ploit, p o m o c í k t e r é h o se s t a žené exploity použ i ly k ú t o k ů m na k a ž d ý v i r t u á l n í stroj. Celá 
komunikace všech ú t o k ů byla n a h r á n a p o m o c í n á s t r o j e tcpdump. Dá le b y l na ú t o č n ý stroj 
p ř i d á n m n ě d o d a n ý Non-Payload-based ( N P B O ) framework, k t e r ý sloužil jako n á s t r o j pro 
obfuskaci ú t o k ů p rovedených s t a ž e n ý m i exploity. 

K obfuskaci byly p o u ž i t y techniky, k t e r é měn i ly r ů z n é behav io rá ln í vlastnosti ú t o k ů 
p o m o c í z m ě n , k t e r é nezasahovaly do vn i t řn í ch dat p a k e t ů . Obfuskačn í techniky provádě ly 
n a p ř . simulaci nespoleh l ivého síťového k a n á l u p o m o c í u m ě l é h o poškozování u r č i t ého pro­
centa p a k e t ů , p ř i dáván í zpožděn í p ř e n á š e n ý c h p a k e t ů , z m ě n u p o ř a d í p a k e t ů , r ů z n é kombi­
nace j m e n o v a n ý c h technik atd. P o m o c í N P B O frameworku se automaticky nebo poloau­
tomaticky ú toč i lo obfuskovanými ú t o k y na všechny z ran i t e lné s lužby běžící na v i r tuá l ­
ních s t ro j ích . N P B O framework veškerou komunikaci zaznamenal p o m o c í a u t o m a t i c k é h o 
spouš t ěn í n á s t r o j e tcpdump. Dá le byly v y t v o ř e n y z á z n a m y komunikace l eg i t imního provozu 
z ran i t e lných s lužeb (opě t p o m o c í n á s t r o j e tcpdump) , což obsahovalo p ř ipo jen í se k d a n é 
s lužbě a t am p ř í p a d n o u autentizaci na ně jakého uživate le a r ů z n é z m ě n y n a s t a v e n í na 
d a n é s lužbě , v y t v á ř e n í nových už iva te l ských ú č t ů , v y t v á ř e n í webových s t r á n e k , n a h r á v á n í 
a s t ahován í s o u b o r ů apod. Z k r á t k a se vykonáva ly b ě ž n é úkony, k t e r é by mohly bý t ob­
vyklé v p ř í p a d ě k a ž d é služby. Nový dataset se tedy s k l á d á ze z á z n a m ů leg i t imního provozu 
každé služby, z á z n a m ů p ř í m ý c h ú t o k ů na danou s lužbu a z á z n a m ů obfuskovaných ú t o k ů 
na n i . Slabinou tohoto datasetu je fakt, že veškeré ú t o k y a simulace l eg i t imního provozu 
byly p rováděny v l a b o r a t o r n í c h p o d m í n k á c h , a to dokonce mimo jakéhokol i j i n é h o provozu, 
t u d í ž n a s h r o m á ž d ě n á data dokonale neodpov ída j í r e á l n é m u provozu v praxi . 

N a s h r o m á ž d ě n á data byla po tom p ř e d á n a da l š ímu m n ě d o d a n é m u nás t ro j i recurs-walker, 
k t e r ý provedl extrakci j edno t l i vých T C P spo jen í ze z á z n a m ů komunikace a p ř i d a l je do nové 
Pos tgreSQL d a t a b á z e . N á s l e d n ě b y l s p u š t ě n dalš í m n ě d o d a n ý n á s t r o j metrics-extractor, 
k t e r ý analyzoval T C P spojení v d a t a b á z i a z nich extrahoval Advanced Security Network 
Metr ics ( A S N M ) rysy, n a p ř . p r ů m ě r velikosti zdro jových p a k e t ů ( s t a t i s t i cký rys), poče t 
p řenesených b a j t ů za sekundu ( d y n a m i c k ý rys), zdrojová I P adresa ( lokal izační rys), poče t 
p a k e t ů za sekundu d i s t r i buovaných do 10 in te rva lů (d i s t r ibuovaný rys), aproximace délek 
př íchozích p a k e t ů polynomem 5. ř á d u (behav io rá ln í rys). V p r ů b ě h u extrakce r y s ů se 
provedla i anonymizace koncových b o d ů ve spojeních p o m o c í z m ě n I P adres. D á l e byly 
i m p l e m e n t o v á n y procesy v nás t ro j i R a p i d M i n e r , k t e r é provedly dalš í zp racován í T C P spo-



j en í a p ř í p r a v u dat pro j edno t l ivé klasif ikátory, n a p ř . o d s t r a n ě n í lokal izačních rysů , p ro tože 
v l a b o r a t o r n í c h p o d m í n k á c h pro klasifikaci dat, k t e r á neobsahu j í ž á d n á j i n á spo jen í než je 
ú tok , nebo jen leg i t imní provoz d a n é aplikace j e d n í m už iva te lem, n e m á d a n ý rys v ý z n a m . 
V da l š ím procesu jsou po tom z p ř ip r avených dat v y b r á n y rysy p o m o c í a lgori tmu Forward 
Feature Selection za použ i t í k las i f ikátoru Naivě Bayes s Ke rne l Densi ty Es t ima t ion nejprve 
z dat obsahuj ích p ř í m é ú t o k y ( D L data) a po tom z dat, k t e r é obsahuj í i obfuskované ú t o k y 
( D O L data). N á s l e d n ě je provedena kř ížová validace na datech D L a D O L , s r o v n á n y rozdí ly 
mezi klas i f ikátory za použ i t í v y b r a n ý c h rysů z t ě c h t o dat a o t e s t o v á n a odolnost k las i f ikátoru 
se znalostmi o obfuskovaných ú toc í ch vůči pro ně n e z n á m ý m obfuskacím. 

V y h o d n o c e n í nového datasetu bylo z a m ě ř e n o na šest k las i f ikátoru . Nejdř íve byly klasi­
f ikátory n a t r é n o v a n é jen na l eg i t imn ím provozu a p ř í m ý c h ú toc ích . V křížové validaci 
bylo s p r á v n ě de t ekováno od 97.63% do 100.00% p ř í m ý c h ú t o k ů . N á s l e d n ě byly t e s továny 
schopnosti t ě c h t o klas i f ikátoru detekovat obfuskované ú t o k y a experiment ukáza l , že mnoho 
ú t o k ů se detekci vyhnulo. Výs ledky ukázaly , že klasifikace obfuskovaných ú t o k ů dopadla 
o 0.35% až 83.55% hůř , než kř ížová validace nad p ř í m ý m i ú t o k y a l eg i t imn ím provozem. 
Opro t i tomu v experimentu křížové validace na datech, k t e r á obsahuj í i obfuskované ú toky , 
klasifikace p ř í m ý c h ú t o k ů v kombinaci s obfuskovanými ú t o k y d o s á h l a zlepšení o 0.04% až 
81.05% v závislost i na typu klas i f ikátoru. Trénován í k las i f iká toru na obfuskovaných ú toc ích 
se tedy ukáza lo jako velmi důlež i té . 

N a d n o v ý m datasetem a datasetem A S N M - N P B O - v l [39] bylo provedeno křížové vy­
h o d n o c e n í p o m o c í č ty ř k las i f ikátoru. Úspěšnos t detekce ú t o k ů klas i f ikátoru t r énovaných 
na n o v é m datasetu a t e s tovaných na datasetu A S N M - N P B O - v l dosahuje od 54.37% do 
86.41% a klas i f ikátory t r é n o v a n é a t e s tované naopak dosáh ly 9.2% až 37.57%. P ř i h lubš í 
ana lýze výs ledků byly nalezeny z n a č n é rozdí ly ve výsledcích různých z ran i t e lných s lužeb. 
Klas i f iká tory t r é n o v a n é na n o v é m datasetu detekovaly p r ů m ě r n ě 96.76% ú t o k ů na Apache 
a jen 30.43% ú t o k ů na M S S Q L . P o d o b n é dva e x t r é m n í p ř í p a d y byly objeveny i v o p a č n é m 
p ř í p a d ě , kdy byly klas i f ikátory t r é n o v a n é na datasetu A S N M - N P B O - v l , kde detekovaly 
p r ů m ě r n ě 70.38% ú t o k ů na Gits tack a 0% ú t o k ů na F T P S h e l l . B y l o ověřeno, že klasi­
f ikátory jsou schopny ú s p ě š n ě detekovat velké procento pro ně a b s o l u t n ě n e z n á m ý c h ú t o k ů 
na n ě k t e r é zranitelnosti , ale zá roveň existuj í i ú t o k y z a m ě ř e n é prot i j i n ý m zranitelnostem, 
k t e r é jsou pro ně nede tekova te lné . 
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Chapter 1 

Introduction 

In the list of top 10 cybersecurity threats are attacks, such as R y u k , Maze, Nemty ran-
somware, campaigns like Operat ion ZeroCleare, etc. Ment ioned attacks targeted organi­
zations, which are capable of paying the large ransom demanded, governments, industr ial 
sectors, telecommunications providers, or regular people to steal sensitive data, encrypt 
data and require money for decryption, cause damage to machines, etc. Another problem 
is unpatched software for example from Adobe, Microsoft, or Orac le 2 , which is being tar­
geted mostly. Therefore, there is a necessity for defense against attacks like them, which 
might be acquired wi th the use of intrusion detection systems. 

Knowledge-based (a.k.a. misuse-based) intrusion detection systems have difficulties de­
tecting zero-day attacks and they are also vulnerable to attacks that were modified using 
polymorphism. The vulnerabi l i ty originates from the fact there are no signatures for novel 
attacks and polymorphic modification of known attacks might prevent the positive sig­
nature match as well . Hence there is a requirement for new ways of network intrusion 
detection, which would eliminate mentioned defects. A possible solution to the problem 
is anomaly detection systems. Anomaly-based intrusion detection systems bu i ld profiles 
of users, which represent their normal behavior. Anomalies are recognized as deviations 
from users' profiles. There is a drawback of an anomaly-based approach though because 
these systems tend to have a high false-positive rate, unlike a knowledge-based approach. 
Another interesting approach is classification-based detection, which combines the advan­
tages of both techniques. The principle of a classification-based detection system resides in 
constructing its model from malicious traffic as well as benign traffic. To classify an input 
the detector just compares the input to both models and assigns the more similar class to 
it. A n o m a l y detection systems and classification-based systems are capable of new attack 
detection, but they have problems detecting attacks based on obfuscation techniques [42]. 

Due to data encryption and also for efficiency reasons this thesis is concerned only 
wi th classification-based network intrusion detection systems, which are not performing 
deep packet inspection that analyzes the packet pay load. O n the contrary, these systems 
inspect only headers of packets that are at t r ibuted to part icular T C P connections. We 
also assume that adversaries know a l l details about principles of the classification-based 
system, because the system should be secure even if the adversary knows everything about 
i t . 3 The adversary is capable only to modify the input of the system, but he has to 
adhere to protocols of the T C P / I P stack specification. Hence there are several things he 

x h t t p s : //www.mcaf ee .com/enterpr i se /en-us / threa t -cen ter .h tml  
2 h t t p s : / /www.us-cer t .gov/ncas/a ler ts /TA15-119A 
3 T h e assumption is derived from the Kerckhoffs's principle. 
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might execute, for example: exploit code modification, adding padding at the applicat ion 
layer of exploit code or he may manipulate network or transport layer protocols. W h e n 
an adversary needs to attack a big count of targets and use many different exploits it is 
very impract ica l for h i m to manual ly modify exploit codes or add padding to each of them 
separately. Therefore he might find it useful to implement non-payload-based obfuscation 
techniques, which would transform known intrusions i n an exploit-independent way. Non-
payload-based obfuscation methods' goal is to camouflage intrusions to make them look 
similar to legitimate traffic. The Non-Payload-Based Obfuscation framework described in 
this thesis follows this idea and achieves exploit-independent obfuscation by modifying given 
exploits at network and transport layers of T C P / I P stack. Considering a classification based 
on generalized architecture of intrusion detection system (see Section 3.2), this approach 
belongs to the measurement phase-based attacks. In the case of the categorization by 
Barreno et. a l [21] (see Section 4.0.1), our framework's method belongs to the exploratory 
type of attacks as far as influence is concerned, integrity attack i n case of security violat ion, 
and it belongs to the category of indiscriminate attacks i n case of specificity [42]. 

C o n t r i b u t i o n s 

In this thesis, a novel dataset was created. The dataset consists of A S N M features extracted 
from network traces of legitimate traffic, direct attacks, and obfuscated attacks. At tacks in 
the dataset are executed on contemporary vulnerabilit ies present in 11 services. Vulnera­
bilities that we selected were disclosed to the Nat iona l Vulnerabi l i ty Database of N I S T in 
2018 and 2019. 

Then the evaluation of the novel dataset was performed using 6 classifiers. F i r s t , the 
classifiers were trained on legitimate traffic and direct attacks only. In cross-validation, 
the true-positive rate ( T P R ) of direct attack detection achieved values from 97.63% to 
100.00% (with a low false-positive rate). Next , the detection capabil i ty of obfuscated at­
tacks was tested using these classifiers, and the experiment proved that many attacks evaded 
the detection, and thus caused false-negative predictions. The results of the prediction of 
(unknown) obfuscated attacks showed that deterioration of T P R i n contrast to the in i ­
t i a l cross-validation experiment ranges from 0.35% to 83.55%. Further, when we included 
obfuscated attacks into the t ra ining process of the classifier, the abi l i ty to detect direct 
and obfuscated attacks was raised by range from 0.04% to 81.05%, depending on a par­
t icular classifier. Therefore, including some obfuscated attacks into the t raining process of 
classification-based models showed to be very important . 

Cross-dataset evaluation using four classifiers was performed wi th the novel dataset 
and A S N M - N P B O - v l dataset [39]. T P R of classifiers trained on novel dataset tested on 
the A S N M - N P B O - v l dataset ranges from 54.37% to 86.41%, and T P R T P R of classifiers 
trained and tested vice versa achieves values ranging from 9.2% to 37.57%. In the detailed 
analysis of the results, significant differences between various vulnerabilit ies were found. 
Classifiers trained using novel dataset and validated on the A S N M - N P B O - v l dataset de­
tected 96.76% of Apache attacks and only 30.43% of M S S Q L attacks. In the opposite 
si tuation (i.e., t ra ining on A S N M - N P B O - v l dataset and validat ion using our dataset), two 
extreme cases can be found i n the results - detecting on average 70.38% of attacks on 
Gits tack and 0% F T P S h e l l attacks. Therefore, classifiers can successfully detect a high 
percentage of completely unknown attacks targeted to some vulnerabili t ies, but also some 
of the unknown attacks targeted to different vulnerabili t ies are undetectable to them. 
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O r g a n i z a t i o n 

The structure of this document consists of these chapters: Chapter 2 describes the taxon­
omy of network intrusion detection systems, Chapter 3 describes adversarial attacks divided 
by the intrusion detection system's phases, in Chapter 4 there are attacks which are de­
signed against classification intrusion detection systems, and in chapter 5 there is described 
the non-payload-based obfuscation framework. The novel dataset is described i n Chapter 
6, in Chapter 7 is noted data preparation process, forward feature selection, and experi­
ments w i th models without knowledge about obfuscated attacks. In Chapter 8 are listed 
experiments w i th obfuscated attacks and cross-dataset evaluation. 
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Chapter 2 

Taxonomy of Network Intrusion 
Detection Systems 

Network intrusion detection systems could be based on one of these three fundamental pr in­
ciples: anomaly detection, misuse detection and there are also classification-based intrusion 
detection systems that combine both latter approaches. 

A n o m a l y detection works wi th a normal behavior model and it detects abnormal devi­
ations from the model, which could be later identified as attacks. The fact knowledge of 
intrusions is not required implicates it is possible to detect new unknown attack techniques 
and we do not need to update the system wi th new attack information. 

Misuse detection needs intrusions specifications for its operation. T h i s approach aims 
to detect concrete attack patterns and it searches for weak spots i n the monitored system. 
A u d i t data streams are checked for the intrusion patterns and attack signatures, and i f 
a successful match occurs an a larm is generated. Thanks to precise specifications this 
approach is easier to understand and thus implement for developers and analysts The main 
disadvantage of this method compared to anomaly detection is the fact it faces problems 
detecting novel attacks, because of its requirements for specification [45]. 

Classification-based intrusion detection systems combine the advantages of both men­
tioned approaches. The principle is based on modeling of legitimate behavior, but also on 
the modeling of intrusions. The classification of inspected data is based on similarities w i th 
those models. 

2.1 Signature detection principles 

Most of the information in this section is based on an article called „In t rus ion Detect ion 
Systems: A Survey and Taxonomy" by Stefan Axelsson [20]. Signature detection principles 
use quit different approach than anomaly detection ones. The difference is that the core of 
the detector is buil t upon a knowledge-base, where are defined a l l patterns of what signals 
legal or malicious behavior. Observation data are being compared to intrusion knowledge 
and then the decision is made. 

N o r m a l behavior is not modeled i n this approach, thus it is not cr i t ical to the detector 
what the observed systems look like because it is not taken into consideration while making 
a decision i f the intrusion occurred. These systems have acceptable detection and false 
a larm rate. The taxonomy of signature detection principles is i l lustrated i n Figure 2.1. 
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Figure 2.1: Classification of Signature detection and inspired principles by Axelsson [20]. 

2.1.1 P r o g r a m m e d 

These systems are programmed wi th an explicit decision rule. In the decision rule, there is 
precisely programmed what is expected to happen from a specific intrusion. The principle 
is to implement attack traces that are checked, and the decision is made based on it . This 
approach is common i n the law field, the detector is based on illegal behavior l ist ing. 

State-modeling 

The intrusion is encoded as a number of different states in the observation space. These 
systems are using t ime series models. Th is approach can be split into two subclasses: 

State-transition, where the intrusion forms a simple chain, where every part should 
take place in order. The second is Petri-net based. The Petri-net is a tree structure, which 
consists of states connected wi th transitions. The states might be fulfilled i n parallel un t i l 
the destination is reached, thus this approach is more general than the former one. 

Expert system 

A n expert creates the rules, which are later applied to audit data. The core of the detection 
system is a set of rules. Typ ica l ly it is a forward-chaining production-based tool . They are 
flexible and use powerful operations such as unification but at the cost of execution speed. 

String matching 

A very simple method, which uses extremely efficient algorithms searching for substrings. 
It is easy to understand for its developers and users. Usually, the system is case sensitive. 
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Simple rule-based 

The system makes decisions using a base wi th a set of rules. It is similar to expert systems, 
but it is not as sophisticated as them. However, as simpler systems, they have higher 
performance. 

2.2 Anomaly-based detection principles 

Information i n this section is based on „Network A n o m a l y Detect ion System: The State of 
A r t of Network Behaviour Analys i s" article by Shu Y u n L i m et a l . [45] and an article called 
„ In t rus ion Detect ion Systems: A Survey and Taxonomy" by Stefan Axelsson [20]. 

Three components participate i n generic anomaly detection system: 

• The Sensor subsystem monitors input traffic which is used for later anomaly detection. 

• The Mode l ing subsystem is responsible for normal behavior model generation. 

• The Detect ion system looks for events w i th suspicious characteristics in real-time and 
flags anomalous activities. 

The network anomaly detection system operates i n two modes: model construction and 
detection. To make the system working correctly it is necessary to t ra in the anomaly 
detection sensor. It monitors network traffic events for a period of t ime, for example, a 
few days or weeks. W h i l e observing the network traffic it gradually builds a picture of a l l 
hosts. After the t ime period expires the system generates a measure for the data using a 
profiling method. Now it has a baseline of the system's normal behavior, which consists of 
extracted data characteristics for example the state of the network's traffic load, protocol, 
and typica l packet size. The behavior model then serves as a pattern of correct network 
traffic characteristics i n the detection phase. If any abnormal network act ivi ty occurs in 
the model construction phase the system has the wrong normal behavior model and does 
not detect attacks that are based on that anomaly. The complete taxonomy scheme by L i m 
is depicted in Figure 2.2 and anomaly detection from Axelsson's point of view is portrayed 
in Figure 2.3. 

2.2.1 L e a r n t M o d e l by L i m 

There are two phases of operation in this approach [45]: the learning phase and the anomaly 
detection phase. In the former phase, the detection system creates a profile based on the 
normal behavior of the specific network or host using machine learning techniques. It is 
necessary to t ra in on the system, where it w i l l be later used for anomaly detection because 
every network has its special characteristics. There are three approaches based on this 
anomaly detection model: Rule-based, Model-based and Statistical-based. 

Rules-based 

The normal behavior of the monitored network or host is represented by a set of rules. 
Those rules are based on comparing a high-level state of the system change patterns that 
were derived from the audit data, w i t h penetration state change scenarios. 
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Figure 2.2: Network A n o m a l y Analys is Taxonomy by L i m [45]. 

Expert System 

Exper t System extends rule-based systems to a more complex approach. The core of the 
system is based on knowledge-base, which has two parts. The first part is a fact-based 
represented by a set of assertions which are applied to input audit data, and the second 
one is a rule-base which contains a set of rules which describe known intrusion techniques' 
scenarios in the system. W h e n a match of an assertion from the fact-base and some rule's 
predecessor pattern is found, the system creates a rule-fact binding. If a l l the patterns of 
one specific rule have been bound wi th some facts, then the b inding analysis process is 
triggered. The binding analysis assures the consistency of a l l the associated variables in 
the rule w i th their binding. 

Model-based 

The difference of model-based intrusion detection technique compared to Rules-based is 
it works on a higher level of abstraction instead of b inding audit records to expert rules. 
A n o m a l y detection is based on a model of the normal behavior of the current monitored 
network or host. This approach might process input data faster because it uses just audit 
data which are relevant to the more general behavior model . Anomalies are detected by 
comparing actual input information to the normal behavior model, unusual deviations from 
the model are considered suspicious. Thanks to the higher abstraction of the model there 
are more intuit ive explanations of intrusions which allow us to predict intruder's next action. 
In the L i m ' s taxonomy of network anomaly analysis there are 3 examples of model-based 
approaches: D a t a M i n i n g , Neura l Networks and Pa t te rn matching. 
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D a t a M i n i n g 

D a t a M i n i n g method at first extracts relevant features from audit data for ind iv idua l net­
work connections and host sessions. T h e n a data mining program is applied to those 
features. The result is models describing the behavior of intrusions and normal activities. 
The system adaptively builds models from a large amount of data, thus its models are 
up-to-date and the whole process is efficient. 

There are data mining-based frameworks principles that can be split into these three 
parts. M e t a classification, which allows it to learn correlations between intrusions, associ­
ation rules creation for l ink analysis, and frequent incident matters of sequence analysis. 
The whole process is based on min ing audi t ion data, and then using extracted patterns to 
t ra in classifiers, which are able to detect intrusions using its knowledge. 

Neural Networks 

Neural Networks are very efficient at learning system-call sequences, one of the significant 
reasons for it is probably the fact neural networks work wi th high abstraction level input 
data extracted from audit data. W h e n trained on a representative command sequences of 
a user, the net derives the generalized profile of the user's normal behavior. 

Neura l Network Intrusion Detector ( N N I D ) is a useful approach for off-line monitor ing 
user profiles. It is a backpropagation neural network which is run at the end of each day by 
an administrator to learn from what users d id at their workstations to bu i ld their profiles. 
The N N I D uses each user profile buil t on the user's past behaviors to recognize h i m from 
the current day. If the user has behaved differently i n a suspicious way the investigation of 
the incident starts. 

Neura l Networks approach is a very perspective area of network anomaly detection 
especially for ind iv idua l user anomaly detection because they have as high performance 
that it is possible to use them for real-time detection. 

Pattern Match ing 

Pat tern Match ing builds normal traffic profiles based on symptom-specific feature vectors, 
for instance, l ink ut i l izat ion, packet loss, and the number of collisions. The learning process 
is performed online. Traffic profiles bui ld ing is very sensitive to a monitored network, thus 
it is not possible to use them i n a different network environment. The tolerance l imits need 
to be set after traffic profiles are finished because the thresholds are derived from normal 
traffic behavior. If new input features exceed the thresholds of set tolerance an anomaly is 
recognized. 

Statistical-based 

The anomaly detector for a l l subjects generates profiles representing their normal behavior 
base. These profiles are stored i n very l i t t le memory consuming way, and they are required 
to be updated fast and efficiently. The reason for it is that profiles might be updated wi th 
each audit record. The system periodical ly generates quantitative measures of its stored 
normal profiles. 

Anomalies are being recognized using mult iple statist ical methods such as the integral 
of absolute difference of two functions over a t ime interval, which were calculated from 
profiles data. The difference must not raise above the tolerance threshold, otherwise, it 
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would be considered malicious. Another method could be based on for example multiple 
of the standard deviation on any side of the mean. There are even more statistics-based 
methods, for instance, Bayesian statistics, covariance matrices, and Chi-square statistics. 

A serious disadvantage connected wi th statistical-based approaches is the fact statistics 
are not sensitive to the order of events i n an intrusion, thus there is considerable informa­
t ion loss. It could be fixed using an enhancement which checks intrusion event sequences. 
There's also a problem wi th setting thresholds right, because i f they are too tolerant it 
leads to false negatives and otherwise false positives, thus it is cr i t ica l to the system how 
precise thresholds are. 

2.2.2 Spec i f icat ion M o d e l by L i m 

The specification model is not based on mathematics as much as previous approaches, but 
it is based on human expert knowledge. The model is buil t upon a logic-based description 
of expected behavior. Different system element monitor ing is combined i n this method, 
monitored elements range from appl icat ion to network traffic. 

Protocol-based 

Protocol-based intrusion detection does not use any statistical-based model, instead, it is 
based on the exact specification of the current T C P / I P protocol. The idea of designing a 
detector by protocol's specification has a significant impact on normal model construction 
accuracy compared to statistic model-based approaches because statistic models generalize 
their view of data and thus have very l imi ted knowledge of monitored network protocols. 
For this approach detect anomalies much easier, because of very precise documentat ion of 
a protocol that specifies normal use states any deviat ion from described usage is considered 
suspicious. Hence the basic explanation of the fundamental principle of an anomaly filter 
may be described as s imply searching for a protocol misuse. 

The protocol is defined as a set of rules describing the interaction between communicat­
ing sides. The official definition of protocol theoretical rules is in the description document 
(for example R F C ) , they might also be derived from pract ical usage of the protocol. 

Systems based on this approach do not require any signature database updates, because 
they are only based on the protocol description. Hence they are able to detect any attacks 
including novel ones. 

State-based 

This method is making use of the idea that a l l connection-based network protocols have 
states which conform to ind iv idua l connection parts. Thus there is exactly defined what is 
expected at a certain t ime i n the connection for both communicat ing sides. If something 
different happens and thus an unusual change of the state occurs, the anomaly is recognized. 
The state model is represented by a state machine. 

Transact ion- based 

The fundamental idea of this approach is that we describe positive behavior cases. Expected 
behavior consists of a set of desired actions and a sequence of actions. Specific transactions 
that correspond to expected actions are defined. The set of transactions is an integral part 
of the security policy. 
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Figure 2.3: Classification of A n o m a l y detection principles by Axelsson [20]. 

This concept originates from the area of database management systems, but unlike 
there it is not necessary for distinct transactions to be executed. The detection system only 
monitors the host or network for potential conflicts. 

2.2.3 Sel f - learning systems by A x e l s s o n 

These systems learn what is normal behavior of a monitored system. Usually, it takes some 
time of observing the network communicat ion while constructing a model of the normal 
state. 

Non-t ime series detectors 

Non-t ime series detectors model normal behavior using stochastic models that do not take 
time-series behavior into account. There are two approaches to them: rule modeling and 
descriptive statistics. 

Rule modeling uses information gained from the monitor ing of the traffic to create a 
number of rules which have to be respected. If a poor match occurs the detector raises an 
alarm and the whole si tuation needs to be investigated. 

The latter approach is based on descriptive statistics. It constructs a profile using 
collected simple, descriptive, mono-modal statistics and derives a distance-vector for the 
traffic and the profile. If the distance exceeds tolerated l imi t the a larm is raised. 
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T i m e series detectors 

Time series detectors are generally more complex than non-time series detectors. There are 
several approaches based on this principle, for instance, a Hidden Markov M o d e l and an 
Ar t i f i c i a l Neura l Network, which is described below. 

A n Ar t i f i c i a l Neura l Network ( A N N ) learns what normal behavior of the monitored 
communicat ion is like from observed traffic data. Then A N N ' s output is compared wi th 
measured communicat ion data, thus the result can be used i n the intrusion detection de­
cision. In a concrete system, the final decision might be done for example using a second 
stage, which would be implemented as an expert system that decides i f the result of the 
comparison mentioned above signals an intrusion. 

2.2.4 P r o g r a m m e d systems by A x e l s s o n 

Programmed systems have to be implemented by someone, thus a l l intrusions' principles 
are derived from his knowledge. W h a t is considered abnormal decisions are based on the 
opinion of the user of the system. 

Descriptive statistics 

Descriptive statistics based systems bui ld a model of the normal behavior of the monitored 
system wi th parameters. Usable parameters might be for instance the number of unsuc­
cessful logins, network connections count, the number of commands wi th error returns, etc. 
Th is principle can be divided into three characteristic approaches: 

Simple statistics based systems, which consist of higher-level components that use col­
lected statistics for the final decision. 

Simple rule-based systems that need rules provided for the user. These rules are later 
applied to the collected statistic data. 

Threshold systems are the simplest version of descriptive statistics detectors. The user 
sets thresholds, which trigger alarms. Thresholds might be represented as simple ranges or 
simple conditions, for example, the number of unsuccessful login attempts > 3. 

Default deny 

Default deny system needs specific circumstances, i n which the monitored system operates 
in a security-benign manner, to be set. A l l deviations from this operation, which are not 
expl ici t ly permit ted, are then labeled as intrusive. 

State series modeling is a method, which based on the state machine theory. The policy 
is encoded as a set of states of the state machine and the transitions between them are 
impl ic i t in the model . O n l y expl ic i t ly allowed actions do not cause the detector to raise the 
alarm. If any action, which was not set is done, then a transi t ion between states occurs 
and thus the a larm is raised by the detection system. A l a r m triggering actions might be 
for instance file accesses, the opening of ports that are considered secure, etc. The rule 
matching engine is simpler and not as powerful as a full expert system. 

2.2.5 O t h e r A n o m a l y in t rus ion detect ion pr inc ip les by D e b a r 

This section is based on the article „A revised taxonomy for intrusion-detection systems" 
by Herve Debar et a l . [30]. These principle models normal behavior and the model is buil t 
upon information collected by moni tor ing of users or traffic communicat ion. A n intrusion 
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is detected when the behavior deviates from the normal state i n an unusual way. In other 
words, the detector compares current behavior w i th its normal behavior model and then 
makes a decision i f an a larm should be raised. A n y t h i n g anomalous is considered intrusive. 

These systems have a useful advantage i n their possibil i ty to detect new intrusions. Thus 
it is also possible to use them for the semiautomatic discovery of novel attacks. They are 
able to detect „abuse of privilege" attack types, which do not use any security vulnerabi l i ty 
exploitation, as well. 

O n the other hand, the mentioned advantages are accomplished at the cost of a high 
false-alarm rate. Another problem is that when the observed system changes it is necessary 
to actualize the detector's normal behavior model . Hence retraining of the detection system 
has to be performed and while retraining the system is unable to detect any attacks and i f 
any intrusion occurs during the t raining process it learns it as normal behavior. 

Several approaches have been proposed for the behavior intrusion detection: User In­
tention Identification and Computer Immunology. Some approaches have been already 
described i n Section 2.2: Statistical-based, Exper t systems and Neura l networks. 

User Intention Identification by Debar 

This approach models normal user behavior using the model which consists of a set of 
high-level tasks, which the user has to perform. High-level tasks are then transformed into 
actions, which are associated wi th collected audit data from the monitored system. If any 
action does not fit to the task pattern, the system raises an alarm. 

Computer Immunology by Debar 

This approach models the normal behavior of services instead of users. In the model, there 
are used short sequences of system calls, which are usual for the modeled service. Intrusions 
tend to use extraordinary system calls because they need to open specific files, which are 
not otherwise used very commonly. The systems get audit references from the reference 
table, which includes a l l the known allowed sequences of system calls. This technique work 
as an online monitor ing detector. 

There is a very low false-positive rate if the reference table is complex enough. The 
problem of this technique is it does not detect intrusions based on configuration errors, 
because such attacks use legitimate actions to gain unauthorized access. 

2.3 Classification-based detection principles 

The classification-based systems are in Axelsson's article called as signature inspired detec­
t ion principles, which are portrayed i n Figure 2.1. 

These systems use both points of view on the problem, it models normal behavior of 
observed elements and the intrusive behavior of the intruder. However, they are called 
„s igna túre inspired", because the intrusion model is much stronger and more explicit than 
the model describing normal behavior. These systems are good at detecting very advanced 
intrusions because they have the intrusion knowledge and combine it w i th normal behavior 
knowledge gained from the normal model. These detectors are in some senses respected as 
the most advanced intrusion detection systems i n this survey. 

Self-learning. Th is approach's idea is to learn normal behavior and the same behavior 
infected wi th intrusions, thus the detector is going to recognize malicious traffic specifically 
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for the monitored network or host. The learning process requires examples w i t h normal 
behavior and prepared attacks, which have to be labeled as intrusive. These systems might 
also use methods, such as Au tomat i c Feature Selection, where the detector learns automat­
ically what features are important for intrusion recognition. 

2.3.1 M a c h i n e l earn ing 

In this section are described some widely used techniques approached i n models, which are 
used by classifiers of intrusions detection systems [25]. 

Support Vector Machines ( S V M ) 

S V M s are supervised learning models, where data is represented as points i n the space, and 
its goal is to construct maximum-margin hyperplane and divide these points into classes. 
This a lgori thm is searching for maximal ly wide spaces between bordering points of different 
classes. 

Artif icial Neura l Networks ( A N N ) 

A N N s are networks consisting of mutual ly connected perceptrons, called neurons, which 
were inspired by biological neurons. These neurons' outputs connected to inputs of some 
other neurons and their behavior is defined by weights and an act ivation function. In the 
learning process weights are updated using the back-propagation algori thm. 

Deep Neura l Networks ( D N N ) 

D N N s are A N N which include mult iple layers that are connected to previous and succeeding 
layers, except for the input layer and output layer. Layers that have predecessors and 
successors are called hidden. The advantage of D N N s is that their input might be unlabeled 
and unstructured data because they are able to extract related features on their own. 
Convolutional Neural Networks ( C N N ) . C N N s consist of two main parts, which have 
different functionalities: feature learning part and classification part. The former part is 
made of convolutional or sub-sampling layers and its task is to create a feature map and 
extract important information from it . It sub-samples its input i n order to reduce the 
dimensionality of each feature map. The latter part consisting of one or two layers is fully 
connected to the last layer of the previous part and classifies the data. 

2.4 Honeypots 

Honeypots have no functionality i n the product ion system, except being bait for adversaries. 
There should not be any traffic communicat ing w i t h the honeypot. If any communicat ion 
directed to honeypot occurs or the honeypot itself starts sending packets to the network, 
then it is considered malicious. Honeypots can be split into two categories based on how 
much act ivi ty might an attacker do there [44]: 

2.4.1 Low-Interact ive 

These systems are designed to emulate only some functionalities of the system that they ap­
pear as. Usually, these systems emulate some services, which allow the attacker just l imited 
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interaction, because the emulation is not full . For example, F T P service l imi ted to login 
function and some basic commands. The advantage of these systems is low maintenance 
requirements and the fact it does not use the whole operating system. There is also not a 
high risk of an attacker, because he only controls the par t ia l emulation of service, which is 
immediately reported to honeypot's logs. There is also a risk that the attacker discovers 
the fact he is interacting wi th only the honeypot if he uses some of the not implemented 
commands. 

2.4.2 High- Interac t ive 

High-Interactive honeypots are more sophisticated than Low-Interactive ones. They are 
run at real systems wi th real operating systems. Services used by these honeypots are 
completely installed on the system. There is a higher risk of using these systems because a 
potential attacker takes control over the whole operating system and might use it in order 
to intrude on other hosts i n the network. The main advantage of these systems is that their 
owners might deeply investigate what is the attacker doing and deduce what is his a im. O n 
the other hand, its drawback is the fact these systems require a full machine, which only 
baits potential attackers, which might be quite expensive. 
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Chapter 3 

Taxonomy of Adversarial Attacks 

This chapter is mostly based on the article „Adversar ia l At tacks against Intrusion Detect ion 
systems: Taxonomy, Solutions and Open Issues" by Igino Corona et a l . [28] and „Adversar ia l 
At tacks and Defences: A Survey" by A n i r b a n Chakrabor ty et a l . [25]. A n d the chapter was 
wri t ten wi th a focus on network-based attacks because host-based attacks are beyond the 
scope of this thesis. 

Intrusion detection systems wi th other tools constitute the computer security infrastruc­
ture, hence they might be vulnerable to attacks by the same intrusions they t ry to detect. 
Thus intrusion detection systems became targets of attacks, and i f they are successfully 
exploited they might transform themselves into at tacking tools serving an intruder. 

3.1 Goals of attacks on IDSs 

There are six main goals of attacks against intrusion detection systems [28]: 

Evasion 

It modifies the intrusion pattern to make the attack undetected. Hence, it causes that an 
intrusion attempt evinces the characteristics of benign network communication. 

Overstimulation 

In overstimulation attacks, the attacker tries to generate false positive alerts of IDS by 
creating a benign communicat ion that evinces aspects of malicious intrusions. M a n y attack 
patterns are applied to overstimulate the detection system. These attacks are less popular 
than evasion attacks since their effect does not lead to compromise of the system but to 
exhaustion of the operator who analyzes the alerts. 

Poisoning 

The a i m of this approach is to insert malicious patterns into the t ra ining set for the intrusion 
detection system and mislead the learning phase into a state, where the detector w i l l be 
unable to detect prepared intrusions. 
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Denial O f Service (DoS) 

Attacks of this type use patterns to disable or at least slow down the detector sensor. 
If the network traffic is not allowed to transfer into the internal network of the attacked 
system without proper inspection by the intrusion detection system, then slowing down the 
detector might cause network traffic transfer delay and packet drops. 

Response Hijacking 

This type of attack tries to fake a larm descriptions for response units to make them react 
inappropriately, for instance, to make them block some legitimate connections. 

Reverse Engineering 

The goal is to extract information about the intrusion detection system's internal implemen­
tat ion and use the gained information to design new attack patterns that take advantage 
of i t . 

3.2 Attack classification based on generalized architecture of 
Intrusion Detection Systems 

There are many different architectures that constitute Intrusion Detect ion Systems. How­
ever, most of them are based on a relatively general architectural framework, which con­
sists of these four components: event generator, event analyzers, response units, and event 
databases. The framework's operation can be divided into these three phases: Measure­
ment, Classification and Response [28]. 

3.2.1 M e a s u r e m e n t phase 

Measurement is performed by event generators. A vector of measurements (aka features) is 
used to characterize and event pattern. The detector uses features to differentiate intrusions 
from legitimate actions. 

There are four categories of attacks which target network measurements i n this phase: 

Set of Measures 

The attacker can exploit l imi ts in the discriminant capabil i ty of the chosen set of mea­
surements i n order to evade detection. Even if intruders are not capable to perform the 
previously mentioned attack, they might t ry to evade using novel or smal l variations of a 
known intrusion. Thus the intrusion detection system should be designed counting wi th 
the possibil i ty that attacks can evolve. 

Input Data 

The attacker modifies the input data for example i n a system cal l , which returns the list of 
running processes. Th is method is usual at the host level, but this problem might encounter 
in a network environment as well, for example, i f the attacker has control over a router. 
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Event Reconstruction 

These attacks are cr i t ica l especially for network sensors and here are listed some examples: 

• Tunneling - Us ing the type of traffic, that is not observable by the network sensor. 

• Desynchronization - Evad ing the network sensor view, for example using T T L 1 to 
elude the network sensor by taking advantage of the network topology. 

• Encod ing Variat ions - Acqu i r ing different semantic of data on each communicat ing 
side, which can be handled into intrusion. 

• Segmentation - The network traffic is divided into segments different on the source 
side differently than on the destination side and taking advantage of the fact some 
O S s 2 have a different pol icy when dealing w i t h duplicate or overlapping segments. 

Integrity and Availability Attacks 

There are more techniques i n this category, but most of them are not listed, because this 
thesis focuses on network-based analysis. A n example of availabil i ty attacks is overloading 
the network sensor w i t h too much traffic, which it cannot inspect as fast as they come, so 
it starts dropping packets. 

3.2.2 Class i f i cat ion phase 

The classification process is implemented i n event analyzers. Internal models are created 
and rules are applied for event pattern classification to decide if the pattern is legitimate 
or intrusive. If the pattern has been determined as intrusive, then an a larm is generated 
and the incident is presented human-readable form. This process is performed usually in 
real-time. 

In modern classifiers, there is a trend to develop an event analyzer based on machine 
learning, which requires statist ical representative patterns. There are three main problems 
associated w i t h statist ical representativity described bellow: 

• Pr ivacy - Col lect ing legitimate users' data may involve sensitive information and cause 
problem w i t h privacy. 

• Real-world intrusions - It is necessary to keep a set of known real-world intrusions 
and update it as quickly as possible. 

• Ground Tru th - It is cr i t ical to have t ra ining data for the system validated properly. 
Val ida t ion requires deep expertise and t ra ining data amount is huge. T h i s problem 
is the reason why it is pract ical ly possible for intruders to use poisoning attacks. 

Here are described some attack issues against event analyzers: 

Difference between Aler t Space and Intrusion Space 

Let us define intrusion space (I) and alert space ( A ) : 
/ = set of all intrusive patterns, 

1 T i m e To Live in h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 7 9 1  
2 Operating Systems 
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A = set of patterns causing an alarm raising, 
then 
M = I — A = set of missed alarms, 
F = A — I = set of fake alarms. 
Sets M and F might be used for evasion or overstimulation attacks in techniques listed 
below: 

• Contextua l Information Explo i ta t ion , for example about observed hosts and services. 

• M i m i c r y At tacks - this type of attack tries to mimic legitimate patterns. 

• Cost-Sensitive Classification - classifying intrusions depending on damage cost. 

• Classifier Ensembles - using mult iple parallel classifiers, where each of them is designed 
to detect its ind iv idua l intrusion class. 

• Au tomat ic Evalua t ion - evaluation of how vulnerable are different classifying algo­
rithms against evasion and overstimulation intrusion methods. 

Pattern Match ing 

Pat tern Match ing algorithms might be slowed down using a specially crafted pattern which 
causes for example worst-case complexity scenario of the algori thm, which results in D o S 3 

attack. 

Description of Intrusive Events 

A n attacker might create intrusion, which causes the detector to produce too general or 
wrong alert description.This could lead for example into triggering defense mechanisms, 
which would create wrong firewall rules blocking some legitimate users. 

There are several defense techniques dealing w i t h this problem. Classification confi­
dence measuring added to every alert description. Automated At t ack Inference - A n o m a l y 
detection systems might t ry to classify the unknown attack to most similar attack patterns 
automatically. M o d e l of the Adversary - modeling intruder's goals and behavior. 

Poisoning Attacks 

There are several machine learning ( M L ) techniques, which are being used i n intrusion 
detection systems: Support Vector Machines ( S V M ) , Hidden Markov Models ( H M M ) , In­
grains, Decision Trees and Ar t i f i c i a l Neura l Networks. 

However, M L - b a s e d algorithms might be vulnerable i n their learning process. If an 
attacker successfully inserts his prepared intrusions into the set of t ra ining examples, the 
algori thm learns the wrong pattern and w i l l not be able to detect the attack associated 
w i t h the inserted intrusion. 

There are defense methods against poisoning attacks, for example, Tra in ing D a t a M a ­
nipulat ion based methods: 

Reject O n Negative Impact, which creates data sets w i th including and excluding a 
test sample, and i f the sample decreases the trained model success rate it is excluded as a 
poisoning attack. 

3 Denia l of Service 
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Or the method, which works wi th mult iple intrusion detectors, which a l l t ra in on their 
own randomly selected t ra ining samples, thus it can statist ically determine from variations 
of these detectors results which sample is poisoning. 

3.2.3 R e s p o n s e phase 

Response units ' function is to react to the raised a larm i n order to save the defended system. 
For example, a new firewall rule might be added to block the current attack. There are 
some issues related to the response phase described below: 

Response Effectiveness 

To make the intrusion detector as effective as possible it is useful to evaluate response 
effectiveness. The actions detector makes might have a good impact, but it may also cause 
damage to the system, for example, DoS attack against infrastructure using firewall blocks. 

There are several techniques t ry ing to solve problems associated w i t h this issue: 
Game Theory, which requires the definition of an attacker model, potential costs of each 

action it can perform against h im, values of each protected element, etc. 
Response Frameworks wi th their own infrastructures, which perform necessary actions 

to prevent intrusion. 
Cost-sensitive models, which calculate w i t h costs of intrusion defense actions and costs 

of potential damage dealt by intrusions. 
There is also problematic w i th response t ime because for a successful intrusion preven­

t ion process it is necessary to be faster than the attack. 

Response Feedback 

Response Feedback mechanisms might be used to prevent for instance DoS attack mentioned 
in the previous paragraph. We might t ry to achieve it by simple checking the blocked traffic 
characteristics, because i n the case of well-known intrusion it may be possible to estimate 
its consequences. 

Response Evaluation 

The idea of this issue is that we could simulate an attacked infrastructure and intrusions 
at tacking it . F r o m the simulation, we could potential ly evaluate the costs of an intrusion 
and damage dealt. 
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Chapter 4 

Taxonomy of Attacks against 
Classification-Based IDSs 

This chapter is based on the article ^Adversarial attacks and defences: A survey11 by A . 
Chakrabor ty [25]. There are three types of adversarial attacks, which are being designed 
against classification-based intrusion detection systems to explore it , evade detection, or poi­
son the classifier. Hence there are three fundamental types of these attacks: Explora tory 
attacks (in Section 4.1), Evasion attacks (in Section 4.2) and Poisoning attacks (in Sec­
t ion 1.3). The attacks might be also categorized based on other properties, which is de­
scribed in the following subsection: 

4.0.1 C a t e g o r i z a t i o n by B a r r e n o 

The attacks might be categorized based on Influence, Security Vio la t ion , and Specificity. 
Th is subsection is based on the article: „The security of machine learning" by M . Barreno 
et a l . [21]. 

Influence 

These categories discriminate against the capabil i ty of the attacker. 

• Causative - the attacker influences t ra ining data for the classifier. 

• Explora tory - the attacker cannot influence t ra ining data for the classifier, but he 
sends new instances to the classifier and examines its decisions. 

Security Violat ion 

These categories depend on the harm the attacker might cause. 

• Integrity - the attacker's intrusive data is able to evade the classifier and go through 
as false negatives. 

• Avai labi l i ty - the attack leads into Denia l of Service, mostly it is caused using false 
positives. 

Specificity 

This categorization distinguishes how specific are targets of the attack. 
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• Targeted - the attack specializes against a concrete instance. 

• Indiscriminate - the attack tries to manipulate the classification of a wide dis t r ibut ion 
of instances. 

4.1 Exploratory attacks 

These attacks do not t ry to manipulate the t raining set, but they are designed to extract as 
much information about the classifier as possible. They are being used i n the testing phase 
of the attacked intrusion detection system. At tacks of this type look the same as legitimate 
traffic and do not cause any harm to the system, thus they evade the detection and gain 
information about tested learner [25]. 

4.1.1 M o d e l Invers ion 

In this approach, the a i m is to perform model inversion in order to get information about its 
inputs using output data. The linear regression model / estimates the patient's drug dosage 
from his medical history information and genetic markers. Then the mentioned model / 
is used as a white-box and an example of data (X = xi, X2, xn, y), it is possible to gain 
genetic marker x\ from the inversion of model / . Th is method can be enhanced and also 
used for black-box models, for example, to recover images in case of face recognition [25]. 

4.1.2 M o d e l ex t rac t ion v i a A P I s 

This attack is focused against Machine learning A P I s . The attacker has no information 
about the model or t ra ining data, but the target A P I returns h i m precision confidence 
values and class labels. Therefore, the attacker tries to solve it mathematically. Param­
eters or features can be calculated from equations wi th supplied confidence values. The 
attacker needs to perform d + 1 queries w i th d-dimensional inputs in order to calculate 
d + 1 parameters [25]. 

4.1.3 M e m b e r Inference A t t a c k 

The black-box target model is attacked i n this method. The attackers send queries w i th 
his dataset to the target model. The target model returns h i m information i n the form of 
vectors of probabilities, which specify recognized classes of queried data. Us ing the queried 
dataset as t ra ining dataset and output vectors from the target model the attacker builds 
shadow models. Then he constructs a t ra ining structure for the attack model . Shadow 
models have input from the t ra ining dataset and also a new testing dataset, then their 
outputs are labeled depending on input sets. The labeled dataset is used as t ra ining data 
for the attack model, thus the attack model is trained to categorize its input data whether 
are they from the t ra ining dataset or the testing dataset. Therefore, the attack model is 
able to estimate which data were in the t ra ining dataset of the black-box target model [25]. 

4.1.4 I n f o r m a t i o n Inference 

A n attacker uses a meta-classifier to extract applicable information from a machine learning 
system. The attack requires information about t ra ining data, but no information about the 
target system internal, thus it attacks a black-box. A n example of this attack is a public 
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A P I of the speech recognition system, which is based on Hidden Markov Models . For an 
attacker, it is possible to extract the information he should not be able to extract, for 
instance, the accent of the users [25]. 

4.2 Evasion attacks 

Information i n this section was adopted from the article „Adversar ia l At tacks and Defences: 
A Survey" by A n i r b a n Chakrabor ty et a l . [25]. Evasion attacks t ry to evade the detector, 
i n other words, to not be recognized as an attack and intrude the system. 

4.2.1 A d v e r s a r i a l E x a m p l e s G e n e r a t i o n 

Changing samples i n order to damage the classifier to make it unable to detect the intru­
sion. Th i s approach is d ivided into two categories based on which phase of the classifier 
implementation it is t ry ing to manipulate. 

Training Phase Modif ication 

Training data might be modified i n two manners: 
Labe l Man ipu la t ion - The adversary is able to modify the t ra ining labels only. In the 

study [22] researchers randomly flipped 40% of the t ra ining data labels, which worsened 
the classifier enough for their adversary task. 

Input Manipu la t ion - The attacker is capable to modify also the input features. Thus 
he is able to influence the decision boundary of the classifier into his favor. 

Testing Phase Generation 

There are two types of this approach depending on the knowledge of the tested setup. 
W h i t e - B o x At tacks - The framework (from [62]) is searching for the perturbations which 

are added to input data samples for the attacked classifier. F i n a l found perturbations 
should be able to manipulate the classifier to classify the modified sample differently. A t 
first direction sensitivity estimation process is performed, then the perturbat ion is selected, 
which is then checked for its abi l i ty to be misclassified by the neural network and the 
feedback is sent back to the direction sensitivity estimation process. 

B lack -Box At tacks - A n example of this approach is the technique called Jacobian based 
D a t a Augmentat ion. This technique's a im is to learn a substitute for the attacked model, 
which is later used to scheme new inputs for the black-box. The idea is that new inputs 
w i l l be classified by the black-box the way the intruder wants [25, 61]. 

Transferability of Adversarial Samples 

The idea of this principle is that samples generated by one model might affect the second 
model. It might be intra-technique, where are both models of the same type, for example, 
Neura l Networks, or cross-technique, where are models of different types, for instance, 
Neura l Network and Support Network Machine. 

4.2.2 G e n e r a t i v e A d v e r s a r i a l A t t a c k ( G A N ) 

There are two deep learning networks i n the G A N procedure, which play different roles in 
the learning procedure. The first is a generative deep learning network, whose task is to 
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generate samples that cannot be differentiated from the t ra ining set for the second network. 
The second one is the discriminative deep learning network, which has to determine i f its 
input samples come from a generative network or from the t ra ining set. These two networks 
compete w i t h each other and that leads to their accuracy advancement. The t raining 
finishes when the discriminative network makes a mistake. 

4.2.3 G A N based at tack i n C o l l a b o r a t i v e D e e p L e a r n i n g 

There are two collaborative neural networks, one of them is the v i c t i m t ra ining classification 
of its t ra ining set and the second is the attacker, which uses G A N for generating samples 
similar to the v ic t im's t ra ining set. The G A N has access to honest outputs of the v ic t im. 
The goal is to amass as much information about the v ic t im's t ra ining set classes as possible. 

4.2.4 A d v e r s a r i a l Class i f icat ion at tack based o n G a m e T h e o r y 

The idea is based on game theory, where the classifier stands against the adversary. The 
adversary's goal is to modify the t ra ining samples to make them be classified as negative 
instead of positive. The classifier's goal is to classify even modified samples as intrusions. 
The classifier's game strategy is based on a cost-sensitive Bayes learner, which searches 
for the m i n i m u m cost of its action while expecting the adversary to use the best possible 
strategy. 

4.2.5 O b f u s c a t e d A t t a c k s 

The obfuscation principle is changing adversary network traffic characteristics i n order to 
appear as legitimate traffic. Hence the obfuscated attack cannot be detected by the classifier 
and is falsely classified as legitimate [41]. 

Tunnel ing 

In the work [40] is discussed an idea of an intruder having a machine that is cooperating 
wi th h i m before he starts at tacking the network hosts. In such a si tuation the tunneling 
method might be quite useful for the adversary. The adversary is using buffer overflow 
attacks which are tunneled through H T T P or H T T P S traffic i n order to evade the I D S and 
Network Behavioral Analys is ( N B A ) system. The attack uses two modules: the cooperat­
ing machine called the Cal lback in the target network and the adversary's outer machine 
called the Fake H T T P Server, which waits for connection by the Cal lback. The attack 
is performed through the Callback, which is controlled by the Fake H T T P Server, while 
al l communicat ion between them, which is protocol independent, is camouflaged i n the 
H T T P / H T T P S traffic. There was discovered that the classifier, which was trained on d i ­
rect attacks and legitimate traffic only, was incapable to detect tunneled attacks and there 
was a very significant improvement when the classifier was trained on dataset extended of 
tunneled attacks. 

N o n - pay load- based 

These attacks are focused against legitimate behavior model . D a t a is not important in 
this attack, but it achieves obfuscation by modifying packets' headers and communicat ion 
behavioral characteristics. 
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In [41] were performed experiments, where the obfuscation tool was used i n order to 
improve the classification intrusion detection system. The obfuscation tool was based on 
Advanced Security Network Metr ics . Experiments proved that t ra ining the classifier on a 
dataset including obfuscated attacks improved its capabil i ty to detect the same or similar 
obfuscated attacks. 

4.3 Poisoning attacks 

Poisoning attacks are used to contaminate the t ra ining data set and influence the network 
intrusion system. Here are listed some of the evasion and poisoning attacks. Th is section 
based on a survey i n the article „Adversar ia l At tacks and Defences: A Survey" by A n i r b a n 
Chakrabor ty et a l . [25]. 

4.3.1 A t t a c k o n S u p p o r t V e c t o r M a c h i n e s 

S V M ' s t ra ining and testing data are provided from the same dis tr ibut ion, but i n adversarial 
learning, it is possible to exploit the system using data modification. For adversary, it may 
not be possible to get access to the S V M ' s t ra ining dataset, but he might find datasets w i th 
similar distributions. 

4.3.2 P o i s o n i n g attacks o n C o l l a b o r a t i v e Systems 

There are poisoning attacks, which require a thorough knowledge of the learning system, 
that are able to generate data which significantly decreases the system's effectiveness. 

Three types of these attacks have been announced: Avai labi l i ty At tack , where the at­
tacker tries to raise the error of the collaborative filtering system as much as possible. 
Integrity At tack , where the adversary's goal is to maneuver the acceptance of a subset of 
items. A n d H y b r i d At tack , which is the combinat ion of both mentioned attacks. 

4.3.3 A d v e r s a r i a l attacks o n A n o m a l y D e t e c t i o n Systems 

The a im of these attacks is to move the centroid of the normal behavior space to the 
dis tr ibut ion of prepared intrusion characteristics. The adversary's goal is to include its 
intrusion into the set of negatively classified items. 
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Chapter 5 

Non-Payload-Based Obfuscation 
Framework 

In this chapter, there are described Advanced Security Network Metr ics ( A S N M ) features, 
and the Non-Payload-Based Obfuscation ( N P B O ) framework is specified. This chapter is 
based on two articles: ^Improving Network Intrusion Detection Classifiers by Non-payload-
Based Exploit-Independent Obfuscations: An Adversarial Approach" by I. Homol iak et 
al . [42] and „ASNM Datasets: A Collection of Network Traffic Features for Testing of 
Adversarial Classifiers and Network Intrusion Detectors" by I. Homol iak et a l . [39]. 

The obfuscation framework was designed i n order to create a non-payload-based obfus­
cation tool , which can modify the exploit a remote attack i n such a way that the target 
classifier is not able to detect it as an intrusion. The Behavioral state diagram of the obfus­
cation tool is depicted i n Figure 5.1. T h e n a new classifier is trained on the dataset, which 
includes obfuscated exploits ' features and thus it is better at detecting other obfuscated at­
tacks. The mentioned hypothesis has been proven to hold in [42]. The A S N M features are 
extracted from the observed network communicat ion by the framework in order to describe 
network traffic characteristics. 

5.1 A S N M 

The original A S N M feature list was introduced in the Master 's thesis [37] including 167 
features, and it was formally described i n [36]. Then the content of the A S N M features list 
was expanded to the number equal to 194 features i n [38]. These features were split up into 
five categories based on their principle. 

5.1.1 Stat i s t ica l Features 

In this category, there are features that express the statist ical properties of T C P connec­
tions. Stat is t ical operations are being used in this approach, such as count, mode, median, 
mean, standard deviation, there are also some other features like ratios of specific packet 
header fields or whole packets. In these features there are is also information about their 
incidence t ime, but there is no context available for them, unlike in the dynamic features 
category. There is also a dichotomy of some features based on if they were going inward or 
outward. 
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5.1.2 D y n a m i c Features 

The role of features i n this category is to present the dynamic properties of T C P connec­
tions. These features do not have to be necessarily real, but they also might be simulated. 
Some dynamic features respect the context of the inspected T C P connection. The main 
difference between dynamic and static features is that dynamic features reflect speed or 
error rate of the analyzed T C P connection, and also this category pays attention to how 
many acknowledgment packets were delivered, etc. Some of these features discriminate the 
direction of observed packets as well. 

5.1.3 L o c a l i z a t i o n Features 

Features i n this category represent information about communicat ing endpoints of the 
inspected T C P connection. They a l l share an aspect that they do not change i n t ime, 
but stay static un t i l the connection ends. Mos t of these features also respect directions of 
analyzed T C P connection flows. Another characteristic of these features is they do not deal 
w i th the context of the T C P connection. 

5.1.4 D i s t r i b u t e d Features 

The most important trait of distr ibuted features is the fact they are distr ibuted into time 
intervals. These intervals lengths are constraint i n logari thmical scale, for example, Is, 
2s, 4s, or 8s. Measured features distr ibuted i n a constant count of intervals might be for 
instance count or lengths of packets observed. Dis t r ibu ted features respect the context of 
the inspected T C P connection and packets' directions as well. 

5.1.5 B e h a v i o r a l Features 

Behavioral features express properties related to the behavior of an analyzed T C P con­
nection. For instance successful or prohibi ted connection closing, a number of new T C P 
connections since the beginning of a T C P connection. There are also some more compli­
cate operations over captured data about inspected T C P connection, such as the polyno­
mia l approximat ion of packet lengths i n a t ime domain or a packet index number domain, 
coefficients of Fourier series w i th respect to the direction of a T C P connection, etc. [39] 

5.2 N P B O Framework Specification 

The N P B O Framework description, which also includes a l l the following definitions i n this 
section is from the article: ^Improving Network Intrusion Detection Classifiers by Non-
payload-Based Exploit-Independent Obfuscations: An Adversarial Approach" by I. Homol iak 
et a l . [42]. 

The framework looks at internet communicat ion as a session between two sides: the 
client and the server. B o t h participants of a session communicate using the applicat ion 
protocol of the T C P / I P stack, which intervenes i n data transfer between them. The ap­
plicat ion data transfer T C P / I P stack is represented as connection k, which is bounded to 
connection-oriented protocol T C P at L 4 , Internet protocol I P at L 3 and Ethernet protocol 
at L 2 . The connection k consists of start and end timestamps, ports of the client and the 
server, I P addresses of the client and the server, sets of packets by the client Pc, and by 
the server Ps. 
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5.2.1 Features E x t r a c t i o n 

The features extraction process is defined as a function that maps a connection k into space 
of features F: 

f(k) ^F, 

F — {Fi, F2,..., Fn), 

where n means the count of defined features. Every part icular function fi, which extracts 
feature i is defined as a mapping of a connection k into feature space F^. 

fi(k)^F, » € { l , . . . , n } , (5.2) 

and each element 1 of codomain Fi is defined as 

e = (eo, • • • , e„) , n G No, 

d G N | e » G l | e » e r + i € { 0 , . . . , n } , (5.3) 

T = {a- z,A- Z,0 - 9 } , 

where r + denotes positive i teration of the set T. 

5.2.2 In trus ion D e t e c t i o n Class i f icat ion 

Let us define V as the space of samples, where a sample means the vector of the network 
features, which were extracted from a specific connection. A n d let Y be the space of 
possible labels. Then let us define X = V x Y as the space of labeled samples. Let 
F>tr = {xi,X2, • • • ,xn} be a t ra ining dataset consisting of n labeled samples, where Xi = 
(vi G V, yi G Y). The classifier C maps unlabeled sample v G V to a label y G Y: 

y = C(v), (5.4) 

and learning algori thm A maps the given dataset D to a classifier C: 

C = A{Dtr). (5.5) 

The notat ion ypredict = A(Dtr,v) stands for the label assigned to an unlabeled sample v by 
the classifier C , bu i ld by learning algori thm A on the dataset Dfr. A l l features extracted 
from the connection k can be used as an input of the trained classifier C which predicts the 
target label: 

Vpredict = A(Dtr, f(k)), (5.6) 

where ypredict G {Intrusion, Legitimate}. 

5.2.3 N o n - P a y l o a d - B a s e d Obfuscat ions 

W h e n a remote not obfuscated attack occurs, its communicat ion is expressed as a connection 
ka. Then , features extracted from ka can be defined as 

f(ka)^Fa = (F?,F?,...,FZ). (5.7) 

They are distr ibuted to the formerly trained classifier C. Let us assume that the target 
label is predicted by the classifier C as an intrusion correctly. Because the connection ka, 
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Figure 5.1: Behavioral state diagram of the obfuscation tool from [42]. 

or connection wi th s imilar behavior properties to ka, was included i n the dataset Dtr and 
the classifier C was trained on the dataset Dfr. 

W h e n the non-payload-based obfuscator is used to create obfuscated version of a remote 
attack wi th connection ka, its connection is defined as k'a. The connection k'a differs from the 
original connection ka by its modifications, which changed its network behavioral properties. 

The obfuscation tool uses operations, such as insertion, removal, and transformation of 
the packets, i n order to modify the Pc and Ps packet sets of the modified connection ka. 

The modifications of packet sets Pc and Ps of the connection ka might transform its 
features Fa to different ones. Therefore, features, which are extracted from connection k'a 

are defined as 

f(k'a)*F* = (F?',FZ',...,F?) (5.Í 

Hence, here is an assumption that the l ikel ihood of a correct prediction of features Fa 

by the classifier C is lower than the l ikel ihood of a correct prediction of features Fa. In 
addi t ion to the previous assumption, let us assume that the classifier C' t rained by learning 
algori thm A on t raining dataset D'tr, which includes some obfuscated intrusions, is going 
to be better at the prediction of unknown obfuscated intrusions than classifier C , which 
was not trained on any obfuscated intrusions. These assumptions have been fulfilled w i th 
experiments i n [42]. 

represent ing a specific dimension of a feature. 
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Virtual Machine tcpdump Kali Linux Internet 

Figure 6.1: Network infrastructure for capturing attacks and legitimate traffic. 

Chapter 6 

The Novel Dataset 

The goal of this work is to construct a novel dataset intended for the evaluation of net­
work intrusion detection systems. Beside pla in versions of network attacks, the dataset 
should contain obfuscated attack instances, which makes the detection more challenging. 
Al though such a dataset has been already proposed in the literature [42], the vulnerable 
services that were exploited i n that dataset are obsolete, and thus the detection of contem­
porary obfuscated attacks by classifiers using A S N M features is questionable. We a im to 
address this l imi ta t ion by creating a novel dataset w i th the most recently discovered remote 
vulnerabilit ies (i.e., years 2018 and 2019). 

A l l attacks were performed using Metasploi t framework [66] on a machine w i t h K a l i 
L i n u x [57] operating system. A l l target machines are v i r tua l appliances running on Or­
acle V M V i r t u a l B o x [58] and during attacks, they were connected to the host machine 
using Hos t -Only Adapter [59]. The scheme wi th devices used i n order to record attacks 
and legitimate traffic is depicted i n Figure 6.1. A l l used obfuscation techniques and their 
instances, which are supported by the N P B O framework, are listed i n Table 6.1. Several 
attacks were performed and recorded using tcpdump, each of them generated mult iple T C P 
objects, which however included some legitimate connections as well , because always there 
was a legitimate connection to a created shell, so they are listed i n the Other Legit imate 
Traffic row. Some legitimate communications wi th vulnerable services were simulated in 
the v i r tua l environment using the same machines as were used for attack simulations. A l l 
T P C objects are listed i n Table 6.2. 

6.1 Data Capture and Metrics Extraction 

Whole metrics extraction procedure is depicted in Figure 6.2. A l l attacks were recorded 
using the N B P O framework, which uses tcpdump [81] as a tool for packet transfer captur­
ing. Thus every attack corresponds to one pcap T C P dump file [81]. These files are stored 
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Technique Parametrized Instance ID 

• constant delay: Is (a) 
Spread out packets • constant delay: 8s (b) 
in time • normal distribution of delay with 5s mean 2.5s standard deviation 

(25% correlation) 
(c) 

Packets' loss • 25% of packets (d) 

Unreliable network 
channel simulation 

• 25% of packets damaged 
• 35% of packets damaged 
• 35% of packets damaged with 25% correlation 

(e) 
(f) 
(g) 

Packets' duplica­ • 5% of packets (h) 
tion 

Packets' order 
modifications 

• reordering of 25% packets; reordered packets are sent with 10ms delay 
and 50% correlation 
• reordering of 50% packets; reordered packets are sent with 10ms delay 
and 50% correlation 

(i) 

(j) 

• M T U 1000 (k) 

Fragmentation • M T U 750 
• M T U 500 

(1) 
(m) 

• M T U 250 (n) 

• normal distribution delay (/u = 10ms, a = 20ms) and 25% correla­ (o) 
tion; loss: 23% of packets; corrupt: 23% of packets; reorder: 23% of 

Combinations packets 
• normal distribution delay = 7750ms, a = 150ms) and 25% corre­
lation; loss: 0.1% of packets; corrupt: 0.1% of packets; duplication: 0.1% 
of packets; reorder: 0.1% of packets 

(p) 

• normal distribution delay {fi = 6800ms, a = 150ms) and 25% corre­ (q) 
lation; loss: 1% of packets; corrupt: 1% of packets; duplication: 1% of 
packets; reorder 1% of packets 

Table 6.1: Exper imenta l obfuscation techniques wi th parameters and IDs [42]. 

in a specially ordered folder structure, which defines what type of attack it is and on which 
service was the attack directed against. There is also a folder structure for legitimate com­
munication, which was captured using tcpdump as well . A n d the purpose of the structure 
is s imilar to the attacks' folder structure, it identifies which services were used in the packet 
communication. 

B o t h file structures were passed to special scripts collection called recurs-walker, which 
was supplied to me by the supervisor of this thesis. The recurs-walker read a l l the data, 
connected to Pos tgreSQL service [80] running on the host machine, and created a database 
wi th connections. 

Then the second script used (called metrics-extractor) was intended for extraction of 
A S N M features and collection was also supplied to me by my supervisor. The metrics-
extractor fetched connection data from the Pos tgreSQL database and performed the ex­
tract ion of A S N M metrics. Ex t rac ted metrics were then saved in a new table i n the database 
and wri t ten into an output file using C S V format [72]. The C S V file was then imported 
into R a p i d M i n e r Studio [70] local repository. In the impor ta t ion process, some unnecessary 
data were removed and datatypes of other data were set. The imported dataset was then 
fixed in R a p i d M i n e r Studio using processes described i n Section 7.2. 
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Service Legitimate 
Direct 

Attacks 
Obfuscated 

Attacks 
Summary 

Confluence 99 275 275 649 
Drupa l 67 177 399 643 

F T P S h e l l Cl ient 80 65 98 243 
GetSimple C M S 63 396 1173 1632 

Gi tS tack 447 296 398 1141 
j Query-Fi le- Upload 79 230 318 627 

L i b r e N M S 76 264 368 708 
Nagios X I 5.4.12 145 572 657 1374 

Nagios X I 5.5.6 224 205 145 574 
rConfig 650 136 232 1018 

W e b m i n 831 168 276 1275 
Other Legit imate 

Traffic 
6827 N / A N / A 6827 

Summary 9588 2784 4339 16711 

Table 6.2: Number of T C P objects in the dataset 

6.2 Vulnerable Services 

Vulnerable services were found i n the Na t iona l Vulnerabi l i ty Database [55], where are listed 
C o m m o n Vulnerabil i t ies and Exposures ( C V E ) . In order to make an up-to-date dataset of 
vulnerabilit ies and exploits, C V E s from the years 2018 and 2019 were searched. Hence two 
N V D J S O N D a t a Feeds, each corresponding to one year, were downloaded [55]: 

• dataset from 2018 in file nvdcve-l.l-2018.json w i th last modification on 25th Novem­
ber 2019 and wi th SHA-256 checksum: 
e/87d6/37766e/6e035504ac605d088acece09de/6511a2d0036c231e79d7a2c 

• dataset from 2019 in file nvdcve-1.1-2019.json w i th last modification on 12th Novem­
ber 2019 and wi th SHA-256 checksum: 
653/95912e8cda06cald4/accd05aa6c4d4d98/a02d9691366e/c24/6ed40c84 

Also corresponding Official C o m m o n Pla t form Enumerat ion ( C P E ) Dic t ionary file official-
cpe-dictionary_v2.3.xml was downloaded [55]. C P E s include important information about 
vulnerable technology systems, software, and packages, which are mentioned in each C V E 
record. A n example of C V E J S O N record can be found in Append ix B [55]. In order to pro­
cess information i n C V E J S O N objects and i n C P E X M L objects a parser was implemented 
and w i l l be described later. 

After finding suitable vulnerabili t ies (i.e., remote, cr i t ical , compatible w i th Windows or 
L i n u x operating systems, etc.) it was necessary to find exploits for them, which was per­
formed using Exp lo i t Database by Offensive Security [56]. W h e n C V E s and corresponding 
exploits were found, some of those which had the vulnerable version easily and were freely 
accessible were chosen to be added to the new dataset. In the following, we describe a l l 
remotely vulnerable services that were found i n the selected N I S T C V E dataset files. 
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Figure 6.2: At tacks and legitimate traffic recording network infrastructure [38] 

C V E J S O N and C P E X M L Parser 

The parser was developed using P y t h o n programming language and consists of couple of 
classes. The main class is called CVEReader, whose constructor requires two parameters 
wi th names of input C V E J S O N file and C P E X M L file. In the constructor two more 
objects are ini t ia l ized, which are instances of ParserJSON and ParseXML classes. Next 
the parse method is launched. The method parse invokes methods i n both parser objects, 
which are called the same as the cal l ing method. After parsing is finished the lookup method 
is called. The lookup method performs infinite loop, which listens to new commands from 
the standard input of the program and executes them. Three simple lookup commands are 
implemented: CPE, CVE and index. These commands search for records wi th given C P E , 
C V E or index of the record in given dataset and then print i t . ParserJSON and ParseXML 
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classes implement methods which parse or print given C V E J S O N files or C P E X M L files. 
ParseXML class also uses CPEHandler and CPEXML classes, which handle ind iv idua l 
C P E objects. 

6.2.1 Drupal 

D r u p a l is an open-source project, which provides a content-management system [24]. D r u ­
pal is used i n the development of 1.6 % websites worldwide and its content-management 
system market share is 2.8% [64]. 

In this dataset, the attack is based on Metasploi t exploit 44557 [73], which is used to 
exploit CVE-2018-7602 [7] vulnerabili ty. The exploit requires an attacker to be authen­
ticated as D r u p a l user and be able to delete a node, then the malicious P O S T method 
request [33] can be crafted and sent to the server. The vulnerabi l i ty allows an attacker to 
remotely execute code on the machine running D r u p a l [23, 73]. The target machine wi th 
Debian 4.9.130-2 is running D r u p a l 7.57. 

6.2.2 F T P S h e l l Client 

F T P S h e l l Client is a program, which enables an user to connect to a S F T P [88] or F T P S [34] 
server and upload or download files. The applicat ion is compatible w i th Windows operat­
ing system and it supports L D A P based Act ive Directory [50] and Windows N T L M [51] 
authentication. 

This attack is based on Metasploi t exploit f tpshe l l_c l i_bof [65], which is used to exploit 
CVE-2018-7573 [6] vulnerabili ty. A n attacking machine starts listening on port 21 and 
pretending it is F T P [63] server. Then its target has to t ry to connect to the attacker's 
exploit. The exploit sends a response consisting of 400 characters of ' F ' together w i t h the 
F T P 220 response code, which leads to the target's applicat ion crash caused by the buffer 
overflow. After the overflow, the attacker is able to execute code on the target machine [6]. 
The target machine wi th Windows 10 Enterprise Evalua t ion is running F T P S h e l l Client 
6.70. 

6.2.3 GitStack 

Gitstack is an open-source git [35] server for the Windows platform. The applicat ion is 
based on msysgit [52] and apache web server [78] [74]. 

This attack is based on Metasploi t exploit gi ts tack_rce [77], which is used to exploit 
CVE-2018-5955 [5] vulnerabili ty. In the authentication process, the password is not being 
sanitized and s t i l l , it is passed to the exec function. Therefore an attacker might execute 
code on target system [76]. The target machine wi th Windows 7 Professional S P 1 is running 
Gi tS tack 2.3.10. 

6.2.4 j Query-File-Upload 

jQuery F i l e Up load is a file upload widget, which supports chunked and resumable file 
upload and download. The program was developed i n order to support mult iple server 
platforms. It is also possible to preview images, videos, and audio [84]. 

This attack is based on Metasploi t exploit j query f i le_upload [85], which is used to 
exploit CVE-2018-9206 [12] vulnerabil i ty. Due to default configuration i n Apache 2.3.9 [78] 
and newer versions the .htaccess file in this widget might not be enabled. Hence the attacker 
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is able to upload arbi t rary P H P file w i th payload to the server and then execute it using 
G E T method [33]. The target machine wi th Windows 10 Enterprise Eva lua t ion is running 
jQuery F i l e Upload 9.22.0. 

6.2.5 L i b r e N M S 

L i b r e N M S is an open-source network management software, which supports several operat­
ing systems and network hardware. The applicat ion automatical ly discovers network using 
mult iple protocols and is accessible v i a the web interface and A P I [17]. 

This attack is based on Metasploi t exploit l ib renms_addhos t_cmd_in jec t [49], which is 
used to exploit CVE-2018-20434 [4] vulnerabil i ty. The exploit module requires L i b r e N M S 
user credentials to authenticate to the applicat ion. The attacker injects his payload into the 
community parameter, which is used in the P O S T request [33]. The community parameter, 
which was not sanitized is then passed to popen function, thus attacker's code is executed 
on the target machine. The target appliance wi th U b u n t u 18.04 is running L i b r e N M S 1.46. 

6.2.6 Nag ios X I 5.4.12 

Nagios X I is an open-source application, service and network moni tor ing software. It mon­
itors network devices, applicat ion and database servers, etc. It is able to communicate 
wi th its users v i a the web interface, emails, short messages, and other communicat ion 
channels [32]. 

This attack is based on Metasploi t exploit nag ios_x i_cha ined_rce_2_e lec t r i c_booga loo [75], 
which is used to exploit CVE-2018-8733 [8], CVE-2018-8734 [9], CVE-2018-8735 [10] and 
CVE-2018-8736 [11] vulnerabilit ies. 

A t first, the attacker sends specially crafted P O S T method request [33] to a vulnerable 
P H P file, which sets the database user to root [8]. Then he sends another crafted P O S T 
method request, which takes advantage of S Q L injection vulnerabi l i ty i n s e l l n foKey l pa­
rameter i n another P H P file, which allows the attacker to enumerate A P I keys [9]. The next 
step is an addi t ion of new Nagios administrative user w i th the next P O S T method request 
using gained A P I keys [10]. Then the attacker authenticates as the created user. W h e n 
authenticated the attacker sends another crafted P O S T method request, which injects a 
command wi th nopasswd sudo to a P H P file causing root shell creation for h i m [11]. The 
last step is to remove database user and Nagios administrat ive user, which were created 
during exploi tat ion [75, 43]. 

The target machine wi th Cen tOS 7 is running Nagios X I 5.4.12. 

6.2.7 Nag ios X I 5.5.6 

Nagios X I is described i n Section 6.2.6. Th is attack is based on Metasploi t exploit na-
g ios_x i_magp ie_debug [47], which is used to exploit CVE-2018-15708 [2] and C V E - 2 0 1 8 -
15710 [3] vulnerabilities. 

The attacker sets up his own web server, which responds to access requests w i th P H P 
code payload. T h e n he injects crafted parameters into U R L he accesses on the target 
system, which are passed to cur l [1] command that is executed on the target server. The 
attacked applicat ion accesses the attacker's web server w i th P H P payload and writes it into 
a new local P H P file. N o w the attacker is able to execute commands as a local user by 
accessing crafted U R L on the target system v ia uploaded P H P file [2, 46]. 
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The second part of the exploitat ion is privilege escalation on the target server. It is 
possible to run commands as root by running a specific P H P file on the server, which is 
enabled to be runnable as root without a password. The P H P file is vulnerable to command 
injection into one parameter, which leads to launching a new process executing the attackers 
command wi th root privileges [3, 46]. 

The target appliance wi th U b u n t u 14.04 is running Nagios X I 5.5.6. 

6.2.8 Conf luence 

Confluence is collaborative software and covers 1.38 % market share [29]. It is useful for 
new project organization, decision making, setting goals, etc. The Confluence Server can 
be accessed using a web interface and is compatible w i th mult iple platforms [19]. 

This attack is based on Metasploi t exploit confluence_widget_connector [31], which is 
used to exploit CVE-2019-3396 [16] vulnerabil i ty. There is a vulnerabi l i ty in some renders, 
where their parameters including Veloci ty Template [79] file pa th are not sanitized and 
run. The attackers starts his own F T P [63] server w i t h Veloci ty Template files. T h e n he 
injects 2 crafted Veloci ty Template files w i th Java code payload into _ templa te parameter 
using the P O S T method request [33], which enables h i m to remotely execute his code. The 
attacker does not need to be authenticated [31, 26]. The target machine wi th U b u n t u 14.04 
is running Confluence 6.9.0. 

6.2.9 G e t S i m p l e C M S 

GetSimple C M S is an open-source content management system. The philosophy of the 
program is a simple web interface, which includes everything needed, but does not cover 
unnecessary features. Th is software has already been downloaded over 120,000 times [27]. 

This attack is based on Metasploi t exploit gets implecms_unauth_code_exec [82], which 
is used to exploit CVE-2019-11231 [13] vulnerabil i ty. Due to the new default configuration 
in Apache [78] the .htaccess file does not override the Apache configuration. The attackers 
get mult iple files w i th sensitive information from the target server. The sensitive informa­
t ion such as apikey is then used to calculate hashes, which are necessary to create a cookie. 
The cookie is then used to access C S R F [60] nonce from a php page using P O S T method 
request [33]. The P H P page is vulnerable to path traversal, however, it is not even neces­
sary for the exploit, because there is already the .htaccess file vulnerabili ty. The vulnerable 
P H P page allows the attacker to upload his crafted file and does not check it . Therefore the 
attacker uploads crafted file w i th his payload and then accesses i t , in order to execute his 
code on the target machine [13, 82, 83]. The target appliance wi th Debian 8.11 is running 
Getsimple C M S 3.3.15. 

6.2.10 r C o n f i g 

rConfig is an open-source network device configuration management software. It is possible 
to create snapshots of network device configurations, automate miscellaneous tasks, etc. 
The tool also supports customization addi t ion. The software has over 8,000 users and 
manages over 2 mi l l ion network devices [71]. 

This attack is based on Metasploi t exploit rconf ig_ ins ta l l_cmd_exec [48], which is used 
to exploit CVE-2019-16662 [15] vulnerabil i ty. The exploit requires the instal l subdirectory 
to not be removed, which does not happen automatically. The attacker crafts the G E T 
method request [33] to a vulnerable P H P page, which is accessible for unauthenticated 
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users. The page uses the rootUname parameter from the G E T method in 2 commands, 
while not being sanitized. Therefore the attacker can remotely execute code on the target 
machine. Note that since the payload is executed i n 2 commands it is executed twice, thus 
wi th default configuration 2 meterpreter sessions are opened [48, 18]. The target appliance 
wi th Cen tOS 7 is running rConfig 3.9.2. 

6.2.11 W e b m i n 

W e b m i n is a u t i l i ty for system adminis t ra t ion of Unix- l ike operating systems. A user 
controls the system using a web interface. It is possible to manage services, system config­
uration, sharing, open-source applications, etc. The software removes the need for manual 
modification of operating system configuration files. Webmin has been downloaded over a 
mi l l ion times [86]. 

This attack is based on Metasploi t exploit 47230 [54], which is used to exploit C V E -
2019-15107 [14] vulnerabil i ty. The user password change must be enabled for exploitat ion 
to be working. A n administrator of the target system has to have „ P r o m p t users w i th 
expired passwords to enter a new one" option checked. The attacker sends crafted P O S T 
method request [33] to a vulnerable C G I file. There is a command injection vulnerabil­
i ty in parameter old processing while t ry ing to change the password of a user. It is not 
necessary for a user to exist and password to be correct. Note that the vulnerabi l i ty was 
injected intentionally into the Pe r l source code by an unknown attacker, who created this 
backdoor [54, 53]. The target appliance wi th U b u n t u 14.04 is running W e b m i n 1.910. 

39 



Chapter 7 

Data Preprocessing, Forward 
Feature Selection and D L Models 

In this chapter, we describe the R a p i d M i n e r tool and classifiers used i n our experiments. 
D a t a preprocessing, which consists of several tasks, is spread across mult iple sections. The 
first task, which prepares data is described in Section 7.2, then interesting features are 
selected using Forward Feature Selection (see Section 7.3), and finally some of the data 
preprocessing techniques are performed i n process of model t raining, which is described 
in Section 7.4. F ina l ly , Cross-Val idat ion was performed wi th models of classifiers trained 
on direct and legitimate traffic (also referred to as DL models), which we focus on in 
Section 7.5.1. 

7.1 RapidMiner 

R a p i d M i n e r is a data min ing platform used in over 40,000 organizations [70]. A l l classifiers 
and processes, which prepare data, t ra in classifiers, and test them are implemented us­
ing R a p i d M i n e r Studio. In this chapter are described ind iv idua l processes implemented in 
R a p i d M i n e r . Sections are organized by specific tasks, which were performed using Rap id -
M i n e r processes. Information about operators i n sections i n this chapter were derived from 
R a p i d M i n e r documentation [69] and R a p i d M i n e r operator manual [68]. 

Notat ion 

For the purpose of unified explanation, we adopt the following terminology from the Rap id -
M i n e r Studio [67]: 

• Example represents a T C P connection data w i th A S N M features, i.e. a row i n a 
table. 

• At tr ibute represents an A S N M feature, i.e. a column in a table. 

• Operator is a node i n a graph inside a process that can be run, by the process, and 
thus perform some specific task, which depends on the operator's type. 

• Process is a collection of operators, which can be run and thus launch them i n a 
defined order. 
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• Subprocess is a process inside some operator, so when the operator is launched the 
subprocess starts. 

7.1.1 Classif iers 

We used 6 classifiers for dataset evaluation: Naive Bayes (Kernels), Naive Bayes, Decision 
Tree, R a n d o m Forest, Support Vector Machine and Logist ic Regression. 

Naive Bayes is a parametric model, which uses Bayes' theorem i n order to learn and 
classify data. It is a simple probabil ist ic classifier, which does not require very much data to 
learn. The classifier is also one of the faster ones. A fundamental property of the classifier is 
the fact it assumes that a l l learned features are independent [69]. In performed experiments 
is also used Naive Bayes w i th Ke rne l Densi ty Es t imat ion , i.e. Naive Bayes (Kernels), which 
makes it non-parametric. 

Decision Tree is a classifier that creates a tree structure, where each node corresponds 
to a feature of the data. In every node, there is also a condit ion, which depends on the 
related feature. The result of the condit ion evaluation determines which chi ld node to go 
when classifying the data using already trained Decision Tree. Leafs of the tree represent 
the final decision of the classifier [69]. 

R a n d o m Forest's t ra ining starts w i th spl i t t ing the input dataset into random subsets. 
Then for each subset, a new Decision Tree is generated. Each example of data given to the 
R a n d o m Forest i n order to get classified is classified by a l l Decision Trees. The result of 
classification is then voted by a l l trees [69]. 

Support Vector Machine 's basic principle is described in Section 2.3.1. 
Logist ic Regression is a method that estimates one dependent variable, which has only 

two possible values. The estimated variable depends on mult iple independent variables, 
which might be miscellaneous data types. The Logist ic Regression uses an S-shaped logistic 
dis t r ibut ion function in order to model the data classifier [87]. 

7.2 Data Preparation 

D a t a preparation is d ivided into two separate parts. One of them, described i n Section 7.2.1, 
transforms the data into a form wi th better readable information about services and attack 
types. In the case of the second part, we filter the data and label their attack types (see 
Section 7.2.2). 

7.2.1 D a t a T r a n s f o r m a t i o n 

The first process is called Data-Transformation-A, which uses several operators w i th miscel­
laneous functionalities. A t first, the Retrieve operator is used to fetch a table w i th A S N M 
metrics, which was imported to R a p i d M i n e r from a C S V input file, that was generated 
using metrics-extractor described i n Section 6.1. Then the id role is set to id attribute 
in the table using a Set Role operator. Two next operators of Replace type rename label 
at tr ibute in a l l examples of Nagios X I service because there are two versions of the service 
each wi th different vulnerabilit ies and exploits. It is useful to rename them into an easily 
readable form, which discriminates each version of the service. T h e n there are some new 
attributes generated using Generate At t r ibutes operator, which include attack information 
of each example. The process continues setting label role to a label attribute, which signifies 
that label at tr ibute is the information about what class is the attack in . So the classifier 
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Figure 7.1: Dataset-Repairment-B process scheme 

is t rained to guess the label attr ibute. Next , there are removed some no more needed at­
tributes and renamed recently created attributes. In the end, the attributes are reordered, 
in order to make it easier to work wi th the dataset, some are renamed to a better form and 
the final table is wri t ten to an output file using Store operator. 

7.2.2 D a t a R e p a i r m e n t 

The second process for data preparation is called Dataset-Repairment-B, which is depicted 
in Figure 7.1. A t the beginning of the process, a Retrieve operator reads the input file 
w i th a data table, which was the output of the Data-Transformation-A process. Then the 
table is passed into two parallel subprocesses A l l At tacks and Legit imate processes using a 
M u l t i p l y operator. 

The A l l At tacks subprocess starts w i th filtering its input data using F i l t e r Examples 
operator, which matches examples wi th attack data only. The filtered table is then dis­
t r ibuted to 11 subprocesses, each corresponding to one of the attacked services. These 11 
subprocesses a l l do almost the same thing. E a c h of them starts by filtering examples wi th 
data related to its service only. Then each one's data is filtered by the destination port 
of the attack and unmatched data, which has different destination port number is labeled 
as other traffic using three Replace attributes. Therefore the attack data is detached from 
other traffic, which was captured by tcpdump [81] during attack realization. A l l data from 
each subprocess is then united into one table wi th a l l attacks and then the data labeled as 
other traffic is labeled as legitimate as well . 

The Legit imate process includes only 1 operator of F i l t e r Examples type, which filters 
only traffic labeled as legitimate. B o t h processes outputs are then united into one table 
wi th a l l labeled data and saved i n the output file using the Store operator. 

7.3 Forward Feature Selection 

In order to increase efficiency of classifiers Forward Feature Selection was performed. There 
are two types of classifiers i n this thesis, the ones trained on legitimate traffic and direct 
attacks' data and the ones, which are trained on a dataset including obfuscation attacks. 
Therefore each group of them is trained on different datasets, so the feature selection has to 
be performed twice. Selected features from direct attacks and legitimate traffic are called 
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D L - F F S . Features from the second run were selected from a l l data, hence they are called 
D O L - F F S , where O stands for obfuscated attacks. 

A l l selected features are listed i n Table A . l . B o t h tasks were performed using classifiers 
of type Naive Bayes (Kernels). The number of D L - F F S is 11 and 14 features were selected 
during the D O L - F F S selection process. The only feature, which was selected in both pro­
cesses is intervalsIPsSig, which represents the standard deviat ion of t ime intervals between 
consecutive connections of the two hosts running on the same IP addresses as an analyzed 
connection [38]. B o t h sets include mostly features based on approximation of communica­
t ion by polynomials, Fast Fourier Transformation of packet sizes, and normalized products 
of packet sizes wi th some Gaussian curves and lengths of packets i n intervals of t ime. 

7.3.1 I m p l e m e n t a t i o n 

Forward Feature Selection is implemented i n process 2cl-FFS, which works wi th label that 
has 2 classes. A s input there can be used D O L data, i.e. direct attacks, obfuscated attacks, 
and legitimate traffic data, or D L data, i.e. D O L without obfuscated attacks. A t first 2 Set 
Macros operators set necessary macros for the process, then D O L 1 1 2 or D L 1 2 file is read 
using Retrieve operator and the data is passed to a Remove Useless At t r ibutes operator, 
which has same settings as described in Section 7.4.1. Then the data is fixed in operator 
Nomina l to B inomina l , which sets label at tr ibute type to b inominal . The fixed data table 
is passed to the Forward Selection operator. 

The Forward Selection operator has a subprocess, that returns a Performance Vector. 
The selection process starts w i th an empty list of selected features. The process consists 
of rounds, which have to be performed in order to construct a list of selected features. In 
each round, unused features are appended to a new list. For each feature i n the current 
round, the performance is measured using some operators included i n the subprocess. In 
the case of forward feature selection in this theses, the cross-validation technique was used. 
The Cross-Val idat ion operator parameters are configured the same way as described in 
Section 7.5.1 w i t h the only difference in local random seed attribute, which is here set to 
1987. The Cross-Val idat ion operator includes the same operators as i n Section 7.5.1 as well, 
but the ma in criterion in the Performance operator i n the testing phase is set differently. 
The ma in criterion is accuracy and other calculated criterions are A U C (optimistic), A U C , 
precision, and recall . The outputs of the Cross-Val idat ion operator are then passed to a 
Branch operator using M u l t i p l y operator and at the same time, the number of currently 
selected attributes is extracted into attribs macro. 

The Branch operator compares the attribs macro wi th the counter macro and i f they 
are equal it performs its Then subprocess, else Else subprocess is performed instead. In the 
Then subprocess the model and performance vector are saved to files using Store operators 
and then the counter macro is incremented using Generate Macro operator. In the Else 
subprocess, there are 2 Store operators, which write the model and performance vector to 
files. 

The feature wi th the best performance is then selected at the end of the round and 
added to the selection list. 

The Forward Selection operator contains parameters, which define stopping the behav­
ior, max ima l number of attributes, and speculative rounds count. The stopping behavior 
parameter was set to „wi thou t increase" value, which influences an operator's behavior to 
make it stop when a round does not increase classification performance. This setting was 
combined wi th the second parameter, which was set to the max ima l number of 15 attributes 
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and there are 2 speculative rounds enabled. Speculative rounds parameter is the count of 
rounds that are allowed to be performed without any increase of performance, which is 
useful i n order to deal w i t h local optimums. 

In the end, final selected attributes are saved to the output file using a Store operator. 

7.4 Mode l Training 

In this section are models trained on direct attacks and legitimate traffic, i.e. D L data, and 
on a dataset including both D L data and obfuscated attacks, i.e. D O L data. A n d that is 
also the reason why these models are called D L Models and D O L Models . Forward Feature 
Selection a lgori thm was also used on that data, so D L - F F S and D O L - F F S features were 
selected. Therefore a l l models i n this section were trained on D L or D O L data l imi ted to 
D L - F F S or D O L - F F S features, which means that a l l testing data passed to these models 
are l imi ted to such features as well. 

A t first spl i t t ing t ra in data is done in 2cl-Split-Train-Data-attALL process and is de­
scribed bellow i n Section 7.4.1. Then the data is filtered and normalized i f needed (see Sec­
t ion 7.4.2). After it is done there are three data tables w i th fixed D L 1 2 , O L 1 2 , and D O L 1 1 2 
data, which are prepared for classification. Before t ra ining processes can be launched the 
data needs to be split into subsets and forward feature selection has to be done. The for­
ward feature selection is described i n Section 7.3. Next , the model t ra ining phase can start, 
because three data tables are prepared and features as well . The t ra ining phase is described 
in Section 7.4.3. 

7.4.1 Spl i t t r a i n d a t a 

In the beginning, the process read input data using the Retrieve operator. Input data is the 
data table, which was produced by Dataset-Repairment-B process described i n Section 7.2.2. 
Then some necessary macros are set using 2 Set Macros operators. The next step is to 
remove a l l attributes, which contain information about the attack and service type of the 
connection using Select At t r ibutes operator and label role is set to a special attribute 
label to define what the classifier should learn. The next operator is to Remove Useless 
Att r ibutes , which removes attributes from the table based on user-specified thresholds, 
which are defined i n the operator's parameters. 

The numerical m i n deviat ion parameters are set to 0, which means numerical attributes, 
which have the standard deviat ion less than or equal to this deviat ion threshold are re­
moved. Therefore a l l attributes, where a l l examples have the same value are removed. The 
nominal useless above parameter sets the threshold for the ratio of most frequent values 
to the total number of examples and removes a l l nominal attributes above the user-defined 
ratio. However it is set to 1.0, thus latter mentioned parameter does not remove anything. 
The nominal useless bellow parameter is similar to the latter one, but it removes nominal 
attributes wi th the ratio of least frequent values to the to ta l number of examples, i n other 
words, attributes wi th most different values. The latter parameter was set to 0, hence it 
removed nothing. 

The process continues wi th F i l t e r Examples operator, which performs removal of a l l 
examples, which have missing values. Then the data is stored in the D O L 1 2 3 file, which 
signifies, that the file includes direct attacks wi th label 1, obfuscated attacks, which are 
labeled as 2 and legitimate traffic, which is labeled as 3. A n d after saving to the file the 
data is distr ibuted to 3 subprocesses using the M u l t i p l y operator. 
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The first subprocess is called (DL->12), which means it filters direct attacks and legiti­
mate traffic only and assigns their label to 1 and 2 in that order. It consists of 2 operators, 
where the former one filters obfuscated attacks out of the data and the second, which 
changes legitimate traffic label to 2. The second subprocess is called (OL->12), which 
filters obfuscated attacks and legitimate traffic only and changes their labels to 1 and 2 
in that order. It uses 3 operators, where the first one filters the communicat ion based on 
the type of at tack/ legi t imate label and the other two operators change labels i n a proper 
way. The th i rd subprocess is called (DOL->112) and thus the direct attack is labeled 1, 
the obfuscated attack is labeled as 1 as well and legitimate communicat ion is labeled as 
2. Thus the latter subprocess loses information about the type of each attack. However, 
the information about what type of attack the specific example is might be later acquired 
using jo in operations wi th data from the original table because a l l examples s t i l l have their 
id attr ibute kept. E a c h of the 3 mentioned subprocess passes its output to a Retrieve oper­
ator, which saves the data table into a file. The first one, w i th data table from (DL->12) 
subprocess saves it i n the file called D L 1 2 . The next one, w i th data table from (OL->12) 
subprocess writes the table into the file called O L 1 2 . The last one, w i th data table from 
(DOL->112) subprocess uses the file called D O L 1 1 2 to store i t . 

7.4.2 D a t a F i l t e r i n g a n d N o r m a l i z a t i o n 

Training processes bo th start by reading prepared D O L 1 2 3 data using Retrieve operator, 
then 2 Set Macros operators prepare necessary macros and the data is passed to Select by 
Weights operator. Then the attributes file is read using another Retrieve operator and then 
delivered to the Select by Weights, which has a weight relation parameter set to „grea ter 
equals" value, and the weight parameter is set to 1 value. Since the attributes file contains 
only 1 or 0 values only attributes wi th value 1 are selected and these values correspond only 
to attributes that were selected by forward feature selection processes. Then the data wi th 
F F S features are distr ibuted using M u l t i p l y operator to 3 subprocesses called Prepare DL, 
Prepare OL, and Prepare DOL. Ment ioned subprocesses are same as subprocesses called 
(DL->12), (OL->12) and (DOL->112), which are described in Section 7.4.1 bellow. Then 
the data prepared in these processes are stored in files the same way as in the mentioned 
paragraph. Next , each of 3 data tables is passed to the corresponding N o m i n a l to B inomina l 
operator, which changes the type of label at tr ibute from nominal to binominal , and thus 
the data fit for binary classifiers. 

In case of usage of the S V M model or Logist ic Regression model, two more operators 
are performed i n order to prepare data for the classifier. The first is N o m i n a l to Numer ica l 
operator, which changes data types of attributes defined by its parameters. Its parameter 
coding type is set to dummy coding, so for every value of an at tr ibute wi th nominal data type 
except comparison group a new attribute is created. The created attr ibute has value 1 in 
case of a l l examples, which have the created attribute's ancestor value and 0 i f the ancestor's 
value is different. The second is the Normal ize operator, which performs normalizat ion of 
examples. 

7.4.3 T r a i n i n g Phase 

The t ra ining phase starts w i t h 3 data table lines wi th fixed D L 1 2 , O L 1 2 , and D O L 1 1 2 
data, which are prepared for classification. In the case of 2cl-Train-on-DL-attDLFFS the 
fixed D L 1 2 data table is distr ibuted using the Mul t ip l e operator to two operators, based 
on their purpose. In case of 2cl-Train-on-DOL-attDOLFFS the fixed D O L 1 1 2 data table 
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is distr ibuted instead. The first of those operators w i th a given data table is an operator, 
which generates a model, for instance, Naive Bayes and the second is an A p p l y M o d e l 
operator. The model generating operator uses these data for t raining a new model and 
puts the model into its output. The trained model is then distr ibuted using the M u l t i p l y 
operator to three A p p l y M o d e l operators. Generally, A p p l y M o d e l operators use their input 
models to label their input data. Each of the mentioned 3 A p p l y M o d e l operators has the 
trained model as its input model and different data. The first one uses the supplied model 
to label D L 1 2 data, the second uses the same model to label O L 1 2 data and the last one 
uses the model to label D O L 1 1 2 data. Labeled data from each operator is then passed to 
its Performance (Binomina l Classification) operator, while a l l of them are set up the same 
way. 

Performance operators calculate a bunch of criterions and their outputs are Performance 
Vectors [69]. The main cri terion is recall, which means it is used for Performance Vector 's 
comparison. There were set up to be calculated these criterions: recall, accuracy, A U G 
(optimistic), A U C , A U C (pessimistic), precision and f measure. 

• The recall cri terion is calculated as follows: 
recall = (true_positive_predictions) / (number _of _positive_examples) 

• The accuracy cri terion is calculated as follows: 
accuracy = (correct^predictions) / (number _of _examples) 

• The A U C (optimistic), A U C and A U C (pessimistic), where A U C stands for A r e a 
Under the Curve, the curve is from R O C graph. In the beginning predictions are 
sorted by their score from highest to lowest and then the graph is plotted example 
by example. The optimist ic A U C plots positive examples before negative ones. The 
pessimistic A U C plots negative examples before positive ones. The A U C plots plots 
average between optimist ic and pessimistic A U C s . 

• The precision criterion is calculated as follows: 
precision = (true_positive_predictions) / (all_positive_predictions) 

• The f measure cri terion is calculated as follows: 
F\ = 2(precision x recall)/(precision + recall) 

The process finishes by saving a l l three Performance Vectors and the trained model to files 
using four Store operators. 

7.5 D L Cross Validation 

Cross Val ida t ion is a method to rank the accuracy of a model on a given dataset. The 
dataset is split into N subsets w i t h an equal count of samples. T h e n subsets are iterated in 
order to t ra in and validate a model . There are two phases of each iteration, the first is the 
t ra ining phase and the second is the testing phase. In the t raining phase, N — 1 subsets 
are used for t ra ining a new model. W h e n the model is trained the testing phase launches. 
Testing data, which is the last subset of the dataset that was not used for training, is passed 
to the prepared model . Therefore the model is tested on the data unknown for i t . Then the 
next i teration is performed wi th another combinat ion of t ra ining and testing data. Cross 
validat ion implementat ion is described i n Section 7.5.1. 
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Classifier T P R F P R F i (|) A v g . Recal l 

R a n d o m Forest 99.98% 
Naive Bayes (Kernels) 99.34% 

Decision Tree 98.94%, 
Logist ic Regression 97.63% 

Support Vector Machine 97.66% 
Naive Bayes 100.00^ 

0.09% 99.84% 99.95%, 
0.02% 99.63% 99.66% 
0.58% 98.49% 99.18%, 
0.60% 97.79% 98.52%, 
0.97% 97.17% 98.35%, 

60.57% 48.97% 69.72% 

Table 7.1: Cross val idat ion of direct attacks and legitimate traffic 

Because the classification is binary the 5-fold cross-validation is used in order to evaluate 
the classifiers. Cross val idat ion of D L data is presented i n Table 7.1. The table is sorted by 
the F i score i n descending order. In the table can be seen that the most successful is the 
R a n d o m Forest classifier w i th 99.84% F i score and the least successful is Naive Bayes w i th 
48.97% F i score. However, Naive Bayes classifier has the highest T P R , which is 100.00%, 
but probably on behalf of F P R , that is 60.57%, which is abnormally bad compared to other 
classifiers, because they a l l have F P R under 1%. 

• T P R stands for True Posit ive Rate and is calculated as follows: 
TPR = (true_positive_predictions) /(number _of_positive_examples) 

• F P R stands for False Posit ive Rate and is calculated as follows: 
FPR = (false_positive_predictions) / (number_of' _negative_examples) 

• F i stands for F i score, i.e. F measure, which is harmonic mean of precision and 
sensitivity and it is definition can be found i n Section 7.4.3. 

• A v g . Reca l l stands for Average Recal l , which is described i n Section 7.4.3. 

7.5.1 C r o s s V a l i d a t i o n I m p l e m e n t a t i o n 

Cross-validation is implemented i n 2cl-X-val-inDL and 2cl-X-val-inDOL processes. F r o m 
these processes' names can be derived that the classification is binary and data are a set 
of direct attacks and legitimate traffic of services w i th D L - F F S attributes only i n 2cl-X-
val-inDL process and a l l data including the mentioned and obfuscated attacks as well, but 
l imi ted to D O L - F F S attributes only are i n 2cl-X-val-inDOL process. Most operators in 
both processes are the same and therefore they are both described in this section. There 
are two parts of cross val idat ion processes, the first is D a t a Preparat ion, and the second is 
Cross Val ida t ion Loop . 

D a t a Preparation 

The process starts w i t h two Set Macros operators, which set macros w i th information about 
the model and working folders of the process. T h e n a Retrieve operator D L 1 2 or D O L 1 1 2 
input data, which are data labeled w i t h numbers depending on the type of attack as can 
be seen in the name of input data, e.g. i n D O L 1 1 2 , direct and obfuscated attacks are 
labeled as 1 and legitimate traffic as 2. The data table is then fixed for a binary classifier 
using N o m i n a l to B inomina l operator. In the case of usage of the S V M model or the 
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Logist ic Regression model , two more operators are performed i n order to prepare data for 
the classifier as described i n Section 7.4.2. 

Normal iza t ion is a process of data example values modification i n order to make them 
fit into the required range, which is necessary for some types of classifiers to work properly. 
The Normal ize operator supports four methods for normalizing data, and i n this case, it 
was configured to use the Z-Transformation method. Z-Transformation, i.e. Stat is t ical 
Normal iza t ion is a method that at first subtracts the mean of given data from each value 
and then divides every value by the standard deviation. A s a result, the mean of values is 
zero and the variance is one. Z-Transformation is a widely used normalizat ion method. 

Cross Val idat ion Loop 

A fixed data table is passed to the main Loop operator, which has a number of iterations 
parameter set to i teration macro, so it loops for as many times as is set in the i teration 
macro. The i teration macro is set to 100, because the macro is used the number iterations 
is accessible to inner subprocesses, which are executed wi th in every iteration. 

In the loop subprocess i n the beginning the Generate Macro operator calculates seed 
macro from iteration macro as follows: seed = iteration + 100. The subprocess continues 
by passing its input to Cross-Val idat ion operator, which includes 2 subprocesses, one for 
t ra ining and one for testing a trained model . The number of folds parameter, which defines 
the number of subsets that are iterated, is set to 5. The sampling type parameter is con­
figured to stratified sampling, so the subsets are buil t randomly, thus the class dis t r ibut ion 
is the same as i n the whole dataset. In the case of this classifier, which is b inominal the 
stratified sampling creates subsets that have approximately the same number of samples 
wi th label at tr ibute of its two values. The Cross-Val idat ion operator is also using a local 
random seed value, which is defined by prepared seed macro. 

In the t ra ining phase, there is one model generating operator, which trains the model 
on given t ra ining data and then passes it to the t ra ining phase subprocess output. In 
the testing phase, the model given from the previous phase is applied to the testing data 
using the A p p l y M o d e l operator. The labeled testing data is then passed to Performance 
(Binomina l Classification) operator that is configured to calculate these criterions: A U C , 
precision, recall, and f measure, while the recall cri terion is set as the main criterion. 
The criterions are described i n Section 7.4.3. A l l Performance Vectors produced from the 
mentioned Performance operator i n each i teration of the val idat ion are averaged into single 
Performance Vector, which is then stored i n an output file using a Store operator and passed 
into the output of the whole Loop operator. 

Therefore the output of the loop subprocess is a collection of averaged Performance 
Vectors, which is passed to the Average operator that produces a final Performance Vector 
w i th averaged values of the collection. The final Performance Vector is in the end stored in 
an output file using a Store operator. 
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Chapter 8 

Obfuscated Attacks Detection 

Several experiments were performed i n order to evaluate the dataset. There are experi­
ments, which tested classifiers w i th knowledge about legitimate traffic and direct attacks 
and their performance of obfuscated attacks classification (see Section 8.1). Then experi­
ments w i th classifiers w i th knowledge widened of obfuscated attacks ( D O L Models) , were 
performed in Section 8.2 to test their improvement of obfuscated attacks classification, and 
there are also experiments testing their durabi l i ty against unknown obfuscation techniques 
and instances. A n d F i n a l l y Cross-Dataset Eva lua t ion is summarized in Section 8.3. 

8.1 Prediction of Attacks by D L Models 

Experiments comparing a l l attacks prediction and obfuscated attacks predict ion are sum­
marized i n Section 8.1.1. The results for successfully obfuscated attacks are described in 
Section 8.1.2. At tacks predict ion implementat ion is described in Section 8.1.3. A n analy­
sis of predicted data implementat ion is described i n Section 8.1.4. Three experiments were 
performed i n order to evaluate D L Models trained on the novel dataset described i n sections 
below. 

8.1.1 A l l A t t a c k s vs O b f u s c a t e d A t t a c k s P r e d i c t i o n 

Models trained on direct attacks and legitimate traffic were tested on a l l attacks, containing 
obfuscated attacks, which are unknown for them. In Table 8.1b are listed results of the 
experiment, including the difference of T P R compared to the Table 7.1 w i th cross-validation 
on direct attacks and legitimate traffic. There is a significant difference, which shows that 
al l attacks struggled to detect data, which contained unknown obfuscations. O n l y i n case 
of Naive Bayes w i th difference 0.21% the problem is not as serious as in case of other 
classifiers. 

The second experiment was the classification of obfuscated attacks only using the same 
classifiers. A s can be seen in Table 8.1a w i th the result of the experiment, which contains 
a comparison wi th cross-validation as well, a l l classifiers were doing even worse than in 
the case of the combinat ion of direct and obfuscated attacks. Therefore we can state that 
obfuscated attacks successfully evaded the classification. A g a i n similar si tuation wi th a l l 
classifiers took place as in the case of the previous experiment, Naive Bayes stayed as the 
best at T P R and other classifiers d id not get better than any other one. 
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Classifier T P R A T P R Classifier T P R A T P R 

Naive Bayes 99.65% -0.35% Naive Bayes 99.79% -0.21% 
R a n d o m Forest 88.61% -11.37% R a n d o m Forest 93.06% -6.92% 

Decis ion Tree 87.44% -11.50% Decis ion Tree 92.31% -6.63% 
Naive Bayes (Kernels) 70.02% -29.32% Naive Bayes (Kernels) 81.74% -17.60% 

Support Vector Mach ine 55.24% -42.42% Support Vector Mach ine 60.14% -37.52% 
Logis t ic Regression 14.08% -83.55% Logis t ic Regression 15.27% -82.36% 

(a) Obfuscated attacks only. (b) A l l attacks. 

Table 8.1: Predic t ion of attacks including obfuscated ones. 

8.1.2 O b f u s c a t e d A t t a c k s Evas ions per Service 

This experiment show how much prone are ind iv idua l services to obfuscation attacks' eva­
sions. A l l classifiers were trained on direct attacks and legitimate traffic, and the t ra ining 
set was l imi ted to attributes, which were selected by forward feature selection also without 
knowledge about obfuscated attacks. Therefore classifiers have no knowledge about obfus-
cations and i n the experiment can be seen how d id classifiers struggle w i th obfuscations 
depending on ind iv idua l services. 

Every obfuscated attack, which was classified as legitimate traffic is considered as eva­
sion, thus the more evasions the less successful classification was. The results of this experi­
ment are listed in Table 8.2, where are samples counts of obfuscated attacks, the percentage 
of evasions for each classifier per service, and finally average of a l l classifier evasions for each 
service. In two last rows in the table are calculated aggregation functions per each classifier, 
which show how successful obfuscations were. 

The most prone service to obfuscated attacks is F T P S h e l l , which is different from a l l 
other services i n one feature. The F T P S h e l l exploit nuance is that the vulnerable applicat ion 
is on the client's side, i n every other attacks' cases the vulnerabi l i ty in on the server's side. 
However, other attacks evasions rate is between 26.8% and 36.78%, so the difference i n the 
obfuscation proneness between them and the F T P S h e l l w i t h 44.61% is not significant. 

8.1.3 A t t a c k s P r e d i c t i o n by D L M o d e l s I m p l e m e n t a t i o n 

Attacks prediction is implemented i n two processes based on what attack data are tested. 
These two processes are called 2cl-Prediciton-inDO-attDLFFS and 2cl-Prediction-inOL-
attDLFFS, which means the former one applies given model to a l l attacks, and the latter 
one tests obfuscated attacks only. 

In the beginning, the process reads the input model file using a Retrieve operator and 
passes it to the A p p l y M o d e l operator through two Set Macros operators. Therefore the 
model file is read and before it goes to the next usage, macros w i th information about input 
data, model, and output folder are set. Then another Retrieve operator launches and reads 
O L 1 2 in case of obfuscated attacks prediction or D O L 1 1 2 data files in case of a l l attack 
prediction. 

In the process, intended for prediction of a l l attacks, the data is passed to F i l t e r E x ­
amples operator, which removes legitimate traffic from it, and hence there are attacks only 
left a l l w i t h label 1. Next , i n bo th processes, the label attr ibute in data is fixed for b i ­
nary classifiers using N o m i n a l to B inomina l operator. Then the data is copied using the 
M u l t i p l y operator to the A p p l y M o d e l operator, which already has an input model . The 
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Service 
Samples 

Count 

Naive 
Bayes 

(Kernels) 

Naive 
Bayes 

Decision 
Tree 

R a n d o m 
Forest 

Support 
Vector 

Machine 

Logistic 
Regression 

Average 

F T P S h e l l 98 35.33% 0.00% 16.70% 15.65% 100.00% 100.00% 44.61% 
Nagiosb 145 19.33% 0.00% 6.00% 4.67% 90.67% 100.00% 36.78% 

Confluence 275 28.57% 0.00% 27.03% 10.47% 59.04% 94.51% 36.60% 
Drupa l 399 41.48% 0.75% 20.03% 18.25% 64.43% 68.89% 35.64% 

Gitstack 398 22.07% 0.98% 4.33% 7.57% 75.08% 100.00% 35.00% 
L i b r e N M S 368 40.72% 1.30% 16.61% 15.05% 36.84% 88.18% 33.12% 
Get Simple 1173 29.58% 0.00% 11.95% 13.96% 37.75% 88.88% 30.35% 

Webmin 276 38.73% 0.00% 35.38% 25.53% 23.60% 52.03% 29.21% 
jQuery-Fi le 

-Upload 
318 25.55% 2.85% 7.93% 12.48% 37.21% 88.94% 29.16% 

Nagiosa 657 31.46% 0.00% 7.28% 6.92% 35.28% 92.53% 28.91% 
rConfig 232 38.85% 0.00% 11.24% 10.57% 27.87% 72.27% 26.80% 

Average 31.97% 0.53% 14.95% 12.83% 53.43% 86.02% 
Std. Dev. 7.67% 0.91% 9.58% 5.87% 26.14% 15.36% 

Table 8.2: Evasions of Obfuscated At tacks per Service. 

A p p l y M o d e l operator uses the model to classify the data and passes labeled data to the 
Performance operator, which calculates these criterions, which are listed i n Section 7.4.3, 
while the A U C criterion is set as the main one. A Performance Vector is created from 
calculated criterions and passed to the Store operator, which stores them i n an output file. 
The Performance operator also passes labeled examples to the second Store operator, which 
saves them i n a file and passes them to the Wrong predictions filter operator of type F i l t e r 
examples w i t h configured condit ion class parameter to wrong predictions value. In so far as 
obfuscated attacks prediction process is concerned there is also a F i l t e r Examples operator, 
that is configured to remove a l l examples w i th label attr ibute set to 2, thus legitimate traffic 
is removed from the data. Then the wrong predictions data is stored i n the th i rd output 
file using Store operator. 

8.1.4 A n a l y s i s of P r e d i c t e d D a t a 

The analysis starts i n 2cl-AnalysisO-inOLres process by defining macros w i th data and 
directories information using two Set Macros operators. Then the Retrieve and Split sub-
process, is performed and its five outputs are connected to five branches. 

The first branch stores data w i th obfuscated attacks and legitimate traffic to an output 
file using a Store operator, which also passes it to the N o m i n a l to B inomina l operator, which 
prepares the data for B inomina l Classification Performance operator. The Performance 
operator calculates these criterions: accuracy, classification error, A U C , precision, recall, 
and F\ measure. A l l mentioned criterions except classification error defined bellow are 
described i n Section 7.4.3 [69]. 

• classification_error = {incorrect predictions) / (number _of _examples) 

The Accuracy cri terion is configured as main cri terion. The Performance operator produces 
a performance vector, which is passed to the Store operator and wri t ten to an output file. 

The second branch uses a Store operator to save the collection of data sets, which include 
obfuscated attacks and are split by obfuscation instances. Then the data are delivered 
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using M u l t i p l y operator to Loop (O-split-perfs) Collection operator and Loop, Store and 
Log subprocess, that are described i n their own subsections bellow. A l l outputs of both 
operators are then connected to Store operators, which save them i n files. The th i rd branch 
only saves wrong obfuscated attacks' data into a file using a Store operator. The forth 
branch does the same th ing as the previous one, except the data is wrong obfuscated 
attacks split into a collection of data sets. F ina l ly , the fifth branch consists of the same 
operators as the first branch, the only difference is data, which is l imi ted to obfuscated 
attacks only. 

After 2cl-AnalysisO-inOLres process is done the process called 2cl-Analysis-PrintToConsole, 
which is described i n Analysis Print To Console subsection bellow, can be run i n order to 
extract important information from a l l generated files and print it i n a usable form. 

Retrieve and Split 

The Retrieve and split subprocess begins by reading 3 files w i t h input data by launching 
3 Retrieve operators. The first one reads labeled O L 1 2 data, which were produced by 
obfuscated attacks prediction process (see Section 8.1.3) and passes them to the first of 
2 Jo in operators. The second Retrieve operator reads wrong labeled data, that were also 
produced by the process for prediction of a l l attacks (see Section 8.1.3) and deliver them 
to the second Jo in operator. The th i rd one reads the data file, which contains a l l data 
information about examples including attack types and services, produced by the data 
preparation process described in Section 7.2.2. 

The th i rd Retrieve operator passes the data to a Set Role operator, that defines the 
role of the id attr ibute. T h e n the data is passed to Select A t t r ibu te operator, which selects 
only attributes wi th information about attack type, service, and id of each example. Next , 
the selected data go to the Generate At t r ibutes operator, which creates a new attribute 
wi th obfuscation information. Later the data is delivered to the right inputs of mentioned 
2 Jo in operators using M u l t i p l y operator. 

Therefore the first Jo in operator has a l l classified O L data on its left input and the 
data wi th attack type, services, and label information on the right input . The operator 
is configured to perform left jo in operation w i t h the data. T h e n the joined data is passed 
to a Reorder At t r ibutes operator, which puts the data i n the correct order for easier work 
wi th it and passes it to a M u l t i p l y operator. Next , the M u l t i p l y operator delivers the data 
to the three following operators. The first of them is the Sort operator, which sorts the 
data by obfus_label at tr ibute and puts it into the first output of the Retrieve and Split 
subprocess. The second operator of type Loop is called Split obfuscations, and i n each of 
its 17 iterations, 2 operators are performed of these types: Generate Macros and F i l t e r 
Examples . The Generate Macros operator sets the ob (i.e. obfuscation) macro based on 
the current i teration, which is read from iteration macro. T h e n F i l t e r Examples operator 
then uses mentioned ob macro i n order to filter only examples wi th one type of obfuscation 
corresponding to the current i teration. Hence Split obfuscations Loop operator's output 
is a collection of selected example sets, which were selected in each iteration. Next , the 
collection is passed to a Loop Col lect ion operator, which iterates over the collection and 
performs its subprocess for each example set. In each iteration, the example set is passed 
to the Generate At t r ibutes operator i n order to generate the wrong attribute, and then 
attributes are reordered using the Reorder At t r ibutes operator. The processed data from 
al l iterations constitute a new collection of example sets, which is put into the second 
output of Retrieve and Split subprocess. The th i rd operator is of F i l t e r Examples type 
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and is configured to select obfuscated attacks only and then pass it to the fifth output of 
Retrieve and Split subprocess. 

The second Jo in operator in Retrieve and Split subprocess has a l l wrong O L data on its 
left input and on the right input is connected the data wi th attack type, services, and label 
information. The operator is configured to perform left jo in operation. The joined data is 
treated the same way as the first Jo in operator's data as described i n the previous paragraph. 
The only difference is that there are only 2 branches, the one wi th Sort operator and the 
one wi th Spli t obfuscations Loop operator and Loop Col lect ion operator. B o t h branches 
are configured the same as in the case of the previous paragraph, however, obviously, their 
outputs are connected to different outputs of Retrieve and Split subprocess. The sorted 
data goes from the Sort operator to the th i rd output and the collection of data sets going 
from the Loop Col lect ion operator is connected to the fourth output of Retrieve and Split 
subprocess. 

Loop (O-split-perfs) Collection 

This loop iterates over the given collection and i n each i teration it multiplies a given set of 
data into two inputs of the Branch operator. The first input is used for condit ion evaluation, 
which is defined by condit ion type and condit ion value parameters. Condi t ion type is set to 
min__examples and value is set to 1, thus the Then subprocess of the Branch operator w i l l 
be performed only i f there is at least 1 example in the input data. The Then subprocess 
passes input data to the N o m i n a l to B i n o m i n a l operator, which fixes the data for the next 
connected operator of type Performance (Binomina l Classification), which is the same as the 
Performance operator described at the beginning of Section 8.1.4. The output performance 
vector is passed to the output of the Branch operator. The Else subprocess just passes 
its input data to the same output, which is then propagated to the output of whole Loop 
(O-split-perfs) Collection. 

Loop, Store and L o g 

The subprocess begins by preparing necessary macros using Set Macros operator and pass­
ing its input to the Loop Col lect ion operator called Loop and Store. 

Loop and Store operator iterates over a collection of data sets, which were split by 
obfuscation instances. In each i teration the input data is passed to the inner Split by 
label_polyX subprocess, whose outputs are a l l connected to outputs of Loop and Store 
operator. 

Split by label_polyX subprocess starts by sorting input data by label_polyX attribute 
using Sort operator. The sorted data is then passed through Set Macros operator, which pre­
pares needed macros, to an Execute Script operator that executes a manual ly programmed 
script. The script goes through the whole data set and finds a l l label_polyX attribute 
values, then they are wri t ten into split-label_polyX-list macro. The script also passes its 
input data to the output, which is connected to the input of a Loop operator. The Loop 
operator's outputs are a l l passed to outputs of Split by label_polyX. 

The Loop operator includes scripts which are programmed the way to enable it to be 
performed collaterally. A t first, an Execute Script operator performs a script. The script 
extracts a value from split-label_polyX-list macro depending on what the current i teration 
of the Loop operator is running, and then sets current-label_polyX macro. The data is 
passed to a F i l t e r Examples operator, which selects only data based on prepared current-
\abel_polyX macro. Selected data is then sent to another Execute Script operator, which 
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reads the label_obfus at tr ibute from the data and set obfus-label macro. Next , the data is 
delivered to the N o m i n a l to B inomina l operator, which fixes data for the following operator 
of type Performance (Binomina l Classification), which is the same as the Performance 
operator described at the start of Section 8.1.4. The consequent performance vector is 
then saved to an output file using the Store operator, which uses macros mentioned above 
to name the file. The input data of the Performance operator is also delivered to Store 
operators, which are configured likewise as the latter one. A l l the saved data are passed 
from Store operators to the output of the Loop operator. 

A l l outputs of the Loop and Store operator are then saved i n files using Store operators. 

Analysis Pr int To Console 

Process 2cl-Analysis-PrintToConsole starts by performing a Set Macros operator, which sets 
the macro wi th information about the input folder, which contains files w i th performance 
vectors. Then a subprocess called Work is run. 

Work subprocess launches a Retrieve operator, which reads a special file, which includes 
information about the folder structure, which is organized per services and obfuscations. 
The content of the special file is a collection and thus is processed by F la t t en Col lect ion 
operator. Next , the data is sent to Execute Script operator, which creates a set of examples 
wi th filenames and passes it to a Loop Values operator. The Loop Values operator then 
iterates over the filenames and i n each i teration sets the current filename to a macro. Inside 
the loop, a Retrieve operator reads the current file and passes it to Execute Script operator, 
which parses the file and prints important information from it to the console. 

8.2 D O L Models 

D O L models are models, which were trained on legitimate traffic, direct attacks, and obfus­
cated attacks as well, so they were trained on a l l data, i.e. D O L data. D O L - F F S features 
were selected from the t ra ining data using the Forward Feature Selection algori thm. Cross 
validat ion experiment of a l l data was proceeded (see Section 8.2.1). Other experiments 
were performed in order to test how resistant the classifiers are against new unknown ob-
fuscation techniques or instances. In each round, one obfuscation instance or technique 
was chosen to be removed from tra ining data for classifiers, and then after the model was 
trained, the unknown obfuscation instance was used as testing data. The results of exper­
iments w i th unknown obfuscation instances are in Section 8.2.2, and the experiment w i th 
unknown obfuscation technique is described in Seciton 8.2.3. 

8.2.1 D O L C r o s s V a l i d a t i o n 

A n implementat ion of this experiment is described i n Section 7.5.1. Two calculations were 
performed i n order to test bo th sets of selected features. The first one i n Table 8.3a tested 
a feature set, which was selected by forward feature selection without knowledge about 
obfuscated attacks and the second one i n Table 8.3b tested a set of features, which were 
selected using forward feature selection w i t h knowledge about a l l attacks. 

The column wi th A T P R in both mentioned tables signs that the results are the difference 
between T P R from the current table and the T P R from the table wi th a l l attacks classified 
by D L models in Table 8.1b. The column wi th A F P R means a comparison of the current 
F P R wi th Table 7.1, which includes results of D L cross-validation. 
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Classifier T P R F P R A T P R A F P R F i (|) A v g . Recal l 

R a n d o m Forest 
Decision Tree 

Naive Bayes (Kernels) 
Logist ic Regression 

Support Vector Machine 
Naive Bayes 

99.94% 0.43% 6.88% 
99.89% 1.15% 7.58% 
97.33% 0.80% 15.59% 
96.32% 2.06% 81.05% 
96.79% 2.48% 36.65% 
99.83% 60.56% 0.04% 

0.34% 99.68% 99.76%. 
0.57% 99.17% 99.37%. 
0.78% 98.11% 98.27%. 
1.46% 96.76% 97.13%. 
1.51% 96.73% 97.16%. 

-0.01% 70.98% 69.64%. 

(a) D O L Cross Validation wi th D L F F S features. 

Classifier T P R F P R A T P R A F P R F i ( t ) A v g . Recal l 

R a n d o m Forest 99.97% 0.11% 6.91% 0.02% 99.91% 99.93% 
Decision Tree 99.71%. 0.18% 7.40% -0.40% 99.73%. 99.77%. 

Naive Bayes (Kernels) 98.76%. 0.08%. 17.02% 0.06% 99.33%. 99.34%. 
Support Vector Machine 92.07%. 3.45% 31.93% 2.48% 93.61%. 94.31%. 

Logist ic Regression 87.69% 5.57% 72.42% 4.97% 89.87%. 91.06%. 
Naive Bayes 97.32%. 63.25%. -2.47% 2.68% 68.93%. 67.04%. 

(b) D O L Cross Validation with D O L F F S features. 

Table 8.3: D O L Cross Val ida t ion . 

8.2.2 Single U n k n o w n O b f u s c a t i o n Instance D e t e c t i o n 

Results of the experiment are listed i n Table 8.4. Different classifiers were tested i n this 
experiment and therefore each row i n the table w i th results corresponds to one unknown 
obfuscation instance. A t the end of each row, there is an average score of a l l classifications 
of the corresponding obfuscation instance calculated. In two last rows, the average score 
and standard deviat ion of the related classifier can be found. 

The most dangerous unknown obfuscation instances seem to be the ones, which use 
fragmentation into smaller lengths, unreliable network simulat ing ones, and the one that 
uses the normal dis t r ibut ion of packet transmission delay. The least dangerous probably 
are the ones, which reorder packets and instances that simulate slight differences i n frag­
mentation. Therefore the amount of fragmentation or packet transmission delay is very 
cr i t ical for the instance to be successful. 

8.2.3 Single U n k n o w n O b f u s c a t i o n T e c h n i q u e D e t e c t i o n 

The purpose of this experiment is to assess the abi l i ty of classifiers to detect unknown 
obfuscation techniques. This experiment was based on i terating over obfuscation techniques. 
In each round, one technique was reserved for testing and other ones were used as t raining 
data for a classifier. 

In this experiment, most of the tested classifiers have worse results than in the exper­
iment w i th unknown obfuscation instances as expected, because more data was unknown 
here for the classifiers. Results i n this experiment also usually differentiate less than i n the 
one w i t h obfuscation instances, because instances w i t h most deviated score were arranged 
in their techniques' groups. 

A s we can see in Table 8.5, where a l l results from the experiment are stored, the most 
successful obfuscation techniques are the ones, which use fragmentation, s imulat ion of un-
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Instance 
Samples 

Count 

Naive 
Bayes 

(Kernels) 

Naive 
Bayes 

Decision 
Tree 

R a n d o m 
Forest 

Support 
Vector 

Machine 

Logistic 
Regression 

Average 

(k) 288 94.79% 96.88% 98.96% 100.00% 93.75% 86.46% 95.14% 

(i) 303 100.00% 98.35% 98.02% 100.00% 93.07% 80.86% 95.05% 
(o) 276 99.64% 97.83% 97.83% 100.00% 92.03% 82.97% 95.05% 

0) 304 100.00% 97.70% 97.70% 100.00% 93.42% 81.25% 95.01% 

(1) 281 94.31% 97.87% 100.00% 100.00% 90.75% 86.83% 94.96% 

(P) 290 99.66% 98.28% 97.93% 100.00% 92.76% 80.69% 94.89% 

(<0 285 99.30% 97.54% 97.19% 100.00% 92.98% 80.00% 94.50% 
(b) 18 88.89% 94.44% 100.00% 100.00% 100.00% 83.33% 94.44% 

(d) 271 95.57% 95.20% 95.20% 98.89% 87.82% 82.29% 92.50% 
(e) 281 97.51% 96.80% 97.87% 100.00% 87.19% 73.31% 92.11% 
(h) 320 96.56% 98.13% 96.88% 100.00% 87.81% 73.13% 92.08% 
(a) 286 98.25% 97.20% 97.55% 100.00% 84.27% 75.18% 92.07% 

(f) 257 94.94% 97.28% 96.89% 99.61% 85.60% 76.27% 91.76% 
(m) 281 89.68% 100.00% 92.17% 100.00% 88.97% 78.29% 91.52% 

(g) 266 91.73% 95.87% 95.11% 98.87% 85.71% 73.31% 90.10% 

(c) 48 72.92% 85.42% 85.42% 100.00% 93.75% 75.00% 85.42% 
(n) 284 80.63% 99.30% 92.25% 100.00% 78.52% 59.16% 84.98% 

Average 
Std. Dev . 

93.79% 
7.40% 

96.71% 
3.21% 

96.29% 
3.57% 

99.85% 
0.38% 

89.91% 
4.94% 

78.14% 
6.58% 

Table 8.4: Single Unknown Obfuscation Instance 

reliable network channel and the ones which combine mult iple obfuscation approaches. The 
least successful and thus the most easily detectable obfuscation techniques are the ones, 
which use packets' loss simulation, packets' duplicat ion, and t ime delay of the packet trans­
mission. 

8.2.4 I m p l e m e n t a t i o n of U n k n o w n O b f u s c a t i o n Instances a n d Techniques 

Evalua t ion of the obfuscated attacks which differentiates instances and techniques is im­
plemented i n 2cl-TrainPrediction-inOL-attDOLFFS-perInstance and 2cl-TrainPrediction-
inOL-attDOLFFS-perTechnique processes. F r o m the names of those processes can be de­
termined that they are designed for binary classification, the input data are expected to be 
obfuscated attacks and legitimate traffic and attributes are l imi ted to D O L - F F S only. B o t h 
processes are very similar, thus they are described together and a l l differences are expl ici t ly 
mentioned. 

A t first, the input data, which was produced by Dataset-Repairment-B process described 
in Section 7.2.2, is read using a Retrieve operator. Then in case of use of S V M or L R 
operators N o m i n a l to Numer ica l and Normalize operators prepare the read data, which 
are the same as the ones described in Section 7.4.2. Read data is then passed to Prepare 
OL subprocess (see Section 7.4.2), which is delivers it to the Generate At t r ibutes operator, 
which adds new attribute called label_obfus and delivers the data to the Select attributes 
operator. The Select attributes operator filters just attributes that include information 
about attack types and services. Selected data is connected to the right input of the Jo in 
operator and on the left input is connected O L 1 2 data, which is read by another Retrieve 
operator. Therefore the Jo in operator, which is configured to perform a left j o in operation, 
takes obfuscated attacks and legitimate traffic from the left input and adds information 
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Technique 
Samples 

Count 

Naive 
Bayes 

(Kernels) 

Naive 
Bayes 

Decision 
Tree 

R a n d o m 
Forest 

Support 
Vector 

Machine 

Logistic 
Regression 

Average 

(d) 271 95.57% 95.20% 95.20% 98.52% 87.82% 82.29% 92.44% 
(h) 320 96.56% 98.13% 96.88% 100.00% 87.81% 73.13% 92.08% 

(abc) 352 92.33% 95.74% 95.46% 100.00% 85.23% 75.57% 90.72% 

(«) 607 100.00% 98.02% 71.66% 100.00% 93.25% 80.73% 90.61% 
(opq) 851 99.30% 98.12% 73.91% 100.00% 92.60% 77.67% 90.27% 
(efg) 804 90.92% 96.52% 96.77% 99.75% 83.83% 70.15% 89.66% 

(klmn) 1134 80.60% 98.68% 70.19% 99.12% 85.27% 70.90% 84.13% 

Average 
Std. Dev. 

93.61% 
6.63% 

97.20% 
1.36% 

85.72% 
12.97% 

99.63% 
0.59% 

87.97% 
3.68% 

75.78% 
4.71% 

Table 8.5: Single Unknown Obfuscation Technique 

about which obfuscation was used and what service was attacked from the right input. 
Then the data is prepared using Reorder At t r ibutes and N o m i n a l to B inomina l operators 
for the b inominal performance evaluation and are sent to the next operator of type Loop . 

In the case of t ra ining and prediction per instance process, the Loop operator is called 
Predict per Instance and has 17 iterations set i n its parameters, because there are 17 
obfuscation instances. However, i n the case of a process, that trains and predicts per 
technique, the operator is called Predict per Technique and is configured for just 7 iterations, 
because there are just 7 obfuscation techniques. B o t h variants of the Loop operator are 
quite similar, so they are described together w i t h the same as the processes. 

Predict per Instance/Technique 

Each i teration of the loop starts w i th 2 Set Macros operators, which prepare necessary 
macros, and then 2 most important operators, which constitute the core of the process 
proceed. The first one is a Generate Macro operator, that reads the i teration macro, uses it 
to determine which obfuscation should be selected i n this i teration, and writes it to ob macro 
in case of predict ion per instance. In so far as prediction per technique is concerned the 
Generate Macro operator sets 4 macros w i t h information about what instances are present 
in the current technique. The second core operator is F i l t e r Examples operator, which uses 
generated macros i n order to select the right instance or instances of obfuscation attacks for 
the current i teration and also sends a l l unmatched examples to its second output. Thanks 
to this design it is possible to run the whole loop collaterally. 

B o t h matched and unmatched data are then saved i n files using Store operators and then 
passed to Select At t r ibutes operators, which remove excrescence labels about services and 
attack types, which could also corrupt learning and predict ion procedures. The unmatched 
data, which do not include current obfuscation instances are passed to the model generating 
operator, which trains a model on them. Next , the model is stored using a Store operator 
and then delivered to the A p p l y M o d e l operator. The matched data is connected to the 
A p p l y M o d e l as well, so the model is tested on them. Resul t ing labeled data is then sent to 
Performance (Binomina l Classification) operator, which calculates criterions described in 
Section 7.4.3. T h e n the produced performance vector is saved to a file using Store operator, 
and i n the end, it is delivered to the Execute Script operator, which performs a script that 
extracts cr i t ica l information from the data and macros and prints results. 
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Classifier T P R F P R F i ( t ) 

Decis ion Tree 
R a n d o m Forest 

Na ive Bayes (Kernels) 
Naive Bayes 

86.41% 
63.28% 
54.37% 
62.81% 

5.54% 
3.24% 
3.02% 
9.40% 

61.72% 
58.06% 
52.97% 
39.07% 

(a) Classifiers trained on the novel dataset in 
tested on A S N M - N P B O - v l dataset [39]. 

Section 6 

Classifier T P R F P R F i ( t ) 

Na ive Bayes (Kernels) 
Naive Bayes 

Decis ion Tree 
R a n d o m Forest 

37.57% 
28.61% 
24.67% 
9.20% 

13.35% 
11.46% 
2.16% 
0.06% 

48.31% 
39.73% 
38.67% 
16.83% 

(b) Classifiers trained on A S N M - N P B O - v l dataset [39] 
tested on the novel dataset in Section 6. 

Table 8.6: Cross-Dataset Evaluat ion . 

8.3 Cross-Dataset Evaluation 

In Cross-Dataset evaluation the novel dataset (described i n Section 6) and the state-of-
the-art dataset A S N M - N P B O - v l [39] are cross evaluated. The Evalua t ion process consists 
of t ra ining a classifier on the first dataset and then testing in on the second one and vice 
versa. Cross-dataset evaludation experiments implementat ion is described in Section 8.3.1. 
A l l data including obfuscated attacks were used i n this experiment and the result can be 
found i n Table 8.6. There are significant differences between models of the same classifiers 
trained on different datasets, for instance, Decision Tree reaches much better T P R i n the 
case of testing on A S N M - N P B O - v l dataset than in the case of doing it vice versa. However, 
in the case of Decision Tree tested on the novel dataset, the classifier's F P R is significantly 
better. After sorting the results, no classifier ended on the same "rank" in both tables. A n 
interesting fact is also that classifiers trained on the novel dataset performed better than 
classifiers trained on the A S N M - N P B O - v l dataset. The reason might be the fact novel 
dataset contains more vulnerabili t ies than the A S N M - N P B O - v l dataset. 

8.3.1 C r o s s - D a t a s e t E v a l u a t i o n I m p l e m e n t a t i o n 

Cross-dataset evaluation is implemented i n 2cl-X-Dataset-Evaluation process. The process 
starts by reading input datasets w i t h D O L 1 2 3 data using two Retrieve operators. Then 
a file w i th D O L F F S attributes selected from the novel dataset is read using another Re­
trieve operator. After it is done, the attributes are filtered from the dataset table using 
Select by Weights operator, which uses the dataset table and attr ibute table as its inputs. 
D O L F F S attributes selected from A S N M - N P B O - v l dataset [39] are filtered using the Select 
At t r ibutes operator, which includes information about the attributes. There are also two 
more D O L F F S filtering operators, which are the same as above, but they filter different 
datasets than attributes. Datasets and attributes are delivered using three M u l t i p l y oper­
ators. Therefore four branches wi th data are prepared as a result of previous operations. 

Next in the first branch (with D O L F F S and D O L 1 2 3 from the novel dataset) are per­
formed two Set Macros operators, which prepare macros w i t h model, data, and folders 
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information. A l l four branches continue by passing their data to Prepare D O L 1 1 2 a t t F F S 
subprocesses, which are a l l the same. Prepare D O L 1 1 2 a t t F F S subprocess consists of two 
Replace operators only, which change values of label at tr ibute from 2 to 1 (obfuscated at­
tacks get label 1 same as direct attacks) and 3 to 2 (legitimate traffic gets label 2). Then 
Nomina l to B inomina l operators fix label data types for binary classifiers. 

The branches, which include data wi th attributes both from the same dataset are de­
livered using the M u l t i p l y operators to two new branches for each. One of each two sub-
branches passes the data to the model generating operator and the second passes the data 
to the A p p l y M o d e l operator, which got a model from the model generating operator. B o t h 
trained models are delivered using the M u l t i p l y operators to two A p p l y M o d e l operators, 
the mentioned ones, which apply the models to their t ra ining data and the ones that apply 
models to data from different datasets. A l l labeled data from each A p p l y M o d e l operator 
are passed to Performance (Binomina l Classification) operators, which are configured the 
same as described i n Section 7.4.3. A l l calculated performance vectors are then saved in 
output files using Store operators, and the same is done wi th trained models. The labeled 
data is saved as well, and then it is passed to F i l t e r Examples operators, which are con­
figured to filter wrong classified examples only, which are then stored too. In the end, the 
data is analyzed using the process described in Section 8.1.4. 

8.3.2 C r o s s - D a t a s e t E v a l u a t i o n per Service 

In Table 8.7 wi th obfuscated attacks detected by classifiers trained on the novel dataset in 
Section 6 tested on A S N M - N P B O - v l dataset [39] per services can be seen that Apache, 
Samba and D i s t C C services were detected much more easily than other ones. A n average 
T P R of mentioned services ranges from 88.97% to 96.76%. The second group consists 
of Server and Pos tgreSQL, which were not detected as well as i n the first case, but the 
average T P R is significantly influenced by the Naive Bayes (Kernels), which classified them 
hardly wi th 4.9% and 8.04% only success. The toughest problem for classifiers is obfuscated 
attacked targeted to M S S Q L . The most successful classifier is Decision Tree w i t h 93.82%. 
of detected obfuscated attacks. 

The second table presents the results of obfuscated attacks detected by classifiers trained 
on the A S N M - N P B O - v l dataset [39] tested on the novel dataset in Section 6 per services. 
Most services ranged from 15.3% to 47.39% detection success on average. There are two 
obfuscated service attacks hard to detect Confluence and F T P S h e l l . The interesting fact 
about F T P S h e l l is that the client applicat ion is attacked by the server, maybe that is 
the reason no attacks targeted to F T P S h e l l was detected because it phenomenally differ­
entiates from other attacks. The best performance was measured i n Gits tack detection 
wi th 70.38%, where was especially successful Naive Bayes (Kernels) classifier w i th 91.33% 
detected obfuscated attacks. 

8.3.3 C r o s s - D a t a s e t E v a l u a t i o n per O b f u s c a t i o n Instance 

Obfuscated attacks detected by classifiers trained on the novel dataset in Section 6 tested on 
A S N M - N P B O - v l dataset [39] per obfuscation instances are listed i n Table 8.9. The results 
per instance on average range from 54.54% to 82.22%. The easiest to detect are obfuscation 
instances that modify packets' order or duplicate packets. The classifiers struggled to detect 
instances, which delayed the communicat ion, fragmented packets into low size and instances 
that combined miscellaneous obfuscation techniques. 
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Service 
Samples 

Count 

m aive 
Bayes 

(Kernels) 

Naive 
Bayes 

Decision 
Tree 

R a n d o m 
Forest 

Average 

Apache 163 91.79% 96.52% 98.75% 100.00% 96.76% 
Samba 44 84.80% 95.10% 94.12% 94.12% 92.03% 

D i s t C C 23 61.76% 94.12% 100.00% 100.00% 88.97% 
PostgreSQL 45 4.90% 66.67% 100.00% 77.45% 62.25% 

Server 100 8.04% 64.12% 99.02% 62.75% 58.48% 
M S S Q L 103 48.88% 0.00% 71.01% 1.82% 30.43% 

Average 
Std. Dev. 

50.03% 
37.13% 

69.42% 
37.04% 

93.82% 
11.39% 

72.69% 
37.67% 

Table 8.7: Obfuscated attacks detected by classifiers trained on the novel dataset in Sec­

t ion 6 and tested on A S N M - N P B O - v l dataset [39] per services. 

„ . Samples 
Service „ J Count 

Naive 
Bayes 

(Kernels) 

Naive 
Bayes 

Decision 
Tree 

R a n d o m 
Forest 

Average 

Gitstack 398 91.33% 63.86% 38.75% 11.26% 70.38% 
rConfig 232 15.47% 95.56% 13.75% 7.16% 47.39% 
Drupa l 399 41.34% 34.66% 82.29% 19.37% 45.60% 

L i b r e N M S 368 47.24% 33.68% 38.57% 35.02% 39.20% 
Nagiosb 145 18.00% 63.33% 8.67% 0.00% 35.65% 
Webmin 276 17.97% 31.12% 33.40% 8.19% 26.18% 
Nagiosa 657 36.26% 21.89% 8.86% 7.08% 25.94% 

Get Simple 1173 37.08% 13.70% 19.61% 2.79% 24.32% 
jQuery-Fi le- Up load 318 33.83% 0.00% 13.10% 0.00% 15.30% 

Confluence 275 3.01% 0.00% 0.00% 0.00% 1.24% 
F T P S h e l l 98 0.00% 0.00% 0.00% 0.00% 0.00% 

Average 
Std. Dev. 

31.05% 
33.06% 

32.53% 
25.95% 

23.36% 
31.27% 

8.26% 
8.05% 

Table 8.8: Obfuscated attacks detected by classifiers trained on A S N M - N P B O - v l 

dataset [39] tested on the novel dataset i n Section 6 per services 
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Instance 
Samples 

Count 

Naive 
Bayes 

(Kernels) 

Naive 
Bayes 

Decision 
Tree 

R a n d o m 
Forest 

Average 

(i) 27 65.00% 83.33% 100.00% 80.56% 82.22% 
(h) 30 63.89% 83.33% 100.00% 80.56% 81.94% 

0) 27 50.00% 83.33% 100.00% 83.33% 79.17% 
(k) 27 52.78% 83.33% 100.00% 80.56% 79.17% 

(g) 26 62.78% 73.33% 94.44% 83.33% 78.47% 

(1) 27 52.78% 83.33% 100.00% 77.78% 78.47% 
(e) 26 66.67% 77.78% 100.00% 63.89% 77.08% 
(o) 28 57.41% 83.33% 83.33% 83.33% 76.85% 
(m) 27 49.44% 83.33% 100.00% 66.67% 74.86% 

(d) 30 44.44% 72.22% 97.22% 77.78% 72.92% 
(a) 28 61.11% 66.67% 83.33% 75.00% 71.53% 

(f) 28 40.00% 60.56% 88.89% 77.78% 66.81% 

(P) 33 40.15% 48.48% 88.89% 66.67% 61.05% 

(<0 35 40.28% 38.89% 91.67% 69.44% 60.07% 
(n) 27 36.11% 83.33% 77.22% 33.33% 57.50% 
(b) 22 26.67% 40.00% 96.67% 60.00% 55.83% 
(c) 30 30.16% 26.11% 92.86% 69.05% 54.54% 

Average 
Std. Dev. 

49.39% 
12.50% 

68.86% 
19.09% 

93.80% 
7.23% 

72.30% 
12.47% 

Table 8.9: Obfuscated attacks detected by classifiers trained on the novel dataset in Sec­
t ion 6 and tested on A S N M - N P B O - v l dataset [39] per obfuscation instances. 

In Table 8.10 there are obfuscated attacks detected by classifiers trained on A S N M -
N P B O - v l dataset [39] tested on the novel dataset in Section 6 per obfuscation instances. 
Most instances' scores ranged from 29.23% to 32.36%, however, there were significant dif­
ferences between ind iv idua l classifiers. Mos t attacks evaded using obfuscation instances 
that used the normal dis t r ibut ion of packets transmission delay, packets' duplicat ion, and 
the most extreme fragmentation technique instance, which fragmented the communicat ion 
into the smallest data objects. 
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Instance 
Samples 

Count 

Naive 
Bayes 

(Kernels) 

Naive 
Bayes 

Decision 
Tree 

R a n d o m 
Forest 

Average 

(m) 281 32.13% 32.60% 16.72% 4.55% 32.36% 
(b) 18 58.75% 25.00% 12.50% 6.25% 32.08% 

(e) 281 33.54% 30.61% 26.17% 13.25% 32.08% 

(<0 285 30.24% 33.45% 25.50% 8.91% 31.85% 

(g) 266 37.35% 31.37% 26.59% 13.80% 31.77% 

(P) 290 31.03% 32.11% 25.01% 9.66% 31.57% 

(i) 303 31.74% 33.72% 25.76% 9.65% 31.31% 

(1) 281 34.64% 32.59% 16.96% 5.68% 31.17% 
(o) 276 30.02% 32.23% 24.68% 9.41% 31.13% 

(f) 257 33.82% 31.27% 27.81% 14.78% 31.10% 
(d) 271 34.36% 31.38% 25.04% 11.09% 30.26% 
(k) 288 32.16% 33.40% 24.32% 4.17% 29.96% 
(a) 286 36.57% 26.14% 26.01% 6.47% 29.57% 
(h) 320 31.32% 31.24% 25.19% 7.63% 29.25% 

0) 304 32.12% 32.52% 25.20% 9.88% 29.23% 
(n) 284 23.25% 30.71% 29.55% 4.55% 26.98% 

(c) 48 20.54% 23.61% 18.55% 4.17% 20.90% 

Average 33.15% 30.82% 23.62% 8.46% 
Std. Dev. 7.81% 3.00% 4.57% 3.44% 

Table 8.10: Obfuscated attacks detected by classifiers trained on A S N M - N P B O - v l 

dataset [39] and tested on the novel dataset i n Section 6 per obfuscation instances. 
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Chapter 9 

Conclusion 

In the first part of this work, we focus on the existing taxonomies of intrusion detection 
systems. Art ic les that describe network intrusion systems taxonomy differ i n many cases 
[45, 20, 30]. Thus it was necessary to split descriptions by the origin of the description, in 
cases of those which differentiated from each other, for example, anomaly-based detection 
principles. Based on fundamental characteristics the taxonomy was united and extended 
from mentioned works. 

Adversar ia l attacks were divided by phases of the intrusion detection system which is 
considered as the target of these attacks. The divis ion is based on a taxonomy by Igino 
Corona et a l . [28], where his general description of intrusion detection system architecture 
consists of three parts: event generators, event analyzers, and response units, where each 
part represents one functionality phase. 

The taxonomy of attacks against classification-based intrusion detection systems con­
sists of three main types of attacks based on their objective as described in [25]. The first of 
them is exploratory attack, which is designed to gain as much information as possible from 
the attacked system. There is also evasion type of attacks, whose objective is to intrude the 
system, and its tactic is based on evasion of the intrusion classifier. The last type of attack 
is poisoning attacks, which tries to contaminate the t ra ining data set of the target system 
i n order to manipulate its recognition capabilities. 

In the second part of our work, we focus on evasion attacks performed using Non-
Payload-based Obfuscations. In detail , we start by the description of the Non-Payload-
based Obfuscation framework [42] and Advanced Security Network Metr ics [39]. The 
framework provides an abi l i ty to obfuscate exploits i n order to evade detection of the 
target intrusion detection system. A big advantage of this framework is that it is working 
in an exploit-independent way, thus it is able to obfuscate given attack without the need for 
manual modification of i t . Experiments i n [42] showed that by adding obfuscated exploits 
into t raining datasets for the classifier of the IDS, the performance of other obfuscated 
attacks detection of such trained IDS was improved. However, these results were obtained 
using outdated vulnerabili t ies and they were not proven for the recent vulnerabilit ies and 
techniques of targeted attacks, which is the goal of this work. 

In order to develop, test, and improve classification-based intrusion detection systems, 
the novel dataset was created i n this work. The dataset consists of A S N M features ex­
tracted from records of legitimate traffic, direct attacks, and obfuscated attacks, which 
were targeted against 11 vulnerable services. A l l vulnerabili t ies were found i n the Nat iona l 
Vulnerabi l i ty Database [55], where they can be identified as C o m m o n Vulnerabil i t ies and 
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Exposures ( C V E ) . C V E s i n the dataset were published i n 2018 and 2019. A l l exploits 
used to attack the vulnerabilit ies were downloaded from the Exp lo i t Database by Offensive 
Security [56]. 

In our experiments, Forward Feature Selection was used i n order to select the best A S N M 
features for attack detection. Six classifiers were tested i n this thesis. For example, the per­
formance of Naive Bayes w i th Ke rne l Densi ty Es t ima t ion classifier, which had knowledge 
about direct attacks and legitimate traffic only, achieved 99.34% true positive rate ( T P R ) of 
detecting direct attacks i n cross-validation experiment, while the false-positive rate was very 
low (i.e., 0.02%). T h e n obfuscated attacks were classified by the mentioned classifier result­
ing i n 70.02% T P R , which worse by 29.32%. Therefore, the obfuscated attacks successfully 
evaded the classification process. The improvement of the classifier was accomplished by 
widening its knowledge of obfuscated attacks, which were added into t ra ining data. The 
classifier achieved 98.76% T P R i n cross-validation over the whole dataset, which is 17.02%. 
better than the score of classification of a l l attacks using classifier without knowledge about 
obfuscated attacks, while T P R was deteriorated only slightly (i.e., by 0.06%). 

Next , the detection capabil i ty of classifiers to unknown obfuscation instance was tested. 
For example, the Naive Bayes w i th Ke rne l Densi ty Es t ima t ion classifier was on average able 
to detect 93.79% of obfuscated attacks, which were obfuscated using obfuscation instance 
unknown for the classifier. A similar experiment was performed wi th obfuscation techniques, 
where the classifier scored 93.61% T P R in the case of detecting attacks obfuscated using 
an unknown obfuscation technique. 

Final ly , a cross-dataset evaluation was performed w i t h the novel dataset and A S N M -
N P B O - v l dataset [39]. The Naive Bayes w i th Ke rne l Densi ty Es t imat ion classifier trained 
on the novel dataset achieved 54.37% T P R and 3.02% F P R on A S N M - N P B O - v l dataset 
attacks detection. In the case of the same classifier t rained on the A S N M - N P B O - v l dataset 
and validated on the novel dataset, the T P R achieved was equal to 37.57% while F P R 
was equal to 13.35%. The best classifier was Decision Tree trained on the novel dataset, 
which resulted i n 86.41% T P R and 5.54% F P R score when doing val idat ion on the A S N M -
N P B O - v l dataset. In sum, the "backward" detection achieved better results than the 
forward detection. Th is indicates the importance of retraining the classifiers w i th the novel 
datasets and techniques used in the contemporary attacks, while classifiers trained using 
the o ld vulnerabili t ies are more susceptible to targeted attacks wi th obfuscations. 

In future work, the research might focus on widening t ra ining datasets and comparing 
attacks focused on different vulnerable services, because i n the cross-dataset evaluation 
significant differences between detection abi l i ty of unknown attacks focusing on various 
services were discovered. For instance, classifiers trained on the novel dataset detected 
96.76% Apache attacks on average and just 30.43% M S S Q L attacks. 
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Employed A S N M Features 
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Feature Description FFS F F S 
D O L D L 

MedTdifKPktsIn Median of packet IAT (inter-arrival times) in inbound traffic. X 
InPktLen64sl0i[3] Lengths of inbound packets occurred in the first 64 seconds of a 

connection which are distributed into 10 intervals. The feature 
represents totaled inbound packet lengths of the 4th interval. 

X 

Bytes3WH2FIN The number of all transferred bytes from the start to the end of a 
communication including session initiation and destruction packets. 

X 

SigPktLenOut Standard deviation of outbound packet lengths. X 
PolyInd5ordOut[2] Approximation of outbound communication by polynomial of 5th 

order in the index domain of packet occurrences. The feature 
represents the 3rd coefficient of the approximation. 

X 

PolyIndl0ordOut[8] Approximation of outbound communication by polynomial of 10th 
order in the index domain of packet occurrences. The feature 
represents the 9th coefficient of the approximation. 

X 

Polylndl3ordln[10] Approximation of inbound communication by polynomial of 13th 
order in the index domain of packet occurrences. The feature 
represents the 11th coefficient of the approximation. 

X 

fourGonModulIn[l] Fast Fourier Transformation (FFT) of inbound packet sizes. The 
feature represents the angle of the 2nd coefficient of the F F T in 
goniometric representation. 

X 

fourGonModulOut[l] F F T of outbound packet sizes. The feature represents the angle of the 
2nd coefficient of the F F T in goniometric representation. 

X 

intervalsIPsSig Standard deviation of time intervals between consecutive connections X 
of the two hosts running on the same IP addresses as an analyzed 
connection. The feature assumes only beginnings of connection for 
computation of intervals. 

X 

gaussProds80ut [1] Normalized products of outbound packet sizes with 8 Gaussian curves. 
Packets are divided into 2 slices and products are computed per each 
slice by summing of products of relevant packets with fitted Gaussian 
function. Each product is normalized by the number of packets in a 
slice. The feature represents a product of the 2nd slice of packets. 

X 

Table A . l : F F S (Part 1/2) 
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Feature Description FFS F F S 
D O L D L 

sumSessPerPort 

InPktLen64sl0i[6] 

OuPktLen32sl0i[3] 

OuPktLen32sl0i[6] 

OuPktLen64sl0i[8] 

BytesPerSessIn 

MedPktLenOut 
MedPktLenln 
ModPktLenln 
polyInd3ordOut [3] 

polyInd5ordIn[4] 

fourGonModulOut[2] 

fourGonModulOut[3] 

gaussProds8AHNeg[l] 

The number of T C P sessions in interval ± 5 minutes from the current 
session, which have the same port number. 
Lengths of inbound packets occurred in the first 64 seconds of a 
connection which are distributed into 10 intervals. The feature 
represents totaled inbound packet lengths of the 7th interval. 
Lengths of outbound packets occurred in the first 32 seconds of a 
connection which are distributed into 10 intervals. The feature 
represents totaled inbound packet lengths of the 4th interval. 
Lengths of outbound packets occurred in the first 32 seconds of a 
connection which are distributed into 10 intervals. The feature 
represents totaled inbound packet lengths of the 7th interval. 
Lengths of outbound packets occurred in the first 64 seconds of a 
connection which are distributed into 10 intervals. The feature 
represents totaled inbound packet lengths of the 9th interval. 
The number of transferred bytes during T C P session in inbound 
direction. 
Median of packet sizes in outbound traffic of a connection. 
Median of packet sizes in inbound traffic of a connection. 
Mode of packet sizes in inbound traffic of a connection. 
Approximation of outbound communication by polynomial of 3rd 
order in the index domain of packet occurrences. The feature 
represents the 4th coefficient of the approximation. 
Approximation of inbound communication by polynomial of 5th order 
in the index domain of packet occurrences. The feature represents the 
5th coefficient of the approximation. 
F F T of outbound packet sizes. The feature represents the angle of the 
3rd coefficient of the F F T in goniometric representation. 
F F T of outbound packet sizes. The feature represents the angle of the 
4th coefficient of the F F T in goniometric representation. 
Normalized products of all packet sizes with 8 Gaussian curves. The 
feature represents a product of the 2nd slice of packets with a 
Gaussian function which fits to the interval of the packets' slice. 

X 
X 
X 
X 

Table A . 2 : F F S (Part 2/2) 
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Appendix B 

C V E J S O N Record Example 

i { 
2 "eve" : { 

3 "data_type" : "CVE", 

4 "data_format" : "MITRE", 

5 "data_version" : "4.0", 

6 "CVE_data_meta" : { 

7 "ID" : "CVE-2018-7573", 

8 "ASSIGNER" : "cve@mitre.org" 

9 >, 
10 "problemtype" : { 

n "problemtype_data" : [ { 

12 "description" : [ { 

13 "lang" : "en", 

14 "value" : "CWE-119" 

15 > ] 

16 > ] 

17 >, 

18 "references" : { 

19 "reference_data" : [ { 

20 "url" : "https://cxsecurity.com/issue/WLB 

-2018030011", 

21 "name" : "https://cxsecurity.com/issue/WLB 

-2018030011", 

22 "refsource" : "MISC", 

23 "tags" : [ "Exploit", "Third Party Advisory" ] 

24 } , { 

25 "url" : "https://www.exploit-db.com/exploits 

/44596/
1

', 

26 "name" : "44596", 

27 "refsource" : "EXPLOIT-DB", 

28 "tags" : [ "Exploit", "Third Party Advisory", 

"VDB Entry" ] 

29 } , { 
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"url" : "https://www.exploit-db.com/exploits 

/44968/'
1

, 

"name" : "44968", 

"refsource" : "EXPLOIT-DB", 

"tags" : [ "Exploit", "Third Party Advisory", 

"VDB Entry" ] 

"description_data" : [ { 

"lang" : "en", 

"value" : "An issue was discovered in FTPShell 

Client 6.7. A remote FTP server can send 

400 characters of 'F' in conjunction with 

the FTP 220 response code to crash the 

application; after this overflow, one can 

run arbitrary code on the victim machine. 

This is similar to CVE-2009-3364 and CVE 

-2017-6465." 

} ] 

"description { 

} ] 
} 

configurations { 

impact { 

publishedDate" : 

lastModif iedDate 

2018-03-01T17:29Z", 

: "2019-03-01T18:27Z 
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Appendix C 

Contents of the D V D 

The enclosed D V D contains the following files: 

• O-exploitator/ - source code of the extended N P B O framework 

• eves/ - source code of the C V E J S O N and C P E X M L Parser 

• doc / - source files of this thesis 

• rapidminer / - R a p i d M i n e r repository files including datasets, models, processes sources 
and results of a l l dataset evaluation experiments 

. nvdcve-l . l -2018.json.zip - Z I P file w i th N V D J S O N D a t a Feed 2018 

. nvdcve-l . l -2019.json.zip - Z I P file w i th N V D J S O N D a t a Feed 2019 

• official-cpe-dictionary_v2.3.xml.zip - Z I P file w i th Official C P E Dic t ionary 

• thesis.pdf - P D F of this thesis 
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