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Abstract 
This work focuses on comparing three widely used methods for improving uncertainty esti­
mations: Deep Ensembles, Monte Carlo Dropout, and Temperature Scaling. These meth­
ods are applied to six computer vision models that are pretrained as well as trained from 
scratch. The models are then evaluated on computer vision datasets for classification, se­
mantic segmentation, and object detection using a wide range of metrics. The models 
are also evaluated on distorted versions of these datasets to measure their performance on 
out-of-distribution data. 

These modified models achieve promising results. Ensembles outperform the other 
models by as high as 70% in accuracy and 0.2 in IOU on the distorted MedSeg COVID-19 
segmentation dataset while also outperforming the other models on the CIFAR-100 and 
F M N I S T datasets. 

Abstrakt 
Tato práce se zaměřuje na porovnání tří široce používaných metod pro zlepšení odhadů 
neurčitosti: hlubokých ansámlů, monte carlo dropout a temperature scaling. Tyto metody 
jsou aplikovány na šest modelů pro počítačové vidění, mezi nimiž jsou předtrénované modely 
i modely trénované od nuly. Tyto modely jsou hodnoceny na datasetech počítačového 
vidění pro úlohy klasifikace, sémantické segmentace a detekce objektů, při použití široké 
škály metrik. Modely jsou rovněž evaluovány na transformovaných datasetech, kvůli jejich 
ohodnocení na datech mimo trénovací distribuci. 

Tyto modifikované modely dosahují slibných výsledků. Ansámbly překonávají ostatní 
modely až o 70 % v přesnosti a o 0.2 v IOU na transformovaném segmentačním datasetu 
MedSeg COVID-19 a zároveň překonávají ostatní modely na datasetech CIFAR-100 a 
F M N I S T . 
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Rozšířený abstrakt 
Moderní architektury hlubokých konvolučních neurálních sítí dosahují výborných výsledků 
v mnoha úlohách počítačového vidění. Bohužel, i přes dobrou úspěšnost těchto predikcí, 
mohou mít tyto modely problém s kvalitním odhadem neurčitosti těchto predikcí. Predikce 
těchto modelů bývají totiž často příliš sebevědomé, a to i pro rozdílná data než na kterých 
byl model natrénován. Toto je zvlášť problematické při používání těchto modelů v reál­
ném světě, kde může model přijít do styku s daty, kterým nemůže rozumět. V takových 
případech je důležité, aby model poskytoval spolehlivé odhady neurčitosti. Predikce, u 
kterých si model není jistý, poté zkontroluje člověk, případně se tyto data mohou použít 
pro dotrénování modelu. 

Tato práce se zaměřuje na porovnání tří oblíbených metod pro zlepšení odhadů neurči­
tosti: hlubokých ansámlů, monte carlo dropout a temperature scaling. Tyto metody jsou 
aplikovány na šest modelů pro počítačové vidění: LeNet-5, ResNet-18, MobileNetV2, U-Net, 
DeepLabV3 a SSD300. U těchto metod byly prozkoumány možnosti využití na předtréno-
vaných modelech, i na modelech natrénovaných od nuly. Modely jsou hodnoceny na 6 
datasetech počítačového vidění pro úlohy klasifikace, sémantické segmentace a detekce ob­
jektů. Modely jsou validovány za použití velkého množství metrik, hodnotící jak přesnost 
predikcí, tak i přesnost odhadů neurčitosti. Modely jsou rovněž evaluovány na datasetech 
transformovaných pomocí rotace, náhodného šumu, rozostření a změny jasu, kontrastu a 
saturace obrazu. Tyto experimenty nám dávají důležité informace o odolnosti modelů vůči 
různým typům změn v datasetech. 

Tyto modifikované modely dosahují slibných výsledků. V klasifikačním datasetu F M -
NIST, který obsahuje 28x28 obrázků oblečení ve stupních šedi, dosáhl ansámbl pěti modelů 
LeNet-5 o 1,2 % lepší přesnosti než základní LeNet-5 model. Na rotovaném F M N I S T 
datasetu dosáhl LeNet-5 model s přidanými dropout vrstvami až o 5 % lepší přesnosti a 
zároveň měl kvalitnější odhady neurčitosti. 

V klasifikačním datasetu CIFAR-100, který obsahuje 32x32 realistické fotografie 100 
kategorií různých objektů, dosáhl ansámbl pěti modelů ResNet-18 téměř o 11 % lepší přes­
nosti než základní model ResNet-18 a téměř o 6 % lepší kalibrační chyby. Modifikované 
modely s přidanými dropout vrstvami dosahují lepší přesnosti až o 4 %, mají spolehlivější 
odhady neurčitosti a zároveň jsou odolnější vůči změnám v transformovaných datasetech. 

V segmentačním datasetu MedSeg COVID-19, který obsahuje C T skeny plic pacientů s 
COVID-19, s přidaným náhodným šumem dosahuje ansámbl modelů U-Net zvýšení přes­
nosti až o 70 % a o 0.2 v IOU v porovnání se základním U-Net modelem. Ansámbl mod­
elů dosahuje rovněž lepších odhadů neurčitosti. U-Net model s přidanými dropout vrst­
vami dosahuje na datasetu s přidaným šumem zlepšení přesnosti až o 20 % a zároveň má 
spolehlivější predikce neurčitosti. 

V segmentačním datasetu P A S C A L - V O C , který obsahuje fotografie realistických scén, 
transformovaného pomocí náhodného šumu, dosahuje DeepLabV3 model s přidanými dropout 
vrstvami lepší přesnosti až o 5 % a zároveň má kvalitnější odhady neurčitosti. 

V detekčním datasetu P A S C A L - V O C dosahují všechny varianty modelu SSD300 téměř 
totožných výsledků. 

Z těchto výsledků je patrné, že ansámbly a přidávání dropout vrstev může zlepšit přes­
nost i kvalitu odhadů neurčitosti klasifikačních a segmentačních modelů natrénovaných od 
nuly i předtrénovaných. Tyto výsledky se ale nepotvrdily na modelu SSD300 určenému pro 
detekci objektů. 



Temperature scaling vylepšil kvalitu odhadů neurčitosti u všech modelů, které neměly 
už předtím kvalitní odhady. Velkou výhodou této metody je, že není potřeba zasahovat do 
architektury modelu nebo ho znovu trénovat. 

Monte carlo dropout sice dosáhl lepších výsledků než základní modely, toto bylo ale díky 
přidaným dropout vrstvám, nikoliv samotnému monte carlo dropout vzorkování. Monte 
carlo dropout vzorkování samo o sobě zlepšuje kvalitu odhadů neurčitosti, ale pouze u 
modelů které mají přehnaně sebejisté predikce. Velkou nevýhodou této metody je nutnost 
provést několik predikcí, které se poté zprůměrují. Toto značně zpomaluje inferenci. Proto v 
této práci nebyl objeven důvod, který by zdůvodnil použití Monte carlo dropout vzorkování 
namísto například temperature scalingu a přidáním dropout vrstev do modelu. 

Ansámbly dosahují dobrých výsledků na standartních test setech, ale na transformovaných 
datech často dosahují horších výsledků než architektury s přidanými dropout vrstvami. Pro 
optimální výsledky je možné zkombinovat několik modelů s přidaným dropoutem do an­
sámblu a tento ansámbl poté ještě upravit temperature scalingem. 
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Chapter 1 

Introduction 

Modern deep neural networks have over the years significantly improved their performance 
on common classification, segmentation, and object detection tasks. Unfortunately, as these 
models get bigger and more complex, their predictions of uncertainty seem to be less precise 
and they are often overconfident. This can lead to difficulties when employing these models 
in the real world. In the real world, the model can often encounter data that are very 
different from those it was trained on. In these situations, the model needs to provide a low 
confidence score so that it can for example be retrained using these unknown data samples, 
or a human operator can handle the situation. 

Past works about uncertainty estimation methods usually focus mainly on the perfor­
mance of one model architecture on one dataset using a limited set of evaluation metrics. 
Moreover, most of the time, these methods are only compared to baseline methods. This 
can cause problems when choosing the perfect method for a specific model architecture and 
problem settings. 

Instead, this work focuses on multiple model architectures and evaluates them on var­
ious computer vision datasets for image classification, semantic segmentation, and object 
detection. The uncertainty estimation methods are evaluated not only on models trained 
from scratch but also when being employed on pretrained models. This is important since 
training large models from scratch can be computationally costly and time-consuming. 

The modified models are also evaluated on datasets distorted by various strengths of 
image distortions, which simulate changes to images frequently encountered in the real 
world (noise, blur, change in brightness). These experiments provide valuable findings 
about predictive performance and quality of uncertainty estimations of these models when 
tasked with significantly different data than they were trained on. 

Chapter 2 describes model architectures used in the experiments. Chapter 3 describes 
the used evaluation metrics to measure model performance and uncertainty estimation 
quality. Chapter 4 focuses on uncertainty estimation techniques that can improve the 
model's predictive performance and uncertainty estimation quality. Chapter 5 describes 
the structure of experiments, evaluates the models, and forms practical recommendations 
for employing these uncertainty estimation methods in practice. 
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Chapter 2 

Used Deep Learning Models 

This chapter describes commonly used deep learning models for image classification, se­
mantic segmentation, and object detection. These models are evaluated in chapter 5. 

2.1 LeNet-5 

The LeNet-5 [21] is a simple convolutional neural network used for image classification. 
LeNet-5 has two convolution layers, after each convolution there's a max pooling layer 
and after the last max pooling layer there's a block of 3 fully connected layers. The tanh 
activation function is applied after every convolution and fully connected layer. 

LeNet-5 was developed to classify handwritten zip code digits in 1989. 

2.2 ResNet 

ResNet [12] is a convolutional neural network that introduced skip connections. It can be 
used for image classification or as a backbone for semantic segmentation, instance segmenta­
tion, object detection, etc. Skip connections operate by jumping over one or more following 
layers. This helps with the vanishing gradient problem. Vanishing gradient problem can 
occur in deeper networks when backpropagation to earlier layers can make the gradient 
infinitely small. 

X 

Figure 2.1: Example of a skip connection (taken from [12]). 

There are number of variants of the ResNet networks. Authors suggested 18, 34, 50, 
101 and 152 layer variants. While the 18 and 34 layer variants use the basic block, which 
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consists of two 3x3 convolutions the larger variants use a bottleneck block, which consists 
of two l x l convolutions and a one 3x3 convolution, which serves as a bottleneck and helps 
to reduce model complexity in deeper variants. 

Figure 2.2: ResNet basic building block (left), used in the 18 and 34 layer variants, and the 
bottleneck block, used in the 50, 101 and 152 layer variants (taken from [12]). 

ResNet won the ImageNet 2015 [6] image classification, detection, and localization com­
petitions as well as the MS C O C O 2015 [22] detection and segmentation competitions. Since 
then, skip connections have been used in many other neural network architectures such as 
DenseNet [16] or ResNext [36]. 

2.3 MobileNet 

MobileNet is a family of small, efficient and fast neural networks designed to work on 
embedded devices. They can be used for image classification or as backbones for semantic 
segmentation, instance segmentation, object detection, etc. There are 3 versions of the 
MobileNet architectures: MobileNetVl [15], MobileNetV2 [32], and MobileNetV3 [14]. 

2.3.1 M o b i l e N e t V l 

Instead of standard convolution filters, MobileNetVl splits the convolution operation into 
depthwise and pointwise convolutions. This approach produces features with same dimen­
sions but needs less parameters. 

Depthwise convolution applies a single filter to a single input channel, whereas standard 
convolution applies the filters to all of the input channels. Depthwise convolution basically 
filters the data from one channel. To combine multiple channels and to create new features 
a pointwise convolution is used. Pointwise convolution combines the output of depthwise 
convolution by a 1 x 1 filter. This approach significantly reduces computational cost while 
only slightly decreasing accuracy. 

2.3.2 Mobi leNetV2 

MobileNetV2 added a second pointwise convolution before depthwise convolution that ex­
pands the data before filtering them with depthwise convolution. Also, a jump connection 
spanning the block was added. This whole block was named Inverted Residual Block and 
helped to improve the performance. 
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2.3.3 Mobi leNetV3 

MobileNetV3 added a squeeze and excite module after the second pointwise convolu­
tion. This helps to give unequal weights to different channels. Also Network Architecture 
Search [38] (NAS) and NetAdapt [37] algorithms were used to improve the architecture. 

2.4 U-Net 

U-Net [31] is a fully convolutional neural network, which means it does not containt any 
fully connected layers and therefore can accept image of any size. It was developed for use 
in medical image segmentation. 

It consists of downsampling and upsampling paths. In the downsampling path, 3 x 3 
convolutions and R e L U layers are followed by 2 x 2 max pooling layers. In the upsampling 
path, 3 x 3 convolutions and R e L U layers are followed by 2 x 2 transposed convolution layers 
which provide the upsampling. The output of every downsampling block is also cropped 
and concatenated to the corresponding upsampling block. 

input 
image 

tile 

256 256 

128 64 64 2 

output 
segmentation 
map 

1024 512 

-»-conv3x3, ReLU 
copy and crop 

f max pool 2x2 
• up-conv 2x2 

conv l x l 

Figure 2.3: The U-Net architecture. Downsampling path (left) is being cropped and con­
catenated to the upsampling path (right). Taken from [31]. 

2.5 DeepLab 

DeepLab is a family of convolutional neural networks used for semantic image segmentation 
on realistic scenes. There are 4 versions of these models: DeepLabVl [2], DeepLabV2 [3], 
DeepLabV3 [4] and DeepLabV3+ [5]. These models successively improved the state of the 
art results on the P A S C A L VOC-2012 semantic image segmentation task. 

Each of these models consist of a backbone, which produces features, and a classifier 
head, which computes classification scores for each pixel. 

One novel idea that all of the DeepLab models share is called atrous convolution. While 
standard convolution always samples neighbouring pixels, atrous convolution samples only 
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every nth pixel. This helps to widen the receptive field of filters and to incorporate larger 
context. 

2.6 Single Shot Detector (SSD) 

Single Shot Detector (SSD) [23] is an object detection model. It uses a single shot approach, 
which is different from two step approach used by region proposal networks like R C N N [9] 
and Faster-RCNN [30]. The original architecture uses the VGG16 [34] network as the 
backbone. 

It uses multiple predefined bounding box aspect ratios. These predefined boxes are 
placed on feature maps of different scales. This helps to detect objects of various sizes and 
shapes. For each of these predefined boxes, it outputs confidence scores for the presence of 
each object and box shape offsets to better match the predefined box to the object shape. 

_ I , 

i 1 

i i 1 , 1 
1 , 1 

~ l 

i 1 

i i 

1-1 1 

Ld 
L 

+ 1 - i 
1-1 1 

Ld 
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+ 1 -

r 
1 
1 

1 1 1 
1 1 

1 
1 

1 1 1 
1 1 

Ld 
L 

= _ = _ 
+ 1 - * loc : A(cx, cy, w. h) 

conf : (ci,<p2, • • •, Cp) 
* loc : A(cx, cy, w. h) 
conf : (ci,<p2, • • •, Cp) 

(a) Image wi th G T boxes (b) 8 x 8 f e a t u r e m a p (c) 4 x 4 f e a t u r e m a p 

Figure 2.4: Example of the SSD prediction process. The detector uses predefined bounding 
boxes with different aspect ratios. And evaluates them at feature maps with different sizes. 
This helps the model to detect objects with different shapes and sizes. The model outputs 
classification scores and regression offsets for the location of each bounding box (image 
taken from [23]). 

For training, the total MultiBox loss is calculated as a weighted sum of localization loss 
(Smooth L I loss) and classification loss (Cross Entropy loss). 

(i 



Chapter 3 

Evaluation Metrics 

This chapter describes commonly used evaluation metrics for deep learning models for image 
classification, semantic segmentation, and object detection tasks. These metrics evaluate 
both the predictive performance as well as quality of uncertainty estimation. 

3.1 Prediction Accuracy 

Prediction acuracy is defined as the number of correct predictions divided by the number of 
total predictions. Accuracy is commonly used in image classification and semantic segmen­
tation problems. However, it can be misleading when used on imbalanced datasets, where 
the model can ignore the lower-represented classes and still achieve good overall accuracy. 
These imbalances are common in semantic image segmentation datasets. 

3.2 Average Confidence 

Average confidence is an average of confidence scores on all samples in the test set. These 
scores are usually obtained from the softmax function. Confidence should encapsulate how 
likely is the prediction correct. For a well calibrated model, its average confidence score 
should be close to its average accuracy. 

Maximum possible confidence is 1. Minimal possible confidence confidence happens 
when the output probability distribution is flat (it has highest possible entropy). The 
lowest possible confidence value is where N is the number of classes. 

3.3 Brier Score 

Brier score [1] measures accuracy of probability predictions. Its definition is equivalent to 
the Mean Squared Error: 

i=l 
Where N is the number of classes, x is the probability output vector and y is the actual 

outcome vector of the events (0 = event did not occur, 1 = event did occur). 
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Brier score is a proper scoring rule, which means that there is no trivial solution which 
would yield perfect brier score. When the model achieves a perfect Brier score of 0, the 
model has a perfect calibration and accuracy. 

3.4 Calibration Graph and Expected Calibration Error 

Calibration measures how close are the model confidence scores to the real probability 
of being correct. Perfect calibration means that for example, of all the predictions with 
confidence score 0.5, 50 % of them are correct. 

There are several ways to observe calibration. One of which is a calibration graph. A n 
example of a calibration graph can be found in figure 5.2. Calibration graphs show accuracy 
as a function of confidence. Model predictions are grouped into equally spaced bins by their 
confidence levels. Accuracy is then computed for each bin. Perfect calibration occurs when 
the mean accuracy of the bin is the same as the mean confidence of the bin. The difference 
between the bin's mean accuracy and its mean confidence value is shown in orange. The 
bottom row of the graphs shows the confidence distribution of the samples. 

Another way of measuring calibration is by using the Expected Calibration Error (ECE) 
[27], which is defined as:. 

M \B I 
E C E = V ^ ^ | a c c ( £ m ) - conf(5 m ) | (3.2) 

' n 
m = l 

It is basically a weighted average of the difference between accuracy and confidences of 
the bins (the orange bars in the calibration graph). 

Although calibration graphs and E C E can be useful, they have shortcomings. Models 
can have perfect calibration on the dataset level but still be overconfident on some parts of 
the dataset and uncerconfident on other parts [17]. 

3.5 Receiver Operating Characteristic Curve 

A receiver operating characteristic (ROC) curve measures the ability of a binary classifier to 
classify between positive and negative samples as its classification threshold is varied. It is 
created by plotting the true positive rate (TPR, also known as sensitivity or recall) against 
the false positive rate (FPR, also known as specificity) while increasing the classification 
threshold from 0 to 1. 

The true positive rate measures how many of the positive samples were classified as 
positive. 

TP 
TPr = — — (3.3) 

TP + FN v ' 
The false positive rate measures how many negative samples were classified as negative. 

FP 
FPr = — — — (3.4) 

FP+TN v ' 

In the context of uncertainty estimation models, R O C curves are often used to measure 
the model's ability to assign lower confidence scores to incorrectly classified (or out of 
distribution) samples and higher confidence scores to correctly classified samples. 
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Receiver Operating Characteristic Curve 

y Dropout inference: AUC = 0.901 
Dropout training: AUC = 0.900 

/ MC Dropout: AUC = 0.900 
/ No Skill: AUC = 0.5 

0.0 V- 1 1 1 1 
0.0 0.2 0.4 0.6 0.8 1.0 

False Positive Rate 

Figure 3.1: Receiver Operating Characteristic Curve of the LeNet-5 models on the F M N I S T 
test set. 

To better quantify the classifier performance, Area Under Curve (AUC) is often com­
puted. The maximum possible A U C is 1 with the curve reaching the point (0.0, 1.0), which 
means 1.0 true positive rate and 0.0 false positive rate. 

3.6 Precision Recall Curve 

Similarly as the R O C curve, the Precision Recall (PR) curve measures the quality of model 
scores for positive (correct or in distribution) and negative (incorrect or out of distribution) 
samples. P R curve plots the classifier precision against recall while changing the classifi­
cation threshold. P R curve is often preffered over R O C curve when the dataset is more 
imbalanced. 

Precision measures how many predicted positives are true positives. 

P = TWTFP <3'5) 

Recall measures how many true positives were predicted as positives. 

R=TWTFN <3'6> 
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Precision Recall Curve 
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Figure 3.2: Precision Recall Curve of the LeNet-5 models on the F M N I S T test set. 

Similarly as with R O C curves, to better quantify the classifier performance on the P R 
curve, the area under the curve (AUC) is computed. The maximum possible A U C is 1 with 
the curve reaching the point (1.0, 1.0), which means 1.0 precision and 1.0 recall. 

3.7 Intersection Over Union 

Intersection Over Union (IOU, also known as Jaccard index) is a metric commonly used 
in segmentation and object detection. Measures how well the area of predictions fits the 
area of ground truth. It is defined as the area of intersection of the predictions and ground 
truth divided by the area of the union of the predictions and ground truth. 

For semantic segmentation, IOU is computed for the predicted and ground truth pixel-
wise masks. Semantic segmentation, datasets are commonly very imbalanced, so a simple 
pixelwise accuracy is not enough to judge the performance of a model on all classes. In this 
case, mean class IOU is therefore much better metric since it weights mean IOU of every 
class equally. 

For object detection, IOU is computed for the predicted and ground truth bounding 
boxes and it is used as a measurement on how tight do the predicted bounding boxes fit. 
It is also used to compute the Mean Average Precision metric, where only predictions with 
IOU larger than some threshold are considered true positives. 

Semantic segmentation experiments in sections 5.3 and 5.4 use two kinds of IOU im­
plementations. Mean Class IOU (mlOU) is defined as the mean of pixelwise IOUs for each 
class. And IOU is defined as the mean IOU of all foreground pixels. 

IOU (3.7) 
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3.8 Mean Average Precision 

Mean Average Precision (mAP) is the most commonly used metric to evaluate object de­
tectors. It draws a precision recall curve for a every class and a certain IOU threshold. 
This curve is then smoothed: The precision value for recall r is replaced with the maximum 
precision for any recall > r. 

PinterP(r) = max p(r) for f >r. (3.8) 

The exact evaluation procedure for this smoothed precision recall curve depends on the 
dataset. 

3.8.1 P A S C A L - V O C 2007 Mean Average Precision 

The P A S C A L - V O C [7] 2007 detection competition evaluates the smoothed precision recall 
curve in 11 equally spaced recall values from 0.0 to 1.0. For each of these recall values, 
the precision is recorded. The Average Precision (AP) for each class is the mean of these 
values. To obtain the mAP, the A P for each class is averaged. This is the implementation 
used for evaluation in Section 5.5. 

3.8.2 P A S C A L - V O C 2008-2012 Mean Average Precision 

The P A S C A L - V O C 2008-2012 detection competitions evaluate the smoothed curve differ­
ently. The smoothed curve is sampled at each point and the Area Under Curve (AUC) is 
computed. This method is more precise since no approximation is done. 

3.8.3 M S C O C O Mean Average Precision 

The MS C O C O [22] dataset uses the term m A P differently. The P R curve is sampled at 101 
points and the class average is called the A P . This would be traditionally called the mAP. 
To obtain the MS C O C O mAP, the A P is computed for multiple IOU thresholds from 0.5 
to 0.95 using 0.05 steps and multiple sizes of bounding boxes. Then, the MS C O C O m A P 
is the average of all of these categories. 
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Chapter 4 

Uncertainty Estimation Techniques 

This chapter describes some of the commonly used methods to improve predictive uncer­
tainty estimation and model calibration. 

Bayesian Neural Networks (BNNs) have been commonly used to improve the uncertainty 
estimation of models. BNNs work by learning a probability distribution of the model 
parameters. However, they are difficult to train and often have worse performance than 
deterministic models. The Monte Carlo Dropout [8] and Deep Ensembles [20] methods have 
been created to also model distribution over their model parameters while being based on 
existing deterministic neural network architectures. 

4.1 Baseline (softmax) 

In a classification problem, neural networks output a vector which usually does not sum to 1 
and can contain even negative numbers. To convert this vector into probability distribution, 
the softmax function is used. The softmax function is defined as: 

<r(zi) = f fori = l,2,...,K (4.1) 

Where K is the length of the output vector or, in other words, the number of classes in 
the classification problem and z is the output vector. Basically, it applies the exponential 
function to every element Z{ of the output vector z and then normalizes these values by 
dividing them by the sum of these exponentials. The output of the softmax function is 
another vector which sums to 1 and only contains numbers from 0 to 1 and can therefore 
be interpreted as probability distribution. 

The softmax function is a generalization of the sigmoid function a(z) = 1+

1

e-z to mul­
tiple dimensions. Since the softmax function uses the exponential function, small changes 
in input around 0 can lead to large changes in output. This can make it difficult for the 
networks to output an uniform probability distribution, which would be interpreted as 
prediction with very low confidence. 
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Figure 4.1: Plot of the sigmoid function. 

Experiments in [13] show that while the softmax function outputs have very often poor 
correspondence to confidence, the maximum probability from the softmax function tends 
to be lower for out of distribution samples or incorrectly classified samples. This can make 
it sufficient to use the softmax outputs for the detection of incorrectly classified or out-of-
distribution samples even though the prediction probabilities are often misleading. 

4.2 Temperature Scaling 

Temperature Scaling is a simple extension of the Piatt scaling [29] technique. Instead of 
training a logistic regression model on the model output logits, temperature scaling uses a 
single scalar parameter T > 0, which divides the model output logits. 

The T parameter is optimized with respect to the Negative Log Likelihood loss on the 
validation set. Increasing T beyond 1 flattens the probability distribution and increases 
entropy. In turn, decreasing T decreases entropy and sharpens the output distribution. 
Wi th T = 1, the output distribution remains unchanged. 

Temperature scaling is a simple technique which can be used on already trained models 
without needing to change their architecture. This method also has no effect on prediction 
accuracy since all logits are divided by the same number T and therefore the largest logit 
remains the largest. 

One disadvantage may be that there needs to be a separate validation set apart from the 
training and test sets on which the T parameter is trained. From my experience, another 
limitation is that training the T parameter may be difficult if the neural network is already 
well calibrated. Despite its simplicity, the technique performed the best in experiments 
conducted in [10]. 

4.3 Monte Carlo Dropout 

Monte Carlo Dropout works by using dropout at test time, performing multiple forward 
passes, and then averaging these forward passes to get the final model input. This method 
was introduced in [8] where it was shown that this technique approximates the distribution 
of the model parameters. This is similar to how a Bayesian neural network (BNN) operates. 

Advantages to using Monte Carlo Dropout compared to BNNs are that there is no 
increase in training time, only small changes to existing model architectures are needed 
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and there should be no decrease in accuracy. These advantages and a relatively simple 
setup has made Monte Carlo Dropout a popular choice for uncertainty estimation. 

One disadvantage of this method is that it generally requires a relatively large number of 
forward passes (> 20) to provide optimal prediction accuracy and uncertainty estimation. 
Another disadvantage is that there are infinitely many possibilities to setup the dropout 
layers inside the model architecture. For example, in [24] Dropout2d layers are used after 
every ReLU activation of the ResNet model, while in [18] and [26] dropout layers are used 
only on deeper layers. After adding dropout to the model architecture, the model also 
has to be finetuned or retrained from scratch. To achieve the best results, the dropout 
probability p also needs to be set up properly. A l l of this makes Monte Carlo Dropout 
tricky to use to its full potential. 

4.3.1 Dropout and Dropout2d layers 

There are two types of dropout layers used in this work. While the standard dropout layers 
are used on ID outputs of fully connected layers, the Dropout2d layers are used on outputs 
of 2D convolution layers. The standard dropout layers randomly zero out some of the 
elements of the input tensor with probability p. The Dropout2d zeroes out whole channels 
of the input tensor with probability p. 

4.4 Deep Ensembles 

Deep ensemble is a model which combines several independently trained deep neural net­
works. To obtain the ensemble's predictions, the probability distributions of its members 
are averaged. Deep ensembles have been long known to improve the accuracy of predictions. 
However, in [20] ensembles were also found out to improve calibration and robustness to 
dataset shift. 

Classical machine learning algorithms used as ensemble members have been usually 
trained only on subsets of the whole training set (bagging). This introduces randomness 
and decreases correlation between ensemble members. However, since neural networks are 
initialized with random parameters and have multiple local optima, there is no need to 
introduce another source of randomness. Neural networks also generally achieve better 
results when trained on more data. Therefore, deep ensemble members are usually trained 
on the whole training set. 

A n advantage of deep ensembles compared to monte carlo dropout is that there is no 
need to modify the model architecture. Unfortunately, both the time and the memory 
needed for training and inferencing scale linearly with the number of ensemble members. 
However, both training and inferencing can be parallelized. 

Experiments in [20] show that ensembles outperform vanilla models and monte carlo 
dropout models in terms of accuracy, calibration and robustness to dataset shift. Since 
then, deep ensembles have often been used to improve uncertainty estimation with good 
results [28] [11]. 
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Chapter 5 

Experiments, Findings and 
Practical Recommendations 

This chapter describes conducted experiments comparing popular uncertainty estimation 
methods on multiple datasets for image classification, semantic segmentation, and object 
detection. In each section, uncertainty estimation methods are evaluated on the standard 
test set as well as on artificially transformed test set with increasing strength of shift to 
simulate out-of-distribution data. The methods are evaluated on metrics that measure pre­
dictive performance (accuracy, IOU) as well as metrics that measure quality of uncertainty 
estimations (ECE, Brier score). 

The goal of these experiments is not to train models with the best possible predictive 
performance on the given dataset but to evaluate uncertainty estimation methods in real 
world conditions. Given this, usually very little (or none) hyperparameter tuning and data 
augmentation was done for each experiment. 

5.1 Image Classification on the F M N I S T dataset 

First experiment was conducted using the F M N I S T [35] dataset which consists of 60000 
training images and 10000 test images of different types of clothing. Each image is 28x28 
grayscale and has 1 of 10 classes. Since this is an image classification dataset, the goal of 
the model is to classify each image into one of the 10 classes. 

The training set of 60000 samples was divided further into a validation set of 6000 
samples, used for Tempera ture scaling, and an actual training set of 54000 samples. 
Figure 5.1 shows examples of the F M N I S T dataset. 

Ankle boot Pullover Trouser Trouser 

^ H (I I 
Figure 5.1: Examples of the F M N I S T dataset 

LeNet-5 [21] network architecture was used. This was done to see the effect of the 
methods on simple and small model. 

15 



Label Description 
0 T-shirt/top 
1 Trouser 
2 Pullover 
3 Dress 
4 Coat 
5 Sandal 
6 Shirt 
7 Sneaker 
8 Bag 
9 Ankle boot 

Table 5.1: Classes in the F M N I S T dataset 

Training was done on the training set for 20 epochs using the Adam optimizer with 
Pytorch's default parameters and cross entropy loss. After each epoch, the model was 
evaluated on the test set and test loss was computed. If the current test loss was lower than 
the previous lowest test loss, the model checkpoint was saved. Therefore, for evaluation, 
models with the lowest possible validation loss were used. 

In total, 6 models were evaluated: 

• V a n i l l a is a standard LeNet-5 model. 

• D r o p o u t inference uses the same weights as V a n i l l a and the same architecture as 
the D r o p o u t t r a in ing model. Dropout is active in test time, and 20 forward passes 
are averaged to form the final prediction.. 

• Tempera ture scaling uses the same weights and architecture as V a n i l l a but the 
model logits are post-processed using the temperature scaling technique. 

• D r o p o u t t r a in ing is a LeNet-5 model with added dropout. The dropout model 
has Dropout2D layers after second and third tanh activation and standard Dropout 
layer after the first fully connected layer. A l l dropout layers had probability p = 0.2. 
Dropout is turned off for test time. 

• M C D r o p o u t uses the same architecture and weights as the D r o p o u t t r a in ing 
model while also using dropout inference. 

• Ensemble model is made up of 5 independently trained V a n i l l a models whose out­
puts are averaged. 

5 .1.1 Results on Standard Test Set 

Table 5.2 shows evaluation results on the standard test set. The Ensemble model seems 
to perform the best in all metrics by a significant margin. There seems to be little dif­
ference between other models. Interestingly, models that use dropout inference (Dropout 
inference and M C Dropou t ) have higher E C E than models that do not use it. This 
is probably because the L e N e t -5 network used is relatively small and, therefore, is not 
as prone to over confidence. Since the models are not overconfident, the dropout inference 
makes them under confident. To achieve better calibration results, the dropout probability 
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p would need to be better tuned for each model that uses dropout inference (Dropout 
inference and M C Dropou t ) . 

Method Accuracy E C E Avg. Conf. Brier score A U R O C A U P R 

Vanilla 0.887 3.330 0.917 0.016 0.902 0.986 
Dropout inference 0.887 4.536 0.862 0.016 0.901 0.987 
Temperature scaling 0.887 2.958 0.887 0.016 0.903 0.987 
Dropout training 0.886 2.956 0.901 0.016 0.900 0.986 
M C Dropout 0.885 4.056 0.869 0.016 0.901 0.986 
Ensemble 0.902 2.834 0.910 0.014 0.908 0.989 

Table 5.2: Results on on standard F M N I S T test set. E C E = Expected Calibration Error, 
Avg. Conf. = Average confidence score, A U R O C = Area Under Receiver Operating Char­
acteristic, A U P R = Area Under Precision Recall. 

Figure 5.2 shows calibration graph for the V a n i l l a , D r o p o u t inference and Temper­
ature scaling models. The models achieve relatively low E C E . While the V a n i l l a and 
Tempera ture scal ing models are very slightly overconfident, the D r o p o u t inference is 
slightly underconfident. This may be because the dropout probability p = 0.2, which was 
used in the D r o p o u t t r a in ing architecture, may be too large for the V a n i l l a weights. 
Tempera ture scaling seems to only improve the calibration slightly because the V a n i l l a 
model is already calibrated relatively well. 

Vanilla Dropout inference Temperature scaling 

I I Outputs 
H I Gap 
tct: 

0.0 0.2 0.4 0.6 
Confidence 

Confidence = 0.917 
Accuracy = 0.887 

0.0 0.2 0.4 0.6 0.8 
Confidence 

I I Outputs 
I I Gap 

ECE: 4.55% 

Confidence = 0.861 
Accuracy = 0.887 

0.0 0.2 0.4 
Confidence 

Figure 5.2: Calibration graphs for the LeNet-5 V a n i l l a , D r o p o u t inference and Tem­
perature scaling models on the F M N I S T test set. 

Figure 5.3 shows the calibration graph for the D r o p o u t t ra in ing , M C Dropou t , 
and Ensemble models. The M C D r o p o u t model has higher E C E than the D r o p o u t 
t r a in ing model. This is probably because the D r o p o u t t r a in ing model is already well 
calibrated and dropout inference made the model underconfident (same as the V a n i l l a and 
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D r o p o u t inference models). In addition to having the highest accuracy, the Ensemble 
model has also the lowest E C E . 

Dropout training MC Dropout Ensemble 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
Confidence Confidence Confidence 

Confidence Confidence Confidence 

Figure 5.3: Calibration graphs for the LeNet-5 D r o p o u t t ra in ing , M C D r o p o u t and 
Ensemble models on the F M N I S T dataset. 

5.1.2 Results on Rotated Test Set 

In this section test set is rotated from 0 to 60 degrees using 5 degree steps. At each step, 
the models are evaluated on all metrics. This experiment shows how much are the models 
resistant to dataset shift. Figure 5.4 shows examples of the F M N I S T dataset rotated by 20 
degress. 

Ankle boot Pullover Trouser Trouser 

Figure 5.4: Examples of the F M N I S T dataset using 20 degrees of rotation 

Figure 5.5 shows the evaluation results with increasing rotation. Accuracy decreases 
with more rotation similarly for all of the models. Both Brier score and E C E increases 
fastest for the V a n i l l a model. While the Ensemble model has the lowest E C E on the 
normal test set, it is outperformed on more shifted samples by the D r o p o u t inference 
and M C D r o p o u t models. This hints at possible advantages of using dropout sampling 
when encountering out-of-distribution data. 

When looking at the A U R O C and A U P R metrics, all the models perform similarly. 
However, the Ensemble, D r o p o u t inference and M C D r o p o u t models perform the 
best. 
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Figure 5.5: Graph of evaluation metrics on the F M N I S T test set with increasing degrees of 
rotation, using the LeNet-5 network. 

5.1.3 Results on Test Set with Additive Gaussian Noise 

In this section, the models are evaluated on test set with additive Gaussian noise added. 
Equation 5.1 shows the definition of random additive Gaussian noise transformation. Where 
x is the input image, rand() is standard normal distribution generator and std is the stan­
dard deviation. 

x + rand()* std (5-1) 

In this experiment, the std parameter is increased from 0 to 0.6 using 0.05 steps. Figure 
5.6 shows examples of the F M N I S T dataset transformed with additive Gaussian noise using 
std = 0.2. 

Ankle boot Pullover Trouser Trouser 

Figure 5.6: Examples of the F M N I S T dataset with additive Gaussian noise using std = 0.2. 

Figure 5.7 shows evaluation results with increasing parameter std. Although accuracy is 
fairly similar on the standard test set, the models trained with dropout (Dropout t r a in ing 
and M C Dropou t ) have significantly lower accuracy on noisier data than the other models. 
This is surprising because, intuitively dropout during training should make models more 
resistant to noise in data. 
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Intensity of shift vs accuracy Intensity of shift vs calibration error Intensity of shift vs Receiver-Operator Curve 
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Figure 5.7: Graph of evaluation metrics on the F M N I S T test set with increasing strength 
of Gaussian noise, using the LeNet-5 network. 

D r o p o u t t r a in ing also seems to have the worst Brier score and E C E on noisier samples. 
In general D r o p o u t inference achieves the best E C E on data with more noise. We can 
see that the E C E curve even goes down before going up again. This is probably because the 
chosen probability p = 0.15 is too high and, therefore, the model is underconfident on less 
shifted data. As the shift strength increases, the model becomes overconfident, the same 
as the other models. 

5.1.4 Findings 

Experiments using both transformations show that Ensemble improves predictive per­
formance and uncertainty estimation even on noisier samples. The D r o p o u t t r a in ing 
and M C D r o p o u t models improve accuracy on rotated test set but surprisingly achieve 
the worst accuracy on test set with Gaussian noise. The Tempera ture scaling and 
D r o p o u t inference models offer better quality uncertainty estimates, compared to the 
V a n i l l a model, on both transformed test sets. 

5.2 Image Classification on the CIFAR-100 Dataset 

The CIFAR-100 dataset [19] contains 60000 32x32 color images split into 100 classes, each 
class containing 600 images. There are 500 training images and 100 testing images per 
class. Since this is an image classification dataset, the goal of the model is to classify each 
image into one of the 100 classes. 

These 50000 training images were randomly split into 45000 images used for training 
and 5000 images used as the validation set for the Tempera ture scaling method. The 
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split was done using the t o r c h . u t i l s .data.random_split method using manual seed with 
value 0. 

This dataset was chosen because it is fairly challenging while still being relatively small 
and easy to train on. Figure 5.8 shows examples of the CIFAR-100 dataset. 

mountain forest seal mushroom 

Figure 5.8: Examples of the CIFAR-100 dataset. 

For evaluation, the ResNet-18 1 [12] and MobileNetV2 2 [32] architectures were used. 
Training was done for 200 epochs using the Adam optimizer with cross entropy loss and 
batch size of 64. Checkpoints were saved when the models reached the lowest validation 
loss. In total, 8 models are evaluated: 

• V a n i l l a is a standard ResNet-18 or MobileNetV2 network. 

• D r o p o u t inference uses the same weights as V a n i l l a model and the same architec­
ture as the D r o p o u t t r a in ing model. Dropout is active in test time, and 20 forward 
passes are being averaged to form the final prediction. 

• Tempera ture scaling uses the same weights and architecture as V a n i l l a model but 
the model logits are post-processed using the temperature scaling technique. 

• D r o p o u t t r a in ing is a ResNet-18 or MobileNetV2 network with added dropout. The 
ResNet-18 models with dropout have a single Dropout2d layer with p = 0.1 inserted 
at the end of each Residual Block. This architecture is the same as the one used in 
[24]. Only changing the probability p to 0.1 yielded slightly better results. Similarly, 
the MobileNetV2 models with dropout have a single Dropout2d layer with p = 0.1 
inserted at the end of each Inverted Residual Block. 

• M C D r o p o u t uses the same architecture and weights as D r o p o u t t r a in ing model 
while also using dropout inference. 

• Ensemble model is meade up of 5 independently trained V a n i l l a models whose 
outputs are averaged. 

• F ine tuned (or V a n i l l a finetuned w i t h dropout) uses the D r o p o u t t r a in ing 
model architecture and the V a n i l l a model weights. The model with added dropout 
layers is then finetuned on the training set for 10 epochs. This is done to see if it is 
possible to add dropout to pretrained model. 

• F ine tuned w i t h M C D (or V a n i l l a finetuned w i t h dropout w i t h M C D ) is the 
same model as F ine tuned model but also uses dropout inference. 

1 ResNet and ResNet Dropout implementations were taken from h t tps : / /g i thub .com/mat t i a segu / 
uncer ta in ty_es t imat ion_deep_learn ing 

2 Mobi l eNe tV2 implementation was taken from ht tps : / /g i thub .com/NoUnique/Mobi leNet -
CIFARlOO.pytorch 
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5.2.1 Results on Standard Test Set 

Table 5.3 shows the evaluation results on the standard test set for the ResNet-18 model. 
The Ensemble model achieves the best results on all metrics except E C E , where it achieves 
the third best result. This is consistent with the results in Section 5.1 where the Ensemble 
model also performed the best on the standard test set. 

A l l models using dropout inference achieve better E C E than the models using normal 
inference. However, A U R O C and A U P R do not seem to increase when using dropout 
inference. This is consistent with the results in Section 5.1. 

Method Accuracy E C E Avg. Conf. Brier score A U R O C A U P R 

Vanilla 0.627 8.281 0.721 0.005 0.836 0.904 
Dropout inference 0.619 2.102 0.605 0.005 0.836 0.899 
Temperature scaling 0.627 2.461 0.609 0.005 0.838 0.904 
Dropout training 0.639 8.256 0.734 0.005 0.845 0.915 
M C Dropout 0.636 1.645 0.631 0.005 0.842 0.912 
Ensemble 0.734 2.352 0.755 0.004 0.868 0.950 
Finetuned 0.662 6.989 0.745 0.005 0.849 0.923 
Finetuned with M C D 0.655 3.900 0.622 0.005 0.845 0.918 

Table 5.3: ResNet-18 results on the CIFAR-100 test set. Avg. Conf. = Average confidence, 
A U R O C = Area Under Precision Recall curve, A U P R = Area Under Precision Recall curve. 

MobileNetV2 model results are in the table 5.4. Similarly as when using the ResNet-18 
model, the Ensemble method seem to achieve the best results in most of the metrics. Also, 
like the ResNet-18 model, dropout inference seems to improve the E C E metric compared to 
standard inference. Interestingly, this is not the case with the F ine tuned models, where 
dropout inference has a negative effect on E C E . 

Method Accuracy E C E Avg. Conf. Brier score A U R O C A U P R 

Vanilla 0.593 9.036 0.692 0.005 0.831 0.889 
Dropout inference 0.595 1.916 0.598 0.005 0.829 0.887 
Temperature scaling 0.593 2.663 0.570 0.005 0.833 0.890 
Dropout training 0.613 7.432 0.698 0.005 0.838 0.901 
M C Dropout 0.613 2.884 0.596 0.005 0.844 0.904 
Ensemble 0.668 4.780 0.630 0.004 0.854 0.926 
Finetuned 0.593 5.316 0.653 0.005 0.829 0.888 
Finetuned with M C D 0.596 6.566 0.532 0.005 0.827 0.885 

Table 5.4: MobileNetV2 results on the CIFAR-100 test set. Avg. Conf. = Average con­
fidence, A U R O C = Area Under Precision Recall curve, A U P R = Area Under Precision 
Recall curve. 

Figure 5.9 shows the calibration graph for the V a n i l l a , D r o p o u t inference, Tem­
perature scaling, and Ensemble models using the ResNet-18 architecture. The V a n i l l a 
model seems to be overconfident in its predictions and using D r o p o u t inference corrects 
this. This is probably because the probability p = 0.1 well chosen and not big enough to 
make the model underconfident (as happened with the D r o p o u t inference method in pre-
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vious section 5.1). The Tempera ture scaling and Ensemble methods are also relatively 
well calibrated. 

Dropout inference Temperature scaling 

I 1 Outputs 
I I Gap 

ECE: 2.46% 

0.00 0.25 0.50 0.75 1.00 
Confidence 

0.00 0.25 0.50 0.75 1.00 
Confidence 

0.00 0.25 0.50 0.75 1.00 
Confidence 

0.00 0.25 0.50 0.75 1.00 
Confidence 

o. 0.6 
E 

Confidence = 0.721 
Accuracy = 0.627 

0 
E 

° 0.4 

Confidence = 0.604 
Accuracy = 0.620 

a. 0.6 
E 

Confidence = 0.609 
Accuracy = 0.627 

E 

° 0.4 

Confidence = 0.755 
Accuracy = 0.734 

0.00 0.25 0.50 0.75 1.00 
Confidence 

0.00 0.25 0.50 0.75 1.00 
Confidence 

0.00 0.25 0.50 0.75 1.00 
Confidence 

ii 

• t i l 
0.00 0.25 0.50 0.75 1.00 

Confidence 

Figure 5.9: Calibration graphs on the standard CIFAR-100 test set for the ResNet-18 
V a n i l l a , D r o p o u t inference, Tempera ture scal ing and Ensemble models. 

Figure 5.10 shows the calibration graph for the D r o p o u t t ra in ing , M C Dropou t , 
F ine tuned and F ine tuned w i t h M C D models using the ResNet-18 architecture. Curi­
ously, the D r o p o u t t r a in ing model seems suffer the same level of overconfidence as the 
V a n i l l a method. And using dropout inference ( M C D r o p o u t model) seems to help. The 
F ine tuned model seems to be better calibrated than the V a n i l l a and D r o p o u t t r a in ing 
models. However, this makes the F ine tuned w i t h M C D model underconfident. This 
example shows that finding the optimal probability p for dropout inference heavily depends 
on how overconfident or underconfident is the base model. 

23 



Dropout training MC Dropout 

1 1 Outputs 
IZZ1 Gap 

ECE: 8.26% i 

/ 

f f l / l 1, _ j 

ä 0.6 

E 
o 0.4 

Confidence = 0.734 
Accuracy = 0.639 

JU 

0.00 0.25 0.50 0.75 1.00 
Confidence 

Confidence = 0.632 
Accuracy = 0.639 

n 
0.00 0.25 0.50 0.75 1.00 

Confidence 

Vanilla finetuned with dropout Vanilla finetuned with dropout with MC 

l.o -I I Outputs 
Ľ ^ l Gap 

ECE: 6.99% 

0.00 0.25 0.50 0.75 1.00 
Confidence 

Confidence = 0.745 
Accuracy = 0.662 

Jl l 
0.00 0.25 0.50 0.75 1.00 

Confidence 

Outputs 
I I Gap 

ECE: 3.90% 

0.00 0.25 0.50 0.75 1.00 
Confidence 

0.00 0.25 0.50 0.75 1.00 
Confidence 

Confidence = 0.623 
Accuracy = 0.656 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.00 0.25 0.50 0.75 1.00 
Confidence 

0.00 0.25 0.50 0.75 1.00 
Confidence 

Figure 5.10: Calibration graphs on the standard CIFAR-100 test set for the ResNet-18 
D r o p o u t t ra in ing , M C Dropou t , V a n i l l a f inetuned w i t h dropout and V a n i l l a fine-
tuned w i t h dropout w i t h M C D models. 

The calibration graph for MobileNetV2 shown in Figure 5.11 shows very similar results 
as for the ResNet-18 network. The V a n i l l a model is overconfident, while D r o p o u t infer­
ence seems to correct this issue. Tempera ture scaling and Ensemble methods seem to 
do similarly well as with the ResNet-18 network. 
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Figure 5.11: Calibration graphs on the standard CIFAR-100 test set for the MobileNetV2 
V a n i l l a , D r o p o u t inference, Tempera ture scal ing and Ensemble models. 
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Figure 5.12 shows the calibration graph for methods that use dropout during training. 
The results are almost the same as when using ResNet-18 in Figure 5.10. Similarly as 
with ResNet-18, using dropout for training yields better accuracy than the V a n i l l a model. 
Interestingly, it does not seem to have much effect on E C E . Unlike the results from using 
the ResNet-18 network, training V a n i l l a model and then adding dropout and fmetuning 
it for 10 epochs (Finetuned model) does not improve the accuracy of the MobileNetV2 
model and only improves the E C E slightly. When using dropout inference the E C E actually 
increased. This probably an indication that the MobileNetV2 network is more sensitive to 
dropout. Maybe because it is smaller than the ResNet-18 network. 
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Figure 5.12: Calibration graphs on the standard CIFAR-100 test set for the MobileNetV2 
D r o p o u t t ra in ing , M C Dropou t , V a n i l l a f inetuned w i t h dropout and V a n i l l a fine-
tuned w i t h dropout w i t h M C D models. 

Overall, we can see that the results are almost the same for both of the networks used. 
Ensemble models achieve the best A c c u r a c y and very good E C E . Using dropout for 
training seems to improve A c c u r a c y considerably, but only slightly improves E C E . It is 
interesting that the F ine tuned model performs very well with the ResNet-18 network 
but not with the MobileNetV2 network. This shows that not all architectures respond to 
dropout the same. 

5.2.2 Results on Test Set with Random Additive Gaussian Noise 

In this section, the models are evaluated using the same methodology as with the F M N I S T 
dataset in Section 5.1.3. That means increasing the std parameter from 0 to 0.6 using 0.05 
steps. Figure 5.13 shows examples of the CIFAR-100 transformed with additive Gaussian 
noise with std = 0.5. 
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mountain forest seal mushroom 

Figure 5.13: Examples of the CTFAR-100 dataset transformed with additive Gaussian noise 
with std = 0.5. 

Figure 5.14 shows the results of ResNet-18 network on test set with added gaussian 
noise. While the Ensemble model has the best accuracy and Brier score on the standard 
test set, the D r o p o u t t r a in ing and M C D r o p o u t models achieve the best accuracy on 
samples with more noise. Using dropout inference also seems to improve the calibration on 
noisier samples. Models trained with dropout also seem to achieve higher A U R O C and 
A U P R on noisier data. 

Intensity of shift vs accuracy Intensity of shift vs calibration error Intensity of shift vs Receiver-Operator Curve 
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Intensity of shift vs brier score Intensity of shift vs confidence Intensity of shift vs Precision-Recall 

ntensity of shift Intensity of shift Intensit Finetuned with MCD 

Figure 5.14: Graph of evaluation metrics on the CIFAR-100 test set with additive gaussian 
noise with increasing parameter std, using the ResNet-18 network. 

Figure 5.15 shows the evaluation results while using the MobileNetV2 network. The 
A c c u r a c y on noisier samples is almost the same in all the methods. Interestingly, the 
Ensemble, D r o p o u t t r a in ing and M C D r o p o u t models achieve a worse E C E than 
even the V a n i l l a model. It is not clear why. 
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Figure 5.15: Graph of evaluation metrics on the CIFAR-100 test set with additive gaussian 
noise with increasing parameter std, using the MobileNetV2 network. 

While the Ensemble methods achieve the best A c c u r a c y for both networks and 
achieve relatively good calibration, it does not seem to improve calibration on noisier 
samples very much. It is also interesting that while using dropout training helps with 
calibration on noisier samples on the ResNet-18 network, it does not have the same effect 
on the MobileNetV2 network. 

5.2.3 Results on Test Set with Color Jitter 

In this section, the models are evaluated on test set with applied color jitter to it. Color 
jitter randomly changes the brightness, contrast, and saturation of the image. While chang­
ing contrast or saturation usually does not make the image unrecognizable, changing the 
brightness too much can make it unrecognizable (mountain image in figure 5.16). This is 
why here, the brightness is changed only half as much as contrast and saturation (strength 
1.0 means strength 0.5 for brightness and strength 1.0 for contrast and saturation). Fig­
ure 5.16 shows examples of the CIFAR-100 dataset transformed with color jitter using 
strength = 1.0. 

mountain forest seal mushroom 

Figure 5.16: Examples of the CIFAR-100 dataset with color jitter using strength = 1.0. 

27 



The results of the ResNet-18 network models are shown in Figure 5.17. Ensemble 
achieves the best accuracy even on samples with a lot of jitter. F ine tuned and D r o p o u t 
t r a in ing also achieve better accuracy results than the V a n i l l a model. However, the margin 
between model accuracies stays the same for every point of A c c u r a c y chart. This means 
that technically Ensemble and F ine tuned models achieve better A c c u r a c y on shifted 
data, but only because they also achieve better A c c u r a c y on the standard test set and not 
because the models would be more immune to dataset shift. V a n i l l a , D r o p o u t t r a in ing 
and F ine tuned models are all outperformed by other models in terms of E C E . Especially 
the F ine tuned w i t h M C D model achieves good E C E even on very shifted samples. 

Figure 5.18 shows results for the MobileNetV2 network. Similarly as with the ResNet-18 
network, Ensemble achieves the best accuracy across all the shifted datasets. However, 
the F ine tuned model achieves substantially worse accuracy than the F ine tuned Resnet-
18 model. This probably means that the MobileNetV2 network cannot be finetuned with 
adding dropout layers as well as the ResNet-18 network. Other metrics show similiar results 
as with the ResNet-18 network. 

Experiments on both networks show that Ensemble models achieve the best accuracy, 
while also being reasonably well calibrated. And while using D r o p o u t t r a in ing can help 
achieve better accuracy, it does not seem to improve calibration. Using D r o p o u t t r a in ing 
or Ensemble in conjunction with D r o p o u t inference (resulting in M C Dropout ) or 
Tempera ture scaling can improve both accuracy and calibration. 
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Figure 5.17: Graph of evaluation metrics on the CIFAR-100 test set with color jitter with 
increasing strength, using the ResNet-18 network. 
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Figure 5.18: Graph of evaluation metrics on the CIFAR-100 test set with color jitter with 
increasing strength, using the MobileNetV2 network. 

5.2.4 Results on Test Set with Gaussian Blur 

This section focuses on evaluating the methods on data set with Gaussian blur applied. The 
Gaussian blur transformation expects kernel_size and sigma parameters. The parameter 
kernel_size sets the size of the Gaussian kernel, and the parameter sigma sets the standard 
deviation of the Gaussian blur kernel. The kernel_size parameter was experimentally 
chosen to be 5 and sigma is being increased from 0.1 to 1.4 using 0.1 steps. Figure 5.19 shows 
examples of the CIFAR-100 dataset transformed with Gaussian blur using kernel_size of 
5 and strength = 0.8. 

mountain forest seal mushroom 

Figure 5.19: Examples of the CIFAR-100 dataset with gaussian blur using strength = 0.8. 

Figure 5.20 shows results for the ResNet-18 network. Although the Ensemble model 
achieves the best accuracy on the standard test set, models that were trained with dropout 
outperform the Ensemble on samples with stronger blur. M C D r o p o u t and F ine tuned 
w i t h M C D models achieve the best calibration on noisier samples. While the Temper­
ature scaling and D r o p o u t inference models are well calibrated on standard test set, 
their E C E increases rapidly on blurier samples. 

The results in Figure 5.21, which shows the results for the MobileNetV2 network, are 
similar to the results from the ResNet-18 models. Ensemble achieves best accuracy on 
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the standard test set, but is outperformed on blurrier images by the D r o p o u t t r a in ing 
and M C D r o p o u t models. F ine tuned w i t h M C D actually has the best calibration 
on more blurred images, but this is probably because the model uses too high dropout 
probability p and is therefore always underconfident. Other than that, the M C D r o p o u t 
and Ensemble models are well calibrated across all shift strengths. 

On both networks we can see that while Ensemble models achieve best accuracy on 
standard test set however, D r o p o u t t r a in ing and models based on it outperform Ensem­
bles on noisier data in both accuracy and calibration. 
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Figure 5.20: Graph of evaluation metrics on the CIFAR-100 test set with Gaussian blur 
with increasing strength, using the ResNet-18 network. 
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Figure 5.21: Graph of evaluation metrics on the CIFAR-100 test set with Gaussian blur 
with increasing strength, using the MobileNetV2 network. 

5.2.5 Findings 

Ensemble models perform the best across all the shift strengths while using color jitter 
but are outperformed on noisier data while using additive gaussian noise and gaussian blur 
by models trained with dropout. Using D r o p o u t inference or Tempera ture scaling 
achieves better calibration even on noisier data regardless of the transformation used. How­
ever, D r o p o u t inference is more complex to set up than Tempera ture scaling and slows 
down inference depending on how many forward passes are used. This possibly makes a 
case for training an Ensemble model with dropout to achieve the best possible accuracy 
and resistance to transformations and then using Tempera ture scaling to ensure good 
calibration. 

5.3 Semantic Segmentation on the MedSeg Covid Dataset 

In this section, the models are evaluated on the MedSeg Covid Dataset [25]. It is a medical 
dataset consisting of 100 C T slices of more than 40 patients with COVID-19. The im­
ages were manually segmented by a radiologist into 3 foreground labels: 1 = ground-glass, 
2 = consolidation and 3 = pleural effusion. The remaining areas are classified as 0 = back­
ground. This is a semantic segmentation dataset, meaning that the model classifies each 
input image pixel into 3 foreground classes or the background class. This dataset was cho­
sen because it was previously solved with a U-Net in [33]. The C T slices are compiled into 
NIFTI files3. Examples of the dataset are shown in figure 5.22. 

3 T h i s work uses images exported into . jpg files taken from h t t p s : / /github.com/adnan-saood/C0VID19-
DL 
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Figure 5.22: Examples of the Covidl9 dataset. Input images are at the top, ground truth 
annotation in the bottom row. Violet = background and healthy tissues, blue = ground-
glass, green = consolidation and yellow = pleural effusion. 

The 100 images were randomly split into 60 images used for training, 30 for testing and 
10 as a validation set for the Tempera ture scaling method. The split was performed 
using the t o r c h . u t i l s . d a t a . r a n d o m _ s p l i t method using manual seed with value 0. 

Neural network architecture used for this experiment is a standard U-Net' 1 [31]. U-Net 
was chosen because it is small and easy to train, while achieving good results on medical 
datasets. 

Every model was trained for 200 epochs using the Adam optimizer while saving check­
points with the highest Intersection Over Union. The five models evaluated are as follows: 

• V a n i l l a is a standard U-Net. 

• Tempera ture scaling uses the same weights and architecture as V a n i l l a model, 
but the model logits are postprocessed using the temperature scaling technique. 

• D r o p o u t t r a in ing is a U-Net network with additional dropout layers. Dropout2d 
layers with p = 0.1 are added after each ReLU activation. 

• M C D r o p o u t uses the same architecture and weights as the D r o p o u t t r a in ing 
model while also using dropout inference. 

• Ensemble is an ensemble of 5 U-Nets. 

5.3.1 Results on Standard Test Set 

The results on the standard test set are shown in table 5.5. We can see that the D r o p o u t 
t ra in ing , M C Dropou t , and Ensemble models achieve similar accuracy and outperform 
the V a n i l l a and Tempera ture scal ing models by about 1%. These models also achieve 
better IOU and m l O U than the V a n i l l a and Tempera ture scaling models. A l l of these 
models are relatively well calibrated and achieve similar E C E . Their A U R O C and A U P R 
is also very similar. 

4 U - N e t implementation was taken from h t t p s : / / g i t h u b . c o m / m i l e s i a l / P y t o r c h - U N e t 
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Method Accuracy E C E Brier A U R O C A U P R IOU m l O U 

Vanilla 0.957 4.162 0.015 0.960 0.998 0.449 0.489 
Temperature scaling 0.957 4.365 0.016 0.960 0.998 0.449 0.489 
Dropout training 0.965 4.522 0.013 0.968 0.999 0.493 0.506 
M C Dropout 0.965 5.142 0.013 0.966 0.999 0.490 0.505 
Ensemble 0.966 4.303 0.013 0.967 0.999 0.485 0.518 

Table 5.5: U-Net results on the COVID-19 test set. E C E = Expected Calibration Er­
ror, Brier = Brier score, A U R O C = Area Under Receiver Operating Characteristic curve, 
A U P R = Area Under Precision Recall curve, IOU = pixelwise Intersection Over Union 
(excluding background), m l O U = Mean class Intersection Over Union. 

Figure 5.23 shows the calibration graph for the models used. A l l of the models are well 
calibrated and achieve very similar E C E . It is interesting, that all of the models are slightly 
under confident. Usually, models tend to be overconfident. This is probably because the 
dataset is very small. In this case, it means that the M C D r o p o u t method actually makes 
the model even more uncerconfident and therefore worsens its E C E . 

Vanilla Temp scaling Dropout training MC Dropout Ensemble 

Outputs 
Gap 

ECE: 4.30%1 

0.5 
Confidence 

0.5 
Confidence 

0.5 
Confidence 

0.5 
Confidence 

Figure 5.23: Calibration graph for the U-Net models on the COVID-19 dataset. 

5.3.2 Results on Test Set with Additive Gaussian Noise 

In this section, the models are evaluated on the test set transformed with additive Gaussian 
noise. The same methodology as in Sections 5.1.3 and 5.2.2 is used. The s td parameter 
is increased from 0 to 0.6 using 0.05 steps. Figure 5.24 shows examples of the COVID-19 
dataset transformed with additive Gaussian noise using std = 0.2. 

Figure 5.25 shows the evaluation results with increasing strength of additive Gaussian 
noise. The Ensemble model achieves the best accuracy on the standard test set by a small 
margin but more importantly keeps good accuracy even on noisier data. Between strengths 
0 and 0.1 the IOU and mean class IOU are very similar between the Ensemble, D r o p o u t 

33 



Figure 5.24: Examples of the COVID-19 dataset with additive Gaussian noise using std = 
0.2. 

t ra in ing , and M C D r o p o u t models, but on noisier data the Ensemble model achieves 
the best results by a huge margin. The D r o p o u t t r a in ing and M C D r o p o u t models 
also show better resistance to noise than the V a n i l l a and Tempera ture scaling models 
but not to as high of a degree. 

Intensity of shift vs accuracy Intensity of shift vs calibration error = Intensity of shift vs Receiver-Operator Curve 
. . . 1 , u t n -. . 

Figure 5.25: Evaluation results for the U-Net architecture on the COVID-19 test set with 
additive Gaussian noise. 

5.3.3 Findings 

The results show that even though there is only a small benefit for using Ensemble, 
D r o p o u t t r a in ing and M C D r o p o u t on the standard test set. However, the Ensemble 
model performs much better than the other models on noisier data. This huge performance 
gap may be attributed to the independent learning of each component of the ensemble. In 
this way, each component can learn to segment pixels based on a different set of character­
istics, which can lead to better generalization. This is also probably because the dataset is 
very small. 
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5.4 Semantic Segmentation on the P A S C A L - V O C Segmen­
tation Dataset 

This section focuses on evaluation of the models on the P A S C A L - V O C 2012 [7] segmentation 
dataset. The dataset consists of 20 object classes in realistic scenes. Since this is a semantic 
segmentation dataset, the goal of the model is to classify each image pixel into 20 object 
classes or the background class. The train set is used for training, and the val set is used 
for evaluation. In total, 1464 images are used for training and 1449 images are used for 
evaluation. Pytorch implementation of this dataset is used. The 20 foreground classes are 
grouped into 4 categories: 

• Person: person 

• Animal: bird, cat, cow, dog, horse, sheep 

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train 

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor 

Examples of the P A S C A L - V O C segmentation dataset are shown in Figure 5.26. 

Figure 5.26: Examples of the P A S C A L - V O C segmentation dataset. Input images are at 
the top, ground truth annotations are in the bottom row. 

For evaluation, the DeepLabV3 [4] architecture with ResNet-50 backbone is used. The 
models are pre-trained on subset of the MS C O C O dataset which shares the same classes 
as the P A S C A L - V O C dataset used. The pretrained Pytorch implementation is used. The 
models are then trained for 20 epochs using the Adam optimizer. While training, the model 
backbone is frozen and only the classifier part of the network is trained. Only training the 
classifier yielded significantly better results than also training the backbone. 

Three uncertainty estimation methods are evaluated: 

• V a n i l l a is a Standard ResNet-50 DeeplabV3 model. 

• D r o p o u t t r a in ing ResNet-50 DeeplabV3 model with added dropout layers before 
fmetuning on the P A S C A L - V O C dataset for 20 epochs. The model uses Dropout2d 
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layers with p = 0.2 inserted after the last 2 Bottleneck blocks of the backbone. This 
architecture was chosen experimentally. For example, adding dropout layers to the 
classifier part of the model did not have a huge effect. 

• M C D r o p o u t uses the same architecture and weights as the D r o p o u t t r a in ing 
model while also using dropout inference. 

5.4.1 Results on Standard Test Set 

Table 5.6 shows result on the standard test set. The M C D r o p o u t model achieves the best 
accuracy and IOU by a small margin, but surprisingly achieves the worst mIOU. The IOU 
is computed only from foreground classes, while the mIOU is computed from all classes, 
including background. This probably means that the M C D r o p o u t model prioritizes fore­
ground classes more. The M C D r o p o u t model also achieves the best A U R O C and A U P R 
but also has the worst E C E . However, all of the models are reasonably well calibrated. 
Brier score is not computed in this section due to memory limitations. 

Method Accuracy E C E A U R O C A U P R IOU mIOU 

Vanilla 
Dropout training 
M C Dropout 

0.894 
0.894 
0.899 

2.299 
2.546 
4.034 

0.878 
0.882 
0.883 

0.983 
0.984 
0.985 

0.692 
0.698 
0.699 

0.647 
0.652 
0.644 

Table 5.6: DeepLabV3 results on the P A S C A L - V O C segmentation test set. E C E = Ex­
pected Calibration Error, A U R O C = Area Under Receiver Operating Characteristic curve, 
A U P R = Area Under Precision Recall curve, IOU = pixelwise Intersection Over Union 
(excluding background), mIOU = Mean class Intersection Over Union. 

The calibration graph for the models is shown in Figure 5.27. While the V a n i l l a and 
D r o p o u t t r a in ing models achieve very good calibration but are very slightly overconfident, 
the M C D r o p o u t model is underconfident and has worse E C E . For the standard test set, 
fewer dropout layers or a lower probability p would probably yield better E C E . However, 
as we have seen in Section 5.2, more dropout and being underconfident on the standard 
test set may yield a better calibration on noisier data. 

While M C D r o p o u t achieves marginally better accuracy and IOU, the difference be­
tween models is too small to justify using Monte Carlo Dropout in production, if the test 
set is close to the training set and if the V a n i l l a model is already well calibrated. 

5.4.2 Results on Test Set with Additive Gaussian Noise 

In this section, the models are evaluated on the test set shifted with additive Gaussian 
noise. Same methodology as in previous sections is used. The std parameter is increased 
from 0 to 0.6 using 0.05 steps. Examples of the dataset transformed with additive Gaussian 
noise with std = 0.2 are shown in Figure 5.28. 
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Figure 5.27: Calibration graph for the Pascal-VOC segmentation dataset using the 
DeepLabV3 network. 

Figure 5.28: Examples of the P A S C A L - V O C segmentaion dataset transformed with additive 
Gaussian noise using std = 0.2. 

Figure 5.29 shows evaluation results while increasing the random Gaussian noise stan­
dard deviation. The IOU chart is not shown because the results are very similar to the 
m l O U chart. While the accuracies are very similar on the standard test, the D r o p o u t 
t r a in ing and M C D r o p o u t models achieve better accuracy on noisier samples. Despite 
this, the m l O U stays very close between all the models. The D r o p o u t t r a in ing and M C 
D r o p o u t models also achieve better A U R O C and A U P R on noisier data. While the M C 
D r o p o u t model achieves the best E C E for moderate amount of noise, the V a n i l l a model 
has the lowest E C E for data with a lot of noise. 
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Figure 5.29: Evaluation results on the P A S C A L - V O C detection val set with additive Gaus­
sian noise using the DeepLabV3 network. The std parameter is increased from 0 to 0.6 
using 0.05 steps. 

5.4.3 Findings 

We can see that adding dropout even to a pre-trained model can yield better results on 
out of distribution data. However, there seems to be little merit for also using dropout 
inference. The only metric where the M C D r o p o u t model achieves significantly better 
results than the D r o p o u t t r a in ing model is E C E and only on samples with moderate 
amount of noise. As the samples become noisier, the E C E increases the same for both M C 
D r o p o u t and D r o p o u t t r a in ing models. 

5.5 Object Detection on the P A S C A L - V O C Detection Dataset 

In this section, the models are evaluated on the P A S C A L - V O C [7] detection dataset. The 
foreground classes are the same as in the P A S C A L - V O C segmentation dataset used in 
section 5.4. However, since this is a detection dataset, the model predicts bounding boxes 
for each object in the image. The 2012 trainval and 2007 trainval sets are used for training 
and 2007 test set is used for evaluation. Examples of the P A S C A L - V O C detection dataset 
are shown in Figure 5.30. 
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Figure 5.30: Examples of the P A S C A L - V O C detection dataset. 

The SSD300 5 [23] was chosen as the network architecture. The model architecture 
is relatively simple compared to another object detectors and allows for straightforward 
addition of dropout layers. This model was also used with Monte Carlo Dropout in [26]. 

The training procedure for the V a n i l l a and D r o p o u t t r a in ing models follows the 
original paper. The models were trained for 231 epochs using a batch size of 8. Stochastic 
Gradient Descent was used as optimizer with initial learning rate of le — 3, momentum of 
0.9, and 5e — 4 weight decay. Also, a number of training data augmentations were used: 

• Color Jitter with 50% chance. 

• Zoom out with 50% chance. 

• Random crop. 

• Horizontal flip with 50% chance. 

The models were evaluated using non-max suppression with IOU threshold of 0.5 and 
score threshold of 0.2. This setting had much lower number of false positives compared to 
score threshold of 0.01, which was used for evaluation in the original SSD paper, while still 
achieving good mAP. In total, 3 versions of models were evaluated: 

• V a n i l l a is a standard SSD300 model. 

• D r o p o u t t r a in ing SSD300 model with added Dropout2d layers with p = 0.3 after 
last two layers of the VGG16 backbone. This follows the same placement of dropout 
layers as in [26]. 

• M C D r o p o u t uses the same architecture and weights as D r o p o u t t r a in ing model 
while also using dropout inference. 

5.5.1 Dropout Inference Techniques for Object Detection Models 

There is a number of approaches to dropout inference with object detection models. In [26] 
the model is treated as a black box and all of the bounding boxes from multiple forward 
passes are clustered based on their IOU. The whole procedure is as follows: 

1. Make N forward passes for each input image. 

2. Bounding box predictions for multiple forward passes are grouped into Observations. 
Bounding boxes from multiple forward passes are grouped if their predicted label is 
the same and their IOU is bigger than 0.9. If a bounding box cannot be added to an 
existing Observation, a new Observation is created. 

5Implementation of the SSD300 model and detection utilities was taken from h t tp s : / / g i t hub . com/ 
s g r v i n o d / a - P y T o r c h - T u t o r i a l - t o - O b j e c t - D e t e c t i o n . 
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3. Only use observations with more than D bounding boxes. 

4. Compute the mean of confidences and locations of all bounding boxes in an observa­
tion. 

However, this approach did not provide good results. Either having a large number of 
false positives (when using D = 1, as was done in [26]), or having a large number of false 
negatives (when using larger D). 

Since this approach did not work very well, I simply averaged the model outputs before 
the post-processing step that detects the bounding boxes. 

5.5.2 Results on Standard Test Set 

Table 5.7 shows evaluation results on the P A S C A L - V O C 2007 test set. V a n i l l a model 
achieves the best m A P when using IOU threshold 50 but not with IOU threshold 75. In this 
case, dropout inference may very slightly improve bounding box localization performance. 
The D r o p o u t t r a in ing model detects the most true positives and least false negatives, 
but in turn also detects the most false positives. A l l of the metrics are very similar for all of 
the models and there seems to be no reason to prefer D r o p o u t t r a in ing or M C D r o p o u t 
models over the V a n i l l a model on the standard test set. 

Method m A P 50 m A P 75 A U R O C A U P R T P F P F N 

Vanilla 0.732 0.520 0.879 0.934 10463 5904 4513 
Dropout training 0.726 0.520 0.876 0.928 10467 6300 4509 
M C Dropout 0.727 0.521 0.875 0.930 10412 5981 4564 

Table 5.7: SSD300 results on the P A S C A L - V O C 2012 segmentation val set. m A P 
50 = mean Average Precision at 50 IOU, m A P 75 = mean Average Precision at 75 IOU, 
A U R O C = Area Under Receiver Operating Characteristic curve, A U P R = Area Under 
Precision Recall curve, T P = number of True Positives, F P = number of False Positives, 
F N = number of False Negatives. A l l of the metrics apart from m A P 75 are computed at 
IOU threshold 50 and score threshold 0.2. 

5.5.3 Results on Test Set with Additive Gaussian Noise 

Models in this section were evaluated on the P A S C A L - V O C 2007 test set transformed with 
random additive Gaussian noise. This transformation was chosen because it was not used 
for training. The models performed very well even on very noisy data when using the color 
jitter transformation because the models were trained with it. 

Figure 5.31 shows the evaluation results on the test set with increasing levels of noise. 
The models achieve very similar results to each other in most of the metrics. However, 
on noisier samples, we can see that the D r o p o u t t r a in ing and M C D r o p o u t models 
have a significantly lower number of false positives than the V a n i l l a model. The D r o p o u t 
t r a in ing and M C D r o p o u t models also achieve better A U R O C with noisier samples. 
However, the D r o p o u t t r a in ing and M C D r o p o u t models also have a lower number of 
true positives and a higher number of false negatives. 
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Figure 5.31: Evaluation results on the P A S C A L - V O C detection test set with additive 
Gaussian noise. The std parameter is increased from 0 to 0.6 using 0.05 steps. 

5.5.4 Findings 

The results show that, while employing D r o p o u t t r a in ing or M C D r o p o u t can lead to a 
lower number of false positives and a higher A U R O C on noisier predictions. It also reduces 
the number of true positives and introduces more false negatives. Therefore, the pros are 
not large enough to outweigh the cons and to recommend the use of D r o p o u t t r a in ing 
or M C D r o p o u t in this setting. 

5.6 Practical Recommendations 

This section summarizes practical recommendations based on the results of the experiments. 

• Ensembles achieved the best predictive performance on all of the standard test 
sets. But on transformed test sets they can be outperformed by models trained with 
dropout. 

• Ensembles dominated the COVID-19 dataset. This dataset has much fewer samples 
than others. Ensembles may offer the biggest benefits compared to other methods 
when used on very small datasets. 

• Tempera ture scaling can be very effective in reducing the E C E if the base model 
has bad calibration. However, it is not very effective on already well calibrated models 
and does not improve the model's resistance to dataset shift. Also, while it improves 
the E C E it does not improve A U R O C or A U P R . 
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• D r o p o u t t r a in ing improved predictive performance for all of the models except 
for the SSD300. It also had the best resistance to dataset shift on most of the 
transformations. This is surprising since nowadays, dropout is not used very often. 
However, choosing the placement and the probability p of the dropout layers is very 
important. Also, the strategy for adding dropout layers heavily depends on the model 
architecture. 

• D r o p o u t inference alone can improve the models' calibration if the base model is 
overconfident. However, if the base model is well calibrated, dropout inference can 
make the model under confident. Moreover, while it can improve calibration, it does 
not improve A U R O C or A U P R . 

• M C D r o p o u t models have improved predictive performance and uncertainty esti­
mation quality. But this stems from the base model being trained with dropout layers 
and not from dropout inference. 

• Adding dropout layers to a pretrained model and finetuning it may or may not improve 
the predictive performance and uncertainty estimation quality. When used on the 
ResNet-18 network, improved the prediction accuracy by almost 4% and improved 
the uncertainty estimation quality and resistance to dataset shift, even surpassing the 
D r o p o u t t r a in ing model. However, on the MobilNetV2 network, it had virtually 
no effect. 

• The resistance to dataset shift depends more on the base model used that on the 
uncertainty estimation method. 

• The experiments showed mostly positive effects of D r o p o u t t r a in ing and Ensem­
bles on the predictive performance and uncertainty estimation quality. It would be 
interesting to combine several models, trained with dropout layers into one ensem­
ble. To improve the calibration, Tempera ture scaling offers the benefits of the 
D r o p o u t inference without introducing additional computing costs. 
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Chapter 6 

Conclusion 

This work focused on common uncertainty estimation methods. Modifications to widely 
used convolutional neural network architectures were proposed to employ these methods. A 
set of experiments for each computer vision task was created for evaluation of model perfor­
mance on in distribution as well as out of distribution data. The proposed modified models 
achieved significantly better results on both in-distribution as well as out-of-distribution 
data. Especially ensemble models achieved very good results on in-distribution data, while 
architectures with added dropout layers displayed better resistance to dataset shift. 

In total, this work explored uncertainty estimations on six widely used model archi­
tectures ranging from small and simple to the current state of the art. Evaluation was 
done on 5 datasets for image classification, semantic segmentation, and object detection. 
The models were evaluated on standard test sets, as well as artificially distorted test sets 
with varying strength of distortion and different types of distortions. These experiments 
provide useful knowledge about the effectiveness of these methods on in-distribution as well 
as out-of-distribution data. To my knowledge, this work is also one of the first to touch on 
the subject of uncertainty estimation in deep object detectors, especially on shifted data. 

Based on the results of the experiments conducted, practical recommendations were 
formed for employing these uncertainty estimation methods in practice. 

This work could be further expanded by evaluating different strategies for adding 
dropout layers and employing Monte Carlo Dropout on existing models. Another direc­
tion for future research could be on new and emerging uncertainty estimation techniques 
that do not induce additional computational or memory costs. 
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