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Abstract 
This doctoral thesis studies synchronous formal systems based on grammars and trans­
ducers, investigating both theoretical properties and practical application perspectives. It 
introduces new concepts and definitions building upon the well-known principles of regu­
lated rewriting and synchronization. A n alternate approach to synchronization of context-
free grammars is proposed, based on linked rules. This principle is extended to regulated 
grammars such as scattered context grammars and matrix grammars. Moreover, based on a 
similar principle, a new type of transducer called the rule-restricted transducer is introduced 
as a system consisting of a finite automaton and context-free grammar. New theoretical 
results regarding the generative and accepting power are presented. The last part of the 
thesis studies linguistically-oriented application perspectives, focusing on natural language 
translation. The main advantages of the new models are discussed and compared, using 
select case studies from Czech, English, and Japanese to illustrate. 

Abstrakt 
Tato disertační práce studuje synchronní formální systémy založené na gramatikách a pře­
vodnících a zkoumá jak jejich teoretické vlastnosti, tak i perspektivy praktických ap­
likací. Práce představuje nové koncepty a definice vycházející ze známých principů řízeného 
přepisování a synchronizace. Navrhuje alternativní způsob synchronizace bezkontextových 
gramatik, založený na propojení pravidel. Tento princip rozšiřuje také na řízené gramatiky, 
konkrétně gramatiky s rozptýleným kontextem a maticové gramatiky. Dále je představen 
na podobném principu založený nový druh převodníku, tzv. pravidlově omezený převod­
ník. Jedná se o systém složený z konečného automatu a bezkontextové gramatiky. Práce 
prezentuje nové teoretické výsledky ohledně generativní a přijímající síly. Poslední část 
práce zkoumá možnosti lingvisticky orientovaných aplikací se zaměřením na překlad přiro­
zeného jazyka. Diskutuje a srovnává hlavní výhody nových modelů s využitím vybraných 
případových studií z českého, anglického a japonského jazyka pro ilustraci. 
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Chapter 1 

Motivation and Organization 

Formal language theory is an essential part of theoretical computer science. It defines 
and studies languages as sets of strings (words, sentences), which are finite sequences of 
symbols. This definition covers natural languages (e.g. Czech, English, or Japanese) as 
well as artificial languages (such as programming languages). 

To describe languages mathematically, formal language theory studies models which 
define them. Many of these models are based on rewriting systems—that is, formal systems 
which gradually change strings by rewriting some of their symbols in each step, according 
to a given set of rules. Most rewriting systems fall into one of the two basic categories: 
generative language models (generally known as grammars), and accepting language models 
(generally known as automata). A generative model defines a language by generating all 
strings of this language. In other words, a string belongs to this language if and only if it 
can be generated by the model. A n accepting model analyzes a string and either accepts, 
or rejects it. The language defined by the accepting model is the set of all strings which 
the model accepts. 

The applications of formal language theory are found in many scientific disciplines. It 
provides mathematical background primarily in areas that deal with languages themselves 
(linguistics, programming language theory etc.) but there are also other topics that can be 
formalized as languages (e.g. D N A and R N A sequences in biology). 

Of particular interest to our work is the area of computational linguistics. Specifically, 
we focus on formal description of natural language syntax and its transformations. We study 
the application perspectives of known formal models and introduce new related concepts 
and definitions. We also study the theoretical properties of the models and present new 
results. 

1.1 Motivation 

Natural language processing is a field of theoretical informatics and linguistics and is con­
cerned with the interactions between computers and human (natural) languages. It is 
defined as a theoretically motivated range of computational techniques for analyzing and 
representing naturally occurring texts (which means any language) at one or more levels of 
linguistic analysis for the purpose of achieving human-like language processing for a range 
of tasks or applications (according to [4]). 

The history goes back to the the late 1940s, when there was an effort to understand and 
formally describe the syntax of natural languages. A big step forward was the publishing of 
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the book called Syntactic Structures, by Noam Chomsky, introducing the idea of generative 
grammar. 

At first, computer processing of natural languages was in interest of artificial inteligence 
as a part of human-computer interaction. Subsequently, it split into two separate disciplines. 
Today, natural language processing studies many other aspects of natural languages besides 
their syntax (such as morphology or semantics). This discipline is focused mainly on prac­
tical applications. Some of the most frequent tasks are information retrieval, information 
extraction, question answering, summarization, and machine translation, and in broader 
scope, we can even include tasks as speech recognition and speech synthesis. 

The second discipline encompasses a set of formalisms, which are, in general, known 
as formal language theory. Formal language theory is considered a part of theoretical 
computer science, and it focuses mainly on theoretical studies of various formal models and 
their properties. Its applications are now found in many other areas besides computational 
linguistics. 

One of the major trends in formal language theory is regulated rewriting. This concept 
was introduced already in the 1960s, as the models of the now traditional Chomsky hierarchy 
have been found unsatisfactory for certain practical applications. For example, it has been 
argued that some linguistic phenomena could not be described by context-free grammars, 
while context-sensitive and unrestricted grammars were inefficient for practical use (because 
of the complexity of parsing). Because of this, ways to increase the power of context-free 
grammars—while retaining their practical applicability—were investigated. 

Regulated rewriting essentially means that we take a certain known formal model (usu­
ally a context-free grammar, for reasons mentioned above) and in some way regulate (hence 
the name) the way in which it generates (or, in the case of automata, accepts) sentences. 
This can be done by adding some mathematically simple mechanism that controls the use 
of rules (such as in programmed grammars), or by changing the form of rules themselves 
(as, for example, in scattered context grammars). Thus, the expressive power is increased 
by limiting available derivations (or computations). 

The purpose of our work is twofold. From a theoretical point of view, we contribute to 
the study of formal language theory by introducing new formal models and investigating 
their properties. Rather than trying to create completely new formalisms from scratch, 
we establish the new models as generalizations, extensions, or modifications of well-known 
and well-studied formal models (such as context-free grammars and finite automata) and 
principles (such as regulated rewriting and synchronization). 

In [40], we have presented an alternate approach to synchronization, based on linking 
rules instead of nonterminals. In this fashion, we have extended the principle to models 
with regulated rewriting, specifically matrix grammars and scattered context grammars. 
We have continued with further theoretical study of synchronous grammars based on linked 
rules, and particularly of synchronous versions of regulated grammars, in [ ] and [41]. 

In [10], we have introduced a new type of transducer, the rule-restricted automaton-
grammar transducer, as a system consisting of a finite automaton, which is used to read an 
input string, and a context-free grammar, which simultaneously produces a corresponding 
output string. Also in [10], we have investigated the theoretical properties—namely, the 
generative and accepting power—of this new system and its variants. 

For an overview of our new results, see the following Section 1.2, specifically the parts 
describing Chapter 4 and Chapter 5 for results concerning synchronous grammars and 
transducers, respectively. 

Meanwhile, from a more practical viewpoint, we investigate how some of the well-
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known and well-studied models from formal language theory can be adapted or extended 
for applications in natural language processing. In other words, the ideas and concepts 
behind the new formal models mentioned above are motivated by the possibility of their 
linguistic applications. 

Inspired by such works as [63], where the authors discuss linguistically-oriented ap­
plications of scattered context grammars (using examples from the English language), we 
explore similar application perspectives of other regulated formal models as well. In [36], we 
have discussed potential applications of matrix grammars in the description of the Japanese 
syntax. Subsequently, we have been focusing on translation of natural languages. 

Machine translation is one of the major tasks in natural language processing. Wi th 
increasing availability of large corpora, corpus-based systems became favoured over rule-
based, using statistical methods and machine-learning techniques. They mostly rely on 
formal models that represent local information only, such as n-gram models. However, 
recently, there have been attempts to improve results by incorporating syntactic information 
into such systems (see [50], [86], or [6]). 

To do so, we need formal models that can describe syntactic structures and their trans­
formations. Based on the principles of synchronous grammars (see [13]), we have proposed 
synchronous versions of some regulated grammars, such as matrix grammars (see [21]) and 
scattered context grammars (see [ ]). We first introduced the idea in [ ], and further 
elaborated upon it in [40]. Revised definitions, a study of theoretical properties, and a 
further discussion of linguistically-oriented application perspectives can be found in [41]; 
applications in particular are also investigated in [39]. 

Other type of models we can use are transducers (see [2]). Unlike synchronous gram­
mars, which generate a pair of sentences in one derivation and thus define translation, trans­
ducers take a given input sentence and transform it into a corresponding output sentence. 
Frequently, these transducers consist of several components, including various automata 
and grammars, some of which read their input strings while others produce their output 
strings (see [30] or [69]). In [10], we have introduced the rule-restricted automaton-grammar 
transducer and its variants, and discussed its advantages for natural language translation, 
illustrated by examples from Czech, English, and Japanese. 

1.2 Organization 

This doctoral thesis is divided into three parts and seven chapters, organized as follows. 

1.2.1 Introduction 

The first chapter introduces the topic of our work and presents the motivation behind it. 
It also describes the structure of this document and provides an overview of its contents. 

Following this introductory chapter, Chapter 2 provides the mathematical background 
required for understanding of the topics discussed in this work. First, we summarize the 
well-known essential concepts and definitions from set theory, such as sets and relations. 
Subsequently, we use these notions to present an introduction to formal language theory. We 
give formal definitons of concepts such as alphabet, string, and language. We also introduce 
formal models that define languages, namely grammars and automata. We define different 
types of languages and present the resulting hierarchy of the respective language classes. 
Finally, we describe and formally define several models related to the concept of regulated 
rewriting. 
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In Chapter 3, we present a brief introduction to computational linguistics. The first 
section of this chapter provides an overview of select formal models related to natural lan­
guage processing. We discuss both models of historical and practical importance. Trans­
formational grammars, augmented transition networks and generalized phrase structure 
grammars are examples of the former category, while the latter includes head-driven phrase 
structure grammars, lexical functional grammars, and lexicalized tree-adjoining grammars. 
We also mention probabilistic context-free grammar as an example of a formal model used 
in statistical natural language processing. 

We present the basic concept of dependency grammars as well. Although for the most 
part our work does not deal with dependency grammars, they certainly deserve a mention 
as an important alternative to phrase structure grammars, which is is also often used in 
practice. Moreover, we sometimes use the notion of dependency (and some related notions, 
particularly nonprojectivity, the crossing of dependencies) when discussing application per­
spectives of our formal models (Chapter 6). 

Finally, we consider the application of some traditional models from formal language 
theory as an alternative. We focus on models with regulated rewriting. In particular, we 
discuss linguistically-oriented application perspectives of scattered context grammars and 
their variant, transformational scattered context grammars. 

The second section of Chapter 3 introduces the area of machine translation, which is 
one of major tasks of natural language processing. First, we briefly review the historical 
development and classification of translation systems. Subsequently, we provide a summary 
of recent trends in this area, and we show how our work relates to them. 

1.2.2 Synchronous Formal Systems 

The second part of this thesis consists of two theoretically oriented chapters. These chapters 
contain both informal explanations and formal definitions of the new models, and present 
the related theoretical results that we have established. 

More specifically, Chapter 4 deals with synchronous grammars. First, we briefly recall 
the well-known synchronous context-free grammars. We then introduce the notion of new 
synchronous grammars as systems consisting of two context-free grammars with linked 
rules instead of linked nonterminals. This allows us to naturally extend the principle of 
synchronization beyond context-free grammars. We present synchronous versions of some 
regulated grammars, namely scattered-context grammars and matrix grammars. 

Further, we study theoretical properties of these grammars. Specifically, we investigate 
their generative power and achieve the following three main results. First, if we synchro­
nize context-free grammars by linking rules as proposed and defined in this chapter, we 
obtain generative power coinciding with the power of matrix grammars. Consequently, we 
significantly increase the power in this way because the traditional synchronous CFGs only 
generate the family of context-free languages. Second, perhaps unsurprisingly, the class 
of languages defined by synchronous scattered context grammars equals the class of recur­
sively enumerable languages. Finally, we show that if we synchronize matrix grammars by 
linking matrices, we obtain no increase in power. That is, synchronous matrix grammars 
have the same generative power as matrix grammars. 

Chapter 5 introduces a new type of transducer, referred to as rule-restricted automaton-
grammar transducer, based upon a finite automaton and a context-free grammar. A re­
striction set controls the computation. It defines which rules can be simultaneously used 
by the automaton and by the grammar. We discuss the power of this system working in 
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an ordinary way as well as in a leftmost way (more precisely, the context-free grammar 
is restricted to leftmost derivation). In addition, we introduce an appearance checking, 
which allows us to check whether some symbols are present in the rewritten string, and we 
investigate its effect on the power. 

We achieve the following main results. First, we show that the generative power of 
rule-restricted transducers is equal to the generative power of matrix grammars. Second, 
the accepting power coincides with the power of partially blind multi-counter automata. 
Third, under the context-free-grammar leftmost restriction, the accepting and generative 
power of these systems coincides with the power of context-free grammars. On the other 
hand, when an appearance checking is introduced into these systems, the system can accept 
and generate all recursively enumerable languages. 

1.2.3 Application Perspectives and Final Remarks 

In the final part of this thesis, we consider the newly introduced models from a more practi­
cal viewpoint. Specifically, Chapter 6 explores their application perspectives with particular 
focus on natural language translation. We discuss and compare their main advantages i l ­
lustrating them by examples from Czech, English, and Japanese. 

One of the main advantages of both types of presented models is their power, as they 
are able to describe even some non-context-free structures. The new synchronous grammars 
also provide high flexibility, allowing for elegant and efficient description of language fea­
tures. On the other hand, rule-restricted transducers are based on a simple, straightforward 
principle, which can be an advantage for practical implementation. 

The concluding Chapter 7 summarizes all achieved results. In particular, using a graph­
ical representation, we show how our new results relate to a known hierarchy of language 
classes. We also discuss further research prospects, both in theoretical and practical direc­
tion. 
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Chapter 2 

Mathematical Background 

This chapter recalls the fundemental terminology from mathematics and formal language 
theory that is of key importantance to the topics discussed in this work. 

We assume that the reader is familiar with basic mathematical terms, concepts, and 
notations. In particular, knowledge and understanding of elementary algebra, logic, and 
common proof techniques is assumed (see [8], [45], and [53]). 

2.1 Set Theory 

Before we can talk about formal languages and the models that define them, we first need 
to introduce several notions from set theory (see [23], [33], or [ ]). 

2.1.1 Sets and Sequences 

In mathematics, there are many well-known, important sets, such as the set of all integers, 
Z = { . . . ,—2,-1 ,0 ,1 ,2 , . . .} , natural numbers, N = {1 ,2 , . . . } , or natural numbers ex­
tended with zero, No = {0 ,1 ,2 , . . . } . Intuitively, the notion of set as a collection of certain 
elements is easy to imagine. Now let us define it formally. 

Definition 2.1 (Set). A set is a collection of elements, which are taken from some pre-
specified universe. If an element a from this universe is contained in some set E , we say 
that a is a member of E , denoted by a G E . Otherwise, we say that a is not a member of E , 
denoted by a ^ E . The set that has no members is called the empty set and it is denoted 
by 0. 

Definition 2.2 (Cardinality of a set). Let E be a set. The cardinality of E, denoted by 
card(E), is the number of members of E . Note that card(0) = 0. 

Definition 2.3 (Finite and infinite set). Let E be a set. If E has a finite number of 
members, that is, card(E) G No, we say that E is a finite set, otherwise, if card(E) = oo, 
we say that E is an infinite set. 

We usually specify a finite set E by listing its members—that is, E = {ai , 02 , . . . , a n }, 
where a» £ E for all 1 < i < n. For example, the finite set A = {1, 2} contains two elements, 
1 and 2, and card(^4) = 2. In contrast, an infinite set f2 is usually specified by a common 
property ir. Then, a given element is a member of f2 if and only if it satisfies this property. 
We write this specification as f2 = {a: 7r(a)}. 
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We can also compare sets. We can decide whether two given sets are equal, or whether 
one set is included in another. 

Definition 2.4 (Set equivalence). Let E and be sets. We say that E and f2 are equal, 
denoted by E = fl, if and only if for all a G E , a G f2 holds, and for all b G fi, b G E holds. 
Otherwise E 7^ £1. 

Definition 2.5 (Subset). Let E and be sets. If for all a G E , a G f2 holds, we say that 
E is a subset of 0, denoted by E C fi, otherwise E ^ fi. Further, if E C and E 7^ £1, we 
say that E is a proper subset of 57, denoted by E C f2, otherwise E G: 17. 

For example, for the sets of numbers mentioned above, N C No C Z holds. Also note 
that for any two sets E = if and only if E C £1 and C E . 

There are many operations that we can define over sets. For our purposes, we only need 
to introduce three of the most basic ones, namely intersection, union, and difference. 

Definition 2.6 (Set operations). Let E and f2 be sets. We define the following operations: 

• The intersection of E and f2, denoted by E n 57, a s S n f i = { a : o £ S A a G fi}; if 
E n Q = 0, we say that E and f2 are disjoint. 

• The union of E and f2, denoted by E U f i , as S U fi = {a: a G S V a 6 f2}. 

• The difference of E and f2, denoted b y E — Q, a s E — fi = { o : a £ E A o ^ fi}. 

Besides sets, we will also need sequences. This is a similar notion to set, with two 
important differences. First, a sequence may contain an element more than once, and 
second, the elements appear in certain order. 

Definition 2.7 (Sequence). Let a\, ai,... ,an for some n G N be elements taken from some 
pre-specified universe. Then, {a\,ai,...,an) denotes the (finite) sequence consisting of 
elements ao, a\,..., an, in that order. Further, let x = (ai, 0 2 , . . . , a&) and y = (bi, bi,..., b\) 
for some k, I G N be sequences. Then, x = y if and only if k = I and for all 1 < i < k, 
ai = bi. 

For example, {1, 2} = {2,1} but (1, 2) / (2,1). Also note that, while we only deal with 
finite sequences in this work, it is possible—and indeed usual—to define infinite sequences 
(analogous to inifinite sets) as well. 

Definition 2.8 (Length of a sequence). Let x = (ai, ai,..., an) for some n G N be a 
sequence. Then, the length of x, denoted by \x\, is defined as \x\ = n. 

A finite sequence of length n is also called an n-tuple. Further, a 2-tuple is also called 
an (ordered) pair, and for 3 < n < 7, the respective n-tuples are called a triple, quadru­
ple, quintuple, sextuple, and septuple (we could continue in this fashion but it becomes 
increasingly uncommon). 

2.1.2 Relations 

Relations are another important notion of set theory. To introduce them formally, we first 
need to define one more operation over sets, the Cartesian product. 

Definition 2.9 (Cartesian product). Let E and f2 be sets. The Cartesian product of E 
and f2, denoted by E x Q, is defined as E x Q = {(a, 6): a G E , b G 
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Definition 2.10 (Relation). Let E and be sets. A (binary) relation p from E to f2 is 
any set p such that p C E x $7. 

Instead of (a, 6) G p, we usually write a G p(6) or apb. 

Definition 2.11 (fc-fold product). Let p be a relation from E to E and /c G No- The k-fold 
product of p, denoted by p f c, is recursively defined as follows: 

1. ap°b if and only if a = 6, 

2. ap1b if and only if apb, 

3. ap™6 if and only if there is a c G E such that apn~1c and cp&. 

Definition 2.12 (Closure). Let p be a relation from E to E . The transitive closure of p, 
denoted by p + , is defined as follows: ap+b if and only if for some k G N , apfc6. Further, the 
transitive and reflexive closure of p, denoted by p*, is defined as follows: ap*b if and only if 
ap+b or a = b. 

Definition 2.13 (Function). Let E and f2 be sets and let 0 be a relation from E to O such 
that for all a G E , card({6: b G f2, (a, b) G 0}) < 1. Then, we call <f> a function from E to 57. 

By definition, for a given function <fi and a given element a, there may be at most one 
b satisfying b G 4>{a). Therefore, in case of functions we usually write b = 4>{a) instead of 
b G 4>(a). 

Let max be a function from Z x Z to Z defined as follows: for x, y G Z, max(x, y) = x 
if and only if x > y, otherwise max(x, y) = y. That is, max(x, y) returns the greater value 
from x and y. Note that, for brevity, we write max(x,y) instead of max((x,y)). 

2.2 Formal Language Theory 

Using the notions from Section 2.1, we can now introduce the fundamental terms and 
concepts of formal language theory (see [34], [43], [55], [60], [74], or [75]). 

2.2.1 Formalization of Languages 

Informally, we consider languages as sets of sentences or sets of words. Indeed, the formal 
notion of language is similar. A formal language is a set of strings over some given alphabet. 

Definition 2.14 (Alphabet and symbols). A n alphabet is a finite, nonempty set. Its 
members are called symbols. 

Definition 2.15 (String). Let E be an alphabet. A string over E is recursively defined as 
follows: 

1. e is a string over E . e denotes the string with no symbols, and we call it the empty 
string. 

2. If x is a string over E and a G E , then xa is a string over E . 

Further, let E* denote the set of all strings over E . 

Definition 2.16 (Language). Let E be an alphabet. A language over E is any set L such 
that L C E*. 
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The following definitions presents select operations over strings. 

Definition 2.17 (String operations). Let x and y be strings over an alphabet X. Then, 
we define the following operations: 

• The concatenation of x and y as xy. For any string x, let xe = ex = x. 

• The length of x, denoted by | X | ; clS follows: 

1. If x = e, then \x\ = 0. 

2. If x = 0102 . . . an for some n > 1, where aj 6 S for all 1 < i < n, then |x| = n. 

• The reversal of x, denoted by (x)^, as follows: 

1. If x = e, then (x)R = e. 
2. If x = a\a2 • • .an-\an for some n > 1, where Oj G £ for all 1 < i < n, then 

(x ) H = anan-\...a2ai. 

• The (i-th) power of x, denoted by xl, as follows: 

1. x° = e, 

2. x% = xxl_1 for i > 1. 

Definition 2.18 (Substring). Let x and y be strings over S. We say that x is a substring 
of y, if there are strings u, v G £* such that y = ttxw. 

Let x be a string over S and let x i , X2, • • •, xn for some n G N be substrings of x such 
that x = X1X2 • • • xn. Then, we call X1X2 . . . x n a factorization of x. 

Definition 2.19 (Occurence of symbols). Let x be a string over an alphabet E and let 
Q, C S. Then, occur(x, £1) denotes the number of occurrences of symbols from £1 in x. 

Since languages are sets, we can apply all set operations (union, intersection etc.) on 
languages as well. We also introduce operations specific to languages, such as concatenation, 
where the sentences of the resulting language are formed by concatenation of sentences of 
the original languages, formally defined below. 

Definition 2.20 (Concatenation of languages). Let L\ and L2 be languages. We define 
the concatenation of L\ and L 2 , denoted by L\ • L2 or simply L 1 L 2 , as L\ • Li = {xy: x G 
Li,y G L2}. 

Definition 2.21 (Language class). Any set of languages is called a language class. 

2.2.2 Grammars and Language Classes 
Generally, there are two basic types of language-defining models, namely grammars and 
automata. The former are formal devices that generate strings, while the latter accept 
strings. Informally, a grammar is based on the following basic principle. We start from 
some abstract symbol, and according to some given rules, we rewrite it to some string. Then, 
we take some symbols from this string and again rewrite them according to some rules, thus 
obtaining a new string, and then continue in the same fashion. Now we only we need to 
know when to terminate this process. To that end, we designate some of the symbols as 
terminal, and we finish when we obtain a string consisting solely of these terminal symbols. 
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Definition 2.22 (Grammar). A n (unrestricted generative) grammar G is a quadruple 

G = (N,T,P, S), where 

• N is a nonterminal alphabet, 

• T is a terminal alphabet, N (IT = 0, 

• P is a finite relation from (N U T ) + to (iV U T)*, represented as a set of derivation 
rules of the form 

x ->• y, 

where x G (iV U T)+, y G (iV U T)*, and 

• 5 G iV is the start symbol. 

Any string io G (iV U T)* is called a sentential form of G . Further, if w G T*, we call 
w a sentence. Let u x v and ityu be two sentential forms and let p = x —>• y G P . Then, 
we say that u x v directly derives uyv in G according to rule p, written as uxv =4>G uyv [p] 
or simply u x v =4> uyv. Alternatively, we say that G makes a derivation step from u x v to 
uyv (according to rule p) , and any sequence of derivation steps starting by rewriting S is 
called a derivation. As with any relation, =4>fc, =4>+, and =4>* denote the fc-fold product, the 
transitive closure, and the transitive and reflexive closure of =>, respectively. 

The language generated by G, denoted by L(G), is defined as L(G) = {w: S =4>* w}. 

Let G = (N, T, P, S) be a grammar. For a rule p = x —>• y G P, we say that x is the 
left-hand side of p and y is the right-hand side of p. Further, let w be a sentential form of 
G. We say that p = x —>• y is applicable to u> if and only if x is a substring of iu. 

We say that a derivation S =̂>* u> is successful if and only if it produces a sentence 
(w G T*). Conversely, we say that a derivation S ^* w is unsuccessful if and only if 
occur(tt>, N) > 1 and there is no rule applicable to w (informally, the derivation cannot 
continue but there are still some nonterminals left). 

Chomsky Hierarchy of Languages 

In the late 1950s, the linguist Noam Chomsky introduced an initial classification of gram­
mars and their respective language classes [16], now famous as the Chomsky hierarchy of 
languages. This classification is based on different restriction placed on the form of rules. 

Definition 2.23 (Context-sensitive grammar). Let G = (N,T, P, S) be a grammar. We 
say that G is a context-sensitive grammar (CSG for short), if and only if all the rules in P 
are of the form 

uAv —>• uxv, 

where A G N and x,u,v G (N U T)*. 

Definition 2.24 (Context-free grammar). Let G = (N,T,P,S) be a C S G . We say that G 
is a context-free grammar (CFG for short), if and only if all the rules in P are of the form 

A x , 

where Ae N and x G (N U T)*. 
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Definition 2.25 (Regular grammar). Let G = (N, T, P, S) be a C F G . We say that G is a 
(right) regular grammar (RG for short), if and only if all the rules in P are of the form 

A ->• aB, 

where A G N, a G T U {e}, and B £ N L) {e}. 

Based on the above types of grammars, we define the respective types of languages and 
language classes. 

Definition 2.26 (Language types and classes). Let L be a language. We say that L is a: 

• recursively enumerable language, if and only if there is a grammar G such that L(G) = 
L; 

• context-sensitive language, if and only if there is a C S G G such that L(G) = L; 

• context-free language, if and only if there is a C F G G such that L(G) = L; 

• regular language, if and only if there is a R G G such that L(G) = L. 

Further, let R E , CS, C F , and R E G denote the class of all recursively enumerable, context-
sensitive, context-free, and regular languages, respectively. 

For the above language classes, it holds that R E G C C F C CS C R E (see [60]). 

2.2.3 Automata 

While grammars generate languages, automata are language acceptors. That is, an au­
tomaton reads a string and decides whether or not this string belongs to a certain language. 
Informally, an automaton is a formal system that has different states, and it moves between 
these states based on its input, according to some given rules. Generally, some of the states 
are designated as final, and an automaton accepts a string if and only if it reads all its 
symbols and in doing so, reaches a final state. In formal language theory, there are many 
well-known types of automata. Here, we only define two of the most fundamental ones, 
namely (nondeterministic) finite automaton and pushdown automaton. 

Definition 2.27 (Finite automaton). A finite automaton (FA for short) M is a quintuple 

M = (Q,T,,S,q0,F), where 

• Q is a finite set of states, 

• E is an input alphabet, 
• 5 is a finite relation from Q x (E U {e}) to Q, represented as a set of transition rules 

of the form 
pa -> q, 

where p, q G Q, a G E U {e}, 

• Qo £ Q is the start state, and 

• F Q Q is a set of final states. 

14 



Any string x £ QE* is called a configuration of M. Let pax and gx be two configurations 
of M and let r = pa —>• q G (5. Then, we say that M makes a move (or computation step) 
from pax to gx according to rule r, written as pax = ^ M M or simply pax =4> gx. As with 
any relation, =4>fc, =4>+, and =4>* denote the fe-fold product, the transitive closure, and the 
transitive and reflexive closure of =>, respectively. 

The language accepted by M, denoted by L(M), is defined as L(M) = {w: qow =4>* 

f-fc /••}. ' 
Further, let (FA) denote the class of all languages accepted by FAs. 

Informally, a pushdown automaton is an extension of F A with the added ability to 
"remember" some symbols by storing them in the pushdown. At any given time, only 
the top of the pushdwon is accessible—that is, symbols can only be placed on top of the 
pushdown and only the topmost symbol can be read and removed. 

Definition 2.28 (Pushdown automaton). A pushdown automaton (PDA) M is a septuple 
M = ( Q , E , T , S,q0,S,F), where 

• Q is a finite set of states, 

• E is an input alphabet, 

• T is a pushdown alphabet, 

• 5 is a finite relation from r x Q x (E U {e}) to T* x Q, represented as a set of transition 
rules of the form 

Apa —>• wq, 

where A e T, p,q e Q, a e T,U {e}, w G T*, 

• go G Q is the start state, 

• 5 G T is the initial pushdown symbol, and 

• F C Q is a set of /maZ states. 

Any string x G is called a configuration of M . Let xApay and xu>gy be two 
configurations of M and let r = ^4pa —> wq G o. Then, we say that M makes a move (or 
computation step) from xApay to xu>gy according to rule r, written as xApay =^>M xu>gy [r] 
or simply xApay xwqy. As with any relation, =̂ >fc, =^>+, and =̂>* denote the fc-fold 
product, the transitive closure, and the transitive and reflexive closure of =>, respectively. 

The language accepted by M, denoted by L(M), is defined as L(M) = {w: Sqow =^>* 
f-fc /••}• ' 

Further, let (PDA) denote the class of all languages accepted by PDAs . 

For both FA and P D A , we call any sequence of computation steps starting from the 
start state a computation. 

Let M = (Q, S, 5, qo, F) be an FA. For a rule r = pa —>• q G 5, we say that pa is the 
left-hand side of p and q is the right-hand side of p. Further, let x be a sentential form of 
M. We say that r = pa —> q is applicable to x if and only if x = for some x G E*. 

We say that a computation go^ py is successful if and only if p G F and y = e 
(informally, we have read the whole input string and reached an end state). A succesful 
computation qow =̂>* / is called an acceptance of w. Conversely, we say that a computation 
gox py is unsuccessful if and only if there is no rule applicable to py and \y\ > 1 or p £ F 
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(informally, the computation cannot continue but the conditions for succesful acceptance 
are not met). 

The above notions are analogous for P D A . 
As for the respective language classes, it is known that j£?(FA) = R E G and Jz?(PDA) = 

C F (see [60]). 

2.2.4 Regulated Rewriting 

Here, we present several formal models based on the principle of regulated rewriting (see [20], 
[21], [25], [52], [58], [62], or [64]). In this work, we primarily deal with matrix grammars 
(see [ ] and [21]) and scattered context grammars (see [29] and [63]). 

Grammars 

One of the earliest examples of regulated grammars is matrix grammar, introduced already 
in 1965 [1]. In essence, it is a system consisting of a C F G and a controlling set, which 
restricts available derivations in the C F G by specifying sequences of rules that must be 
applied directly after each other. 

Definition 2.29 (Matrix grammar). A matrix grammar ( M A T for short) H is a pair 
H = (G, M), where 

• G = (N, T, P, S) is a C F G and 

• M is a finite language over P (M C P*); members of M are called matrices. 

Any string w G (N U T)* is called a sentential form of H. Further, if it; G T*, we 
call w a sentence. Let u and v be two sentential forms. We say that u directly derives 
v in H according to matrix m, written as u =>H V [m] or simply u v, if and only if 
m = pi.. .pn G M and there are strings XQ,..., xn such that XQ = u, xn = v, and for all 
0 < i < n , Xi =>• Xi+\ [pi+i] in G. Note that this makes for one derivation step in H (during 
which an arbitrary number of derivation steps in G may be performed, or even none at all, 
if m = e). As with any relation, =̂ >fc, =^>+, and =̂>* denote the fc-fold product, the transitive 
closure, and the transitive and reflexive closure of =>, respectively. 

The language generated by H, denoted by L(H), is defined as L(H) = {w: S =^>* w}. 

We can extend matrix grammar with the possibility to skip select rules in a matrix if 
they are not applicable. This is an example of the principle known as appearance checking 
(recall that a given rule is applicable to a sentential form if and only if its left-hand side 
appears in the sentential form). 

Definition 2.30 (Matrix grammar with appearance checking). A matrix grammar with 
appearance checking ( M A T a c ) H is a pair H = (G, M ) , where 

• G = (N, T, P, S) is a C F G and 

• M is a finite set of strings of pairs (p, t), where p G P and t G {—, +}; members of M 
are called matrices. 

Any string w G (N U T)* is called a sentential form of H. Further, if it; G T*, we 
call w a sentence. Let u and v be two sentential forms. We say that u directly derives 
v in H according to matrix m, written as u =>H V [m] or simply u v, if and only if 
m = (pi, t\)... (pn,tn) G M and there are strings XQ, ..., xn such that XQ = u, xn = v, and 
for all 0 < i < n, either 
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• Xi x i + i [pi+i] in G, or 

• G {—}, Xi = and pj+i is not applicable on £j in G. 

As with any relation, =4>fc, =4>+, and =4>* denote the &;-fold product, the transitive closure, 
and the transitive and reflexive closure of =>, respectively. 

The language generated by H, denoted by L(H), is defined as L(H) = {w: S =4>* w}. 

Another well-known example is scattered context grammar, first introduced in 1969 [29]. 
Informally, it is a modification of C F G where, instead of rewriting one nonterminal to one 
string, we simultaneously rewrite n nonterminals to n strings in one derivation step. 

Definition 2.31 (Scattered context grammar). A scattered context grammar (SCG) G is 
a quadruple G = (N, T, P, S), where 

• N is a nonterminal alphabet, 

• T is a terminal alphabet, N (IT = 0, 

• P is a finite set of rules of the form 

(Ai,..., An) > ( x i , . . . , x n ) , 

where n > 1 and for all 1 < i < n, At G N, Xi G (N U T)*, and 

• 5 G iV is the start symbol. 

Any string io G (iV U T)* is called a sentential form of G . Further, if w G T*, we call 
w a sentence. Let it and w be two sentential forms. We say that u directly derives v in 
G according to rule p, written as u V [p] or simply u v, if and only if there is a 
factorization of w = u\A\ ... unAnun+i and v = u\X\ ... unxnun+\ where for all 1 < i < 
n + 1, Ui G (JVUT)*, such that p = (A\,... ,An) —>• ( x i , . . . ,x„) G P . As with any relation, 
=̂ >fc, =^ +, and denote the fc-fold product, the transitive closure, and the transitive and 
reflexive closure of =>, respectively. 

The language generated by G, denoted by L(G), is defined as L(G) = {w: S ^* w}. 

The further notions regarding rules (sides, applicability) and derivations (successful, 
unsuccessful) for M A T , M A T a c , and S C G are analogous with unrestricted grammars (see 
Definition 2.22). 

Further, let i f (MAT) , i f ( M A T a c ) , and i f (SCG) denote the class of all languages 
generated by matrix grammars, matrix grammars with appearance checking, and scat­
tered context grammars, respectively. It is known that C F C i f (MAT) C CS [21], 
i f ( M A T a c ) = R E [ ], and i f (SCG) = R E [59]. 

Automata 

Although the term regulated rewriting is primarily associated with grammars, there are 
also some well-known automata closely related to this concept, such as counter automata 
(see [27], [28], [35], or [81]). 

Definition 2.32 (fc-counter automaton). A k-counter automaton (k-CA) M is an F A M = 
(Q, E , 5, qo, F) with k integers v = (vi,..., vu) in Ng as an additional storage. Transition 
rules in 5 are of the form pa —>• q(ti,..., t n ) , where p, q G Q, a G E U {e}, and tj G { —} U Z. 
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Jgf(2-CA) " i f (£;-CA) ^ ^ R E ^ ^ ( M A T a c ) — i f (SCG) 

i f (FA) " - R E G 

F I N 

Figure 2.1: Hierarchy of select language classes (for k > 2). i f i —>• i f 2 denotes i f i C i f 2 

and i f i o i f 2 denotes i f i = i f 2 

A configuration of fc-CA is any string from <5S*Ng. Let xi = paw(v\,..., vu) and 
X2 = qw(v[, • • •, ŵ .) be two configuration of M and r = pa —>• g( t i , . . . ,£&) G o, where the 
following holds: if U G Z , then = Wj + tj; otherwise, it is satisfied that Vi, v\ = 0. Then, M 
makes a move (or computation step) from configuration % i to %2 according to r, written as 
Xi =̂  X2 [r], or simply % i =4> % 2. As with any relation, =4>fc, =4>+, and =4>* denote the /c-fold 
product, the transitive closure, and the transitive and reflexive closure of =>, respectively. 

The language accepted by M , denoted by L(M), is defined as L(M) = {w: w G 

E * , « „ w ( o , . . . , o ) ^ / ( o , . . , o ) , / e F } . 

Definition 2.33 (Partially blind fc-counter automaton). A partially blind k-counter au­
tomaton (A;-PBCA) M is an FA M = (Q, E , S, q0, F) with k integers v = (vi,..., vk) in NQ 
as an additional storage. Transition rules in 5 are of the form pa —>• gt, where p,q £ Q, 
a G E U { e } , and £ G Z f c . 

As a configuration of fc-PBCA we understand any string from <3E*Ng. Let % i = 
paw(vi,..., Vk) and %2 = qvj(v[,..., v'k) be two configurations of M and r = pa —> 
q(t\,...,tk) G o, where (ui + i i , . . . ,Ufc + ifc) = (w^,.. . ,w^). Then, M makes a mcwe 
(or computation step) from configuration % i to %2 according to r, written as xi =̂  X2 M , 
or simply % i =4> % 2. As with any relation, =4>fc, =4>+, and =4>* denote the fc-fold product, the 
transitive closure, and the transitive and reflexive closure of =>, respectively. 

The language accepted by M , denoted by L(M), is defined as L(M) = {w: w G 
s * , ? o W ( o , . . . , o ) ^ / ( o r . . , o ) , / e F } . 

For k G N , let i f (k-CA) and i f (fc-PBCA) denote the class of all languages accepted by 
fc-CAs and fc-PBCAs, respectively. It is known that for any k > 2, i f (k-CA) = R E [ ], 
and C F c i f ( & - P B C A ) c CS [27, 28]. 

2.2.5 Hierarchy of Languages 

Throughout this chapter, we have introduced a number of language-defining models and 
their respective language classes. For a summary of their relations, see the graphical rep­
resentation in Figure 2.1. F I N denotes the class of all finite languages (finite sets). 
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Chapter 3 

Computational Linguistics: 
A n Overview 

This two-part chapter serves as an introduction to the field of computational linguistics 
(see [ ], [9], [56], [68], or [70]). More specifically, in the first part, we discuss different kinds 
of formal models applied in natural language processing, both from historical and practical 
point of view. In the second part of this chapter, we briefly introduce the task of machine 
translation and some of its recent trends. 

3.1 Formal Models in Natural Language Processing 

This section provides an overview of various formalisms that have been used in computa­
tional linguistics and particularly in the description of natural language syntax. Note that 
we only recall the core principles and concepts that are relevant to our work. Detailed 
information about particular formal models can be found in referenced literature. 

The content of this section is partially based on results of the M S M T F R V S grant 
project FR97/2011/G1 and on [85]. 

3.1.1 Dependency Grammars 

In 1959, Lucien Tesniere presented the theory of structural syntax [79], which is now con­
sidered the starting point of modern dependency grammar theory. Since then, the term 
dependency grammars has grown to encompass many particular formalisms, such as word 
grammar [44], functional generative description [77], meaning-text theory [66], or extensible 
dependency grammar [22]. Here, we review the common core principles behind these formal 
models. 

The fundamental notion of dependency is based on the idea that the syntactic structure 
of a sentence consists of binary asymmetrical relations between words. That is, one word is 
the head of a phrase, and other words modify it. For example, in the phrase pink elephants 
jumped, there is a relation between the words elephants and jumped such that the noun 
elephants modifies the verb jumped by providing further specification (who jumped). The 
noun is then itself modified by the adjective pink. 

Words in dependency relation are often called parent and child, although, depending on 
the particular formalism, other terms may be used as well (such as governor and dependent 
or head and modifier). In this work, we choose the terms parent and child, as they are 
perhaps the most general. 
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punct 

Figure 3.1: Example of dependency tree (with labels) 

If w is the child of v (thus, v is the parent of w), we write w —> v.1 As usual, —denotes 
the transitive and reflexive closure of —>. We say that there is a path from w to v if and 
only if w —>* v. 

Let s = W1W2 • • • wn be a sentence. A dependency tree has the following properties: 

• Single head - each word has one and only one parent (except for the root node, which 
has none). 

• Connected - all words form a connected graph. That is, for all 1 < i < n, 1 < j < n, 
there is a path from wi to Wj or a path from Wj to uii. 

• Acyclic - the graph does not contain cycles. That is, for all 1 < i < n, 1 < j < n, the 
following holds: if Wi —>• Wj, then Wj —>•* Wi never holds. 

• Projective - there is no crossing between dependencies. That is, for all 1 < i < n, 
1 < j < n, the following holds: if Wi —>• IUJ, then for all tw^ such that i < k < j, there 
is either a path from to IUJ, or a path from to tWj. 

In general, the first three conditions must always be satisfied. On the other hand, while 
some dependency formalisms assume projectivity, other allow non-projective dependency 
trees as well. 

A n example of a projective dependency tree can be seen in Figure 3.1. Note that we 
can assign labels to the branches (dependencies) to provide further information about the 
way in which a child modifies its parent word. For instance, here we can see that board is 
an object of the verb joined. Figure 3.2 shows an example of non-projectivity, as there is a 
crossing between branches (yesterday —>• ate and was —>• cake). 

Dependency grammars are often used in practice because of their relative simplicity, 
robustness, and portability. Their principles are easy to understand, they allow for faster 
manual annotation of sentences in corpora (in phrase structure grammars discussed below, 
the trees are generally much more complicated, and we need some base set of grammar 
rules), and also for efficient parsing, which is a very important factor in practical imple­
mentations. They are uniformly applicable to many different languages, and, in general, 
they can parse any sentence. Permutations of words are possible without affecting syntactic 
structure, which can be an advantage when dealing with free-word-order languages (such 
as Czech). 

1 N o t e t h a t i n some d e p e n d e n c y f o r m a l i s m s , the a r r o w s are d r a w n i n the o p p o s i t e d i r e c t i o n ( f r o m parent 

t o c h i l d ) i n s t e a d . 
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I ate a cake yesterday which was delicious 

Figure 3.2: Non-projective dependency tree 

S 

NP-SBJ V P 

N P 

N N P 

V B D NP P P - C L R 

DT N N IN 

DT 

NP 

JJ N N 

Vinken joined the board as a nonexecutive director 

Figure 3.3: Example of phrase structure tree 

3.1.2 Phrase Structure Grammars 

Traditionally, the term phrase structure grammars refers to the grammars of the Chomsky 
hierarchy. Indeed, RGs, CFGs, and CSGs are all examples of phrase structure grammars. 
However, particularly in the field of natural language processing, the term has been used 
to denote any formal grammars that are based on the constituency relation (in contrast to 
the dependecy relation in dependency grammars). Throughout this text, we assume the 
latter interpretation. 

Phrase structure grammars create hierarchical structures over sentences, based on the 
idea that a sentence is composed of several constituents (words or phrases), and each con­
stituent itself consists of one or more constituents. The lowest-level constituents are (usu­
ally) words. A group of elements forms a constituent whenever they have been introduced 
by the application of the same rule. 

We usually present the structure of a sentence in the form of phrase structure tree (or 
syntax tree), which recapitulates the process by which a sentence is generated by the rules 
of a grammar. A n example of a syntax tree (adapted from Penn Treebank) is given in 
Figure 3.3. For instance, the node N P represents a noun phrase, a constituent formed by, 
for example, a determiner (DT) and a noun (NN). Also compare the dependency tree in 
Figure 3.1, which describes the same sentence. 

Note that while the dependency relation is a one-to-one relation (for every word in 
a sentence, there is exactly one corresponding node in the syntactic structure), the con-
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stituency relation is a one-to-one-or-more correspondence—that is, there is at least one 
node corresponding to each word (but there can be more). 

Phrase structure grammars are generally considered to be more suitable for languages 
with fixed word order and clear constituency structures. A major advantage over depen­
dency grammars lies in the fact that we have explicit information about the constituents 
of a sentence. This is also the main reason why we choose to focus on phrase structure 
grammars rather than dependency grammars in our work. 

In this section, we will take a closer look at transformational grammar [70], general­
ized phrase structure grammar [26], and head-driven phrase structure grammar [72]. Other 
examples of phrase structure grammars used in computational linguistics include lexical 
functional grammar [ ], (lexicalized) tree-adjoining grammar [ ], or combinatory catego-
rial grammar [7]. 

Transformational Grammars 

Developed by Noam Chomsky in 1957 [17], transformational grammars are among the oldest 
formal models in computational linguistics. They are based on the idea that a sentences in a 
natural language has two levels of representation: a deep structure and a surface structure. 
The former represents the core semantic relations of a sentence, while the latter closely 
follows its phonological form. Transformations realize the mapping of deep structures onto 
surface structures. 

A transformational grammar H consists of three components: a phrase structure gram­
mar (usually a CFG) G, called the base of H, a set of transformations T, and a set of restric­
tions on these transformations R (specifying that some transformations in T are obligatory). 
Then, deep structures are derivation trees generated by G, and surface structures are trees 
which can be obtained from deep structures by successively applying transformations from 
T (according to restrictions in R). The language generated by a transformational gram­
mar H, denoted by L(H), is the set of strings that we may read off the surface structures 
generated by H. 

Transformational grammars (with context-free bases) are strictly stronger than CFGs, 
as we can use transformations to obtain the intersection of two context-free languages. 

Generalized Phrase Structure Grammar 

Generalized phrase structure grammar (GPSG for short) was created in an attempt to 
show that it is possible to describe natural languages in a context-free framework, without 
using transformations. To recreate the effects of transformations (from transformational 
grammars), G P S G introduces features and metarules. 

There are two types of features: atom-valued and category-valued. Atom-valued features 
have Boolean values (denoted by + and —), and are represented by symbols such as [—INF] 
(finite, an inflected verb, e.g. eats), [+INF] (infinitival, e.g. to eat), or [—INV] (inverted, 
indicating subject-auxiliary inversion, as in Is John sick?). Category-valued features es­
sentially have nonterminal symbols as their values. For example, consider a transitive verb 
phrase V P . VP[SLASH = NP] (or V P / N P for short) represents this verb phrase with a 
missing noun phrase (object), for example in w/i-questions (e.g. Who did John hit?). 

Two important operations in G P S G are feature extension and feature unification. The 
former essentially means adding a new feature to a feature specification (a set of features). 
For example, for a feature specification {[+iV]> [+V]} (adjective, which is a category with 
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both noun- and verb-like qualities), a possible extension is {[+iV], [+V], [+PRED]} (ad­
jective in a predicative position). Feature unification combines two feature specifications 
into one. It is similar to the set union with the exception that, if the original specifications 
contain contradicting features (such as +N and —N), unification is undefined. 

Metarules allow generalizations. In essence, they are rules that generate grammar rules. 
That is, instead of specifying all context-free rules directly, we only give some select ones, 
and use metarules to describe how to obtain related rules from them. This allows for a 
more economical and efficient description. Formally, a metarule is a function from grammar 
rules to grammar rules. 

Ultimately, GPSGs have not been used in many practical applications, but their princi­
ples inspired some of the much more successful models, such as head-driven phrase structure 
grammars. 

Head-driven Phrase Structure Grammar 

Head driven phrase structure grammar (HPSG for short) is a generative grammar in the 
sense that it can generate strings and, consequently, languages, but it is unification-based 
rather than derivational. A l l H P S G components (i.e. grammar principles, grammar rules, 
and lexical entries) are formalized as typed feature structures. 

H P S G is sometimes considered a direct successor to G P S G , but there is influence from 
other formalisms as well (such as lexical functional grammar). For example, H P S G cate­
gories are more complex than those in G P S G and H P S G makes more specific claims about 
universals and variation. H P S G is more suitable for computer implementation because of 
its emphasis on precise mathematical modeling of linguistic entities, uniform representation, 
and modularity, and as such it is often used in practice in natural language processing. 

A n important concept in H P S G is the sign, which is the type of feature structure that 
represents a constituent. It is a collection of information, including phonological, syntactic, 
and semantic constrains, and it is usually represented as an attribute-value matrix ( A V M 
for short). A V M s encode feature structures where each attribute (feature) has a type is 
paired with a value. One of the common forms of A V M notation follows. 

type 
attribute value 
attribute value 

Signs receive either the subtype word, or phrase, depending on their phrasal status. 
These subtypes differ in that they conform to different constraints, but both contain at­
tributes such as phonology (PHON) and syntax/semantics (SYNSEM). P H O N has as its 
value a list of phonological descriptions. A n example of an A V M (for the English word 
walks) is shown in Figure 3.4. Note that a value can be either atomic (such as singular 
for number), or complex (such as S Y N S E M ) , in which case it can itself be represented by 
another (nested) A V M . 

3.1.3 Automata as Natural Language Models 

Besides formal grammars, automata have been also used in computational linguistics. In 
fact, augmented transition networks (see [70]) are among the oldest natural language mod­
els. The main advantage of automata is their closeness to practical implementation. 
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word 
phon (walks) 

synsem 

synsem local 

local 

c a t 

category 

subj 

synsem 

local 

local 

cont 

nom-obj 

index \T\ 
ref 
num sing 
per 3rd 

content 
content 
walker CD 

Figure 3.4: A V M example 

P N P N 

Adj Adj 

Figure 3.5: N D A for a simple fragment of English 

Augmented Transition Network 

Augmented transition networks have been created as a generalization and extension of 
nondeterministic finite state acceptors, which are in turn based on FAs. 

Definition 3.1. A nondeterministic finite state acceptor (NDA for short) M is a FA 
M = (Q,C,5,qo,F) extended with an alphabet X, which is called the input vocabulary, 
and a function CMTfrom £ to C such that CAT(x) is the defined category of x. C is called 
the category vocabulary. 

The input vocabulary X consists of words of a natural language, while the category vo­
cabulary C contains grammatical categories of the language (such as N P for noun phrase, 
V P for verb phrase, or V for verb). The function CAT assigns to each word its appropriate 
category (for instance, in English, CAT(dog) = N). Transition rules are defined over cate­
gories (rather than words). A n example of a N D A (for a simple fragment of English) given 
by its graphical representation is shown in Figure 3.5. 

The N D A model in itself has been found unsatisfying because the transitions do not 
capture the effects of constituency. For instance, in Figure 3.5, we can intuitively see that 
the path from S$ to S2 represents a noun phrase, but there is no way to formally describe 
this in the N D A . N D A fails to capture an important generalization in the structure of a 
language. 

To solve this problem, recusive transition network (RTN for short) has been introduced. 
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Figure 3.6: R T N example (restructuralizaton of N D A in Figure 3.5) 

In RTNs, we allow state transitions to refer to nonterminals (phrase structures) as well as 
terminals. That is, we allow a transition between two consecutive states to be made by 
reading a string x instead of a single symbol (a single word). The transition can be made 
only if x belongs to the appropriate category (noun phrase in the above example), and this 
holds if x itself has been accepted by another R T N (for that category). As the RTN's name 
implies, this can be done recursively (e.g. for recognizing A, we call B, which in turns calls 
A again). A n example of a R T N is given in Figure 3.6. Note that it is a restructuralization 
of the N D A in Figure 3.5. 

RTNs allow generalizations, but they are still not without drawbacks. For example, 
there is no way to relate a iu/i-question with its indicative form. Moreover, some non-local 
dependencies (such as subject-verb agreement) are impossible to express. R T N has been 
further extended by adding registers, which may hold arbitrary information about input 
vocabulary (for example, whether a word is in singular or plural). The resulting model is 
called augmented transition network ( A T N for short). It is known that ATNs are Turing-
complete, that is, they can accept any recursively enumerable language (see [70]). 

3.1.4 Statistical Natural Language Processing 

With the increasing availability of large corpora (both annotated and unannotated) for 
various languages, corpus-based statistical approaches have become prominent in modern 
natural language processing. They abandon or at least limit the use of hand-crafted rules 
in favour of machine-learning techniques, which allow for automated extraction of general­
ized information from a training corpus. A comprehensive overview of statistical natural 
language processing can be found in [56]. 

In statistical natural language processing, we often use relatively simple language mod­
els, such as n-gram models. Essentially, n-grams are n-tuples of words that appear next to 
each other in text (preserving the order). In practical use, trigrams (triples of words) are 
perhaps the most common version. 

Unlike grammars and automata, n-gram models do not create any structures over texts, 
sentences, or phrases, and this fact is both their main advantage and disadvantage. It allows 
for simple and very efficient implementation, which is an important factor for practical 
applications. On the other hand, it means that we can only work with local information. 
That is, we only know the immediate context of each word. We have no information about 
the syntactic structure of a phrase or sentence as a whole, and any potential long-distance 
dependencies are not captured. However, despite this limitation, n-gram models have been 
successfully applied in many areas of natural language processing. 

Grammars and automata are also used in statistical natural language processing. In 
fact, many of the formal models discussed above can be—and indeed have been—adapted 
for statistical methods. Often, we can simply assign probabilities (or weights) to rules, as 

P N 
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it is done for example in probabilistic C F G (see [48] or [56]). 

Probabilistic Context-Free Grammar 

Informally, a probabilistic C F G (also known as stochastic CFG) is a C F G where a certain 
fixed probability is assigned to each rule. In this way, some derivations become more likely 
than other. 

Definition 3.2 (Probabilistic context-free grammar). A probabilistic context-free grammar 
( P C F G for short) G is a quintuple G = (N, T, R, S, P), where 

• N = {A\,A2 . . . , An} is a nonterminal alphabet, 

• T = {wi,W2 • • •, wm} is a terminal alphabet, 

• R = {Ai -> Qj : € (N U T)*, 1 < i < n} is a set of rules, 

• S = A\ is the start symbol, and 

• P is a corresponding set of probabilities on rules such that for all 1 < i < n, 

£ p ( A - > 0 ) = i . 
3 

Further notions such as sentential form, sentence, derivation, and generated language 
are defined by analogy with CFGs (see Definition 2.24). 

In a natural way, the probability of a derivation A in a P C F G G, denoted by P(A\G), 
is given by the product of probabilities of all applied rules. Subsequently, the sentence 
probability of a sentence s in G, denoted by P(s\G), is the sum of probabilities of all 
possible derivations in G that result in s. 

P C F G s are typically used to answer the following three questions: 

1. What is the probability of a sentence s according to a P C F G Gl 

P{s\G)=l 

2. What is the most likely parse A of a sentence s according to a P C F G Gl 

argmaxP(A|s , G) =? 

3. How do we set the rule probabilites of G to maximize the probability of a sentence s? 

argmaxP(s |G) =? 
G 

Note that the last question is essential for machine learning. The goal is to set the rule 
probabilities in such a way that resulting the sentence probabilities reflect their frequency 
in the training corpus. 
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3.1.5 Regulated Rewriting as an Alternative 

One of the major trends in formal language theory is regulated rewriting. The basic idea is 
to increase the generative power of a given formal model (usually a CFG) by adding some 
mathematically simple mechanism that controls (or, regulates) the sentence generation. 
Such models can be useful in N L P as well, because they allow us to capture even features 
of natural languages that are difficult or impossible to describe with only context-free rules. 

In particular, our work is heavily inspired by [63], which proposes the use of SCGs and 
transformational SCGs in the description of the English language. 

Transformational Scattered Context Grammar 

Informally, a transformational S C G is a modification of S C G where derivations start with 
a string (taken from a given language) instead of a single start symbol. 

Definition 3.3 (Transformational scattered context grammar). A transformational scat­
tered context grammar (TSCG for short) G is a quadruple G = (N, T, P, I), where 

• N is a nonterminal alphabet, 

• T is a terminal alphabet called the output vocabulary, N (IT = 0, 

• P is a finite set of rules of the form 

(Ai,..., An) > ( x i , . . . , x n ) , 

where n > 1 and for all 1 < i < n, Ai G N, Xi G (N U T)*, and 

• / C N U T is the input vocabulary. 

Further notions such as sentential form, sentence, and derivation are defined by analogy 
with SCGs (see Definition 2.31). The transformation that G defines from K C /*, denoted 
by T(G,K), is defined as T(G, K) = {(x,y): x =>*Gy,x G K,y G T*}. 

To demonstrate scattered context in English syntax, several case studies are discussed 
in [63]. To illustrate, here we recall a simple example dealing with neither-nor clauses. 
Specifically, we want to negate the clause. 

Neither Thomas nor his wife went to the party. 
Both Thomas and his wife went to the party. 

Example 3.1. Let T be the set of all English words (including all their inflectional 
forms). Let G = (N,T,P,I) be a T S C G , where N = I = {(x): x G T} and P = 
{((neither), (nor)) —>• ((both), (and))} U {((x)) —>• (x): x G T — {neither, nor}}. 

A derivation in G performing the negation of the example sentence may proceed as 
follows: 

(neither) (thomas) (nor) (his) (wife) (went) (to) (the) (party) 
both (thomas) and (his) (wife) (went) (to) (the) (party) 
both thomas and (his) (wife) (went) (to) (the) (party) 
both thomas and his (wife) (went) (to) (the) (party) 

=̂ >5 both thomas and his wife went to the party 
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Note that we assume here that the set of all English words, T, is finite and fixed. Such 
assumption is reasonable in practice, as we all commonly use a finite and fixed vocabulary 
in everyday English. However, in [63], the authors also rise an interesting point that, at 
least from a theoretical point of view, the set of all well-formed English words is infinite. 

For example, consider the following sentences: 

Your grandparents are all your grandfathers and all your grandmothers. 
Your great-grandparents are all your great-grandfathers and all your great-grandmothers. 

Your great-great-grandparents are all your great-great-grandfathers and all your 
great-great-grandmothers. 

We can continue in this fashion indefinitely—even if the resulting sentences become less 
and less common—which gives us the infinite language L = {your {great-}*grandparents 
are all your {great-}*grandfathers and all your {great-}*grandmothers : i > 0}. Note that 
L is not context-free. 

Example 3.2. Let G = (N,T,P,S) be a S C G , where T = {all, and, are, grandfathers, 
grandmothers, grandparents, great-, your}, N = {S, and P consists of the following 
three rules: 

(5) —> (your ^grandparents are all your ^grandfathers and all your ^grandmothers), 
(#.#.#)->• (#great-,#great-,#great- ), 

(#,#,#) -»• (£,£,£) 

A n example of a derivation follows. 

S =4> your ^grandparents are all your ^grandfathers 
and all your ^grandmothers 

=4> your #great-grandparents are all your #great-grandfathers 
and all your ^great-grandmothers 

=4> your great-grandparents are all your great-grandfathers 
and all your great-grandmothers 

3.2 Introduction to Machine Translation 

Machine translation (see [51], [68], and [83]) is one the main parts of the motivation behind 
our work. In this section, we briefly review its history, core principles, and recent trends. 

3.2.1 History and Classification 

Machine translation is among the oldest tasks in the field of natural language processing. 
According to [61 ], the first documented idea of using computers for translation of natural 
languages is from 1947, by Warren Weaver. Subsequently, an extensive research in the area 
began. 

The practical results, however, were generally disappointing, as the task was proving 
much more difficult than expected. In the 1960s, there still were only few working trans­
lation systems, and even in their case, the output quality was mostly unsatisfactory. This 
led to a decline in interest. The research was greatly slowed down, and it was only fully 
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restarted in the 1970s. There has been major development since then, with a number of 
practically applied systems. 

Historically, machine translation systems can be divided into several categories based on 
various criteria. Depending on the number of languages, we distinguish between bilingual 
systems, which are designed specifically for a translation between a given pair of languages 
(for example Czech and English), and multilingual systems, which are able to process several 
different languages. 

Furthermore, machine translation systems can be either unidirectional (performing 
translation in one direction only, e.g. from Czech to English, but not vice-versa), or bidi­
rectional (able to translate in both directions, e.g. both from Czech to English and from 
English to Czech). Multilingual systems are usually bidirectional, while bilingual systems 
may often be unidirectional only. 

There have been three classic approaches to the design of machine translation systems: 

• Direct translation - this is the oldest approach. From the start, the system is designed 
for a given pair of languages only (therefore it is by definition always a bilingual sys­
tem). The translation is realized directly from the source language to the target 
language. The syntax and semantic analysis of the source text is limited to the nec­
essary minimum (for example to resolve ambiguities). These systems usually contain 
a large bilingual dictionary as their core and only a simple program for the analysis 
and generation of text. 

• Interlingual translation - with this approach, we assume that it is possible to convert 
the source texts to some abstract lexical-semantic representation called interlingua, 
which is language-independent (or at least common for several different languages). 
The translation then consists of two main phases. First, we analyse the text in the 
source language and obtain its representation in interlingua. Subsequently, we can 
generate corresponding texts in various target languages from this representation. 

• Transfer - this approach is similar to interlingual translation as it also uses an in­
ternal abstract representation. However, we use different representations for different 
languages. The translation is perfomed in three steps. As with interlingual transla­
tion, we first create an abstract representation of the source text. Then, we convert 
this internal representation into another abstract representation, which corresponds 
to the target language. From this representation we can generate the target text. 

Direct translation is based on intuitive approach. Besides its simplicity, an important 
advatange of direct translation lies in the fact that since we only deal with two select 
languages, we can focus on their specific aspects and features. Unfortunately, this also 
means that direct translation systems are not general. That is, they cannot be easily 
modified for different languages than the ones that they are originally designed for. 

In contrast, the main motivation behind interlingual translation is generality. Ideally, 
if the interlingua is indeed completely language-independent, adding a new language to 
the system would only require a specification of conversion between the language and the 
interlingua, without any need for changes in the rest of the system. In practice, however, 
there are various key differences between natural languages, which makes it very difficult 
to design an universal representation. 

The last approach, transfer, is an effort to combine the advantages of both direct and 
interlingual translation. Because we have a different abstract representation for each lan­
guage, we can study and describe the key features of each particular natural language 
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separately. On the other hand, the system as a whole is still general enough to allow for, 
for example, the addition of new languages. 

3.2.2 Recent Trends 

Following a similar general trend in natural language processing, statistical machine trans­
lation quickly came to the center of attention, with a shift from traditional the rule-based 
systems to corpus-based ones (as multilingual corpora also became more available). These 
systems mostly rely on formal models that represent local information only, such a n-gram 
models mentioned above. 

However, in the recent years, there have been attempts to improve the translation 
quality by incorporating non-local, syntactic information (usually within the scope of a 
sentence). These approaches are generally called syntax-based, syntax-aided, or syntax 
augmented translation (see [50] or [86]). The formal background (namely synchronous tree 
substitution grammars) of one such syntax-based translation system (from the EuroMatrix 
project) is described in-depth in [6]. 

In order to use syntactic information, we need formal models that can capture it, such 
as grammars and automata. Furthermore, for translation, we also need to formally describe 
transformations of syntactic structures. In particular, our work is inspired by synchronous 
grammars, (see [13] or [15]). 

Synchronous Grammars 

Informally, a synchronous grammar is a grammar that generates pairs of sentences, and 
in this way, it can define translations. More specifically, there is a generalization of C F G 
called the synchronous context-free grammar (SCFG for short), where, in essence, every 
rule has two right-hand sides. The principles of synchronous grammars are discussed in 
more detail in Chapter 4. 

Relatively recently, SCFGs have been successfully applied in statistical machine transla­
tion (see [12], [80], and [84]). There is also a modification called weighted S C F G (see [14]), 
where we assign fixed weights to rules (similarly to probabilities in P C F G ) . 

Besides S C F G , a synchronous version of tree-adjoining grammar called synchronous 
tree-adjoining grammar has also been introduced and explored in the context of natural 
language processing (see [78]). 
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Part II 

Synchronous Formal Systems 
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Chapter 4 

Synchronous Systems Based on 
Grammars 

In essence, synchronous grammars are grammars or grammar systems that generate pairs 
of sentences in one derivation, instead of single sentences (as for example in CFGs) . In 
this way, they allow us to describe translations. That is, in each pair, the first string is a 
sentence of the source language, and the second string is a corresponding sentence of the 
target language. 

Although the term synchronous context-free grammar (SCFG for short) is relatively 
recent, the essential principle was introduced already in the late 1960s in syntax-directed 
translation schemata [ ] and syntax-directed transduction grammars [ ]. These models 
were originally developed as formal background for compilers of programming languages. 
Subsequently, synchronous grammars have been succesfully used natural language process­
ing as well, particularly in machine translation (for more details, see Section 3.2). 

Informally, we can see S C F G (see [13] or [15]) as a modification of C F G where every 
rule has two right-hand sides, the first of which is applied to the input sentential form 
(source), and the second to the output sentential form (target). Nonterminals are linked, 
which means that in each derivation step, we rewrite both the selected nonterminal symbol 
in the input sentential form and its appropriate counterpart in the output sentential form. 

Example 4.1. The following two rules are a fragment of a synchronous C F G which trans­
forms arithmetic expressions from infix notation (e.g. 3 x 5 + 4) to postfix notation (e.g. 
3 5 x 4 + ) . E , F, and T are nonterminals, + and x are terminals, E is the start symbol. 

1 : E -»• Ea + T®, Em T® + 

2 : T ^ T E X F I J E F I X 

A derivation using these rules may look like this: 

(Em, Em) (Em + Tm, Em Tim +) [l] 
(Em + Tm + Tm, Em T@ + Tm +) [l] 
(Em + Tm x Fm + Tm, Em Tm Fm x + Tm +) [2] 

The boxed numbers are used to denote linked nonterminals. That is, two nonterminals 
are linked if they have the same number (e.g. [T] and rn). Every derivation in a S C F G starts 
with a pair of linked nonterminals, such as (Em, Em) here (the starting number 42 is chosen 
arbitrarily). Whenever we make a derivation step, we assign new, unique numbers to each 
newly introduced pair of linked nonterminals, as seen in the derivation example above. 
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In each derivation step, we can only rewrite linked nonterminals (nonterminals sharing 
the same boxed number). Note that when applying rule 2 above, we rewrite the first 
occurence of T in both sentential forms, which is allowed, as it is T[46i in both cases. We 
could also choose to rewrite the second occurence in both sentential forms (Tgg). However, 
we cannot choose the first T in one sentential form and the second T in the other, because 
the assigned numbers do not correspond (Tgg] and Tim), and thus the two nonterminals are 
not considered linked. 

The original ideas, concepts, definitions, and theoretical results presented in this chapter 
were first published in [ ] and [ ]. 

4.1 Rule-Synchronized Context-Free Grammar 

In [40] and [41], we have proposed synchronization based on linked rules instead of nonter­
minals. Informally, such synchronous grammar is a system of two grammars, Gi and Go, in 
which the corresponding rules share labels. For example, if we apply rule labelled 1 in the 
input grammar Gj, we also have to apply rule labelled 1 in the output grammar Go, and 
this makes for a single derivation step in the synchronous grammar. In other words, the 
input and output sentence have the same parse (a sequence of rules applied in a derivation, 
denoted by their labels). 

Example 4.2. Rules (Gj on the left, Go on the right): 

1 : E ->• E + T 1 : E ^ E T + 

2 : T -> T x F 2 : T ^ T F x 

A n example of a derivation using these rules in Gi follows. 

E 4 E + T [ l ] ^ E + T x F [ 2 ] 

A corresponding derivation in Go is: 

E ^ E T + [ l ] ^ E T F x + [2] 

The parse is (1,2). 
However, note that we place no restriction on the linked rules. For instance, unlike 

in synchronous CFGs, we do not have to rewrite the same nonterminal in both sentential 
forms in one derivation step. Both the right-hand sides and the left-hand sides of linked 
rules may be completely different, for example: 

3 : A ^ B a C 3 : P -> Q B R b d 

In other words, rule-synchronized CFGs can be seen as a generalization of the traditional 
synchronous CFGs, as the latter can be defined as special case of rule-synchronized CFGs, 
where each two linked rules have the same left-hand side (that is, they rewrite the same 
nonterminal). 

Formally, we define a rule-synchronized C F G as follows. 

Definition 4.1 (Rule-synchronized C F G ) . A rule-synchronized CFG (RSCFG for short) 
H is a quintuple H = (Gi, Go, fi, fo), where 
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• Gi = [NUTUPUS!) and GQ = (N0,T0, PQ, So) are CFGs, 

• ^ is a set of rule labels, and 

• (pi is a function from \I/ to Pj and ipo is a function from to p > 

We say that two rules pj G Pi and po G Po are linked, if and only if there is some label 
such that </?/(p) = pi and <po(p) = Po- That is, each two linked rules share the same 

label. 
We use the following notation (presented for input grammar Gj, analogous for output 

grammar Go)' 

p : Aj —>• xj <Pi(p) = A f —>• xj 
where p G Aj —>• G Pj 

=^Gj 2Af [p] derivation step in G 7 
where a;/, y/ G ( i V U T ) * , p G * applying rule <pi(p) 
xj yi [ p i . . . p n ] derivation in G j applying 
where xj, yj G (iV U T)*,pi G Vl/ for I < i < n rules (fi(pi) • • • fi(pn) 

Definition 4.2 (Translation in R S C F G ) . Let H = (Gj, G0, * , ¥>o) be an R S C F G . The 
translation defined by H, denoted by T(H), is the set of pairs of sentences, which is defined 
as 

Originally [ ], we considered R S C F G only as a variant of synchronous C F G . However, 
there is in fact a significant difference. While the latter does not increase the generative 
power over C F G , R S C F G does, as is shown in the next subsection. 

4.1.1 Generative Power 

Synchronous grammars define translations—that is, sets of pairs of sentences. To be able 
to compare their generative power with well-known models such as CFGs, which define 
languages, we can consider their input and output language separately. 

Definition 4.3 (Input and output language). Let H be an R S C F G . Then, we define 

• the input language of H, denoted by Lj(H), as Lj(H) = {wj: (wj,wo) G T(H)}, 

• the output language of H, denoted by Lo{H), as Lo(H) = {wo - (wi,wo) £ T(H)}. 

Example 4.3. Consider an R S C F G H = (Gi,Go,^,fi,fo) with the following rules 
(nonterminals are in capitals, linked rules share the same label, Sj and So are the start 
symbols of Gi and Go, respectively): 

T(H) = {(WI, wo) W l e T ! , w 0 e T 0 , 

Sj =>GR
 W I [a]> So ^ G 0

 W ° [a] f ° r s o m e a £ 

and 

Go 
1 
2 
3 
4 
5 
6 
7 

5/ -»• ABC 1 
2 
3 
4 
5 
6 
7 

So ^ A 
A ->• B 
B -> C 
C -»• A 
A ->• B' 
B' -> C" 
C" -)• £ 

A ->• aA 
B ^ bB 
C -»• cC 
A ->• £ 
P -)• £ 
C -)• £ 
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A n example of a derivation follows. 

ABC 
a ABC 
aAbBC 
aAbBcC 
aaAbBcC 
aaAbbBcC 

=> aaAbbBccC 
=4> aabbBccC 
=4> aabbccC 
=4> aabbcc 

[1] 
[2] 
[3] 
[4] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

So ^ A 
=> B 
=> C 

A 
B 

=> C 
A 
B' 
C 
£ 

[1] 
[2] 
[3] 
[4] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

We can easily see that Lj(H) = {anbncn: n > 0}, which is well known not to be a 
context-free language. This shows that RSCFGs are stronger than (synchronous) C F G s . 1 

Where exactly do synchronous grammars with linked rules stand in terms of generative 
power? 

Let «5?(RSCFG) denote the class of languages generated by R S C F G s as their input 
language. Note that the results presented below would be the same if we considered the 
output language instead. 

In some of the proofs below, we use a function that removes all terminals from a sen­
tential form, formally defined as follows. 

Definition 4.4. Let G = (N,T,P,S) be a C F G . Then, we define the function 9 over 
(N U T)* as follows: 

1. For all t o e f , 6(w) = e. 

2. For all w = X0A1X2A2 ... xn-\Anxn for some n > 1, where xi G T* for all 0 < i < n 
and Aj G N for all 1 < j < n, 9(w) = AXA2 ... An. 

The idea here is that if we consider only context-free rules, the applicability of rules to 
a given sentential form only depends on nonterminals. Therefore, we can remove terminals 
without affecting computational control. 

For every R S C F G , we can construct an equivalent M A T , using matrices to simulate the 
principle of linked rules. 

Lemma 4.1. For every RSCFG H, there is a MAT H' such that L(H') = Lj(H). 

Proof. Let H = (Gi,G0,^>',<pi,<po) be an R S C F G , where Gi = (NI,TI,PI, Si), G0 = 
(N0,T0,Po,So)- Without loss of generality, assume NjDNo = 0, S <£ NjUNo- Construct 
a M A T H' = (G, M), where G = (N, T, P, S), as follows: 

1. Set N = iV> U N0 U {S}, T = Ti, P = {S -t 5 / 5 0 } , M = {S ->• 5 / 5 0 } . 

2. For every label j)G f , add rules pi, po to P and add matrix pipo to M, where 

• pi = flip) and 

1 S t r i c t l y s p e a k i n g , t o m a k e t h i s c l a i m , we also have t o show t h a t every context- free language c a n be 

generated b y a R S C F G . T h a t is however e v i d e n t f r o m the d e f i n i t i o n . 
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• po = A —>• x such that foip) = A —>• x', x = 6>(x').2 

Basic idea. H' simulates the principle of linked rules in by matrices. That is, for 
every pair of rules (Aj —>• xj,Ao —>• xo) such that <p/(p) = Ai xi, foip) = — • for 
some p G * in i7, there is a matrix m = ^4/ —>• xjAo —>• 0{xo) in i ? ' . If, in i7, x/ =4> [p] 
in G / and xo =>• yo [p] m Go, then there is a derivation step xj9(xo) yi Q(yo) \ m \ 
in Note that since the rules are context-free, the presence (or absence) of terminals 
in a sentential form does not affect which rules we can apply. Furthermore, because the 
nonterminal sets Nj and No are disjoint, the sentential form in H' always consists of two 
distinct parts such that the first part corresponds to the derivation in Gi and the second 
part to the derivation in Go-

Claim 4.2. If Sj =4>* wj [a], So wo [a] in H for some a G then S =4>* wj 9{wo) in 
H'. 

Proof of Claim J±.2. B y induction on the number of derivation steps in H. 
Basis. Let Sj ^° Sj [e], S0 =>° S0 [e] in H. Then, S 5 / 5 0 [p] in G, p G M, and 

thus S =4> SjSo [p] in H'. Claim 4.2 holds for zero derivation steps in H. 
Induction hypotesis. Suppose that Claim 4.2 holds for j or fewer derivation steps in H. 
Induction step. Let Sj =4>J wj [a] w'j [p], So wo [a] =>• w'Q [p] in H. Then, by the 

induction hypotesis, S =4>* wj 9{wo) in H'. Without loss of generality, suppose that 

• wi = UIAIVI, w0 = u0A0v0, 

• w'j = UIXIVI, w'0 = u0x0vo, 

where Ai G NI: A0 G N0, UI,VI,XI G (iVj UTj)* , and u0,v0,x0 G ( i V 0 U T 0 ) * . That 
is, <£/(p) = Ai —y xi, foip) = — • From the construction of H', we know that 
pi = Aj x / G P , po = 0(^0) G -P, and pipo G M . Therefore, in H', S =4>* 
wj9(wo) = UIAIVI 9{uoAovo) =>• UJXJVJ 9{uoxovo) [piPo] = wj9(wo)- Claim 4.2 holds. 
Furthermore, if Sj =4>* wi [a], So wo [«] m H, where wj G Tj, wo G TQ, then 
0(w o ) = and thus S ^* wi in H'. Lj(H) C L(i7')- • 

Claim 4.3. / / 5 =4>* u> m i i f , i/ien there are strings wi,wo such that w = wj9(wo) and 
Sj =4>* wj [a], So wo [a] in H for some a G 

Proof of Claim 4-3. B y induction on the number of derivation steps in H'. 
Basis. Consider the first derivation step in H'. Because S —>• SjSo is the only rule in 

P with S as its left-hand side, this must be S =4> SjSo- Then, Sj =4>° Sj [e], So <5o [£] 
in i7. Claim 4.3 holds for one derivation step in H'. 

Induction hypotesis. Suppose that Claim 4.3 holds for j or fewer derivation steps in H'. 
Induction step. Let S =4> SjSo =^J_1 w =>• w' [m] in H'. Then, by the induction 

hypotesis, Sj =4>* wj [a], So wo [a] in H for some wj,wo such that u> = wj9(wo). 
From the construction of i? ' , we know that m = pipo, where for some p G f , j)j = i / ^ 
xi = flip) and po = Ao —>• ^(xo) such that ^4o ->• â o = foip)- Therefore, there must be 
a factorization of u> and w' such that 

• w = wj 9iwo) = UJAJVJ 9iuoAovo), 

2 T h i s removes a l l t e r m i n a l s f r o m the r i g h t - h a n d side of the ru le . N o t e t h a t i f we leave t h e r u l e u n c h a n g e d , 

we o b t a i n t h e c o n c a t e n a t i o n of t h e i n p u t a n d the o u t p u t sentence. F u r t h e r , i f we w a n t L(H') = Lo(H) 
i n s t e a d o f L(H') = Li(H), we c a n s i m p l y m o d i f y pi i n s t e a d of p o i n t h i s s tep. 
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• w' = w'j 0{w'o) = UJXJVJ 9{uoxovo)i 

where Ai G JVj, A0 G i V 0 , UI,VI,XI G (JV/UT/)*, and u0,v0,x0 G {N0UT0)*. Therefore, 
in 

• 5/ =4>* iuj [a] = UJAJVJ =4> UJXJVJ [p] = tt>j and 

• So ^ o H = uo^o^o u0x0vo [p] = w'0-

Claim 4.3 holds. Furthermore, if S =4>* u> in H', where w G T*, then u>/ G Tf and 9{wo) = £, 
thus wo G 2o. L(fT') C Li(H). • 

By Claim 4.2, L/( i7) C L(PT'), and by Claim 4.3, L(fT) C Li(H), therefore L(PT') = 
Lj(H). Lemma 4.5 holds. • 

On the other hand, for every M A T , we can construct an equivalent R S C F G . We take 
advantage of that fact that there is an "additonal" C F G in an R S C F G , and use it to 
simulate matrices. 

Lemma 4.4. For every MAT H, there is a RSCFG H' such that Li(H') = L(H). 

Proof. Let H = (G, M) be a M A T , where G = (N,T,P,S). Without loss of generality, 
assume A n { S / , S o , A } = 0. Construct an R S C F G H' = (Gi,Go,^,fi,fo)i where 
Gi = (Nj, Tj, Pj, Si), Go = (N0,T0, Po, So), as follows: 

1. Set NI = NU{SI,X}, Ti = T, Pi = {Si -> S A , A ^ e}, N0 = { S 0 , A } , T0 = {#}, 
Po = {S0^X,X^ #}, if! = 0, cpo = 0. 

2. Set * = {0,1}, p/(0) = S/ ->• S A , ^ ( 0 ) = S 0 - ) • A , ^ ( 1 ) = X -> e, ^ ( 1 ) = A -> 
#• 

3. For every matrix m = p G M, where p G P, 

(a) add rule p to Pi, 

(b) add rule A -> A to P 0 , 

(c) add new label (m) to and 

(d) set <pi((m)) = p, ip0{{m)) = X -> A . 

4. For every matrix m = p\ .. .pn G M , where n > 1 and pi £ P for all 1 < i < n, 

(a) add rules p i , . . . ,p„ to P j , 

(b) add n6w nonterminals {XTTI^X^ . . . , {XTH)J N—\ to A 0 , 

(c) add rules A —>• (Xm)i, {Xm)\ —>• {Xm)2, (Xm)n-2 —>• (Xm)n-i, 
(Xm)n-i -> A to P 0 , 

(d) add new labels ( m ) i , . . . , (m) n to and 

(e) set and <̂ o as follows: 

• (pi((m)i) = p i , ^ o ( W i ) = A -> ( A m ) i , 
• (pi({m)i) = Pi, <po((in)i) = (Xm)i-i —>• (Xm)i for all 1 < i < n, and 
• (pi({m)n) =pn, po({m)n) = (Xm)n-i -> A . 
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Basic idea. One may notice that Gi constructed by the above algorithm is nearly iden­
tical to the original C F G G in H. Indeed, it performs essentially the same role: generating 
a sentence. Meanwhile, Go restricts available derivations according to matrices from H. 
Each nonterminal in Go represents a certain state of the system. For example, suppose 
that we have the nonterminal {X 171)2 as the current sentential form in Go- This means 
that we are currently simulating the matrix m, we have succesfully applied the second rule 
of this matrix, and now we need to apply its next rule. The nonterminal X is a special 
case. It represents the state where we can either choose a new matrix to simulate, or end 
the derivation. It appears at the start of a derivation (along with the original start symbol 
from H, S) and can only appear again immediately after a successful simulation of a whole 
matrix (one derivation step in H). 

In other words, H' simulates matrices in H by derivation in Go- That is, if x =4> y [m] 
in H, where m = pi...pn for some n > 1, then there is a sequence of derivation steps 
X (Xm)l [(m)i] (Xm)2 [<m)2] (Xm)n-2 [<m)n_2] => (Xm)n-1 [<m)n_i] =4> 
X[(m)n] in Go and <pi((m)i) = pi for 1 < i < n. Now observe that in Go constructed 
by the above algorithm, every nonterminal except X can only appear as the left-hand side 
of no more than one rule. This means that after rewriting X to (Xm)\, the only way for 
the derivation to proceed is the above sequence, and the entire matrix is simulated. Note 
that for matrices that only have one rule (that is, if n = 1), X => X in Go by using rule 
X —> X, and we can immediately continue with another matrix. The simulation ends by 
rewriting X to the only terminal # in Go and, simultaneously, deleting X in Gi (using 
rule X —> e). This ensures that the derivation in Gi cannot end by producing a sentence 
prematurely—that is, when the simulation of a matrix is incomplete—because there will 
always be at least one nonterminal left at that point (precisely X). 

Formally, if x =>• y[m] in H, where m = p\...pn for some n, then, in H', x =^n 

y [mi... mn] in Gj and X =>ra X [mi... mn] in Go- Conversely, if, in H', x =4>n y [a] in 
Gj and X =>n X [a] in Go for some n > 1, a € and there is no k < n such that 
x =>k z [j3\ y [7] in Gj and X =>k X [j3\ X [7] in Go for some f3,7 G there has to 
be m G M such that x =>• y [m] in H. Therefore, if for some a £ S/ =̂>* u>X [a] =4> to [1], 
So [a] =>• £ [1] in i? ' , where w <E Tf, then 5 =̂>* u> in i7. On the other hand, if 
S ^* w in i f , where to G T*, then a G **, 5/ ^ * [a] w [1], 5 0 ^ * X [a] / [1] in 
i i " ' for some a G \&*. Thus, Li(H') = L(H), and Lemma 4.4 holds. • 

Note that Go constructed by the above algorithm is not only context-free, but also 
regular. 

From Lemma 4.1 and Lemma 4.4, we can establish the following theorem. 

Theorem 4.5. 
i f (RSCFG) = J^ (MAT) 

Proof. From Lemma 4.1, it follows that i f ( R S C F G ) C i f (MAT) . From Lemma 4.4, it 
follows that J^ (MAT) C i f (RSCFG). Therefore, i f (RSCFG) = i f (MAT) . • 

4.2 Synchronous Scattered Context Grammar 

The principle of synchronization based on linked rules can be naturally extended to other 
models beside CFGs . Indeed, the definition of synchronous S C G is analogous to Defini­
tion 4.1 for R S C F G . Essentially, we only need to replace context-free rules with scattered 
context rules. The notation is also analogous. 
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Definition 4.5 (Synchronous SCG) . A synchronous SCG (SSCG for short) H is a quintuple 
H = (Gi, G0, <pi, <po), where 

• Gi = (NI,TI,PI,SI) and G0 = (N0,T0, P0, So) are SCGs, 

• * is a set of rule labels, and 

• is a function from W to P / and <̂ o is a function from to p > 

Further, the translation defined by H, denoted by T(H), is the set of pairs of sentences, 
which is defined as 

T(H) = { ( W l , w 0 ) : W! eT?,w0eT0, 

Sj =>GR
 W I [ a ] > So ^ G 0

 W ° [A] ^ O R S O M E A ^ 

We define the input and output language of SSCG by analogy with Definition 4.3 for 
RSCFGs . Further, let i f ( S S C G ) denote the class of all languages generated by SSCGs as 
their input language. 

4.2.1 Generative Power 

It is known that SCGs can generate all recursively enumerable languages (see [59]). Perhaps 
not surprisingly, the same is true for SSCGs. From their definition, it is easy to see that 
SSCGs cannot be weaker than SCGs. If we want to construct an SSCG equivalent to a 
given S C G , we can, for instance, essentially duplicate the original S C G and designate each 
two identical rules from input and output grammar as linked. 

Theorem 4.6. 
J^(SSCG) = R E 

Proof. Clearly, i f (SSCG) C R E must hold. From definition, it follows that i f (SCG) C 
i f (SSCG). Because J^(SCG) = R E [ ], R E C J^(SSCG) also holds. • 

4.3 Synchronous Matrix Grammar 

In the case of matrix grammars, the situation is slightly more complicated. How should 
we link the rules with regard to matrices? There are many options. For instance, we could 
strictly require that all rules in one matrix in the input grammar be linked to rules in 
one matrix in the output grammar, in respective order (consequently, requiring each two 
matrices that have their rules linked to have the same length). Alternatively, we could link 
only the first rule in each matrix. However, perhaps the most straightforward and intuitive 
approach is to link whole matrices rather than individual rules. 

The notation used here is analogous to the one presented in Section 4.1 for RSCFGs , 
only replacing rules by matrices. 

Definition 4.6 (Synchronous matrix grammar). A synchronous matrix grammar (SMAT 
for short) H is a septuple H = (Gj, Mj, Go, Mo, <pi, fo), where 

• ( G / , M / ) and (G0,M0) are M A T s , where 

- GI = (NI,TI,PI,SI) and 
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- Go = (No,T0,Po,So), 

• ^ is a set of matrix labels, and 

• (pi is a function from to Mj and ipo is a function from \I/ to Mo-

Further, the translation defined by H, denoted by T(H), is the set of pairs of sentences, 
which is defined as 

T(H) = {(WI, wo) : W l e T ? , W o e T o , 
Si ^(dMi) W l la]'S0 ^ ( G 0 , M 0 ) w o [a] for some a G <&*}. 

We define the input and output language of S M A T by analogy with Definition 4.3 for 
RSCFGs . Further, let i f (SMAT) denote the class of all languages generated by SMATs as 
their input language. 

4.3 .1 Generative Power 

Following a similar reasoning as in the case of SSCGs, we can immediately conclude that 
SMATs must be at least as powerful as M A T s . To elaborate, to construct an S M A T equiv­
alent to a given M A T , we can, as with SSCGs, let both input and output grammar equal 
the original grammar and designate the identical matrices in input and output grammar as 
linked. 

The fact that we can also construct an equivalent M A T for every S M A T is much less 
immediately obvious. In essence, we can join each two linked matrices (from input and 
output grammar) into one matrix. 

Theorem 4.7. 
J^(SMAT) = J^ (MAT) 

Proof. The inclusion i f (MAT) C i f ( S M A T ) follows from definition. It only remains to 
prove that J^ (SMAT) C i f (MAT) . For every S M A T H = (GI} MI} G0, M0, <pi, ipo), 
where Gi = (NJ,TJ, Pj, Si), G0 = (N0,T0, P0, So), we can construct a M A T H' = 
(G, M), where G = (N,T,P,S), such that L(H') = Lj(H), as follows. Without loss of 
generality, assume Nj n N0 = 0, S <£ Nj U N0. 

1. Set N = ^ U N0 U {S}, T = T/, P = {S ->• 5 / 5 0 } , M = {S ->• 5 / 5 0 } . 

2. For every label p G ^ , add rules pj1,... ,pin, poi, • • • iPom to P and add matrix 
Pii • --PinPOi • ••POm t o M ; where 

Pll •••Pln = 'PliP) a n d 

• for 1 < j < m, poj = Aj —> Xj such that <po(p)\j] = Aj —> x'j, Xj = 0(x'j) 3 

Basic idea. H' simulates H by combining the rules of each two linked matrices in 
H into a single matrix in H'. That is, for every pair of matrices (mi, mo) such that 
ini = fi(p)imo = iPo(p) f ° r some p G in H, there is a matrix m = mim'0 in H', where 
m'0 is equal to mo with all terminals removed (formally defined above). If, in H, xj yj [p] 
in Gi and XQ yo [p] i n Go, then there is a derivation step XI9(XQ) yi&(yo) [™\ in 

3 A g a i n , t h i s removes a l l t e r m i n a l s f r o m the r i g h t - h a n d side of t h e rules (see T h e o r e m 4.5) . m[j] denotes 

the j-ih r u l e i n m a t r i x m. 
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H'. Note that since the rules are context-free, the presence (or absence) of terminals in 
a sentential form does not affect which rules we can apply. Furthermore, because the 
nonterminal sets Nj and No are disjoint, the sentential form in H' always consists of two 
distinct parts such that the first part corresponds to the derivation in Gi and the second 
part to the derivation in Go-

Claim 4.8. If Si =4>* wi [a], So wo [a] in H for some a G then S =4>* wi 9(wo) in 
H'. 

Proof of Claim 4-8- B y induction on the number of derivation steps in P . 
Basis. Let Si =>° Si [e], S0 =>° S0 [e] in P . Then, S => SiS0 [p] in G, p G M, and 

thus S =4> SiSo [p] in H'. Claim 4.8 holds for zero derivation steps in P . 
Induction hypotesis. Suppose that Claim 4.8 holds for j or fewer derivation steps in P . 
Induction step. Let Si =4>J wi [a] =4> w'j [p], So wo [a] =>• w'0 [p] in P . Then, by 

the induction hypotesis, S =4>* wi9(wo) in H'. Furthermore, if wi =4> w'j [p] in (GI,MI), 

wo => w'o\p\ i n {Go,M0), where <p/(p) = Pn---Pin for some n, <po(p) = VO\---POm 

for some m, then, in Gi, wi =4> wn \pii\ =>...=$• win \pin] = w'j, and, in Go, wo => 
woi [poi] =>•••=$• won [POm] = w'om Without loss of generality, suppose that 

• Wj = uixAnvn uiixiivnlpn] = ui2Ai2vi2 =>...=> uinxinvin[pin] = w'j, 
where for 1 < i < n, An G iVj, un, vn, xii G (Nj U Ti)*, and 

• W Q = UOIAOQVOI U01X01VOI [POl] = ti02^02^02 U0mXOmVOm [Pom] = 
w'0, where for 1 < j < m, A0j G i V 0 , u0j, v0j,x0j G ( i V 0 U To)*. 

That is, <p/(p) = An ->• x / i . . . Afn -> z/n, ¥>o(p) = ^01 -> »01 • ~> ^Om- From 
the construction of P ' , we know that for 1 < i < n, pii = An —>• x/j G P , for 1 < j < m, 
POj = AOj 0(zOj) G P , and t = pn . ..pinp'0l. --p'0m G M . Therefore, in G: 

1. 5 =4>* 9(w0) = unAnvn 9(wo), 

2. unAnvn 9(w0) => unxnvn 9(w0) \pn] = UI2AI2VI2 9(w0), 

3. UI2AI2VI2 9(w0) =>...=> uinxinvin 9(w0) \pin] = w'j 9(w0) = w'j 9(u0iA0lv0i), 

4. t^ 0 ( « o i ^ o i ^ o i ) w'j 9(UOIX0IVOI) [p'0l\ = w'j 9(u02A02v02), 

5. w'j 9 ( U 0 2 A 0 2 V 0 2 ) =>• • • • =>• w'j 9(u0mxomvom) \p'om} = w'i 9(.w'0), 

and thus in H', 5 =4>* wi9wo =>• w'j9(w'0) [t]. Claim 4.8 holds. Furthermore, if 5/ =4>* 
u>/ [a], So [a] m H, where wi G Tj, wo G T G , then 9(wo) = e, and thus S =4>* ti)/ 
in P ' . Li(H) C L ( P ' ) . • 

Claim 4.9. / / 5 =4>* ti) m P ' , £/ien t/iere are strings wi,wo such that w = wi9(wo) and 
Si =4>* wi [a], So wo [a] in H for some a G 

Proof of Claim 4-9- B y induction on the number of derivation steps in H'. 
Basis. Consider a single derivation step in H'. Because S —>• S1S0 is the only rule in 

P with S as its left-hand side, this must be S =4> Si So- Then, 5/ =4>° 5/ [e], So So [e] 
in P . Claim 4.9 holds for one derivation step in H'. 

Induction hypotesis. Suppose that Claim 4.9 holds for j or fewer derivation steps in H'. 
Induction step. Let S =4> S/So = ^ J _ 1 w =>• u>' [t] in P ' . Then, by the induction 

hypotesis, S/ ti)/ [a], So ti>o [a] in P for some WI,WQ such that ti) = WI9(WQ)-
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From the construction of H', we know that t = pil .. -Pinp0l • • -p'0 , where for some 

• pn = An ->• x / i ...pin = AIn ->• x /„ = < /̂(p) and 

• P o i = ^ O l ^ 0 ) 1 • • -POn = AOm ~> ^(^Om) SUchthatpoi = ^ O l ~> ^ O l • • • P O m = 
^ O m X 0 M = <Po(p)-

Then, if S SiS0 = ^ _ 1 w w' [t] in i J ' , S =4>* w = wi0(wo) = uiiAnvn 0(wo) => 
uI1xI1vI19(w0)\pii\ = ul2Al2vl29(w0) u I n x I n v I n 9(w0) \pi J = w'I9(w0) = 
w'jOiuoiAoiVoi) w'jeiuoixoivoi) \p'oi\ = w'I9(u02A02vo2) ••• => 
w'l0(uOmxomvom) Word = w'l^(w'o) i n Gi where for 1 < i < n , A / * G iV>, uj^vi^xn G 
(iV/ U Tf )*, and for 1 < j < m, A0j G N0, u0j,v0j,x0j G ( i V 0 U To)*. Therefore, 

• Wj = unAnvn uiixnvii Ipn] = ul2Al2vl2 ... u I n x I n v I n [pIn] = w'j in Gi 
and 

• w0 = UOIAOQVOI uoixoivoi [poi] = u 0 2 A 0 2 v 0 2 =>...=> u0mxomvom [Pom] = 
w'0 in G0, 

and thus in H, 

• Sj =4>* wj [a] = UJAJVJ =4> UJXJVJ [p] = w'j and 

• So ^ o H = u0A0v0 u0x0vo [p] = w'0. 

Claim 4.9 holds. Furthermore, if S =4>* w in H', where w G T*, then u>/ G Tj* and 9{wo) = £, 
thus two G 2o. L(H') C • 

By Claim 4.8, L/ ( i7) C L( i7 ' ) , and by Claim 4.9, L(H') C therefore L(fT') = 
Thus, the inclusion i f ( S M A T ) C i f (MAT) has been proven, and Theorem 4.7 

holds. • 
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Chapter 5 

Synchronous Systems Based on 
Transducers 

In formal language theory, there exist two basic translation-method categories. The first 
category contains interprets and compilers, which first analyse an input string in the source 
language and, consequently, they generate a corresponding output string in the target 
language (see [2], [47], [67], [71], or [76]). The second category is composed of language-
translation systems or, more briefly, transducers. Frequently, these trasducers consist of 
several components, including various automata and grammars, some of which read their 
input strings while others produce their output strings (see [5], [30], [69], and [82]). 

Although transducers represent language-translation devices, language theory often 
views them as language-defining devices and investigates the language family resulting 
from them. That is, it studies their accepting power consisting in determining the language 
families accepted by the transducer components that read their input strings. Alterna­
tively, it establishes their generative power that determines the language family generated 
by the components that produce their strings. The present chapter contributes to this vivid 
investigation trend in formal language theory. 

In this chapter, we introduce a new type of transducer, referred to as rule-restricted 
(automaton-grammar) transducer, based upon an F A and a C F G . In addition, a restriction 
set controls the rules which can be simultaneously used by the automaton and by the 
grammar. 

We discuss the power of this system working in an ordinary way as well as in a leftmost 
way and investigate an effect of an appearance checking placed into the system. 

The original ideas, concepts, definitions, and theoretical results presented in this chapter 
were first published in [10]. 

5.1 Rule-Restricted Transducer 

The rule-restricted (automaton-grammar) transducer is a hybrid system consisting of an 
FA and a C F G . The basic idea is straightforward: we read an input sentence with an FA 
while generating an appropriate output sentence with a C F G . A control set determines 
which rules from the F A and the C F G can be used simultaneously. The computation of the 
system is successful if and only if the F A accepts the input string and the C F G generates 
a string of terminals. 
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Definition 5.1 (Rule-restricted transducer). The rule-restricted transducer (RT for short) 
r is a triple T = ( M , G, \I/), where 

• M = (Q, E , 5, q0, F) is an FA, 

• G = (N, T, P, S) is a C F G , and 

• ^ is a finite set of pairs of the form ( n , r2), where r\ and r2 are rules from 5 and P, 
respectively. 

A 2-configuration of T is a pair x = (x, y), where x G QT,* and y G (iV U T)*. Consider 
two 2-configurations, x = (pavi,uAv2) and %' = (qvi,uxv2) with A G N, u, v2, x G (iVUT)*, 
v\ G E*, a G E U {e}, and p,q £ Q. If pavi =4> gui [n] in M , uAi»2 =>• uxv2 [r2] in G , and 
(r i , r 2 ) G then V makes a computation step from x' to written as x =^ x'- I n the 
standard way, =4>* and =4>+ are transitive-reflexive and transitive closure of =>, respectively. 

The 2-language of F, 2-L(F), is 2-L(r) = {(Wl,w2): (q0wi,S) ^* (f,w2), wi G E*, 
u>2 G T*, and / G F } . From the 2-language we can define two languages: 

• L ( r ) i = {Wl: (wuw2) G 2-L(r)}, and 

• L ( r ) 2 = {«; 2 : (Wl,w2) G 2-L(F)}. 

By (RT), ££(RT)i , and =Sf (RT) 2 , the classes of 2-languages of RTs, languages accepted 
by M in RTs, and languages generated by G in RTs, respectively, are understood. 

5.1.1 Generative Power 

It is well-known that FAs and CFGs describe different classes of languages. Specifically, 
by FAs we can accept regular languages, whereas CFGs define the class of context-free 
languages. However, in Example 5.1 it is shown that by the combination of these two 
models, the system is able to accept and generate even non-context-free languages. 

Example 5.1. Consider RT K = (M, G, *) with 

• M= ({1,2, 3', 3,4, 5', 5, 6}, {a, 6}, 5,1, {6}), where 

Pi •• la --> 2, P2 • 2 -• 1, Ps • lb ->3', P4 : 3' -•> 3 
P5 • 36 - P6 • 4 -• 3, P7 • 3a -+ 5', P8 : 5' -•)• 5 
P9 • 5a -+ 5, Pw • 56 --> 6, Pll • 66 -> 6 

See graphical representation of M in Figure 5.1. 

• G = ({S, A , 5 , C, D, D'}, {a, 6}, P, S), where 

n : 5 -)• P 6 P ' , r 2 : P ->• Bb, 
r 4 : P ->• aA, r 5 : £)'->• C , 
r 7 : C ^ C C , r 8 : D -> 6, 

rio : C —>• a 

P 

''3 
''6 
''9 

jy 
A -
A -

> D'D, 
a A, 

• <Jr = { (p i ,n ) , (p i , r 2 ) , (p 2 , r 3 ) 
(pg,r 8), (pio.no), (pn,no)}-

(P3,r 4), (P4,r 5), (P5,r 6), (pe,r 7), (P7,r 8), (ps,r 9), 

j , M G N,» G N 0 } and L(G) = The languages of M and G are L ( M ) = {alVakbl 

{albPakbl: i,j,k G N , Z G No}, respectively. However, the 2-language of K is L(K) 
{ ( a * 6 W , a J ' 6 W ) : t, j G N}. 
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Figure 5.1: Definition of F A M from Example 5.1 

From the example, observe that the power of the grammar increases due to the possi­
bility of synchronization with the automaton that can dictate sequences of usable rules in 
the grammar. The synchronization with the automaton enhances the generative power of 
the grammar up to the class of languages generated by M A T s . 

Theorem 5.1. 

J^ (RT) 2 = J^ (MAT) 

Proof. I. First we prove that i f (MAT) C i f (RT) 2 . 
Consider a M A T / = ( / G , / C ) and construct an RT T = ( r M , r G , t f ) , such that L(I) = 
L ( r ) 2 , as follows. Set rG = iG. Construct rM = (Q, E , 5, s, F) in the following way: 

1. Set F,Q = {s}. 

2. For every m = p\.. .pk G j C , add: 

(a) k — 1 new states, q\, q2, • • •, Qk-i, into Q, 
(b) k new rules, n = s ->• g i , r 2 = gi ->• g 2 , • • • , r f c _ i = % - 2 -> Qk-i,rk = qk-i -> s, 

into 5, and 

(c) fe new pairs, ( n , p i ) , ( r 2 , p 2 ) , . . . , ( r f c _i ,p f c _i) , (rk,Pk), into 

The F A simulates matrices in / by transitions. That is, if x i =4> x 2 [p] in / , where 
p = pi,... ,Pi for some i G N , then there is q\,..., G Q such that r i = s —>• q\, r 2 = 
gi ->• q2,... ,n-i = qi-2 ->• = q^-i ->• s G <5 and ( n , p i ) , . . . , (rj,pj) G Therefore, 
(s,xi) =4>* (s ,x 2 ) in T. Similarly, if (s,x\) =4>* (s,x2) in T, for i G N , and there is no j G N 
such that 0 < j < i and (s, x i ) =4>J (s, y) =4>* (s, x 2 ) , there has to be p G / C and x i =4> x 2 [p] 
in / . Hence, if (s, 5) =4>* (s, iu) in T, where w is a string over the set of terminals in rG, 
then S =4>* w in / ; and, on the other hand, if S =4>* w in I for a string over the set of 
terminals in iG, then (s, S1) =4>* (s, iu) in T. The inclusion i f (MAT) C i f (RT) 2 has been 
proven. 

II. For any RT F = (rM = (Q, E , 6, s, F),rG = (rN, rT, rP, rS), we can construct 
a M A T O = (oG, 0C) such that L(T)2 = L{0) as follows: 

1. Set 0G = (rN U {£ '} , rT, QP, S'), 0 P = r P U {p 0 = S' -»• (a) r 5}, and 0 C = {p 0}. 

2. For each pair (pi,p 2 ) G * with p i = —>• r, q,r G Q, a G E U {e}, p 2 = A —>• x, 
A G r A and x G (rN U r\T)*, add p i = (q) (r) into o-P and p i p 2 into o C . 

3. Furthermore, for all q £ F, add p = (5) —>• e into o-P and p into oG • 

By the following claims, we prove that L(T)2 = L(0). 
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Claim 5.2. If (sw,rS) =>* {qw',u) in F, then S' =4>* (q)u in O. 

Proof of Claim 5.2. B y induction on the number of computation steps. 

Basis. Let (sw,rS) =4>° (sw,rS) in T. Then, S' =4> {s)rS [p] in oG and p G oC Hence, 
S' =4> (s)rS [p] in O. Claim 5.2 holds for zero steps in T. 

Induction hypothesis. Suppose that Claim 5.2 holds for j or fewer computation steps. 

Induction step. Let (sw,rS) =4>J (qw',uj) =4> (q'w",uj') in T. Then, by the induction 
hypothesis, S' =>* (q)co in O. Without any loss of generality, suppose that OJ = uAv for 
u,v G (rNUrT)*, A G rN, and (qw',uAv) => (q'w",uxv) with x G ( r T U r A f ) * and 
OJ' = uxv. From the construction of O we know that p\ = A —>• x and p2 = (q) —> {q') 
is in pP and P1P2 G oC Therefore, S' =>* (q)uj =4> (q')uxv = (q')uj' in O. Claim 5.2 
holds. Furthermore, for all / G F there is a rule p = (f) —>• e G r P and p G oC- Hence, 
if (atu.r-S) ^ * where / G F and u G r F * in F, S' ^* (f)u to in O. That is, 
L ( r ) 2 C L ( 0 ) . ' ' • 

It remains to prove that L{0) C L(F)2-

Claim 5.3. If S' =4>* (q}io in O with LO G r F * , then (sw,rS) =4>* (f,oj) in F for some 
w G £* and f G F. 

Proof of Claim 5.3. Consider any successful derivation of the form 

S' => {qo)u)0 [po] {qi)ui [pi] =4> (92)^2 [P2] • • • {qk)uk [Pk] 

in O, where qo = s, qk = (7, wo = r<S> and uik = OJ. A S it follows form the construction 
of O, for every i = 1,... , k, pi = p\p", where p- = ->• =4> Wj [p"] in r G , 
and for a £ E U {e}, (%_ia q^p") G That is, (c/j_itt>j_i, =4> (qiWi,uJi) for all 
i = 1,... ,/c, and hence, ( s i ^ r S 1 ) (qkWk,ujk). Having 0;^ G r F * and using p = P1P2, 

where p i = (5) —> e G o-P, =4> Wfc [P2], and p G oC> implies q G F and u> G L(M), and 
therefore wfc G L ( r ) 2 . L(O) C L ( r ) 2 . • 

By claims 5.2 and 5.3, L ( r ) 2 = L(0) holds. Thus, the inclusion i f ( R T ) 2 C ( M A T ) 
has been proven, and Theorem 5.1 holds. • 

5.1.2 Accepting Power 

On the other hand, the C F G in the RT can be exploited as an additional storage space 
of the FA to remember some non-negative integers. If the automaton uses the C F G in 
this way, the additional storage space is akin to counters in a multi-counter machine. The 
following lemma says that the FAs in RTs are able to accept every language accepted by 
partially blind fc-counter automata. 

Lemma 5.4. For every k-PBCA I, there is an RTF = (M, G, *) such that L(I) = L(F)1. 

Proof of Lemma 5.4- Let / = (iQ, E , j5, qo, F) be a fc-PBCA for some k > 1 and construct 
a RT r = ( M = ( M Q , E , MS, qo, F),G = (N, T, P, S), *) as follows: 

1. SetT = Q,* = Q,N = {S,A1,...,Ak},P = {A^e: A G N}, M5 = { / -»• / : / G 

F } , and MQ = iQ-

2. For each pa —> q(t\,..., tk) in j5 and for n = ( E ^ = 1 max(0, —U)) add: 
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(a) qi,... ,qn into MQ] 

(b) r = S —>• x 5 , where x G (JV — {«S})* and occur(Aj,x) = max(0,ij), for i = 
1,..., k, into P ; 

(c) n = g 0a -> qi, r2 = qi ->• 92, • •., r „ = g n - i ->• g n , r n + i = qn ^ q into M<5 with 
go = p; and (rj_)_i,aj —>• e), where CKJ = Aj and each A j is erased max(0, — 
times during the sequence, into ^ (n = 0 means that only pa —> g, S —>• xS* and 
( r i , r) are considered); 

(d) (/ ->• f,S->e) into * for all / G F . 

The FA of the created system uses the C F G as an external storage. Each counter of / is 
represented by a nonterminal. Every step from ptoq that modifies counters is simulated by 
several steps leading from p to q and during this sequence of steps the number of occurrences 
of each nonterminal in the grammar is modified to be equal to the corresponding counter 
in I. Clearly, L(I) = L ( r ) i . • 

Lemma 5.5 states that the C F G is helpful for the F A in RT at most with the preservation 
of the non-negative numbers without possibility to check their values. 

Lemma 5.5. For every RT F = ( M , G, there is a k-PBCA O such that L(0) = L(T)1 

and k is the number of nonterminals in G. 

Proof of Lemma 5.5. Let V = (M = M6,q0,F),G = (N,T,P,S),V) be an RT. 
Without any loss of generality, suppose that N = {Ai,..., An}, where S = A\. The 
partially blind card(AQ-counter automaton O = (Q, E , o<5, qoi F) is created in the following 
way. For each r\ = pa —>• q G M<5 and r2 = a —>• j3 G P such that ( r i , r 2 ) G ^ , add 
pa —>• . . . , ̂ card^))) where Uj = occur(Aj, /?) — occur(Aj, a) for all i = 1,... , card(A^). 

The constructed partially blind card(AQ-counter automaton has a counter for each non­
terminal from the grammar of T. Whenever the automaton in T makes a step and thes 
entential form of the grammar G is changed, O makes the same step and accordingly changes 
the number of occurrences of nonterminals in its counters. • 

From Lemma 5.4 and Lemma 5.5, we can establish the following theorem. 

Theorem 5.6. 
00 

Jz?(RT)i = (J J^(fc-PBCA) 
k=l 

Proof. It directly follows from Lemma 5.4 and Lemma 5.5. • 

For better illustration of the accepting and generative power of RT, let us recall that 
the class of languages generated by M A T s is properly included in the class of R E languages 
[1, 21], and the class of languages defined by partially blind /c-counter automata, with 
respect to number of counters, is superset of the class of C F languages and properly included 
in the class of CS languages [27, 28]. 

47 



5.2 Rule-Restricted Transducer with Leftmost Restriction 

Although the investigated system is relatively powerful, in defiance of weakness of models 
that are used, nondeterministic selections of nonterminals to be rewritten can be relatively 
problematic from the practical point of view. Therefore, we examine an effect of a restriction 
in the form of leftmost derivations placed on the C F G in RT. 

Definition 5.2 (Leftmost restriction on derivation in RT) . Let T = (M,G, be an RT 
with M = (Q,Y,,5,qo,F) and G = (N,T,P, S). Furthermore, let x = (pavi,uAv2) and 
x' = (qvi,uxv2) be two 2-configurations, where A G N, V2, x G (N U T)*, u G T*, ui G E*, 
a G EU{e}, and p,q G Q. F makes a computation step from x to x', written as x =>im x' •> if 
and only if pav\ =4> qv\ [n] in M , uAvi =>• uxvi \r2\ in G, and (r\,T2) G ^f. In the standard 
way, =^*m and are transitive-reflexive and transitive closure of =4>;m, respectively. 

The 2-language of F with G generating in the leftmost way, denoted by 2 - L ; m ( r ) , is 
defined as 2 - L Z m ( r ) = {(w1,w2): (q0w1,S) =^*m (f,w2), w1 G E*, w 2 G T*, and / G F } ; 
we call T a leftmost restricted RT; and we define the languages given from 2 -L ; m ( r ) as 
Lim(F)i = {wi: (wi,W2) G 2-Lim(F)} and Lim(F)2 = {1U2: (^1,^2) G 2 - L Z m ( r ) } . 

By i f ( R T ; m ) , i f ( R T ; m ) i , and i f (RT/ m )2, we understand the following language classes, 
respectively: 2-languages of leftmost restricted RTs, languages accepted by M in leftmost 
restricted RTs, and languages generated by G in leftmost restricted RTs. 

5.2.1 Generative Power 

Unfortunately, the price for the leftmost restriction, placed on derivations in the C F G , is 
relatively high and both accepting and generative ability of RT with the restriction decreases 
to the definition of context-free languages. 

Theorem 5.7. 
-5f(RTjm)2 = C F 

Proof. The inclusion C F C i f ( R T ; m ) 2 is clear from the definition, because any time we 
can construct leftmost restricted RT, where the automaton M cycles with reading all pos­
sible symbols from the input or e whilst the grammar G is generating some output string. 
Therefore, we only need to prove the opposite inclusion. 

We know that the class of context-free languages is defined, inter alia, by nondetermin­
istic PDAs . It is therefore sufficient to prove that every language L ; m ( r ) 2 of RT can be 
accepted by a nondeterministic P D A . Consider an RT F = ( r M = (Q, pE, p5, qo, F), G = 
(N, T, P, S), *) and define a P D A O = (Q, T, 0F, 0S, q0, S, F), where 0 P = N U T and 0S 
is created as follows: 

1. Set 0S = 0. 

2. For each r\ = A —>• x G P and r2 = pa —>• q G such that ( n , r 2 ) G ^ , add 
Ap —>• (x)Rq into o^-

3. For each p G Q, and a G T add apa —>• p into o$-

Now we have to show that L{0) = L ; m ( r ) 2 -

Claim 5.8. Let (q0w,S) (pw',uav) (f,w) in RTF, where u G T*, a G N, and 
v G (N U T)*. Then, Sqow (v)Rapw' in PDA O, where w = uw'. 
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Proof of Claim 5.8. B y induction on the number of computation steps. 

Basis. Let (qow,S) =4>° (qow,S) =4>* (f,w) in F. Trivially, Sqow =4>° Sqow and Claim 5.8 
holds for zero computation steps in T. 

Induction hypothesis. Suppose that Claim 5.8 holds for j or fewer computation steps. 

Induction step. Let (qow,S) =4>J (paw',uav) =4> (qw',uxv) =4>* (f,w) in T, where a G 
r S U {e}, u x v = uu'fiv' and /3 is the new leftmost nonterminal. Then, by the induction 
hypothesis, Sqow =4>* (v)Rapaw' in O. 

Since (paw',uav) =4> (qw',uxv) in T, pau>' =4> [ri] in M , ttaw =4> uxv [r2] in G, and 
( r i , r 2 ) G From the construction of o<5> O has rules ap —> (x)Rq and 6g6 —> q for all 
& £ T. Hence, (v)Rapw' =4> (xv)Rqw'. Because uxv = uu'/3v', (3 is the leftmost nonterminal, 
and (qw',uxv) =4>* (f,w), (xv)Rqw' = (it'(3v')Rqu'w", and obviously, (u' (3v')Rqu'w" =4>* 
(pv')Rqw" in O. Claim 5.8 holds. • 

The last step of every successful computation of T has to be of the form (ga, ttaw) => 
(/, u x v ) , with a G T U {e}, / G F , u x v G T*. By Claim 5.8, suppose that O is in configu­
ration (av)Rqw', where uw' = uxv. From construction of o&-> (av)Rqw' =4> (xv)Rfw! =4>* / 
in O. Hence, L Z m ( r ) 2 C L(O) . 

It remains to prove the opposite inclusion—that is, L(0) C L z ? n ( r ) 2 . 

Claim 5.9. Let Sq0w ^* f in PDA O, where f G F . Then, (q0w,S) ^* (f,w) in RTF. 

Proof of Claim 5.9. Consider any successful acceptance: 

Sqow ̂ * f (/) 

in P D A O. Without any loss of generality, we can express (I) as aoqowo via\Uiq\Wo 
viaiqiwi v2a2u2q2Wi =4>* v2a2q2w2 vkakukqkWk-i vkakqkwk vkuk+1fwk 

=4>* / , where ao = S and for all i = l,...,k with k > 0, ai G N, Ui,uk+\,vk G 

T*, Vi G (iV U T)*, = (ui)RWi and w f c = (wfcUfc+i)H- Openly, ( t t j ) H aj(wj) H => 

(ui+1Ui)Rai+1(vi+1)R [ri] in G, qi-iWi-i qiWi [r-], and furthermore, (r-,Tj) G * for 
all z = 0 , . . . , k. Hence, (I) can be simulated by (qowo, «o) =>• (gi^Bi, ( u i ^ a i ^ i ) ^ ) => 
(g 2w 2 , ( w 2 u i ) H a 2 ( v 2 ) H ) (ukuk-i • • • ui) Ha f c(wfc) H => (/, (u f c +iUfcUfc-i • • • ui)H(wfc)H) 
= (/, to) in r . Thus, Claim 5.9 holds. • 

As L(O) C L Z m ( r ) 2 and L Z m ( r ) 2 C L(0), Theorem 5.7 holds. • 

5.2.2 Accepting Power 

First, we show that any context-free language can be accepted by some leftmost restricted 
RT. 

Lemma 5.10. For every language L G C F ; there is an RT F = (M,G,^f) such that 
Llm(F)\ = L. 

Proof of Lemma 5.10. Let / = (jiV, T , / P , S) be a C F G such that L(I) = L. For I, we 
can construct a C F G H = (HN,T,HP,S), where HN = tN U {(a): a G T} and HP = 
{(a) —>• a: a G T} U {̂ 4 —>• x : 4̂ —>• x ' G / P and x is created from x' by replacing all a G 
T in x ' with (a)}. Surely, = L(H) even if FT replaces only the leftmost nonterminals 
in each derivation step. In addition, we construct an FA M = ({qo}, T, 5, qo, {qo}) with 
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<5 = Uo -> 9o} U {g 0a ->• 9o: a G ^ } , and * = {(q0 q0,A ^ x): A ->• x G ffP,i G 

7 i V } U { ( g o a ^ g o , ( a > -»-a) : a G T } . 

It is easy to see that any time when H replaces nonterminals from jN in its sentential 
form, M reads no input symbol. If and only if H replaces (a) with a, where a G T, then M 
reads a from the input. Since H works in a leftmost way, 2 -L/ m (r) = {(w,w): w G 
Hence, Lim(F)1 = L(I). • 

Similarly, we show that any RT generating outputs in the leftmost way can recognize 
no language out of C F . 

Lemma 5.11. Let F is an RT. Then, for every language Lim{F)\, there is a PDA O such 
that Llm{F)l = L{0). 

Proof of Lemma 5.11. In the same way as in the proof of Theorem 5.1, we construct P D A 
O such that L(0) = Llm(F)1 for RT F = (M = (Q,rE,r5, q0, F),G = (N,T,P,S),V). We 
define O as O = (Q, r S , N, o$, qo, S, F), where o$ is created in the following way: 

1. Set 0S = 0. 

2. For each r\ = pa —>• q G r<5 and r2 = A —>• x G P such that (ri,r2) G add 
Apa —> (9(x))Rq into q<5, where 9{x) is a function from [N U T ) * to iV* that replaces 
all terminal symbols in x with e—that is, 0(x) is x without terminal symbols.1 

In the following, we demonstrate that L(0) = Lim{F)\. 

Claim 5.12. Let(q0w,S) ^* (pw',uav) in RTF, where u G T*, a G N, andv G (NUT)*. 
Then, Sq0w ^* {9{v))Rapw' in PDA O. 

Proof of Claim 5.12. By induction on the number of computation steps. 

Basis. Let (qow,S) =4>° (qow,S) in F. Then, surely, Sqow =4>° (9(S))Rqow. Claim 5.12 
holds for zero computation steps in F. 

Induction hypothesis. Suppose that Claim 5.12 holds for j or fewer computation steps. 

Induction step. Let (qow,S) =4>J (paw',uav) =4> (qui1,uxv) in T, where a G U {e}, 
uxv = uu'j3v' and j3 is the leftmost nonterminal. B y the induction hypothesis, Sq^w =4>* 
(9(v))Rapaw' in O. 

Because (paw',uav) =4> (qui1, uxv) in T, paw' =4> git/ [ri] in rM, uav =4> uxv [r2] in 
G, and ( r i , r2) G From the construction of o&-> O has a rule apa —> (9(x))Rq, and 
(9(v))Rapaw' (9(v'))Rpqw' in O. Claim 5.12 holds. • 

The last step of any successful computation in F is of the form (qa,uav) =4> (f,uxv), 
where / G F, a G U {e}, a G iV, and u x v G T*. Hence, aga - > / £ ( ) { and aga =4> / in 
O. So, L , m ( r ) i C L(O) . 

Claim 5.13. Let Sq0w ^* (9(v))Rapw' in PDA O. Then, (q0w,S) ^* (pw',uav) in RT 
F, where u G T*, a e N, and v G (N U T)*. 

xSee page 35 for f u r t h e r e x p l a n a t i o n a n d precise f o r m a l d e f i n i t i o n of 6 ( D e f i n i t i o n 4.4) . 
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Proof of Claim 5.13. By induction on the number of moves. 

Basis. Let Sqow =4>° Sqow in O. Then, (qow, S) =4>° (qow, S) in F and Claim 5.13 holds for 
zero moves in O. 

Induction hypothesis. Suppose that Claim 5.13 holds for j or fewer moves. 

Induction step. Let Sqow =4>J (6(v))Rapaw' =4> (6(xv))Rqw' in O, where a G r E U {e}. 
Then, by the induction hypothesis, (qow,S) =4>* (paw',uav) in T, where u G T*, a G iV, 
and w G (JVUT)*. 

Because there is a rule apa —>• (6(x))Rp in o<5, from the construction of o<^ there are 
rules r\ = pa —>• g G r<5 and r 2 = a —>• x G P , and ( r i , r 2 ) G Therefore, (paw',uav) => 
(qw',uxv) in T. So, Claim 5.13 holds. Furthermore, if 9{xv)w' = e and q <E F, then 
(paw',uav) =4> (f,uxv) and L(O) C L / m ( r ) i . • 

Since L(O) C L , m ( r ) i and L , m ( r ) i C L(O) , L(0) = L , m ( r ) i . • 

Theorem 5.14. 
-5f(RTim)i = C F 

Proof. It directly follows from Lemma 5.10 and Lemma 5.11. • 

5.3 Rule-Restricted Transducer with Appearance Checking 

We can also extend RT with the possibility to prefer a rule over another—that is, the 
restriction sets contain triples of rules (instead of pairs of rules), where the first rule is a 
rule of FA, the second rule is a main rule of C F G , and the third rule is an alternative rule 
of C F G , which is used only if the main rule is not applicable. 

Definition 5.3 (RT with appearance checking). RT with appearance checking ( R T a c for 
short) T is a triple F = ( M , G, * ) , where 

• M = (Q, E , S, q0, F) is an FA, 

• G = (N, T, P, S) is a C F G , and 

• \I/ is a finite set of triples of the form ( n , r 2 , r%) such that r\ G 5 and r 2 , r^ G P. 

Let x = (pavi,uAv2) and x' = {QV\,UXVI), where A G N, V2,x,u G ( i V U T ) * , v\ G E*, 
a G E U {e}, and p,q <E Q, be two 2-configurations. T makes a computation step from x to 

written as x X* •> if and only if for some ( r i , r 2 , r s ) G pavi =4> gui [n] in M , and 
either 

• uAv2 =>• uxu 2 [r2] in G, or 

• «̂ 4̂ 3 =4> ttxw2 [r3J in G and r 2 is not applicable on uAv2 in G. 

The 2-language 2-L(r) and languages L ( r ) i , L ( r ) 2 are defined in the same way as in 
Definition 5.1. The classes of languages defined by the first and the second component in 
the system is denoted by £ £ ( R T a c ) i and «5?(RT a c ) 2 , respectively. 
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5.3.1 Generative Power 

By the appearance checking both generative and accepting power of RT grow to define 
the class of all recursively enumerable languages. To prove that the former holds, we take 
advantage of the known fact that matrix grammars with appearance checking can generate 
any language in R E [ ], and show that, in turn, R T a c can simulate M A T a c . 

Theorem 5.15. 
i f ( R T a c ) 2 = R E 

Proof. Since i ? ( M A T a c ) = R E [ ], we only need to prove that i ? ( M A T a c ) C i f ( R T a c ) 2 . 

Consider a M A T a c with appearance checking / = (jG, jC) and construct a RT F = 
[rM,rG, * ) , such that L(I) = L(F)2, as follows: 

1. Set rG = iG. 

2. Add a new initial nonterminal S', nonterminal A , and rules A —̂  A , A —̂  e, S' —> SA 
into grammar r G . 

3. Construct an F A rM = (Q, £ , 5, s, F) and ^ in the following way: 

(a) Set F = Q = {s}, 5 = {s ->• s}, and * = {(s ->• s, A ->• e, A ->• e), (s ->• s,S' -» 
S A , S ' ^ S A ) } . 

(b) For every m = (pi,h)... (pk,tk) G / G , add q1, q2, • • -,qk-i into Q, s ->• gi ,g i -> 
q2,...,qk-2 -> 9fc-i,5fc-i -> s into <5, and (s ->• ? i , p i , ci), (gi ->• q2,p2,c2),..., 
(qk-2 ->• % - i , P f c - i , c f c - i ) , ( % - i -> qs,Pk,Ck) into where, for 1 < i < fc, if 
U = then Cj = pi; otherwise, Cj = A —>• A . 

Since 5' is the initial symbol, the first computation step in T is (s, 5') =4> (s, S A ) . After 
this step, the F A simulates matrices in / by computation step. That is, if x\ =4> x2 [p] in 
/ , where p = p i , . . . ,pj for some i £ N , then there is g i , . . . , G Q such that r i = s —> 
91,^2 = ?i -> ?2,- • • = %_ 2 -> % - i , r j = - ^ s e i and ( r i , p i , c i ) , . . . , (rj,pj,Cj) G 
\F Therefore, (s ,xi) (s,x2) in T. Notice that if / can overleap some grammar rule in 
m G iC, F represents the fact by using A —>• A with the move in p M . Similarly, if, for some 
i G N , (s,xi) =4>* (s,x2) in F and there is no j < i such that (s,xi) =4>J (s,y) =4>* (s,x2), 
there exists p G / G such that x i =4> £2 [p] in / . Hence, if (s, 5) =4>* (s, iu) in T, where w is a 
string over the set of terminals in r G , then S =4>* u> in / ; and, on the other hand, if S =4>* w 
in / for a string over the set of terminals in jG, then (s, 5') =4> (s, S A ) =4>* (s, u A ) =4> (s, iu) 
in T. • 

5.3.2 Accepting Power 

R T a c ' s can accept any recursively enumerable language, as evidenced by their ability to 
simulate k-CAs. 

Theorem 5.16. 
^ ( R T a c ) l = R E 

Proof. Let / = (iQ, E , id, qo, F) be a k-CA for some k > 1 and construct a RT T = 
( M , G, where M = (MQ, E , M 5 , g 0 , G = (N, T, P, S), as follows: 
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1. Set T = {a},* = 0 ,P = {A -> e,A - ) • 0 : A e iV - {0}} U {5 -»• 5}, M<2 = / Q , 
M5 = {f^f: f€F}, andN = {S,0,A1,...,Ak}. 

2. For each pa —> q(ti,..., tk) in jS, n = E ^ = 1 and m = E^ = 1 0(t i ) , where if U G Z , 
9{ti) = max(0, —tj) and 0(tj) = max(0,tj); otherwise 0(tj) = 1 and 0(tj) = 0, add: 

(a) q1,...,qn into MQ\ 

(b) r = 5 —>• x5 , where x G (N — {5,0})* and occur(^4j,x) = 0(ti), for each 
i = 1,... , k, into P ; 

(c) n = g 0a -> 9 i , r2 = qi ->• 92, • •., r „ = g„_i ->• g„, r n + i = g n -> g into M<5 with 
go = p; and for each i = 1,... , n, add (rj+i, Tj, T/), where for each j = 1,. . . , k, 
if tj G N , for 6>(tj) is, Tj = = —>• e; otherwise, if tj = —, Tj = ^4j —>• 0 and 
r/ = 5 —• 5, into Notice that n = 0 means that only goa —>• g, 5 —>• xS1 are 
considered. Furthermore, add ( r i , r , r ) into Vl/; 

(d) (f -> f,S ->e,S ->e) into * for all / G P . 

Similarly as in the proof of Lemma 5.4, the FA of the created system uses the C F G as 
an external storage, and each counter of / is represented by a nonterminal. If / modifies 
some counters during a move from state p to state g, M moves from p to g in several steps 
during which it changes the numbers of occurrences of nonterminals correspondingly. Rules 
applicable only if some counters are equal to zero are simulated by using an appearance 
checking, where F tries to replace all nonterminals representing counters which have to be 
0 by 0- If it is not possible, T applies the rule 5—^5 and continues with computation. 
Otherwise, since 0 cannot be rewritten during the rest of computation, the use of such rules 
leads to an unsuccessful computation. The formal proof of the equivalence of languages is 
left to the reader. Since if(fc-CA) = R E for every k > 2 [ ], Theorem 5.16 holds. • 
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Part III 

Application Perspectives and 
Concluding Remarks 
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Chapter 6 

Linguistic Applications: 
Perspectives 

In this chapter, we discuss the advantages of the new formal models in regard to their 
potential applications in natural language processing, and particularly in translation, where 
they can provide an alternative to the existing models (see Chapter 3 for an overview). To 
illustrate, we use examples from Czech, English, and Japanese. (No prior knowledge of 
Czech or Japanese is required for understanding, although it can be an advantage.) 

Throughout the course of this chapter, we use the following notation to represent some 
common linguistic constituents: 

A D J adjective A D V adverb 
A U X auxiliary verb D E T determiner 
N noun NP noun phrase 
N P - S B J NP in the role of subject N U M numeral 
P preposition P N pronoun 
PN-INT interrogative pronoun P P prepositional phrase 
P P - T M P PP , temporal PP-DIR PP , directional 
V verb V P verb phrase 

Further, note that in the example sentences presented below, we generally disregard 
punctuation and capitalization. For example, we consider 

Where are you going? 

and 

where are you going 

identical for the purposes of this text. 
Finally, in most of the case studies presented in this chapter, we assume that we already 

have the input sentence split into words (or possibly some other lexical units as appropriate), 
and these words are classified as, for example, a noun, pronoun, or verb. Then, we consider 
syntax analysis and translation on an abstract level, transforming syntactic structures in 
languages rather than actual meanings. 

Often, you will notice that the input alphabet of the automaton or the terminal alphabet 
of the grammar do not contain actual words themselves, but rather symbols representing 
word categories and properties. For example, we can use N^s to denote a noun in third 

55 



person singular. While such representation is sufficient in our examples here, where, for 
clarity, we usually only focus on some select aspects at a time, in practice we need much 
more information about each word. In that case, we can, for instance, use structures 
resembling A V M s from HPSGs (see Section 3.1) as symbols. 

6.1 Synchronous Grammars 
First, we explore the application perspectives of our newly introduced synchronous gram­
mars, or more precisely, synchronous versions of M A T s and SCGs. The original results, 
observations, and examples presented in this section were published in [ )] and [41]. 

To demonstrate the basic principle, consider a simple Japanese sentence 

Takeshi-san wa raishuu Oosaka ni ikimasu. 

We will transform this sentence (or, more precisely, the structure of this sentence) into 
its English counterpart 

Takeshi is going to Osaka next week. 

In the following examples, words in angled brackets (()) are words associated with a 
terminal or nonterminal symbol in a given sentence or structure. Note that this is included 
only to make the examples easier to follow and understand, and is not an actual part of 
the formalism itself. 

Example 6.1. Consider a R S C F G H = (Gi,G0,^>',<pi,<po), where Gi = ( JV / . T / . P / , Sj) 
and GQ = (No, To, PQ, So) such that 

• Nj •-

• Tj = 

• N0 

• T0-

• Pi = 

-{Si, N P - S B J , V P , P P - T M P , PP-DIR}, 

{NP, V, D E T } , 

= {So, N P - S B J , V P , P P - T M P , PP-DIR}, 

: {NP, V, A U X , D E T , P}, 

Sj -)• N P - S B J V P , 
V P ->• P P - T M P PP-DIR V , 
P P - T M P ->• e, 
PP-DIR ->• e 

• Po 

N P - S B J -
P P - T M P 
PP-DIR -

N P BET (wa), 
> N P , 
N P DET(ra), 

So -)• N P - S B J V P , 
V P ->• A U X V PP-DIR P P - T M P , 
P P - T M P ->• e, 
PP-DIR ->• e 

N P - S B J -
P P - T M P 
PP-DIR -

NP, 
> N P , 
P(to) N P , 

Strictly according to their definitions, synchronous grammars generate pairs of sen­
tences. However, in practice, we usually have the input sentence in the source language, 
and we want to translate it into the target language. That is, we want to generate the 
corresponding output sentence. In that case, the translation can be divided into two steps 
as follows. 
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Form Paradigm Person Neutral Negative 
1st sing ;ular am aren't 

Present 3rd sinj ̂ ular is isn't 
Other are aren't 

Primary Preterite 1st sing ;ular, 3rd sin£ $ular was wasn't 
Other were weren't 

Irrealis 1st sing ;ular, 3rd sin£ $ular were weren't 
Plain form be — 

Secondary Gerund-participle being — 

Past participle been — 

Table 6.1: Paradigms of the verb to be in English [63] 

1. First, we parse the input sentence using the input grammar. In G ; , a derivation that 
generates the example sentence may proceed as follows: 

Sj N P - S B J V P [1] 
NP (Takeshi-san) DET(u;a) V P [2] 
NP (Takeshi-san) DET(u;a) P P - T M P P P - D I R V (ikimasu) [3] 
NP (Takeshi-san) DET(u;a) NP(raishuu) PP -DIR Y (ikimasu) [4] 
NP (Takeshi-san) DET(u;a) NP (raishuu) NP (Oosaka) DET(ni) 
V (ikimasu) [5] 

We have applied rules denoted by labels 1 2 3 4 5, in that order. 

2. Next, we use the sequence obtained in the first step (1 2 3 4 5), and apply the 
corresponding rules in the output grammar. Then, the derivation in Go proceeds as 
follows: 

So N P - S B J V P [1] 
NP(Takeshi) V P [2] 
NP (Takeshi) AUX(is) V(going) P P - T M P PP-DIR [3] 
NP(Takeshi) AUX(is) V(going) PP -DIR N P (next week) [4] 
NP (Takeshi) AUX(is) V (going) P(to) NP(Osaka) NP(next week) [5] 

Also note the rules Az and 5z (in both input and outpur grammar), which can be used 
to erase P P - T M P and PP-DIR. This represents the fact that these constituents may be 
omitted. 

Next, compare the following sentences in Japanese (left) and English. 

Watashi wa raishuu Oosaka ni ikimasu. I am going to Osaka next week. 
Anata wa raishuu Oosaka ni ikimasu. You are going to Osaka next week. 
Takeshi-san wa raishuu Oosaka ni ikimasu. Takeshi is going to Osaka next week. 

In English, the form of the auxiliary verb to be depends on many grammatical categories 
such as tense, number, or, as shown in this example, person: am for first person (present 
tense, singular), are for second, and is for third (see Table 6.1). 

On the other hand, note that the verb in the Japanese sentences (ikimasu, long form 
of iku) remains the same (out of the grammatical categories mentioned, only tense would 
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affect inflection). If we want to translate such sentence from Japanese to English, we need 
to choose the correct form of the verb. We can get the necessary information by looking at 
the subject. 

Example 6.2. Consider a S M A T H = (Gi, Mi,G0, M0,^,(fi,(po), where Gj = ( A / , T j , 
Pi, SI) and Go = (No,To, Po, So) such that 

• Ni = {Si, N P - S B J , V P , P P - T M P , PP-DIR}, 

• TT = {NP, N P i , N P 2 , N P 3 , V, D E T } , 

• N0 = {So, N P - S B J , V P , P P - T M P , PP-DIR, A U X Z } , 

• T0 = {NP, N P i , N P 2 , N P 3 , V, A U X i , A U X 2 , A U X 3 , D E T , P}, 

1 : Si -> N P - S B J V P , 2a N P - S B J ->• N P i DET(u;a), 
26 : N P - S B J -> N P 2 DET(wa), 2c N P - S B J ->• N P 3 DET(u;a), 
3 : V P -> P P - T M P PP-DIR V , 4 P P - T M P ->• N P , 

iz : P P - T M P -> e, 5 PP-DIR ->• N P DET(ra), 
bz : PP-DIR ->• e 

1 : S0 -> N P - S B J V P , 2a N P - S B J ->• N P i , 
26 : N P - S B J ->• N P 2 , 2c N P - S B J ->• N P 3 , 
3 : V P ->• A U X Z V PP-DIR P P - T M P , 4 P P - T M P ->• N P , 

42 : P P - T M P ->• e, 5 PP-DIR ->• P(to) N P , 
52 : P P - D I R ->• e, 6a A U X Z ->• A U X i , 
6b : A U X Z -> A U X 2 , 6c A U X Z -> A U X 3 

• Mi = {mi: 1, m 2 a : 2a, m 2b: 26, m 2 c : 2c, m 3 : 3, m.4 : 4, m-4Z : 4z, m.5 : 5, m-5Z : 5z}, and 

• M o = {m-i: l , m 2 a : 2a 6a, m 2b: 2666, m 2 c : 2c 6c, m 3 : 3,7714: 4 , m 4 Z : 4z, 7715 : 5, 
m 5 z : 5z}. 

A n example of a derivation follows. 

Sj N P - S B J V P [mi] 
N P - S B J P P - T M P PP-DIR Y (ikimasu) [m3] 
NPi(watashi) DET(roa) P P - T M P PP-DIR V (ikimasu) [m2a\ 
NPi(watashi) DET(wa) NP(raishuu) PP -DIR V(ikimasu) [m4] 
NPi(watashi) DET(roa) NP(raishuu) NP(Oosaka) DET(ni) 
V(ikimasu) [7775] 

So => N P - S B J V P [mi] 
N P - S B J AUX z (6e) V(going) PP -DIR P P - T M P [m3] 

=> N P i ( i ) A U X i (am) V(going) PP -DIR P P - T M P [m 2 a] 
N P i ( i ) A U X i (am) V(going) PP -DIR NP(next week) [m4] 

=>• N P i ( i ) A U X i (am) V (going) P(to) NP (Osaka) NP(next week) [m5] 

Depending on person of the subject, we apply one of the matrices m-2a, w-2b, or m-2c-
In the input grammar (Japanese), these matrices contain only one rule, which involves 
the subject itself. The verb is unaffected. In the output grammar (English), the matrices 
contain two rules, which ensure agreement between the subject and the (auxiliary) verb. 
Instead of S M A T , we can also use SSCG to the same effect, with scattered context rules 
such as (NP-SBJ, A U X Z ) -> ( N P i , A U X i ) . 
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N P - S B J P P - T M P P P - D I R V D E T 

Takeshi-san wa raishuu doko ni ikimasu ka 

where is Takeshi going e next week 

Figure 6.1: Syntax trees for Japanese (top) and English question 

Let us have a look at some other syntactic structures. For instance, to form a question 
in Japanese, we can simply take a statement and append the particle ka at the end of the 
sentence. However, in English, we need change the order of the words, placing the auxiliary 
verb in front of the subject. Compare the following sentences in Japanese (left) and English. 

Takeshi-san wa raishuu Oosaka ni ikimasu ka. Is Takeshi going to Osaka next week? 
Takeshi-san wa raishuu doko ni ikimasu ka. Where is Takeshi going next week? 
Takeshi-san wa itsu Oosaka ni ikimasu ka. When is Takeshi going to Osaka? 

Observe that in Japanese, the only difference between the three questions is the word 
Oosaka being replaced by doko {where), or raishuu by itsu {when). The word order and 
sentence structure is unaffected. (However, do note that there are also other ways the 
questions can be phrased in Japanese.) 

On the other hand, in English, the structure of the sentence changes further, as i l ­
lustrated by the syntax trees in Figure 6.1. The interrogative pronoun {where, when) is 
removed from its "original" position—that is, the position of the corresponding preposi­
tional phrase—and placed at the beginning of the sentence.1 

To reflect this in our grammar, we can add nonterminal symbol PN- INT to No and 
terminal symbol P N to both Tj and To- To Pj, we add rules 

1This is a common principle known as wh-movement, which is present in many languages besides English. 

lq : S -)• N P - S B J V P D E T (to), 
iq : P P - T M P -> PN {itsu), 
5q : PP -DIR -> P~N{doko) DET(ra) 
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and to PQ, rules 

lq 
3q 

lqi 
lq 

S ­>• A U X Z N P ­ S B J V P , 
V P ^ V PP­DIR P P ­ T M P , 
S ­>• PN­INT A U X Z N P ­ S B J V P 
PN­INT ­>• P N 

Finally, we add matrices m\q,m\qi\ lg3 , m4q: Aq, m^q: 5g to M j and matrices m i g : lg3g, 
m i g j : lqi3q, m ^ : 7g4z, r r i 5 g : 7g5z to M o (recall that the rules 4z and 5z erase P P ­ T M P 
and PP­DIR, respectively). 

A n example of a derivation follows. 

Sj N P ­ S B J P P ­ T M P PP­DIR V(ikimasu) DET(A;a) [mi g i] 
NP3(Takeshi-san) DET(wa) P P ­ T M P PP­DIR V(ikimasu) DET(£;a) [m2 c] 
NP3(Takeshi-san) DET(roa) NP(raishuu) PP­DIR Y(ikimasu) 
BET(ka) [m4] 
NP3(Takeshi-san) DET(roa) NP(raishuu) PN(doko) DET(ni) V(ikimasu) 
DET(ka) [m5q] 

So PN­INT AUX z (6e ) N P ­ S B J V(going) P P ­ D I R P P ­ T M P [mlqi] 
PN­INT A U X 3 ( i s ) NP3(Takeshi) V(going) PP­DIR P P ­ T M P [m2c] 
PN­INT A U X 3 ( i s ) NP3(TaA;es/ii) V(going) PP­DIR NP(next week) [m4] 
P~N(where) AVJX3(is) NP3(Takeshi) V(going) NP(next week) [m5q] 

Note that the matrices ensuring subject­verb agreement (see Example 6.2) work without 
any changes for all of the structures discussed above. Clearly, it is possible to capture the 
relation within a context­free grammar. In that case, however, the necessary grammatical 
information has to be propagated through the derivation tree. This means that we have to 
add separate rules covering all possibilities (person, number...) for each of the structures, 
even though the structures themselves are not actually affected. Using S M A T or SSCG, we 
are able to describe the relation more easily, with only a relatively small number of rules. 

Arguably, the presented example is somewhat special in that to be is an irregular verb. 
In English, we usually only need to distinguish two cases: third person singular and anything 
else. In languages with rich inflection, such as Czech, this advantage becomes even more 
important. 

Let us now consider translation between Czech and English. Czech is a relatively chal­

lenging language in terms of natural language processing. It is a free­word­order language 
with rich inflection (see [31]). 

For example, consider the Czech sentence 

Dva růžoví sloni přišli na přednášku. 
(Two pink elephants came to the lecture.) 

A l l of the following permutations of words also make for a valid sentence: 

dva růžoví sloni přišli na přednášku 
růžoví sloni přišli na přednášku dva 
dva sloni přišli na přednášku růžoví 
sloni přišli na přednášku dva růžoví 

dva růžoví sloni na přednášku přišli 
růžoví sloni na přednášku přišli dva 
dva sloni na přednášku přišli růžoví 
sloni na přednášku přišli dva růžoví 
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N P V P N P V P 

N U M A D J N V P P A D J N V P P N U M 

dva růžoví sloni přišli na přednášku růžoví sloni přišli na přednášku dva 

Figure 6.2: Syntax trees for example sentences in Czech 

N U M 

A D J 

růžoví sloni přišli na přednášku dva 

Figure 6.3: Modified syntax tree 

There may be differences in meaning or emphasis, but the syntactic structure remains 
the same. Why is this problematic? Compare the syntax trees in Figure 6.2. Because of the 
crossing branches (non-projectivity), the second tree cannot be produced by any C F G . Of 
course, it is still possible to construct a C F G that generates the sentence růžoví sloni přišli 
na přednášku dva if we consider a different syntax tree, for example such as in Figure 6.3. 
However, this tree no longer captures the relation between the noun sloni and its modifying 
numeral dva (represented by the dotted line). We need to know this relation for instance to 
ensure agreement between the words (person, number, gender...), so that we can choose 
their appropriate forms. 

As mentioned above, in a purely context-free framework, this can be complicated. The 
necessary information has to be propagated through the derivation tree, even if the structure 
is not actually affected, and this can result in a high number of rules. Recall that in GPSGs, 
for instance, this is countered by the introduction of metarules and features (see Section 3.1). 
Wi th M A T s , we can instead represent the relations using matrices. 

Example 6.3. Here, we present an example of S M A T H = (Gcz, Mcz, Gen, Men, \ř, (pcz, (pen) 
that describes the translations between the English sentence two pink elephants came to 
the lecture and any of the above Czech sentences, correctly distinguishing between male 
and female gender in Czech (to demonstrate female gender, we also include opice in Czech, 
monkeys in English). Note that H is actually more general (for example allowing multi­
ple adjectives). It is designed for easy extension to include other grammatical categories 
(person...) as well as different syntactic structures. 
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For Czech, let Gcz contain the following context-free rules (nonterminals are in capitals, 
is the start symbol): 

s 
vp 

adjs 
advs 

n T O 

V m 

adj m 

adv 
num/ 
dict2 

d i c t 3 / 

dict 4 f 
dict 5 f 

S C 2 -»• N P V P N U M ADJS , 
V P -» A D V S V A D V S , 
A D J S -> A D J A D J S , 
A D V S -> A D V A D V S , 
N N m , 
N m ^ N m , 
V ^ V m > 

A D J A D J m , 
A D V -> P P , 
N U M ->• N U M / , 
N / —>• opice, 
Vf —> přišly, 
A D J / —>• růžové, 
N U M / -» due, 

np N P -> N U M A D J S N 
num e N U M -> e, 
adjs£ A D J S ­> e, 
advs£ A D V S ­> e, 

n / N ­> N / , 
N / ­> N / , 

v / V ­ > V , , 
adj/ A D J ­> A D J / , 

n u m m N U M ­> N U M T O , 
dicti N m —> sloni, 

d i c t 3 m V m ­> pnifó, 
d i c t 4 m A D J m —>• růžoví, 
d i c t 5 m N U M m - ) • dva, 

dict6 P P —>• na přednášku 

Similarly, for English, let Gen contain the following rules (again, nonterminals are in 
capitals, and S e n is the start symbol): 

s 
vp 

adjs 
advs 
adv 

dict 2 

dict 4 

dictg 

S e n ^ N P V P , 
V P -> V A D V S , 
A D J S -> A D J A D J S , 
A D V S -> A D V A D V S , 
A D V -> P P , 
N —• monkeys, 
A D J —> pin/:, 
P P —>• to the lecture 

up 
num e 

adjse 

advs£ 

dicti 
dict 3 

dict5 

NP -> N U M A D J S N , 
N U M -> e, 
A D J S -> e, 
A D V S -> e, 
N —• elephants, 
V —>• came, 
N U M -> too, 

Finally, let M C 2 and M e n contain the following matrices: 

Mcz M e n Mcz 

s s s np np np 
vp vp vp num num £ e 

nume num e num e num £ adjs adjs adjs 
adjse adjs£ adjse adjse advs advs advs 
advs£ advs£ advs e advs e nm n m 

£ 

n/ n / £ Vm n m m £ 

Vf e O'dj-m <̂ djm " m m 
£ 

adjf adj/ n / / e adv adv adv 
numm n u m m n m m s numf num/ n / / £ 

dicti dicti dicti dict^ dict 2 dict2 
dlCtzm d i c t 3 m dict 3 diets f dict 3 / dict 3 

d i c t 4 m dict 4 dict^ f dict 4 / dict 4 

dictum diet 5 m diets dict§ f diets/ diets 
dicte dictg dictg 
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In this example, we have chosen to include the words themselves directly in the grammar 
rules (rather than assuming a separate dictionary) to illustrate this approach as well. For 
instance, consider the rule diets™ in Gcz. This rule encodes the fact that the word dva (in 
Czech) is a numeral, of male gender (in practice, there can be much more information). We 
call this kind of rules dictionary rules. 

Further, note for example the matrix adjf in Mcz, which ensures agreement between 
noun and adjective (both must be in female gender). Another interesting matrix is adjse, 
which terminates generation of adjectives. In the Czech sentence in this example, we have 
two positions where adjectives can be placed (directly within the noun phrase or at the end 
of the sentence). In English, there is only one possible position (within the noun phrase). 
This is why the rule A D J S —>• e is used twice in Czech, but only once in English. 

Also observe that the linked matrices (sharing the same label) in Mcz and Men may 
contain completely different rules and they can even be empty (e), in which case the corre­
sponding grammar does not change its sentential form in that step. The definitions of M A T 
and S M A T allow for this kind of flexibility when describing both individual languages and 
their translations. 

Example of a derivation in Czech follows. 

Scz N P V P N U M A D J S [s] 
N U M A D J S N V P N U M A D J S [np] 
N U M A D J S N A D V S V A D V S N U M A D J S [vp] 

=> A D J S N A D V S V A D V S N U M A D J S [num] 
A D J A D J S N A D V S V A D V S N U M A D J S [adjs] 

=> A D J N A D V S V A D V S N U M [adjs£] 
A D J N A D V S V A D V A D V S N U M [advs] 

=> A D J N V A D V N U M [advs£] 
A D J N m V A D V N U M [nm] 
A D J N m V m A D V N U M [vm] 

=> A D J m N m V m A D V N U M [adjm] 
A D J m N m V m P P N U M [adv] 

=> A D J m N m V m P P N U M m [nurrim] 
=> A D J m sloni V m P P N U M m [dict{\ 
=4> A D J m sloni přišli P P N U M m [dict3m] 
=4> růžoví sloni přišli P P N U M m [dicUm] 
=> růžoví sloni přišli na přednášku N U M m [dicfe] 
=í> růžoví sloni přišli na přednášku dva [dict&m] 

The corresponding derivation in English may look like this: 

S e n N P V P [s] 
N U M A D J S N V P [np] 
N U M A D J S N V A D V S [vp] 
N U M A D J S N V A D V S [num] 
N U M A D J A D J S N V A D V S [adjs] 
N U M A D J N V A D V S [adjs£] 
N U M A D J N V A D V A D V S [advs] 
N U M A D J N V A D V [advs£] 
N U M A D J N V A D V [%] 
N U M A D J N V A D V [vm] 
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NP V P N U M A D J S 

N U M A D J S N A D V S V 

e A D J A D J S N w . e 

I 
A D J m e N m V 

A D V S 

A D V A D V S 

P P N U V L 

ruzovi sloni přišli na přednášku 

Figure 6.4: Derivation tree of Gc 

dva 

N U M A D J N V A D V [adjm] 
N U M A D J N V P P [adv] 
N U M A D J N V P P [nunim] 

N U M A D J elephants V m P P [dict{\ 
N U M A D J elephants came P P [dict3m] 

=4> N U M pink elephants came P P [dicUm] 
=4> N U M pink elephants came to the lecture [dicfe] 
=4> two pink elephants came to the lecture [dict%m] 

The entire derivation tree for the Czech sentence is shown in Figure 6.4. The dotted lines 
represent relations described by matrices. The triangle from N m to N m is an abstraction 
which in this particular case essentially means that this step is repeated until all agreement 
issues are resolved. 

We can achieve similar results using SSCGs. For example the matrix adjf in Mcz can 
be represented by two scattered-context rules (ADJ , Nj) —>• ( A D J j , Nj) and (Nj , ADJ) —> 
(Nj, A D J j ) . Note that we need two rules, because the nonterminal order is important in 
SCG (this is one of the key differences between S M A T and SSCG). In this case, we need 
an additional rule in SSCG. However, this can also be an advantage, because it allows us 
to easily distinguish between left and right modifiers. For example, if we only have the first 
rule (ADJ , Nj) —>• ( A D J j , N j ) , it means that the adjective always has to occur on the left 
of the noun. 

6.2 Rule-Restricted Transducers 

In this section, we discuss the applications perspectives of RTs. The original results, obser­
vations, and examples presented here were first published in [10]. 

First, to demonstrate the basic idea, we perform the passive transformation of a simple 
English sentence 

The cat caught the mouse. 
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N P - S B J V P 

N P - S B J 

D E T N 

NP 

D E T N A U X V B NP 

D E T N 

the cat caught the mouse the mouse was caught by the cat 

Figure 6.5: Example of the passive transformation in English 

The passive transformation means transforming a sentence in active voice into passive, 
and it is a well-known principle that is common to many languages. For the above sentence, 
the passive form is 

The mouse was caught by the cat. 

Figure 6.5 shows the corresponding syntax trees. Essentially, what we need to do is the 
following: 

1. swap the subject and the object, 

2. add the preposition by in correct position, and 

3. change the verb into passive form, using the auxiliary verb to be in appropriate form. 

The verb to be is irregular and has many different forms (paradigms) depending not 
only on tense, but also on person and number (see Table 6.1 on page 57). In most cases, 
we can see the tense directly from the main verb in the active form, but for the other two 
categories (person and number), we need to look at the subject (the object in the original 
sentence). 

Example 6.4. Consider an RT F = ( M , G, where M = (Q,J},6,0,F), G = (N,T,P, 
S) such that 

• Q = {0,1, 2, 3, 4, 5, 6, 7, 8 n j 8 6, 8C, 8 d j 8 e, 8/, 9}, 

• E = {Nis, N2 S , N3 S , Nip, N2 P , N3 P , V p a s , V p s , Vpp, D E T , P, A U X p a s i s , A U X p a s 2 S , 
A U X p a S 3 S , A U X p a s i p , A U X p a S 2 P , A U X p a S 3 P , A U X p s i s , AUX p S 2s) A U X p S 3 S , A U X p s i p , 
AUX p S 2p) AUX p S 3p} , 

• ^ = {9}, 

• iV = {S, N P - S B J , NP , V P , P P , N ? , V ? , A U X p a s ? , A U X p s ? } , 

• T = E , 
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• p = 

n 0 -)• 1 T2 1 -+ 2, ^3 2 -> 3, > 

r 4 3DET -)• 4 4N Is - > 3, T5b 4 N 2 s -> 3, 
4 N 3 s --> 3, rsd 4N lp —> 3, H3e 4 N 2 p -> 3, 

< r 5 / 4 N 3 p --> 3, 3V pas > 5, ^ b 3 V p s -> 5, > 
r 7 5 6 rs 6DET -+ 7, T9a 7 N l s -> 8a, 

rgb 7 N 2 s - r 9 / 7 N 3 p -> 8/, 
rioa 8 a -»• 9, riob 8b -»• 9, r i o / 8 / ^ 9 > 

' Pi S ->• N P - S B J V P , P2 : N P - S B J -> NP, 
PS N P -> D E T N ? , P4a : N? -> N i s , 

Pib N? ->• N 2 s , 
Pif N? -> N 3 p , P5 : V P -• V? P P , 

Pa P P -> P N P , P 7 a : V? -> A U X p a s ? Vp P , s 

P7b V? -> A U X psl Vpp, P8a : AUXpas? —> A U X p a s i s , > 5 

P8b A U X p a s ? — > A U X p a S 2 s 1 

PSf A U X p a s ? — > A U X p a S 3 P P9a : AUXp S ? —>• A U X p S i s , 
P9b A U X p s ? -> A U X p s 2 s , 

- P9f A U X p S ? -> A U X P s 3 p > 

• * = { ( r i , p i ) , ( r 2 , p 5 ) , ( r 3 , p 6 ) , ( r 4 , p 3 ) , (r5a,P4a), (r 5b,P4b), ( r 5 / , P 4 / ) , ( r 6 a , P 7 a ) , 
(^6b,P7b), (n,P2), ( r 8 ,P3 ) , (j9a,P4a), (r 9 b,P 4 b), (r9f,Pif), (rWa,P8a), (jl0b,P8b), 

(rwf,P8f), (rioa,P9a), (rWb,P9b), ( n o / , P 9 / ) } -

For the sentence the cat caught the mouse from the above example, the computation 
can proceed as follows: 

(0 DET (the) N 3 s (cat ) Ypas(caught) DET (the) N3s(mouse), S) 
(1 DET(£/ ie) N 3 s (cat ) Vpas(caught) DET (the) N3s(mouse), N P - S B J V P ) 
[(n,Pi)} 

=> (2 DET(£/ ie) N 3 s (cat ) Ypas(caught) DET (the) N3s(mouse), N P - S B J V? 
EE) [(r2,p5)] 
(3 DET(the) N 3 s (cat ) \pas(caught) DET (the) N3s(mouse), N P - S B J V? 
P(by) NP) f(r 3 ,PB)] 

=> (4 N 3 s (ca t ) Vpas(caught) DET(the) N3s(mouse), N P - S B J V? P(by) 
DET(the) N7) [( r 4 ,p 3 ) ] 
(3 VPas(caught) DET(the) N3s(mouse), N P - S B J V? P(6y) DET (the) 
N3s(cat)) [(r5c,p4c)} 
(5 DET (the) N3s(mouse), N P - S B J AXJXpas?(be) Vpp(caught) P(by) 
DET (the) N 3 s (ca i ) ) [ ( r 6 a , P 7 a ) ] 

(6 DET(the) N3s(mouse), N P A U X p a s ? ( & e ) \pp(caught) P(by) DET(the) 
N 3 s ( c a t » [ ( r 7 ,p 2 ) ] 
(7 N 3 s(m(wse), DET(t/ie) N? A U X p a s ? ( 6 e ) Vpp(caught) P(by) DET(the) 
N3s(cat)) [(r8,p3)\ 
(8c, DET(£/ ie) N 3 s(mouse) A U X p f l S ? ( & e ) Vpp(caught) P(by) DET(the) 
N3s(cat)) [ ( r 9 c , p 4 c ) ] 
(9, DET(£/ ie) N 3 s(mouse) AUX p a s 3 s (was ) VPP(caught) P(by) DET (the) 
N3s(cat)) [(rWc,p$c)} 
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For clarity, in each computation step, the input symbol to be read (if any) and the 
nonterminal to be rewritten are underlined. Moreover, the text in angled brackets (()) 
shows the words associated with the symbols for the given example sentence, but note 
that this is not a part of the formalism itself. This specifier is assigned to all terminals. 
Nonterminals are only specified by words when the relation can be established from the 
computation performed so far (for example, we cannot assign a word before we read the 
corresponding input token). 

First (in states 0, 1, and 2), we generate the expected basic structure of the output 
sentence. Note that this is done before reading any input. In states 3 and 4, we read the 
subject of the original sentence, states 5 and 6 read the verb, and the rest of the states is 
used to process the object. When we read the verb, we generate its passive form, consisting 
of to be and the verb in past participle. However, at this point, we know the tense (in this 
case, past simple), but do not know the person or number yet. The missing information 
is represented by the question mark symbol (?) in the nonterminal A U X p a s ? . Later, when 
we read the object of the original sentence, we rewrite A U X p a s ? to a terminal. In this case, 
the object is in third person singular, which gives us the terminal A U X p a S 3 S (meaning that 
the correct form to use here is was). 

Next, we present examples of translation between different languages. We focus on 
Japanese, Czech, and English. 

One problem when translating into Czech is that there is very rich inflection and the 
form of the words reflects many grammatical categories, such as case, gender, or number 
(see [31], where the author discusses this issue with regard to computational linguistics). 
To illustrate, compare the following sentences in Japanese, English, and Czech. 

Zasshi o yondeitta onna no hito wa watashi no shiriai deshita. 
Zasshi o yondeitta otoko no hito wa watashi no shiriai deshita. 

The woman who was reading a magazine was an acquitance of mine. 
The man who was reading a magazine was an acquitance of mine. 

Žena, která četla časopis, byla moje známá. 
Muž, který četl časopis, byl můj známý. 

As we can see, in Czech, nearly every word is different, depending on the gender of the 
subject. In contrast, in both Japanese and English, the two sentences only differ in one 
word, namely onna no hito (woman) and otoko no hito (man).2 

The above sentences also give us an example of some structural differences between 
Japanese and Czech. In Czech and English, the structure of the sentence is very similar, 
but in Japanese, there is no word that correspond directly to který (which, who, ...). 
Instead, this relation is represented by the form of the verb yondeitta (the dictionary form 
is yomu, meaning to read). Compare the syntax trees in Figure 6.6. 

2Technically, onna no hito literally translates to woman's person or female person, with onna itself 
meaning woman, female. However, referring to a person only by onna may have negative connotations in 
Japanese. This is analogous for otoko no hito. 

67 



N P - S B J V P 

NP 

N P r 

NP 

N P , 

D E T NP V 

N P , 

zasshi o yondeitta onna no hito wa watashi no shiriai deshita 

NP 

P N V P 

NP / P N / 

V NP 

N P r N P , 

la která četla časopis byla moje známá 

Figure 6.6: Syntax trees for Japanese (top) and Czech sentence 
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Example 6.5. Consider an RT F = ( M . G . t f ) , where M = (Q,E,S,0,F), G = (N,T,P, 

S) such that 

• Q = {0, m, ml, m2, f, fl, / 2 , n, nl,n2, lm, If, In}, 

• £ = { N P m , N P / , N P n , N P ? , V, D E T , #}, 

• F = {lm,lf,ln}, 

• N = {S, S', N P - S B J , N P 7 , V P , P N ? , V ? , X } , 

• T = { N P m , N P / , NP„ , V m , V / , V„, P N m , P N / , P N n } , 

r i 0V ->• 1, T2 1 -)• 0, 3̂ ONP? ->• 0, ' 
r 4 ODET ->• 0, ^5m 0 N P m ->• m, r 5 / ONP/ 

^5n 0NP„ ->• n, ''ml m V —>• ml, rm2 m l —>• m2, 
m2 —>• m, *̂m4 m D E T m, mNP? —>• m, 

^m5m m N P m —>• m, m N P / —>• m, ^m5n mNP„ —>• m, > 
r?n6 m# —>• l m , Tm7 l m —>• l m , r / i / V -»• / I , 
r / 2 1/ -»• 1/, 
r „ i n V —>• nl, T„2 n l —>• n2, 
r„7 In —>• In > 

• p = 

' P i S -> N P - S B J V P X , P2 N P - S B J ->• N P ? , ' 
P3m N P ? ^ N P m , P3/ NP? ->• N P / ; 

P3n N P ? ^ N P „ , P4 NP? ->• N P ? , 
N P ? -> N P ? S', P6 V P -> V? NP?, 

< 

P7m V? - V m , P7/ V? -> V / , 
P7n V? -+ v „ , P8 S' -)• PN? V P , 

P9m P N ? ^ P N m , P9/ PN? ->• P N / , 
, P9n P N ? ^ P N „ , PlO X ->• £ 

• * = { ( n , p i ) , ( r 2 , p 6 ) , (r3,P4), (u,P2), ( r 5 m ,P4) , (r 5 / ,P4), (r 5n,P4), ( r m i , p 5 ) , (rm2, 
Ps), {rm3,p6), ( r m 4 , p 4 ) , ( r m 5 , p 4 ) , ( r m 5 m , p 3 m ) , ( r m 5 / , p 3 / ) , ( r m 5 n , p 3 n ) , ( r m 6 , p i o ) , 
(rm7,P3m), (rm7,P7m), (rm7,P9m), ( r / i . P s ) , (rf2,Ps), (rf3,Pe), ( r / 4 , p 4 ) , ( r / 5 ,P4) , 
(r/5m,P3m), ( r / 5 / ,P3/) , (r/5n,P3n), ( r / 6 , P i o ) , (rf7,P3f), (rj7,P7f), (rf7,p9f), ( r „ i , p 5 ) , 
(jn2,P8), (rn3,P6), (r„4,P4), (r„5,P4), (r„5m,P3m), ( r„5/ ,P3/) , (j„5n,P3n), (r„6,Plo), 
(r„7,P3n), (r„7,P7n), (j„7,P9n)}-

We have added two dummy symbols: the input symbol #, which acts as the endmarker, 
and the nonterminal X, which we generate at the beginning of the computation and then 
erase when all the input has been read (including #). 

In this example, we read the input sentence in reverse order (right to left). Clearly, this 
makes no difference from a purely theoretical point of view, but it can be more suitable in 
practice due to the way how Japanese sentences are organized. 

The computation transforming the sentence zasshi o yondeitta onna no hito wa watashi 
no shiriai deshita into žena, která četla časopis, byla moje známá can proceed as follows: 
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(O Y(deshita) NP?(watashi no shiriai) DET(wa) NPf(onna no hito) 
Y(yondeitta) DET(o) NPm(zasshi) #, S) 

=> (1 NP?(watashi no shiriai) DET(wa) ~NPf(onna no hito) V(yondeitta) 
DET(o) NPm(zasshi) #, N P - S B J V P X) [(n,pi)] 

=> (0 NP?(watashi no shiriai) DET(wa) NPf(onna no hito) V(yondeitta) 
DET(o) NP m (zass/u) #, N P - S B J V?(6j/Z) NP? X) [(r 2,p 6)] 

=>• (0 DET{ma) NP/(onna no /lito) V(yondeítta) DET(o) NPm(zasshi) #, 
N P - S B J V?(byl) NP?(můj známý) X) [(r 3,p 4)] 

=> (0 NPf(onna no hito) V(yondeitta) DET(o) NPm(zasshi) #, NP? 
V•?(byl) NP? (můj známý) X) [(r4,p 2)] 

=> (/ Y(yondeitta) DET(o) NPm(zasshi) #, NP?(žena) V?(byl) 
NP'?(můj známý) X) [(j"5/,p4)] 

=> ( / l DET(o) NP m (mss /n) #, NP?(zena) & V?(byl) NP?(můj známý) X) 
[(r/i.Ps)] 

=> (/2 DET(o) NP m (mss/w) #, NP?(žena) PN ?(fcíerý) V P V?(6yZ) 
NP?(můj známý) X) [(772,Ps)] 

=> (/ DET(o) NP m (*w«W) #, NP?(iena) PN?(který) V?(četl) NP? V ? ( M ) 
NP?(můj známý) X) [(r/ 3,p 6)] 
(/ NPm(za88fei) #, NP?(iena) PN?(fcíerý) V?(četl) NP? V?(6yZ) 
NP?(mwj známý) X) [(»74, p 4)] 

=> (/ #, NP?(žena) PN?(A;ier2/) V?(četl) NP m(časopis) V?(byl) 
NP?(můj známý) X) [(rf5m,p3m)} 

=> (1/, NP?(žena) PN?(který) V?(četl) NPm(časopis) V?(byl) 
NP?(můj známý)) [(r/e,pio)] 

=> (1/, NPj(zena) PN?(fcíerý) V?(četl) NPm(časopis) V?(byl) 
NP?(můj známý)) [ (777 ,p 3 / ) ] 

=> (1/, NP / ( i ena ) PNf(která) V?(četl) NPm(časopis) V?(byl) 
NP?(můj známý)) [(r/ 7 ,p 9/)] 

=4> (1/, NP/( iena) PNf(která) Vf(četla) NPm(časopis) V?(byl) 
NP?(můj známý)) [(rp,P7f)] 

=> (1/, NPf(žena) PNj(která) Vf(četla) NPm(časopis) Vj(byla) 
NP-?(můj známý)) [(777,227/)] 

(1/, NP/(zena) PNf(která) Vf(četla) NPm(časopis) Vf(byla) 
NPf(moje známá)) [ (777 ,p 3 / ) ] 

When we first read the word that determines the gender, we move to the state that 
represents this gender (state m, n, or / ) . Note that these states are functionally identical in 
the sense that we can read the same input symbols, while performing the same computation 
steps in the grammar generating the output. After we have reached the end of input, we 
rewrite the nonterminal symbols representing words with as of yet unknown gender to the 
corresponding terminal symbols, depending on the state. 

As already noted in the previous section, Czech is considered a free-word-order language. 
That is, it allows for a wide range of permutations of words in a sentence without changing 
its syntactic structure (the meaning of the sentence may be affected). This is perhaps the 
main source of the relatively high amount of non-projectivity in Czech sentences. 
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(I) don't know what is between them difference 

Figure 6.7: Non-projective dependency tree (Czech) 

Non-projectivity means that there are cross-dependencies. For example, recall the En­
glish sentence 

/ ate a cake yesterday which was delicious. 

from Section 3.1.1 and its dependency tree shown in Figure 3.2. Arguably, the English 
example is somewhat artificial. Even though the sentence is well-formed, in most cases it 
might be more natural to say simply 

/ ate a delicious cake yesterday. 

In contrast, in Czech, a sentence such as 

Nevím, jaký je mezi nimi rozdíl. 
(I don't know what the difference between them is.) 

is not at all unusual. The dependency tree for this sentence (see Figure 6.7) is also non-
projective. 

For further information about projectivity, and the issue of non-projectivity in the Czech 
language in particular, see [32]. 

The following Example 6.6 illustrates how our formalism can account for some non-
projectivity. 

Example 6.6. Consider an RT F = (M,G,V), where M = (Q,T,,S,0,F), G = (N,T,P, 
S) such that 

• Q = {0,1, 2, 3, 4, 5, 6m, 6f, 6n}, 

• £ = { N m , N / , N n , V, P N , P N i , D E T , P}, 

• ^ = {0}, 

• N = {S, N P - S B J , NP , V P , P P , V?}, 

• T = { N m , N / , N n , V, P N m , P N / , PN„, P}, 

• 5 = 

Tim 0 N m -> 6m, ON/ 6f, 0 N n ->• 6n, ' 
0V ->• 0 0PN ->• 1, r 4 OPNj ->• 3, 

r 5 ODET -* 0, OP ->• 0, r 7 l - > 2 , 
^8 2 ^ 0 , 3 -> 4, no 4 -> 5, 

m 5 -> 0, 6m —>• 0, r i 2 / 6 / ^ 0 , 
, T\2n 6n ->• 0, r i3 0PN ->• 0 

> 
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• p 

Pi 

P3 
Pif 
P5 

Pef 
Pi 
P9 

S -> N P - S B J V P , 
N P - S B J -> e, 
NP N / , 
NP -> S, 
NP -> P N / , 
V P -> V? P P N P 
P P ->• P N P , 

P2 

P4m 
Pin 

Pfjm 

Pdn 

P8 

PlO 

N P - S B J ->• N P 
NP -»• N m , 

NP -> PN, 
V? -)• V , 
P P -> e, 

• * = { ( r i m , p 4 m ) , (rif,P4f), (ri„,P4n), (r 2 ,Ps), fa, Pi) , (r 4 ,Pio), (?l5,P7), (n>,P9), (j7, 
P3), (^8,P7), (rg,P5), (no,Pi) , ( n i , P 2 ) , (ri2m,P6m), (ri2f,PGf), (ri2n,P6n), (ri3,PGm)}-

The computation transforming the English sentence / don't know what the difference 
between them is into the (non-projective) Czech sentence nevím, jaký je mezi nimi rozdíl 
proceeds as follows: 

(0 PN(7) V (don't know) PNi(what) BET(the) Nm(difference) P(between) 
PN(them) V (is), S) 
(1 V {don't know) PNi(what) BET(the) N m (difference) P(between) 
PN(them) V (is), N P - S B J V P ) [(r3.p1)] 

(2 V (don't know) PNi(what) BET(the) Nm(difference) P(between) 
P~N(them) V(is), V P ) [(r 7,p 3)] 

=>• (0 V (don't know) PNi(what) BET (the) Nm(difference) P(between) 
PN(them) V (is), V? P P NP) [(r 8,p 7)] 
(0 PNj(wfeof) DET(í/ie) Nm(difference) P(between) PN(them) V(is), 
V (nevím) P P NP) [(r 2,p 8)] 
(3 DET(í/ie) Nm(difference) P(between) PN(them) V(is), V(nevím) NP) 
[(7*4,P10)] 

=>• (4 DET(ř/ie) ~Nm(difference) P(between) PN(them) V (is), V (nevím) S) 
[( í"9 ,P5)] 

=4> (5 DET(í/ie) ~Nm(difference) P(between) PN(them) V (is), V(nevím) 
N P - S B J V P ) [(rio.pi)] 

=>• (0 DET(žfee) Nm(difference) P(between) PN(them) V (is), V(nevím) 
NP(jaký) V P ) [ ( r n ,p 2 ) ] 

=4> (0 Nm(difference) P(between) PN(them) V(is), V(nevím) NP(jaký) V? 
P P NP) [(r5,P7)] 

=4> (6m P(between) PN(them) V (is), V(nevím) NP(jaký) V? P P Nm(rozdíl)) 
[(rim, PAm)] 
(0 P(between) PN(them) V (is), V(nevím) PNm(jaký) V? P P Nm(rozdíl)) 
[(ri2m, P6m)] 

(0 PN(them) V (is), V (nevím) PNm(jaký) V? P(mezá) N P Nm(rozdíl)) 

[fa, Po)] 
=4> (0 V(is), V(nevím) PNm(jaký) V? P(mezi) PNm(nimi) Nm(rozdíl)) 

[(ri3,P6a)] 

=4> (0, V(nevím) P~Nm(jaký) V (je) P(mezi) PNm(nimi) Nm(rozdíl)) 
[(r2,Ps)] 

The corresponding derivation tree of G is shown in Figure 6.8. 
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Figure 6.8: Derivation tree of G 

6.3 Summary 

In the first two sections of this chapter, we have tried to point out and illustrate the key 
advantages of the proposed formal models using select case studies from the Czech, English, 
and Japanese language. Here, we summarize them, and compare the respective strengths 
and weaknesses of the new synchronous grammars and RTs. The observations presented 
are based on our previously published papers [10], [39], and [ ]. 

One of the main advantages of both types of models is their power. As shown in Chap­
ters 4 and 5, both synchronous grammars (with linked rules) and RTs (without leftmost 
restriction) are able to describe even some non-context-free languages. Although arguably 
relatively rare in practice, there are some features of natural languages that are difficult or 
impossible to properly capture with CFGs only (such as cross-dependencies). Furthermore, 
even in cases when a purely context-free description is possible, it may require a high num­
ber of rules. Our new models can provide a more economical description thanks to their 
increased generative power and, in case of RTs, also accepting power. 

Another advantage of our new synchronous grammars is their high flexibility, especially 
if we synchronize models that have higher generative power themselves, such as regulated 
grammars. In particular, let us consider the case of S M A T . As shown above (Theorem 4.7), 
if we synchronize M A T s in the proposed fashion, we do not obtain any further increase in 
power of the whole system compared to R S C F G or M A T . However, more powerful individual 
components allow for easier—and again, more economical—description of each individual 
language. 

Unlike synchronous grammars, which are symmetric and therefore can be used for bidi­
rectional translation, RTs can only describe translation in one direction. Furthermore, 
because their components are relatively simple (an F A and a C F G ) , RTs are also less flex­
ible than, for example, SMATs and SSCGs. Consequently, the description of linguistic 
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structures and features can be more complex (essentially, requiring more rules). 
On the other hand, the simplicity of components can also be seen as an important 

advantage of RT, especially from a practical viewpoint. Both FAs and CFGs are well-
known and well-studied not only from a theoretical point of view, but also with regards to 
practical implementations. For example, there are well-known methods of efficient parsing 
for CFGs. 

Another advantage of RT lies in its the straightforward and intuitive basic principle 
(read input with an FA, generate output with a C F G ) , which directly corresponds to the 
translation task in practice. In contrast, in synchronous grammars, both components gen­
erate sentences. 

Finally, note that both types of introduced formal models can be extended for use in 
statistical natural processing as well. We can, for example, assign weights (or probabilities) 
to rules similarly to probabilistic CFGs or weighted synchronous grammars. 
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Chapter 7 

Conclusion 

In this doctoral thesis, we have presented new grammar systems that can formally describe 
translations (or, more specifically, transformations of syntactic structures). We have dis­
cussed some of the theoretical properties of the new models, in particular their generative 
and accepting power. 

More specifically, we have introduced the idea of synchronization based on linked rules 
as a modification of the well-known synchronous grammars. We have extended this prin­
ciple beyond CFGs, to models with regulated rewriting, defining sychronous M A T s and 
synchronous SCGs. 

Further, we have introduced the rule-restricted automaton-grammar transducer, based 
on the natural idea of reading some input with an F A and producing an appropriate output 
with a C F G , and provided precise formal definitons. We have also considered two of its 
variants, namely leftmost restricted RTs and RTs with appearance checking. 

We have established the following main results: 

1. Rule-synchronized CFGs are more powerful than CFGs, as they characterize the same 
class of languages as M A T s (see Section 4.1). 

2. Synchronous M A T s have the same power as M A T s (see Section 4.3). 

3. Synchronous SCGs are able to generate all recursively enumerable languages (see 
Section 4.2). 

4. RTs can generate any language that can be generated by some M A T , and they can 
accept any language that can be accepted by some fe-PBCA (see Section 5.1). 

5. Leftmost restricted RTs can only accept and generate context-free languages (see 
Section 5.2). Note that this is still an increase in accepting power compared to FAs. 

6. RTs with appearance checking can both accept and generate all recursively enumer­
able languages (see Section 5.3). 

Figure 7.1 summarizes the results in a graphical representation. 
We have also discussed application perspectives of the new models in translation of 

natural languages, using select case studies from Czech, English, and Japanese to illustrate 
(see Chapter 6). Besides natural language processing, the models can be useful in other 
translation and transformation tasks, such as programming language compilation. 
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Figure 7.1: Hierarchy of select language classes (for k > 2) incorporating new results 
(highlighted by dotted frames), i f i —>• i f 2 denotes i f i C i f 2 and i f i f-> i f 2 denotes 
i f i = i f 2 

7.1 Further Research Prospects 

Further research prospects include the study of other theoretical properties of the proposed 
models, such as descriptional complexity. Although we have already shown which language 
classes our new models define, how efficiently they can do so remains an open problem. 
That is, we can investigate the effects of different limits placed on, for example, the number 
of nonterminal symbols in grammars, states in automata, or rules in both. In MATs , we 
can also limit the length of matrices, and similarly in SCGs, the length of scattered context 
rules (as sequences of context-free rules). 

As we have done with RTs by introducing an appearance checking and a leftmost re­
striction, we can consider other variants of our models and investigate their properties. 
For example, we could restrict SSCGs by using propagating SCGs (which are known to be 
strictly weaker than SCGs with erasing rules). We can also introduce and study systems 
consisting of other well-known grammars and automata. 

Extension to more than two components is possible as well. In such case, we could 
further investigate the relations to known grammar systems (see [18], [61], or [65]) and 
automata systems (see [11], [19], or [57]). 

Finally, note that although our synchronous grammars and RTs represent different ap­
proaches and, consequently, are defined differently, there is a significant similarity in their 
basic principles. In essence, they are all systems in which the cooperation of components is 
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achieved by synchronization of their rules. It might be useful to introduce a more general for­
malism allowing for various components, and thus encompassing all such rule-synchronized 
systems. 

From a more practical viewpoint, an important area to investigate is syntax analysis. 
For practical applications, we need to be able to parse sentences efficiently There are well-
known parsing methods for CFGs, such as (generalized) L R parsing or chart parsing, but 
for models with regulated rewriting, the situation is more complicated. While there have 
been some research in this area, particularly for SCGs (see [ ] or [ ]), efficient parsing 
with matrix grammars and scattered context grammars still represents an open problem. 

In the examples presented in this work, we have made two important assumptions. 
First, we already have the input sentence analysed on a low level—that is, we know where 
every word starts and ends (which may be a non-trivial problem in itself in some languages, 
such as Japanese) and have some basic grammatical information about it. Furthermore, 
we assume that we know the translation of the individual words. 

For practical applications in natural language translation, we would need a more com­
plex system, with at least two other components: a part-of-speech tagger (lexical analyzer), 
and a dictionary to translate the actual meanings of the words (although we can do this 
directly within a grammar by using dictionary rules, as shown in Example 6.3, a separate 
dictionary generally allows for more efficient encoding). Then, the component based on the 
discussed formal models could be used to transform the syntactic structure of a sentence 
and ensure that the words in the translated sentence are in the correct form. 
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Appendix A 

Index to Language Classes 

The following table lists all language classes discussed throughout this text. For each class, 
the list includes the abbreviated notation, the full description, and the number of the page 
where it is first introduced. 

Notation Language class Page 
C F Context-free languages 14 
CS Context-sensitive languages 14 
F I N Finite languages 18 
R E Recursively enumerable languages 14 
R E G Regular languages 14 
JC(k-CA) Accepted by /c-counter automata (k £ N) 18 
Jz?(fc-PBCA) Accepted by partially blind fc-counter automata 18 
Jz?(FA) Accepted by finite automata 15 
Jz?(MAT) Generated by matrix grammars 17 
Jz?(MAT a c ) Generated by M A T s with appearance checking 17 
Jz?(PDA) Accepted by pushdown automata 15 
Jz? (RSCFG) Generated by rule-synchronized context-free grammars 35 
Jz?(RT)i Accepted by rule-restricted transducers 44 
Jz?(RT)2 Generated by rule-restricted transducers 44 
Jz?(RT a c ) i Accepted by RTs with appearance checking 51 
Jz?(RT a c)2 Generated by RTs with appearance checking 51 
Jz?(RT/ m )i Accepted by RTs with leftmost restriction 48 
Jz?(RT/m)2 Generated by RTs with leftmost restriction 48 
Jz?(SCG) Generated by scattered context grammars 17 
Jz?(SMAT) Generated by synchronous matrix grammars 40 
Jz?(SSCG) Generated by synchronous scattered context grammars 39 
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