
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

IMPROVEMENT OF ADVERSARIAL CLASSIFICATION
IN BEHAVIORAL ANALYSIS OF NETWORK TRAFFIC
INTENDED FOR TARGETED ATTACK DETECTION
VYLEPŠENÍADVERSARIÁLNÍ KLASIFIKACE V BEHAVIORÁLNÍANALÝZE SÍŤOVÉ KOMUNIKACE

URČENÉ PRO DETEKCI CÍLENÝCH ÚTOKŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. ONDŘEJ SEDLO

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. IVAN HOMOLIAK, Ph.D.

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Master's Thesis Specification |||||||||||||||||||||||||
2 2 6 4 3

Student: Sedlo Ondrej, Be.
Programme: Information Technology Field of study: Information Technology Security
Title: Improvement of Adversarial Classification in Behavioral Analysis of Network

Traffic Intended for Targeted Attack Detection
Category: Security
Assignment:

1. Study the principles of network intrusion detection; focus on behavioral analysis and
classification of network flows and utilization of ASNM features.

2. Study the adversarial classification that exploits the shortcomings of network-based
behavioral analysis for the evasion of classifiers.

3. Get familiar with the supplied NPBO framework that performs the exploitation of several
network vulnerabilities using network-level obfuscations, and test the tool on a few attacks.

4. Extend the NPBO framework to support the exploitation of contemporary network
vulnerabilities. Collect a novel dataset of network traces and corresponding ASNM features.

5. Perform the extensive evaluation of the collected dataset, where explicitly focus on evasion
and improvements of at least 3 supervised classifiers.

6. Perform cross-dataset evaluation with classifiers trained on older ASNM datasets and
validated on the current one (and vice versa).

Recommended literature:
• Homoliak, I., Hanacek, P.: ASNM Datasets: A Collection of Network Traffic Features for

Testing of Adversarial Classifiers and Network Intrusion Detectors, arXiv
preprint arXivA 910.10528 (2019)

• Homoliak, I., Barabas, M., Chmelaf, P., Drozd, M., Hanacek, P.: ASNM: Advanced Security
Network Metrics for Attack Vector Description, 2013

• Homoliak, Ivan, et al. "Improving Network Intrusion Detection Classifiers by Non-payload-
Based Exploit-Independent Obfuscations: An Adversarial Approach." arXiv preprint
arXiv:1805.02684 (2018).

Requirements for the semestral defence:
• Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Homoliak Ivan, Ing., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: October 31,2019

Master's Thesis Specification/22643/2019/xsedlo02 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
In this work, we study ways to improve the performance of network intrusion detectors. In
detail, we focus on behavioral analysis, which uses data extracted from ind iv idua l network
connections. Such data is used by the described framework for obfuscation of targeted
network attacks that exploit a set of contemporary vulnerable services. We select vulnerable
services by scraping the Na t iona l Vulnerabi l i ty Database of N I S T while l imi t ing the search
for years 2018 and 2019. A s a result, we create a novel dataset that consists of direct
and obfuscated attacks executed on selected vulnerable services as well as their legitimate
traffic counterparts. We evaluate the dataset using a few classification techniques, and we
demonstrate the importance of t ra ining these classifiers using obfuscated attacks i n order
to prevent evasion of the classifiers (i.e., false negatives). Final ly , we perform the cross
dataset evaluation using the state-of-the-art A S N M - N P B O dataset and our dataset. The
results indicate the importance of retraining the classifiers w i th the novel vulnerabili t ies
while s t i l l preserving a high detection performance of attacks on older vulnerabilit ies.

Abstrakt
V t é t o p rác i se z a b ý v á m e vy lepšen ím s y s t é m ů pro o d h a l e n í síťových p r ů n i k ů . K o n k r é t n ě
se z a m ě ř u j e m e na behav io rá ln í ana lýzu , k t e r á využ ívá data e x t r a h o v a n á z j edno t l i vých
síťových spojen í . T y t o informace využ ívá p o p s a n ý framework k obfuskaci cí lených síťových
ú t o k ů , k t e r é zneužívaj í z r an i t e lnos t í v s adě soudobých z ran i t e lných s lužeb. Z N á r o d n í
d a t a b á z e z ran i t e lnos t í od N I S T v y b í r á m e z ran i t e lné služby, p ř i čemž se omezujeme jen na
roky 2018 a 2019. Ve výs ledku v y t v á ř í m e nový dataset, k t e r ý ses tává z p ř í m ý c h a obfusko-
vaných ú t o k ů , p rovedených prot i v y b r a n ý m z r a n i t e l n ý m s l u ž b á m , a t a k é z jejich p ro tě j šků
ve formě l eg i t imního provozu. Nový dataset vyhodnocujeme za použ i t í někol ika klasi­
fikačních technik, a demonstrujeme, jak dů lež i té je t r é n o v a t tyto klas i f ikátory na obfusko-
vaných ú toc ích , aby se zab rán i lo jejich p r ů n i k u bez p o v š i m n u t í . Nakonec p r o v á d í m e křížové
v y h o d n o c e n í d a t a s e t ů p o m o c í ne jmoderně j š ího datasetu A S N M - N P B O a na šeho datasetu.
Výs ledky ukazuj í dů lež i tos t o p ě t o v n é h o t r énován í k las i f ikátorů na nových zranitelnostech
př i zachování d o b r ý c h schopnos t í detekovat ú t o k y na s t a r é zranitelnosti .

Keywords
IDS, adversarial classification, behavioral network traffic analysis, classification intrusion
detection system, N P B O , A S N M

Klíčová slova
IDS, adve r sa r i á ln í klasifikace, síťová a n a l ý z a na zák ladě chování , klasifikační s y s t é m y pro
odha len í p r ů n i k u , N P B O , A S N M

Reference
S E D L O , O n d ř e j . Improvement of Adversarial Classification in Behavioral Analysis of Net­
work Traffic Intended for Targeted Attack Detection. Brno , 2020. Master 's thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor Ing. Ivan Homo-
liak, P h . D .

Rozšířený abstrakt
Síťově o r i en tované s y s t é m y pro o d h a l e n í p r ů n i k u , k t e r é jsou za ložené s t ro jovém učení ,

jsou schopny p o m o c í behav io rá ln í ana lýzy síťové komunikace detekovat i pro ně n e z n á m é
útoky, a to i bez nah l ížen í na v n i t ř n í data j edno t l i vých p a k e t ů . P r o b l é m e m je, že p o m o c í
obfuskačních metod lze tyto klas i f ikátory oklamat, a t u d í ž je m o ž n é pro obfuskovaný ú t o k
přes t akové s y s t é m y proniknout bez p o v š i m n u t í .

V t é t o p rác i se řeší , jak vylepš i t schopnost k las i f ikátorů detekovat adve r sa r i á ln í ú t o k y
založené na obfuskacích a zjistit, jak se od sebe n a v z á j e m liší j edno t l ivé klasif ikátory. Dá le
je c í lem zjistit, jak d o b ř e d o k á ž o u detekci obej í t r ů z n é obfuskační techniky a jak odo lné
jsou klas i f ikátory vůči n e z n á m ý m obfuskačn ím t e c h n i k á m . K e konci je p r áce se z a m ě ř e n a
na to, j a k ý v l iv m á použ i t í r ů z n ý c h d a t a s e t ů pro t r énován í a t e s tován í d a n ý c h klasi f ikátorů.

V r á m c i p r á c e byly v N á r o d n í d a t a b á z i z r an i t e lnos t í N á r o d n í h o ins t i tu tu s t a n d a r d ů a
technologie, k t e r ý s p a d á pod Ministers tvo obchodu Spojených s t á t ů amer ických , d o h l e d á n y
zranitelnosti z roku 2018 a 2019. N á s l e d n ě byly v d a t a b á z i od spo lečnos t i Offensive Secu-
ri ty nalezeny exploity, k t e r é d a n ý c h z ran i t e lnos t í zneužívaj í k p r ů n i k u do cílového sy s t ému .
K e k a ž d é z ran i t e lné s lužbě by l v y t v o ř e n v i r t uá ln í stroj, na k t e r ý byla s lužba nainstalo­
vaná . K v i r t u á l n í m s t r o j ů m by l p ř ipo j en ú t o č n ý p o č í t a č , k t e r ý použ íva l n á s t r o j Metas-
ploit, p o m o c í k t e r é h o se s t a žené exploity použ i ly k ú t o k ů m na k a ž d ý v i r t u á l n í stroj. Celá
komunikace všech ú t o k ů byla n a h r á n a p o m o c í n á s t r o j e tcpdump. Dá le b y l na ú t o č n ý stroj
p ř i d á n m n ě d o d a n ý Non-Payload-based (N P B O) framework, k t e r ý sloužil jako n á s t r o j pro
obfuskaci ú t o k ů p rovedených s t a ž e n ý m i exploity.

K obfuskaci byly p o u ž i t y techniky, k t e r é měn i ly r ů z n é behav io rá ln í vlastnosti ú t o k ů
p o m o c í z m ě n , k t e r é nezasahovaly do vn i t řn í ch dat p a k e t ů . Obfuskačn í techniky provádě ly
n a p ř . simulaci nespoleh l ivého síťového k a n á l u p o m o c í u m ě l é h o poškozování u r č i t ého pro­
centa p a k e t ů , p ř i dáván í zpožděn í p ř e n á š e n ý c h p a k e t ů , z m ě n u p o ř a d í p a k e t ů , r ů z n é kombi­
nace j m e n o v a n ý c h technik atd. P o m o c í N P B O frameworku se automaticky nebo poloau­
tomaticky ú toč i lo obfuskovanými ú t o k y na všechny z ran i t e lné s lužby běžící na v i r tuá l ­
ních s t ro j ích . N P B O framework veškerou komunikaci zaznamenal p o m o c í a u t o m a t i c k é h o
spouš t ěn í n á s t r o j e tcpdump. Dá le byly v y t v o ř e n y z á z n a m y komunikace l eg i t imního provozu
z ran i t e lných s lužeb (opě t p o m o c í n á s t r o j e tcpdump) , což obsahovalo p ř ipo jen í se k d a n é
s lužbě a t am p ř í p a d n o u autentizaci na ně jakého uživate le a r ů z n é z m ě n y n a s t a v e n í na
d a n é s lužbě , v y t v á ř e n í nových už iva te l ských ú č t ů , v y t v á ř e n í webových s t r á n e k , n a h r á v á n í
a s t ahován í s o u b o r ů apod. Z k r á t k a se vykonáva ly b ě ž n é úkony, k t e r é by mohly bý t ob­
vyklé v p ř í p a d ě k a ž d é služby. Nový dataset se tedy s k l á d á ze z á z n a m ů leg i t imního provozu
každé služby, z á z n a m ů p ř í m ý c h ú t o k ů na danou s lužbu a z á z n a m ů obfuskovaných ú t o k ů
na n i . Slabinou tohoto datasetu je fakt, že veškeré ú t o k y a simulace l eg i t imního provozu
byly p rováděny v l a b o r a t o r n í c h p o d m í n k á c h , a to dokonce mimo jakéhokol i j i n é h o provozu,
t u d í ž n a s h r o m á ž d ě n á data dokonale neodpov ída j í r e á l n é m u provozu v praxi .

N a s h r o m á ž d ě n á data byla po tom p ř e d á n a da l š ímu m n ě d o d a n é m u nás t ro j i recurs-walker,
k t e r ý provedl extrakci j edno t l i vých T C P spo jen í ze z á z n a m ů komunikace a p ř i d a l je do nové
Pos tgreSQL d a t a b á z e . N á s l e d n ě b y l s p u š t ě n dalš í m n ě d o d a n ý n á s t r o j metrics-extractor,
k t e r ý analyzoval T C P spojení v d a t a b á z i a z nich extrahoval Advanced Security Network
Metr ics (A S N M) rysy, n a p ř . p r ů m ě r velikosti zdro jových p a k e t ů (s t a t i s t i cký rys), poče t
p řenesených b a j t ů za sekundu (d y n a m i c k ý rys), zdrojová I P adresa (lokal izační rys), poče t
p a k e t ů za sekundu d i s t r i buovaných do 10 in te rva lů (d i s t r ibuovaný rys), aproximace délek
př íchozích p a k e t ů polynomem 5. ř á d u (behav io rá ln í rys). V p r ů b ě h u extrakce r y s ů se
provedla i anonymizace koncových b o d ů ve spojeních p o m o c í z m ě n I P adres. D á l e byly
i m p l e m e n t o v á n y procesy v nás t ro j i R a p i d M i n e r , k t e r é provedly dalš í zp racován í T C P spo-

j en í a p ř í p r a v u dat pro j edno t l ivé klasif ikátory, n a p ř . o d s t r a n ě n í lokal izačních rysů , p ro tože
v l a b o r a t o r n í c h p o d m í n k á c h pro klasifikaci dat, k t e r á neobsahu j í ž á d n á j i n á spo jen í než je
ú tok , nebo jen leg i t imní provoz d a n é aplikace j e d n í m už iva te lem, n e m á d a n ý rys v ý z n a m .
V da l š ím procesu jsou po tom z p ř ip r avených dat v y b r á n y rysy p o m o c í a lgori tmu Forward
Feature Selection za použ i t í k las i f ikátoru Naivě Bayes s Ke rne l Densi ty Es t ima t ion nejprve
z dat obsahuj ích p ř í m é ú t o k y (D L data) a po tom z dat, k t e r é obsahuj í i obfuskované ú t o k y
(D O L data). N á s l e d n ě je provedena kř ížová validace na datech D L a D O L , s r o v n á n y rozdí ly
mezi klas i f ikátory za použ i t í v y b r a n ý c h rysů z t ě c h t o dat a o t e s t o v á n a odolnost k las i f ikátoru
se znalostmi o obfuskovaných ú toc í ch vůči pro ně n e z n á m ý m obfuskacím.

V y h o d n o c e n í nového datasetu bylo z a m ě ř e n o na šest k las i f ikátoru . Nejdř íve byly klasi­
f ikátory n a t r é n o v a n é jen na l eg i t imn ím provozu a p ř í m ý c h ú toc ích . V křížové validaci
bylo s p r á v n ě de t ekováno od 97.63% do 100.00% p ř í m ý c h ú t o k ů . N á s l e d n ě byly t e s továny
schopnosti t ě c h t o klas i f ikátoru detekovat obfuskované ú t o k y a experiment ukáza l , že mnoho
ú t o k ů se detekci vyhnulo. Výs ledky ukázaly , že klasifikace obfuskovaných ú t o k ů dopadla
o 0.35% až 83.55% hůř , než kř ížová validace nad p ř í m ý m i ú t o k y a l eg i t imn ím provozem.
Opro t i tomu v experimentu křížové validace na datech, k t e r á obsahuj í i obfuskované ú toky ,
klasifikace p ř í m ý c h ú t o k ů v kombinaci s obfuskovanými ú t o k y d o s á h l a zlepšení o 0.04% až
81.05% v závislost i na typu klas i f ikátoru. Trénován í k las i f iká toru na obfuskovaných ú toc ích
se tedy ukáza lo jako velmi důlež i té .

N a d n o v ý m datasetem a datasetem A S N M - N P B O - v l [39] bylo provedeno křížové vy­
h o d n o c e n í p o m o c í č ty ř k las i f ikátoru. Úspěšnos t detekce ú t o k ů klas i f ikátoru t r énovaných
na n o v é m datasetu a t e s tovaných na datasetu A S N M - N P B O - v l dosahuje od 54.37% do
86.41% a klas i f ikátory t r é n o v a n é a t e s tované naopak dosáh ly 9.2% až 37.57%. P ř i h lubš í
ana lýze výs ledků byly nalezeny z n a č n é rozdí ly ve výsledcích různých z ran i t e lných s lužeb.
Klas i f iká tory t r é n o v a n é na n o v é m datasetu detekovaly p r ů m ě r n ě 96.76% ú t o k ů na Apache
a jen 30.43% ú t o k ů na M S S Q L . P o d o b n é dva e x t r é m n í p ř í p a d y byly objeveny i v o p a č n é m
p ř í p a d ě , kdy byly klas i f ikátory t r é n o v a n é na datasetu A S N M - N P B O - v l , kde detekovaly
p r ů m ě r n ě 70.38% ú t o k ů na Gits tack a 0% ú t o k ů na F T P S h e l l . B y l o ověřeno, že klasi­
f ikátory jsou schopny ú s p ě š n ě detekovat velké procento pro ně a b s o l u t n ě n e z n á m ý c h ú t o k ů
na n ě k t e r é zranitelnosti , ale zá roveň existuj í i ú t o k y z a m ě ř e n é prot i j i n ý m zranitelnostem,
k t e r é jsou pro ně nede tekova te lné .

Improvement of Adversarial Classification in Be­
havioral Analysis of Network Traffic Intended for
Targeted Attack Detection

Declaration
I hereby declare that this te rm project was prepared as an original work by the author
under the supervision of Ing. Ivan Homoliak , P h . D . and I have listed a l l the l i terary
sources, publications and other sources, which were used during the preparation of this
thesis.

Ondře j Sedlo
June 3, 2020

Acknowledgements
M y thanks go to my supervisor Ing. Ivan Homoliak, P h . D . for the useful comments, remarks
and engagement through the learning process of this term project. I would like to thank
also M g r . K a m i l M a l i n k a , P h . D . , who was available as a consultant.

Contents

1 Introduction 4

2 Taxonomy of Network Intrusion Detection Systems 7
2.1 Signature detection principles 7

2.1.1 Programmed 8
2.2 Anomaly-based detection principles 9

2.2.1 Learnt M o d e l by L i m 9
2.2.2 Specification M o d e l by L i m 12
2.2.3 Self-learning systems by Axelsson 13
2.2.4 Programmed systems by Axelsson 14
2.2.5 Other A n o m a l y intrusion detection principles by Debar 14

2.3 Classification-based detection principles 15
2.3.1 Machine learning 16

2.4 Honeypots 16
2.4.1 Low-Interactive 16
2.4.2 High-Interactive 17

3 Taxonomy of Adversarial Attacks 18
3.1 Goals of attacks on IDSs 18
3.2 At t ack classification based on generalized architecture of Intrusion Detect ion

Systems 19
3.2.1 Measurement phase 19
3.2.2 Classification phase 20
3.2.3 Response phase 22

4 Taxonomy of Attacks against Classification-Based IDSs 23
4.0.1 Categorizat ion by Barreno 23

4.1 Explora tory attacks 24
4.1.1 M o d e l Inversion 24
4.1.2 M o d e l extraction v ia A P I s 24
4.1.3 Member Inference At tack 24
4.1.4 Information Inference 24

4.2 Evasion attacks 25
4.2.1 Adversar ia l Examples Generat ion 25
4.2.2 Generative Adversar ia l At tack (G A N) 25
4.2.3 G A N based attack i n Col laborat ive Deep Learning 26
4.2.4 Adversar ia l Classification attack based on Game Theory 26
4.2.5 Obfuscated At tacks 26

1

4.3 Poisoning attacks 27
4.3.1 At t ack on Support Vector Machines 27
4.3.2 Poisoning attacks on Collaborat ive Systems 27
4.3.3 Adversar ia l attacks on A n o m a l y Detection Systems 27

5 Non-Payload-Based Obfuscation Framework 28
5.1 A S N M 28

5.1.1 Stat is t ical Features 28
5.1.2 Dynamic Features 29
5.1.3 Loca l iza t ion Features 29
5.1.4 Dis t r ibu ted Features 29
5.1.5 Behavioral Features 29

5.2 N P B O Framework Specification 29
5.2.1 Features Ex t rac t ion 30
5.2.2 Intrusion Detect ion Classification 30
5.2.3 Non-Payload-Based Obfuscations 30

6 T h e Novel Dataset 32
6.1 D a t a Capture and Metr ics Ex t rac t ion 32
6.2 Vulnerable Services 34

6.2.1 D r u p a l 36
6.2.2 F T P S h e l l Client 36
6.2.3 Gi tS tack 36
6.2.4 j Query-Fi le -Upload 36
6.2.5 L i b r e N M S 37
6.2.6 Nagios X I 5.4.12 37
6.2.7 Nagios X I 5.5.6 37
6.2.8 Confluence 38
6.2.9 GetSimple C M S 38
6.2.10 rConfig 38
6.2.11 W e b m i n 39

7 D a t a Preprocessing, Forward Feature Selection and D L Models 40
7.1 R a p i d M i n e r 40

7.1.1 Classifiers 41
7.2 D a t a Preparat ion 41

7.2.1 D a t a Transformation 41
7.2.2 D a t a Repairment 42

7.3 Forward Feature Selection 42
7.3.1 Implementation 43

7.4 M o d e l Tra in ing 44
7.4.1 Spli t t ra in data 44
7.4.2 D a t a F i l t e r ing and Normal iza t ion 45
7.4.3 Tra in ing Phase 45

7.5 D L Cross Val ida t ion 46
7.5.1 Cross Va l ida t ion Implementation 47

8 Obfuscated Attacks Detection 49
8.1 Predic t ion of At tacks by D L Models 49

2

8.1.1 A l l At tacks vs Obfuscated At tacks Predic t ion 49
8.1.2 Obfuscated At tacks Evasions per Service 50
8.1.3 At tacks Pred ic t ion by D L Models Implementation 50
8.1.4 Analys is of Predicted D a t a 51

8.2 D O L Models 54
8.2.1 D O L Cross Val ida t ion 54
8.2.2 Single Unknown Obfuscation Instance Detect ion 55
8.2.3 Single U n k n o w n Obfuscation Technique Detect ion 55
8.2.4 Implementation of U n k n o w n Obfuscation Instances and Techniques . 56

8.3 Cross-Dataset Evalua t ion 58
8.3.1 Cross-Dataset Eva lua t ion Implementation 58
8.3.2 Cross-Dataset Eva lua t ion per Service 59

8.3.3 Cross-Dataset Eva lua t ion per Obfuscation Instance 59

9 Conclusion 63

Bibl iography 65

A Employed A S N M Features 72

B C V E J S O N Record Example 75

C Contents of the D V D 77

3

Chapter 1

Introduction

In the list of top 10 cybersecurity threats are attacks, such as R y u k , Maze, Nemty ran-
somware, campaigns like Operat ion ZeroCleare, etc. Ment ioned attacks targeted organi­
zations, which are capable of paying the large ransom demanded, governments, industr ial
sectors, telecommunications providers, or regular people to steal sensitive data, encrypt
data and require money for decryption, cause damage to machines, etc. Another problem
is unpatched software for example from Adobe, Microsoft, or Orac le 2 , which is being tar­
geted mostly. Therefore, there is a necessity for defense against attacks like them, which
might be acquired wi th the use of intrusion detection systems.

Knowledge-based (a.k.a. misuse-based) intrusion detection systems have difficulties de­
tecting zero-day attacks and they are also vulnerable to attacks that were modified using
polymorphism. The vulnerabi l i ty originates from the fact there are no signatures for novel
attacks and polymorphic modification of known attacks might prevent the positive sig­
nature match as well . Hence there is a requirement for new ways of network intrusion
detection, which would eliminate mentioned defects. A possible solution to the problem
is anomaly detection systems. Anomaly-based intrusion detection systems bu i ld profiles
of users, which represent their normal behavior. Anomalies are recognized as deviations
from users' profiles. There is a drawback of an anomaly-based approach though because
these systems tend to have a high false-positive rate, unlike a knowledge-based approach.
Another interesting approach is classification-based detection, which combines the advan­
tages of both techniques. The principle of a classification-based detection system resides in
constructing its model from malicious traffic as well as benign traffic. To classify an input
the detector just compares the input to both models and assigns the more similar class to
it. A n o m a l y detection systems and classification-based systems are capable of new attack
detection, but they have problems detecting attacks based on obfuscation techniques [42].

Due to data encryption and also for efficiency reasons this thesis is concerned only
wi th classification-based network intrusion detection systems, which are not performing
deep packet inspection that analyzes the packet pay load. O n the contrary, these systems
inspect only headers of packets that are at t r ibuted to part icular T C P connections. We
also assume that adversaries know a l l details about principles of the classification-based
system, because the system should be secure even if the adversary knows everything about
i t . 3 The adversary is capable only to modify the input of the system, but he has to
adhere to protocols of the T C P / I P stack specification. Hence there are several things he

x h t t p s : //www.mcaf ee .com/enterpr i se /en-us / threa t -cen ter .h tml
2 h t t p s : / /www.us-cer t .gov/ncas/a ler ts /TA15-119A
3 T h e assumption is derived from the Kerckhoffs's principle.

4

http://www.mcaf
http://ee.com/enterprise/en-us/threat-center.html
http://www.us-cert.gov/ncas/alerts/TA15-119A

might execute, for example: exploit code modification, adding padding at the applicat ion
layer of exploit code or he may manipulate network or transport layer protocols. W h e n
an adversary needs to attack a big count of targets and use many different exploits it is
very impract ica l for h i m to manual ly modify exploit codes or add padding to each of them
separately. Therefore he might find it useful to implement non-payload-based obfuscation
techniques, which would transform known intrusions i n an exploit-independent way. Non-
payload-based obfuscation methods' goal is to camouflage intrusions to make them look
similar to legitimate traffic. The Non-Payload-Based Obfuscation framework described in
this thesis follows this idea and achieves exploit-independent obfuscation by modifying given
exploits at network and transport layers of T C P / I P stack. Considering a classification based
on generalized architecture of intrusion detection system (see Section 3.2), this approach
belongs to the measurement phase-based attacks. In the case of the categorization by
Barreno et. a l [21] (see Section 4.0.1), our framework's method belongs to the exploratory
type of attacks as far as influence is concerned, integrity attack i n case of security violat ion,
and it belongs to the category of indiscriminate attacks i n case of specificity [42].

C o n t r i b u t i o n s

In this thesis, a novel dataset was created. The dataset consists of A S N M features extracted
from network traces of legitimate traffic, direct attacks, and obfuscated attacks. At tacks in
the dataset are executed on contemporary vulnerabilit ies present in 11 services. Vulnera­
bilities that we selected were disclosed to the Nat iona l Vulnerabi l i ty Database of N I S T in
2018 and 2019.

Then the evaluation of the novel dataset was performed using 6 classifiers. F i r s t , the
classifiers were trained on legitimate traffic and direct attacks only. In cross-validation,
the true-positive rate (T P R) of direct attack detection achieved values from 97.63% to
100.00% (with a low false-positive rate). Next , the detection capabil i ty of obfuscated at­
tacks was tested using these classifiers, and the experiment proved that many attacks evaded
the detection, and thus caused false-negative predictions. The results of the prediction of
(unknown) obfuscated attacks showed that deterioration of T P R i n contrast to the in i ­
t i a l cross-validation experiment ranges from 0.35% to 83.55%. Further, when we included
obfuscated attacks into the t ra ining process of the classifier, the abi l i ty to detect direct
and obfuscated attacks was raised by range from 0.04% to 81.05%, depending on a par­
t icular classifier. Therefore, including some obfuscated attacks into the t raining process of
classification-based models showed to be very important .

Cross-dataset evaluation using four classifiers was performed wi th the novel dataset
and A S N M - N P B O - v l dataset [39]. T P R of classifiers trained on novel dataset tested on
the A S N M - N P B O - v l dataset ranges from 54.37% to 86.41%, and T P R T P R of classifiers
trained and tested vice versa achieves values ranging from 9.2% to 37.57%. In the detailed
analysis of the results, significant differences between various vulnerabilit ies were found.
Classifiers trained using novel dataset and validated on the A S N M - N P B O - v l dataset de­
tected 96.76% of Apache attacks and only 30.43% of M S S Q L attacks. In the opposite
si tuation (i.e., t ra ining on A S N M - N P B O - v l dataset and validat ion using our dataset), two
extreme cases can be found i n the results - detecting on average 70.38% of attacks on
Gits tack and 0% F T P S h e l l attacks. Therefore, classifiers can successfully detect a high
percentage of completely unknown attacks targeted to some vulnerabili t ies, but also some
of the unknown attacks targeted to different vulnerabili t ies are undetectable to them.

5

O r g a n i z a t i o n

The structure of this document consists of these chapters: Chapter 2 describes the taxon­
omy of network intrusion detection systems, Chapter 3 describes adversarial attacks divided
by the intrusion detection system's phases, in Chapter 4 there are attacks which are de­
signed against classification intrusion detection systems, and in chapter 5 there is described
the non-payload-based obfuscation framework. The novel dataset is described i n Chapter
6, in Chapter 7 is noted data preparation process, forward feature selection, and experi­
ments w i th models without knowledge about obfuscated attacks. In Chapter 8 are listed
experiments w i th obfuscated attacks and cross-dataset evaluation.

(i

Chapter 2

Taxonomy of Network Intrusion
Detection Systems

Network intrusion detection systems could be based on one of these three fundamental pr in­
ciples: anomaly detection, misuse detection and there are also classification-based intrusion
detection systems that combine both latter approaches.

A n o m a l y detection works wi th a normal behavior model and it detects abnormal devi­
ations from the model, which could be later identified as attacks. The fact knowledge of
intrusions is not required implicates it is possible to detect new unknown attack techniques
and we do not need to update the system wi th new attack information.

Misuse detection needs intrusions specifications for its operation. T h i s approach aims
to detect concrete attack patterns and it searches for weak spots i n the monitored system.
A u d i t data streams are checked for the intrusion patterns and attack signatures, and i f
a successful match occurs an a larm is generated. Thanks to precise specifications this
approach is easier to understand and thus implement for developers and analysts The main
disadvantage of this method compared to anomaly detection is the fact it faces problems
detecting novel attacks, because of its requirements for specification [45].

Classification-based intrusion detection systems combine the advantages of both men­
tioned approaches. The principle is based on modeling of legitimate behavior, but also on
the modeling of intrusions. The classification of inspected data is based on similarities w i th
those models.

2.1 Signature detection principles

Most of the information in this section is based on an article called „In t rus ion Detect ion
Systems: A Survey and Taxonomy" by Stefan Axelsson [20]. Signature detection principles
use quit different approach than anomaly detection ones. The difference is that the core of
the detector is buil t upon a knowledge-base, where are defined a l l patterns of what signals
legal or malicious behavior. Observation data are being compared to intrusion knowledge
and then the decision is made.

N o r m a l behavior is not modeled i n this approach, thus it is not cr i t ical to the detector
what the observed systems look like because it is not taken into consideration while making
a decision i f the intrusion occurred. These systems have acceptable detection and false
a larm rate. The taxonomy of signature detection principles is i l lustrated i n Figure 2.1.

7

Signature
detection principles

Programmed

State-modeling

Exper t system

Str ing matching

Simple rule-based

State-transition

Petri-net

Signature inspired
detection principles

Self-learning Automat ic feature
selection

Figure 2.1: Classification of Signature detection and inspired principles by Axelsson [20].

2.1.1 P r o g r a m m e d

These systems are programmed wi th an explicit decision rule. In the decision rule, there is
precisely programmed what is expected to happen from a specific intrusion. The principle
is to implement attack traces that are checked, and the decision is made based on it . This
approach is common i n the law field, the detector is based on illegal behavior l ist ing.

State-modeling

The intrusion is encoded as a number of different states in the observation space. These
systems are using t ime series models. Th is approach can be split into two subclasses:

State-transition, where the intrusion forms a simple chain, where every part should
take place in order. The second is Petri-net based. The Petri-net is a tree structure, which
consists of states connected wi th transitions. The states might be fulfilled i n parallel un t i l
the destination is reached, thus this approach is more general than the former one.

Expert system

A n expert creates the rules, which are later applied to audit data. The core of the detection
system is a set of rules. Typ ica l ly it is a forward-chaining production-based tool . They are
flexible and use powerful operations such as unification but at the cost of execution speed.

String matching

A very simple method, which uses extremely efficient algorithms searching for substrings.
It is easy to understand for its developers and users. Usually, the system is case sensitive.

8

Simple rule-based

The system makes decisions using a base wi th a set of rules. It is similar to expert systems,
but it is not as sophisticated as them. However, as simpler systems, they have higher
performance.

2.2 Anomaly-based detection principles

Information i n this section is based on „Network A n o m a l y Detect ion System: The State of
A r t of Network Behaviour Analys i s" article by Shu Y u n L i m et a l . [45] and an article called
„ In t rus ion Detect ion Systems: A Survey and Taxonomy" by Stefan Axelsson [20].

Three components participate i n generic anomaly detection system:

• The Sensor subsystem monitors input traffic which is used for later anomaly detection.

• The Mode l ing subsystem is responsible for normal behavior model generation.

• The Detect ion system looks for events w i th suspicious characteristics in real-time and
flags anomalous activities.

The network anomaly detection system operates i n two modes: model construction and
detection. To make the system working correctly it is necessary to t ra in the anomaly
detection sensor. It monitors network traffic events for a period of t ime, for example, a
few days or weeks. W h i l e observing the network traffic it gradually builds a picture of a l l
hosts. After the t ime period expires the system generates a measure for the data using a
profiling method. Now it has a baseline of the system's normal behavior, which consists of
extracted data characteristics for example the state of the network's traffic load, protocol,
and typica l packet size. The behavior model then serves as a pattern of correct network
traffic characteristics i n the detection phase. If any abnormal network act ivi ty occurs in
the model construction phase the system has the wrong normal behavior model and does
not detect attacks that are based on that anomaly. The complete taxonomy scheme by L i m
is depicted in Figure 2.2 and anomaly detection from Axelsson's point of view is portrayed
in Figure 2.3.

2.2.1 L e a r n t M o d e l by L i m

There are two phases of operation in this approach [45]: the learning phase and the anomaly
detection phase. In the former phase, the detection system creates a profile based on the
normal behavior of the specific network or host using machine learning techniques. It is
necessary to t ra in on the system, where it w i l l be later used for anomaly detection because
every network has its special characteristics. There are three approaches based on this
anomaly detection model: Rule-based, Model-based and Statistical-based.

Rules-based

The normal behavior of the monitored network or host is represented by a set of rules.
Those rules are based on comparing a high-level state of the system change patterns that
were derived from the audit data, w i t h penetration state change scenarios.

9

Specification
M o d e l

A n o m a l y Detector
Behavior M o d e l

Protocol-based

State-based

Transaction-based

Rule-based

Statistical-based

Exper t System

D a t a M i n i n g

Learnt M o d e l Model-based Neura l Network Learnt M o d e l Model-based Neura l Network

Pa t te rn Match ing

Figure 2.2: Network A n o m a l y Analys is Taxonomy by L i m [45].

Expert System

Exper t System extends rule-based systems to a more complex approach. The core of the
system is based on knowledge-base, which has two parts. The first part is a fact-based
represented by a set of assertions which are applied to input audit data, and the second
one is a rule-base which contains a set of rules which describe known intrusion techniques'
scenarios in the system. W h e n a match of an assertion from the fact-base and some rule's
predecessor pattern is found, the system creates a rule-fact binding. If a l l the patterns of
one specific rule have been bound wi th some facts, then the b inding analysis process is
triggered. The binding analysis assures the consistency of a l l the associated variables in
the rule w i th their binding.

Model-based

The difference of model-based intrusion detection technique compared to Rules-based is
it works on a higher level of abstraction instead of b inding audit records to expert rules.
A n o m a l y detection is based on a model of the normal behavior of the current monitored
network or host. This approach might process input data faster because it uses just audit
data which are relevant to the more general behavior model . Anomalies are detected by
comparing actual input information to the normal behavior model, unusual deviations from
the model are considered suspicious. Thanks to the higher abstraction of the model there
are more intuit ive explanations of intrusions which allow us to predict intruder's next action.
In the L i m ' s taxonomy of network anomaly analysis there are 3 examples of model-based
approaches: D a t a M i n i n g , Neura l Networks and Pa t te rn matching.

10

D a t a M i n i n g

D a t a M i n i n g method at first extracts relevant features from audit data for ind iv idua l net­
work connections and host sessions. T h e n a data mining program is applied to those
features. The result is models describing the behavior of intrusions and normal activities.
The system adaptively builds models from a large amount of data, thus its models are
up-to-date and the whole process is efficient.

There are data mining-based frameworks principles that can be split into these three
parts. M e t a classification, which allows it to learn correlations between intrusions, associ­
ation rules creation for l ink analysis, and frequent incident matters of sequence analysis.
The whole process is based on min ing audi t ion data, and then using extracted patterns to
t ra in classifiers, which are able to detect intrusions using its knowledge.

Neural Networks

Neural Networks are very efficient at learning system-call sequences, one of the significant
reasons for it is probably the fact neural networks work wi th high abstraction level input
data extracted from audit data. W h e n trained on a representative command sequences of
a user, the net derives the generalized profile of the user's normal behavior.

Neura l Network Intrusion Detector (N N I D) is a useful approach for off-line monitor ing
user profiles. It is a backpropagation neural network which is run at the end of each day by
an administrator to learn from what users d id at their workstations to bu i ld their profiles.
The N N I D uses each user profile buil t on the user's past behaviors to recognize h i m from
the current day. If the user has behaved differently i n a suspicious way the investigation of
the incident starts.

Neura l Networks approach is a very perspective area of network anomaly detection
especially for ind iv idua l user anomaly detection because they have as high performance
that it is possible to use them for real-time detection.

Pattern Match ing

Pat tern Match ing builds normal traffic profiles based on symptom-specific feature vectors,
for instance, l ink ut i l izat ion, packet loss, and the number of collisions. The learning process
is performed online. Traffic profiles bui ld ing is very sensitive to a monitored network, thus
it is not possible to use them i n a different network environment. The tolerance l imits need
to be set after traffic profiles are finished because the thresholds are derived from normal
traffic behavior. If new input features exceed the thresholds of set tolerance an anomaly is
recognized.

Statistical-based

The anomaly detector for a l l subjects generates profiles representing their normal behavior
base. These profiles are stored i n very l i t t le memory consuming way, and they are required
to be updated fast and efficiently. The reason for it is that profiles might be updated wi th
each audit record. The system periodical ly generates quantitative measures of its stored
normal profiles.

Anomalies are being recognized using mult iple statist ical methods such as the integral
of absolute difference of two functions over a t ime interval, which were calculated from
profiles data. The difference must not raise above the tolerance threshold, otherwise, it

11

would be considered malicious. Another method could be based on for example multiple
of the standard deviation on any side of the mean. There are even more statistics-based
methods, for instance, Bayesian statistics, covariance matrices, and Chi-square statistics.

A serious disadvantage connected wi th statistical-based approaches is the fact statistics
are not sensitive to the order of events i n an intrusion, thus there is considerable informa­
t ion loss. It could be fixed using an enhancement which checks intrusion event sequences.
There's also a problem wi th setting thresholds right, because i f they are too tolerant it
leads to false negatives and otherwise false positives, thus it is cr i t ica l to the system how
precise thresholds are.

2.2.2 Spec i f icat ion M o d e l by L i m

The specification model is not based on mathematics as much as previous approaches, but
it is based on human expert knowledge. The model is buil t upon a logic-based description
of expected behavior. Different system element monitor ing is combined i n this method,
monitored elements range from appl icat ion to network traffic.

Protocol-based

Protocol-based intrusion detection does not use any statistical-based model, instead, it is
based on the exact specification of the current T C P / I P protocol. The idea of designing a
detector by protocol's specification has a significant impact on normal model construction
accuracy compared to statistic model-based approaches because statistic models generalize
their view of data and thus have very l imi ted knowledge of monitored network protocols.
For this approach detect anomalies much easier, because of very precise documentat ion of
a protocol that specifies normal use states any deviat ion from described usage is considered
suspicious. Hence the basic explanation of the fundamental principle of an anomaly filter
may be described as s imply searching for a protocol misuse.

The protocol is defined as a set of rules describing the interaction between communicat­
ing sides. The official definition of protocol theoretical rules is in the description document
(for example R F C) , they might also be derived from pract ical usage of the protocol.

Systems based on this approach do not require any signature database updates, because
they are only based on the protocol description. Hence they are able to detect any attacks
including novel ones.

State-based

This method is making use of the idea that a l l connection-based network protocols have
states which conform to ind iv idua l connection parts. Thus there is exactly defined what is
expected at a certain t ime i n the connection for both communicat ing sides. If something
different happens and thus an unusual change of the state occurs, the anomaly is recognized.
The state model is represented by a state machine.

Transact ion- based

The fundamental idea of this approach is that we describe positive behavior cases. Expected
behavior consists of a set of desired actions and a sequence of actions. Specific transactions
that correspond to expected actions are defined. The set of transactions is an integral part
of the security policy.

12

Self-learning

A n o m a l y
detection principles

Programmed

Non-t ime series

Default deny

Rule modeling

Descriptive
statistics

Ar t i f i c i a l
neural network

Ar t i f i c i a l
neural network

T ime series

Ar t i f i c i a l
neural network

T ime series
Hidden

Markov model
Hidden

Markov model

Simple statistics

Descriptive
statistics

Simple rule-based Descriptive
statistics

Simple rule-based

Threshold

State series
modeling

Figure 2.3: Classification of A n o m a l y detection principles by Axelsson [20].

This concept originates from the area of database management systems, but unlike
there it is not necessary for distinct transactions to be executed. The detection system only
monitors the host or network for potential conflicts.

2.2.3 Sel f - learning systems by A x e l s s o n

These systems learn what is normal behavior of a monitored system. Usually, it takes some
time of observing the network communicat ion while constructing a model of the normal
state.

Non-t ime series detectors

Non-t ime series detectors model normal behavior using stochastic models that do not take
time-series behavior into account. There are two approaches to them: rule modeling and
descriptive statistics.

Rule modeling uses information gained from the monitor ing of the traffic to create a
number of rules which have to be respected. If a poor match occurs the detector raises an
alarm and the whole si tuation needs to be investigated.

The latter approach is based on descriptive statistics. It constructs a profile using
collected simple, descriptive, mono-modal statistics and derives a distance-vector for the
traffic and the profile. If the distance exceeds tolerated l imi t the a larm is raised.

13

T i m e series detectors

Time series detectors are generally more complex than non-time series detectors. There are
several approaches based on this principle, for instance, a Hidden Markov M o d e l and an
Ar t i f i c i a l Neura l Network, which is described below.

A n Ar t i f i c i a l Neura l Network (A N N) learns what normal behavior of the monitored
communicat ion is like from observed traffic data. Then A N N ' s output is compared wi th
measured communicat ion data, thus the result can be used i n the intrusion detection de­
cision. In a concrete system, the final decision might be done for example using a second
stage, which would be implemented as an expert system that decides i f the result of the
comparison mentioned above signals an intrusion.

2.2.4 P r o g r a m m e d systems by A x e l s s o n

Programmed systems have to be implemented by someone, thus a l l intrusions' principles
are derived from his knowledge. W h a t is considered abnormal decisions are based on the
opinion of the user of the system.

Descriptive statistics

Descriptive statistics based systems bui ld a model of the normal behavior of the monitored
system wi th parameters. Usable parameters might be for instance the number of unsuc­
cessful logins, network connections count, the number of commands wi th error returns, etc.
Th is principle can be divided into three characteristic approaches:

Simple statistics based systems, which consist of higher-level components that use col­
lected statistics for the final decision.

Simple rule-based systems that need rules provided for the user. These rules are later
applied to the collected statistic data.

Threshold systems are the simplest version of descriptive statistics detectors. The user
sets thresholds, which trigger alarms. Thresholds might be represented as simple ranges or
simple conditions, for example, the number of unsuccessful login attempts > 3.

Default deny

Default deny system needs specific circumstances, i n which the monitored system operates
in a security-benign manner, to be set. A l l deviations from this operation, which are not
expl ici t ly permit ted, are then labeled as intrusive.

State series modeling is a method, which based on the state machine theory. The policy
is encoded as a set of states of the state machine and the transitions between them are
impl ic i t in the model . O n l y expl ic i t ly allowed actions do not cause the detector to raise the
alarm. If any action, which was not set is done, then a transi t ion between states occurs
and thus the a larm is raised by the detection system. A l a r m triggering actions might be
for instance file accesses, the opening of ports that are considered secure, etc. The rule
matching engine is simpler and not as powerful as a full expert system.

2.2.5 O t h e r A n o m a l y in t rus ion detect ion pr inc ip les by D e b a r

This section is based on the article „A revised taxonomy for intrusion-detection systems"
by Herve Debar et a l . [30]. These principle models normal behavior and the model is buil t
upon information collected by moni tor ing of users or traffic communicat ion. A n intrusion

14

is detected when the behavior deviates from the normal state i n an unusual way. In other
words, the detector compares current behavior w i th its normal behavior model and then
makes a decision i f an a larm should be raised. A n y t h i n g anomalous is considered intrusive.

These systems have a useful advantage i n their possibil i ty to detect new intrusions. Thus
it is also possible to use them for the semiautomatic discovery of novel attacks. They are
able to detect „abuse of privilege" attack types, which do not use any security vulnerabi l i ty
exploitation, as well.

O n the other hand, the mentioned advantages are accomplished at the cost of a high
false-alarm rate. Another problem is that when the observed system changes it is necessary
to actualize the detector's normal behavior model . Hence retraining of the detection system
has to be performed and while retraining the system is unable to detect any attacks and i f
any intrusion occurs during the t raining process it learns it as normal behavior.

Several approaches have been proposed for the behavior intrusion detection: User In­
tention Identification and Computer Immunology. Some approaches have been already
described i n Section 2.2: Statistical-based, Exper t systems and Neura l networks.

User Intention Identification by Debar

This approach models normal user behavior using the model which consists of a set of
high-level tasks, which the user has to perform. High-level tasks are then transformed into
actions, which are associated wi th collected audit data from the monitored system. If any
action does not fit to the task pattern, the system raises an alarm.

Computer Immunology by Debar

This approach models the normal behavior of services instead of users. In the model, there
are used short sequences of system calls, which are usual for the modeled service. Intrusions
tend to use extraordinary system calls because they need to open specific files, which are
not otherwise used very commonly. The systems get audit references from the reference
table, which includes a l l the known allowed sequences of system calls. This technique work
as an online monitor ing detector.

There is a very low false-positive rate if the reference table is complex enough. The
problem of this technique is it does not detect intrusions based on configuration errors,
because such attacks use legitimate actions to gain unauthorized access.

2.3 Classification-based detection principles

The classification-based systems are in Axelsson's article called as signature inspired detec­
t ion principles, which are portrayed i n Figure 2.1.

These systems use both points of view on the problem, it models normal behavior of
observed elements and the intrusive behavior of the intruder. However, they are called
„s igna túre inspired", because the intrusion model is much stronger and more explicit than
the model describing normal behavior. These systems are good at detecting very advanced
intrusions because they have the intrusion knowledge and combine it w i th normal behavior
knowledge gained from the normal model. These detectors are in some senses respected as
the most advanced intrusion detection systems i n this survey.

Self-learning. Th is approach's idea is to learn normal behavior and the same behavior
infected wi th intrusions, thus the detector is going to recognize malicious traffic specifically

15

for the monitored network or host. The learning process requires examples w i t h normal
behavior and prepared attacks, which have to be labeled as intrusive. These systems might
also use methods, such as Au tomat i c Feature Selection, where the detector learns automat­
ically what features are important for intrusion recognition.

2.3.1 M a c h i n e l earn ing

In this section are described some widely used techniques approached i n models, which are
used by classifiers of intrusions detection systems [25].

Support Vector Machines (S V M)

S V M s are supervised learning models, where data is represented as points i n the space, and
its goal is to construct maximum-margin hyperplane and divide these points into classes.
This a lgori thm is searching for maximal ly wide spaces between bordering points of different
classes.

Artif icial Neura l Networks (A N N)

A N N s are networks consisting of mutual ly connected perceptrons, called neurons, which
were inspired by biological neurons. These neurons' outputs connected to inputs of some
other neurons and their behavior is defined by weights and an act ivation function. In the
learning process weights are updated using the back-propagation algori thm.

Deep Neura l Networks (D N N)

D N N s are A N N which include mult iple layers that are connected to previous and succeeding
layers, except for the input layer and output layer. Layers that have predecessors and
successors are called hidden. The advantage of D N N s is that their input might be unlabeled
and unstructured data because they are able to extract related features on their own.
Convolutional Neural Networks (C N N) . C N N s consist of two main parts, which have
different functionalities: feature learning part and classification part. The former part is
made of convolutional or sub-sampling layers and its task is to create a feature map and
extract important information from it . It sub-samples its input i n order to reduce the
dimensionality of each feature map. The latter part consisting of one or two layers is fully
connected to the last layer of the previous part and classifies the data.

2.4 Honeypots

Honeypots have no functionality i n the product ion system, except being bait for adversaries.
There should not be any traffic communicat ing w i t h the honeypot. If any communicat ion
directed to honeypot occurs or the honeypot itself starts sending packets to the network,
then it is considered malicious. Honeypots can be split into two categories based on how
much act ivi ty might an attacker do there [44]:

2.4.1 Low-Interact ive

These systems are designed to emulate only some functionalities of the system that they ap­
pear as. Usually, these systems emulate some services, which allow the attacker just l imited

16

interaction, because the emulation is not full . For example, F T P service l imi ted to login
function and some basic commands. The advantage of these systems is low maintenance
requirements and the fact it does not use the whole operating system. There is also not a
high risk of an attacker, because he only controls the par t ia l emulation of service, which is
immediately reported to honeypot's logs. There is also a risk that the attacker discovers
the fact he is interacting wi th only the honeypot if he uses some of the not implemented
commands.

2.4.2 High- Interac t ive

High-Interactive honeypots are more sophisticated than Low-Interactive ones. They are
run at real systems wi th real operating systems. Services used by these honeypots are
completely installed on the system. There is a higher risk of using these systems because a
potential attacker takes control over the whole operating system and might use it in order
to intrude on other hosts i n the network. The main advantage of these systems is that their
owners might deeply investigate what is the attacker doing and deduce what is his a im. O n
the other hand, its drawback is the fact these systems require a full machine, which only
baits potential attackers, which might be quite expensive.

17

Chapter 3

Taxonomy of Adversarial Attacks

This chapter is mostly based on the article „Adversar ia l At tacks against Intrusion Detect ion
systems: Taxonomy, Solutions and Open Issues" by Igino Corona et a l . [28] and „Adversar ia l
At tacks and Defences: A Survey" by A n i r b a n Chakrabor ty et a l . [25]. A n d the chapter was
wri t ten wi th a focus on network-based attacks because host-based attacks are beyond the
scope of this thesis.

Intrusion detection systems wi th other tools constitute the computer security infrastruc­
ture, hence they might be vulnerable to attacks by the same intrusions they t ry to detect.
Thus intrusion detection systems became targets of attacks, and i f they are successfully
exploited they might transform themselves into at tacking tools serving an intruder.

3.1 Goals of attacks on IDSs

There are six main goals of attacks against intrusion detection systems [28]:

Evasion

It modifies the intrusion pattern to make the attack undetected. Hence, it causes that an
intrusion attempt evinces the characteristics of benign network communication.

Overstimulation

In overstimulation attacks, the attacker tries to generate false positive alerts of IDS by
creating a benign communicat ion that evinces aspects of malicious intrusions. M a n y attack
patterns are applied to overstimulate the detection system. These attacks are less popular
than evasion attacks since their effect does not lead to compromise of the system but to
exhaustion of the operator who analyzes the alerts.

Poisoning

The a i m of this approach is to insert malicious patterns into the t ra ining set for the intrusion
detection system and mislead the learning phase into a state, where the detector w i l l be
unable to detect prepared intrusions.

18

Denial O f Service (DoS)

Attacks of this type use patterns to disable or at least slow down the detector sensor.
If the network traffic is not allowed to transfer into the internal network of the attacked
system without proper inspection by the intrusion detection system, then slowing down the
detector might cause network traffic transfer delay and packet drops.

Response Hijacking

This type of attack tries to fake a larm descriptions for response units to make them react
inappropriately, for instance, to make them block some legitimate connections.

Reverse Engineering

The goal is to extract information about the intrusion detection system's internal implemen­
tat ion and use the gained information to design new attack patterns that take advantage
of i t .

3.2 Attack classification based on generalized architecture of
Intrusion Detection Systems

There are many different architectures that constitute Intrusion Detect ion Systems. How­
ever, most of them are based on a relatively general architectural framework, which con­
sists of these four components: event generator, event analyzers, response units, and event
databases. The framework's operation can be divided into these three phases: Measure­
ment, Classification and Response [28].

3.2.1 M e a s u r e m e n t phase

Measurement is performed by event generators. A vector of measurements (aka features) is
used to characterize and event pattern. The detector uses features to differentiate intrusions
from legitimate actions.

There are four categories of attacks which target network measurements i n this phase:

Set of Measures

The attacker can exploit l imi ts in the discriminant capabil i ty of the chosen set of mea­
surements i n order to evade detection. Even if intruders are not capable to perform the
previously mentioned attack, they might t ry to evade using novel or smal l variations of a
known intrusion. Thus the intrusion detection system should be designed counting wi th
the possibil i ty that attacks can evolve.

Input Data

The attacker modifies the input data for example i n a system cal l , which returns the list of
running processes. Th is method is usual at the host level, but this problem might encounter
in a network environment as well, for example, i f the attacker has control over a router.

19

Event Reconstruction

These attacks are cr i t ica l especially for network sensors and here are listed some examples:

• Tunneling - Us ing the type of traffic, that is not observable by the network sensor.

• Desynchronization - Evad ing the network sensor view, for example using T T L 1 to
elude the network sensor by taking advantage of the network topology.

• Encod ing Variat ions - Acqu i r ing different semantic of data on each communicat ing
side, which can be handled into intrusion.

• Segmentation - The network traffic is divided into segments different on the source
side differently than on the destination side and taking advantage of the fact some
O S s 2 have a different pol icy when dealing w i t h duplicate or overlapping segments.

Integrity and Availability Attacks

There are more techniques i n this category, but most of them are not listed, because this
thesis focuses on network-based analysis. A n example of availabil i ty attacks is overloading
the network sensor w i t h too much traffic, which it cannot inspect as fast as they come, so
it starts dropping packets.

3.2.2 Class i f i cat ion phase

The classification process is implemented i n event analyzers. Internal models are created
and rules are applied for event pattern classification to decide if the pattern is legitimate
or intrusive. If the pattern has been determined as intrusive, then an a larm is generated
and the incident is presented human-readable form. This process is performed usually in
real-time.

In modern classifiers, there is a trend to develop an event analyzer based on machine
learning, which requires statist ical representative patterns. There are three main problems
associated w i t h statist ical representativity described bellow:

• Pr ivacy - Col lect ing legitimate users' data may involve sensitive information and cause
problem w i t h privacy.

• Real-world intrusions - It is necessary to keep a set of known real-world intrusions
and update it as quickly as possible.

• Ground Tru th - It is cr i t ical to have t ra ining data for the system validated properly.
Val ida t ion requires deep expertise and t ra ining data amount is huge. T h i s problem
is the reason why it is pract ical ly possible for intruders to use poisoning attacks.

Here are described some attack issues against event analyzers:

Difference between Aler t Space and Intrusion Space

Let us define intrusion space (I) and alert space (A) :
/ = set of all intrusive patterns,

1 T i m e To Live in h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 7 9 1
2 Operating Systems

20

https://tools.ietf.org/html/rfc791

A = set of patterns causing an alarm raising,
then
M = I — A = set of missed alarms,
F = A — I = set of fake alarms.
Sets M and F might be used for evasion or overstimulation attacks in techniques listed
below:

• Contextua l Information Explo i ta t ion , for example about observed hosts and services.

• M i m i c r y At tacks - this type of attack tries to mimic legitimate patterns.

• Cost-Sensitive Classification - classifying intrusions depending on damage cost.

• Classifier Ensembles - using mult iple parallel classifiers, where each of them is designed
to detect its ind iv idua l intrusion class.

• Au tomat ic Evalua t ion - evaluation of how vulnerable are different classifying algo­
rithms against evasion and overstimulation intrusion methods.

Pattern Match ing

Pat tern Match ing algorithms might be slowed down using a specially crafted pattern which
causes for example worst-case complexity scenario of the algori thm, which results in D o S 3

attack.

Description of Intrusive Events

A n attacker might create intrusion, which causes the detector to produce too general or
wrong alert description.This could lead for example into triggering defense mechanisms,
which would create wrong firewall rules blocking some legitimate users.

There are several defense techniques dealing w i t h this problem. Classification confi­
dence measuring added to every alert description. Automated At t ack Inference - A n o m a l y
detection systems might t ry to classify the unknown attack to most similar attack patterns
automatically. M o d e l of the Adversary - modeling intruder's goals and behavior.

Poisoning Attacks

There are several machine learning (M L) techniques, which are being used i n intrusion
detection systems: Support Vector Machines (S V M) , Hidden Markov Models (H M M) , In­
grains, Decision Trees and Ar t i f i c i a l Neura l Networks.

However, M L - b a s e d algorithms might be vulnerable i n their learning process. If an
attacker successfully inserts his prepared intrusions into the set of t ra ining examples, the
algori thm learns the wrong pattern and w i l l not be able to detect the attack associated
w i t h the inserted intrusion.

There are defense methods against poisoning attacks, for example, Tra in ing D a t a M a ­
nipulat ion based methods:

Reject O n Negative Impact, which creates data sets w i th including and excluding a
test sample, and i f the sample decreases the trained model success rate it is excluded as a
poisoning attack.

3 Denia l of Service

21

Or the method, which works wi th mult iple intrusion detectors, which a l l t ra in on their
own randomly selected t ra ining samples, thus it can statist ically determine from variations
of these detectors results which sample is poisoning.

3.2.3 R e s p o n s e phase

Response units ' function is to react to the raised a larm i n order to save the defended system.
For example, a new firewall rule might be added to block the current attack. There are
some issues related to the response phase described below:

Response Effectiveness

To make the intrusion detector as effective as possible it is useful to evaluate response
effectiveness. The actions detector makes might have a good impact, but it may also cause
damage to the system, for example, DoS attack against infrastructure using firewall blocks.

There are several techniques t ry ing to solve problems associated w i t h this issue:
Game Theory, which requires the definition of an attacker model, potential costs of each

action it can perform against h im, values of each protected element, etc.
Response Frameworks wi th their own infrastructures, which perform necessary actions

to prevent intrusion.
Cost-sensitive models, which calculate w i t h costs of intrusion defense actions and costs

of potential damage dealt by intrusions.
There is also problematic w i th response t ime because for a successful intrusion preven­

t ion process it is necessary to be faster than the attack.

Response Feedback

Response Feedback mechanisms might be used to prevent for instance DoS attack mentioned
in the previous paragraph. We might t ry to achieve it by simple checking the blocked traffic
characteristics, because i n the case of well-known intrusion it may be possible to estimate
its consequences.

Response Evaluation

The idea of this issue is that we could simulate an attacked infrastructure and intrusions
at tacking it . F r o m the simulation, we could potential ly evaluate the costs of an intrusion
and damage dealt.

22

Chapter 4

Taxonomy of Attacks against
Classification-Based IDSs

This chapter is based on the article ^Adversarial attacks and defences: A survey11 by A .
Chakrabor ty [25]. There are three types of adversarial attacks, which are being designed
against classification-based intrusion detection systems to explore it , evade detection, or poi­
son the classifier. Hence there are three fundamental types of these attacks: Explora tory
attacks (in Section 4.1), Evasion attacks (in Section 4.2) and Poisoning attacks (in Sec­
t ion 1.3). The attacks might be also categorized based on other properties, which is de­
scribed in the following subsection:

4.0.1 C a t e g o r i z a t i o n by B a r r e n o

The attacks might be categorized based on Influence, Security Vio la t ion , and Specificity.
Th is subsection is based on the article: „The security of machine learning" by M . Barreno
et a l . [21].

Influence

These categories discriminate against the capabil i ty of the attacker.

• Causative - the attacker influences t ra ining data for the classifier.

• Explora tory - the attacker cannot influence t ra ining data for the classifier, but he
sends new instances to the classifier and examines its decisions.

Security Violat ion

These categories depend on the harm the attacker might cause.

• Integrity - the attacker's intrusive data is able to evade the classifier and go through
as false negatives.

• Avai labi l i ty - the attack leads into Denia l of Service, mostly it is caused using false
positives.

Specificity

This categorization distinguishes how specific are targets of the attack.

23

• Targeted - the attack specializes against a concrete instance.

• Indiscriminate - the attack tries to manipulate the classification of a wide dis t r ibut ion
of instances.

4.1 Exploratory attacks

These attacks do not t ry to manipulate the t raining set, but they are designed to extract as
much information about the classifier as possible. They are being used i n the testing phase
of the attacked intrusion detection system. At tacks of this type look the same as legitimate
traffic and do not cause any harm to the system, thus they evade the detection and gain
information about tested learner [25].

4.1.1 M o d e l Invers ion

In this approach, the a i m is to perform model inversion in order to get information about its
inputs using output data. The linear regression model / estimates the patient's drug dosage
from his medical history information and genetic markers. Then the mentioned model /
is used as a white-box and an example of data (X = xi, X2, xn, y), it is possible to gain
genetic marker x\ from the inversion of model / . Th is method can be enhanced and also
used for black-box models, for example, to recover images in case of face recognition [25].

4.1.2 M o d e l ex t rac t ion v i a A P I s

This attack is focused against Machine learning A P I s . The attacker has no information
about the model or t ra ining data, but the target A P I returns h i m precision confidence
values and class labels. Therefore, the attacker tries to solve it mathematically. Param­
eters or features can be calculated from equations wi th supplied confidence values. The
attacker needs to perform d + 1 queries w i th d-dimensional inputs in order to calculate
d + 1 parameters [25].

4.1.3 M e m b e r Inference A t t a c k

The black-box target model is attacked i n this method. The attackers send queries w i th
his dataset to the target model. The target model returns h i m information i n the form of
vectors of probabilities, which specify recognized classes of queried data. Us ing the queried
dataset as t ra ining dataset and output vectors from the target model the attacker builds
shadow models. Then he constructs a t ra ining structure for the attack model . Shadow
models have input from the t ra ining dataset and also a new testing dataset, then their
outputs are labeled depending on input sets. The labeled dataset is used as t ra ining data
for the attack model, thus the attack model is trained to categorize its input data whether
are they from the t ra ining dataset or the testing dataset. Therefore, the attack model is
able to estimate which data were in the t ra ining dataset of the black-box target model [25].

4.1.4 I n f o r m a t i o n Inference

A n attacker uses a meta-classifier to extract applicable information from a machine learning
system. The attack requires information about t ra ining data, but no information about the
target system internal, thus it attacks a black-box. A n example of this attack is a public

24

A P I of the speech recognition system, which is based on Hidden Markov Models . For an
attacker, it is possible to extract the information he should not be able to extract, for
instance, the accent of the users [25].

4.2 Evasion attacks

Information i n this section was adopted from the article „Adversar ia l At tacks and Defences:
A Survey" by A n i r b a n Chakrabor ty et a l . [25]. Evasion attacks t ry to evade the detector,
i n other words, to not be recognized as an attack and intrude the system.

4.2.1 A d v e r s a r i a l E x a m p l e s G e n e r a t i o n

Changing samples i n order to damage the classifier to make it unable to detect the intru­
sion. Th i s approach is d ivided into two categories based on which phase of the classifier
implementation it is t ry ing to manipulate.

Training Phase Modif ication

Training data might be modified i n two manners:
Labe l Man ipu la t ion - The adversary is able to modify the t ra ining labels only. In the

study [22] researchers randomly flipped 40% of the t ra ining data labels, which worsened
the classifier enough for their adversary task.

Input Manipu la t ion - The attacker is capable to modify also the input features. Thus
he is able to influence the decision boundary of the classifier into his favor.

Testing Phase Generation

There are two types of this approach depending on the knowledge of the tested setup.
W h i t e - B o x At tacks - The framework (from [62]) is searching for the perturbations which

are added to input data samples for the attacked classifier. F i n a l found perturbations
should be able to manipulate the classifier to classify the modified sample differently. A t
first direction sensitivity estimation process is performed, then the perturbat ion is selected,
which is then checked for its abi l i ty to be misclassified by the neural network and the
feedback is sent back to the direction sensitivity estimation process.

B lack -Box At tacks - A n example of this approach is the technique called Jacobian based
D a t a Augmentat ion. This technique's a im is to learn a substitute for the attacked model,
which is later used to scheme new inputs for the black-box. The idea is that new inputs
w i l l be classified by the black-box the way the intruder wants [25, 61].

Transferability of Adversarial Samples

The idea of this principle is that samples generated by one model might affect the second
model. It might be intra-technique, where are both models of the same type, for example,
Neura l Networks, or cross-technique, where are models of different types, for instance,
Neura l Network and Support Network Machine.

4.2.2 G e n e r a t i v e A d v e r s a r i a l A t t a c k (G A N)

There are two deep learning networks i n the G A N procedure, which play different roles in
the learning procedure. The first is a generative deep learning network, whose task is to

25

generate samples that cannot be differentiated from the t ra ining set for the second network.
The second one is the discriminative deep learning network, which has to determine i f its
input samples come from a generative network or from the t ra ining set. These two networks
compete w i t h each other and that leads to their accuracy advancement. The t raining
finishes when the discriminative network makes a mistake.

4.2.3 G A N based at tack i n C o l l a b o r a t i v e D e e p L e a r n i n g

There are two collaborative neural networks, one of them is the v i c t i m t ra ining classification
of its t ra ining set and the second is the attacker, which uses G A N for generating samples
similar to the v ic t im's t ra ining set. The G A N has access to honest outputs of the v ic t im.
The goal is to amass as much information about the v ic t im's t ra ining set classes as possible.

4.2.4 A d v e r s a r i a l Class i f icat ion at tack based o n G a m e T h e o r y

The idea is based on game theory, where the classifier stands against the adversary. The
adversary's goal is to modify the t ra ining samples to make them be classified as negative
instead of positive. The classifier's goal is to classify even modified samples as intrusions.
The classifier's game strategy is based on a cost-sensitive Bayes learner, which searches
for the m i n i m u m cost of its action while expecting the adversary to use the best possible
strategy.

4.2.5 O b f u s c a t e d A t t a c k s

The obfuscation principle is changing adversary network traffic characteristics i n order to
appear as legitimate traffic. Hence the obfuscated attack cannot be detected by the classifier
and is falsely classified as legitimate [41].

Tunnel ing

In the work [40] is discussed an idea of an intruder having a machine that is cooperating
wi th h i m before he starts at tacking the network hosts. In such a si tuation the tunneling
method might be quite useful for the adversary. The adversary is using buffer overflow
attacks which are tunneled through H T T P or H T T P S traffic i n order to evade the I D S and
Network Behavioral Analys is (N B A) system. The attack uses two modules: the cooperat­
ing machine called the Cal lback in the target network and the adversary's outer machine
called the Fake H T T P Server, which waits for connection by the Cal lback. The attack
is performed through the Callback, which is controlled by the Fake H T T P Server, while
al l communicat ion between them, which is protocol independent, is camouflaged i n the
H T T P / H T T P S traffic. There was discovered that the classifier, which was trained on d i ­
rect attacks and legitimate traffic only, was incapable to detect tunneled attacks and there
was a very significant improvement when the classifier was trained on dataset extended of
tunneled attacks.

N o n - pay load- based

These attacks are focused against legitimate behavior model . D a t a is not important in
this attack, but it achieves obfuscation by modifying packets' headers and communicat ion
behavioral characteristics.

26

In [41] were performed experiments, where the obfuscation tool was used i n order to
improve the classification intrusion detection system. The obfuscation tool was based on
Advanced Security Network Metr ics . Experiments proved that t ra ining the classifier on a
dataset including obfuscated attacks improved its capabil i ty to detect the same or similar
obfuscated attacks.

4.3 Poisoning attacks

Poisoning attacks are used to contaminate the t ra ining data set and influence the network
intrusion system. Here are listed some of the evasion and poisoning attacks. Th is section
based on a survey i n the article „Adversar ia l At tacks and Defences: A Survey" by A n i r b a n
Chakrabor ty et a l . [25].

4.3.1 A t t a c k o n S u p p o r t V e c t o r M a c h i n e s

S V M ' s t ra ining and testing data are provided from the same dis tr ibut ion, but i n adversarial
learning, it is possible to exploit the system using data modification. For adversary, it may
not be possible to get access to the S V M ' s t ra ining dataset, but he might find datasets w i th
similar distributions.

4.3.2 P o i s o n i n g attacks o n C o l l a b o r a t i v e Systems

There are poisoning attacks, which require a thorough knowledge of the learning system,
that are able to generate data which significantly decreases the system's effectiveness.

Three types of these attacks have been announced: Avai labi l i ty At tack , where the at­
tacker tries to raise the error of the collaborative filtering system as much as possible.
Integrity At tack , where the adversary's goal is to maneuver the acceptance of a subset of
items. A n d H y b r i d At tack , which is the combinat ion of both mentioned attacks.

4.3.3 A d v e r s a r i a l attacks o n A n o m a l y D e t e c t i o n Systems

The a im of these attacks is to move the centroid of the normal behavior space to the
dis tr ibut ion of prepared intrusion characteristics. The adversary's goal is to include its
intrusion into the set of negatively classified items.

27

Chapter 5

Non-Payload-Based Obfuscation
Framework

In this chapter, there are described Advanced Security Network Metr ics (A S N M) features,
and the Non-Payload-Based Obfuscation (N P B O) framework is specified. This chapter is
based on two articles: ^Improving Network Intrusion Detection Classifiers by Non-payload-
Based Exploit-Independent Obfuscations: An Adversarial Approach" by I. Homol iak et
al . [42] and „ASNM Datasets: A Collection of Network Traffic Features for Testing of
Adversarial Classifiers and Network Intrusion Detectors" by I. Homol iak et a l . [39].

The obfuscation framework was designed i n order to create a non-payload-based obfus­
cation tool , which can modify the exploit a remote attack i n such a way that the target
classifier is not able to detect it as an intrusion. The Behavioral state diagram of the obfus­
cation tool is depicted i n Figure 5.1. T h e n a new classifier is trained on the dataset, which
includes obfuscated exploits ' features and thus it is better at detecting other obfuscated at­
tacks. The mentioned hypothesis has been proven to hold in [42]. The A S N M features are
extracted from the observed network communicat ion by the framework in order to describe
network traffic characteristics.

5.1 A S N M

The original A S N M feature list was introduced in the Master 's thesis [37] including 167
features, and it was formally described i n [36]. Then the content of the A S N M features list
was expanded to the number equal to 194 features i n [38]. These features were split up into
five categories based on their principle.

5.1.1 Stat i s t ica l Features

In this category, there are features that express the statist ical properties of T C P connec­
tions. Stat is t ical operations are being used in this approach, such as count, mode, median,
mean, standard deviation, there are also some other features like ratios of specific packet
header fields or whole packets. In these features there are is also information about their
incidence t ime, but there is no context available for them, unlike in the dynamic features
category. There is also a dichotomy of some features based on if they were going inward or
outward.

28

5.1.2 D y n a m i c Features

The role of features i n this category is to present the dynamic properties of T C P connec­
tions. These features do not have to be necessarily real, but they also might be simulated.
Some dynamic features respect the context of the inspected T C P connection. The main
difference between dynamic and static features is that dynamic features reflect speed or
error rate of the analyzed T C P connection, and also this category pays attention to how
many acknowledgment packets were delivered, etc. Some of these features discriminate the
direction of observed packets as well.

5.1.3 L o c a l i z a t i o n Features

Features i n this category represent information about communicat ing endpoints of the
inspected T C P connection. They a l l share an aspect that they do not change i n t ime,
but stay static un t i l the connection ends. Mos t of these features also respect directions of
analyzed T C P connection flows. Another characteristic of these features is they do not deal
w i th the context of the T C P connection.

5.1.4 D i s t r i b u t e d Features

The most important trait of distr ibuted features is the fact they are distr ibuted into time
intervals. These intervals lengths are constraint i n logari thmical scale, for example, Is,
2s, 4s, or 8s. Measured features distr ibuted i n a constant count of intervals might be for
instance count or lengths of packets observed. Dis t r ibu ted features respect the context of
the inspected T C P connection and packets' directions as well.

5.1.5 B e h a v i o r a l Features

Behavioral features express properties related to the behavior of an analyzed T C P con­
nection. For instance successful or prohibi ted connection closing, a number of new T C P
connections since the beginning of a T C P connection. There are also some more compli­
cate operations over captured data about inspected T C P connection, such as the polyno­
mia l approximat ion of packet lengths i n a t ime domain or a packet index number domain,
coefficients of Fourier series w i th respect to the direction of a T C P connection, etc. [39]

5.2 N P B O Framework Specification

The N P B O Framework description, which also includes a l l the following definitions i n this
section is from the article: ^Improving Network Intrusion Detection Classifiers by Non-
payload-Based Exploit-Independent Obfuscations: An Adversarial Approach" by I. Homol iak
et a l . [42].

The framework looks at internet communicat ion as a session between two sides: the
client and the server. B o t h participants of a session communicate using the applicat ion
protocol of the T C P / I P stack, which intervenes i n data transfer between them. The ap­
plicat ion data transfer T C P / I P stack is represented as connection k, which is bounded to
connection-oriented protocol T C P at L 4 , Internet protocol I P at L 3 and Ethernet protocol
at L 2 . The connection k consists of start and end timestamps, ports of the client and the
server, I P addresses of the client and the server, sets of packets by the client Pc, and by
the server Ps.

29

5.2.1 Features E x t r a c t i o n

The features extraction process is defined as a function that maps a connection k into space
of features F:

f(k) ^F,

F — {Fi, F2,..., Fn),

where n means the count of defined features. Every part icular function fi, which extracts
feature i is defined as a mapping of a connection k into feature space F^.

fi(k)^F, » € { l , . . . , n } , (5.2)

and each element 1 of codomain Fi is defined as

e = (eo, • • • , e„) , n G No,

d G N | e » G l | e » e r + i € { 0 , . . . , n } , (5.3)

T = {a- z,A- Z,0 - 9 } ,

where r + denotes positive i teration of the set T.

5.2.2 In trus ion D e t e c t i o n Class i f icat ion

Let us define V as the space of samples, where a sample means the vector of the network
features, which were extracted from a specific connection. A n d let Y be the space of
possible labels. Then let us define X = V x Y as the space of labeled samples. Let
F>tr = {xi,X2, • • • ,xn} be a t ra ining dataset consisting of n labeled samples, where Xi =
(vi G V, yi G Y). The classifier C maps unlabeled sample v G V to a label y G Y:

y = C(v), (5.4)

and learning algori thm A maps the given dataset D to a classifier C:

C = A{Dtr). (5.5)

The notat ion ypredict = A(Dtr,v) stands for the label assigned to an unlabeled sample v by
the classifier C , bu i ld by learning algori thm A on the dataset Dfr. A l l features extracted
from the connection k can be used as an input of the trained classifier C which predicts the
target label:

Vpredict = A(Dtr, f(k)), (5.6)

where ypredict G {Intrusion, Legitimate}.

5.2.3 N o n - P a y l o a d - B a s e d Obfuscat ions

W h e n a remote not obfuscated attack occurs, its communicat ion is expressed as a connection
ka. Then , features extracted from ka can be defined as

f(ka)^Fa = (F?,F?,...,FZ). (5.7)

They are distr ibuted to the formerly trained classifier C. Let us assume that the target
label is predicted by the classifier C as an intrusion correctly. Because the connection ka,

30

Create Output D i r e c t o r y ^ . Read Conf igurat ion File
(target IP + port;l ist of obfuscat ions

A

Select Current Obfuscat ion > [if exploit found]

Adjust Sett ings for Current Obfuscat ion j

i —

Wait for Pressim
Any Key

5s Delay

7K

[else]

7 r
[if semi- auto execut ion]

Start Network Traffic Capture

xl/ •
f Exploit Service |

xl/

(End of Network Traffic Capture \
(wait for arrival of last packets) J

[else]

[else]

xj/

CAutomat ic Snapshot Restore
of A t tacked Machine

[else]

Figure 5.1: Behavioral state diagram of the obfuscation tool from [42].

or connection wi th s imilar behavior properties to ka, was included i n the dataset Dtr and
the classifier C was trained on the dataset Dfr.

W h e n the non-payload-based obfuscator is used to create obfuscated version of a remote
attack wi th connection ka, its connection is defined as k'a. The connection k'a differs from the
original connection ka by its modifications, which changed its network behavioral properties.

The obfuscation tool uses operations, such as insertion, removal, and transformation of
the packets, i n order to modify the Pc and Ps packet sets of the modified connection ka.

The modifications of packet sets Pc and Ps of the connection ka might transform its
features Fa to different ones. Therefore, features, which are extracted from connection k'a

are defined as

f(k'a)*F* = (F?',FZ',...,F?) (5.Í

Hence, here is an assumption that the l ikel ihood of a correct prediction of features Fa

by the classifier C is lower than the l ikel ihood of a correct prediction of features Fa. In
addi t ion to the previous assumption, let us assume that the classifier C' t rained by learning
algori thm A on t raining dataset D'tr, which includes some obfuscated intrusions, is going
to be better at the prediction of unknown obfuscated intrusions than classifier C , which
was not trained on any obfuscated intrusions. These assumptions have been fulfilled w i th
experiments i n [42].

represent ing a specific dimension of a feature.

31

Virtual Machine tcpdump Kali Linux Internet

Figure 6.1: Network infrastructure for capturing attacks and legitimate traffic.

Chapter 6

The Novel Dataset

The goal of this work is to construct a novel dataset intended for the evaluation of net­
work intrusion detection systems. Beside pla in versions of network attacks, the dataset
should contain obfuscated attack instances, which makes the detection more challenging.
Al though such a dataset has been already proposed in the literature [42], the vulnerable
services that were exploited i n that dataset are obsolete, and thus the detection of contem­
porary obfuscated attacks by classifiers using A S N M features is questionable. We a im to
address this l imi ta t ion by creating a novel dataset w i th the most recently discovered remote
vulnerabilit ies (i.e., years 2018 and 2019).

A l l attacks were performed using Metasploi t framework [66] on a machine w i t h K a l i
L i n u x [57] operating system. A l l target machines are v i r tua l appliances running on Or­
acle V M V i r t u a l B o x [58] and during attacks, they were connected to the host machine
using Hos t -Only Adapter [59]. The scheme wi th devices used i n order to record attacks
and legitimate traffic is depicted i n Figure 6.1. A l l used obfuscation techniques and their
instances, which are supported by the N P B O framework, are listed i n Table 6.1. Several
attacks were performed and recorded using tcpdump, each of them generated mult iple T C P
objects, which however included some legitimate connections as well , because always there
was a legitimate connection to a created shell, so they are listed i n the Other Legit imate
Traffic row. Some legitimate communications wi th vulnerable services were simulated in
the v i r tua l environment using the same machines as were used for attack simulations. A l l
T P C objects are listed i n Table 6.2.

6.1 Data Capture and Metrics Extraction

Whole metrics extraction procedure is depicted in Figure 6.2. A l l attacks were recorded
using the N B P O framework, which uses tcpdump [81] as a tool for packet transfer captur­
ing. Thus every attack corresponds to one pcap T C P dump file [81]. These files are stored

32

Technique Parametrized Instance ID

• constant delay: Is (a)
Spread out packets • constant delay: 8s (b)
in time • normal distribution of delay with 5s mean 2.5s standard deviation

(25% correlation)
(c)

Packets' loss • 25% of packets (d)

Unreliable network
channel simulation

• 25% of packets damaged
• 35% of packets damaged
• 35% of packets damaged with 25% correlation

(e)
(f)
(g)

Packets' duplica­ • 5% of packets (h)
tion

Packets' order
modifications

• reordering of 25% packets; reordered packets are sent with 10ms delay
and 50% correlation
• reordering of 50% packets; reordered packets are sent with 10ms delay
and 50% correlation

(i)

(j)

• M T U 1000 (k)

Fragmentation • M T U 750
• M T U 500

(1)
(m)

• M T U 250 (n)

• normal distribution delay (/u = 10ms, a = 20ms) and 25% correla­ (o)
tion; loss: 23% of packets; corrupt: 23% of packets; reorder: 23% of

Combinations packets
• normal distribution delay = 7750ms, a = 150ms) and 25% corre­
lation; loss: 0.1% of packets; corrupt: 0.1% of packets; duplication: 0.1%
of packets; reorder: 0.1% of packets

(p)

• normal distribution delay {fi = 6800ms, a = 150ms) and 25% corre­ (q)
lation; loss: 1% of packets; corrupt: 1% of packets; duplication: 1% of
packets; reorder 1% of packets

Table 6.1: Exper imenta l obfuscation techniques wi th parameters and IDs [42].

in a specially ordered folder structure, which defines what type of attack it is and on which
service was the attack directed against. There is also a folder structure for legitimate com­
munication, which was captured using tcpdump as well . A n d the purpose of the structure
is s imilar to the attacks' folder structure, it identifies which services were used in the packet
communication.

B o t h file structures were passed to special scripts collection called recurs-walker, which
was supplied to me by the supervisor of this thesis. The recurs-walker read a l l the data,
connected to Pos tgreSQL service [80] running on the host machine, and created a database
wi th connections.

Then the second script used (called metrics-extractor) was intended for extraction of
A S N M features and collection was also supplied to me by my supervisor. The metrics-
extractor fetched connection data from the Pos tgreSQL database and performed the ex­
tract ion of A S N M metrics. Ex t rac ted metrics were then saved in a new table i n the database
and wri t ten into an output file using C S V format [72]. The C S V file was then imported
into R a p i d M i n e r Studio [70] local repository. In the impor ta t ion process, some unnecessary
data were removed and datatypes of other data were set. The imported dataset was then
fixed in R a p i d M i n e r Studio using processes described i n Section 7.2.

33

Service Legitimate
Direct

Attacks
Obfuscated

Attacks
Summary

Confluence 99 275 275 649
Drupa l 67 177 399 643

F T P S h e l l Cl ient 80 65 98 243
GetSimple C M S 63 396 1173 1632

Gi tS tack 447 296 398 1141
j Query-Fi le- Upload 79 230 318 627

L i b r e N M S 76 264 368 708
Nagios X I 5.4.12 145 572 657 1374

Nagios X I 5.5.6 224 205 145 574
rConfig 650 136 232 1018

W e b m i n 831 168 276 1275
Other Legit imate

Traffic
6827 N / A N / A 6827

Summary 9588 2784 4339 16711

Table 6.2: Number of T C P objects in the dataset

6.2 Vulnerable Services

Vulnerable services were found i n the Na t iona l Vulnerabi l i ty Database [55], where are listed
C o m m o n Vulnerabil i t ies and Exposures (C V E) . In order to make an up-to-date dataset of
vulnerabilit ies and exploits, C V E s from the years 2018 and 2019 were searched. Hence two
N V D J S O N D a t a Feeds, each corresponding to one year, were downloaded [55]:

• dataset from 2018 in file nvdcve-l.l-2018.json w i th last modification on 25th Novem­
ber 2019 and wi th SHA-256 checksum:
e/87d6/37766e/6e035504ac605d088acece09de/6511a2d0036c231e79d7a2c

• dataset from 2019 in file nvdcve-1.1-2019.json w i th last modification on 12th Novem­
ber 2019 and wi th SHA-256 checksum:
653/95912e8cda06cald4/accd05aa6c4d4d98/a02d9691366e/c24/6ed40c84

Also corresponding Official C o m m o n Pla t form Enumerat ion (C P E) Dic t ionary file official-
cpe-dictionary_v2.3.xml was downloaded [55]. C P E s include important information about
vulnerable technology systems, software, and packages, which are mentioned in each C V E
record. A n example of C V E J S O N record can be found in Append ix B [55]. In order to pro­
cess information i n C V E J S O N objects and i n C P E X M L objects a parser was implemented
and w i l l be described later.

After finding suitable vulnerabili t ies (i.e., remote, cr i t ical , compatible w i th Windows or
L i n u x operating systems, etc.) it was necessary to find exploits for them, which was per­
formed using Exp lo i t Database by Offensive Security [56]. W h e n C V E s and corresponding
exploits were found, some of those which had the vulnerable version easily and were freely
accessible were chosen to be added to the new dataset. In the following, we describe a l l
remotely vulnerable services that were found i n the selected N I S T C V E dataset files.

34

http://nvdcve-l.l-2018.json

3

c

c
o

u

g
s
o
w

s
s
0,

TCP dump files

1 r

Mapping
of services to hosts

Directory
structure

TCP dump
parser

Expert
knowledge
processor

DB importer

Connections
extractor

DB filled with
packet dumps

ASNM
extractor

Labeled TCP
connections

objects

Labeled entries
with features

as CSV file

3 s-
o

Mining & assessment process

Mining tool
(RapidMiner)

Evaluation

Classification
accuracy [%]

& other results
f

Figure 6.2: At tacks and legitimate traffic recording network infrastructure [38]

C V E J S O N and C P E X M L Parser

The parser was developed using P y t h o n programming language and consists of couple of
classes. The main class is called CVEReader, whose constructor requires two parameters
wi th names of input C V E J S O N file and C P E X M L file. In the constructor two more
objects are ini t ia l ized, which are instances of ParserJSON and ParseXML classes. Next
the parse method is launched. The method parse invokes methods i n both parser objects,
which are called the same as the cal l ing method. After parsing is finished the lookup method
is called. The lookup method performs infinite loop, which listens to new commands from
the standard input of the program and executes them. Three simple lookup commands are
implemented: CPE, CVE and index. These commands search for records wi th given C P E ,
C V E or index of the record in given dataset and then print i t . ParserJSON and ParseXML

35

classes implement methods which parse or print given C V E J S O N files or C P E X M L files.
ParseXML class also uses CPEHandler and CPEXML classes, which handle ind iv idua l
C P E objects.

6.2.1 Drupal

D r u p a l is an open-source project, which provides a content-management system [24]. D r u ­
pal is used i n the development of 1.6 % websites worldwide and its content-management
system market share is 2.8% [64].

In this dataset, the attack is based on Metasploi t exploit 44557 [73], which is used to
exploit CVE-2018-7602 [7] vulnerabili ty. The exploit requires an attacker to be authen­
ticated as D r u p a l user and be able to delete a node, then the malicious P O S T method
request [33] can be crafted and sent to the server. The vulnerabi l i ty allows an attacker to
remotely execute code on the machine running D r u p a l [23, 73]. The target machine wi th
Debian 4.9.130-2 is running D r u p a l 7.57.

6.2.2 F T P S h e l l Client

F T P S h e l l Client is a program, which enables an user to connect to a S F T P [88] or F T P S [34]
server and upload or download files. The applicat ion is compatible w i th Windows operat­
ing system and it supports L D A P based Act ive Directory [50] and Windows N T L M [51]
authentication.

This attack is based on Metasploi t exploit f tpshe l l_c l i_bof [65], which is used to exploit
CVE-2018-7573 [6] vulnerabili ty. A n attacking machine starts listening on port 21 and
pretending it is F T P [63] server. Then its target has to t ry to connect to the attacker's
exploit. The exploit sends a response consisting of 400 characters of ' F ' together w i t h the
F T P 220 response code, which leads to the target's applicat ion crash caused by the buffer
overflow. After the overflow, the attacker is able to execute code on the target machine [6].
The target machine wi th Windows 10 Enterprise Evalua t ion is running F T P S h e l l Client
6.70.

6.2.3 GitStack

Gitstack is an open-source git [35] server for the Windows platform. The applicat ion is
based on msysgit [52] and apache web server [78] [74].

This attack is based on Metasploi t exploit gi ts tack_rce [77], which is used to exploit
CVE-2018-5955 [5] vulnerabili ty. In the authentication process, the password is not being
sanitized and s t i l l , it is passed to the exec function. Therefore an attacker might execute
code on target system [76]. The target machine wi th Windows 7 Professional S P 1 is running
Gi tS tack 2.3.10.

6.2.4 j Query-File-Upload

jQuery F i l e Up load is a file upload widget, which supports chunked and resumable file
upload and download. The program was developed i n order to support mult iple server
platforms. It is also possible to preview images, videos, and audio [84].

This attack is based on Metasploi t exploit j query f i le_upload [85], which is used to
exploit CVE-2018-9206 [12] vulnerabil i ty. Due to default configuration i n Apache 2.3.9 [78]
and newer versions the .htaccess file in this widget might not be enabled. Hence the attacker

36

is able to upload arbi t rary P H P file w i th payload to the server and then execute it using
G E T method [33]. The target machine wi th Windows 10 Enterprise Eva lua t ion is running
jQuery F i l e Upload 9.22.0.

6.2.5 L i b r e N M S

L i b r e N M S is an open-source network management software, which supports several operat­
ing systems and network hardware. The applicat ion automatical ly discovers network using
mult iple protocols and is accessible v i a the web interface and A P I [17].

This attack is based on Metasploi t exploit l ib renms_addhos t_cmd_in jec t [49], which is
used to exploit CVE-2018-20434 [4] vulnerabil i ty. The exploit module requires L i b r e N M S
user credentials to authenticate to the applicat ion. The attacker injects his payload into the
community parameter, which is used in the P O S T request [33]. The community parameter,
which was not sanitized is then passed to popen function, thus attacker's code is executed
on the target machine. The target appliance wi th U b u n t u 18.04 is running L i b r e N M S 1.46.

6.2.6 Nag ios X I 5.4.12

Nagios X I is an open-source application, service and network moni tor ing software. It mon­
itors network devices, applicat ion and database servers, etc. It is able to communicate
wi th its users v i a the web interface, emails, short messages, and other communicat ion
channels [32].

This attack is based on Metasploi t exploit nag ios_x i_cha ined_rce_2_e lec t r i c_booga loo [75],
which is used to exploit CVE-2018-8733 [8], CVE-2018-8734 [9], CVE-2018-8735 [10] and
CVE-2018-8736 [11] vulnerabilit ies.

A t first, the attacker sends specially crafted P O S T method request [33] to a vulnerable
P H P file, which sets the database user to root [8]. Then he sends another crafted P O S T
method request, which takes advantage of S Q L injection vulnerabi l i ty i n s e l l n foKey l pa­
rameter i n another P H P file, which allows the attacker to enumerate A P I keys [9]. The next
step is an addi t ion of new Nagios administrative user w i th the next P O S T method request
using gained A P I keys [10]. Then the attacker authenticates as the created user. W h e n
authenticated the attacker sends another crafted P O S T method request, which injects a
command wi th nopasswd sudo to a P H P file causing root shell creation for h i m [11]. The
last step is to remove database user and Nagios administrat ive user, which were created
during exploi tat ion [75, 43].

The target machine wi th Cen tOS 7 is running Nagios X I 5.4.12.

6.2.7 Nag ios X I 5.5.6

Nagios X I is described i n Section 6.2.6. Th is attack is based on Metasploi t exploit na-
g ios_x i_magp ie_debug [47], which is used to exploit CVE-2018-15708 [2] and C V E - 2 0 1 8 -
15710 [3] vulnerabilities.

The attacker sets up his own web server, which responds to access requests w i th P H P
code payload. T h e n he injects crafted parameters into U R L he accesses on the target
system, which are passed to cur l [1] command that is executed on the target server. The
attacked applicat ion accesses the attacker's web server w i th P H P payload and writes it into
a new local P H P file. N o w the attacker is able to execute commands as a local user by
accessing crafted U R L on the target system v ia uploaded P H P file [2, 46].

37

The second part of the exploitat ion is privilege escalation on the target server. It is
possible to run commands as root by running a specific P H P file on the server, which is
enabled to be runnable as root without a password. The P H P file is vulnerable to command
injection into one parameter, which leads to launching a new process executing the attackers
command wi th root privileges [3, 46].

The target appliance wi th U b u n t u 14.04 is running Nagios X I 5.5.6.

6.2.8 Conf luence

Confluence is collaborative software and covers 1.38 % market share [29]. It is useful for
new project organization, decision making, setting goals, etc. The Confluence Server can
be accessed using a web interface and is compatible w i th mult iple platforms [19].

This attack is based on Metasploi t exploit confluence_widget_connector [31], which is
used to exploit CVE-2019-3396 [16] vulnerabil i ty. There is a vulnerabi l i ty in some renders,
where their parameters including Veloci ty Template [79] file pa th are not sanitized and
run. The attackers starts his own F T P [63] server w i t h Veloci ty Template files. T h e n he
injects 2 crafted Veloci ty Template files w i th Java code payload into _ templa te parameter
using the P O S T method request [33], which enables h i m to remotely execute his code. The
attacker does not need to be authenticated [31, 26]. The target machine wi th U b u n t u 14.04
is running Confluence 6.9.0.

6.2.9 G e t S i m p l e C M S

GetSimple C M S is an open-source content management system. The philosophy of the
program is a simple web interface, which includes everything needed, but does not cover
unnecessary features. Th is software has already been downloaded over 120,000 times [27].

This attack is based on Metasploi t exploit gets implecms_unauth_code_exec [82], which
is used to exploit CVE-2019-11231 [13] vulnerabil i ty. Due to the new default configuration
in Apache [78] the .htaccess file does not override the Apache configuration. The attackers
get mult iple files w i th sensitive information from the target server. The sensitive informa­
t ion such as apikey is then used to calculate hashes, which are necessary to create a cookie.
The cookie is then used to access C S R F [60] nonce from a php page using P O S T method
request [33]. The P H P page is vulnerable to path traversal, however, it is not even neces­
sary for the exploit, because there is already the .htaccess file vulnerabili ty. The vulnerable
P H P page allows the attacker to upload his crafted file and does not check it . Therefore the
attacker uploads crafted file w i th his payload and then accesses i t , in order to execute his
code on the target machine [13, 82, 83]. The target appliance wi th Debian 8.11 is running
Getsimple C M S 3.3.15.

6.2.10 r C o n f i g

rConfig is an open-source network device configuration management software. It is possible
to create snapshots of network device configurations, automate miscellaneous tasks, etc.
The tool also supports customization addi t ion. The software has over 8,000 users and
manages over 2 mi l l ion network devices [71].

This attack is based on Metasploi t exploit rconf ig_ ins ta l l_cmd_exec [48], which is used
to exploit CVE-2019-16662 [15] vulnerabil i ty. The exploit requires the instal l subdirectory
to not be removed, which does not happen automatically. The attacker crafts the G E T
method request [33] to a vulnerable P H P page, which is accessible for unauthenticated

38

users. The page uses the rootUname parameter from the G E T method in 2 commands,
while not being sanitized. Therefore the attacker can remotely execute code on the target
machine. Note that since the payload is executed i n 2 commands it is executed twice, thus
wi th default configuration 2 meterpreter sessions are opened [48, 18]. The target appliance
wi th Cen tOS 7 is running rConfig 3.9.2.

6.2.11 W e b m i n

W e b m i n is a u t i l i ty for system adminis t ra t ion of Unix- l ike operating systems. A user
controls the system using a web interface. It is possible to manage services, system config­
uration, sharing, open-source applications, etc. The software removes the need for manual
modification of operating system configuration files. Webmin has been downloaded over a
mi l l ion times [86].

This attack is based on Metasploi t exploit 47230 [54], which is used to exploit C V E -
2019-15107 [14] vulnerabil i ty. The user password change must be enabled for exploitat ion
to be working. A n administrator of the target system has to have „ P r o m p t users w i th
expired passwords to enter a new one" option checked. The attacker sends crafted P O S T
method request [33] to a vulnerable C G I file. There is a command injection vulnerabil­
i ty in parameter old processing while t ry ing to change the password of a user. It is not
necessary for a user to exist and password to be correct. Note that the vulnerabi l i ty was
injected intentionally into the Pe r l source code by an unknown attacker, who created this
backdoor [54, 53]. The target appliance wi th U b u n t u 14.04 is running W e b m i n 1.910.

39

Chapter 7

Data Preprocessing, Forward
Feature Selection and D L Models

In this chapter, we describe the R a p i d M i n e r tool and classifiers used i n our experiments.
D a t a preprocessing, which consists of several tasks, is spread across mult iple sections. The
first task, which prepares data is described in Section 7.2, then interesting features are
selected using Forward Feature Selection (see Section 7.3), and finally some of the data
preprocessing techniques are performed i n process of model t raining, which is described
in Section 7.4. F ina l ly , Cross-Val idat ion was performed wi th models of classifiers trained
on direct and legitimate traffic (also referred to as DL models), which we focus on in
Section 7.5.1.

7.1 RapidMiner

R a p i d M i n e r is a data min ing platform used in over 40,000 organizations [70]. A l l classifiers
and processes, which prepare data, t ra in classifiers, and test them are implemented us­
ing R a p i d M i n e r Studio. In this chapter are described ind iv idua l processes implemented in
R a p i d M i n e r . Sections are organized by specific tasks, which were performed using Rap id -
M i n e r processes. Information about operators i n sections i n this chapter were derived from
R a p i d M i n e r documentation [69] and R a p i d M i n e r operator manual [68].

Notat ion

For the purpose of unified explanation, we adopt the following terminology from the Rap id -
M i n e r Studio [67]:

• Example represents a T C P connection data w i th A S N M features, i.e. a row i n a
table.

• At tr ibute represents an A S N M feature, i.e. a column in a table.

• Operator is a node i n a graph inside a process that can be run, by the process, and
thus perform some specific task, which depends on the operator's type.

• Process is a collection of operators, which can be run and thus launch them i n a
defined order.

40

• Subprocess is a process inside some operator, so when the operator is launched the
subprocess starts.

7.1.1 Classif iers

We used 6 classifiers for dataset evaluation: Naive Bayes (Kernels), Naive Bayes, Decision
Tree, R a n d o m Forest, Support Vector Machine and Logist ic Regression.

Naive Bayes is a parametric model, which uses Bayes' theorem i n order to learn and
classify data. It is a simple probabil ist ic classifier, which does not require very much data to
learn. The classifier is also one of the faster ones. A fundamental property of the classifier is
the fact it assumes that a l l learned features are independent [69]. In performed experiments
is also used Naive Bayes w i th Ke rne l Densi ty Es t imat ion , i.e. Naive Bayes (Kernels), which
makes it non-parametric.

Decision Tree is a classifier that creates a tree structure, where each node corresponds
to a feature of the data. In every node, there is also a condit ion, which depends on the
related feature. The result of the condit ion evaluation determines which chi ld node to go
when classifying the data using already trained Decision Tree. Leafs of the tree represent
the final decision of the classifier [69].

R a n d o m Forest's t ra ining starts w i th spl i t t ing the input dataset into random subsets.
Then for each subset, a new Decision Tree is generated. Each example of data given to the
R a n d o m Forest i n order to get classified is classified by a l l Decision Trees. The result of
classification is then voted by a l l trees [69].

Support Vector Machine 's basic principle is described in Section 2.3.1.
Logist ic Regression is a method that estimates one dependent variable, which has only

two possible values. The estimated variable depends on mult iple independent variables,
which might be miscellaneous data types. The Logist ic Regression uses an S-shaped logistic
dis t r ibut ion function in order to model the data classifier [87].

7.2 Data Preparation

D a t a preparation is d ivided into two separate parts. One of them, described i n Section 7.2.1,
transforms the data into a form wi th better readable information about services and attack
types. In the case of the second part, we filter the data and label their attack types (see
Section 7.2.2).

7.2.1 D a t a T r a n s f o r m a t i o n

The first process is called Data-Transformation-A, which uses several operators w i th miscel­
laneous functionalities. A t first, the Retrieve operator is used to fetch a table w i th A S N M
metrics, which was imported to R a p i d M i n e r from a C S V input file, that was generated
using metrics-extractor described i n Section 6.1. Then the id role is set to id attribute
in the table using a Set Role operator. Two next operators of Replace type rename label
at tr ibute in a l l examples of Nagios X I service because there are two versions of the service
each wi th different vulnerabilit ies and exploits. It is useful to rename them into an easily
readable form, which discriminates each version of the service. T h e n there are some new
attributes generated using Generate At t r ibutes operator, which include attack information
of each example. The process continues setting label role to a label attribute, which signifies
that label at tr ibute is the information about what class is the attack in . So the classifier

41

Figure 7.1: Dataset-Repairment-B process scheme

is t rained to guess the label attr ibute. Next , there are removed some no more needed at­
tributes and renamed recently created attributes. In the end, the attributes are reordered,
in order to make it easier to work wi th the dataset, some are renamed to a better form and
the final table is wri t ten to an output file using Store operator.

7.2.2 D a t a R e p a i r m e n t

The second process for data preparation is called Dataset-Repairment-B, which is depicted
in Figure 7.1. A t the beginning of the process, a Retrieve operator reads the input file
w i th a data table, which was the output of the Data-Transformation-A process. Then the
table is passed into two parallel subprocesses A l l At tacks and Legit imate processes using a
M u l t i p l y operator.

The A l l At tacks subprocess starts w i th filtering its input data using F i l t e r Examples
operator, which matches examples wi th attack data only. The filtered table is then dis­
t r ibuted to 11 subprocesses, each corresponding to one of the attacked services. These 11
subprocesses a l l do almost the same thing. E a c h of them starts by filtering examples wi th
data related to its service only. Then each one's data is filtered by the destination port
of the attack and unmatched data, which has different destination port number is labeled
as other traffic using three Replace attributes. Therefore the attack data is detached from
other traffic, which was captured by tcpdump [81] during attack realization. A l l data from
each subprocess is then united into one table wi th a l l attacks and then the data labeled as
other traffic is labeled as legitimate as well .

The Legit imate process includes only 1 operator of F i l t e r Examples type, which filters
only traffic labeled as legitimate. B o t h processes outputs are then united into one table
wi th a l l labeled data and saved i n the output file using the Store operator.

7.3 Forward Feature Selection

In order to increase efficiency of classifiers Forward Feature Selection was performed. There
are two types of classifiers i n this thesis, the ones trained on legitimate traffic and direct
attacks' data and the ones, which are trained on a dataset including obfuscation attacks.
Therefore each group of them is trained on different datasets, so the feature selection has to
be performed twice. Selected features from direct attacks and legitimate traffic are called

42

D L - F F S . Features from the second run were selected from a l l data, hence they are called
D O L - F F S , where O stands for obfuscated attacks.

A l l selected features are listed i n Table A . l . B o t h tasks were performed using classifiers
of type Naive Bayes (Kernels). The number of D L - F F S is 11 and 14 features were selected
during the D O L - F F S selection process. The only feature, which was selected in both pro­
cesses is intervalsIPsSig, which represents the standard deviat ion of t ime intervals between
consecutive connections of the two hosts running on the same IP addresses as an analyzed
connection [38]. B o t h sets include mostly features based on approximation of communica­
t ion by polynomials, Fast Fourier Transformation of packet sizes, and normalized products
of packet sizes wi th some Gaussian curves and lengths of packets i n intervals of t ime.

7.3.1 I m p l e m e n t a t i o n

Forward Feature Selection is implemented i n process 2cl-FFS, which works wi th label that
has 2 classes. A s input there can be used D O L data, i.e. direct attacks, obfuscated attacks,
and legitimate traffic data, or D L data, i.e. D O L without obfuscated attacks. A t first 2 Set
Macros operators set necessary macros for the process, then D O L 1 1 2 or D L 1 2 file is read
using Retrieve operator and the data is passed to a Remove Useless At t r ibutes operator,
which has same settings as described in Section 7.4.1. Then the data is fixed in operator
Nomina l to B inomina l , which sets label at tr ibute type to b inominal . The fixed data table
is passed to the Forward Selection operator.

The Forward Selection operator has a subprocess, that returns a Performance Vector.
The selection process starts w i th an empty list of selected features. The process consists
of rounds, which have to be performed in order to construct a list of selected features. In
each round, unused features are appended to a new list. For each feature i n the current
round, the performance is measured using some operators included i n the subprocess. In
the case of forward feature selection in this theses, the cross-validation technique was used.
The Cross-Val idat ion operator parameters are configured the same way as described in
Section 7.5.1 w i t h the only difference in local random seed attribute, which is here set to
1987. The Cross-Val idat ion operator includes the same operators as i n Section 7.5.1 as well,
but the ma in criterion in the Performance operator i n the testing phase is set differently.
The ma in criterion is accuracy and other calculated criterions are A U C (optimistic), A U C ,
precision, and recall . The outputs of the Cross-Val idat ion operator are then passed to a
Branch operator using M u l t i p l y operator and at the same time, the number of currently
selected attributes is extracted into attribs macro.

The Branch operator compares the attribs macro wi th the counter macro and i f they
are equal it performs its Then subprocess, else Else subprocess is performed instead. In the
Then subprocess the model and performance vector are saved to files using Store operators
and then the counter macro is incremented using Generate Macro operator. In the Else
subprocess, there are 2 Store operators, which write the model and performance vector to
files.

The feature wi th the best performance is then selected at the end of the round and
added to the selection list.

The Forward Selection operator contains parameters, which define stopping the behav­
ior, max ima l number of attributes, and speculative rounds count. The stopping behavior
parameter was set to „wi thou t increase" value, which influences an operator's behavior to
make it stop when a round does not increase classification performance. This setting was
combined wi th the second parameter, which was set to the max ima l number of 15 attributes

43

and there are 2 speculative rounds enabled. Speculative rounds parameter is the count of
rounds that are allowed to be performed without any increase of performance, which is
useful i n order to deal w i t h local optimums.

In the end, final selected attributes are saved to the output file using a Store operator.

7.4 Mode l Training

In this section are models trained on direct attacks and legitimate traffic, i.e. D L data, and
on a dataset including both D L data and obfuscated attacks, i.e. D O L data. A n d that is
also the reason why these models are called D L Models and D O L Models . Forward Feature
Selection a lgori thm was also used on that data, so D L - F F S and D O L - F F S features were
selected. Therefore a l l models i n this section were trained on D L or D O L data l imi ted to
D L - F F S or D O L - F F S features, which means that a l l testing data passed to these models
are l imi ted to such features as well.

A t first spl i t t ing t ra in data is done in 2cl-Split-Train-Data-attALL process and is de­
scribed bellow i n Section 7.4.1. Then the data is filtered and normalized i f needed (see Sec­
t ion 7.4.2). After it is done there are three data tables w i th fixed D L 1 2 , O L 1 2 , and D O L 1 1 2
data, which are prepared for classification. Before t ra ining processes can be launched the
data needs to be split into subsets and forward feature selection has to be done. The for­
ward feature selection is described i n Section 7.3. Next , the model t ra ining phase can start,
because three data tables are prepared and features as well . The t ra ining phase is described
in Section 7.4.3.

7.4.1 Spl i t t r a i n d a t a

In the beginning, the process read input data using the Retrieve operator. Input data is the
data table, which was produced by Dataset-Repairment-B process described i n Section 7.2.2.
Then some necessary macros are set using 2 Set Macros operators. The next step is to
remove a l l attributes, which contain information about the attack and service type of the
connection using Select At t r ibutes operator and label role is set to a special attribute
label to define what the classifier should learn. The next operator is to Remove Useless
Att r ibutes , which removes attributes from the table based on user-specified thresholds,
which are defined i n the operator's parameters.

The numerical m i n deviat ion parameters are set to 0, which means numerical attributes,
which have the standard deviat ion less than or equal to this deviat ion threshold are re­
moved. Therefore a l l attributes, where a l l examples have the same value are removed. The
nominal useless above parameter sets the threshold for the ratio of most frequent values
to the total number of examples and removes a l l nominal attributes above the user-defined
ratio. However it is set to 1.0, thus latter mentioned parameter does not remove anything.
The nominal useless bellow parameter is similar to the latter one, but it removes nominal
attributes wi th the ratio of least frequent values to the to ta l number of examples, i n other
words, attributes wi th most different values. The latter parameter was set to 0, hence it
removed nothing.

The process continues wi th F i l t e r Examples operator, which performs removal of a l l
examples, which have missing values. Then the data is stored in the D O L 1 2 3 file, which
signifies, that the file includes direct attacks wi th label 1, obfuscated attacks, which are
labeled as 2 and legitimate traffic, which is labeled as 3. A n d after saving to the file the
data is distr ibuted to 3 subprocesses using the M u l t i p l y operator.

44

The first subprocess is called (DL->12), which means it filters direct attacks and legiti­
mate traffic only and assigns their label to 1 and 2 in that order. It consists of 2 operators,
where the former one filters obfuscated attacks out of the data and the second, which
changes legitimate traffic label to 2. The second subprocess is called (OL->12), which
filters obfuscated attacks and legitimate traffic only and changes their labels to 1 and 2
in that order. It uses 3 operators, where the first one filters the communicat ion based on
the type of at tack/ legi t imate label and the other two operators change labels i n a proper
way. The th i rd subprocess is called (DOL->112) and thus the direct attack is labeled 1,
the obfuscated attack is labeled as 1 as well and legitimate communicat ion is labeled as
2. Thus the latter subprocess loses information about the type of each attack. However,
the information about what type of attack the specific example is might be later acquired
using jo in operations wi th data from the original table because a l l examples s t i l l have their
id attr ibute kept. E a c h of the 3 mentioned subprocess passes its output to a Retrieve oper­
ator, which saves the data table into a file. The first one, w i th data table from (DL->12)
subprocess saves it i n the file called D L 1 2 . The next one, w i th data table from (OL->12)
subprocess writes the table into the file called O L 1 2 . The last one, w i th data table from
(DOL->112) subprocess uses the file called D O L 1 1 2 to store i t .

7.4.2 D a t a F i l t e r i n g a n d N o r m a l i z a t i o n

Training processes bo th start by reading prepared D O L 1 2 3 data using Retrieve operator,
then 2 Set Macros operators prepare necessary macros and the data is passed to Select by
Weights operator. Then the attributes file is read using another Retrieve operator and then
delivered to the Select by Weights, which has a weight relation parameter set to „grea ter
equals" value, and the weight parameter is set to 1 value. Since the attributes file contains
only 1 or 0 values only attributes wi th value 1 are selected and these values correspond only
to attributes that were selected by forward feature selection processes. Then the data wi th
F F S features are distr ibuted using M u l t i p l y operator to 3 subprocesses called Prepare DL,
Prepare OL, and Prepare DOL. Ment ioned subprocesses are same as subprocesses called
(DL->12), (OL->12) and (DOL->112), which are described in Section 7.4.1 bellow. Then
the data prepared in these processes are stored in files the same way as in the mentioned
paragraph. Next , each of 3 data tables is passed to the corresponding N o m i n a l to B inomina l
operator, which changes the type of label at tr ibute from nominal to binominal , and thus
the data fit for binary classifiers.

In case of usage of the S V M model or Logist ic Regression model, two more operators
are performed i n order to prepare data for the classifier. The first is N o m i n a l to Numer ica l
operator, which changes data types of attributes defined by its parameters. Its parameter
coding type is set to dummy coding, so for every value of an at tr ibute wi th nominal data type
except comparison group a new attribute is created. The created attr ibute has value 1 in
case of a l l examples, which have the created attribute's ancestor value and 0 i f the ancestor's
value is different. The second is the Normal ize operator, which performs normalizat ion of
examples.

7.4.3 T r a i n i n g Phase

The t ra ining phase starts w i t h 3 data table lines wi th fixed D L 1 2 , O L 1 2 , and D O L 1 1 2
data, which are prepared for classification. In the case of 2cl-Train-on-DL-attDLFFS the
fixed D L 1 2 data table is distr ibuted using the Mul t ip l e operator to two operators, based
on their purpose. In case of 2cl-Train-on-DOL-attDOLFFS the fixed D O L 1 1 2 data table

45

is distr ibuted instead. The first of those operators w i th a given data table is an operator,
which generates a model, for instance, Naive Bayes and the second is an A p p l y M o d e l
operator. The model generating operator uses these data for t raining a new model and
puts the model into its output. The trained model is then distr ibuted using the M u l t i p l y
operator to three A p p l y M o d e l operators. Generally, A p p l y M o d e l operators use their input
models to label their input data. Each of the mentioned 3 A p p l y M o d e l operators has the
trained model as its input model and different data. The first one uses the supplied model
to label D L 1 2 data, the second uses the same model to label O L 1 2 data and the last one
uses the model to label D O L 1 1 2 data. Labeled data from each operator is then passed to
its Performance (Binomina l Classification) operator, while a l l of them are set up the same
way.

Performance operators calculate a bunch of criterions and their outputs are Performance
Vectors [69]. The main cri terion is recall, which means it is used for Performance Vector 's
comparison. There were set up to be calculated these criterions: recall, accuracy, A U G
(optimistic), A U C , A U C (pessimistic), precision and f measure.

• The recall cri terion is calculated as follows:
recall = (true_positive_predictions) / (number _of _positive_examples)

• The accuracy cri terion is calculated as follows:
accuracy = (correct^predictions) / (number _of _examples)

• The A U C (optimistic), A U C and A U C (pessimistic), where A U C stands for A r e a
Under the Curve, the curve is from R O C graph. In the beginning predictions are
sorted by their score from highest to lowest and then the graph is plotted example
by example. The optimist ic A U C plots positive examples before negative ones. The
pessimistic A U C plots negative examples before positive ones. The A U C plots plots
average between optimist ic and pessimistic A U C s .

• The precision criterion is calculated as follows:
precision = (true_positive_predictions) / (all_positive_predictions)

• The f measure cri terion is calculated as follows:
F\ = 2(precision x recall)/(precision + recall)

The process finishes by saving a l l three Performance Vectors and the trained model to files
using four Store operators.

7.5 D L Cross Validation

Cross Val ida t ion is a method to rank the accuracy of a model on a given dataset. The
dataset is split into N subsets w i t h an equal count of samples. T h e n subsets are iterated in
order to t ra in and validate a model . There are two phases of each iteration, the first is the
t ra ining phase and the second is the testing phase. In the t raining phase, N — 1 subsets
are used for t ra ining a new model. W h e n the model is trained the testing phase launches.
Testing data, which is the last subset of the dataset that was not used for training, is passed
to the prepared model . Therefore the model is tested on the data unknown for i t . Then the
next i teration is performed wi th another combinat ion of t ra ining and testing data. Cross
validat ion implementat ion is described i n Section 7.5.1.

46

Classifier T P R F P R F i (|) A v g . Recal l

R a n d o m Forest 99.98%
Naive Bayes (Kernels) 99.34%

Decision Tree 98.94%,
Logist ic Regression 97.63%

Support Vector Machine 97.66%
Naive Bayes 100.00^

0.09% 99.84% 99.95%,
0.02% 99.63% 99.66%
0.58% 98.49% 99.18%,
0.60% 97.79% 98.52%,
0.97% 97.17% 98.35%,

60.57% 48.97% 69.72%

Table 7.1: Cross val idat ion of direct attacks and legitimate traffic

Because the classification is binary the 5-fold cross-validation is used in order to evaluate
the classifiers. Cross val idat ion of D L data is presented i n Table 7.1. The table is sorted by
the F i score i n descending order. In the table can be seen that the most successful is the
R a n d o m Forest classifier w i th 99.84% F i score and the least successful is Naive Bayes w i th
48.97% F i score. However, Naive Bayes classifier has the highest T P R , which is 100.00%,
but probably on behalf of F P R , that is 60.57%, which is abnormally bad compared to other
classifiers, because they a l l have F P R under 1%.

• T P R stands for True Posit ive Rate and is calculated as follows:
TPR = (true_positive_predictions) /(number _of_positive_examples)

• F P R stands for False Posit ive Rate and is calculated as follows:
FPR = (false_positive_predictions) / (number_of' _negative_examples)

• F i stands for F i score, i.e. F measure, which is harmonic mean of precision and
sensitivity and it is definition can be found i n Section 7.4.3.

• A v g . Reca l l stands for Average Recal l , which is described i n Section 7.4.3.

7.5.1 C r o s s V a l i d a t i o n I m p l e m e n t a t i o n

Cross-validation is implemented i n 2cl-X-val-inDL and 2cl-X-val-inDOL processes. F r o m
these processes' names can be derived that the classification is binary and data are a set
of direct attacks and legitimate traffic of services w i th D L - F F S attributes only i n 2cl-X-
val-inDL process and a l l data including the mentioned and obfuscated attacks as well, but
l imi ted to D O L - F F S attributes only are i n 2cl-X-val-inDOL process. Most operators in
both processes are the same and therefore they are both described in this section. There
are two parts of cross val idat ion processes, the first is D a t a Preparat ion, and the second is
Cross Val ida t ion Loop .

D a t a Preparation

The process starts w i t h two Set Macros operators, which set macros w i th information about
the model and working folders of the process. T h e n a Retrieve operator D L 1 2 or D O L 1 1 2
input data, which are data labeled w i t h numbers depending on the type of attack as can
be seen in the name of input data, e.g. i n D O L 1 1 2 , direct and obfuscated attacks are
labeled as 1 and legitimate traffic as 2. The data table is then fixed for a binary classifier
using N o m i n a l to B inomina l operator. In the case of usage of the S V M model or the

47

Logist ic Regression model , two more operators are performed i n order to prepare data for
the classifier as described i n Section 7.4.2.

Normal iza t ion is a process of data example values modification i n order to make them
fit into the required range, which is necessary for some types of classifiers to work properly.
The Normal ize operator supports four methods for normalizing data, and i n this case, it
was configured to use the Z-Transformation method. Z-Transformation, i.e. Stat is t ical
Normal iza t ion is a method that at first subtracts the mean of given data from each value
and then divides every value by the standard deviation. A s a result, the mean of values is
zero and the variance is one. Z-Transformation is a widely used normalizat ion method.

Cross Val idat ion Loop

A fixed data table is passed to the main Loop operator, which has a number of iterations
parameter set to i teration macro, so it loops for as many times as is set in the i teration
macro. The i teration macro is set to 100, because the macro is used the number iterations
is accessible to inner subprocesses, which are executed wi th in every iteration.

In the loop subprocess i n the beginning the Generate Macro operator calculates seed
macro from iteration macro as follows: seed = iteration + 100. The subprocess continues
by passing its input to Cross-Val idat ion operator, which includes 2 subprocesses, one for
t ra ining and one for testing a trained model . The number of folds parameter, which defines
the number of subsets that are iterated, is set to 5. The sampling type parameter is con­
figured to stratified sampling, so the subsets are buil t randomly, thus the class dis t r ibut ion
is the same as i n the whole dataset. In the case of this classifier, which is b inominal the
stratified sampling creates subsets that have approximately the same number of samples
wi th label at tr ibute of its two values. The Cross-Val idat ion operator is also using a local
random seed value, which is defined by prepared seed macro.

In the t ra ining phase, there is one model generating operator, which trains the model
on given t ra ining data and then passes it to the t ra ining phase subprocess output. In
the testing phase, the model given from the previous phase is applied to the testing data
using the A p p l y M o d e l operator. The labeled testing data is then passed to Performance
(Binomina l Classification) operator that is configured to calculate these criterions: A U C ,
precision, recall, and f measure, while the recall cri terion is set as the main criterion.
The criterions are described i n Section 7.4.3. A l l Performance Vectors produced from the
mentioned Performance operator i n each i teration of the val idat ion are averaged into single
Performance Vector, which is then stored i n an output file using a Store operator and passed
into the output of the whole Loop operator.

Therefore the output of the loop subprocess is a collection of averaged Performance
Vectors, which is passed to the Average operator that produces a final Performance Vector
w i th averaged values of the collection. The final Performance Vector is in the end stored in
an output file using a Store operator.

18

Chapter 8

Obfuscated Attacks Detection

Several experiments were performed i n order to evaluate the dataset. There are experi­
ments, which tested classifiers w i th knowledge about legitimate traffic and direct attacks
and their performance of obfuscated attacks classification (see Section 8.1). Then experi­
ments w i th classifiers w i th knowledge widened of obfuscated attacks (D O L Models) , were
performed in Section 8.2 to test their improvement of obfuscated attacks classification, and
there are also experiments testing their durabi l i ty against unknown obfuscation techniques
and instances. A n d F i n a l l y Cross-Dataset Eva lua t ion is summarized in Section 8.3.

8.1 Prediction of Attacks by D L Models

Experiments comparing a l l attacks prediction and obfuscated attacks predict ion are sum­
marized i n Section 8.1.1. The results for successfully obfuscated attacks are described in
Section 8.1.2. At tacks predict ion implementat ion is described in Section 8.1.3. A n analy­
sis of predicted data implementat ion is described i n Section 8.1.4. Three experiments were
performed i n order to evaluate D L Models trained on the novel dataset described i n sections
below.

8.1.1 A l l A t t a c k s vs O b f u s c a t e d A t t a c k s P r e d i c t i o n

Models trained on direct attacks and legitimate traffic were tested on a l l attacks, containing
obfuscated attacks, which are unknown for them. In Table 8.1b are listed results of the
experiment, including the difference of T P R compared to the Table 7.1 w i th cross-validation
on direct attacks and legitimate traffic. There is a significant difference, which shows that
al l attacks struggled to detect data, which contained unknown obfuscations. O n l y i n case
of Naive Bayes w i th difference 0.21% the problem is not as serious as in case of other
classifiers.

The second experiment was the classification of obfuscated attacks only using the same
classifiers. A s can be seen in Table 8.1a w i th the result of the experiment, which contains
a comparison wi th cross-validation as well, a l l classifiers were doing even worse than in
the case of the combinat ion of direct and obfuscated attacks. Therefore we can state that
obfuscated attacks successfully evaded the classification. A g a i n similar si tuation wi th a l l
classifiers took place as in the case of the previous experiment, Naive Bayes stayed as the
best at T P R and other classifiers d id not get better than any other one.

49

Classifier T P R A T P R Classifier T P R A T P R

Naive Bayes 99.65% -0.35% Naive Bayes 99.79% -0.21%
R a n d o m Forest 88.61% -11.37% R a n d o m Forest 93.06% -6.92%

Decis ion Tree 87.44% -11.50% Decis ion Tree 92.31% -6.63%
Naive Bayes (Kernels) 70.02% -29.32% Naive Bayes (Kernels) 81.74% -17.60%

Support Vector Mach ine 55.24% -42.42% Support Vector Mach ine 60.14% -37.52%
Logis t ic Regression 14.08% -83.55% Logis t ic Regression 15.27% -82.36%

(a) Obfuscated attacks only. (b) A l l attacks.

Table 8.1: Predic t ion of attacks including obfuscated ones.

8.1.2 O b f u s c a t e d A t t a c k s Evas ions per Service

This experiment show how much prone are ind iv idua l services to obfuscation attacks' eva­
sions. A l l classifiers were trained on direct attacks and legitimate traffic, and the t ra ining
set was l imi ted to attributes, which were selected by forward feature selection also without
knowledge about obfuscated attacks. Therefore classifiers have no knowledge about obfus-
cations and i n the experiment can be seen how d id classifiers struggle w i th obfuscations
depending on ind iv idua l services.

Every obfuscated attack, which was classified as legitimate traffic is considered as eva­
sion, thus the more evasions the less successful classification was. The results of this experi­
ment are listed in Table 8.2, where are samples counts of obfuscated attacks, the percentage
of evasions for each classifier per service, and finally average of a l l classifier evasions for each
service. In two last rows in the table are calculated aggregation functions per each classifier,
which show how successful obfuscations were.

The most prone service to obfuscated attacks is F T P S h e l l , which is different from a l l
other services i n one feature. The F T P S h e l l exploit nuance is that the vulnerable applicat ion
is on the client's side, i n every other attacks' cases the vulnerabi l i ty in on the server's side.
However, other attacks evasions rate is between 26.8% and 36.78%, so the difference i n the
obfuscation proneness between them and the F T P S h e l l w i t h 44.61% is not significant.

8.1.3 A t t a c k s P r e d i c t i o n by D L M o d e l s I m p l e m e n t a t i o n

Attacks prediction is implemented i n two processes based on what attack data are tested.
These two processes are called 2cl-Prediciton-inDO-attDLFFS and 2cl-Prediction-inOL-
attDLFFS, which means the former one applies given model to a l l attacks, and the latter
one tests obfuscated attacks only.

In the beginning, the process reads the input model file using a Retrieve operator and
passes it to the A p p l y M o d e l operator through two Set Macros operators. Therefore the
model file is read and before it goes to the next usage, macros w i th information about input
data, model, and output folder are set. Then another Retrieve operator launches and reads
O L 1 2 in case of obfuscated attacks prediction or D O L 1 1 2 data files in case of a l l attack
prediction.

In the process, intended for prediction of a l l attacks, the data is passed to F i l t e r E x ­
amples operator, which removes legitimate traffic from it, and hence there are attacks only
left a l l w i t h label 1. Next , i n bo th processes, the label attr ibute in data is fixed for b i ­
nary classifiers using N o m i n a l to B inomina l operator. Then the data is copied using the
M u l t i p l y operator to the A p p l y M o d e l operator, which already has an input model . The

50

Service
Samples

Count

Naive
Bayes

(Kernels)

Naive
Bayes

Decision
Tree

R a n d o m
Forest

Support
Vector

Machine

Logistic
Regression

Average

F T P S h e l l 98 35.33% 0.00% 16.70% 15.65% 100.00% 100.00% 44.61%
Nagiosb 145 19.33% 0.00% 6.00% 4.67% 90.67% 100.00% 36.78%

Confluence 275 28.57% 0.00% 27.03% 10.47% 59.04% 94.51% 36.60%
Drupa l 399 41.48% 0.75% 20.03% 18.25% 64.43% 68.89% 35.64%

Gitstack 398 22.07% 0.98% 4.33% 7.57% 75.08% 100.00% 35.00%
L i b r e N M S 368 40.72% 1.30% 16.61% 15.05% 36.84% 88.18% 33.12%
Get Simple 1173 29.58% 0.00% 11.95% 13.96% 37.75% 88.88% 30.35%

Webmin 276 38.73% 0.00% 35.38% 25.53% 23.60% 52.03% 29.21%
jQuery-Fi le

-Upload
318 25.55% 2.85% 7.93% 12.48% 37.21% 88.94% 29.16%

Nagiosa 657 31.46% 0.00% 7.28% 6.92% 35.28% 92.53% 28.91%
rConfig 232 38.85% 0.00% 11.24% 10.57% 27.87% 72.27% 26.80%

Average 31.97% 0.53% 14.95% 12.83% 53.43% 86.02%
Std. Dev. 7.67% 0.91% 9.58% 5.87% 26.14% 15.36%

Table 8.2: Evasions of Obfuscated At tacks per Service.

A p p l y M o d e l operator uses the model to classify the data and passes labeled data to the
Performance operator, which calculates these criterions, which are listed i n Section 7.4.3,
while the A U C criterion is set as the main one. A Performance Vector is created from
calculated criterions and passed to the Store operator, which stores them i n an output file.
The Performance operator also passes labeled examples to the second Store operator, which
saves them i n a file and passes them to the Wrong predictions filter operator of type F i l t e r
examples w i t h configured condit ion class parameter to wrong predictions value. In so far as
obfuscated attacks prediction process is concerned there is also a F i l t e r Examples operator,
that is configured to remove a l l examples w i th label attr ibute set to 2, thus legitimate traffic
is removed from the data. Then the wrong predictions data is stored i n the th i rd output
file using Store operator.

8.1.4 A n a l y s i s of P r e d i c t e d D a t a

The analysis starts i n 2cl-AnalysisO-inOLres process by defining macros w i th data and
directories information using two Set Macros operators. Then the Retrieve and Split sub-
process, is performed and its five outputs are connected to five branches.

The first branch stores data w i th obfuscated attacks and legitimate traffic to an output
file using a Store operator, which also passes it to the N o m i n a l to B inomina l operator, which
prepares the data for B inomina l Classification Performance operator. The Performance
operator calculates these criterions: accuracy, classification error, A U C , precision, recall,
and F\ measure. A l l mentioned criterions except classification error defined bellow are
described i n Section 7.4.3 [69].

• classification_error = {incorrect predictions) / (number _of _examples)

The Accuracy cri terion is configured as main cri terion. The Performance operator produces
a performance vector, which is passed to the Store operator and wri t ten to an output file.

The second branch uses a Store operator to save the collection of data sets, which include
obfuscated attacks and are split by obfuscation instances. Then the data are delivered

51

using M u l t i p l y operator to Loop (O-split-perfs) Collection operator and Loop, Store and
Log subprocess, that are described i n their own subsections bellow. A l l outputs of both
operators are then connected to Store operators, which save them i n files. The th i rd branch
only saves wrong obfuscated attacks' data into a file using a Store operator. The forth
branch does the same th ing as the previous one, except the data is wrong obfuscated
attacks split into a collection of data sets. F ina l ly , the fifth branch consists of the same
operators as the first branch, the only difference is data, which is l imi ted to obfuscated
attacks only.

After 2cl-AnalysisO-inOLres process is done the process called 2cl-Analysis-PrintToConsole,
which is described i n Analysis Print To Console subsection bellow, can be run i n order to
extract important information from a l l generated files and print it i n a usable form.

Retrieve and Split

The Retrieve and split subprocess begins by reading 3 files w i t h input data by launching
3 Retrieve operators. The first one reads labeled O L 1 2 data, which were produced by
obfuscated attacks prediction process (see Section 8.1.3) and passes them to the first of
2 Jo in operators. The second Retrieve operator reads wrong labeled data, that were also
produced by the process for prediction of a l l attacks (see Section 8.1.3) and deliver them
to the second Jo in operator. The th i rd one reads the data file, which contains a l l data
information about examples including attack types and services, produced by the data
preparation process described in Section 7.2.2.

The th i rd Retrieve operator passes the data to a Set Role operator, that defines the
role of the id attr ibute. T h e n the data is passed to Select A t t r ibu te operator, which selects
only attributes wi th information about attack type, service, and id of each example. Next ,
the selected data go to the Generate At t r ibutes operator, which creates a new attribute
wi th obfuscation information. Later the data is delivered to the right inputs of mentioned
2 Jo in operators using M u l t i p l y operator.

Therefore the first Jo in operator has a l l classified O L data on its left input and the
data wi th attack type, services, and label information on the right input . The operator
is configured to perform left jo in operation w i t h the data. T h e n the joined data is passed
to a Reorder At t r ibutes operator, which puts the data i n the correct order for easier work
wi th it and passes it to a M u l t i p l y operator. Next , the M u l t i p l y operator delivers the data
to the three following operators. The first of them is the Sort operator, which sorts the
data by obfus_label at tr ibute and puts it into the first output of the Retrieve and Split
subprocess. The second operator of type Loop is called Split obfuscations, and i n each of
its 17 iterations, 2 operators are performed of these types: Generate Macros and F i l t e r
Examples . The Generate Macros operator sets the ob (i.e. obfuscation) macro based on
the current i teration, which is read from iteration macro. T h e n F i l t e r Examples operator
then uses mentioned ob macro i n order to filter only examples wi th one type of obfuscation
corresponding to the current i teration. Hence Split obfuscations Loop operator's output
is a collection of selected example sets, which were selected in each iteration. Next , the
collection is passed to a Loop Col lect ion operator, which iterates over the collection and
performs its subprocess for each example set. In each iteration, the example set is passed
to the Generate At t r ibutes operator i n order to generate the wrong attribute, and then
attributes are reordered using the Reorder At t r ibutes operator. The processed data from
al l iterations constitute a new collection of example sets, which is put into the second
output of Retrieve and Split subprocess. The th i rd operator is of F i l t e r Examples type

52

and is configured to select obfuscated attacks only and then pass it to the fifth output of
Retrieve and Split subprocess.

The second Jo in operator in Retrieve and Split subprocess has a l l wrong O L data on its
left input and on the right input is connected the data wi th attack type, services, and label
information. The operator is configured to perform left jo in operation. The joined data is
treated the same way as the first Jo in operator's data as described i n the previous paragraph.
The only difference is that there are only 2 branches, the one wi th Sort operator and the
one wi th Spli t obfuscations Loop operator and Loop Col lect ion operator. B o t h branches
are configured the same as in the case of the previous paragraph, however, obviously, their
outputs are connected to different outputs of Retrieve and Split subprocess. The sorted
data goes from the Sort operator to the th i rd output and the collection of data sets going
from the Loop Col lect ion operator is connected to the fourth output of Retrieve and Split
subprocess.

Loop (O-split-perfs) Collection

This loop iterates over the given collection and i n each i teration it multiplies a given set of
data into two inputs of the Branch operator. The first input is used for condit ion evaluation,
which is defined by condit ion type and condit ion value parameters. Condi t ion type is set to
min__examples and value is set to 1, thus the Then subprocess of the Branch operator w i l l
be performed only i f there is at least 1 example in the input data. The Then subprocess
passes input data to the N o m i n a l to B i n o m i n a l operator, which fixes the data for the next
connected operator of type Performance (Binomina l Classification), which is the same as the
Performance operator described at the beginning of Section 8.1.4. The output performance
vector is passed to the output of the Branch operator. The Else subprocess just passes
its input data to the same output, which is then propagated to the output of whole Loop
(O-split-perfs) Collection.

Loop, Store and L o g

The subprocess begins by preparing necessary macros using Set Macros operator and pass­
ing its input to the Loop Col lect ion operator called Loop and Store.

Loop and Store operator iterates over a collection of data sets, which were split by
obfuscation instances. In each i teration the input data is passed to the inner Split by
label_polyX subprocess, whose outputs are a l l connected to outputs of Loop and Store
operator.

Split by label_polyX subprocess starts by sorting input data by label_polyX attribute
using Sort operator. The sorted data is then passed through Set Macros operator, which pre­
pares needed macros, to an Execute Script operator that executes a manual ly programmed
script. The script goes through the whole data set and finds a l l label_polyX attribute
values, then they are wri t ten into split-label_polyX-list macro. The script also passes its
input data to the output, which is connected to the input of a Loop operator. The Loop
operator's outputs are a l l passed to outputs of Split by label_polyX.

The Loop operator includes scripts which are programmed the way to enable it to be
performed collaterally. A t first, an Execute Script operator performs a script. The script
extracts a value from split-label_polyX-list macro depending on what the current i teration
of the Loop operator is running, and then sets current-label_polyX macro. The data is
passed to a F i l t e r Examples operator, which selects only data based on prepared current-
\abel_polyX macro. Selected data is then sent to another Execute Script operator, which

53

file:///abel_polyX

reads the label_obfus at tr ibute from the data and set obfus-label macro. Next , the data is
delivered to the N o m i n a l to B inomina l operator, which fixes data for the following operator
of type Performance (Binomina l Classification), which is the same as the Performance
operator described at the start of Section 8.1.4. The consequent performance vector is
then saved to an output file using the Store operator, which uses macros mentioned above
to name the file. The input data of the Performance operator is also delivered to Store
operators, which are configured likewise as the latter one. A l l the saved data are passed
from Store operators to the output of the Loop operator.

A l l outputs of the Loop and Store operator are then saved i n files using Store operators.

Analysis Pr int To Console

Process 2cl-Analysis-PrintToConsole starts by performing a Set Macros operator, which sets
the macro wi th information about the input folder, which contains files w i th performance
vectors. Then a subprocess called Work is run.

Work subprocess launches a Retrieve operator, which reads a special file, which includes
information about the folder structure, which is organized per services and obfuscations.
The content of the special file is a collection and thus is processed by F la t t en Col lect ion
operator. Next , the data is sent to Execute Script operator, which creates a set of examples
wi th filenames and passes it to a Loop Values operator. The Loop Values operator then
iterates over the filenames and i n each i teration sets the current filename to a macro. Inside
the loop, a Retrieve operator reads the current file and passes it to Execute Script operator,
which parses the file and prints important information from it to the console.

8.2 D O L Models

D O L models are models, which were trained on legitimate traffic, direct attacks, and obfus­
cated attacks as well, so they were trained on a l l data, i.e. D O L data. D O L - F F S features
were selected from the t ra ining data using the Forward Feature Selection algori thm. Cross
validat ion experiment of a l l data was proceeded (see Section 8.2.1). Other experiments
were performed in order to test how resistant the classifiers are against new unknown ob-
fuscation techniques or instances. In each round, one obfuscation instance or technique
was chosen to be removed from tra ining data for classifiers, and then after the model was
trained, the unknown obfuscation instance was used as testing data. The results of exper­
iments w i th unknown obfuscation instances are in Section 8.2.2, and the experiment w i th
unknown obfuscation technique is described in Seciton 8.2.3.

8.2.1 D O L C r o s s V a l i d a t i o n

A n implementat ion of this experiment is described i n Section 7.5.1. Two calculations were
performed i n order to test bo th sets of selected features. The first one i n Table 8.3a tested
a feature set, which was selected by forward feature selection without knowledge about
obfuscated attacks and the second one i n Table 8.3b tested a set of features, which were
selected using forward feature selection w i t h knowledge about a l l attacks.

The column wi th A T P R in both mentioned tables signs that the results are the difference
between T P R from the current table and the T P R from the table wi th a l l attacks classified
by D L models in Table 8.1b. The column wi th A F P R means a comparison of the current
F P R wi th Table 7.1, which includes results of D L cross-validation.

54

Classifier T P R F P R A T P R A F P R F i (|) A v g . Recal l

R a n d o m Forest
Decision Tree

Naive Bayes (Kernels)
Logist ic Regression

Support Vector Machine
Naive Bayes

99.94% 0.43% 6.88%
99.89% 1.15% 7.58%
97.33% 0.80% 15.59%
96.32% 2.06% 81.05%
96.79% 2.48% 36.65%
99.83% 60.56% 0.04%

0.34% 99.68% 99.76%.
0.57% 99.17% 99.37%.
0.78% 98.11% 98.27%.
1.46% 96.76% 97.13%.
1.51% 96.73% 97.16%.

-0.01% 70.98% 69.64%.

(a) D O L Cross Validation wi th D L F F S features.

Classifier T P R F P R A T P R A F P R F i (t) A v g . Recal l

R a n d o m Forest 99.97% 0.11% 6.91% 0.02% 99.91% 99.93%
Decision Tree 99.71%. 0.18% 7.40% -0.40% 99.73%. 99.77%.

Naive Bayes (Kernels) 98.76%. 0.08%. 17.02% 0.06% 99.33%. 99.34%.
Support Vector Machine 92.07%. 3.45% 31.93% 2.48% 93.61%. 94.31%.

Logist ic Regression 87.69% 5.57% 72.42% 4.97% 89.87%. 91.06%.
Naive Bayes 97.32%. 63.25%. -2.47% 2.68% 68.93%. 67.04%.

(b) D O L Cross Validation with D O L F F S features.

Table 8.3: D O L Cross Val ida t ion .

8.2.2 Single U n k n o w n O b f u s c a t i o n Instance D e t e c t i o n

Results of the experiment are listed i n Table 8.4. Different classifiers were tested i n this
experiment and therefore each row i n the table w i th results corresponds to one unknown
obfuscation instance. A t the end of each row, there is an average score of a l l classifications
of the corresponding obfuscation instance calculated. In two last rows, the average score
and standard deviat ion of the related classifier can be found.

The most dangerous unknown obfuscation instances seem to be the ones, which use
fragmentation into smaller lengths, unreliable network simulat ing ones, and the one that
uses the normal dis t r ibut ion of packet transmission delay. The least dangerous probably
are the ones, which reorder packets and instances that simulate slight differences i n frag­
mentation. Therefore the amount of fragmentation or packet transmission delay is very
cr i t ical for the instance to be successful.

8.2.3 Single U n k n o w n O b f u s c a t i o n T e c h n i q u e D e t e c t i o n

The purpose of this experiment is to assess the abi l i ty of classifiers to detect unknown
obfuscation techniques. This experiment was based on i terating over obfuscation techniques.
In each round, one technique was reserved for testing and other ones were used as t raining
data for a classifier.

In this experiment, most of the tested classifiers have worse results than in the exper­
iment w i th unknown obfuscation instances as expected, because more data was unknown
here for the classifiers. Results i n this experiment also usually differentiate less than i n the
one w i t h obfuscation instances, because instances w i t h most deviated score were arranged
in their techniques' groups.

A s we can see in Table 8.5, where a l l results from the experiment are stored, the most
successful obfuscation techniques are the ones, which use fragmentation, s imulat ion of un-

55

Instance
Samples

Count

Naive
Bayes

(Kernels)

Naive
Bayes

Decision
Tree

R a n d o m
Forest

Support
Vector

Machine

Logistic
Regression

Average

(k) 288 94.79% 96.88% 98.96% 100.00% 93.75% 86.46% 95.14%

(i) 303 100.00% 98.35% 98.02% 100.00% 93.07% 80.86% 95.05%
(o) 276 99.64% 97.83% 97.83% 100.00% 92.03% 82.97% 95.05%

0) 304 100.00% 97.70% 97.70% 100.00% 93.42% 81.25% 95.01%

(1) 281 94.31% 97.87% 100.00% 100.00% 90.75% 86.83% 94.96%

(P) 290 99.66% 98.28% 97.93% 100.00% 92.76% 80.69% 94.89%

(<0 285 99.30% 97.54% 97.19% 100.00% 92.98% 80.00% 94.50%
(b) 18 88.89% 94.44% 100.00% 100.00% 100.00% 83.33% 94.44%

(d) 271 95.57% 95.20% 95.20% 98.89% 87.82% 82.29% 92.50%
(e) 281 97.51% 96.80% 97.87% 100.00% 87.19% 73.31% 92.11%
(h) 320 96.56% 98.13% 96.88% 100.00% 87.81% 73.13% 92.08%
(a) 286 98.25% 97.20% 97.55% 100.00% 84.27% 75.18% 92.07%

(f) 257 94.94% 97.28% 96.89% 99.61% 85.60% 76.27% 91.76%
(m) 281 89.68% 100.00% 92.17% 100.00% 88.97% 78.29% 91.52%

(g) 266 91.73% 95.87% 95.11% 98.87% 85.71% 73.31% 90.10%

(c) 48 72.92% 85.42% 85.42% 100.00% 93.75% 75.00% 85.42%
(n) 284 80.63% 99.30% 92.25% 100.00% 78.52% 59.16% 84.98%

Average
Std. Dev .

93.79%
7.40%

96.71%
3.21%

96.29%
3.57%

99.85%
0.38%

89.91%
4.94%

78.14%
6.58%

Table 8.4: Single Unknown Obfuscation Instance

reliable network channel and the ones which combine mult iple obfuscation approaches. The
least successful and thus the most easily detectable obfuscation techniques are the ones,
which use packets' loss simulation, packets' duplicat ion, and t ime delay of the packet trans­
mission.

8.2.4 I m p l e m e n t a t i o n of U n k n o w n O b f u s c a t i o n Instances a n d Techniques

Evalua t ion of the obfuscated attacks which differentiates instances and techniques is im­
plemented i n 2cl-TrainPrediction-inOL-attDOLFFS-perInstance and 2cl-TrainPrediction-
inOL-attDOLFFS-perTechnique processes. F r o m the names of those processes can be de­
termined that they are designed for binary classification, the input data are expected to be
obfuscated attacks and legitimate traffic and attributes are l imi ted to D O L - F F S only. B o t h
processes are very similar, thus they are described together and a l l differences are expl ici t ly
mentioned.

A t first, the input data, which was produced by Dataset-Repairment-B process described
in Section 7.2.2, is read using a Retrieve operator. Then in case of use of S V M or L R
operators N o m i n a l to Numer ica l and Normalize operators prepare the read data, which
are the same as the ones described in Section 7.4.2. Read data is then passed to Prepare
OL subprocess (see Section 7.4.2), which is delivers it to the Generate At t r ibutes operator,
which adds new attribute called label_obfus and delivers the data to the Select attributes
operator. The Select attributes operator filters just attributes that include information
about attack types and services. Selected data is connected to the right input of the Jo in
operator and on the left input is connected O L 1 2 data, which is read by another Retrieve
operator. Therefore the Jo in operator, which is configured to perform a left j o in operation,
takes obfuscated attacks and legitimate traffic from the left input and adds information

56

Technique
Samples

Count

Naive
Bayes

(Kernels)

Naive
Bayes

Decision
Tree

R a n d o m
Forest

Support
Vector

Machine

Logistic
Regression

Average

(d) 271 95.57% 95.20% 95.20% 98.52% 87.82% 82.29% 92.44%
(h) 320 96.56% 98.13% 96.88% 100.00% 87.81% 73.13% 92.08%

(abc) 352 92.33% 95.74% 95.46% 100.00% 85.23% 75.57% 90.72%

(«) 607 100.00% 98.02% 71.66% 100.00% 93.25% 80.73% 90.61%
(opq) 851 99.30% 98.12% 73.91% 100.00% 92.60% 77.67% 90.27%
(efg) 804 90.92% 96.52% 96.77% 99.75% 83.83% 70.15% 89.66%

(klmn) 1134 80.60% 98.68% 70.19% 99.12% 85.27% 70.90% 84.13%

Average
Std. Dev.

93.61%
6.63%

97.20%
1.36%

85.72%
12.97%

99.63%
0.59%

87.97%
3.68%

75.78%
4.71%

Table 8.5: Single Unknown Obfuscation Technique

about which obfuscation was used and what service was attacked from the right input.
Then the data is prepared using Reorder At t r ibutes and N o m i n a l to B inomina l operators
for the b inominal performance evaluation and are sent to the next operator of type Loop .

In the case of t ra ining and prediction per instance process, the Loop operator is called
Predict per Instance and has 17 iterations set i n its parameters, because there are 17
obfuscation instances. However, i n the case of a process, that trains and predicts per
technique, the operator is called Predict per Technique and is configured for just 7 iterations,
because there are just 7 obfuscation techniques. B o t h variants of the Loop operator are
quite similar, so they are described together w i t h the same as the processes.

Predict per Instance/Technique

Each i teration of the loop starts w i th 2 Set Macros operators, which prepare necessary
macros, and then 2 most important operators, which constitute the core of the process
proceed. The first one is a Generate Macro operator, that reads the i teration macro, uses it
to determine which obfuscation should be selected i n this i teration, and writes it to ob macro
in case of predict ion per instance. In so far as prediction per technique is concerned the
Generate Macro operator sets 4 macros w i t h information about what instances are present
in the current technique. The second core operator is F i l t e r Examples operator, which uses
generated macros i n order to select the right instance or instances of obfuscation attacks for
the current i teration and also sends a l l unmatched examples to its second output. Thanks
to this design it is possible to run the whole loop collaterally.

B o t h matched and unmatched data are then saved i n files using Store operators and then
passed to Select At t r ibutes operators, which remove excrescence labels about services and
attack types, which could also corrupt learning and predict ion procedures. The unmatched
data, which do not include current obfuscation instances are passed to the model generating
operator, which trains a model on them. Next , the model is stored using a Store operator
and then delivered to the A p p l y M o d e l operator. The matched data is connected to the
A p p l y M o d e l as well, so the model is tested on them. Resul t ing labeled data is then sent to
Performance (Binomina l Classification) operator, which calculates criterions described in
Section 7.4.3. T h e n the produced performance vector is saved to a file using Store operator,
and i n the end, it is delivered to the Execute Script operator, which performs a script that
extracts cr i t ica l information from the data and macros and prints results.

57

Classifier T P R F P R F i (t)

Decis ion Tree
R a n d o m Forest

Na ive Bayes (Kernels)
Naive Bayes

86.41%
63.28%
54.37%
62.81%

5.54%
3.24%
3.02%
9.40%

61.72%
58.06%
52.97%
39.07%

(a) Classifiers trained on the novel dataset in
tested on A S N M - N P B O - v l dataset [39].

Section 6

Classifier T P R F P R F i (t)

Na ive Bayes (Kernels)
Naive Bayes

Decis ion Tree
R a n d o m Forest

37.57%
28.61%
24.67%
9.20%

13.35%
11.46%
2.16%
0.06%

48.31%
39.73%
38.67%
16.83%

(b) Classifiers trained on A S N M - N P B O - v l dataset [39]
tested on the novel dataset in Section 6.

Table 8.6: Cross-Dataset Evaluat ion .

8.3 Cross-Dataset Evaluation

In Cross-Dataset evaluation the novel dataset (described i n Section 6) and the state-of-
the-art dataset A S N M - N P B O - v l [39] are cross evaluated. The Evalua t ion process consists
of t ra ining a classifier on the first dataset and then testing in on the second one and vice
versa. Cross-dataset evaludation experiments implementat ion is described in Section 8.3.1.
A l l data including obfuscated attacks were used i n this experiment and the result can be
found i n Table 8.6. There are significant differences between models of the same classifiers
trained on different datasets, for instance, Decision Tree reaches much better T P R i n the
case of testing on A S N M - N P B O - v l dataset than in the case of doing it vice versa. However,
in the case of Decision Tree tested on the novel dataset, the classifier's F P R is significantly
better. After sorting the results, no classifier ended on the same "rank" in both tables. A n
interesting fact is also that classifiers trained on the novel dataset performed better than
classifiers trained on the A S N M - N P B O - v l dataset. The reason might be the fact novel
dataset contains more vulnerabili t ies than the A S N M - N P B O - v l dataset.

8.3.1 C r o s s - D a t a s e t E v a l u a t i o n I m p l e m e n t a t i o n

Cross-dataset evaluation is implemented i n 2cl-X-Dataset-Evaluation process. The process
starts by reading input datasets w i t h D O L 1 2 3 data using two Retrieve operators. Then
a file w i th D O L F F S attributes selected from the novel dataset is read using another Re­
trieve operator. After it is done, the attributes are filtered from the dataset table using
Select by Weights operator, which uses the dataset table and attr ibute table as its inputs.
D O L F F S attributes selected from A S N M - N P B O - v l dataset [39] are filtered using the Select
At t r ibutes operator, which includes information about the attributes. There are also two
more D O L F F S filtering operators, which are the same as above, but they filter different
datasets than attributes. Datasets and attributes are delivered using three M u l t i p l y oper­
ators. Therefore four branches wi th data are prepared as a result of previous operations.

Next in the first branch (with D O L F F S and D O L 1 2 3 from the novel dataset) are per­
formed two Set Macros operators, which prepare macros w i t h model, data, and folders

58

information. A l l four branches continue by passing their data to Prepare D O L 1 1 2 a t t F F S
subprocesses, which are a l l the same. Prepare D O L 1 1 2 a t t F F S subprocess consists of two
Replace operators only, which change values of label at tr ibute from 2 to 1 (obfuscated at­
tacks get label 1 same as direct attacks) and 3 to 2 (legitimate traffic gets label 2). Then
Nomina l to B inomina l operators fix label data types for binary classifiers.

The branches, which include data wi th attributes both from the same dataset are de­
livered using the M u l t i p l y operators to two new branches for each. One of each two sub-
branches passes the data to the model generating operator and the second passes the data
to the A p p l y M o d e l operator, which got a model from the model generating operator. B o t h
trained models are delivered using the M u l t i p l y operators to two A p p l y M o d e l operators,
the mentioned ones, which apply the models to their t ra ining data and the ones that apply
models to data from different datasets. A l l labeled data from each A p p l y M o d e l operator
are passed to Performance (Binomina l Classification) operators, which are configured the
same as described i n Section 7.4.3. A l l calculated performance vectors are then saved in
output files using Store operators, and the same is done wi th trained models. The labeled
data is saved as well, and then it is passed to F i l t e r Examples operators, which are con­
figured to filter wrong classified examples only, which are then stored too. In the end, the
data is analyzed using the process described in Section 8.1.4.

8.3.2 C r o s s - D a t a s e t E v a l u a t i o n per Service

In Table 8.7 wi th obfuscated attacks detected by classifiers trained on the novel dataset in
Section 6 tested on A S N M - N P B O - v l dataset [39] per services can be seen that Apache,
Samba and D i s t C C services were detected much more easily than other ones. A n average
T P R of mentioned services ranges from 88.97% to 96.76%. The second group consists
of Server and Pos tgreSQL, which were not detected as well as i n the first case, but the
average T P R is significantly influenced by the Naive Bayes (Kernels), which classified them
hardly wi th 4.9% and 8.04% only success. The toughest problem for classifiers is obfuscated
attacked targeted to M S S Q L . The most successful classifier is Decision Tree w i t h 93.82%.
of detected obfuscated attacks.

The second table presents the results of obfuscated attacks detected by classifiers trained
on the A S N M - N P B O - v l dataset [39] tested on the novel dataset in Section 6 per services.
Most services ranged from 15.3% to 47.39% detection success on average. There are two
obfuscated service attacks hard to detect Confluence and F T P S h e l l . The interesting fact
about F T P S h e l l is that the client applicat ion is attacked by the server, maybe that is
the reason no attacks targeted to F T P S h e l l was detected because it phenomenally differ­
entiates from other attacks. The best performance was measured i n Gits tack detection
wi th 70.38%, where was especially successful Naive Bayes (Kernels) classifier w i th 91.33%
detected obfuscated attacks.

8.3.3 C r o s s - D a t a s e t E v a l u a t i o n per O b f u s c a t i o n Instance

Obfuscated attacks detected by classifiers trained on the novel dataset in Section 6 tested on
A S N M - N P B O - v l dataset [39] per obfuscation instances are listed i n Table 8.9. The results
per instance on average range from 54.54% to 82.22%. The easiest to detect are obfuscation
instances that modify packets' order or duplicate packets. The classifiers struggled to detect
instances, which delayed the communicat ion, fragmented packets into low size and instances
that combined miscellaneous obfuscation techniques.

59

Service
Samples

Count

m aive
Bayes

(Kernels)

Naive
Bayes

Decision
Tree

R a n d o m
Forest

Average

Apache 163 91.79% 96.52% 98.75% 100.00% 96.76%
Samba 44 84.80% 95.10% 94.12% 94.12% 92.03%

D i s t C C 23 61.76% 94.12% 100.00% 100.00% 88.97%
PostgreSQL 45 4.90% 66.67% 100.00% 77.45% 62.25%

Server 100 8.04% 64.12% 99.02% 62.75% 58.48%
M S S Q L 103 48.88% 0.00% 71.01% 1.82% 30.43%

Average
Std. Dev.

50.03%
37.13%

69.42%
37.04%

93.82%
11.39%

72.69%
37.67%

Table 8.7: Obfuscated attacks detected by classifiers trained on the novel dataset in Sec­

t ion 6 and tested on A S N M - N P B O - v l dataset [39] per services.

„ . Samples
Service „ J Count

Naive
Bayes

(Kernels)

Naive
Bayes

Decision
Tree

R a n d o m
Forest

Average

Gitstack 398 91.33% 63.86% 38.75% 11.26% 70.38%
rConfig 232 15.47% 95.56% 13.75% 7.16% 47.39%
Drupa l 399 41.34% 34.66% 82.29% 19.37% 45.60%

L i b r e N M S 368 47.24% 33.68% 38.57% 35.02% 39.20%
Nagiosb 145 18.00% 63.33% 8.67% 0.00% 35.65%
Webmin 276 17.97% 31.12% 33.40% 8.19% 26.18%
Nagiosa 657 36.26% 21.89% 8.86% 7.08% 25.94%

Get Simple 1173 37.08% 13.70% 19.61% 2.79% 24.32%
jQuery-Fi le- Up load 318 33.83% 0.00% 13.10% 0.00% 15.30%

Confluence 275 3.01% 0.00% 0.00% 0.00% 1.24%
F T P S h e l l 98 0.00% 0.00% 0.00% 0.00% 0.00%

Average
Std. Dev.

31.05%
33.06%

32.53%
25.95%

23.36%
31.27%

8.26%
8.05%

Table 8.8: Obfuscated attacks detected by classifiers trained on A S N M - N P B O - v l

dataset [39] tested on the novel dataset i n Section 6 per services

60

Instance
Samples

Count

Naive
Bayes

(Kernels)

Naive
Bayes

Decision
Tree

R a n d o m
Forest

Average

(i) 27 65.00% 83.33% 100.00% 80.56% 82.22%
(h) 30 63.89% 83.33% 100.00% 80.56% 81.94%

0) 27 50.00% 83.33% 100.00% 83.33% 79.17%
(k) 27 52.78% 83.33% 100.00% 80.56% 79.17%

(g) 26 62.78% 73.33% 94.44% 83.33% 78.47%

(1) 27 52.78% 83.33% 100.00% 77.78% 78.47%
(e) 26 66.67% 77.78% 100.00% 63.89% 77.08%
(o) 28 57.41% 83.33% 83.33% 83.33% 76.85%
(m) 27 49.44% 83.33% 100.00% 66.67% 74.86%

(d) 30 44.44% 72.22% 97.22% 77.78% 72.92%
(a) 28 61.11% 66.67% 83.33% 75.00% 71.53%

(f) 28 40.00% 60.56% 88.89% 77.78% 66.81%

(P) 33 40.15% 48.48% 88.89% 66.67% 61.05%

(<0 35 40.28% 38.89% 91.67% 69.44% 60.07%
(n) 27 36.11% 83.33% 77.22% 33.33% 57.50%
(b) 22 26.67% 40.00% 96.67% 60.00% 55.83%
(c) 30 30.16% 26.11% 92.86% 69.05% 54.54%

Average
Std. Dev.

49.39%
12.50%

68.86%
19.09%

93.80%
7.23%

72.30%
12.47%

Table 8.9: Obfuscated attacks detected by classifiers trained on the novel dataset in Sec­
t ion 6 and tested on A S N M - N P B O - v l dataset [39] per obfuscation instances.

In Table 8.10 there are obfuscated attacks detected by classifiers trained on A S N M -
N P B O - v l dataset [39] tested on the novel dataset in Section 6 per obfuscation instances.
Most instances' scores ranged from 29.23% to 32.36%, however, there were significant dif­
ferences between ind iv idua l classifiers. Mos t attacks evaded using obfuscation instances
that used the normal dis t r ibut ion of packets transmission delay, packets' duplicat ion, and
the most extreme fragmentation technique instance, which fragmented the communicat ion
into the smallest data objects.

61

Instance
Samples

Count

Naive
Bayes

(Kernels)

Naive
Bayes

Decision
Tree

R a n d o m
Forest

Average

(m) 281 32.13% 32.60% 16.72% 4.55% 32.36%
(b) 18 58.75% 25.00% 12.50% 6.25% 32.08%

(e) 281 33.54% 30.61% 26.17% 13.25% 32.08%

(<0 285 30.24% 33.45% 25.50% 8.91% 31.85%

(g) 266 37.35% 31.37% 26.59% 13.80% 31.77%

(P) 290 31.03% 32.11% 25.01% 9.66% 31.57%

(i) 303 31.74% 33.72% 25.76% 9.65% 31.31%

(1) 281 34.64% 32.59% 16.96% 5.68% 31.17%
(o) 276 30.02% 32.23% 24.68% 9.41% 31.13%

(f) 257 33.82% 31.27% 27.81% 14.78% 31.10%
(d) 271 34.36% 31.38% 25.04% 11.09% 30.26%
(k) 288 32.16% 33.40% 24.32% 4.17% 29.96%
(a) 286 36.57% 26.14% 26.01% 6.47% 29.57%
(h) 320 31.32% 31.24% 25.19% 7.63% 29.25%

0) 304 32.12% 32.52% 25.20% 9.88% 29.23%
(n) 284 23.25% 30.71% 29.55% 4.55% 26.98%

(c) 48 20.54% 23.61% 18.55% 4.17% 20.90%

Average 33.15% 30.82% 23.62% 8.46%
Std. Dev. 7.81% 3.00% 4.57% 3.44%

Table 8.10: Obfuscated attacks detected by classifiers trained on A S N M - N P B O - v l

dataset [39] and tested on the novel dataset i n Section 6 per obfuscation instances.

62

Chapter 9

Conclusion

In the first part of this work, we focus on the existing taxonomies of intrusion detection
systems. Art ic les that describe network intrusion systems taxonomy differ i n many cases
[45, 20, 30]. Thus it was necessary to split descriptions by the origin of the description, in
cases of those which differentiated from each other, for example, anomaly-based detection
principles. Based on fundamental characteristics the taxonomy was united and extended
from mentioned works.

Adversar ia l attacks were divided by phases of the intrusion detection system which is
considered as the target of these attacks. The divis ion is based on a taxonomy by Igino
Corona et a l . [28], where his general description of intrusion detection system architecture
consists of three parts: event generators, event analyzers, and response units, where each
part represents one functionality phase.

The taxonomy of attacks against classification-based intrusion detection systems con­
sists of three main types of attacks based on their objective as described in [25]. The first of
them is exploratory attack, which is designed to gain as much information as possible from
the attacked system. There is also evasion type of attacks, whose objective is to intrude the
system, and its tactic is based on evasion of the intrusion classifier. The last type of attack
is poisoning attacks, which tries to contaminate the t ra ining data set of the target system
i n order to manipulate its recognition capabilities.

In the second part of our work, we focus on evasion attacks performed using Non-
Payload-based Obfuscations. In detail , we start by the description of the Non-Payload-
based Obfuscation framework [42] and Advanced Security Network Metr ics [39]. The
framework provides an abi l i ty to obfuscate exploits i n order to evade detection of the
target intrusion detection system. A big advantage of this framework is that it is working
in an exploit-independent way, thus it is able to obfuscate given attack without the need for
manual modification of i t . Experiments i n [42] showed that by adding obfuscated exploits
into t raining datasets for the classifier of the IDS, the performance of other obfuscated
attacks detection of such trained IDS was improved. However, these results were obtained
using outdated vulnerabili t ies and they were not proven for the recent vulnerabilit ies and
techniques of targeted attacks, which is the goal of this work.

In order to develop, test, and improve classification-based intrusion detection systems,
the novel dataset was created i n this work. The dataset consists of A S N M features ex­
tracted from records of legitimate traffic, direct attacks, and obfuscated attacks, which
were targeted against 11 vulnerable services. A l l vulnerabili t ies were found i n the Nat iona l
Vulnerabi l i ty Database [55], where they can be identified as C o m m o n Vulnerabil i t ies and

63

Exposures (C V E) . C V E s i n the dataset were published i n 2018 and 2019. A l l exploits
used to attack the vulnerabilit ies were downloaded from the Exp lo i t Database by Offensive
Security [56].

In our experiments, Forward Feature Selection was used i n order to select the best A S N M
features for attack detection. Six classifiers were tested i n this thesis. For example, the per­
formance of Naive Bayes w i th Ke rne l Densi ty Es t ima t ion classifier, which had knowledge
about direct attacks and legitimate traffic only, achieved 99.34% true positive rate (T P R) of
detecting direct attacks i n cross-validation experiment, while the false-positive rate was very
low (i.e., 0.02%). T h e n obfuscated attacks were classified by the mentioned classifier result­
ing i n 70.02% T P R , which worse by 29.32%. Therefore, the obfuscated attacks successfully
evaded the classification process. The improvement of the classifier was accomplished by
widening its knowledge of obfuscated attacks, which were added into t ra ining data. The
classifier achieved 98.76% T P R i n cross-validation over the whole dataset, which is 17.02%.
better than the score of classification of a l l attacks using classifier without knowledge about
obfuscated attacks, while T P R was deteriorated only slightly (i.e., by 0.06%).

Next , the detection capabil i ty of classifiers to unknown obfuscation instance was tested.
For example, the Naive Bayes w i th Ke rne l Densi ty Es t ima t ion classifier was on average able
to detect 93.79% of obfuscated attacks, which were obfuscated using obfuscation instance
unknown for the classifier. A similar experiment was performed wi th obfuscation techniques,
where the classifier scored 93.61% T P R in the case of detecting attacks obfuscated using
an unknown obfuscation technique.

Final ly , a cross-dataset evaluation was performed w i t h the novel dataset and A S N M -
N P B O - v l dataset [39]. The Naive Bayes w i th Ke rne l Densi ty Es t imat ion classifier trained
on the novel dataset achieved 54.37% T P R and 3.02% F P R on A S N M - N P B O - v l dataset
attacks detection. In the case of the same classifier t rained on the A S N M - N P B O - v l dataset
and validated on the novel dataset, the T P R achieved was equal to 37.57% while F P R
was equal to 13.35%. The best classifier was Decision Tree trained on the novel dataset,
which resulted i n 86.41% T P R and 5.54% F P R score when doing val idat ion on the A S N M -
N P B O - v l dataset. In sum, the "backward" detection achieved better results than the
forward detection. Th is indicates the importance of retraining the classifiers w i th the novel
datasets and techniques used in the contemporary attacks, while classifiers trained using
the o ld vulnerabili t ies are more susceptible to targeted attacks wi th obfuscations.

In future work, the research might focus on widening t ra ining datasets and comparing
attacks focused on different vulnerable services, because i n the cross-dataset evaluation
significant differences between detection abi l i ty of unknown attacks focusing on various
services were discovered. For instance, classifiers trained on the novel dataset detected
96.76% Apache attacks on average and just 30.43% M S S Q L attacks.

64

Bibliography

[1] Curl(l) Linux User's Manual. August 2014.

[2] CVE-2018-15708. [Available from M I T R E , C V E - I D CVE-2018-15708.] . 2018 [cit.
2020-04-18]. Available at:
https: / / cve.mitre.org/ cgi-bin/cvename.cgi?name=CVE-2018-15708.

[3] CVE-2018-15710. [Available from M I T R E , C V E - I D CVE-2018-15710.] . 2018 [cit.
2020-04-19]. Available at:
https: / / cve.mitre.org/ cgi-bin/cvename.cgi?name=CVE-2018-15710.

[4] CVE-2018-20434. [Available from M I T R E , C V E - I D CVE-2018-20434.] . 2018 [cit.
2020-04-18]. Available at:
https: / / cve.mitre.org/ cgi-bin/cvename.cgi?name=CVE-2018-20434.

[5] CVE-2018-5955. [Available from M I T R E , C V E - I D CVE-2018-5955.] . 2018 [cit.
2020-04-18]. Available at:
https: / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5955.

[6] CVE-2018-7573. [Available from M I T R E , C V E - I D CVE-2018-7573.] . 2018 [cit.
2020-04-17]. Available at:
https: / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7573.

[7] CVE-2018-7602. [Available from M I T R E , C V E - I D CVE-2018-7602.] . 2018 [cit.
2020-04-17]. Available at:
https: / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7602.

[8] CVE-2018-8733. [Available from M I T R E , C V E - I D CVE-2018-8733.] . 2018 [cit.
2020-04-18]. Available at:
https: / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8733.

[9] CVE-2018-8734. [Available from M I T R E , C V E - I D CVE-2018-8734.] . 2018 [cit.
2020-04-18]. Available at:
https: / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8734.

[10] CVE-2018-8735. [Available from M I T R E , C V E - I D CVE-2018-8735.] . 2018 [cit.
2020-04-18]. Available at:
https: / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8735.

[11] CVE-2018-8736. [Available from M I T R E , C V E - I D CVE-2018-8736.] . 2018 [cit.
2020-04-18]. Available at:
https: / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8736.

65

http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/

[12] CVE-2018-9206. [Available from M I T R E , C V E - I D CVE-2018-9206.] . 2018 [cit.
2020-04-18]. Available at:
h t tp s : / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9206.

[13] CVE-2019-11231. [Available from M I T R E , C V E - I D CVE-2019-11231.] . 2019 [cit.
2020-04-18]. Available at:
h t tp s : / / cve.mitre.org/ cgi-bin/cvename.cgi?name=CVE-2019-11231.

[14] CVE-2019-15107. [Available from M I T R E , C V E - I D CVE-2019-15107.] . 2019 [cit.
2020-04-18]. Available at:
h t tp s : / / cve.mitre.org/ cgi-bin/cvename.cgi?name=CVE-2019-15107.

[15] CVE-2019-16662. [Available from M I T R E , C V E - I D CVE-2019-16662 .] . 2019 [cit.
2020-04-18]. Available at:
h t tp s : / / cve.mitre.org/ cgi-bin/cvename.cgi?name=CVE-2019-16662.

[16] CVE-2019-3396. [Available from M I T R E , C V E - I D CVE-2019-3396.] . 2019 [cit.
2020-04-18]. Available at:
h t tp s : / / cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3396.

[17] A R M S T R O N G , A . and L I B R E N M S C O N T R I B U T O R S . LibreNMS [online]. 2020 [cit.
2020-04-18]. Available at: ht tps: / /www.librenms.org/ .

[18] A S K A R . RConfig v3.9.2 authenticated and unauthenticated RCE (CVE-2019-16663)
and (CVE-2019-16662) [online]. 2019 [cit. 2020-04-19]. Available at:
h t tp s : / / s h e l l s , systems/rconf i g - v 3 - 9 - 2 - au thent ica ted- and-unauthent icated-rce-
c v e - 2 0 1 9 - 1 6 6 6 3 - a n d - c v e - 2 0 1 9 - 1 6 6 6 2 / .

[19] A T L A S S I A N . Confluence [online]. 2020 [cit. 2020-04-18]. Available at:
h t tp s : / / www.atlassian.com/software/confluence.

[20] A X E L S S O N , S. Intrusion detection systems: A survey and taxonomy. Technical
report, 2000.

[21] B A R R E N O , M . , N E L S O N , B . , J O S E P H , A . D . and T Y G A R , J . D . The security of
machine learning. Machine Learning. Springer. 2010, vol . 81, no. 2, p. 121-148.

[22] B i G G i O , B . , N E L S O N , B . and L A S K O V , P . Support vector machines under adversarial
label noise. In: Asian Conference on Machine Learning. 2011, p. 97-112.

[23] B L A K L I S . Drupal < 7.58 - 'Drupalgeddon3' (Authenticated) Remote Code Execution
(PoC) [online]. 2018 [cit. 2020-04-17]. Available at:
h t tp s : / /www.exploi t -db .com/exploi t s /44542.

[24] B U Y T A E R T , D . and D R U P A L C O M M U N I T Y . Drupal About [online]. 2020 [cit.
2020-04-17]. Available at: https://www.drupal.org/about.

[25] C H A K R A B O R T Y , A . , A L A M , M . , D E Y , V . , C H A T T O P A D H Y A Y , A .
and M U K H O P A D H Y A Y , D . Adversar ia l attacks and defences: A survey. ArXiv preprint
arXiv:1810.00069. 2018.

66

http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
https://www.librenms.org/
http://www.atlassian.com/
http://www.exploit-db.com/exploits/44542
https://www.drupal.org/about

[26] C H Y B E T A . SSTI and RCE in Confluence Server via Widget Connector [online]. 2 0 1 9
[cit. 2020-04-19] . Available at:

https://chybeta.github.io/2019/04/06/Analysis-for-7.E37.807.90CVE-2019-33967.E37.

807.91-SSTI-and-RCE-in-Confluence-Server-via-Widget-Connector/.

[27] C M S , G . GetSimple CMS [online]. 2 0 2 0 [cit. 2020-04-18] . Available at:
h t t p : / / g e t - s i m p l e . i n f o / .

[28] C O R O N A , I., G I A C I N T O , G . and R O L I , F . Adversar ia l attacks against intrusion
detection systems: Taxonomy, solutions and open issues. Information Sciences.
Elsevier. 2 0 1 3 , vol . 2 3 9 , p. 2 0 1 - 2 2 5 .

[29] D A T A N Y Z E . Confluence Market Share [online]. 2 0 2 0 [cit. 2020-04-20] . Available at:
http://web.archive.org/save/https : //www.datanyze.com/market-share/team-
collaborat ion—267 /confluence-market-share.

[30] D E B A R , H . , D A C I E R , M . and W E S P I , A . A revised taxonomy for intrusion-detection

systems. In: Springer. Annales des telecommunications. 2 0 0 0 , vol . 5 5 , 7 - 8 , p . 3 6 1 - 3 7 8 .

[31] D M I T R I E V , D . and S H C H A N N I K O V , D . r. Atlassian Confluence Widget Connector
Macro Velocity Template Injection [online]. 2 0 1 9 [cit. 2020-04-18] . Available at:
h t tp s : / /gi thub.com/rapid7 /metasploi t - f ramework/blob/master /modules/exploi ts /
multi /http/confluence_widget_connector.rb.

[32] E N T E R P R I S E S , N . Nagios XI [online]. 2 0 2 0 [cit. 2020-04-18] . Available at:

h t tps : //www.nagios.com/products/nagios-xi/.

[33] F I E L D I N G , R . , G E T T Y S , J . , M O G U L , J . , F R Y S T Y K , H . , M A S I N T E R , L . et a l . Hypertext

Transfer Protocol - HTTP/1.1 [Internet Requests for Comments]. R F C 2 6 1 6 . R F C
Edi tor , June 1 9 9 9 . Available at: h t tps : / / too ls . i e t f .o rg /h tml/rfc2616.

[34] F O R D H U T C H I N S O N , P . Securing FTP with TLS [Internet Requests for Comments].
R F C 4 2 1 7 . R F C Edi to r , Oct 2 0 0 5 . Available at:
h t tps : / / too ls . i e t f .o rg /h tml/rfc4217.

[35] G I T C O M M U N I T Y . Git [online]. 2 0 2 0 [cit. 2020-05-01] . Available at:

h t tps : / /g i t - scm.com/ .

[36] H O M O L I A K , L , B A R A B A S , M . , C H M E L A R , P . , D R O Z D , M . and H A N A C E K , P . A S N M :

Advanced Security Network Metr ics for A t t ack Vector Descript ion. In: Conference on
Security & Management. 2 0 1 3 , p. 3 5 0 - 3 5 8 . I S B N 1 - 6 0 1 3 2 - 2 5 9 - 3 .

[37] H O M O L I A K , I. Metrics for Intrusion Detection in Network Traffic. 2 0 1 1 . Master 's
thesis. Universi ty of Technology Brno , Facul ty of Information Technology,
Department of Intelligent Systems. In Slovak Language.

[38] H O M O L I A K , I. Intrusion Detection in Network Traffic. 2 0 1 6 . Dissertation. Facul ty of
Information Technology, Universi ty of Technology Brno .

[39] H O M O L I A K , I. and H A N A C E K , P . A S N M Datasets: A Col lect ion of Network Traffic
Features for Testing of Adversar ia l Classifiers and Network Intrusion Detectors.
ArXiv preprint arXiv:1910.10528. 2 0 1 9 .

6 7

https://chybeta.github.io/2019/04/06/Analysis-for-7.E37.807.90CVE-2019-33967.E37
http://get-simple.info/
http://web.archive.org/save/https
http://www.datanyze.com/market-share/team-
http://www.nagios.com/products/nagios-xi/
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc4217
http://scm.com/

[40] H O M O L I A K , L , O V S O N K A , D . , G R E G R , M . and H A N A C E K , P . N B A of obfuscated

network vulnerabil i t ies ' exploitat ion hidden into H T T P S traffic. In: I E E E . The 9th
International Conference for Internet Technology and Secured Transactions
(ICITST-2014). 2014, p. 310-317.

[41] H O M O L I A K , I., T E K N O S , M . , B A R A B A S , M . and H A N A C E K , P . Exp lo i t a t ion of N e t E m

U t i l i t y for Non-payload-based Obfuscation Techniques Improving Network A n o m a l y
Detection. In: Springer. International Conference on Security and Privacy in
Communication Systems. 2016, p. 770-773.

[42] H O M O L I A K , I., T E K N O S , M . , O C H O A , M . , B R E I T E N B A C H E R , D . , H O S S E I N I , S. et a l .

Improving Network Intrusion Detect ion Classifiers by Non-payload-Based
Exploit-Independent Obfuscations: A n Adversar ia l Approach . ICST Transactions on
Security and Safety. European Al l iance for Innovation. Jan 2019, vol. 5, no. 17,
p. 156245. D O I : 10.4108/eai.10-1-2019.156245. I S S N 2032-9393. Available at:
http://dx.doi.org/10.4108/eai.10-l-2019.156245.

[43] H U S T E D , B . , A R A V E , J . and S M I T H , C . NagiosXI remote root vulnerability
CVE-2018-8733, CVE-2018-8734, CVE-2018-8735, CVE-2018-8736 [online]. 2018
[cit. 2020-04-19]. Available at:
https://gist.github.com/caleBot/f0a93b5a98574393e0139104eacc2d0f.

[44] K U W A T L Y , I., S R A J , M . , A L M A S R I , Z . and A R T A I L , H . A dynamic honeypot design

for intrusion detection. In: I E E E . The IEEE/ACS International Conference
onPervasive Services, 2004- ICPS 2004- Proceedings. 2004, p. 95-104.

[45] L I M , S. Y . and J O N E S , A . Network anomaly detection system: The state of art of
network behaviour analysis. In: I E E E . 2008 International Conference on
Convergence and Hybrid Information Technology. 2008, p. 459-465.

[46] L Y N E , C . [R2J Nagios XI Multiple Vulnerabilities [online]. 2018 [cit. 2020-04-19].
Available at: https: //www.tenable.com/security/research/tra-2018-37.

[47] L Y N E , C . and A N D R E , G . Nagios XI Magpie debug.php Root Remote Code Execution
[online]. 2018 [cit. 2020-04-18]. Available at: https://github.com/rapid7/metasploit-

framework/blob/master/modules/exploits/linux/http/nagios_xi_magpie_debug.rb.

[48] M H A S K A R and B C O L E S . RConfig install Command Execution [online]. 2019 [cit.
2020-04-18]. Available at: https://github.com/rapid7/metasploit-framework/blob/

master/modules/exploits/unix/webapp/rconfig_install_cmd_exec.rb.

[49] M H A S K A R and P A C E , S. LibreNMS addhost Command Injection [online]. 2018 [cit.
2020-04-18]. Available at: https://github.com/rapid7/metasploit-framework/blob/

master/modules/exploits/linux/http/librenms_addhost_cmd_inject.rb.

[50] M I C R O S O F T . Authenticate Machine Learning Server users against LEAP AD or
Azure Active Directory [online]. 2020 [cit. 2020-05-01]. Available at:
https://docs.microsoft. com/en-us/machine-learning-server/operationalize/

configure-authentication.

[51] M I C R O S O F T . Microsoft NTLM [online]. 2020 [cit. 2020-05-01]. Available at:
https: //docs.microsoft.com/en-us/windows/win32/secauthn/microsof t-ntlm.

68

http://dx.doi.org/10.4108/eai.10-l-2019.156245
https://gist.github.com/caleBot/f0a93b5a98574393e0139104eacc2d0f
http://www.tenable.com/security/research/tra-2018-37
https://github.com/rapid7/metasploit-
https://github.com/rapid7/metasploit-framework/blob/
https://github.com/rapid7/metasploit-framework/blob/
https://docs.microsoft
http://microsoft.com/en-us/windows/win32/

[52] M S Y S G I T . Msysgit [online]. 2020 [cit. 2020-05-01]. Available at:
https: //github.com/msysgit/msysgit.

[53] M U S T A F A A K K U § Ozkan . Webmin <= 1.920 - Unauthenticated RCE [online]. 2019
[cit. 2020-04-19]. Available at: https://pentest.com.tr/exploits/DEFC0N-Webmin-1920-
Unauthenticated-Remote-Command-Execution.html.

[54] M U S T A F A A K K U § Ozkan . Webmin 1.920 Unauthenticated RCE [online]. 2019 [cit.
2020-04-18]. Available at: https://www.exploit-db.com/exploits/47230.

[55] N A T I O N A L I N S T I T U T E O F S T A N D A R D S A N D T E C H N O L O G Y . National Vulnerability

Database [online]. 2020 [cit. 2020-05-02]. Available at:
https://nvd.nist.gov/vuln/data-feeds.

[56] O F F S E C S E R V I C E S L I M I T E D . Exploit Database by Offensive Security [online]. 2020
[cit. 2020-05-08]. Available at: https://www.exploit-db.com/.

[57] O F F S E C S E R V I C E S L I M I T E D . Kali Linux [online]. 2020 [cit. 2020-05-01]. Available at:
https: //www. kali. org/.

[58] O R A C L E C O R P O R A T I O N . Oracle VM VirtualBox [online]. 2020 [cit. 2020-05-01].
Available at: https://www.virtualbox.org/.

[59] O R A C L E C O R P O R A T I O N . Oracle VM VirtualBox User Manual [online]. 2020 [cit.
2020-05-01]. Available at: https://www.virtualbox.org/manual/ch06.html.

[60] O W A S P F O U N D A T I O N , I N C . . Cross Site Request Forgery (CSRF) [online]. 2020 [cit.
2020-05-01]. Available at: https://owasp.org/www-community/attacks/csrf.

[61] P A P E R N O T , N . , M C D A N I E L , P. , G O O D F E L L O W , I., J H A , S., C E L I K , Z . B . et al .

Prac t ica l black-box attacks against machine learning. In: A C M . Proceedings of the
2017 ACM on Asia conference on computer and communications security. 2017,
p. 506-519.

[62] P A P E R N O T , N . , M C D A N I E L , P. , W u , X . , J H A , S. and S W A M I , A . Dis t i l l a t ion as a

defense to adversarial perturbations against deep neural networks. In: I E E E . 2016
IEEE Symposium on Security and Privacy (SP). 2016, p. 582-597.

[63] P O S T E L , J . and R E Y N O L D S , J . FILE TRANSFER PROTOCOL (FTP) [Internet
Requests for Comments]. R F C 959. R F C Edi to r , Oct 1985. Available at:
https://tools, ietf.org/html/rfc959.

[64] Q S U C C E S S . W3techs Usage statistics of content management systems [online]. 2020
[cit. 2020-04-17]. Available at: http://web.archive.org/web/20200416002708/https:
//w3techs.com/technologies/overview/content_management.

[65] R 4 W D 3 R and T E I X E I R A , D . FTPShell client 6.70 (Enterprise edition) Stack Buffer
Overflow [online]. 2018 [cit. 2020-04-17]. Available at:
https: //github.com/rapid7/metasploit-f ramework/blob/master/modules/exploits/

windows/ftp/ftpshell_cli_bof .rb.

[66] R A P I D 7 . Metasploit [online]. 2020 [cit. 2020-05-01]. Available at:
https: //www.metasploit. com/.

69

https://pentest.com.tr/exploits/DEFC0N-Webmin-1920-
https://www.exploit-db.com/exploits/47230
https://nvd.nist.gov/vuln/data-feeds
https://www.exploit-db.com/
https://www.virtualbox.org/
https://www.virtualbox.org/manual/ch06.html
https://owasp.org/www-community/attacks/csrf
https://tools
http://ietf.org/html/rf
http://web.archive.org/web/20200416002708/https
http://www.metasploit

[67] R A P I D M I N E R . RapidMiner Studio Manual [online]. 2014 [cit. 2020-05-14]. Available
at: https : //docs.rapidminer.com/downloads/RapidMiner-v6-user-maiiual.pdf.

[68] R A P I D M I N E R G M B H . RapidMiner 9 Operator Reference Manual [online]. 2019 [cit.
2020-05-14]. Available at: https://docs.rapidminer.com/latest/studio/operators/

rapidminer-studio-operator-reference.pdf.

[69] R A P I D M I N E R G M B H . RapidMiner Documentation [online]. 2020 [cit. 2020-05-14].
Available at: https://docs.rapidminer.com/.

[70] R A P I D M I N E R , I N C . . RapidMiner [online]. 2020 [cit. 2020-05-02]. Available at:
https: / / rapidminer.com/.

[71] R C O N F I G . RConfig Network Management [online]. 2020 [cit. 2020-04-18]. Available at:
https: //www.rconfig.com/.

[72] S H A F R A N O V I C H , Y . Common Format and MIME Type for Comma-Separated Values
(CSV) Files [Internet Requests for Comments]. R F C 4180. R F C Edi to r , Oct 2005.
Available at: https://tools.ietf.org/html/rfc4180.

[73] S I X P 4 C K 3 R . Drupal < 7.58 - 'DrupalgeddonS' (Authenticated) Remote Code
(Metasploit) [online]. 2018 [cit. 2020-04-17]. Available at:
https: //www.exploit-db.com/exploits/44557.

[74] S M A R T M O B I L E S O F T W A R E . GitStack [online]. 2020 [cit. 2020-04-18]. Available at:
https: //gitstack.com/.

[75] S M I T H , C , H U S T E D , B . and A R A V E , J . Nagios XI Chained Remote Code Execution
[online]. 2018 [cit. 2020-04-18]. Available at:
https: //github.com/rapid7/metasploit-framework/blob/master/modules/exploits/

linux/http/nagios_xi_chained_rce_2_electric_boogaloo.rb.

[76] S Z U R E K , K . GitStack 2.3.10 Unauthenticated Remote Code Execution [online]. 2018
[cit. 2020-04-18]. Available at:
https: //security.szurek.pl/en/gitstack-2310-unauthenticated-rce.html.

[77] S Z U R E K , K . and R O B L E S , J . GitStack Unsanitized Argument RCE [online]. 2018 [cit.
2020-04-18]. Available at: https://github.com/rapid7/metasploit-framework/blob/

master/modules/exploits/windows/http/gitstack_rce.rb.

[78] T H E A P A C H E S O F T W A R E F O U N D A T I O N . The Apache HTTP Server Project [online].
2020 [cit. 2020-05-01]. Available at: https://httpd.apache.org/.

[79] T H E A P A C H E S O F T W A R E F O U N D A T I O N . The Apache Velocity Project [online]. 2020
[cit. 2020-05-01]. Available at: http://velocity.apache.org/.

[80] T H E P O S T G R E S Q L G L O B A L D E V E L O P M E N T G R O U P . PostgreSQL [online]. 2020 [cit.

2020-05-02]. Available at: https://www.postgresql.org/.

[81] T H E T C P D U M P G R O U P and M A R T I N G A R C I A , L . Tcpdump and libcap [online]. 2020
[cit. 2020-05-02]. Available at: https://www.tcpdump.org/.

70

http://rapidminer.com/downloads/RapidMiner-v6-user-maiiual.pdf
https://docs.rapidminer.com/latest/studio/operators/
https://docs.rapidminer.com/
http://rapidminer.com/
http://www.rconfig.com/
https://tools.ietf.org/html/rfc4180
http://www.exploit-db.com/exploits/44557
http://szurek.pl/en/gitstack-
https://github.com/rapid7/metasploit-framework/blob/
https://httpd.apache.org/
http://velocity.apache.org/
https://www.postgresql.org/
https://www.tcpdump.org/

[82] T R U E R A N D O M . GetSimpleCMS Unauthenticated RCE [online]. 2019 [cit. 2020-04-18].
Available at: https: //github.com/rapid7/metasploit-framework/blob/master/
modules/exploits/multi/http/getsimplecms_unauth_code_exec.rb.

[83] T R U E R A N D O M . SSD Advisory - GetSimple CMS Unauthenticated Remote Code
Execution [online]. 2019 [cit. 2020-04-19]. Available at: https://ssd-disclosure.com/
ssd-advisory-getcms-unauthenticated-remote-code-execution/.

[84] T S C H A N , S. J Query File Upload [online]. 2020 [cit. 2020-04-18]. Available at:
https: //github. com/blue imp/j Query-File-Upload.

[85] V I V I A N I , C , C A S H D O L L A R , L . W . and w v u . Blueimp's j Query (Arbitrary) File
Upload [online]. 2018 [cit. 2020-04-18]. Available at:
https: //github. com/rapid7/metasploit-framework/blob/master/modules/exploits/

unix/webapp/j query_f ile_upload.rb.

[86] W E B M I N . Webmin [online]. 2020 [cit. 2020-04-18]. Available at:
http: / / www.webmin.com/.

[87] W H I T E H E A D , J . An Introduction to Logistic Regression [online]. 2020 [cit. 2020-05-22].
Available at: https://www.appstate.edu/~whiteheadjc/service/logit/index.htm.

[88] Y L O N E N , T . and C . L O N V I C K , E . The Secure Shell (SSH) Transport Layer Protocol
[Internet Requests for Comments]. R F C 4253. R F C Edi to r , J an 2006. Available at:
https://tools.ietf.org/html/rfc4253.

71

https://ssd-disclosure.com/
http://www.webmin.com/
https://www.appstate.edu/~whiteheadjc/service/logit/index.htm
https://tools.ietf.org/html/rfc4253

Appendix A

Employed A S N M Features

72

Feature Description FFS F F S
D O L D L

MedTdifKPktsIn Median of packet IAT (inter-arrival times) in inbound traffic. X
InPktLen64sl0i[3] Lengths of inbound packets occurred in the first 64 seconds of a

connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 4th interval.

X

Bytes3WH2FIN The number of all transferred bytes from the start to the end of a
communication including session initiation and destruction packets.

X

SigPktLenOut Standard deviation of outbound packet lengths. X
PolyInd5ordOut[2] Approximation of outbound communication by polynomial of 5th

order in the index domain of packet occurrences. The feature
represents the 3rd coefficient of the approximation.

X

PolyIndl0ordOut[8] Approximation of outbound communication by polynomial of 10th
order in the index domain of packet occurrences. The feature
represents the 9th coefficient of the approximation.

X

Polylndl3ordln[10] Approximation of inbound communication by polynomial of 13th
order in the index domain of packet occurrences. The feature
represents the 11th coefficient of the approximation.

X

fourGonModulIn[l] Fast Fourier Transformation (FFT) of inbound packet sizes. The
feature represents the angle of the 2nd coefficient of the F F T in
goniometric representation.

X

fourGonModulOut[l] F F T of outbound packet sizes. The feature represents the angle of the
2nd coefficient of the F F T in goniometric representation.

X

intervalsIPsSig Standard deviation of time intervals between consecutive connections X
of the two hosts running on the same IP addresses as an analyzed
connection. The feature assumes only beginnings of connection for
computation of intervals.

X

gaussProds80ut [1] Normalized products of outbound packet sizes with 8 Gaussian curves.
Packets are divided into 2 slices and products are computed per each
slice by summing of products of relevant packets with fitted Gaussian
function. Each product is normalized by the number of packets in a
slice. The feature represents a product of the 2nd slice of packets.

X

Table A . l : F F S (Part 1/2)

73

Feature Description FFS F F S
D O L D L

sumSessPerPort

InPktLen64sl0i[6]

OuPktLen32sl0i[3]

OuPktLen32sl0i[6]

OuPktLen64sl0i[8]

BytesPerSessIn

MedPktLenOut
MedPktLenln
ModPktLenln
polyInd3ordOut [3]

polyInd5ordIn[4]

fourGonModulOut[2]

fourGonModulOut[3]

gaussProds8AHNeg[l]

The number of T C P sessions in interval ± 5 minutes from the current
session, which have the same port number.
Lengths of inbound packets occurred in the first 64 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 7th interval.
Lengths of outbound packets occurred in the first 32 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 4th interval.
Lengths of outbound packets occurred in the first 32 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 7th interval.
Lengths of outbound packets occurred in the first 64 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 9th interval.
The number of transferred bytes during T C P session in inbound
direction.
Median of packet sizes in outbound traffic of a connection.
Median of packet sizes in inbound traffic of a connection.
Mode of packet sizes in inbound traffic of a connection.
Approximation of outbound communication by polynomial of 3rd
order in the index domain of packet occurrences. The feature
represents the 4th coefficient of the approximation.
Approximation of inbound communication by polynomial of 5th order
in the index domain of packet occurrences. The feature represents the
5th coefficient of the approximation.
F F T of outbound packet sizes. The feature represents the angle of the
3rd coefficient of the F F T in goniometric representation.
F F T of outbound packet sizes. The feature represents the angle of the
4th coefficient of the F F T in goniometric representation.
Normalized products of all packet sizes with 8 Gaussian curves. The
feature represents a product of the 2nd slice of packets with a
Gaussian function which fits to the interval of the packets' slice.

X
X
X
X

Table A . 2 : F F S (Part 2/2)

74

Appendix B

C V E J S O N Record Example

i {
2 "eve" : {

3 "data_type" : "CVE",

4 "data_format" : "MITRE",

5 "data_version" : "4.0",

6 "CVE_data_meta" : {

7 "ID" : "CVE-2018-7573",

8 "ASSIGNER" : "cve@mitre.org"

9 >,
10 "problemtype" : {

n "problemtype_data" : [{

12 "description" : [{

13 "lang" : "en",

14 "value" : "CWE-119"

15 >]

16 >]

17 >,

18 "references" : {

19 "reference_data" : [{

20 "url" : "https://cxsecurity.com/issue/WLB

-2018030011",

21 "name" : "https://cxsecurity.com/issue/WLB

-2018030011",

22 "refsource" : "MISC",

23 "tags" : ["Exploit", "Third Party Advisory"]

24 } , {

25 "url" : "https://www.exploit-db.com/exploits

/44596/
1

',

26 "name" : "44596",

27 "refsource" : "EXPLOIT-DB",

28 "tags" : ["Exploit", "Third Party Advisory",

"VDB Entry"]

29 } , {

75

mailto:cve@mitre.org
http://cxsecurity.com/issue/WLB
http://cxsecurity.com/issue/WLB
http://www.exploit-db.com/exploits

"url" : "https://www.exploit-db.com/exploits

/44968/'
1

,

"name" : "44968",

"refsource" : "EXPLOIT-DB",

"tags" : ["Exploit", "Third Party Advisory",

"VDB Entry"]

"description_data" : [{

"lang" : "en",

"value" : "An issue was discovered in FTPShell

Client 6.7. A remote FTP server can send

400 characters of 'F' in conjunction with

the FTP 220 response code to crash the

application; after this overflow, one can

run arbitrary code on the victim machine.

This is similar to CVE-2009-3364 and CVE

-2017-6465."

}]

"description {

}]
}

configurations {

impact {

publishedDate" :

lastModif iedDate

2018-03-01T17:29Z",

: "2019-03-01T18:27Z

76

http://www.exploit-db.com/exploits

Appendix C

Contents of the D V D

The enclosed D V D contains the following files:

• O-exploitator/ - source code of the extended N P B O framework

• eves/ - source code of the C V E J S O N and C P E X M L Parser

• doc / - source files of this thesis

• rapidminer / - R a p i d M i n e r repository files including datasets, models, processes sources
and results of a l l dataset evaluation experiments

. nvdcve-l . l -2018.json.zip - Z I P file w i th N V D J S O N D a t a Feed 2018

. nvdcve-l . l -2019.json.zip - Z I P file w i th N V D J S O N D a t a Feed 2019

• official-cpe-dictionary_v2.3.xml.zip - Z I P file w i th Official C P E Dic t ionary

• thesis.pdf - P D F of this thesis

77

