
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

GENERATING CODE FROM TEXTUAL DESCRIPTION
OF FUNCTIONALITY
GENEROVÁNÍ KÓDU Z TEXTOVÉHO POPISU FUNKCIONALITY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDŘEJ ZOBAL
AUTOR PRÁCE

SUPERVISOR doc. RNDr. PAVEL SMRŽ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Computer Graphics and Multimedia (DCGM)

Student: Zobal Ondřej

Programme: Information Technology

Category: Information Systems

Academic year: 2023/24

Assignment:

1. Get familiar with adapting large language models for code generation on domain-specific data from
the GitHub or StackExchange archives.

2. Prepare a dataset of commented codes to evaluate the models being created.
3. Design and implement an extension for the Visual Studio Code editor that will add comments in

appropriate places, suggest alternative variable names, and identify and correct potential errors in
Python 3 source files.

4. Evaluate the results of the system on a representative sample of
data, discuss the dependence of results on code complexity.

5. Prepare a poster presenting the work, its objectives, and results.

Literature:
• according to the supervisor's suggestion

Requirements for the semestral defence:
• a functional prototype of the system

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Smrž Pavel, doc. RNDr., Ph.D.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 22.4.2024

Bachelor's Thesis Assignment
154445

Generating Code from Textual Description of FunctionalityTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This thesis is concerned with the development of an extension for the Visual Studio Code
editor that helps developers maintain code quality in Python 3 by generating comments
and docstrings and suggesting new names for variables. The extension was also supposed
to include a bug fixing system, but unfortunately it failed to become effective. The sys-
tem uses large Transformer language models with sparse attention for processing results.
Unfortunately, the results do not compete with current competition such as GPT-3.5-turbo.

Abstrakt
Tato práce se zabývá vývojem rozšíření do editoru Visual Studio Code, které pomůže vývo-
jářům udržet kvalitu kódu jazyka Python 3. Rozšíření poskytuje možnost generování ko-
mentářů a docstringů, návrhu nových jmen proměnných. Rozšíření využívá velké jazykové
modely Transformer s řídkou pozorností pro zpracování výsledků. Výsledky bohužel nekonku-
rují současné konkurenci, jakou je například GPT-3.5-turbo.

Keywords
machine learning, natural language processing, ML, NLP, code refinement, comment gen-
eration, refactoring, Longformer, PLBART, Visual Studio Code, extension

Klíčová slova
strojové učení, zpracování přirozeného jazyka, ML, NLP, zlepšení kódu, generování komen-
tářů, refaktorizace, Longformer, PLBART, Visual Studio Code, rozšíření

Reference
ZOBAL, Ondřej. Generating Code from Textual Description of Functionality. Brno, 2024.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor doc. RNDr. Pavel Smrž, Ph.D.

Generating Code from Textual Description of Func-
tionality

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Pavel Smrž. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Ondřej Zobal
May 8, 2024

Acknowledgements
I extend my heartfelt thanks to doc. Pavel Smrž for his professional guidance, support, and
patience through these past two semesters.

Contents

1 Introduction 6

2 Neural networks 7

3 Natural Language Processing 12
3.1 Word Embedding . 13
3.2 Tokenization . 14

4 State of the Art 16
4.1 Recurrent Neural Networks . 16
4.2 Attention . 16
4.3 The Transformer Model . 17

5 Tools and Technologies 22
5.1 Sparse Attention Transformers . 22
5.2 Quantized Low Rank adaptation . 24
5.3 Used Datasets . 26

6 System Design 27
6.1 Comment Suggestion Module . 27
6.2 Variable Name Suggestion Module . 30
6.3 Error Correction Model with LED . 31
6.4 Error Correction Module with CodeWizard 33

7 Implementation Details 35
7.1 Training . 35
7.2 Client . 37
7.3 Server . 39

8 Evaluation and Results 42
8.1 Assessment of Comment Generation . 42
8.2 Assessment of Variable Name Generation 45
8.3 Assessment of Error Correction . 47

9 Conclusion 49

Bibliography 50

A Contents of the included storage media 53

1

B Model predictions 54
B.1 Docstring predictions . 54
B.2 Comment prediction . 55
B.3 Variable name predictions . 56

2

List of Figures

2.1 𝑥 is an input passed to the first layer 𝑓1. Its output is passed to the second
layer 𝑓2 and so on until it arrives at 𝑓𝑛, which is the last layer, and its output
is the output of the model. 7

2.2 ReLU function graph. It is a primitive yet powerful activation function with
great results with models that use a large number of layers. 8

2.3 A 4 layer feedforward network modeling 𝑦 = 𝑓𝑛(𝑓2(𝑓1(𝑥))). The activations
of the input layer are set to the value 𝑥. The values pass from left to right
through hidden layers ℎ1, ℎ2, and finally, the output layer 𝑦 whose activations
represent the model’s prediction. 9

2.4 Block diagram of neuron activation calculation, equivalent to equation 2.2.
𝑎1−5 are activations from all neurons in the previous layer. 𝑎1−5 each get
multiplied by their respective weights 𝑤1−5 and the results are summed to-
gether with a bias parameter 𝑏. This sum is then processed by an activation
function 𝜑, whose output is the neuron’s activation. 10

2.5 Forward pass and backward pass are shown side by side. During the forward
pass 𝐹 (𝑥), the function of the neural network 𝑓(𝑥) is computed along with
its loss using 𝑓𝑐𝑜𝑠𝑡(𝑓(𝑥)). Gradients can be obtained by deriving the forward
pass 𝐹 ′(𝑥). By repeatedly applying the chain rule, the gradient for each
function is calculated from the last to the first layer. 10

3.1 The embedding layer. Each rectangle represents one token slot of the em-
bedding layer. Each slot outputs a feature vector of length 𝑑𝑚𝑜𝑑𝑒𝑙 that is fed
into the following layer. The total amount of token slots is called sequence
size. 12

3.2 Visualization of some well-trained token-to-feature mapping in two dimen-
sions. Words related to men and women are clustered, respectively. Note
that equivalent words in each cluster are spaced similarly. Such as the dis-
tance between man and king and woman and queen, which are both �⃗�. . . . 13

4.1 Diagram of an RNN-based model performing a sequence-to-sequence trans-
lation. The model consists of two parts: an encoder and a decoder. Time
steps are denoted as 𝑇𝑛. Each input token is processed sequentially by the
encoder RNN. The encoder receives the state from the previous time step
and the current token as inputs. After all input tokens are processed, the
encoder’s final state is given to the decoder as an initial state. The decoder
is an RNN for output generation; it repeatedly processes its previous state
and outputs a token. The decoder iterates until the model generates an end
of sequence (<eos>) token or some other condition is fulfilled. 17

3

4.2 The original transformer model. The encoder is depicted as the large block
on the left and the decoder as the large block on the right. The encoder
receives embedded input tokens with positional encodings, processes them,
and gives its output to the decoder, which receives previously outputted
tokens as input. The decoder’s final hidden layer is used to determine the
output token using the linear and softmax layers. This diagram was taken
from Transformer’s foundational paper [34]. 18

4.3 Attention block diagram. Image (a) is a diagram of multi-head self-attention,
and image (b) is a diagram of scaled dot-product attention calculation. . . . 19

4.4 Example of a visualization of a self-attention matrix. Darker colors represent
high activations. Note strong activation between semantically related tokens
such as He and report. This figure was taken from [11]. 20

5.1 Local attention diagram. The table represents attention between tokens;
highlighted squares show that the row and column tokens are attending to
each other. With traditional full attention, all squares would have been
highlighted. The local attention window effectively reduces the number of
attending tokens to a strip around the diagonal. In this particular case, the
window size 𝑤 would be 3. Image taken from the Longformer paper [5]. . . 23

5.2 Local attention and Global attention together. The table represents attention
between tokens; highlighted squares show that the row and column tokens
are attending to each other. In addition to the diagonal strip, certain tokens
are allowed to tend to the whole input like it is in full attention. Taken from
the Longformer paper [5] . 23

5.3 LoRA diagram. 𝑥 is the output of a previous layer, which is sampled not
only by the original layer but also by the Lora adapter shown in orange.
Each processes the 𝑥 in parallel, and the result is summed. 𝑟 is the size of
the LoRA matrix. Figure taken from [17]. 25

5.4 Example of some distribution of a 4-bit NormalFloat. The distribution of
parameter values is in cyan, and the chosen values are in orange. Image
taken from [18]. 25

6.1 Block diagram of the Comment Suggestion module. 28
6.2 Block diagram of the Variable Name suggestion module. 31
6.3 Block diagram of the Error Correction module using the LED model. 32
6.4 Block diagram of the Error Correction module using the Wizard model. . . 34

7.1 CodeLens options appearing around in a function, showing three clickable
labels in total. The first two appear above the function definition, ”Suggest
comments“opens a panel with suggestions for extra code comments, and ”Fix
error“analyzes code for potential errors and offers a solution. The third ap-
pears on line 7 and reads, ”Rename next_value.“Clicking it opens a variable
name suggestion panel. This option is only shown because the user moved
their text cursor over the variable name. 37

7.2 CodeImprove comment suggestion window. It is currently suggesting a new
docstring and a comment above the while loop. 38

7.3 CodeImprove suggestion for error correction, changes are highlighted. Note
that this suggestion was mocked. 38

7.4 CodeImprove suggestion for an alternative variable name. 39

4

8.1 Bleu score over character length of the input of GPT-3.5-turbo while gen-
erating docstrings. 44

8.2 Bleu score over character length of the input of the CodeImprove-docstring
model. 45

8.3 TOP3UP score over character length of the input of GPT-3.5-turbo. 47
8.4 TOP3UP score over character length of the input of CodeImprove-rename. 47

5

Chapter 1

Introduction

In the fast-paced field of software development, maintaining code quality and readability
is crucial. This thesis introduces a tool for automatic code refactoring aid using Large
Language Models (LLM), which aims to enhance code readability, quality, as well as the
overall developer experience.

Most contemporary tools lean heavily on chatting with generative AI assistants1; these
are usually very flexible, often able to perform operations they never directly saw in their
training data; however, due to their broad focus, they often lack mastery. Additionally,
chatting doesn’t make for the best workflow, especially when dealing with simple tasks that
need to be performed often. Despite the recent language modeling boom, IDEs still lack
more integrated AI tools for performing simple chores.

The aim of this thesis is to design, implement, and evaluate a VS Code/Code-OSS2

extension called CodeImprove that uses AI to assist Python developers by enhancing code
quality. Specifically, the extension will attempt to automate the generation of docstrings
and comments, suggest more fitting variable names, and identify as well as fix common
coding errors.

To address these challenges while retraining reasonable hardware requirements, this
thesis uses the Longformer. This sparse attention transformer model saves memory by
focusing on a smaller window of code at a time. This paper also experiments with quantized
low-rank adaptation, a different approach for reducing the memory use of large language
models.

The thesis is organized as follows: An exploration of the theory behind contemporary
state-of-the-art natural language processors is conducted over the next three chapters, rang-
ing from neurons to the transformer model. The technologies employed in this project will
be presented, along with the training data utilized for model creation, and are explained.
Subsequently, the manner in which the models were trained is showcased, followed by details
of the implementation of the extensions. Lastly, the evaluation of performance is examined,
and the results are summarized.

1Among those most popular by developers are copilot and chatGPT. Copilot offers next token prediction
and chatting and is powered by GPT-3.5, chatGPT can only do chatting and is powered by GPT-3.5 and
GPT-4

2Code-OSS is a Free project developed by Microsoft, and Microsoft Visual Studio Code (VS Code for
short) is its most popular distribution.

6

Chapter 2

Neural networks

This chapter will go over the theory behind neural networks (NN), also sometimes called
Artificial Neural Networks (ANN), which are a cornerstone in machine learning. Neural
networks enable computers to gain intuition in complex tasks by learning from vast amounts
of data, relying solely on matrix multiplication and a handful of other simple mathematical
functions for generating their predictions.

Neural networks are a branch of artificial intelligence. They are computational models
designed to recognize patterns and solve complex problems. Neural networks can learn
from datasets featuring examples of problems with solutions. Later chapters will explain
how neural networks can be used to intelligently transform and generate textual content 4.
Information in this chapter is based on [13].

Neural networks are a model that approximates a given function 𝑦 = 𝑓*(𝑥) by defining
a function 𝑦 = 𝑓(𝑥, 𝜃) and learning the value 𝜃 so that the outputs of 𝑓 are as close as
possible to the outputs of 𝑓*.

Neural networks can be represented as a composition of various functions within a
directed graph. This chapter will focus on feedforward networks that are an acyclic variant
of neural networks, meaning they do not contain feedback connections to previous layers.
Some feedforward network 𝑓(𝑥) can be characterized as 𝑓(𝑥) = 𝑓𝑛(𝑓2(𝑓1(𝑥))) as shown in
2.1.

Figure 2.1: 𝑥 is an input passed to the first layer 𝑓1. Its output is passed to the second
layer 𝑓2 and so on until it arrives at 𝑓𝑛, which is the last layer, and its output is the output
of the model.

Dataset defines inputs and labels representing 𝑥 and 𝑓(𝑥), respectively. In a neural
network, inputs correspond to the value of the input layer and labels to the desired value
of the output layer. Any other layers between them do not have their values bound by the
dataset; because of this, they are called hidden layers.

Inputs, labels, and outputs of individual layer functions are usually vector-valued. The
dimensionality of a layer is called width. Each unit in these vectors can be visualized as a

7

node that operates in parallel to other nodes within the same layer. These nodes are called
neurons for their functional similarity to their biological counterparts.

The goal of using hidden layers is for the network to be able to split a potentially
complex task into more manageable sub-tasks that can then be divided between the layers.
However, by only using linear operations, the network’s learning potential is limited to only
observing linear relationships in the data. This can be solved by employing a non-linear
function to transform the output of our linear layer. This function is called an activation
function.

The activation function does not require its own trainable parameters, and the function
itself does not need to be very complex. The most popular non-linear function is ReLU,
which consists of a constant function that changes into a linear function for 𝑥 > 0 as
pictured in figure 2.2.

The final output value of a neuron is called an activation.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Input

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut

ReLU Function
ReLU Function

Figure 2.2: ReLU function graph. It is a primitive yet powerful activation function with
great results with models that use a large number of layers.

The linear layer is a cornerstone of neural networks. It computes a linear transformation
like this:

𝑦 = 𝑥𝑇 · 𝑤 + 𝑏 (2.1)

where 𝑤 and 𝑏 together represent 𝜃. 𝑤 is commonly referred to as a weight and serves
to dim or amplify the activation coming from a particular connection, and 𝑏 bias gives
the neuron a tendency towards being more or less activated. 𝑥𝑇 is a transposed vector
of activations from neurons of the previous layer, and finally 𝑦 it the output vector of
activations.

Another important layer is the non-linear layer. Which is essentially the same as the
linear transformation, except a non-linear function processes its output. Activation of a

8

Figure 2.3: A 4 layer feedforward network modeling 𝑦 = 𝑓𝑛(𝑓2(𝑓1(𝑥))). The activations of
the input layer are set to the value 𝑥. The values pass from left to right through hidden layers
ℎ1, ℎ2, and finally, the output layer 𝑦 whose activations represent the model’s prediction.

non-linear neuron can be computed like this:

Activation = 𝜑

(︃
𝑛∑︁

𝑖=1

𝑊𝑖𝑥𝑖 + 𝑏

)︃
(2.2)

𝜑 is an activation function (such as ReLU), 𝑛 is the total number of connections from
the previous layer to this neuron, 𝑊𝑖 is the weight of a connection, 𝑥𝑖 the activation of the
connected neuron, and 𝑏 is the bias value of this neuron. Also see equivalent block diagram
2.4.

2.0.1 Training Neural Networks

An obvious challenge when working with a neural network is obtaining suitable values for
𝜃. One approach used historically is manual tuning with the help of field experts. This
approach is problematic as it requires extensive amounts of time and effort. And once
training is done, very little progress can be shared with projects from different domains.

The model is trained by first running an inference. This is called the forward pass.
During the forward pass, the state of every layer is saved in a computational graph. A cost
function is then used to calculate an error score between the model’s output and the labels.
This value is called a loss. An optimization algorithm such as back-propagation [31] takes
the computational graph obtained during the forward pass and, with the help of the chain
rule, computes gradients for each function, starting from the loss calculation, and going all
the way to the input layer as shown in 2.5; this is called a backward pass.

Naturally, the gradient represents the direction in which the parameter 𝜃 needs to
be adjusted to increase the loss value, so by subtracting a fraction of the gradient from
parameters 𝜃, the model’s performance on the current sample improves. This is called
gradient descend. This process repeats until the model stops improving. Before the training

9

Figure 2.4: Block diagram of neuron activation calculation, equivalent to equation 2.2. 𝑎1−5

are activations from all neurons in the previous layer. 𝑎1−5 each get multiplied by their
respective weights 𝑤1−5 and the results are summed together with a bias parameter 𝑏. This
sum is then processed by an activation function 𝜑, whose output is the neuron’s activation.

starts, the parameters 𝜃 are typically initialized with random noise of low yet non-zero
values.

Figure 2.5: Forward pass and backward pass are shown side by side. During the forward
pass 𝐹 (𝑥), the function of the neural network 𝑓(𝑥) is computed along with its loss using
𝑓𝑐𝑜𝑠𝑡(𝑓(𝑥)). Gradients can be obtained by deriving the forward pass 𝐹 ′(𝑥). By repeatedly
applying the chain rule, the gradient for each function is calculated from the last to the
first layer.

10

The most popular cost function is cross-entropy between the model’s outputs and labels.
A form of cross-entropy that is widely used in multi-class classification tasks is the negative
log likelihood of an output layer with softmax1 applied against the labels.

The negative log-likelihood is calculated as follows:

loss = −
𝑁∑︁
𝑖=1

log(𝑝(𝑦𝑖)) (2.3)

𝑁 is the number of processed samples, 𝑦𝑖 is the label value for 𝑖𝑡ℎ sample, 𝑝(𝑦𝑖) is the
predicted value for 𝑖𝑡ℎ sample.

The network’s architecture is integral to its performance. The ideal configuration will
differ between applications. Configuration options include the number and types of layers,
as well as the number of neurons inside them, the learning rate (gradient multiplier), and
various regularization techniques.

To make the neural network useful outside of the training examples, it is necessary to
ensure that the model is only learning general patterns in the data and not memorizing the
individual samples. Performance on unseen data can be tracked with an evaluation dataset
that contains unique samples and periodically runs inference on it without optimizing. A
situation where the performance on the training dataset continues to improve, but the
performance on the evaluation dataset remains stagnant or worsens is called overfitting.

The opposite would be underfitting, where the model stops improving before outputting
satisfactory results.

1Softmax normalizes neuron activation in a layer so that their sum is 1.

11

Chapter 3

Natural Language Processing

After learning about the intricacies of neural networks, it is important to show how written
text can be passed in and out. This chapter will shed light on tokenization and embedding,
which divide the text into smaller segments and encode it into a numerical representation
that captures its original meaning. This allows computers to gain an understanding of
language. Word embedding essentially bridges the intuition of a neural network and the
nuances of words.

As stated in the previous chapter, a neural network has a limited number of input
and output neurons, while textual data, such as code snippets, generally vary in length.
Therefore, Mapping text to a neural network is not a trivial problem. This chapter will
explain how the process of tokenization can be used to encode data for use with neural
networks. Unless stated otherwise, information in this chapter is based on the book [19].

Tokenization is the most common method for encoding text for neural networks. This
approach splits the source text into chunks, called tokens, according to a token vocabulary.
Text processing models typically have an embedding layer which maps each token in a
sequence to a vector, see 3.1.

Figure 3.1: The embedding layer. Each rectangle represents one token slot of the embedding
layer. Each slot outputs a feature vector of length 𝑑𝑚𝑜𝑑𝑒𝑙 that is fed into the following layer.
The total amount of token slots is called sequence size.

12

Figure 3.2: Visualization of some well-trained token-to-feature mapping in two dimensions.
Words related to men and women are clustered, respectively. Note that equivalent words in
each cluster are spaced similarly. Such as the distance between man and king and woman
and queen, which are both �⃗�.

3.1 Word Embedding
Creating efficient word vector mappings was a challenge in the field of NLP for a long time
until the invention of the Word2Vec model, which, for the first time, properly captured the
semantic features of a word, which together represent the overall meaning of the word [28].
For example, there might be a unit that is correlated with whether the token pertains to a
living or unliving object or a value indicating its sex 3.2.

Word2Vec uses two algorithms to train a shallow neural network for word-to-vector
mapping [28]:

• Continuous Bag Of Words (CBOW): This algorithm predicts a hidden word based on
the surrounding context without the knowledge of the word order.

• Skip-Gram: This algorithm is exposed to one word and tries to predict its surrounding
words.

Interestingly, with a well-trained embedding mapping, it becomes possible to do arith-
metic operations with the semantics of the tokens [28]:

Embed(king)− Embed(man) + Embed(woman) ≈ Embed(Queen) (3.1)
Embed is a function of the embedding layer, transforming a word into a vector of fea-

tures. In this example, the symbol “≈” denotes a high degree of cosine similarity. Ideally,
the difference between the left and right sides of the equation should be smaller than the
difference between the right side and the embedding of any other token in the vocabu-
lary [28].

By assigning an identification number to each token, the original text can be represented
as a sequence of integers. Therefore, The input to the embedding layer can be a simple
list of integers. The dimensionality of the embedding layer’s output is called 𝑑𝑚𝑜𝑑𝑒𝑙 or
sometimes feature size.

13

The length of the sequence that the model can process at once is called the sequence
size. The number of available tokens is called vocabulary size.

3.2 Tokenization
As was shown, tokenization is a powerful approach that enables us to feed textual data in
and out of neural networks. However, in order to use tokenization, the vocabulary must
be built first. It can have a significant impact on the performance of our model, so it is
important to choose the right approach to generating it.

The most obvious solution might be to take the entire dictionary and make it our
vocabulary. This approach is not ideal because the number of dictionary words is too large.
During the training, less common words might not receive enough attention to develop
their embedding mappings properly. This can be solved by removing less common words
and representing their occurrences in the data with a generic unknown token, though this
is obviously not a great solution either, as this results in the complete loss of meaning of
those rare words.

Another obvious strategy would be to go for as minimal vocabulary as possible. Instead
of including all possible words, all possible characters may be included. This approach even
allows us to encode words from multiple languages and made-up words. However, with this
approach, the advantages of vectorized representation are essentially forfeited because the
neural network will have to learn to spell; this ultimately reduces learning potential.

In practice, vocabularies are usually created from the same datasets that will be used
to train the neural network. There are two main approaches to generating vocabularies:
top-down and bottom-up.

3.2.1 Top-down

With a top-down approach, a set of rules is defined and applied to the dataset, dissecting
it into smaller and smaller pieces. Besides a simple conversion to token equivalents, the
top-down approach often contains rules that change the text in some way, for example,
expanding clitics1, removing certain punctuation, and so on. Top-down methods can often
map multi-word entities to a single token, like New York. One popular top-down approach
is the Penn Treebank tokenization standard [26]. In practice, regular expressions are often
utilized to implement the rules, as they are deterministic and can be quite fast.

Some issues with the top-down approach arise when trying to parse languages that do
not make use of spaces, such as Japanese and Chinese. For the Chinese, a character-based
tokenization approach often yields superior results than other methods. In the case of
Japanese, specialized word segmentation algorithms are needed.

3.2.2 Bottom-up

The bottom-up algorithm starts by examining the individual characters and applying rules
to join multiple tokens to create one that covers more characters. Bottom-up tokenizers in-
clude tokens smaller than words, called sub-words. Among popular tokenization algorithms
used today are unigram language modeling [21] and byte-pair encoding [32].

Byte-pair encoding was originally introduced as a compression algorithm [12], but it was
found to have great results as a tokenization algorithm.

1An example of expanding a clitic could be: don’t → do not

14

The algorithm first adds all unique characters into the token vocabulary. Iteratively, it
finds the most commonly occurring sequence of two tokens. It then adds a new token to
the vocabulary representing the two tokens together and replaces all occurrences of these
two tokens with the newly created one. This repeats until the quota on the total number
of tokens is met. The algorithm doesn’t cross spaces and, therefore, doesn’t include any
multi-word entities. Space itself is treated as a character that neighbors only the character
to its left [32].

Provided that all possible tokens for a given task are included in the training set, the
model avoids the use of the unknown token since, in the worst-case scenario of encountering
a new word made up of unique parts, it can always be spelled using characters and sub-
word tokens, but more common words and sub-words are still able to enjoy the benefits of
semantic feature representation.

During regular encoding, the tokenizer uses a greedy version of this algorithm, aiming
for the longest token found in the vocabulary. Decoding is trivial, each token is mapped to
its equivalent characters.

The idea behind bottom-up algorithms such as this one is that individual sub-word
units “morphemes” will end up as tokens. For example, improbable consists of “im”, which
serves as a negation; “prob”, the root which relates to the concept of probability; and
“able”, which is used to turn verbs into adjectives as shown in 3.1.

15

Chapter 4

State of the Art

This will go over Large Language Models (LLM), a technology utilizing neural networks with
many layers to perform intelligent language processing. Starting with a short summary of
the RNN-based models, followed by the introduction of attention, which is a core mechanism
in Transformer-based models that recently revolutionized this field.

Transformers are a family of Large Language Models based on the architecture of the
original Transformer model created by Google in 2017. When first introduced, it outper-
formed all other contemporary machine-translation technologies by a significant margin.

The invention of the transformer was preceded by the discovery of the attention mech-
anism described in [4]. This paper introduced a novel technique for then-popular RNN-
based architecture called Long Short-Term Memory LSTM [16] and its improved variant,
the Gated recurrent unit GRU [8] architecture.

Information in this chapter is primarily based on the book [19] while information per-
taining directly to the Transformer model is based on its foundational paper [34].

4.1 Recurrent Neural Networks
Language processing with RNN-based neural networks suffers from poor context memory.
Information stated earlier in the text is often forgotten, and too much weight is placed on
recent parts of the sequence. In practice, this manifests as a drop-off in accuracy as the
sequence size grows. This problem stems from the structure of the network itself; see 4.1.

Since the state is continually updated by newer inputs, information about older tokens
gets overshadowed by information from later networks. LSTM has improved with this issue
by introducing a gating mechanism [16], enabling the model to selectively retrain or forget
information. Despite this advancement, this challenge was not fully overcome. The follow-
ing paragraphs will describe the attention mechanism, which allows further improvements
in context memorization.

4.2 Attention
Attention helps determine which parts of the input are relevant to the current state. At-
tention can be implemented in LSTM models by adding a third input to the decoder. First,
all encoder states need to be saved. While decoding is underway, each of those states is
concatenated with the decoder state and passed through a non-linear, fully connected layer.

16

Encoder
RNN

Encoder
RNN

Context vector

Encoder
RNN

Decoder
RNN

Decoder
RNN

Decoder
RNN

jsemJá robot

I am a

Decoder
RNN

robot

Decoder
RNN

<eos>

Encoder

Decoder

Figure 4.1: Diagram of an RNN-based model performing a sequence-to-sequence transla-
tion. The model consists of two parts: an encoder and a decoder. Time steps are denoted
as 𝑇𝑛. Each input token is processed sequentially by the encoder RNN. The encoder re-
ceives the state from the previous time step and the current token as inputs. After all input
tokens are processed, the encoder’s final state is given to the decoder as an initial state.
The decoder is an RNN for output generation; it repeatedly processes its previous state
and outputs a token. The decoder iterates until the model generates an end of sequence
(<eos>) token or some other condition is fulfilled.

The results are scalar values representing the relevance scores of each input token in relation
to the decoder state. The final context vector, which is the attention’s output, is calculated
as a sum of all encoder hidden layers scaled by their normalized attention scores. This kind
of attention is called additive decoder attention [32].

4.3 The Transformer Model
The discovery of attention then led to an even larger breakthrough in the field of LLM
when it was discovered that the properties of RNNs that made pre-attention language
models so performant were now holding it back. Researchers at Google found that by
complementing the attention mechanism with only a single-layered feed-forward network,
the model was able to outperform competition in translation tasks without needing more
complex components. The transformer was also computationally faster since it could be
easily parallelized, thanks to the absence of feedback connections.

The transformer model uses its own variant of the attention mechanism, called multi-
head self-attention (figure 4.3). The attention formula itself is called scaled dot-product
attention. This method is called self-attention because it compares the input tokens with
one another. The attention is calculated with the help of three intermediate matrices:
Query 𝑄, Key 𝐾 and Value 𝑉 . Each is obtained by running the feature vector through a
linear layer. The attention is calculated as follows:

Attention(𝑄,𝐾, 𝑉) = softmax(𝑄 ·𝐾𝑇

√
𝑑𝑘

) · 𝑉 (4.1)

𝑑𝑘 is the dimensionality of 𝐾 and 𝑄. In this case, the resulting attention is not a
scalar but a vector of the same dimensions as the initial feature vector. This constitutes

17

Figure 4.2: The original transformer model. The encoder is depicted as the large block on
the left and the decoder as the large block on the right. The encoder receives embedded
input tokens with positional encodings, processes them, and gives its output to the decoder,
which receives previously outputted tokens as input. The decoder’s final hidden layer is
used to determine the output token using the linear and softmax layers. This diagram was
taken from Transformer’s foundational paper [34].

self-attention with a single head. When using multiple heads, the feature vectors are split
so that every head processes an equal portion of the input. The output from the heads gets
concatenated to restore its original dimensions.

One factor in which Transformers differ from earlier architectures is that the sequence
size stays fixed after training. This is due to positional encoding, which is a mechanism
that gives the transformer a sense of the order of the tokens. The position is encoded by
adding a sine wave to even units of the vector and a cosine wave to the odd ones, with the
frequency of the wave communicating the position. Like so:

𝑃𝐸(𝑝, 𝑖) = 𝑔(𝑝/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) (4.2)

where 𝑝 is the token position, 𝑖 is the dimension in the vector and 𝑔 can be sine or
cosine.

The transformer uses an encoder-decoder framework (figure 4.2), also known as sequence-
to-sequence (seq2seq), which was originally developed for the earlier RNN-based models. It

18

(a) (b)

Figure 4.3: Attention block diagram. Image (a) is a diagram of multi-head self-attention,
and image (b) is a diagram of scaled dot-product attention calculation.

splits the model into two parts: the first is called the encoder, and the other is the decoder.
As the name suggests, the goal of this model is to transform one sequence of text into
another. This architecture is useful for translations, where a sentence in one language is
supplied as the input, and the sample sentence is translated into a different language as the
label.

4.3.1 Encoder

The encoder receives the token embeddings with the positional encoding of the input se-
quence from the embedding layer. The encoder block typically repeats several times, six
times in the original paper, but each time it uses different parameters. The encoder is
centered around a residual pathway leading from the input to the output, providing a rel-
atively unobfuscated path from the cost function to every trainable parameter to ensure
strong gradients for all weights and biases. The residual pathway is first sampled by the
Multi-head Attention, which processes the feature vectors and then returns its output to
the residual pathway. The addition is used to join processed outputs to the residual path
and to prevent values from becoming too large; the residual pathway is then normalized.

The next in line to sample the pathway is a feed-forward network with one hidden layer.
This layer typically has more neurons than input dimensions to capture more complex
relationships. The output from the feed-forward then joins back with the residual pathway
with addition and normalization, just like before.

The encoder’s output captures the overall meaning of the input, often called the context.
It can either be paired with a decoder to perform sequence-to-sequence transformations, or
it can be used for tasks such as sentiment analysis, classification, or searching.

4.3.2 Decoder

The decoder runs interactively, each time generating a single token based on the context
provided by an encoder. A decoder block is not too different from an encoder; it is also

19

Figure 4.4: Example of a visualization of a self-attention matrix. Darker colors represent
high activations. Note strong activation between semantically related tokens such as He
and report. This figure was taken from [11].

built around a residual pathway that begins at an embedding layer, where, just like before,
tokens are converted to their vector representation and enriched with positional encodings.
However, this time, the network is fed a sequence of its own outputs from previous time
steps. This provides the decoder with information about previous time steps. Before the
first token is generated, the decoder is initialized with a special beginning of sentence
token as input. The output token of the decoder is obtained by passing the last activations
from the decoder to a classification head, which is comprised of a linear layer and a softmax
layer, where activation of each neuron represents a probability of a token.

The first on the residual pathway is multi-head attention. In this layer, it is crucial to
mask out the token that is currently being predicted and all the ones that follow it to ensure
that during training, the decoder learns to work only with tokens from the past. Then, the
attention is calculated, and the result is merged back to the residual pathway like before.

Another operation on the residual pathway is a multi-head cross-attention. This is
similar to self-attention, but instead of attending to itself, the decoder state attends to the
encoder’s output. Lastly, a decoder block ends with a feed-forward with one hidden layer.

Just like encoders, decoders can be used without an accompanying encoder. In this
configuration, the cross-attention layer is omitted. Instead, the information about the
input is supplied as initial tokens to the input; the decoder then generates new tokens
to extend this sequence. This approach is quite popular. Among successful decoder-only
models is OpenAI’s GPT series.

4.3.3 Training Transformers

Training transformers is the same as training any other neural network using gradient
descent. The original Transformer uses the Adam (Adaptive moment estimation) optimizer,
which is very popular with other Transformer-based model1. The Adam optimizer enhances
regular gradient descent by dynamically adjusting the learning rate of each individual weight
and bias based on two factors: The momentum of the gradient and the amount of fluctuation
of the gradient [20].

1Adam is used by BERT [10], GPT [6] and many others.

20

A common technique to prevent overfitting is not using a gradient from a single inference
but adding gradients from a batch of samples together. The batch gradient is divided by
the number of samples in a batch so that the effective learning rate stays the same. Thanks
to batching, the gradient is smoother and includes less sample-specific information. It can
also be more performance efficient as the calculations of different samples can be done in
parallel [13].

If the input doesn’t match the maximum input size exactly, it is necessary to fill the
capacity with a special padding token, which is ignored during attention calculations.

Modern LLMs have anywhere between hundreds of millions2 and billions3 of parameters.
Therefore, training them takes a considerable amount of money. Because of this, models
are often trained in two phases. First, on general information relevant to a variety of tasks
from a given domain, this technique is called pre-training, and then they are exposed to a
specific task, which is called finetuning.

There are various strategies for pre-training an LLM, for example Denoising Autoencoder
DAE which works by corrupting the input data in some way4 and comparing the output
to the original text [22].

After a model has been pre-trained using general text, it can be trained on a more
specialized dataset to perform a specific task. This is called fine-tuning. The fine-tuning
process takes considerably less time and needs only a fraction of data than training from
scratch would require. A single pre-trained model can be used to fine-tune multiple mod-
els. The inputs and outputs should be formatted the same way they will appear during
deployment.

4.3.4 Output decoding

The sampling method determines which token should be chosen as the output of the decoder.
Notable ones include:

• Greedy sampling: The likeliest token is always greedily selected.

• Random sampling: The output is chosen randomly based on the probability distribu-
tion outputted by the model.

• Top-k sampling: The output is chosen from the 𝑘 likeliest tokens using random sam-
pling.

• Top-p sampling: A pool that is made up of the most likely token up to a cumulative
certainty of 𝑝 is randomly sampled.

Searching is another tactic for choosing the output:

• Greedy search: This is the simplest approach. At each step, only the likeliest token
is chosen every time [19]

• Beam search: The algorithm keeps 𝑛 most probable sequences that it expands each
time step. The output is the sequence with the highest cumulative probability.

2Bart Base has 140 million parameters [22].
3GPT-3 has over 175 billion parameters [6] .
4Corruption methods for DAE include: Token Masking, Chaining order of tokens, Removing tokens and

others.

21

Chapter 5

Tools and Technologies

The models have been trained using Torch, a Free machine-learning library for Python that
allows efficient tensor computing on the GPU. It also supports dynamic computational
graph building, which is crucial for backpropagation.

Another important library used for the training is the Huggingface Transformers library.
It provides a unified framework for sharing models of different architectures while retrain-
ing a fine grip over the training process. Huggingface offers a library of Models of other
architectures. Transformers library significantly streamlines the experimentation process of
comparing different models in otherwise identical conditions, which is much more difficult
while working with raw Torch models.

Other Python libraries used in the project: SentencePiece, toml, accelerate, astor,
peft, datasets, bitsandbytes, tqdm, json, nltk, logging, sacrebleu.

In order to train and evaluate the models, The Faculty’s compute servers were heavily
used, namely: pkcnot6, pkcnot8, athena19, athena20.

5.1 Sparse Attention Transformers
One of the biggest problems with training large language models is large memory size
requirements. This factor often limits the sequence size and the number of parameters.

The standard Transformer architecture suffers from quadratic memory complexity in
relation to the increase in sequence size, stemming from the nature of the attention mecha-
nism [7]. This results in very high memory usage, particularly during training where, when
using the Adam optimizer, it is required to store one copy of the model, loss averages,
loss momentum, and one or more gradients; each has the same memory size as the model.
Fortunately, there are some approaches that can help lower memory consumption.

The first one is sparse attention, a concept in which attention is only applied to a subset
of the sequence, allowing for a lower memory footprint [7]. Popular architectures include
BigBird [35] and Longformer [5]. This paper makes extensive usage of the ladder.

Longformer achieves sparsity of the attention matrix by introducing two separate at-
tention mechanisms, local attention and global attention.

• Local Attention computed by a sliding window whose size is a fraction of the maximum
sequence length. Local attention ensures that each token is attending to itself and a
𝑤 amount of tokens before and after. 𝑤 is the window size. See 5.1.

22

Figure 5.1: Local attention diagram. The table represents attention between tokens; high-
lighted squares show that the row and column tokens are attending to each other. With
traditional full attention, all squares would have been highlighted. The local attention
window effectively reduces the number of attending tokens to a strip around the diagonal.
In this particular case, the window size 𝑤 would be 3. Image taken from the Longformer
paper [5].

• Global Attention compliments local attention by enabling certain hand-picked tokens
to attend to the whole input sequence. Allowing the model to better understand long
inputs that contain important tokens that affect a larger part of the document.

Figure 5.2: Local attention and Global attention together. The table represents attention
between tokens; highlighted squares show that the row and column tokens are attending
to each other. In addition to the diagonal strip, certain tokens are allowed to tend to the
whole input like it is in full attention. Taken from the Longformer paper [5]

The Longformer uses separate projection 𝑄𝐾𝑉 matrices for each Attention mechanism.
Longformers architecture is, in a way, an extension of the RoBERTa [23] model. In fact, it
is possible to use a pre-trained RoBERTa model to initialize a Longformer, in which case
equivalent parameters are copied, and positional embeddings are extended via tiling.

23

The original Longformer model was developed as an encoder-only model, and some have
even used it as an autoregressive model [15]. However, the standard version of Longformer
does not support cross-attention, so a separate model was developed for the purposes of
sequence-to-sequence generation.

Longformer Encoder-Decoder (LED) is a sparse attention model that includes both an
encoder and a decoder. Similarly to the original Longformer, it is extending a well-known
model architecture, in this case, BART [22], and may also be initialized with BART weights.

This project extensively uses LED models, particularly those initialized with weights
and biases of the PLBART model [2], a model trained on natural language and programming
language. Thanks to the LED model, CodeImprove uses sequences of up to 2048 tokens
despite the fact that PLBART only supports 512. In particular, the model was trained on
natural language as well as Python and Java.

5.2 Quantized Low Rank adaptation
Another approach is QLoRA or Quantized Low-Rank adaptation [9]. This technology allows
the fine-tuning of very large language models with billions of parameters on consumer-grade
hardware by dramatically lowering the memory footprint of training.

QLoRA is an improved version of LoRA (Low-Rank Adaptation).
As described in [17], LoRA works by injecting additional parameters known as low-rank

adapters into a pre-trained model and solely training those during fine-tuning, see 5.3. The
rationale is that with a pre-trained model, you only need to alter the model a little bit
to fine-tune it for a specific task, as most of the core knowledge was already obtained by
the base model, and the inserted adapter parameters are simply steering the behavior in a
certain direction. Of course, this means that this approach is only viable when fine-tuning.

LoRA fine-tuning was found to have comparable results to full model fine-tuning and, in
some cases, even surpassed it. In certain scenarios, LoRA might be achieving better results
because it is not prone to catastrophic forgetting, a phenomenon in which the network
quickly loses knowledge that is no longer being reinforced by the training data.

However, LoRA becomes even more useful when used alongside quantization. QLoRA
is a recently introduced approach to LoRA that reduces parameter sizes to as little as 4
bits per floating-point number. This significantly increases training efficiency compared to
the usual 16—or even 32-bit floats.

To achieve this, QLoRA introduced in [18] presents a novel data type called 4-bit Nor-
malFloat. As a 4-bit number, it can hold only 16 distinct states. Each of these states
is assigned a value based on the distribution of values in model parameters, as shown in
figure 5.4. Usually, values of parameters form a normal distribution centered around zero.
Parts of the spectrum with values that appear more often have smaller partitions than less
populated parts.

24

Pretrained
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0, 𝜎2)

𝑑

𝑟

Pretrained
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

f(x)

𝑑

Figure 5.3: LoRA diagram. 𝑥 is the output of a previous layer, which is sampled not only
by the original layer but also by the Lora adapter shown in orange. Each processes the
𝑥 in parallel, and the result is summed. 𝑟 is the size of the LoRA matrix. Figure taken
from [17].

Figure 5.4: Example of some distribution of a 4-bit NormalFloat. The distribution of
parameter values is in cyan, and the chosen values are in orange. Image taken from [18].

During training, the original weights of the model are kept in their 4-bit form, and
adapter weights are used in their 16-bit form, which saves a relatively large amount of
memory. During inference, the entire model can be represented with just 4 bits per param-
eter.

25

5.3 Used Datasets
Datasets are an important part of machine learning as their quality can bind the perfor-
mance of the resulting model. This project makes use of two datasets for training.

5.3.1 Error Correction

In order to train the error correction module, a custom dataset was assembled from publicly
available Freely licensed Python repositories, all of them publicly available on GitHub1.

Data was extracted from these repositories by first cloning their entire history and then
searching commit messages using regular expressions for various iterations of the word fix.

A bug fix commit was accepted into the dataset if it contained only one hunk and
changed two lines of code or fewer. The changes also had to be contained inside a single
function or method body.

A snippet of the function before the patch, along with the title of the commit message,
is used as the input, and the post-patch function is used as the label.

Despite only accepting files ending in .py, it was crucial to conduct additional syntax
checks, as many projects have long histories that extend back to Python 2.

During this process, it could be observed that large, well-known projects contributed
disproportionately more fixes than smaller projects, even if those smaller projects had a
long history. This is likely due to the stricter committing etiquette that larger projects
enforce, resulting in more concise and atomic commits, which fit the filtering criteria.

Out of the total 1213 repositories, only 565 contained commits that fulfilled the criteria.
The total amount of samples is 16576.

In the pursuit of a larger sample size, the custom dataset is combined with PyTrace-
Bugs [3], which focuses on collecting tracebacks and related patches from GitHub issues.
The dataset also offers before and after patches of Python functions. As a form of anno-
tation of the samples, the dataset also includes information about the error message the
faulty code produced when it crashed.

5.3.2 Comments and Rename

In order to train the two remaining modules, the CodeXGLUE code to text dataset [24] was
chosen. The main role this dataset fulfills is providing a large base of diverse Python code.
The dataset is further reformatted to fit the requirements of both tasks.

1GitHub: https://github.com

26

https://github.com

Chapter 6

System Design

The past few years have seen a sharp influx of machine learning powered tools. Today,
there are a plethora of products promising to help programmers with writing code. Among
the most popular are GitHub Copilot1, Tabnine2 and Amazon CodeWhisperer3. Many
developers also use ChatGPT4, which, despite not being marketed specifically towards
developers, can handle code-related tasks rather well.

Most of these tools are designed around generative models trained for instruction ful-
fillment and assistance. They require manual text prompt entry for each task (ChatGPT,
GitHub Copilot, Tabnine, CodeWhisperer), where the programmer can specify a question
or a task. Often, the AI will have access to the file that is currently open or at least to the
highlighted code. Another commonly offered feature is predicting a string of tokens at the
current cursor position (GitHub Copilot, Tabnine, CodeWhisperer).

Despite recent technical developments, little has been done in terms of integrating more
advanced AI tools into the editor’s UI. This would be quite useful, especially for operations
that need to be performed frequently and don’t need any special details in the prompt.
The CodeImprove extension offers such a service, utilizing more economical models for
integrated refactoring aid.

6.1 Comment Suggestion Module
One of the goals of CodeImprove is to enrich the source code with additional documentation
in the form of comments. This is a quite complex task, so this work splits it into two parts:

• Comment detection: The process of finding what parts of the code need additional
documentation.

• Comment generation: The process of generating the comments themselves.
1GitHub Copilot: https://github.com/features/copilot
2Tabnine: https://www.tabnine.com/
3CodeWhisperer: https://aws.amazon.com/codewhisperer/
4ChatGPT: https://chat.openai.com/

27

https://github.com/features/copilot
https://www.tabnine.com/
https://aws.amazon.com/codewhisperer/
https://chat.openai.com/

Request for
Comments

Comment
Generation Model

Docstring
Generation Model

Reply

Algorithm for
Choosing Comment

Placement

Contains
Docstring?

Docstring

Line
Numbers

No

Python
Function

Comment
Suggestions

Figure 6.1: Block diagram of the Comment Suggestion module.

6.1.1 Comment Detection

A docstring is the only kind of comment that has a set placement. The placement of every
other comment is completely arbitrary and subject to personal preference.

The initial solution for finding places in need of comments was using an LED model
initialized from weights of the PLBart [1] model, trained on the CodeXGLUE code-text
dataset [24]. Though the dataset is formatted for training models on generating docstrings,
it serves as a rich source of Python code that can be further modified to fit other purposes.

In this case, Python’s built-in modules AST and tokenize were leveraged to obtain
information about lines that had a comment associated with them, either having a comment
at the end of the line or a standalone comment on the line above.

Input is created from the source by removing all of the comments and the docstring
and annotating each line with its line number (listing 6.2. Global attention is placed on the
(end of sequence) token and (__python__) token, and the label is constructed by joining
the line numbers of the removed lines (listing 6.2).

1 def fibonacci(n):
2 """Calculates the Fibonacci sequence of length n."""
3 # Initial sequence
4 fib_sequence = [0, 1]
5 while len(fib_sequence) < n:
6 # Add two last numbers from the sequence together
7 next_value = fib_sequence[-1] + fib_sequence[-2]
8 fib_sequence.append(next_value)
9 # Making sure we don’t return more than the user has requested

10 return fib_sequence[:n]
11

Listing 6.1: Sample Python code for showcasing dataset formatting. The function calculates
𝑛 elements of the Fibonacci sequence.

28

1 $ 1 $ def fib onacci (n) :
2 $ 2 $ INDENT fib_sequence = [0 , 1]
3 $ 3

$ while len (fib_sequence) < n :
4 $ 4

$ INDENT next_value = fib_sequence [
- 1] + fib_sequence [- 2]

5 $ 5 $ fib_sequence . append (
next_value)

6 $ 6
$ DEDENT return fib_sequence [: n]

7 $ 7 $
8 </s> __python__
9

Listing 6.2: Code in listing 6.1 formatted
as an input for comment detection, italics
denote global attention.
Note that the code has been ran through
the PLBART’s preprocessor function,
which introduced INDENT and DEDENT
tokens, as well as added spacing between
tokens.

1 __en_XX__ 2 4 6
2

Listing 6.3: Code in listing 6.1 formatted
as a label.

After training, the model’s results appeared too noisy, primarily generating randomly
looking lists of lines. It is possible that instead of learning the intricacies of what makes
code require a comment, it was learning average distributions of comments.

To get better results, the model was replaced by an algorithm that analyzes the syntax of
the code and, through different criteria, chooses places for comment insertion. The heuristic
evaluates a line as needing a comment if it contains more than 12 instances of unique
identifiers, numbers, or operators in total, if the line was separated by the programmer
from the line above by a blank line, or if the line contains one of the following branching
control structures: for, while, if, try, except.

6.1.2 Comment Generation

CodeImprove differentiates between two kinds of comments: a regular hash-symbol (#)
comment, which describes lines that immediately follow it, and docstrings, which are multi-
line string literals written at the start of a function or a method block and encapsulate
information about the function, docstrings commonly describe what the function does,
what each parameter is used for, and what its return value is; docstrings also often include
code that showcases how to use the function.

Docstring and comment generation are each handled by a separate model, though they
are both trained on the same CodeXGLUE [24] code-text dataset as was the abandoned
comment detection model; they also fine-tune the LED PLBart model.

When the dataset is loaded, every comment is either removed from the source (80 %
probability) or kept (20 % probability). A sample for training and evaluation is created
from each of the deleted comments. Each of these samples shares the same input, that
being the source with the comments taken out, with one small change, the location of
each comment is marked with n, where n is the particular line’s number. The label
is similarly formatted, starting with this special markup token followed by the content of

29

this comment. The global attention is placed on the function declaration and also on the
special markup sequence.

In the case of docstrings, the marking in the input is placed at the very beginning and
reads $ DOCSTR type $, where type identifies the formatting convention of the docstring
and can either be GO for Google’s convention [14], NP for NumPy’s convention [29] and RE
for the reST convention [33]. In the training dataset, these different types of docstrings are
classified using regular expressions.

Pylint, TODO, and other kinds of non-descriptive comments are filtered out, along with
commented source code, which is filtered by the presence of operators and is normally not
included in regular comments.

1 $ DOCSTR NA $ def fibonacci (n) :
2 INDENT fib_sequence = [0 , 1]
3 while len (fib_sequence) < n :
4 INDENT next_value = fib_sequence [-

1] + fib_sequence [- 2]
5 fib_sequence . append (next_value)
6 DEDENT return fib_sequence [: n]
7 </s> __python__

Listing 6.4: Code in listing 6.1 formatted
as an input for comment generation to
predict the docstring. Italics denote
global attention.
Note that the code has been ran through
the PLBART’s preprocessor function,
which introduced INDENT and DEDENT
tokens, as well as added spacing between
tokens.

1 __en_XX__ $ DOCSTR NA
$ Calculates the fibonacci sequence
of length . </s>

2

Listing 6.5: Code in listing 6.1 formatted
as a label.

1 def fibonacci (n) :
2 INDENT fib_sequence = [0 , 1]
3 while len (fib_sequence) < n :
4 $ 4

$ INDENT next_value = fib_sequence [
- 1] + fib_sequence [- 2]

5 fib_sequence . append (next_value)
6 DEDENT return fib_sequence [: n]
7 </s> __python__
8

Listing 6.6: Another example of code
in listing 6.1 formatted as an input
for comment generation to predict the
comment on line 4. Italics denote global
attention.

1 __en_XX__ $ 4 $ Add two last numbers
from the sequence together </s>

2

Listing 6.7: Code in listing 6.1 formatted
as a label.

6.2 Variable Name Suggestion Module
Among programmers, one can often hear joking remarks that coming up with names is
the most difficult part of the job. CodeImprove aims to help with this issue by suggesting

30

alternative names for variables in case the programmer feels like their creativity did not do
a sufficient job.

Because the variable’s name is mostly rooted in the code that comes after its declaration,
there is little to no point in suggesting code that is still unfinished.

The renaming module is powered by a single LED model initialized with PLBART and
is also trained on an altered version of the CodeXGLUE [24] code-text dataset.

Name Generation
Model

Request for
Rename Reply

Python
Function

3 Variable Name
Suggestions

Figure 6.2: Block diagram of the Variable Name suggestion module.

Each sample from the dataset is parsed using the AST module. One variable identifier
declared within the scope of the function is chosen, and all of its instances are masked out.
The original name of the token is used as the label. Global attention is applied to the
function definition and to all instances of the mask token.

1 def fibonacci (<mask>) :
2 INDENT fib_sequence = [0 , 1]
3 while len (fib_sequence) < <mask> :
4 INDENT next_value = fib_sequence [- 1]

+ fib_sequence [- 2]
5 fib_sequence . append (next_value)
6 DEDENT return fib_sequence [: <mask>]
7 </s> __python__
8

Listing 6.8: Example of code in listing 6.1
formatted as an input for variable name
generation, predicting a new name for n.
Italics denote global attention.

1 __python__ count </s>
2

Listing 6.9: Code in listing 6.1 formatted
as a label.

6.3 Error Correction Model with LED
The error correction feature of CodeImprove is meant to check the programmer’s code for
small errors and fix them. This module leverages a pair of LED PLBarts to first locate and
then fix the errors. This approach is inspired by [27].

Fixing errors can be very complex even for experienced programmers; in order to make
this task achievable, the models focus on straightforward errors, which can be patched by
changing two lines or less.

31

Request for Error
Patch

Error Correction
Model Reply

Error Detection
Model

Python
Function

Line Numbers,
Cause of Error

Patch

Figure 6.3: Block diagram of the Error Correction module using the LED model.

6.3.1 Error detection

The error detection module judges whether a given snippet contains errors and, if so, locates
the lines on which it occurs.

The input is annotated with line numbers enclosed in dollar signs, and the labels are a
string of numbers that contain the error separated by spaces.

Of course, not every snippet of code contains errors, and the model should be able to
learn that. For this reason, the dataset is supplemented with examples of correct snippets
taken from the stable code set of the PyTraceBugs dataset [3] in the ratio of 1:1.

1 def fibonacci(n):
2 fib_sequence = [0, 1]
3 while len(fib_sequence) < n:
4 next_value = fib_sequence[-1] + fib_sequence[-2]
5 fib_sequence.add(next_value)
6 return fib_sequence[: n]
7

Listing 6.10: Example of a code snippet with an error. There should be append instead of
add as highlighted in red.

1 Fixed bad method name

Listing 6.11: Error description

1 $ 0 $ def fibonacci (n) :
2 $ 1 $ INDENT fib_sequence = [0 , 1]
3 $ 2 $ while len (fib_sequence) < n :
4 $ 3 $ INDENT next_value = fib_sequence [

- 1] + fib_sequence [- 2]
5 $ 4 $ fib_sequence . add (next_value)
6 $ 5 $ DEDENT return fib_sequence [: n]
7 </s> __python__
8

Listing 6.12: Example of code in listing
6.10 formatted as an input for error
detection. Italics denote global attention.

1 __en_XX__ Fixed bad method name
2 5 </s>
3

Listing 6.13: Code in listing 6.10
formatted as a label for error detection.

6.3.2 Patch Generation

When it comes to generating patches, the model is trained with the pre-patch snippet as
input, again annotated with line numbers. The output comprises a custom text difference
notation along with an explanation of the error.

32

The text difference format this module uses is quite simple. Each change note begins
with the line number of the line being changed, followed by the new content of the line. If
the line was deleted in the path, nothing follows the line number. This is different from a
change to a blank line, as it would have contained a line feed. Insertion is represented by
additional text after the line feed. It is theoretically possible to insert as many lines as we
want.

The goal behind creating this format was to free the model from having to recite the
many lines of error-free code while remaining simple.

This functionality is powered by difflib, which can smartly identify differences on the
least possible amount of changes made. It outputs the traditional diff format, which is
then transformed into this custom version.

1 Fixed bad method name
2 $ 0 $ def fibonacci (n) :
3 $ 1 $ INDENT fib_sequence = [0 , 1]
4 $ 2 $ while len (fib_sequence) < n :
5 $ 3 $ INDENT next_value = fib_sequence [

- 1] + fib_sequence [- 2]
6 $ 4 $ fib_sequence . add (next_value)
7 $ 5 $ DEDENT return fib_sequence [: n]
8 </s> __python__

Listing 6.14: Example of code in listing
6.10 formatted as an input for error
patching. Italics denote global attention.

1 __python__ $ 5 $ fib_sequence . append (
next_value)

2 </s>

Listing 6.15: Code in listing 6.10
formatted as a label for a patch.

6.4 Error Correction Module with CodeWizard
Having observed the shortcomings of the LED variant of this module, it was decided to
conduct another experiment with the suspicion that the reason for the poor performance of
the previous one was due to a lack of neural complexity. WizardCoder [25] was selected as
the new pre-trained model. It was chosen for its diverse range of size variants and relatively
high performance in the lower billions5.

WizardCoder is a pre-trained autoregressive model, trained on fulfilling instructions
using code and natural language, WizardCoder is trained on examples that were augmented
in a process called Evol-Instruct, which involves asking an already trained model to increase
the difficulty of a sample from a dataset and then using the hardened samples to train a
new model [25].

This project uses an instruction fine-tuned variant of this model with one billion pa-
rameters.

The model checkpoints of WizardCoder have been recently unpublished for unclear
reasons. However, the checkpoints are licensed as Free Software.

This project utilizes QLoRA 4-bit quantization 5.2 to reduce the training and inference
costs of the model, which would have otherwise been too high. Using QLoRA training, the
model becomes feasible even at the 2048 token limit on available hardware.

An experiment was conducted with a diff-like output identical to the one used in the
LED experiment (see formatting of input data listing 6.16) and a full code output (see
formatting of input data listing 6.17.)

5Benchmark scores can be viewed here: https://huggingface.co/spaces/bigcode/bigcode-models-
leaderboard

33

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

Try to see if the following code has any errors. If not say \"No errors\" if it does
explain the error and write a patch with the help of the line numbers.
Code:
<source code annotated with line numbers>
Fixed Code:

Listing 6.16: Prompt used to adapt WizardCoder to correct errors by generating patches.

Try to see if the following code has any errors. Explain the error and write a fix it.
Code:
<source code>
Fixed Code:

Listing 6.17: Prompt used to adapt WizardCoder to correct errors by rewriting the code
without the error.

Patch Generation
Model

Request for Error
Patch Reply

Python
Function Patch

Figure 6.4: Block diagram of the Error Correction module using the Wizard model.

34

Chapter 7

Implementation Details

The implementation of CodeImprove can be split into three parts. First, the training and
experimentation software is implemented as a collection of Python and shell scripts. The
server is also implemented in Python and uses some of the training infrastructure. Lastly,
the client extension follows the standard format for Code extensions and is implemented in
JavaScript.

7.1 Training
In the CodeImprove project, the training process itself is facilitated by train.py, which
begins by parsing command line arguments using the parse_args function from the
my_params module. Then, the model loads a tokenizer with the assistance of the aforemen-
tioned Transformers library.

7.1.1 Loading the Model

Next, based on a given mode command-line parameter, the script selected a proper data
formatting function. This is done to accommodate the various kinds of models CodeIm-
prove uses. The preprocessing functions themselves are defined in the dataset_formators
module. Then, the script loads the pre-trained model, which can be either an LED or a
QLoRA model.

With QLoRA, the script also ensures that only the LoRA layers are used for training.
Since the LED models used in this work are converted from pre-trained Bart models 5.1, we
need to differentiate between layers that are initialized from scratch and layers that already
contain relevant knowledge.

To dynamically find which layers are inherited from the Bart architecture, the script
loads an additional Bart model and compares their state dictionaries. After that, the Bart
model is unloaded from memory.

7.1.2 Loading Data

Then, the training data is loaded. The entry point for this operation is the load_data
function from the my_data module. This function takes the tokenizer, the formatting
function, and the parsed command line parameters and loads data entries from a jsonl
file.

35

The JSON Lines or jsonl format is a widely utilized file type for storing structured
data in a compact and efficient manner. This format employs a simple but effective strat-
egy where each line of the file represents a valid JSON object. This enables the data to
be conveniently loaded and parsed in chunks or as a stream, allowing for more efficient
processing and retrieval of information.

Each JSON entry is remapped into a native Python object for ease of use. Then,
with the help of the formatting function, the data is filtered and tokenized to create the
raw training data. This process creates the input and output token list and also a global
attention mask, which is used with the LED models.

The input and output tokens are first converted to IDs and padded to a uniform length,
which is set as a command-line argument. End of line tokens are then appended. Finally,
the script converts the data from lists to PyTorch tensors, which can be fed directly into
the model.

Additionally, attention masks are made for both input and labels by substituting the
padding token with False and placing True everywhere else.

This information is once again held in a custom object before being transformed into
a dictionary with field names that conform to the standard naming for each respective
element that the Transformer library expects. These dictionaries are returned in the form
of a list, which finishes the data loading and preprocessing steps.

7.1.3 Training

The Transformers library offers a universal system for training models, which powers
CodeImprove’s training. First, a TrainingArguments object is created. This object stores
the configuration of the training process with parameters such as batch size, the number of
training epochs, and so on. It is initialized with the supplied command-line parameters.

As stated earlier, the LED has two types of layers: those initialized with noise and those
based on a pre-trained checkpoint of a BART model. We want to take a more aggressive
approach during the training with the newly initialized layers and then with the pre-trained
layers, as the gradients from the noisy layers could destroy the pre-trained knowledge.

Because of this, a custom optimizer has been created. It accepts a learning rate for each
of the two groups of layers. The reference code for this simplified optimizer was taken from
one of the example scripts and modified to allow for the second learning rate.

Layer freezing is another mechanism train.py uses to prevent the destruction of pre-
trained knowledge. The pre-trained layers can be frozen for a configurable amount of train-
ing time. The eventual unfreezing is implemented via a TrainerCallback, and similarly,
another call back is implemented that logs the values training statistics.

Finally, the training begins, enclosed in a try-except that gracefully saves the model in
case of an error or an interrupt signal.

After the training, the model is saved to a file along with logged training information.

7.1.4 Training Configuration

For the LED models, the learning rate of 1× 10−5 for parameters inherited from PLBART
and 3×10−5 for newly initialized LED parameters proved to yield the best results. PLBART
layers are also kept frozen for the duration of the first epoch. Warm-up steps, the number
of steps during which the effective learning rate linearly moves from zero to the target
learning rate, proved best when set in the lower thousands; for the final models, I have
used the value of 1500. A relatively high weight decay of 0.001 worked well for preventing

36

overfitting. The LED models took three iterations of the full CodeXGLUE code-to-text
dataset to reach the point of underfitting.

7.2 Client
In this case, the client is the Code extension. The extension focuses on providing quick and
easy-to-use refactoring tools.

The extension makes use of Code’s CodeLens API, which allows for rendering clickable
text above chosen lines. The disadvantage of CodeLenses is that it creates spaces between
the lines of code and moves the document. However, this only happens once when the
extension is loaded, so the user should not feel major disturbances in their work.

CodeImprove uses these Code’s DocumentSymbolProvider, an API for generic program-
ming language parsing, to obtain the list of all functions and methods in the document
and uses it to display the options to scan the body of the code for Bugs and an option to
generate new comments.

The extension also monitors changes in text selection, and when the user puts their
cursor over variable declarations, it offers the name suggestion action.

Figure 7.1: CodeLens options appearing around in a function, showing three clickable labels
in total. The first two appear above the function definition, ”Suggest comments“ opens a
panel with suggestions for extra code comments, and ”Fix error“ analyzes code for potential
errors and offers a solution. The third appears on line 7 and reads, ”Rename next_value.“
Clicking it opens a variable name suggestion panel. This option is only shown because the
user moved their text cursor over the variable name.

When the user clicks on any of these CodeLenses, a temporary side panel will open and
display a loading screen while the extension sends a request to the server and, upon getting
a response, displays it. The address and port of the server can be specified in the settings.

7.2.1 Comment Generation

The comment generation panel lets you change the docstring convention between no for-
matting, Google, NumPy, and reStructuredText. Underneath is a code view that displays
how the function will look after the changes are applied. All comments stand alone on their
own line. The docstring will be generated only if it was previously missing. Inserted lines
appear highlighted in the code view. See figure 7.2.

37

Figure 7.2: CodeImprove comment suggestion window. It is currently suggesting a new
docstring and a comment above the while loop.

7.2.2 Error Correction

The error correction panel similarly uses a code view to display the suggested change,
but this time, the data is displayed more like a traditional diff view. Inserted lines are
highlighted with a lighter color, and deleted lines with a darker color. Each line is annotated
with a comment New, Removed for inversion and deletion, respectively, and Before and
After for substituting the original line of text. These comments are only visible in this
preview panel and won’t be present in the code when the changes are applied. See figure
7.3.

Figure 7.3: CodeImprove suggestion for error correction, changes are highlighted. Note
that this suggestion was mocked.

38

7.2.3 Variable name suggestion

The renaming panel presents the user with three choices for a variable name, which the
user selects by clicking on them. See figure 7.4.

Figure 7.4: CodeImprove suggestion for an alternative variable name.

7.2.4 Scope of Functionality

CodeImprove operates only on functions and methods. Code that is not inside any of those
code blocks cannot be evaluated; this decision stems from the Datasets and the ease of
training. Functions provide a mostly closed-off window to code with a singular purpose;
working with larger chunks of code would require high input length, introduce a lot of noise
into the training, and require much larger models to evaluate.

Likewise, code inside a function that is itself inside another function cannot be evaluated
independently from its parent function, though this practice seems to be used only rarely
in Python.

The client receives instructions on what to change and composes the post-change code
accordingly. The only exception is renaming, which has to have its post-change generated
on the server side because Code does not expose any APIs for renaming identifiers, even
though this functionality is available in the editor as a GUI feature. The only available
option similar to this is editor.action.rename, which does not accept the new name and
will only open the renaming dialog to the user. Hence, the choice of processing on the
server came naturally after this, as Free JavaScript libraries do not offer the same level of
quality when parsing Python code as Python’s standard library.

7.3 Server
The server side is implemented in server.py, allowing users to run inferences on their code.
It is controlled by a TOML configuration file, which specifies paths to each model and the
configuration for running inference on them. The configuration file also includes a port on
which the application communicates; by default, this is set to 8182.

The server uses an event loop to wait for incoming requests. Upon a request, server.py
will parse the request, select the appropriate model, and use the code formatting functions
from dataset_formators that are used for training, and in the case of LED models, it

39

even calls the PLBART preprocessing function, to make sure that the data is presented to
the model in a familiar form.

Responses are formatted into a JavaScript object and serialized as JSON before being
sent back to the user.

7.3.1 Communication

The client and the server exchange information via the HTTP protocol. The communica-
tion is completely stateless and uses the traditional request-response format. The client
always initiates it via a POST request containing a JSON-encoded payload with structured
information, such as the type of suggestion that is being requested and the snippet of the
function code, see listing 7.1 for more details about the format of requests and listing 7.2
for responses.

40

Request Message {
uuid: string
requests: [

{
id: integer
snippet: string
tasks: [

{
task: "rename" | "error" | "comment"
symbol: string (when task = "rename")
style: "NA" | "GO" | "NP" | "RE" (when task = "comment")

}
]

}
]

}

Listing 7.1: The request message data structure. uuid is meant for identification of the
message, requests is a list of individual requests, identified with id, which is a serial number
of the request, snippet contains the code snippet this request applies to and tasks is a
list of task objects, each contains its task type in task, which is either ”rename“ for the
suggestion alternative names to variables, error for fixing errors and comment for inserting
additional comments. The field symbol is present only in rename tasks used to specify the
name of the variable for renaming, and style is similarly only present in comment tasks
and specifies the docstring preference.

Response Message {
uuid: string
response: [

{
id: integer
tasks: "rename" | "error" | "comment"
status: "ok" | "error"
result: string | list
]

}
]

}

Listing 7.2: The response message data structure. uuid matches the uuid of the request.
response is a list of the individual responses. id and task together match up with their
respective field in the request and serve to identify the response. status is meant to signify
the result of the task. result contains the output of the task; for comment generation and
error correction, this is a string; however, for the renaming task, this is a list where each
element represents one rename suggestion and contains both the new name for the variable
and the code snippet with the substituted name.

41

Chapter 8

Evaluation and Results

Finally, CodeImprove’s models need to be tested against the competition in order to judge
their performance and usability. GPT-3.5-turbo by OpenAI was chosen as the baseline for
comparing performance since it is, from publicly available information, the closest model
to the one used in GitHub copilot, or at least the closest that is publicly available.

Each benchmark was computed from a thousand samples that CodeImprove has not seen
during training; sadly, due to the nature of large-scale data collection OpenAI employs, it
is impossible to verify that the same applies to the GPT-3.5-turbo model.

8.1 Assessment of Comment Generation

8.1.1 Bleu

Bleu (Bilingual Evaluation Understudy) is a metric introduced by [30]; it stands as one
of the most prominent automated methods used for quantifying similarity between two
pieces of text. Bleu evaluates the quality of machine-generated text by calculating the
correspondence between it and a set of high-quality reference outputs. Bleu was originally
developed to track the performance of translators, but it will serve us well when rating the
similarity of a reference comment to one generated by our system.

The goal of Bleu is to quantify similarity while allowing for changed word order or a
partially different choice of words. Despite being based on a simple algorithm, Bleu was
found to rate translations similarly to human reviewers.

At its core, Bleu works by counting how many correct words (unigrams) from the
prediction appear in the reference output, divided by the number of words in the prediction.
The presence of a word only counts up to the number of occurrences of that particular word
in the reference output. The same is also done with sequences of two words (bigrams), three
words (trigrams), and four words (guadgrams). The longer the measured sequence is, the
lower the score will be in practice. To balance this, the scores are averaged with a geometric
mean.

Lastly, Bleu penalizes sentences that are shorter than the shortest reference translation
with multiplayer.

𝐵𝑃 =

{︃
1 if 𝑐 > 𝑟

𝑒(1−𝑟/𝑐) if 𝑐 ≤ 𝑟
(8.1)

42

Where 𝑐 is the number of words in the candidate, and 𝑟 is the number of words in the
reference.

The full equation is a s follows:

Bleu = 𝐵𝑃 × exp

(︃
𝑁∑︁

𝑛=1

𝑤𝑛 log 𝑝𝑛

)︃
(8.2)

Where BP is the brevity penalty, 𝑝𝑛 is the number of n-grams from the prediction that
matches the reference. 𝑤𝑛 are weights assigned to each n-gram; typically,y these are 1/n.
N is the size of the largest n-gram

8.1.2 Inline Comment Generation

Machine evaluation suggests that CodeImprove-comment outperforms GPT-3.5-turbo by
nearly three points, as shown in table 8.1. Even though the baseline dominates unigram
precision, CodeImprove-comment outperforms it in bigram predictions as well as trigram
predictions, where GPT-3.5-turbo severely lags behind. Neither model does very well in
quadgram predictions, but CodeImprove-comment retained a slight lead. The baseline
results were collected using the prompt in listing 8.1.

Bleu total Unigram Bigram Trigram Quadgram
CodeImprove-comment 14.99 % 72.7 % 40.0 % 5.6 % 3.1 %

GPT-3.5-turbo 12.04 % 94.1 % 37.5 %, 3.3 % 1.8 %

Table 8.1: Bleu score comparison between CodeImprove-comment and GPT-3.5-turbo in
inline comment generation on one thousand samples. All ngrams are weighed equally.

ASSISTANT:
I am an AI for generating inline code comments. Please add a marker of where you would
like me to add a comment. I will not generate a short comment relevant to that part of
the code and the particular line, I respond with nothing but the text content of the
generated comment and will not contain any surrounding code or even the # symbol. I can
be used as an API.

USER:
< code with one line marked for commenting >

Listing 8.1: Prompt used for sampling docstrings from GPT-3.5-turbo.

Upon human evaluation, it becomes obvious that GPT-3.5-turbo has much better per-
formance. CodeImprove-comment sometimes produces almost nonsensical outputs, though
other times, it is able to generate intelligent and insightful comments. However, the base-
line model is much more consistent in producing its quality, and its inaccuracies seem to
stem from the fact that the model decided to describe the situation in a different way. See
examples of CodeImprove-comment’s output in B.2.

Overall, the CodeImprove-comment model is only able to surpass the baseline in Bleu
evaluation but ultimately underperforms in the eyes of a human review.

8.1.3 Docstring Generation

As seen in table 8.2, CodeImprove-docstring is not able to break past the baseline, which
dominates precision in almost every engram category except for quadgram, where neither
model did particularly well, and GPT-3.5-turbo fell behind by almost a percentage point.

43

Bleu total Unigram Bigram Trigram Quadgram
CodeImprove-docstring 27.92 % 67.6 % 42.4 % 21.9 % 9.7 %

GPT-3.5-turbo 38.01 % 98.3 % 78.0 %, 31.0 % 8.8 %

Table 8.2: Bleu score comparison between CodeImprove-docstring and GPT-3.5-turbo in
docstring generation on one thousand samples. All ngrams are weighed equally.

ASSISTANT:
I am an AI for generating docstrings for Python 3 code. You need to prepend your code
with "$ DOCSTR code$" where "code" specifies which docstring convention you want me to
generate. "NP": NumPy docstring, "GO": Google docstring, "RE": for reST docstring and "
NA": for other/no formatting. I will output a fitting docstring describing the code you
gave me. My outputs only contain the docstring text content. I can be used as an API.

USER:
< code >

Listing 8.2: Prompt used for sampling inline comment from GPT-3.5-turbo.

As figures 8.1 and 8.2 show, there is an observable downward trend in accuracy as the
character count increases.

GPT-3.5-turbo manages to retain more accuracy as its score decreases linearly with
increasing character count; on the other hand, CodeImprove-docstring loses precision with
a slight exponential curve.

Both models lose all accuracy beyond the 7000-character mark.

Figure 8.1: Bleu score over character length of the input of GPT-3.5-turbo while generating
docstrings.

44

Figure 8.2: Bleu score over character length of the input of the CodeImprove-docstring
model.

Upon human inspection, it is apparent that the quality of the docstring is much lower
than the baseline. CodeImprove’s docstrings are noticeably shorter than the labels.

It is apparent that CodeImprove makes an effort to describe functions of individual
parameters; however, it often fails to name them all. The model also appears to struggle
with following the ordered docstring notation.

Overall, this model does not manage to outperform the baseline either in terms of
algorithmic or human evaluations.

See examples of predictions in appendix B.1.

8.2 Assessment of Variable Name Generation

8.2.1 Top3 Unigram Precision

Measuring the performance of variable name suggestions is somewhat nuanced. Variable
names consist of several keywords, often with arbitrary word ordering.

In order to take this into account when benchmarking this module, a custom variant of
the traditional precision metric, dubbed Top3 Unigram precision (T3UP), is used. At its
core, it is a ratio of the number of exact matches of unigrams 𝑚 between the prediction
𝑢 and the reference 𝑟 divided by either the length of the reference or the length of the
prediction, whichever is greater. This way, three scores are computed from three separate
predictions, and the highest one is used as the final TOP3 Unigram Precision.

TOP3UP =
3

max
𝑖=1

(︂
𝑚𝑖

max (length(𝑟), length(𝑝𝑖))

)︂
× 100 (8.3)

The rationale for using 3 predictions to calculate the metric is that the CodeImprove
extension presents the user with three choices.

45

This approach, although simple, fits well with the nature of variable name composition,
which is itself relatively primitive.

Variable names are segmented by splitting on the boundary of a lowercase and uppercase
letter to cover the camel case. A split is also performed where letters meet digits, and lastly,
underscores cause a split as well to cover the snake case.

8.2.2 Performance

As we can see in table 8.3, CodeImprove slightly underperformed compared to the baseline
model.

CodeImprove-rename GPT-3.5-turbo
TOP3UP 35.63 % 37.74 %
TOP3EM 10 % 18 %

Table 8.3: TOP3UP is Top3 Unigram Precision, and TOP3EM is a percentage of exact
matches from 3 generated results.

Results from the baseline model were extracted with a prompt specified in listing 8.3.
ASSISTANT:

I am a system for generating variable names. I will accept a snippet of Python code
with "<mask>" as a replacement for one of the variable names. All mask tokens hide the
same variable name. I will respond with three different suggestions for what the name
should be. I will consider the context of the code they are found in to generate the
most accurate results. I will separate the three variable names with a comma, My output
will not contain anything else but the variable names.

USER:
< code with masked variable name >

Listing 8.3: Prompt used for sampling variable names from GPT-3.5-turbo.

Both models in figures 8.3 and 8.4 (note that they have different scales) show a similar
curve that rises and peaks at around 2300 characters and then drops off. GPT-3.5-turbo
experiences a relatively sharp drop-off, whereas CodeImprove-rename manages to retain
accuracy far better and, in spite of the rising character count, only loses score linearly and
quite mildly.

The rise could be caused by more useful information to infer the purpose of the variable.
The drop-off at higher character counts may be due to longer functions being more complex
and obscure, making it more difficult to determine the purpose of individual variables.

46

Figure 8.3: TOP3UP score over character length of the input of GPT-3.5-turbo.

Figure 8.4: TOP3UP score over character length of the input of CodeImprove-rename.

Overall, CodeImprove-rename outperforms GPT-3.5-turbo on long inputs but falls be-
hind on shorter inputs.

See appendix B.3 for examples of predictions.

8.3 Assessment of Error Correction

8.3.1 LED approach

As mentioned in an earlier section, the LED approach to error detection proved ineffective,
just from the results of the detection model; see a summary of its performance 8.4.

47

Error type Number of samples
Correctly identified 188

Incorrectly identified 812
Error lines Number of samples

Correctly correct 22
Partially correct 353

All incorrect 625
Error presence Number of samples

Correctly identified as no errors 153
Incorrectly identified as no errors 847
Incorrectly identified as has errors 863

Table 8.4: Performance of the LED-based Error Detection model.

From closer inspection of the results, the model seems to be trying to learn the average
distribution of erroneous lines, often guessing numbers in the lower ranges, which it probably
learned to be a safe bet from shorter samples. However, the model does make predictions
in the higher ranges as well and usually outputs numbers in the correct order. It mostly
does not cross the number of the last line, though there are examples where it does.

When it comes to detecting types of errors, the model performs similarly poorly. Most
often guessing TypeError, though it often predicts others as well.

In order to increase the chances of success, other approaches were modifications to
the dataset explored, including variants that only included erroneous code with no false
positives and only using the name of the exception class from the PyTraceBugs dataset as
the error type, but the results remained similarly unsatisfactory.

It is clear that the LED model for error detection, despite great efforts, fails to grasp
the nuances of the task at hand.

8.3.2 CodeWizard approach

QLoRA adaptation was utilized to train the instruction-tuned CodeWizard to perform both
patch-based and full code error correction. Sadly, training the LoRA layers did not yield
fruits, as the model kept failing to converge even after exploring various combinations of
adapter parameters.

48

Chapter 9

Conclusion

This thesis addresses the development of a Visual Studio Code extension called CodeIm-
provem. The extension specifically targets the automation of comments and docstrings
generation, offers suggestions for alternative variable names, and incorporates an error
correction feature. It operates on function and method bodies, aiding programmers in
maintaining and improving the quality and readability of their codebases.

This work covers the basic theory and state-of-the-art practices in natural language
processing. It also examines a sparse attention transformer model architecture called Long-
former, which allows for the efficient processing of large sequences of code. Quantized
low-rank adaptation is also explored to correct erroneous code.

The extension introduced in this thesis facilitates the generation of context-specific
comments and docstring, striving to help developers improve the readability of their code.
It is powered by a pair of Longformer models. The suggestion of variable names is also
powered by its own Longformer model. This feature aims to assist developers, particularly
those who struggle creatively with naming variables. Additionally, as part of this work,
a dataset containing over 16,500 samples of errors before and after patches was amassed.
Despite initial attempts to implement error correction with Longformer and subsequent
trials with the CodeWizard model enhanced by QLoRA, neither approach achieved the
desired outcomes, producing irrelevant outputs.

The models were compared to GPT-3.5-turbo, which is a similar model used in GitHub
copilot, a leading chat-based programming assistant. The docstring generator scored about
27 % lower Bleu compared to the baseline, the model for generating inline comments
outperformed the baseline by about 20 % in Bleu score. The model for variable name
suggestion scored about 6 % worse in TOP3 Unigram Precision.

However, upon human evaluation, all three models showed results that were significantly
poorer than the baseline.

This work strives to create an integrated toolset that will seamlessly integrate modern
advancements in machine learning into the UI and enable frictionless use of simple AI-aided
tasks for operations that need to be performed most often, without the need to deal with
prompts and chat windows. This goal was partially reached, leaving a lot of room for im-
provement. Further development should focus on including more user preference options
and could use QLoRA adaptation with a larger model, which would fine-tuned multimodally
and facilitate all functionality. Adding additional features would also strengthen the expe-
rience.

49

Bibliography

[1] Ahmad, W.; Chakraborty, S.; Ray, B. and Chang, K.-W. Unified Pre-training
for Program Understanding and Generation. In: Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Online: Association for Computational Linguistics,
June 2021, p. 2655–2668. Available at:
https://www.aclweb.org/anthology/2021.naacl-main.211.

[2] Ahmad, W. U.; Chakraborty, S.; Ray, B. and Chang, K.-W. Unified
Pre-training for Program Understanding and Generation. 2021.

[3] Akimova, E. N.; Bersenev, A. Y.; Deikov, A. A.; Kobylkin, K. S.; Konygin,
A. V. et al. PyTraceBugs: A Large Python Code Dataset for Supervised Machine
Learning in Software Defect Prediction. In: 2021 28th Asia-Pacific Software
Engineering Conference (APSEC). 2021, p. 141–151.

[4] Bahdanau, D.; Cho, K. and Bengio, Y. Neural Machine Translation by Jointly
Learning to Align and Translate. 2016.

[5] Beltagy, I.; Peters, M. E. and Cohan, A. Longformer: The Long-Document
Transformer. 2020.

[6] Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. et al. Language
Models are Few-Shot Learners. 2020.

[7] Child, R.; Gray, S.; Radford, A. and Sutskever, I. Generating Long Sequences
with Sparse Transformers. 2019.

[8] Cho, K.; Merrienboer, B. van; Gulcehre, C.; Bahdanau, D.; Bougares, F.
et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. 2014.

[9] Dettmers, T.; Pagnoni, A.; Holtzman, A. and Zettlemoyer, L. QLoRA:
Efficient Finetuning of Quantized LLMs. 2023.

[10] Devlin, J.; Chang, M.-W.; Lee, K. and Toutanova, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. 2019.

[11] Du, S. and Wang, H. Addressing Syntax-Based Semantic Complementation:
Incorporating Entity and Soft Dependency Constraints into Metonymy Resolution.
Future Internet, march 2022, vol. 14, p. 85.

[12] Gage, P. A new algorithm for data compression. C Users J. USA: R & D
Publications, Inc., feb 1994, vol. 12, no. 2, p. 23–38. ISSN 0898-9788.

50

https://www.aclweb.org/anthology/2021.naacl-main.211

[13] Goodfellow, I.; Bengio, Y. and Courville, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[14] Google. Google Python Style Guide
https://google.github.io/styleguide/pyguide.html. Accessed: 18 April 2024.

[15] Guo, D.; Xu, C.; Duan, N.; Yin, J. and McAuley, J. LongCoder: A Long-Range
Pre-trained Language Model for Code Completion. 2023.

[16] Hochreiter, S. and Schmidhuber, J. Long Short-Term Memory. Neural
Computation, november 1997, vol. 9, no. 8, p. 1735–1780. ISSN 0899-7667. Available
at: https://doi.org/10.1162/neco.1997.9.8.1735.

[17] Hu, E. J.; Shen, Y.; Wallis, P.; Allen Zhu, Z.; Li, Y. et al. LoRA: Low-Rank
Adaptation of Large Language Models. 2021.

[18] June, F. QLoRA: Key Quantization and Fine-tuning Techniques in the Era of Large
Language Models. Medium, dec 2023. Available at:
https://ai.plainenglish.io/qlora-key-quantization-and-fine-tuning-techniques-
in-the-era-of-large-language-models-0fa05a961d27. Accessed: 2023-04-23.

[19] Jurafsky, D. and Martin, J. Speech and Language Processing. 3rdth ed. Pearson
Education, 2014. ISBN 9780133252934. Available at:
https://web.stanford.edu/~jurafsky/slp3/.

[20] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. 2017.

[21] Kudo, T. Subword Regularization: Improving Neural Network Translation Models
with Multiple Subword Candidates. In: Gurevych, I. and Miyao, Y.,
ed. Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for
Computational Linguistics, July 2018, p. 66–75. Available at:
https://aclanthology.org/P18-1007.

[22] Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A. et al. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In: Jurafsky, D.; Chai, J.; Schluter, N.
and Tetreault, J., ed. Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational Linguistics,
July 2020, p. 7871–7880. Available at: https://aclanthology.org/2020.acl-main.703.

[23] Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M. et al. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. 2019.

[24] Lu, S.; Guo, D.; Ren, S.; Huang, J.; Svyatkovskiy, A. et al. CodeXGLUE: A
Machine Learning Benchmark Dataset for Code Understanding and Generation.
CoRR, 2021, abs/2102.04664.

[25] Luo, Z.; Xu, C.; Zhao, P.; Sun, Q.; Geng, X. et al. WizardCoder: Empowering
Code Large Language Models with Evol-Instruct. 2023.

51

http://www.deeplearningbook.org
https://google.github.io/styleguide/pyguide.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://ai.plainenglish.io/qlora-key-quantization-and-fine-tuning-techniques-in-the-era-of-large-language-models-0fa05a961d27
https://ai.plainenglish.io/qlora-key-quantization-and-fine-tuning-techniques-in-the-era-of-large-language-models-0fa05a961d27
https://web.stanford.edu/~jurafsky/slp3/
https://aclanthology.org/P18-1007
https://aclanthology.org/2020.acl-main.703

[26] Marcus, M. P.; Santorini, B. and Marcinkiewicz, M. A. Building a Large
Annotated Corpus of English: The Penn Treebank. Computational Linguistics.
Cambridge, MA: MIT Press, 1993, vol. 19, no. 2, p. 313–330. Available at:
https://aclanthology.org/J93-2004.

[27] Mashhadi, E. and Hemmati, H. Applying CodeBERT for Automated Program
Repair of Java Simple Bugs. 2021.

[28] Mikolov, T.; Chen, K.; Corrado, G. and Dean, J. Efficient Estimation of Word
Representations in Vector Space. 2013.

[29] NumPy. NumPy Documentation: Style Guide
https://numpydoc.readthedocs.io/en/latest/format.html. Accessed: 18 April
2024.

[30] Papineni, K.; Roukos, S.; Ward, T. and Zhu, W.-J. Bleu: a Method for Automatic
Evaluation of Machine Translation. In: Isabelle, P.; Charniak, E. and Lin, D.,
ed. Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, July 2002, p. 311–318. Available at: https://aclanthology.org/P02-1040.

[31] Rumelhart, D. E.; Hinton, G. E. and Williams, R. J. Learning representations
by back-propagating errors. Nature, 1986, vol. 323, p. 533–536. Available at:
https://api.semanticscholar.org/CorpusID:205001834.

[32] Sennrich, R.; Haddow, B. and Birch, A. Neural Machine Translation of Rare
Words with Subword Units. In: Erk, K. and Smith, N. A., ed. Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Berlin, Germany: Association for Computational Linguistics, August
2016, p. 1715–1725. Available at: https://aclanthology.org/P16-1162.

[33] Sphinx. Sphinx Documentation
https://www.sphinx-doc.org/en/master/usage/domains/python.html. Accessed:
18 April 2024.

[34] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L. et al. Attention
Is All You Need. 2023.

[35] Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti, C. et al. Big
Bird: Transformers for Longer Sequences. 2021.

52

https://aclanthology.org/J93-2004
https://numpydoc.readthedocs.io/en/latest/format.html
https://aclanthology.org/P02-1040
https://api.semanticscholar.org/CorpusID:205001834
https://aclanthology.org/P16-1162
https://www.sphinx-doc.org/en/master/usage/domains/python.html

Appendix A

Contents of the included storage
media

dataset/
custom-error-dataset-source-links.txt
README.txt

evaluation/
README.txt
report-CodeImprove-comment.jsonl.gz
report-CodeImprove-docstring.jsonl.gz
report-CodeImprove-rename.jsonl.gz

source/
CodeImprove Extension/

Source files of the extension...
anotate.py
config.toml
convert_bart_to_led.py
convert_to_peft.py
dataset_formators.py
eval.py
extract-git-fixes.py
gpt-eval.py
heuristic.py
measure.py
my_data.py
my_params.py
plbart_preprocess_fn.py
preprocess_for_plbart.py
requirements.txt
server.py
train.py
README.txt

documentation/
LaTeX source files of the thesis...

thesis.pdf
thesis-print.pdf

53

Appendix B

Model predictions

B.1 Docstring predictions

B.1.1 Example 1

1 def to_keypoints (self) :
2 from imgaug. augmentables. kps import Keypoint
3 return [Keypoint (x = self. x1, y = self. y1), Keypoint (x = self. x2, y = self. y1

), Keypoint (x = self. x2, y = self. y2), Keypoint (x = self. x1, y = self. y2)]
4

Listing B.1: Input code

1 Convert the corners of the bounding box to keypoints (clockwise, starting at top left).
2

3 Returns
4 -------
5 list of imgaug.Keypoint
6 Corners of the bounding box as keypoints.
7

Listing B.2: Label

1 Converts a list of Keypoints to a Keypoint object.
2

Listing B.3: Prediction

B.1.2 Example 2

1 def heron_class (class_name, lib_jars, extra_jars = None, args = None, java_defines = None
) :

2 if extra_jars is None :
3 extra_jars = []
4 if args is None :
5 args = []
6 if java_defines is None :
7 java_defines = []
8 java_opts = [’-D’ + opt for opt in java_defines]
9 all_args = [config. get_java_path (), "-client", "-Xmx1g"] + java_opts + ["-cp",

config. get_classpath (extra_jars + lib_jars)]
10 all_args += [class_name] + list (args)

54

11 heron_env = os. environ. copy ()
12 heron_env [’HERON_OPTIONS’] = opts. get_heron_config ()
13 Log. debug ("Invoking class using command: ‘‘%s’’",’’. join (all_args))
14 Log. debug ("Heron options: {%s}", str (heron_env ["HERON_OPTIONS"]))
15 process = subprocess. Popen (all_args, env = heron_env, stdout = subprocess. PIPE,

stderr = subprocess. PIPE, bufsize = 1)
16 # stdout message has the information Java program sends back
17 # stderr message has extra information, such as debugging message
18 return ProcessResult (process)
19

Listing B.4: Input code

1 Execute a heron class given the args and the jars needed for class
2 :param class_name:
3 :param lib_jars:
4 :param extra_jars:
5 :param args:
6 :param java_defines:
7 :return:
8

Listing B.5: Label

1 Invoking a class.
2 :param class_name: The name of the class to be invoked. :param lib_jars: A list of jars to

be executed. If not specified, the classpath will be used. If the classpath is not
provided, it will be ignored. If no classpath is provided, the class will be returned.
If it is not found in the classpath, it is ignored.

3

Listing B.6: Prediction

B.2 Comment prediction

B.2.1 Example 1

1 def exit_tensorflow (sess = None, port = 6006) :
2 text = "[TL] Close tensorboard and nvidia-process if available"
3 text2 = "[TL] Close tensorboard and nvidia-process not yet supported by this function (

tl.ops.exit_tf) on "
4 if sess is not None :
5 sess. close ()
6 if _platform == "linux" or _platform == "linux2" :
7 tl. logging. info (’linux: %s’ % text)
8 os. system (’nvidia-smi’)
9 os. system (’fuser’+ port + ’/tcp -k’)

10

11 # PREDICT THIS COMMENT
12 os. system ("nvidia-smi | grep python |awk ’{print $3}’|xargs kill")
13

14 _exit ()
15 elif _platform == "darwin" :
16 tl. logging. info (’OS X: %s’ % text)
17 subprocess. Popen ("lsof -i tcp:" + str (port) + " | grep -v PID | awk ’{print

$2}’ | xargs kill", shell = True)
18

55

19 elif _platform == "win32" :
20 raise NotImplementedError ("this function is not supported on the Windows platform

")
21 else :
22 tl. logging. info (text2 + _platform)
23

Listing B.7: Input code

1 kill all nvidia-smi python process
2

Listing B.8: Label

1 kill the tensorboard
2

Listing B.9: Prediction

B.2.2 Example 2

1 def _add_notice_to_docstring (doc, no_doc_str, notice) :
2 if not doc :
3 lines = [no_doc_str]
4 else :
5 lines = _normalize_docstring (doc). splitlines ()
6 notice = [’’] + notice
7 if len (lines) > 1 :
8 # PREDICT THIS COMMENT
9 if lines [1]. strip () :

10 notice. append (’’)
11 lines [1 : 1] = notice
12 else :
13 lines += notice
14 return’\n ’. join (lines)
15

Listing B.10: Input code

1 Make sure that we keep our distance from the main body
2

Listing B.11: Label

1 if no_doc_str in doc:
2

Listing B.12: Prediction

B.3 Variable name predictions

B.3.1 Example 1

1 def encode_observation (ob_space, <mask>) :
2 if isinstance (ob_space, Discrete) :
3 return tf. to_float (tf. one_hot (<mask>, ob_space. n))

56

4 elif isinstance (ob_space, Box) :
5 return tf. to_float (<mask>)
6 elif isinstance (ob_space, MultiDiscrete) :
7 <mask> = tf. cast (<mask>, tf. int32)
8 one_hots = [tf. to_float (tf. one_hot (<mask> [..., i], ob_space. nvec [i]))

for i in range (<mask>. shape [- 1])]
9 return tf. concat (one_hots, axis = - 1)

10 else :
11 raise NotImplementedError
12

Listing B.13: Input code

1 placeholder
2

Listing B.14: Label

1 ob_space_tensor, observed_observation, observation_space
2

Listing B.15: Top 3 predictions

B.3.2 Example 2

1 def encode_observation (ob_space, <mask>) :
2 if isinstance (ob_space, Discrete) :
3 return tf. to_float (tf. one_hot (<mask>, ob_space. n))
4 elif isinstance (ob_space, Box) :
5 return tf. to_float (<mask>)
6 elif isinstance (ob_space, MultiDiscrete) :
7 <mask> = tf. cast (<mask>, tf. int32)
8 one_hots = [tf. to_float (tf. one_hot (<mask> [..., i], ob_space. nvec [i]))

for i in range (<mask>. shape [- 1])]
9 return tf. concat (one_hots, axis = - 1)

10 else :
11 raise NotImplementedError
12

Listing B.16: Input code

1 shape_resized
2

Listing B.17: Label

1 resampled_resized, resized_shape, resampledensities
2

Listing B.18: Top 3 predictions

B.3.3 Example 3

1 def batch_with_dynamic_pad (images_and_captions, batch_size, queue_capacity, add_summaries
= True) :

2 enqueue_list = []
3 for image, caption in images_and_captions :

57

4 caption_length = tf. shape (caption) [0]
5 input_length = tf. expand_dims (tf. subtract (caption_length, 1), 0)
6 <mask> = tf. slice (caption, [0], input_length)
7 target_seq = tf. slice (caption, [1], input_length)
8 indicator = tf. ones (input_length, dtype = tf. int32)
9 enqueue_list. append ([image,<mask>, target_seq, indicator])

10 images, input_seqs, target_seqs, mask = tf. train. batch_join (enqueue_list,
batch_size = batch_size, capacity = queue_capacity, dynamic_pad = True, name = ’
batch_and_pad’)

11 if add_summaries :
12 lengths = tf. add (tf. reduce_sum (mask, 1), 1)
13 tf. summary. scalar (’caption_length/batch_min’, tf. reduce_min (lengths))
14 tf. summary. scalar (’caption_length/batch_max’, tf. reduce_max (lengths))
15 tf. summary. scalar (’caption_length/batch_mean’, tf. reduce_mean (lengths))
16 return images, input_seqs, target_seqs, mask
17

18

Listing B.19: Input code

1 input_seq
2

Listing B.20: Label

1 batched_length, image2_label, input_length
2

Listing B.21: Top 3 predictions

58

	Introduction
	Neural networks
	Natural Language Processing
	Word Embedding
	Tokenization

	State of the Art
	Recurrent Neural Networks
	Attention
	The Transformer Model

	Tools and Technologies
	Sparse Attention Transformers
	Quantized Low Rank adaptation
	Used Datasets

	System Design
	Comment Suggestion Module
	Variable Name Suggestion Module
	Error Correction Model with LED
	Error Correction Module with CodeWizard

	Implementation Details
	Training
	Client
	Server

	Evaluation and Results
	Assessment of Comment Generation
	Assessment of Variable Name Generation
	Assessment of Error Correction

	Conclusion
	Bibliography
	Contents of the included storage media
	Model predictions
	Docstring predictions
	Comment prediction
	Variable name predictions

