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Abstract

This work focuses on comparing three widely used methods for improving uncertainty esti-
mations: Deep Ensembles, Monte Carlo Dropout, and Temperature Scaling. These meth-
ods are applied to six computer vision models that are pretrained as well as trained from
scratch. The models are then evaluated on computer vision datasets for classification, se-
mantic segmentation, and object detection using a wide range of metrics. The models
are also evaluated on distorted versions of these datasets to measure their performance on
out-of-distribution data.

These modified models achieve promising results. Ensembles outperform the other
models by as high as 70 % in accuracy and 0.2 in IOU on the distorted MedSeg COVID-19
segmentation dataset while also outperforming the other models on the CIFAR-100 and
FMNIST datasets.

Abstrakt

Tato prace se zaméruje na porovnani t¥i Siroce pouzivanych metod pro zlepseni odhadt
neurcitosti: hlubokych ansamld, monte carlo dropout a temperature scaling. Tyto metody
jsou aplikovany na Sest modelt pro pocitacové vidéni, mezi nimiz jsou predtrénované modely
i modely trénované od nuly. Tyto modely jsou hodnoceny na datasetech pocitac¢ového
vidéni pro ulohy klasifikace, sémantické segmentace a detekce objektt, pri pouziti siroké
skaly metrik. Modely jsou rovnéz evaluovany na transformovanych datasetech, kvili jejich
ohodnoceni na datech mimo trénovaci distribuci.

Tyto modifikované modely dosahuji slibnych vysledkti. Ansambly prekonavaji ostatni
modely az o 70 % v presnosti a 0 0.2 v IOU na transformovaném segmenta¢nim datasetu
MedSeg COVID-19 a zaroven prekondvaji ostatni modely na datasetech CIFAR-100 a
FMNIST.
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Rozsireny abstrakt

Moderni architektury hlubokych konvolu¢nich neuralnich siti dosahuji vybornych vysledku
v mnoha tlohach pocitacového vidéni. Bohuzel, i pfes dobrou dspésnost téchto predikei,
mohou mit tyto modely problém s kvalitnim odhadem neurcitosti téchto predikci. Predikce
téchto modeli byvaji totiz ¢asto prilis sebevédomé, a to i pro rozdilnd data nez na kterych
byl model natrénovan. Toto je zvlast problematické pii pouzivani téchto modeli v redl-
ném sveété, kde muze model prijit do styku s daty, kterym nemuze rozumeét. V takovych
pripadech je dulezité, aby model poskytoval spolehlivé odhady neurcitosti. Predikce, u
kterych si model neni jisty, poté zkontroluje ¢lovék, pripadné se tyto data mohou pouzit
pro dotrénovani modelu.

Tato prace se zaméfuje na porovnani t¥i oblibenych metod pro zlepseni odhadl neurci-
tosti: hlubokych ansamli, monte carlo dropout a temperature scaling. Tyto metody jsou
aplikovany na Sest modelt pro poc¢itacové vidéni: LeNet-5, ResNet-18, MobileNetV2, U-Net,
DeepLabV3 a SSD300. U téchto metod byly prozkoumany moznosti vyuziti na predtréno-
vanych modelech, i na modelech natrénovanych od nuly. Modely jsou hodnoceny na 6
datasetech pocitacového vidéni pro tulohy klasifikace, sémantické segmentace a detekce ob-
jektu. Modely jsou validovany za pouziti velkého mnozstvi metrik, hodnotici jak presnost
predikei, tak i presnost odhadt neurcitosti. Modely jsou rovnéz evaluovany na datasetech
transformovanych pomoci rotace, ndhodného Sumu, rozostieni a zmény jasu, kontrastu a
saturace obrazu. Tyto experimenty ndm dévaji dilezité informace o odolnosti modelu vuci
riznym typum zmén v datasetech.

Tyto modifikované modely dosahuji slibnych vysledki. V klasifikaénim datasetu FM-
NIST, ktery obsahuje 28x28 obrazkii obleceni ve stupnich sedi, dosahl ansdmbl péti modeli
LeNet-5 o 1,2 % lepsi presnosti nez zdkladni LeNet-5 model. Na rotovaném FMNIST
datasetu dosdhl LeNet-5 model s pridanymi dropout vrstvami az o 5 % lepsi presnosti a
zaroven mél kvalitnéjsi odhady neurcitosti.

V klasifikaénim datasetu CIFAR-100, ktery obsahuje 32x32 realistické fotografie 100
kategorii riznych objektt, dosdhl ansdmbl péti modelt ResNet-18 témeér o 11 % lepsi pres-
nosti nez zékladni model ResNet-18 a témér o 6 % lepsi kalibra¢ni chyby. Modifikované
modely s pridanymi dropout vrstvami dosahuji lepsi presnosti az o 4 %, maji spolehlivejsi
odhady neurcitosti a zaroven jsou odolnéjsi vuci zménam v transformovanych datasetech.

V segmentac¢nim datasetu MedSeg COVID-19, ktery obsahuje CT skeny plic pacientt s
COVID-19, s pridanym ndhodnym Sumem dosahuje ansambl modeltt U-Net zvysSeni pres-
nosti az o 70 % a 0 0.2 v IOU v porovnéni se zékladnim U-Net modelem. Ansdmbl mod-
el dosahuje rovnéz lepsich odhadu neurcitosti. U-Net model s pridanymi dropout vrst-
vami dosahuje na datasetu s pfidanym Sumem zlepSeni presnosti az o 20 % a zdrovén mé
spolehlivéjsi predikce neurcitosti.

V segmentacnim datasetu PASCAL-VOC, ktery obsahuje fotografie realistickych scén,
transformovaného pomoci ndhodného Ssumu, dosahuje DeepLabV3 model s pridanymi dropout
vrstvami lepsi presnosti az o 5 % a zaroven m4 kvalitnéjsi odhady neurcitosti.

V detekénim datasetu PASCAL-VOC dosahuji vSechny varianty modelu SSD300 témér
totoznych vysledkii.

7 téchto vysledku je patrné, ze ansambly a pridavani dropout vrstev muze zlepsit pres-
nost i kvalitu odhadi neurcitosti klasifika¢nich a segmentac¢nich modeli natrénovanych od
nuly i predtrénovanych. Tyto vysledky se ale nepotvrdily na modelu SSD300 ur¢enému pro
detekei objektt.



Temperature scaling vylepsil kvalitu odhadt neurcitosti u vsech model, které nemély
uz predtim kvalitni odhady. Velkou vyhodou této metody je, Ze neni potfeba zasahovat do
architektury modelu nebo ho znovu trénovat.

Monte carlo dropout sice dosahl lepsich vysledk nez zédkladni modely, toto bylo ale diky
pridanym dropout vrstvam, nikoliv samotnému monte carlo dropout vzorkovani. Monte
carlo dropout vzorkovani samo o sobé zlepsuje kvalitu odhadt neurcitosti, ale pouze u
modelt které maji prfehnané sebejisté predikce. Velkou nevyhodou této metody je nutnost
provést nékolik predikci, které se poté zpruméruji. Toto znac¢né zpomaluje inferenci. Proto v
této praci nebyl objeven duvod, ktery by zdtvodnil pouziti Monte carlo dropout vzorkovani
namisto napriklad temperature scalingu a pridianim dropout vrstev do modelu.

Ansambly dosahuji dobrych vysledki na standartnich test setech, ale na transformovanych
datech casto dosahuji horsich vysledkt nez architektury s pridanymi dropout vrstvami. Pro
optimalni vysledky je mozné zkombinovat nékolik modeli s pfidanym dropoutem do an-
samblu a tento ansdmbl poté jesté upravit temperature scalingem.
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Chapter 1

Introduction

Modern deep neural networks have over the years significantly improved their performance
on common classification, segmentation, and object detection tasks. Unfortunately, as these
models get bigger and more complex, their predictions of uncertainty seem to be less precise
and they are often overconfident. This can lead to difficulties when employing these models
in the real world. In the real world, the model can often encounter data that are very
different from those it was trained on. In these situations, the model needs to provide a low
confidence score so that it can for example be retrained using these unknown data samples,
or a human operator can handle the situation.

Past works about uncertainty estimation methods usually focus mainly on the perfor-
mance of one model architecture on one dataset using a limited set of evaluation metrics.
Moreover, most of the time, these methods are only compared to baseline methods. This
can cause problems when choosing the perfect method for a specific model architecture and
problem settings.

Instead, this work focuses on multiple model architectures and evaluates them on var-
ious computer vision datasets for image classification, semantic segmentation, and object
detection. The uncertainty estimation methods are evaluated not only on models trained
from scratch but also when being employed on pretrained models. This is important since
training large models from scratch can be computationally costly and time-consuming.

The modified models are also evaluated on datasets distorted by various strengths of
image distortions, which simulate changes to images frequently encountered in the real
world (noise, blur, change in brightness). These experiments provide valuable findings
about predictive performance and quality of uncertainty estimations of these models when
tasked with significantly different data than they were trained on.

Chapter 2 describes model architectures used in the experiments. Chapter 3 describes
the used evaluation metrics to measure model performance and uncertainty estimation
quality. Chapter 4 focuses on uncertainty estimation techniques that can improve the
model‘s predictive performance and uncertainty estimation quality. Chapter 5 describes
the structure of experiments, evaluates the models, and forms practical recommendations
for employing these uncertainty estimation methods in practice.



Chapter 2

Used Deep Learning Models

This chapter describes commonly used deep learning models for image classification, se-
mantic segmentation, and object detection. These models are evaluated in chapter 5.

2.1 LeNet-5

The LeNet-5 [21] is a simple convolutional neural network used for image classification.
LeNet-5 has two convolution layers, after each convolution there‘s a max pooling layer
and after the last max pooling layer there‘s a block of 3 fully connected layers. The tanh
activation function is applied after every convolution and fully connected layer.

LeNet-5 was developed to classify handwritten zip code digits in 1989.

2.2 ResNet

ResNet [12] is a convolutional neural network that introduced skip connections. It can be
used for image classification or as a backbone for semantic segmentation, instance segmenta-
tion, object detection, etc. Skip connections operate by jumping over one or more following
layers. This helps with the vanishing gradient problem. Vanishing gradient problem can
occur in deeper networks when backpropagation to earlier layers can make the gradient
infinitely small.

X
Y
weight layer
]—"(X) J relu <
weight layer identity

Figure 2.1: Example of a skip connection (taken from [12]).

There are number of variants of the ResNet networks. Authors suggested 18, 34, 50,
101 and 152 layer variants. While the 18 and 34 layer variants use the basic block, which



consists of two 3x3 convolutions the larger variants use a bottleneck block, which consists
of two 1x1 convolutions and a one 3x3 convolution, which serves as a bottleneck and helps
to reduce model complexity in deeper variants.

Figure 2.2: ResNet basic building block (left), used in the 18 and 34 layer variants, and the
bottleneck block, used in the 50, 101 and 152 layer variants (taken from [12]).

ResNet won the ImageNet 2015 [6] image classification, detection, and localization com-
petitions as well as the MS COCO 2015 [22] detection and segmentation competitions. Since
then, skip connections have been used in many other neural network architectures such as
DenseNet [16] or ResNext [36].

2.3 MobileNet

MobileNet is a family of small, efficient and fast neural networks designed to work on
embedded devices. They can be used for image classification or as backbones for semantic
segmentation, instance segmentation, object detection, etc. There are 3 versions of the
MobileNet architectures: MobileNetV1 [15], MobileNetV2 [32], and MobileNetV3 [14].

2.3.1 MobileNetV1

Instead of standard convolution filters, MobileNetV1 splits the convolution operation into
depthwise and pointwise convolutions. This approach produces features with same dimen-
sions but needs less parameters.

Depthwise convolution applies a single filter to a single input channel, whereas standard
convolution applies the filters to all of the input channels. Depthwise convolution basically
filters the data from one channel. To combine multiple channels and to create new features
a pointwise convolution is used. Pointwise convolution combines the output of depthwise
convolution by a 1 x 1 filter. This approach significantly reduces computational cost while
only slightly decreasing accuracy.

2.3.2 MobileNetV2

MobileNetV2 added a second pointwise convolution before depthwise convolution that ex-
pands the data before filtering them with depthwise convolution. Also, a jump connection
spanning the block was added. This whole block was named Inverted Residual Block and
helped to improve the performance.



2.3.3 MobileNetV3

MobileNetV3 added a squeeze and excite module after the second pointwise convolu-
tion. This helps to give unequal weights to different channels. Also Network Architecture
Search [38] (NAS) and NetAdapt [37] algorithms were used to improve the architecture.

2.4 U-Net

U-Net [31] is a fully convolutional neural network, which means it does not containt any
fully connected layers and therefore can accept image of any size. It was developed for use
in medical image segmentation.

It comnsists of downsampling and upsampling paths. In the downsampling path, 3 x 3
convolutions and ReLLU layers are followed by 2 x 2 max pooling layers. In the upsampling
path, 3 x 3 convolutions and ReL.U layers are followed by 2 x 2 transposed convolution layers
which provide the upsampling. The output of every downsampling block is also cropped
and concatenated to the corresponding upsampling block.
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Figure 2.3: The U-Net architecture. Downsampling path (left) is being cropped and con-
catenated to the upsampling path (right). Taken from [31].

2.5 DeepLab

DeepLab is a family of convolutional neural networks used for semantic image segmentation
on realistic scenes. There are 4 versions of these models: DeepLabV1 [2], DeepLabV2 [3],
DeepLabV3 [4] and DeepLabV3+ [5]. These models successively improved the state of the
art results on the PASCAL VOC-2012 semantic image segmentation task.

Each of these models consist of a backbone, which produces features, and a classifier
head, which computes classification scores for each pixel.

One novel idea that all of the DeepLab models share is called atrous convolution. While
standard convolution always samples neighbouring pixels, atrous convolution samples only



every nth pixel. This helps to widen the receptive field of filters and to incorporate larger
context.

2.6 Single Shot Detector (SSD)

Single Shot Detector (SSD) [23] is an object detection model. It uses a single shot approach,
which is different from two step approach used by region proposal networks like RCNN [9]
and Faster-RCNN [30]. The original architecture uses the VGG16 [34] network as the
backbone.

It uses multiple predefined bounding box aspect ratios. These predefined boxes are
placed on feature maps of different scales. This helps to detect objects of various sizes and
shapes. For each of these predefined boxes, it outputs confidence scores for the presence of
each object and box shape offsets to better match the predefined box to the object shape.
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(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Figure 2.4: Example of the SSD prediction process. The detector uses predefined bounding
boxes with different aspect ratios. And evaluates them at feature maps with different sizes.
This helps the model to detect objects with different shapes and sizes. The model outputs
classification scores and regression offsets for the location of each bounding box (image
taken from [23]).

For training, the total MultiBox loss is calculated as a weighted sum of localization loss
(Smooth L1 loss) and classification loss (Cross Entropy loss).



Chapter 3

Evaluation Metrics

This chapter describes commonly used evaluation metrics for deep learning models for image
classification, semantic segmentation, and object detection tasks. These metrics evaluate
both the predictive performance as well as quality of uncertainty estimation.

3.1 Prediction Accuracy

Prediction acuracy is defined as the number of correct predictions divided by the number of
total predictions. Accuracy is commonly used in image classification and semantic segmen-
tation problems. However, it can be misleading when used on imbalanced datasets, where
the model can ignore the lower-represented classes and still achieve good overall accuracy.
These imbalances are common in semantic image segmentation datasets.

3.2 Average Confidence

Average confidence is an average of confidence scores on all samples in the test set. These
scores are usually obtained from the softmax function. Confidence should encapsulate how
likely is the prediction correct. For a well calibrated model, its average confidence score
should be close to its average accuracy.

Maximum possible confidence is 1. Minimal possible confidence confidence happens
when the output probability distribution is flat (it has highest possible entropy). The
lowest possible confidence value is % where N is the number of classes.

3.3 Brier Score

Brier score [1] measures accuracy of probability predictions. Its definition is equivalent to
the Mean Squared Error:

N
1
BS = Z;(xi —y;)? (3.1)
1=
Where N is the number of classes, Z is the probability output vector and ¥ is the actual

outcome vector of the events (0 = event did not occur, 1 = event did occur).



Brier score is a proper scoring rule, which means that there is no trivial solution which
would yield perfect brier score. When the model achieves a perfect Brier score of 0, the
model has a perfect calibration and accuracy.

3.4 Calibration Graph and Expected Calibration Error

Calibration measures how close are the model confidence scores to the real probability
of being correct. Perfect calibration means that for example, of all the predictions with
confidence score 0.5, 50 % of them are correct.

There are several ways to observe calibration. One of which is a calibration graph. An
example of a calibration graph can be found in figure 5.2. Calibration graphs show accuracy
as a function of confidence. Model predictions are grouped into equally spaced bins by their
confidence levels. Accuracy is then computed for each bin. Perfect calibration occurs when
the mean accuracy of the bin is the same as the mean confidence of the bin. The difference
between the bin‘s mean accuracy and its mean confidence value is shown in orange. The
bottom row of the graphs shows the confidence distribution of the samples.

Another way of measuring calibration is by using the Expected Calibration Error (ECE)
[27], which is defined as:.

M
ECE::E:‘éZAMaiBm)—wnnﬂBmﬂ (3.2)

m=1

It is basically a weighted average of the difference between accuracy and confidences of
the bins (the orange bars in the calibration graph).

Although calibration graphs and ECE can be useful, they have shortcomings. Models
can have perfect calibration on the dataset level but still be overconfident on some parts of
the dataset and uncerconfident on other parts [17].

3.5 Receiver Operating Characteristic Curve

A receiver operating characteristic (ROC) curve measures the ability of a binary classifier to
classify between positive and negative samples as its classification threshold is varied. It is
created by plotting the true positive rate (TPR, also known as sensitivity or recall) against
the false positive rate (FPR, also known as specificity) while increasing the classification
threshold from 0 to 1.

The true positive rate measures how many of the positive samples were classified as

positive.
TP

T TP+ FN

The false positive rate measures how many negative samples were classified as negative.

TPr (3.3)

P
FPr=——— 3.4
"TFP+TN (3.4)
In the context of uncertainty estimation models, ROC curves are often used to measure
the model‘s ability to assign lower confidence scores to incorrectly classified (or out of

distribution) samples and higher confidence scores to correctly classified samples.



Receiver Operating Characteristic Curve
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Figure 3.1: Receiver Operating Characteristic Curve of the LeNet-5 models on the FMNIST
test set.

To better quantify the classifier performance, Area Under Curve (AUC) is often com-
puted. The maximum possible AUC is 1 with the curve reaching the point (0.0, 1.0), which
means 1.0 true positive rate and 0.0 false positive rate.

3.6 Precision Recall Curve

Similarly as the ROC curve, the Precision Recall (PR) curve measures the quality of model
scores for positive (correct or in distribution) and negative (incorrect or out of distribution)
samples. PR curve plots the classifier precision against recall while changing the classifi-
cation threshold. PR curve is often preffered over ROC curve when the dataset is more
imbalanced.

Precision measures how many predicted positives are true positives.

TP

P=——— 3.5
TP+ FP (3:5)
Recall measures how many true positives were predicted as positives.
TP
B=7p + FN (36)



Precision Recall Curve
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Figure 3.2: Precision Recall Curve of the LeNet-5 models on the FMNIST test set.

Similarly as with ROC curves, to better quantify the classifier performance on the PR
curve, the area under the curve (AUC) is computed. The maximum possible AUC is 1 with
the curve reaching the point (1.0, 1.0), which means 1.0 precision and 1.0 recall.

3.7 Intersection Over Union

Intersection Over Union (IOU, also known as Jaccard index) is a metric commonly used
in segmentation and object detection. Measures how well the area of predictions fits the
area of ground truth. It is defined as the area of intersection of the predictions and ground
truth divided by the area of the union of the predictions and ground truth.

_area(AN B)
ov = area(A U B) (37)

For semantic segmentation, IOU is computed for the predicted and ground truth pixel-
wise masks. Semantic segmentation, datasets are commonly very imbalanced, so a simple
pixelwise accuracy is not enough to judge the performance of a model on all classes. In this
case, mean class IOU is therefore much better metric since it weights mean IOU of every
class equally.

For object detection, IOU is computed for the predicted and ground truth bounding
boxes and it is used as a measurement on how tight do the predicted bounding boxes fit.
It is also used to compute the Mean Average Precision metric, where only predictions with
IOU larger than some threshold are considered true positives.

Semantic segmentation experiments in sections 5.3 and 5.4 use two kinds of IOU im-
plementations. Mean Class IOU (mIOU) is defined as the mean of pixelwise IOUs for each
class. And IOU is defined as the mean IOU of all foreground pixels.
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3.8 Mean Average Precision

Mean Average Precision (mAP) is the most commonly used metric to evaluate object de-
tectors. It draws a precision recall curve for a every class and a certain IOU threshold.
This curve is then smoothed: The precision value for recall r is replaced with the maximum
precision for any recall > r.

Pinterp(r) = max p(7) for # > 7. (3.8)

The exact evaluation procedure for this smoothed precision recall curve depends on the
dataset.

3.8.1 PASCAL-VOC 2007 Mean Average Precision

The PASCAL-VOC [7] 2007 detection competition evaluates the smoothed precision recall
curve in 11 equally spaced recall values from 0.0 to 1.0. For each of these recall values,
the precision is recorded. The Average Precision (AP) for each class is the mean of these
values. To obtain the mAP, the AP for each class is averaged. This is the implementation
used for evaluation in Section 5.5.

3.8.2 PASCAL-VOC 2008-2012 Mean Average Precision

The PASCAL-VOC 2008-2012 detection competitions evaluate the smoothed curve differ-
ently. The smoothed curve is sampled at each point and the Area Under Curve (AUC) is
computed. This method is more precise since no approximation is done.

3.8.3 MS COCO Mean Average Precision

The MS COCO [22] dataset uses the term mAP differently. The PR curve is sampled at 101
points and the class average is called the AP. This would be traditionally called the mAP.
To obtain the MS COCO mAP, the AP is computed for multiple IOU thresholds from 0.5
to 0.95 using 0.05 steps and multiple sizes of bounding boxes. Then, the MS COCO mAP
is the average of all of these categories.
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Chapter 4

Uncertainty Estimation Techniques

This chapter describes some of the commonly used methods to improve predictive uncer-
tainty estimation and model calibration.

Bayesian Neural Networks (BNNs) have been commonly used to improve the uncertainty
estimation of models. BNNs work by learning a probability distribution of the model
parameters. However, they are difficult to train and often have worse performance than
deterministic models. The Monte Carlo Dropout [8] and Deep Ensembles [20] methods have
been created to also model distribution over their model parameters while being based on
existing deterministic neural network architectures.

4.1 Baseline (softmax)

In a classification problem, neural networks output a vector which usually does not sum to 1
and can contain even negative numbers. To convert this vector into probability distribution,
the softmax function is used. The softmax function is defined as:

e* )
U(Zi):@ fori=1,2,....K (4.1)

Where K is the length of the output vector or, in other words, the number of classes in
the classification problem and Zz'is the output vector. Basically, it applies the exponential
function to every element z; of the output vector z" and then normalizes these values by
dividing them by the sum of these exponentials. The output of the softmax function is
another vector which sums to 1 and only contains numbers from 0 to 1 and can therefore
be interpreted as probability distribution.

The softmax function is a generalization of the sigmoid function o(z) = 7 +i—z
tiple dimensions. Since the softmax function uses the exponential function, small changes
in input around 0 can lead to large changes in output. This can make it difficult for the
networks to output an uniform probability distribution, which would be interpreted as
prediction with very low confidence.

to mul-
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Figure 4.1: Plot of the sigmoid function.

Experiments in [13] show that while the softmax function outputs have very often poor
correspondence to confidence, the maximum probability from the softmax function tends
to be lower for out of distribution samples or incorrectly classified samples. This can make
it sufficient to use the softmax outputs for the detection of incorrectly classified or out-of-
distribution samples even though the prediction probabilities are often misleading.

4.2 Temperature Scaling

Temperature Scaling is a simple extension of the Platt scaling [29] technique. Instead of
training a logistic regression model on the model output logits, temperature scaling uses a
single scalar parameter 1" > 0, which divides the model output logits.

The T parameter is optimized with respect to the Negative Log Likelihood loss on the
validation set. Increasing T beyond 1 flattens the probability distribution and increases
entropy. In turn, decreasing T decreases entropy and sharpens the output distribution.
With T = 1, the output distribution remains unchanged.

Temperature scaling is a simple technique which can be used on already trained models
without needing to change their architecture. This method also has no effect on prediction
accuracy since all logits are divided by the same number T" and therefore the largest logit
remains the largest.

One disadvantage may be that there needs to be a separate validation set apart from the
training and test sets on which the T' parameter is trained. From my experience, another
limitation is that training the 7" parameter may be difficult if the neural network is already
well calibrated. Despite its simplicity, the technique performed the best in experiments
conducted in [10].

4.3 Monte Carlo Dropout

Monte Carlo Dropout works by using dropout at test time, performing multiple forward
passes, and then averaging these forward passes to get the final model input. This method
was introduced in [8] where it was shown that this technique approximates the distribution
of the model parameters. This is similar to how a Bayesian neural network (BNN) operates.

Advantages to using Monte Carlo Dropout compared to BNNs are that there is no
increase in training time, only small changes to existing model architectures are needed
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and there should be no decrease in accuracy. These advantages and a relatively simple
setup has made Monte Carlo Dropout a popular choice for uncertainty estimation.

One disadvantage of this method is that it generally requires a relatively large number of
forward passes (> 20) to provide optimal prediction accuracy and uncertainty estimation.
Another disadvantage is that there are infinitely many possibilities to setup the dropout
layers inside the model architecture. For example, in [24] Dropout2d layers are used after
every ReLU activation of the ResNet model, while in [18] and [26] dropout layers are used
only on deeper layers. After adding dropout to the model architecture, the model also
has to be finetuned or retrained from scratch. To achieve the best results, the dropout
probability p also needs to be set up properly. All of this makes Monte Carlo Dropout
tricky to use to its full potential.

4.3.1 Dropout and Dropout2d layers

There are two types of dropout layers used in this work. While the standard dropout layers
are used on 1D outputs of fully connected layers, the Dropout2d layers are used on outputs
of 2D convolution layers. The standard dropout layers randomly zero out some of the
elements of the input tensor with probability p. The Dropout2d zeroes out whole channels
of the input tensor with probability p.

4.4 Deep Ensembles

Deep ensemble is a model which combines several independently trained deep neural net-
works. To obtain the ensemble‘s predictions, the probability distributions of its members
are averaged. Deep ensembles have been long known to improve the accuracy of predictions.
However, in [20] ensembles were also found out to improve calibration and robustness to
dataset shift.

Classical machine learning algorithms used as ensemble members have been usually
trained only on subsets of the whole training set (bagging). This introduces randomness
and decreases correlation between ensemble members. However, since neural networks are
initialized with random parameters and have multiple local optima, there is no need to
introduce another source of randomness. Neural networks also generally achieve better
results when trained on more data. Therefore, deep ensemble members are usually trained
on the whole training set.

An advantage of deep ensembles compared to monte carlo dropout is that there is no
need to modify the model architecture. Unfortunately, both the time and the memory
needed for training and inferencing scale linearly with the number of ensemble members.
However, both training and inferencing can be parallelized.

Experiments in [20] show that ensembles outperform vanilla models and monte carlo
dropout models in terms of accuracy, calibration and robustness to dataset shift. Since
then, deep ensembles have often been used to improve uncertainty estimation with good
results [28] [11].
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Chapter 5

Experiments, Findings and
Practical Recommendations

This chapter describes conducted experiments comparing popular uncertainty estimation
methods on multiple datasets for image classification, semantic segmentation, and object
detection. In each section, uncertainty estimation methods are evaluated on the standard
test set as well as on artificially transformed test set with increasing strength of shift to
simulate out-of-distribution data. The methods are evaluated on metrics that measure pre-
dictive performance (accuracy, IOU) as well as metrics that measure quality of uncertainty
estimations (ECE, Brier score).

The goal of these experiments is not to train models with the best possible predictive
performance on the given dataset but to evaluate uncertainty estimation methods in real
world conditions. Given this, usually very little (or none) hyperparameter tuning and data
augmentation was done for each experiment.

5.1 Image Classification on the FMNIST dataset

First experiment was conducted using the FMNIST [35] dataset which consists of 60000
training images and 10000 test images of different types of clothing. Each image is 28x28
grayscale and has 1 of 10 classes. Since this is an image classification dataset, the goal of
the model is to classify each image into one of the 10 classes.

The training set of 60000 samples was divided further into a validation set of 6000
samples, used for Temperature scaling, and an actual training set of 54000 samples.
Figure 5.1 shows examples of the FMNIST dataset.

Ankle boot Pullover Trouser Trouser

<@

Figure 5.1: Examples of the FMNIST dataset

LeNet-5 [21] network architecture was used. This was done to see the effect of the
methods on simple and small model.
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Label | Description
T-shirt/top
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

o

© 00 J O U i W N~

Table 5.1: Classes in the FMNIST dataset

Training was done on the training set for 20 epochs using the Adam optimizer with
Pytorch‘s default parameters and cross entropy loss. After each epoch, the model was
evaluated on the test set and test loss was computed. If the current test loss was lower than
the previous lowest test loss, the model checkpoint was saved. Therefore, for evaluation,
models with the lowest possible validation loss were used.

In total, 6 models were evaluated:

e Vanilla is a standard LeNet-5 model.

e Dropout inference uses the same weights as Vanilla and the same architecture as
the Dropout training model. Dropout is active in test time, and 20 forward passes
are averaged to form the final prediction..

e« Temperature scaling uses the same weights and architecture as Vanilla but the
model logits are post-processed using the temperature scaling technique.

e Dropout training is a LeNet-5 model with added dropout. The dropout model
has Dropout2D layers after second and third tanh activation and standard Dropout
layer after the first fully connected layer. All dropout layers had probability p = 0.2.
Dropout is turned off for test time.

e MC Dropout uses the same architecture and weights as the Dropout training
model while also using dropout inference.

o Ensemble model is made up of 5 independently trained Vanilla models whose out-
puts are averaged.

5.1.1 Results on Standard Test Set

Table 5.2 shows evaluation results on the standard test set. The Ensemble model seems
to perform the best in all metrics by a significant margin. There seems to be little dif-
ference between other models. Interestingly, models that use dropout inference (Dropout
inference and MC Dropout) have higher ECE than models that do not use it. This
is probably because the LeNet-5 network used is relatively small and, therefore, is not
as prone to overconfidence. Since the models are not overconfident, the dropout inference
makes them underconfident. To achieve better calibration results, the dropout probability
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p would need to be better tuned for each model that uses dropout inference (Dropout
inference and MC Dropout).

Method Accuracy ECE  Avg. Conf. Brier score AUROC AUPR
Vanilla 0.887 3.330 0.917 0.016 0.902 0.986
Dropout inference 0.887 4.536 0.862 0.016 0.901 0.987
Temperature scaling 0.887 2.958 0.887 0.016 0.903 0.987
Dropout training 0.886 2.956 0.901 0.016 0.900 0.986
MC Dropout 0.885 4.056 0.869 0.016 0.901 0.986
Ensemble 0.902 2.834 0.910 0.014 0.908 0.989

Table 5.2: Results on on standard FMNIST test set. ECE = Expected Calibration Error,
Avg. Conf. = Average confidence score, AUROC = Area Under Receiver Operating Char-
acteristic, AUPR = Area Under Precision Recall.

Figure 5.2 shows calibration graph for the Vanilla, Dropout inference and Temper-
ature scaling models. The models achieve relatively low ECE. While the Vanilla and
Temperature scaling models are very slightly overconfident, the Dropout inference is
slightly underconfident. This may be because the dropout probability p = 0.2, which was
used in the Dropout training architecture, may be too large for the Vanilla weights.
Temperature scaling seems to only improve the calibration slightly because the Vanilla
model is already calibrated relatively well.
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Figure 5.2: Calibration graphs for the LeNet-5 Vanilla, Dropout inference and Tem-
perature scaling models on the FMNIST test set.

Figure 5.3 shows the calibration graph for the Dropout training, MC Dropout,
and Ensemble models. The MC Dropout model has higher ECE than the Dropout
training model. This is probably because the Dropout training model is already well
calibrated and dropout inference made the model underconfident (same as the Vanilla and
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Dropout inference models). In addition to having the highest accuracy, the Ensemble
model has also the lowest ECE.

Dropout training MC Dropout Ensemble

1.0 mmm Outputs
3 Gap
1 ECE: 2.96%

1.0 1 EEE Outputs
3 Gap

1 ECE: 4.01%

1.0 1 BBl Outputs
= Gap
| ECE: 2.83%

Accuracy
Accuracy
Accuracy

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence Confidence
1.0 Tr 1.0 TT 1.0
-—- Confidence = 0.901 H -—- Confidence = 0.869 H --- Confidence = 0.910
—-==- Accuracy = 0.886 n —-==- Accuracy = 0.885 " —==- Accuracy = 0.902
0.8 0.8
3 3 3
= = 0.6 5 0.6
£ £ £
© © ©
w w w
s S 0.4 5 0.4
B3 B3 ES
0.2 4 0.2
0.0+ 0.0+
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence Confidence

Figure 5.3: Calibration graphs for the LeNet-5 Dropout training, MC Dropout and
Ensemble models on the FMNIST dataset.

5.1.2 Results on Rotated Test Set

In this section test set is rotated from 0 to 60 degrees using 5 degree steps. At each step,
the models are evaluated on all metrics. This experiment shows how much are the models
resistant to dataset shift. Figure 5.4 shows examples of the FMNIST dataset rotated by 20
degress.

Ankle boot Pullover Trouser Trouser

»8 11

Figure 5.4: Examples of the FMNIST dataset using 20 degrees of rotation

Figure 5.5 shows the evaluation results with increasing rotation. Accuracy decreases
with more rotation similarly for all of the models. Both Brier score and ECE increases
fastest for the Vanilla model. While the Ensemble model has the lowest ECE on the
normal test set, it is outperformed on more shifted samples by the Dropout inference
and MC Dropout models. This hints at possible advantages of using dropout sampling
when encountering out-of-distribution data.

When looking at the AUROC and AUPR metrics, all the models perform similarly.
However, the Ensemble, Dropout inference and MC Dropout models perform the
best.
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Figure 5.5: Graph of evaluation metrics on the FMNIST test set with increasing degrees of
rotation, using the LeNet-5 network.

5.1.3 Results on Test Set with Additive Gaussian Noise

In this section, the models are evaluated on test set with additive Gaussian noise added.
Equation 5.1 shows the definition of random additive Gaussian noise transformation. Where
x is the input image, rand() is standard normal distribution generator and std is the stan-
dard deviation.

x + rand() * std (5.1)

In this experiment, the std parameter is increased from 0 to 0.6 using 0.05 steps. Figure
5.6 shows examples of the FMNIST dataset transformed with additive Gaussian noise using
std = 0.2.

Ankle boot Pullover Trouser Trouser

=@ 0

Figure 5.6: Examples of the FMNIST dataset with additive Gaussian noise using std = 0.2.

Figure 5.7 shows evaluation results with increasing parameter std. Although accuracy is
fairly similar on the standard test set, the models trained with dropout (Dropout training
and MC Dropout) have significantly lower accuracy on noisier data than the other models.
This is surprising because, intuitively dropout during training should make models more
resistant to noise in data.
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Figure 5.7: Graph of evaluation metrics on the FMNIST test set with increasing strength
of Gaussian noise, using the LeNet-5 network.

Dropout training also seems to have the worst Brier score and ECE on noisier samples.
In general Dropout inference achieves the best ECE on data with more noise. We can
see that the ECE curve even goes down before going up again. This is probably because the
chosen probability p = 0.15 is too high and, therefore, the model is underconfident on less
shifted data. As the shift strength increases, the model becomes overconfident, the same
as the other models.

5.1.4 Findings

Experiments using both transformations show that Ensemble improves predictive per-
formance and uncertainty estimation even on noisier samples. The Dropout training
and MC Dropout models improve accuracy on rotated test set but surprisingly achieve
the worst accuracy on test set with Gaussian noise. The Temperature scaling and
Dropout inference models offer better quality uncertainty estimates, compared to the
Vanilla model, on both transformed test sets.

5.2 Image Classification on the CIFAR-100 Dataset

The CIFAR-100 dataset [19] contains 60000 32x32 color images split into 100 classes, each
class containing 600 images. There are 500 training images and 100 testing images per
class. Since this is an image classification dataset, the goal of the model is to classify each
image into one of the 100 classes.

These 50000 training images were randomly split into 45000 images used for training
and 5000 images used as the validation set for the Temperature scaling method. The
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split was done using the torch.utils.data.random_split method using manual seed with
value 0.

This dataset was chosen because it is fairly challenging while still being relatively small
and easy to train on. Figure 5.8 shows examples of the CIFAR-100 dataset.

mountain forest seal mushroom

&\ gl

Figure 5.8: Examples of the CIFAR-100 dataset.

For evaluation, the ResNet-18' [12] and MobileNetV2? [32] architectures were used.
Training was done for 200 epochs using the Adam optimizer with cross entropy loss and
batch size of 64. Checkpoints were saved when the models reached the lowest validation
loss. In total, 8 models are evaluated:

Vanilla is a standard ResNet-18 or MobileNetV2 network.

Dropout inference uses the same weights as Vanilla model and the same architec-
ture as the Dropout training model. Dropout is active in test time, and 20 forward
passes are being averaged to form the final prediction.

Temperature scaling uses the same weights and architecture as Vanilla model but
the model logits are post-processed using the temperature scaling technique.

Dropout training is a ResNet-18 or MobileNetV2 network with added dropout. The
ResNet-18 models with dropout have a single Dropout2d layer with p = 0.1 inserted
at the end of each Residual Block. This architecture is the same as the one used in
[24]. Only changing the probability p to 0.1 yielded slightly better results. Similarly,
the MobileNetV2 models with dropout have a single Dropout2d layer with p = 0.1
inserted at the end of each Inverted Residual Block.

MC Dropout uses the same architecture and weights as Dropout training model
while also using dropout inference.

Ensemble model is meade up of 5 independently trained Vanilla models whose
outputs are averaged.

Finetuned (or Vanilla finetuned with dropout) uses the Dropout training
model architecture and the Vanilla model weights. The model with added dropout
layers is then finetuned on the training set for 10 epochs. This is done to see if it is
possible to add dropout to pretrained model.

Finetuned with MCD (or Vanilla finetuned with dropout with MCD) is the
same model as Finetuned model but also uses dropout inference.

!ResNet and ResNet Dropout implementations were taken from https://github.com/mattiasegu/
uncertainty_estimation_deep_learning

2MobileNetV2  implementation was taken from https://github.com/NoUnique/MobileNet-
CIFAR100.pytorch
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5.2.1 Results on Standard Test Set

Table 5.3 shows the evaluation results on the standard test set for the ResNet-18 model.
The Ensemble model achieves the best results on all metrics except ECE, where it achieves
the third best result. This is consistent with the results in Section 5.1 where the Ensemble
model also performed the best on the standard test set.

All models using dropout inference achieve better ECE than the models using normal
inference. However, AUROC and AUPR do not seem to increase when using dropout
inference. This is consistent with the results in Section 5.1.

Method Accuracy ECE  Avg. Conf. Brier score AUROC AUPR
Vanilla 0.627 8.281 0.721 0.005 0.836 0.904
Dropout inference 0.619 2.102 0.605 0.005 0.836 0.899
Temperature scaling 0.627 2.461 0.609 0.005 0.838 0.904
Dropout training 0.639 8.256 0.734 0.005 0.845 0.915
MC Dropout 0.636 1.645 0.631 0.005 0.842 0.912
Ensemble 0.734 2.352 0.755 0.004 0.868 0.950
Finetuned 0.662 6.989 0.745 0.005 0.849 0.923
Finetuned with MCD 0.655 3.900 0.622 0.005 0.845 0.918

Table 5.3: ResNet-18 results on the CIFAR-100 test set. Avg. Conf. = Average confidence,
AUROC = Area Under Precision Recall curve, AUPR = Area Under Precision Recall curve.

MobileNetV2 model results are in the table 5.4. Similarly as when using the ResNet-18
model, the Ensemble method seem to achieve the best results in most of the metrics. Also,
like the ResNet-18 model, dropout inference seems to improve the ECE metric compared to
standard inference. Interestingly, this is not the case with the Finetuned models, where
dropout inference has a negative effect on ECE.

Method Accuracy ECE  Avg. Conf. Brier score AUROC AUPR
Vanilla 0.593 9.036 0.692 0.005 0.831 0.889
Dropout inference 0.595 1.916 0.598 0.005 0.829 0.887
Temperature scaling 0.593 2.663 0.570 0.005 0.833 0.890
Dropout training 0.613 7.432 0.698 0.005 0.838 0.901
MC Dropout 0.613 2.884 0.596 0.005 0.844 0.904
Ensemble 0.668 4.780 0.630 0.004 0.854 0.926
Finetuned 0.593 5.316 0.653 0.005 0.829 0.888
Finetuned with MCD 0.596 6.566 0.532 0.005 0.827 0.885

Table 5.4: MobileNetV2 results on the CIFAR-100 test set. Avg. Conf. = Average con-
fidence, AUROC = Area Under Precision Recall curve, AUPR = Area Under Precision
Recall curve.

Figure 5.9 shows the calibration graph for the Vanilla, Dropout inference, Tem-
perature scaling, and Ensemble models using the ResNet-18 architecture. The Vanilla
model seems to be overconfident in its predictions and using Dropout inference corrects
this. This is probably because the probability p = 0.1 well chosen and not big enough to
make the model underconfident (as happened with the Dropout inference method in pre-
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vious section 5.1). The Temperature scaling and Ensemble methods are also relatively
well calibrated.
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Figure 5.9: Calibration graphs on the standard CIFAR-100 test set for the ResNet-18
Vanilla, Dropout inference, Temperature scaling and Ensemble models.

Figure 5.10 shows the calibration graph for the Dropout training, MC Dropout,
Finetuned and Finetuned with M CD models using the ResNet-18 architecture. Curi-
ously, the Dropout training model seems suffer the same level of overconfidence as the
Vanilla method. And using dropout inference (MC Dropout model) seems to help. The
Finetuned model seems to be better calibrated than the Vanilla and Dropout training
models. However, this makes the Finetuned with MCD model underconfident. This
example shows that finding the optimal probability p for dropout inference heavily depends
on how overconfident or underconfident is the base model.
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Figure 5.10: Calibration graphs on the standard CIFAR-100 test set for the ResNet-18
Dropout training, MC Dropout, Vanilla finetuned with dropout and Vanilla fine-
tuned with dropout with MCD models.

The calibration graph for MobileNetV2 shown in Figure 5.11 shows very similar results
as for the ResNet-18 network. The Vanilla model is overconfident, while Dropout infer-
ence seems to correct this issue. Temperature scaling and Ensemble methods seem to
do similarly well as with the ResNet-18 network.
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Figure 5.11: Calibration graphs on the standard CIFAR-100 test set for the MobileNetV2
Vanilla, Dropout inference, Temperature scaling and Ensemble models.
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Figure 5.12 shows the calibration graph for methods that use dropout during training.
The results are almost the same as when using ResNet-18 in Figure 5.10. Similarly as
with ResNet-18, using dropout for training yields better accuracy than the Vanilla model.
Interestingly, it does not seem to have much effect on ECE. Unlike the results from using
the ResNet-18 network, training Vanilla model and then adding dropout and finetuning
it for 10 epochs (Finetuned model) does not improve the accuracy of the MobileNetV2
model and only improves the ECE slightly. When using dropout inference the ECE actually
increased. This probably an indication that the MobileNetV2 network is more sensitive to
dropout. Maybe because it is smaller than the ResNet-18 network.
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Figure 5.12: Calibration graphs on the standard CIFAR-100 test set for the MobileNetV2
Dropout training, MC Dropout, Vanilla finetuned with dropout and Vanilla fine-
tuned with dropout with MCD models.

Overall, we can see that the results are almost the same for both of the networks used.
Ensemble models achieve the best Accuracy and very good ECE. Using dropout for
training seems to improve Accuracy considerably, but only slightly improves ECE. It is
interesting that the Finetuned model performs very well with the ResNet-18 network
but not with the MobileNetV2 network. This shows that not all architectures respond to
dropout the same.

5.2.2 Results on Test Set with Random Additive Gaussian Noise

In this section, the models are evaluated using the same methodology as with the FMNIST
dataset in Section 5.1.3. That means increasing the std parameter from 0 to 0.6 using 0.05
steps. Figure 5.13 shows examples of the CIFAR-100 transformed with additive Gaussian
noise with std = 0.5.
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seal mushroom

mountain forest
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Figure 5.13: Examples of the CIFAR-100 dataset transformed with additive Gaussian noise
with std = 0.5.

Figure 5.14 shows the results of ResNet-18 network on test set with added gaussian
noise. While the Ensemble model has the best accuracy and Brier score on the standard
test set, the Dropout training and M C Dropout models achieve the best accuracy on
samples with more noise. Using dropout inference also seems to improve the calibration on
noisier samples. Models trained with dropout also seem to achieve higher AUROC and
AUPR on noisier data.
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Figure 5.14: Graph of evaluation metrics on the CIFAR-100 test set with additive gaussian
noise with increasing parameter std, using the ResNet-18 network.

Figure 5.15 shows the evaluation results while using the MobileNetV2 network. The
Accuracy on noisier samples is almost the same in all the methods. Interestingly, the
Ensemble, Dropout training and MC Dropout models achieve a worse ECE than
even the Vanilla model. It is not clear why.
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Figure 5.15: Graph of evaluation metrics on the CIFAR-100 test set with additive gaussian
noise with increasing parameter std, using the MobileNetV2 network.

While the Ensemble methods achieve the best Accuracy for both networks and
achieve relatively good calibration, it does not seem to improve calibration on noisier
samples very much. It is also interesting that while using dropout training helps with
calibration on noisier samples on the ResNet-18 network, it does not have the same effect
on the MobileNetV2 network.

5.2.3 Results on Test Set with Color Jitter

In this section, the models are evaluated on test set with applied color jitter to it. Color
jitter randomly changes the brightness, contrast, and saturation of the image. While chang-
ing contrast or saturation usually does not make the image unrecognizable, changing the
brightness too much can make it unrecognizable (mountain image in figure 5.16). This is
why here, the brightness is changed only half as much as contrast and saturation (strength
1.0 means strength 0.5 for brightness and strength 1.0 for contrast and saturation). Fig-
ure 5.16 shows examples of the CIFAR-100 dataset transformed with color jitter using
strength = 1.0.

mountain forest seal mushroom

Figure 5.16: Examples of the CIFAR-100 dataset with color jitter using strength = 1.0.
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The results of the ResNet-18 network models are shown in Figure 5.17. Ensemble
achieves the best accuracy even on samples with a lot of jitter. Finetuned and Dropout
training also achieve better accuracy results than the Vanilla model. However, the margin
between model accuracies stays the same for every point of Accuracy chart. This means
that technically Ensemble and Finetuned models achieve better Accuracy on shifted
data, but only because they also achieve better Accuracy on the standard test set and not
because the models would be more immune to dataset shift. Vanilla, Dropout training
and Finetuned models are all outperformed by other models in terms of ECE. Especially
the Finetuned with MCD model achieves good ECE even on very shifted samples.

Figure 5.18 shows results for the MobileNetV2 network. Similarly as with the ResNet-18
network, Ensemble achieves the best accuracy across all the shifted datasets. However,
the Finetuned model achieves substantially worse accuracy than the Finetuned Resnet-
18 model. This probably means that the MobileNetV2 network cannot be finetuned with
adding dropout layers as well as the ResNet-18 network. Other metrics show similiar results
as with the ResNet-18 network.

Experiments on both networks show that Ensemble models achieve the best accuracy,
while also being reasonably well calibrated. And while using Dropout training can help
achieve better accuracy, it does not seem to improve calibration. Using Dropout training
or Ensemble in conjunction with Dropout inference (resulting in MC Dropout) or
Temperature scaling can improve both accuracy and calibration.
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Figure 5.17: Graph of evaluation metrics on the CIFAR-100 test set with color jitter with
increasing strength, using the ResNet-18 network.
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Figure 5.18: Graph of evaluation metrics on the CIFAR-100 test set with color jitter with
increasing strength, using the MobileNetV2 network.

5.2.4 Results on Test Set with Gaussian Blur

This section focuses on evaluating the methods on data set with Gaussian blur applied. The
Gaussian blur transformation expects kernel_size and sigma parameters. The parameter
kernel_size sets the size of the Gaussian kernel, and the parameter sigma sets the standard
deviation of the Gaussian blur kernel. The kernel_size parameter was experimentally
chosen to be 5 and sigma is being increased from 0.1 to 1.4 using 0.1 steps. Figure 5.19 shows
examples of the CIFAR-100 dataset transformed with Gaussian blur using kernel_size of
5 and strength = 0.8.

mountain forest seal mushroom

« N FE

Figure 5.19: Examples of the CIFAR-100 dataset with gaussian blur using strength = 0.8.

Figure 5.20 shows results for the ResNet-18 network. Although the Ensemble model
achieves the best accuracy on the standard test set, models that were trained with dropout
outperform the Ensemble on samples with stronger blur. MC Dropout and Finetuned
with MCD models achieve the best calibration on noisier samples. While the Temper-
ature scaling and Dropout inference models are well calibrated on standard test set,
their ECE increases rapidly on blurier samples.

The results in Figure 5.21, which shows the results for the MobileNetV2 network, are
similar to the results from the ResNet-18 models. Ensemble achieves best accuracy on
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the standard test set, but is outperformed on blurrier images by the Dropout training
and MC Dropout models. Finetuned with MCD actually has the best calibration
on more blurred images, but this is probably because the model uses too high dropout
probability p and is therefore always underconfident. Other than that, the MC Dropout
and Ensemble models are well calibrated across all shift strengths.

On both networks we can see that while Ensemble models achieve best accuracy on
standard test set however, Dropout training and models based on it outperform Ensem-
bles on noisier data in both accuracy and calibration.
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Figure 5.20: Graph of evaluation metrics on the CIFAR-100 test set with Gaussian blur
with increasing strength, using the ResNet-18 network.

30



Intensity of shift vs accuracy Intensity of shift vs calibration error Intensity of shift vs Receiver-Operator Curve

0.850

40 0.825 1
0.800
301
* 0.775

o
S
iveer-Operator curve

ECE

0.750 A

Accuracy

201

o
w
°
S
N
a
L

101 0.700

o
N

Area under Recel

0.675 q

°
a

02 04 06 08 10 12 14 02 04 06 08 10 12 14 02 04 06 08 10 12 14

Intensity of shift Intensity of shift Intensity of shift
Intensity of shift vs brier score Intensity of shift vs confidence Intensity of shift vs Precision-Recall

0.70 4
0.012 4
0.65
0.011 4
0.60
0.010 4

0.009 1

0.008 1

Brier score

Vanilla

Dropout inference

0.40 + d

0.006 04 Temperature scaling
4 0.351 Dropout training

0005 03 MC Dropout

T T T T T T T 0.30 T T T T T T T — Ensemble
02 04 06 08 10 12 14 02 04 06 08 10 12 14 Vanilla finetuned with dropout
Intensity of shift Intensity of shift —— Vanilla finetuned with dropout with MCD

0.007 4

Average confidence
o
o
o
L
Area under Precision-Recall curve

Figure 5.21: Graph of evaluation metrics on the CIFAR-100 test set with Gaussian blur
with increasing strength, using the MobileNetV2 network.

5.2.5 Findings

Ensemble models perform the best across all the shift strengths while using color jitter
but are outperformed on noisier data while using additive gaussian noise and gaussian blur
by models trained with dropout. Using Dropout inference or Temperature scaling
achieves better calibration even on noisier data regardless of the transformation used. How-
ever, Dropout inference is more complex to set up than Temperature scaling and slows
down inference depending on how many forward passes are used. This possibly makes a
case for training an Ensemble model with dropout to achieve the best possible accuracy
and resistance to transformations and then using Temperature scaling to ensure good
calibration.

5.3 Semantic Segmentation on the MedSeg Covid Dataset

In this section, the models are evaluated on the MedSeg Covid Dataset [25]. It is a medical
dataset consisting of 100 CT slices of more than 40 patients with COVID-19. The im-
ages were manually segmented by a radiologist into 3 foreground labels: 1 = ground-glass,
2 = consolidation and 3 = pleural effusion. The remaining areas are classified as 0 = back-
ground. This is a semantic segmentation dataset, meaning that the model classifies each
input image pixel into 3 foreground classes or the background class. This dataset was cho-
sen because it was previously solved with a U-Net in [33]. The CT slices are compiled into
NIFTI files®. Examples of the dataset are shown in figure 5.22.

3This work uses images exported into . jpg files taken from https://github.com/adnan-saood/COVID19-
DL
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Figure 5.22: Examples of the Covid19 dataset. Input images are at the top, ground truth
annotation in the bottom row. Violet = background and healthy tissues, blue = ground-
glass, green = consolidation and yellow = pleural effusion.

The 100 images were randomly split into 60 images used for training, 30 for testing and
10 as a validation set for the Temperature scaling method. The split was performed
using the torch.utils.data.random_split method using manual seed with value 0.

Neural network architecture used for this experiment is a standard U-Net* [31]. U-Net
was chosen because it is small and easy to train, while achieving good results on medical
datasets.

Every model was trained for 200 epochs using the Adam optimizer while saving check-
points with the highest Intersection Over Union. The five models evaluated are as follows:

e Vanilla is a standard U-Net.

e Temperature scaling uses the same weights and architecture as Vanilla model,
but the model logits are postprocessed using the temperature scaling technique.

e Dropout training is a U-Net network with additional dropout layers. Dropout2d
layers with p = 0.1 are added after each ReLU activation.

e MC Dropout uses the same architecture and weights as the Dropout training
model while also using dropout inference.

« Ensemble is an ensemble of 5 U-Nets.

5.3.1 Results on Standard Test Set

The results on the standard test set are shown in table 5.5. We can see that the Dropout
training, MC Dropout, and Ensemble models achieve similar accuracy and outperform
the Vanilla and Temperature scaling models by about 1%. These models also achieve
better IOU and mIOU than the Vanilla and Temperature scaling models. All of these
models are relatively well calibrated and achieve similar ECE. Their AUROC and AUPR
is also very similar.

1U-Net implementation was taken from https://github.com/milesial/Pytorch-UNet
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Method Accuracy ECE  Brier AUROC AUPR 10U mIOU

Vanilla 0.957 4.162 0.015 0.960 0.998  0.449  0.489
Temperature scaling 0.957 4.365 0.016 0.960 0.998 0.449 0.489
Dropout training 0.965 4522 0.013 0.968 0.999 0.493 0.506
MC Dropout 0.965 5.142 0.013 0.966 0.999 0.490 0.505
Ensemble 0.966 4.303 0.013 0.967 0.999 0.485 0.518

Table 5.5: U-Net results on the COVID-19 test set. ECE = Expected Calibration Er-
ror, Brier = Brier score, AUROC = Area Under Receiver Operating Characteristic curve,
AUPR = Area Under Precision Recall curve, IOU = pixelwise Intersection Over Union
(excluding background), mIOU = Mean class Intersection Over Union.

Figure 5.23 shows the calibration graph for the models used. All of the models are well
calibrated and achieve very similar ECE. It is interesting, that all of the models are slightly
underconfident. Usually, models tend to be overconfident. This is probably because the
dataset is very small. In this case, it means that the M C Dropout method actually makes
the model even more uncerconfident and therefore worsens its ECE.
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Figure 5.23: Calibration graph for the U-Net models on the COVID-19 dataset.

5.3.2 Results on Test Set with Additive Gaussian Noise

In this section, the models are evaluated on the test set transformed with additive Gaussian
noise. The same methodology as in Sections 5.1.3 and 5.2.2 is used. The std parameter
is increased from 0 to 0.6 using 0.05 steps. Figure 5.24 shows examples of the COVID-19
dataset transformed with additive Gaussian noise using std = 0.2.

Figure 5.25 shows the evaluation results with increasing strength of additive Gaussian
noise. The Ensemble model achieves the best accuracy on the standard test set by a small
margin but more importantly keeps good accuracy even on noisier data. Between strengths
0 and 0.1 the IOU and mean class IOU are very similar between the Ensemble, Dropout
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Figure 5.24: Examples of the COVID-19 dataset with additive Gaussian noise using std =
0.2.

training, and MC Dropout models, but on noisier data the Ensemble model achieves
the best results by a huge margin. The Dropout training and MC Dropout models
also show better resistance to noise than the Vanilla and Temperature scaling models
but not to as high of a degree.
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Figure 5.25: Evaluation results for the U-Net architecture on the COVID-19 test set with
additive Gaussian noise.

5.3.3 Findings

The results show that even though there is only a small benefit for using Ensemble,
Dropout training and MC Dropout on the standard test set. However, the Ensemble
model performs much better than the other models on noisier data. This huge performance
gap may be attributed to the independent learning of each component of the ensemble. In
this way, each component can learn to segment pixels based on a different set of character-
istics, which can lead to better generalization. This is also probably because the dataset is
very small.
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5.4 Semantic Segmentation on the PASCAL-VOC Segmen-
tation Dataset

This section focuses on evaluation of the models on the PASCAL-VOC 2012 [7] segmentation
dataset. The dataset consists of 20 object classes in realistic scenes. Since this is a semantic
segmentation dataset, the goal of the model is to classify each image pixel into 20 object
classes or the background class. The train set is used for training, and the val set is used
for evaluation. In total, 1464 images are used for training and 1449 images are used for
evaluation. Pytorch implementation of this dataset is used. The 20 foreground classes are
grouped into 4 categories:

e Person: person
o Animal: bird, cat, cow, dog, horse, sheep
e Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

o Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Examples of the PASCAL-VOC segmentation dataset are shown in Figure 5.26.

51 el

Figure 5.26: Examples of the PASCAL-VOC segmentation dataset. Input images are at
the top, ground truth annotations are in the bottom row.

For evaluation, the DeepLabV3 [4] architecture with ResNet-50 backbone is used. The
models are pre-trained on subset of the MS COCO dataset which shares the same classes
as the PASCAL-VOC dataset used. The pretrained Pytorch implementation is used. The
models are then trained for 20 epochs using the Adam optimizer. While training, the model
backbone is frozen and only the classifier part of the network is trained. Only training the
classifier yielded significantly better results than also training the backbone.

Three uncertainty estimation methods are evaluated:

e Vanilla is a Standard ResNet-50 DeeplabV3 model.

e Dropout training ResNet-50 DeeplabV3 model with added dropout layers before
finetuning on the PASCAL-VOC dataset for 20 epochs. The model uses Dropout2d
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layers with p = 0.2 inserted after the last 2 Bottleneck blocks of the backbone. This
architecture was chosen experimentally. For example, adding dropout layers to the
classifier part of the model did not have a huge effect.

e MC Dropout uses the same architecture and weights as the Dropout training
model while also using dropout inference.

5.4.1 Results on Standard Test Set

Table 5.6 shows result on the standard test set. The MC Dropout model achieves the best
accuracy and IOU by a small margin, but surprisingly achieves the worst mIOU. The IOU
is computed only from foreground classes, while the mIOU is computed from all classes,
including background. This probably means that the MC Dropout model prioritizes fore-
ground classes more. The MC Dropout model also achieves the best AUROC and AUPR
but also has the worst ECE. However, all of the models are reasonably well calibrated.
Brier score is not computed in this section due to memory limitations.

Method Accuracy ECE AUROC AUPR 10U mIOU
Vanilla 0.894 2.299 0.878 0.983 0.692 0.647
Dropout training 0.894 2.546 0.882 0.984 0.698 0.652
MC Dropout 0.899 4.034 0.883 0.985 0.699 0.644

Table 5.6: DeepLabV3 results on the PASCAL-VOC segmentation test set. ECE = Ex-
pected Calibration Error, AUROC = Area Under Receiver Operating Characteristic curve,
AUPR = Area Under Precision Recall curve, IOU = pixelwise Intersection Over Union
(excluding background), mIOU = Mean class Intersection Over Union.

The calibration graph for the models is shown in Figure 5.27. While the Vanilla and
Dropout training models achieve very good calibration but are very slightly overconfident,
the MC Dropout model is underconfident and has worse ECE. For the standard test set,
fewer dropout layers or a lower probability p would probably yield better ECE. However,
as we have seen in Section 5.2, more dropout and being underconfident on the standard
test set may yield a better calibration on noisier data.

While MC Dropout achieves marginally better accuracy and IOU, the difference be-
tween models is too small to justify using Monte Carlo Dropout in production, if the test
set is close to the training set and if the Vanilla model is already well calibrated.

5.4.2 Results on Test Set with Additive Gaussian Noise

In this section, the models are evaluated on the test set shifted with additive Gaussian
noise. Same methodology as in previous sections is used. The std parameter is increased
from 0 to 0.6 using 0.05 steps. Examples of the dataset transformed with additive Gaussian
noise with std = 0.2 are shown in Figure 5.28.
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Figure 5.27: Calibration graph for the Pascal-VOC segmentation dataset using the
DeepLabV3 network.

Figure 5.28: Examples of the PASCAL-VOC segmentaion dataset transformed with additive
Gaussian noise using std = 0.2.

Figure 5.29 shows evaluation results while increasing the random Gaussian noise stan-
dard deviation. The IOU chart is not shown because the results are very similar to the
mlIOU chart. While the accuracies are very similar on the standard test, the Dropout
training and MC Dropout models achieve better accuracy on noisier samples. Despite
this, the mIOU stays very close between all the models. The Dropout training and MC
Dropout models also achieve better AUROC and AUPR on noisier data. While the MC
Dropout model achieves the best ECE for moderate amount of noise, the Vanilla model
has the lowest ECE for data with a lot of noise.
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Figure 5.29: Evaluation results on the PASCAL-VOC detection val set with additive Gaus-
sian noise using the DeepLabV3 network. The std parameter is increased from 0 to 0.6
using 0.05 steps.

5.4.3 Findings

We can see that adding dropout even to a pre-trained model can yield better results on
out of distribution data. However, there seems to be little merit for also using dropout
inference. The only metric where the MC Dropout model achieves significantly better
results than the Dropout training model is ECE and only on samples with moderate
amount of noise. As the samples become noisier, the ECE increases the same for both MC
Dropout and Dropout training models.

5.5 Object Detection on the PASCAL-VOC Detection Dataset

In this section, the models are evaluated on the PASCAL-VOC [7] detection dataset. The
foreground classes are the same as in the PASCAL-VOC segmentation dataset used in
section 5.4. However, since this is a detection dataset, the model predicts bounding boxes
for each object in the image. The 2012 trainval and 2007 trainval sets are used for training
and 2007 test set is used for evaluation. Examples of the PASCAL-VOC detection dataset
are shown in Figure 5.30.
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tvmonitor

Figure 5.30: Examples of the PASCAL-VOC detection dataset.

The SSD300° [23] was chosen as the network architecture. The model architecture
is relatively simple compared to another object detectors and allows for straightforward
addition of dropout layers. This model was also used with Monte Carlo Dropout in [26].

The training procedure for the Vanilla and Dropout training models follows the
original paper. The models were trained for 231 epochs using a batch size of 8. Stochastic
Gradient Descent was used as optimizer with initial learning rate of le — 3, momentum of
0.9, and 5e — 4 weight decay. Also, a number of training data augmentations were used:

« Color Jitter with 50% chance.

e Zoom out with 50% chance.

e Random crop.

e Horizontal flip with 50% chance.

The models were evaluated using non-max suppression with IOU threshold of 0.5 and
score threshold of 0.2. This setting had much lower number of false positives compared to
score threshold of 0.01, which was used for evaluation in the original SSD paper, while still
achieving good mAP. In total, 3 versions of models were evaluated:

e Vanilla is a standard SSD300 model.

e Dropout training SSD300 model with added Dropout2d layers with p = 0.3 after
last two layers of the VGG16 backbone. This follows the same placement of dropout
layers as in [26].

e MC Dropout uses the same architecture and weights as Dropout training model
while also using dropout inference.

5.5.1 Dropout Inference Techniques for Object Detection Models

There is a number of approaches to dropout inference with object detection models. In [20]
the model is treated as a black box and all of the bounding boxes from multiple forward
passes are clustered based on their IOU. The whole procedure is as follows:

1. Make N forward passes for each input image.

2. Bounding box predictions for multiple forward passes are grouped into Observations.
Bounding boxes from multiple forward passes are grouped if their predicted label is
the same and their IOU is bigger than 0.9. If a bounding box cannot be added to an
existing Observation, a new Observation is created.

SImplementation of the SSD300 model and detection utilities was taken from https://github.com/
sgrvinod/a-PyTorch-Tutorial-to-Object-Detection.
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3. Only use observations with more than D bounding boxes.

4. Compute the mean of confidences and locations of all bounding boxes in an observa-
tion.

However, this approach did not provide good results. Either having a large number of
false positives (when using D = 1, as was done in [26]), or having a large number of false
negatives (when using larger D).

Since this approach did not work very well, I simply averaged the model outputs before
the post-processing step that detects the bounding boxes.

5.5.2 Results on Standard Test Set

Table 5.7 shows evaluation results on the PASCAL-VOC 2007 test set. Vanilla model
achieves the best mAP when using IOU threshold 50 but not with IOU threshold 75. In this
case, dropout inference may very slightly improve bounding box localization performance.
The Dropout training model detects the most true positives and least false negatives,
but in turn also detects the most false positives. All of the metrics are very similar for all of
the models and there seems to be no reason to prefer Dropout training or MC Dropout
models over the Vanilla model on the standard test set.

Method mAP 50 mAP 75 AUROC AUPR TP FP FN
Vanilla 0.732 0.520 0.879 0.934 10463 5904 4513
Dropout training 0.726 0.520 0.876 0.928 10467 6300 4509
MC Dropout 0.727 0.521 0.875 0.930 10412 5981 4564

Table 5.7: SSD300 results on the PASCAL-VOC 2012 segmentation val set. mAP
50 = mean Average Precision at 50 IOU, mAP 75 = mean Average Precision at 75 IOU,
AUROC = Area Under Receiver Operating Characteristic curve, AUPR = Area Under
Precision Recall curve, TP = number of True Positives, FP = number of False Positives,
FN = number of False Negatives. All of the metrics apart from mAP 75 are computed at
IOU threshold 50 and score threshold 0.2.

5.5.3 Results on Test Set with Additive Gaussian Noise

Models in this section were evaluated on the PASCAL-VOC 2007 test set transformed with
random additive Gaussian noise. This transformation was chosen because it was not used
for training. The models performed very well even on very noisy data when using the color
jitter transformation because the models were trained with it.

Figure 5.31 shows the evaluation results on the test set with increasing levels of noise.
The models achieve very similar results to each other in most of the metrics. However,
on noisier samples, we can see that the Dropout training and MC Dropout models
have a significantly lower number of false positives than the Vanilla model. The Dropout
training and MC Dropout models also achieve better AUROC with noisier samples.
However, the Dropout training and MC Dropout models also have a lower number of
true positives and a higher number of false negatives.
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Figure 5.31: Evaluation results on the PASCAL-VOC detection test set with additive
Gaussian noise. The std parameter is increased from 0 to 0.6 using 0.05 steps.

5.5.4 Findings

The results show that, while employing Dropout training or MC Dropout can lead to a
lower number of false positives and a higher AUROC on noisier predictions. It also reduces
the number of true positives and introduces more false negatives. Therefore, the pros are
not large enough to outweigh the cons and to recommend the use of Dropout training
or MC Dropout in this setting.

5.6 Practical Recommendations

This section summarizes practical recommendations based on the results of the experiments.

e Ensembles achieved the best predictive performance on all of the standard test
sets. But on transformed test sets they can be outperformed by models trained with
dropout.

o Ensembles dominated the COVID-19 dataset. This dataset has much fewer samples
than others. Ensembles may offer the biggest benefits compared to other methods
when used on very small datasets.

« Temperature scaling can be very effective in reducing the ECE if the base model
has bad calibration. However, it is not very effective on already well calibrated models
and does not improve the model‘s resistance to dataset shift. Also, while it improves
the ECE it does not improve AUROC or AUPR.
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Dropout training improved predictive performance for all of the models except
for the SSD300. It also had the best resistance to dataset shift on most of the
transformations. This is surprising since nowadays, dropout is not used very often.
However, choosing the placement and the probability p of the dropout layers is very
important. Also, the strategy for adding dropout layers heavily depends on the model
architecture.

Dropout inference alone can improve the models‘ calibration if the base model is
overconfident. However, if the base model is well calibrated, dropout inference can
make the model underconfident. Moreover, while it can improve calibration, it does
not improve AUROC or AUPR.

MC Dropout models have improved predictive performance and uncertainty esti-
mation quality. But this stems from the base model being trained with dropout layers
and not from dropout inference.

Adding dropout layers to a pretrained model and finetuning it may or may not improve
the predictive performance and uncertainty estimation quality. When used on the
ResNet-18 network, improved the prediction accuracy by almost 4% and improved
the uncertainty estimation quality and resistance to dataset shift, even surpassing the
Dropout training model. However, on the MobilNetV2 network, it had virtually
no effect.

The resistance to dataset shift depends more on the base model used that on the
uncertainty estimation method.

The experiments showed mostly positive effects of Dropout training and Ensem-
bles on the predictive performance and uncertainty estimation quality. It would be
interesting to combine several models, trained with dropout layers into one ensem-
ble. To improve the calibration, Temperature scaling offers the benefits of the
Dropout inference without introducing additional computing costs.
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Chapter 6

Conclusion

This work focused on common uncertainty estimation methods. Modifications to widely
used convolutional neural network architectures were proposed to employ these methods. A
set of experiments for each computer vision task was created for evaluation of model perfor-
mance on in distribution as well as out of distribution data. The proposed modified models
achieved significantly better results on both in-distribution as well as out-of-distribution
data. Especially ensemble models achieved very good results on in-distribution data, while
architectures with added dropout layers displayed better resistance to dataset shift.

In total, this work explored uncertainty estimations on six widely used model archi-
tectures ranging from small and simple to the current state of the art. Evaluation was
done on 5 datasets for image classification, semantic segmentation, and object detection.
The models were evaluated on standard test sets, as well as artificially distorted test sets
with varying strength of distortion and different types of distortions. These experiments
provide useful knowledge about the effectiveness of these methods on in-distribution as well
as out-of-distribution data. To my knowledge, this work is also one of the first to touch on
the subject of uncertainty estimation in deep object detectors, especially on shifted data.

Based on the results of the experiments conducted, practical recommendations were
formed for employing these uncertainty estimation methods in practice.

This work could be further expanded by evaluating different strategies for adding
dropout layers and employing Monte Carlo Dropout on existing models. Another direc-
tion for future research could be on new and emerging uncertainty estimation techniques
that do not induce additional computational or memory costs.
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