
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

PORTLETOVÁ IMPLEMENTACE HRY SUDOKU
S U D O K U G A M E IMPLEMENTATION A S PORTLET

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE ONDŘEJ FIBICH
AUTHOR

VEDOUCÍ PRÁCE Ing. RADEK KOČÍ, Ph.D.
S U P E R V I S O R

BRNO 2012

Abstrakt
Práce je zaměřena na problematiku vývoje komponent portálů, zvaných portlety. Stručně
seznamuje s portály, zejména s jejich prostředím, vlastnostmi a schopnostmi. Hlavní část
práce je věnována popisu standardů pro vývoj portletů. Na základě vysvětlených principů
a s použitím dalších technologií je ukázán vývoj portletu, realizujícího hru Sudoku. Portlet
byl vyvíjen pro firmu Red Hat, jakožto ukázkový portlet pro Gateln portál.

Abstract
The thesis is focused on the problem of the development of portal components, called
portlets. It briefly introduces portals, especially their environment, characteristics and
abilities. The main part describes standards for the development of portlets. Based on
explained principles and with the usage of other technologies, a development process of a
portlet, representing the Sudoku game, is shown. The portlet was developed for Red Hat
company, as an exemplary portlet for Gateln portal.

Klíčová slova
Portál, Portlet, Sudoku, JSR 168, JSR 286, Gateln, REST, A J A X

Keywords
Portal, Portlet, Sudoku, JSR 168, JSR 286, Gateln, REST, A J A X

Citace
Ondřej Fibich: Sudoku game implementation as portlet, bakalářská práce, Brno, F IT V U T
v Brně, 2012

Sudoku game implementation as portlet

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana
Ing. Radka Kočího, Ph.D. Další informace mi poskytl odborný konzultant z firmy Red Hat,
pan Mgr. Michal Vančo. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem
čerpal.

Ondřej Fibich
6. května 2012

Poděkování
Rád bych poděkoval panu Ing. Radku Kočímu Ph.D. za trpělivé vedení práce a odbornému
konzultantovi panu Mgr. Michalu Vančovi za poskytnuté vědomosti a pomoc při tvorbě
práce. V neposlední řadě bych chtěl poděkovat slečně Bc. Zuzaně Bočkové za pomoc při
jazykové korektuře.

© Ondřej Fibich, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Portal 4
2.1 Enterprise portal 4
2.2 Portal environment 5

2.2.1 Web server 5
2.2.2 Application server 5
2.2.3 Database 6
2.2.4 Gadgets and portlets 7

2.3 Gateln portal 7
2.4 Portlet 8

2.4.1 Portlet container 9

3 Portlet development 10
3.1 Specification JSR 168 10

3.1.1 Portlet life cycle 11
3.1.2 Portlet configuration 13
3.1.3 Portlet modes 14
3.1.4 Portlet states 14
3.1.5 Portlet preferences 15
3.1.6 Sessions 15
3.1.7 Dispatching requests to servlets and JSPs 16
3.1.8 Security 17
3.1.9 Deployment 17

3.2 Specification JSR 286 18
3.2.1 Coordination between portlets 18
3.2.2 Resource serving 21
3.2.3 Portlet Filter 22
3.2.4 Caching 23
3.2.5 Annotations 24

4 Analysis and proposal 25
4.1 Analysis 25

4.1.1 Specification of requests 25
4.1.2 Available solutions 26
4.1.3 Use cases 26

4.2 Proposal 27
4.2.1 Server side 27

1

4.2.2 Client side 30

5 Implementation 33
5.1 User interface 33

5.1.1 View mode 33
5.1.2 Edit mode 34
5.1.3 Help mode 34

5.2 Algorithm for generation of Sudoku games 34
5.3 Used technologies 34

5.3.1 Apache Maven 34
5.3.2 Java Persistence A P I 35
5.3.3 R E S T 36
5.3.4 JavaScript 37
5.3.5 A J A X 37
5.3.6 jQuery 37
5.3.7 JSoup 38
5.3.8 JUnit 38
5.3.9 Selenium IDE 38

5.4 Possible improvements 39

6 Testing and deployment 40
6.1 Testing 40

6.1.1 JUnit tests 40
6.1.2 Selenium I D E tests 40

6.2 Deployment 41

6.2.1 Configuration 41

7 Conclusion 42

A Content of attached C D 46

B Samples of Sudoku portlet 47

2

Chapter 1

Introduction

The World Wide Web (WWW) became an irreplaceable gateway for the access to many
types of knowledge and services. Because of the fact that a huge amount of data and
information, circulating through the W W W , became very hard to find, online catalogues
and web search engines were created for dealing with it. The next problem was that even if
the required information were found, they were commonly placed in many different locations
which prevented an effective usage of them. Portals were an answer to this issue. A single
portal allows the aggregation of contents and the integration of services from different
locations and sources. Many institutions understood advantages of portals and they built
them for their customers, employees, citizens, etc. At present, portals belong to the most
visited components of the W W W .

At the beginning the development process of creating of portals was similar to the
process, used during the creation of web pages. A portal was usually developed from
scratch. Portal creators had to implement its whole functionality by themselves. This
time-consuming process was replaced by reusable portal solutions. Each portal creator
developed a portal solution that was used for multiple portals. Specific functionalities
for each portal were inserted by using of small components, called portlets. This new
approach of building of portals allowed to supply only a general portal solution and portlets
with specific functionalities, requested by a customer. The final portal was created by the
customer who built it by combining of portlets on portal pages. A n issue of this solution was
that the customer may only used portlets that were supported by the portal solution. The
issue led to creating of standards that allowed a portlet and a portal solution of different
creators to be mutually compatible. This capability started a new era of portals because
developers of portlets became independent of creators of portal solutions.

The thesis contains information which are required for understanding of the concept
of portals. The majority of the thesis is dedicated to the description of two standards for
the development of portals and portlets. A usage of these standards is demonstrated in a
portlet application, developed in the practical part of the thesis. The portlet application
represents a portlet implementation of the Sudoku game which was created for Red Hat
company. It may serve as an exemplary portlet for an open-source portal, called Gateln
portal, which is partially developed by this company. The main purpose of the portlet
application is to show the possible way of building of portlet applications according to
standards with a usage of R E S T and A J A X technologies.

3

Chapter 2

Portal

A portal is a web based application. The main goal of the portal is an aggregation of
information from different sources and hosts. The aggregation is an action during which
multiple inputs are transformed to a single output. The aggregated content is accessed
by users whose are identified over an authentication. The portal authentication process
also contains a uniform authentication to aggregated sources and hosts. Except from the
aggregation the portal aims to create a personalised environment for users. This is very
important because each user has different requests to functionality [10].

Since portals started to be important components of the W W W , many institutions came
up with their own portals with different sets of end-user groups. It caused that portals split
into several types, according to their usage []. These types are not strictly defined.
Typically, each institution whose business is related to portals defines its own collection of
portal types. On the other hand almost all these portal-related institutions have concurred
in one portal type, called enterprise portal.

2.1 Enterprise portal

A n enterprise portal is the most common portal type which mediates information, ser­
vices and tools of a company or an organization to its employees, customers, vendors, etc.
Key features of the portal are a personalized access, a single source of enterprise informa­
tion, faster business decisions and improved business performances. Furthermore enterprise
portals are helpful in corporations with multiple locations. In this type of the corporation
sharing of information between separated departments may become difficult. The enterprise
portal unifies and provides sharing of information and the cooperation among departments.
This fact makes the enterprise portal an irreplaceable business tool.

The enterprise portal should include [23]:

• a single point of access - all required information and services can be accessed from
a single point

• unified search across all information sources - information sources are not only ac­
cessed but they are also categorized and searchable from the portal

• personalization - a user can define a form and a type of the content using individual
requests and preferences

• application integration - a user can manage a multiple application by a single request

4

• collaboration - information are shared between co-workers

• system security - a portal has to be well protected according to a security policy

• scalability - an ability of the system to extend with a new or an updated functionality
in a short time

Enterprise portals are separated into two solutions. Vertical portals are the first
solution. They are specified strictly in some area of the enterprise interest and designed to
support specific functions, processes and services. The vertical portal is usually used for a
customer service, resource planning, a sales force automation or a chain management [5].
A n example of the vertical portal is the portal Hokej.cz 1 which is focused on ice hockey.

Horizontal portals are the second solution. The horizontal portal covers a wide area
of the interest and it provides the functionality for supporting of an information flow,
business activities and corporation processes []. A n exemplary horizontal portal is the
portal Centrum.cz. 2

2.2 Portal environment

A portal environment contains many various elements. Some of them can be seen in the
Figure 2.2. The most significant elements are [23]:

2.2.1 Web server

A primary function of a web server is answering to client requests by delivering a web page.
The client who is sometimes called a user agent is commonly a web browser. The web
browser and the web server communicate over the H T T P 3 stateless protocol. In the portal
environment the web server mostly passes requests to the application server.

2.2.2 Application server

A n application server is a software framework, providing an environment for running of ap­
plication programs. The environment includes a container model for applications, services
for applications and development tools. Application servers are used very often as distribu­
tors of user requests. Requests are distributed according to their contents to other physical
servers. This is very useful for preventing from a server overload [19]. The application
server is usually connected to a distributed network and separated to three architectonic
layers [21].

• Front-end is a presentation layer which is separated to two types. The first type is a
web browser-based interface. Web browser-base interfaces use mostly a markup lan­
guage. The most popular markup languages for this action are H T M L 4 or X H T M L . 5

The second type is a graphical user interface (GUI) which is used on workstations.

• Middle-tie contains business logic applications.
xhttp://www.hokej.cz
2http: / / www.centrum.cz
3The Hypertext Transfer Protocol
4HyperText Markup Language
5 extensible HyperText Markup Language

5

http://Hokej.cz1
http://Centrum.cz.2
http://www.hokej.cz
http://www.centrum.cz

• Back-end includes database and a transaction server.

Application servers can cooperate with web servers. A basic cooperation is shown in
the Figure 2.1. The Figure contains three participants. The first participant is a user. The
user accesses the web server with a request. The web server is only capable of processing
the static content. If the user request leads to a dynamic content, the web server will have
to forward it to an application server. The application server processes the request using an
application and sends a response back to the web server. The web server sends the response
with the processed content to the user. The cooperation can be extended by a database
server which contains data for a dynamic content and it is controlled by the application
server and applications. However servers are separated services, there is no need to run
them on a separated physical server. A single physical server can contain web, database
and the application server [4].

There are many implementations of application servers, such as JBoss AS, Apache
Tomcat, etc. JBoss AS and Apache Tomcat are open-source cross-platform Java EE-based
application servers that differ in the amount of additional provided functionalities and
libraries. JBoss AS is more robust than Apache Tomcat in this aspect.

Web Server Application Server

Web Pages &t Graphic Files Template Pages. Code & Data

Figure 2.1: How an application server works []

2.2.3 Database

A database is not a required element of the portal environment but it is used very often. The
database provides a storage of persistent data of the portal (e.g. user details, personalization
settings, security options, etc.).

The most common type of the database is a relational database. Data in a relational
database are organized into a set of related tables that are managed by S Q L . 6 A represen­
tative of relational databases is for example H S Q L D B . In comparison with other database
systems H S Q L D B has a possibility to store a database in different kinds of storages (e.g.
in a file, in the memory).

6 Structured Query Language
7Hyper Structured Query Language Database

6

2.2.4 Gadgets and portlets

The presentation layer of the portal consists of gadgets and portlets. A gadget is a small
application-specific component of the portal. On the other hand portlets are more robust
components than gadgets []. This thesis is focused on portlets. More information about
portlets can be found in the section 2.4.

Desktop Computer L_/-~^
Document and Content

Management

Figure 2.2: Generic portal ecosystem components [23]

2.3 Gateln portal

Gateln portal is an open source portal, released under the L G P L 8 licence. Gateln portal
is a merge of two portals, JBoss Portal and eXo Portal, developed as a community project.
Contributors of the portal are vendors of merged portals and community members. Main
features of the Gateln portal are [14]:

• a capability of using portlets according to standards

• a skinnable, intuitive, multilingual user interface

• management of the content and the layout of each portal page

• user/group management and access permissions

• a dashboard functionality which enables to create a specific page for a user

• a collection of example portlets and gadgets
8The GNU Lesser General Public License

7

The JBoss Enterprise Portal Platform (EPP) is an enterprise edition of the Gateln
portal with additional functionality and services such as the web content management
functionality, legal protection and end-user support [13].

In spite of this section describes the Gateln portal, there are many other portal solutions.
For example the most common used portal is the Liferay portal. 9 Another popular portal
is the WebShere portal 1 0 which is developed by I B M . The description of the Gateln portal
is placed in this thesis due to a fact that it was used as the deployment environment for
the developed Sudoku portlet.

2.4 Portlet

A portlet is an application-specific pluggable user interface component of the portal. The
application-specific property means that each portlet is created mostly for one purpose. A
single portlet or a set of portlets creates a presentation layer of the portal [10]. Examples
of the miscellaneous portlets can be found in the Figure 2.3.

I *

L ± J L A J L A j m
L a J L J L a J Q

) Currency Converter

Data provided by Yahoo! Finance
Conversion Rales accurate as of 14-Feo-2012

S M T W T F S

1 2 3 4

5 6 7 fl 9 10 11

12 13 EQ 15 16 17 13

19 20 21 22 23 24 25

26 27 2fl 29

) Register Portlet

Register New Account

User Name:

Password:

Confirm Password:

First Name:

Last Name:

Email Address:

E B B

1 .Buy a Lamborghini

E B B

Figure 2.3: Examples of portlets

A single portal page is aggregated from generated contents of a set of the portlets. This
is shown in the Figure 2.4. Moreover more instances of a portlet may be also displayed on
a single portal page. The portlet generates a fragment of a document which commonly uses
a markup language (e.g. H T M L , X H T M L) .

A n interaction between web clients and portlets is achieved via the request/response
paradigm. Multiple portlets on a single page cause that a portlet cannot be requested
directly from a web client. The communication is mediated through the portal [10].

9http: / / www.liferay.com
10http://www.ibm.com/software/websphere/

8

http://www.liferay.com
http://www.ibm.com/software/websphere/

51 <Title> ig B D Hp

<Portlet content>

51 <Title> M Eäl I

<Portlet content>

51 <Jitle> M Iml 1

<Portlet content>

51 <̂ Title> ISS S U ®

<Portlet content>

-Decorations and controls

-Portlet fragment

-Portlet window

-— Portal page

Figure 2.4: Elements of a portal page [11]

2.4.1 Portlet container

The portlet container is the runtime environment for portlets which manages the portlet
lifetime. Moreover it receives requests from the portal and executes them on hosted portlets.
The generated content of portlets is not aggregated by the portlet container which only
forwards it to the portal. The content aggregation is handled by the portal, as shown in
the Figure 2.5.

Client Device
Portal Pag L"

Portlet Windows

Portal Portlet
Container

Portlet A

Portlet B

Portlet C

Portlet D

Figure 2.5: A cooperation between portlets, a portlet container, a portal and a client [11]

9

Chapter 3

Portlet development

Portals are mostly developed in Java E E that is a part of Java platform designed and
standardized for developing and deploying of enterprise applications and information sys­
tems []. The following text and chapters will not discuss other technologies (e.g. . N E T , 2

P H P 3) for creating of portals and portlets.
At the beginning portals were not designed to be compatible with each other. It meant

that a portlet which was created for a portal could not be used in a different portal. This
fact led to the creation of a standard specification for developing of portals and portlets.
The specification guaranteed that a portlet, fulfilling the specification, could be run in a
portal, designed according to the specification. Specifications were created by specialists
from a group of corporations (e.g. I B M , Oracle and Sun Microsystems). A final version of
the first portlet specification, called JSR 168, was released on 27 October, 2003. Following
sections will describe the content of JSR 168 [11].

3.1 Specification JSR 168

The Portlet A P I is based on the Java E E specification. The proposal of the portlet specifi­
cation was evolved from the servlet specification. A servlet is also a web-base component,
managed by a container that generates a dynamic content []. Portlets and servlets differ
in following aspects.

• A portlet generates a fragment but a servlet generates whole document.

• Despite servlets are bound to a U R L , 4 portlets are not. Portlets must interact with
a web client through a portal, using U R L rewriting functions.

• Moreover portlets distinguish more types of requests and they have predefined states
and modes which indicate the portlet state and the current function. Portlets are also
capable of persisting of a configuration, customization data and access to user profile
information.

These differences lead to a decision that portlets have to be a new component which
leverages as much functionality as possible from the servlet specification. The most valuable

xJava Enterprise Edition
2 . N E T Framework - http://www.microsoft.com/net
3Hypertext Preprocessor - http://www.php.net
4Uniform resource locator

10

http://www.microsoft.com/net
http://www.php.net

leveraged property is a capability of calling of servlets and JSPs 5 in order to generate the
content of the portlet. This capability will be described in detail in the section 3.1.7.

The Portlet A P I is included in the javax.portlet package. The main abstraction of
the Portlet A P I is placed in the interface Portlet. There is the GenericPortlet class
which implements the Portlet interface and provides a basic functionality for creating a
new portlet. Developers should extend this class to implement their portlets.

A set of portlets, servlets and JSPs creates a portlet application. More information
about the portlet application can be found in the section 3.1.9.

3.1.1 Portlet life cycle

A life cycle of a portlet contains loading, an instantiation, an initialization, request handling
and the end of service.

Loading and instantiation

Loading and instantiation are performed during a start or a delay of a portlet by the portlet
container. A portlet class is loaded by the portlet container, using the Java ClassLoader.
The Java ClassLoader is a part of Java Runtime Environment (JRE) that is responsible
for dynamic loading of Java classes from different storages into the Java Virtual Machine
(JVM). After loading of a portlet class an instance is made.

Initialization

The portlet instance is initialized by the portlet container, calling the i n i t method of
the Portlet interface. The method has one optional parameter: an instance of the class
PortletConf i g which contains a PortletContext object and configuration properties de­
fined in the portlet descriptor. Configuration properties and the portlet descriptor will
be described in the section 3.1.2. The i n i t function may be overridden in a purpose of
one-way action. Typically, one-way action is a connection to data sources and services (e.g.
a database, a remote server and a file).

Request handling

The portlet may receive client requests after a proper initialization. Requests are passed
to the portlet by the portlet container which manages the communication. There are
two types of the request: an action request and a render request. The action request is
processed by the processAction method of the Portlet. The render request is processed
by the render method of the Portlet. Moreover the portlet container may pass the render
request without any user's attempt to do it. Commonly, this situation occurs after passing
an action request to the portlet. If there are more portlets on a portal page and a request
is triggered to one of these portlets, a render request will be passed to all of these portlets
after processing of the initial action request. This procedure is visualized in the Figure
3.1. Thus the portlet implementation must expect a render request at any time after the
initialization.

The action request leads mostly to an update of a state of the portlet. The update is
based on parameters of the request and performed by the processAction method. The
processAction has two parameters: ActionRequest and ActionResponse objects. The

5JavaServer Pages

11

Client
Portal/

Portlei Container
Port let

A
Portlet

B
Portlet

C
Client Request 1 1

y process Action()^
B ^

j=| renderQ

B Fragment

H renderO •
H Fragment

H renderO

H Fragment

1
Portal Page i

The action request
> must finish before the

render requests start.

The render requests
are triggered in no
specific order.
They may be fired
one after the other or
in parallel.

Figure 3.1: Handling of an action request [11]

ActionRequest object provides access to parameters and properties of the action request
(getProperty, getProperties, getPropertyNames, getParameter and getParameterMap
methods), the portlet mode (the getPortletMode method), the window state (the get-
WindowState method), the portlet context (the getPortletContext method), the portlet
session (the getPortletSession method) and the portlet preferences (the getPref erences
method). The ActionResponse object enables to set a redirection to a specific U R L (the
sendRedirect method) and changing of the portlet mode (the setPortletMode method)
and the window state (the setWindowState method).

A generation of the content is made during a render request. The content is based on
the current state of the portlet. A render request is processed by a render method which
takes two parameters: RenderRequest and RenderResponse objects. The RenderRequest
provides access to same information as the ActionRequest, except for parameters of the
action request. The RenderResponse interface can generate a content using a writer. The
example of a usage of the writer is in the Listing 3.1. Another way how to generate the
content is to delegate the generation of content to a servlet or a JSP page. This way is
explained in the section 3.1.7. The RenderResponse object is capable of setting the portlet
title and the content type of the response.

1 renderResponse.setContentType("text/html");

2 PrintWriter writer = renderResponse.getWriter();

3 writer.write("Hello world!");

4 writer.closeO ;

Listing 3.1: A n example of portlet rendering

12

The GenericPortlet class implements the render method of the Portlet. The imple­
mentation sets the title of the portlet from data provided by the portlet deployment descrip­
tion and it dispatches the render request by the portlet mode stored in the RenderRequest
object parameter of the render method. The class provides empty methods do View, doEdit
and doHelp. Developers may override these methods for implementing of the generation
of the content for the mode according to the name of the overrided method. The possible
body of these methods is shown in the Listing 3.1.

Both action and render requests may be triggered by a portlet U R L . Portlet URLs solve
the problem of addressing multiple portlets on a portal page. The portlet container assigns
user requests according to a portal U R L , used for the request to the portlet which created
the U R L . There are two types of the U R L corresponding to request types as well. The
PortletURL interface, according to the specification, specifies portlet URLs . A n object of
the PortletURL may be created by createActionURL or by createRenderURL methods
of the RenderResponse interface with the type according to the name of the method.
Parameters may be added to a created U R L by setParameter and setParameters methods
of the PortletURL. The PortletURL also enables to specify a state and a mode of the portlet
after processing of the request of the U R L . Methods for this actions are the setWindowState
and the setPortletMode. A secure connection over H T T P S 6 protocol for the request may
be established by using the setSecure method. A n example of creating and using of an
action portlet U R L is shown in the Listing 3.4.

End of service

The end of portlet services is determined by the portlet container. Before the destruction
the portlet container calls the destroy method of the Portlet interface. The destroy
method may be used for releasing of used resources and for saving of persistent states of
the portlet.

3.1.2 Portlet configuration

A portlet configuration is provided for the i n i t method of the Portlet interface by a
PortletConfig object. The PortletConf i g object contains initialization parameters, ac­
cess to the portlet context and the resource bundle.

The portlet configuration is stored in the portlet deployment descriptor. The portlet
deployment descriptor is an X M L 7 document which includes the definition of all portlets
(supported modes, title info, portlet class path, etc.) in the portlet application. More
details about the portlet deployment descriptor are mentioned in the section 3.1.9.

Initialization parameters

A n enumeration of names of initialization parameters is accessed by the getParameterNam.es
method of the PortletConf i g class. A single parameter value is returned by the getPa-
rameter method with its name as a parameter.

6Hypertext Transfer Protocol Secure
7Extensible Markup Language

13

http://getParameterNam.es

Portlet resource bundle

A portlet resource bundle contains title-bar information resources and information for the
categorization of the portlet stored in the portlet deployment descriptor or in a properties
file whose path is defined by the resource-bundle element in the portlet deployment de­
scriptor. The portlet specification defines three elements of the resource. Defined elements
for portlet window title are the t i t l e and the s h o r t - t i t l e . A n element keywords includes
keywords for the categorization, separated by commas. The bundle resource is accessed by
the getResourceBundle method of the GenericPortlet object.

Portlet context

A portlet context defines a portlet view of the portlet container and it is used for accessing to
resources in the portlet application. The portlet specification defines the PortletContext

interface which gains the access to the portlet context. A n example of a usage of the
PortletContext is shown in the section 3.1.7.

3.1.3 Portlet modes

A portlet mode is an indicator of the current performed portlet function. Each mode
specifies a different task which generates a various content. The specification supports
VIEW, EDIT and HELP modes. The support of the VIEW mode is required whereas others are
optional.

• The VIEW portlet mode should generate a content which reflects the current state
of the portlet. The mode can be implemented by an overriding doView method of the
GenericPortlet class.

• The EDIT portlet mode should enable to change customization settings of the portlet
to the user. The mode can be implemented by an overriding doEdit method of the
GenericPortlet class.

• The HELP portlet mode should help a user to understand the portlet functionality
and its user interface. The mode can be implemented by an overriding doHelp method
of the GenericPortlet class.

Another unspecified mode, called a custom mode, can be added by the portal. If the
developer wants to use a custom mode, he/she will need to define its support to the portlet
deployment descriptor.

3.1.4 Portlet states

Portlet states indicate how much space is available for the portlet on a portal page. The
portlet specification defines three states, other states can be added by portal vendors. The
portlet should reduce the amount of a content according to the current portlet state.

• The NORMAL portlet state indicates that a portlet shares the portal page with other
portlets.

• The MAXIMIZED portlet state indicates that a portlet occupies almost the whole
portal page. A n amount of a given space on a page is defined by the portal. Typically

14

when a portlet is maximized, the portal page contains only a toolbar or a navigation
bar of the portal and a maximized portlet.

• The MINIMIZED portlet state indicates that a portlet should either generate a very
small amount of a content or none.

3.1.5 Portlet preferences

Portlet preferences are typically used for storing of a configuration of a user customization.
Preferences are permanently stored by the portlet container. A preference consists of a
key and a set of values. A key which uniquely identifies values is defined as a String
object and values as an array of String objects. The portlet specification defines the
PortalPref erences interface for managing of preferences. This interface provides methods
for accessing to values (getNames, getValue, getValues and getMap methods), methods
for setting and modifying of preferences (setValue and setValues methods), a method
for removing of preferences (the reset method) and the store method which commits all
changes and makes preferences persistent.

Portlet preferences can be only set and modified within the processAction method of
the Portlet.

Default preferences can be defined in the portlet deployment descriptor. Preferences, de­
fined in the descriptor, can be read-only. The read-only state is indicated by the isReadOnly
method.

3.1.6 Sessions

Sessions allow to store information about users who request the portlet. Sessions are stored
only for the current session. The PortletSession interface tracks user sessions and provide
a functionality for manipulating with sessions.

• The setAttribute method sets or modifies a session attribute.

• The getAttribute method accesses a session attribute.

• The removeAttribute method removes a session attribute.

• The getAttributeNames method accesses an enumeration of all names of stored at­
tributes.

A session attribute contains a set of name, value and scope. While a name which
uniquely identifies the session attribute is defined as a String object, a value is defined
as an Object object. A scope defines a visibility of the session attribute. Possible values
of the scope are the APPLICATION_SCOPE and the P0RTLET_SC0PE. The scope with a value
P0RTLET_SC0PE indicates that the session attribute can be only accessed from the portlet
which creates the attribute. On the other hand the APPLICATION_SCOPE value of the scope
enables access for all portlets from the same portlet application which is the only way how
portlets can communicate with each other according to the JSR 186.

15

3.1.7 Dispatching requests to servlets and JSPs

The portlet fragment markup can be either generated out of the portlet in servlets or JSPs.
For these purposes the PortletContext interface provides access to a PortletRequestDis-
patcher object. The object must be only accessed in the render method of the Portlet.
There are two methods for returning of the object from the portlet context.

• The getRequestDispatcher obtains a PortletRequestDispatcher object for dis­
patching to a servlet or a JSP page on a path which is relative to the portlet context.
The path is given as a parameter.

• The getNamedDispatcher also obtains a PortletRequestDispatcher object for dis­
patching to a servlet or a JSP page. The difference is that the parameter of the
method is a name, not a path. The name is assigned to a path.

After obtaining of an object of the PortletRequestDispatcher interface, a method
include may be called for including of a servlet or a JSP page. The include method takes
two parameters, a RenderRequest object and a RenderResponse object. A n example of a
usage of the PortletRequestDispatcher interface is shown in the Listing 3.2.

PortletRequestDispatcher prd = context.getRequestDispatcher("/page.jsp");

prd.include(renderRequest, renderResponse);

Listing 3.2: A n example of a usage of the PortletRequestDispatcher interface

Servlets which were included have an indirect access to the functionality of request and
response objects of the portlet through HttpServletRequest and HttpServletResponse
interfaces, defined by the servlet specification.

Portlet tag library

The portlet tag library provides a direct access of request and response objects and other
functionalities (e.g. creating of portlet URLs) to a JSP page, included by the portlet.
The usage of the library must be defined in a JSP page by adding of the first line of the
Listing 3.3. For a direct access to RenderRequest, RenderResponse and PortletConfig
objects the <portlet :def ineObjects/> tag must be included in the JSP page.

<%@ t a g l i b uri="http://java.sun.com/portlet" prefix="portlet" %>

<portlet:defineObjects/>

Hello, <°/
0
=renderRequest. getRemoteUser () %> !

Listing 3.3: A n example of the JSP page with the portlet tag library

The portlet tag library defines following tags.

• The namespace tag produces a string which is unique for the current portlet. Typ­
ically, this unique value is used for the namespacing of H T M L D O M 8 identificators
or E C M A S c r i p t 9 global functions and variables. The namespacing is required for
achieving of the proper functionality on a portal page with multiple instances of the
same portlet.

8The Document Object Model
9 ECMAScript is a language, commonly used for client-scripting in H T M L documents

16

http://java.sun.com/portlet

• The param tag defines a parameter of the actionURL or the renderURL tag. The tag
provides name and value attributes.

• The actionURL tag creates a U R L which leads to an action of the current portlet.
Parameters may be added, using the param tag. The tag provides following optional
attributes. The windowState and portletMode attributes define the portlet state
and mode in which the portlet will be after an execution of the action. The secure
connection can be established, using the secure attribute with the true value. The
var tag indicates whether the U R L is directly written to the JSP page or is stored in
the variable with a name, defined in a value of the tag. A n empty value indicates the
directly written U R L . A n example of the tag is shown in the Listing 3.4.

• The renderURL tag works as the actionURL tag only with the exception: the action­
URL leads to an action and the renderURL tag leads to performing of a portlet render
request.

<portlet:actionURL portletMode="view" var="url_switch">

<portlet:param name="function" value="switchToViewMode" />

</portlet:actionURL>

<a href="<'/,=url_switch%>">Switch to the VIEW mode

Listing 3.4: A n example of the actionURL tag

3.1.8 Security

A security of the portlet can be achieved on the programmatic level by using of following
methods from the Request interface and a definition of user roles. The programmatic level
of the security ensures a restriction of access to the portlet by a user.

• The getRemoteUser method returns an identificator, used for the authentication of
a logged user. If a user is not logged to the portal, the n u l l will be returned.

• The isUserlnRole method checks if a user is in a role, given by a parameter of the
method.

• The getUserPrincipal method returns a principal name of a logged user in a form
of a Java, security .Principal object.

Roles can be defined by the portal and mapped to portlets using security-role tag of
the portlet deployment descriptor. A definition of roles is not a part of the specification.

Another possible security option is a usage of the secured communication over S S L . 1 0 It
can be achieved by the setSecure method of a PortletURL object and by propper setting
of the deployment environment of the portal.

3.1.9 Deployment

A n action which delivers a software system to a user is called a deployment. A deployment
of the portlet application is directed by a configuration, stored in deployment descriptors.

1 0 Secure Sockets Layer

17

The portlet application is deployed in a form of one application archive (W A R 1 1 file). The
application archive contains all resources, portlets, servlets and deployment descriptors
which are required for independent running of the portlet application.

The portlet application has two deployment descriptors. The first deployment descriptor
specifies web application resources. The web deployment descriptor is stored in the applica­
tion archive in a form of an X M L document, located at the path /WEB-INF/web.xml. The
web deployment descriptor also contains important elements for the portlet application,
such as a description of the application (the description tag), a portlet application name
(the display-name tag) and an element for security role mapping (the security-role
tag).

The second deployment descriptor is only related to a configuration of the portlet.
Moreover it is an X M L document, stored in the application archive and located at the path
/WEB-INF/portal .xml. Portlet deployment descriptors contain definitions of the portlet
application and its portlets. A n example of the portlet deployment descriptor is shown in
the Figure 3.6.

The application archive may also provide information about a version of the application.
It is placed in the manifest file at the path /META-INF/MANIFEST.MF in the application
archive. A n example of the manifest file is shown in the Listing 3.5.

1 Manifest-Version: 1.0

2 Built-By: Ondrej F i b i c h

3 Built-Jdk: 1.6.0_26

4 Implementation-Title: Sudoku_Game

5 Implementation-Version: 1.0.0

Listing 3.5: A n example of the MANIFEST.MF file

3.2 Specification JSR 286

After the first version of the Portlet A P I , introduced in JSR 168, became popular with portal
vendors and developers, new and postponed requests for functionalities were defined. The
most important request was a capability of building of integrated composite applications,
out of portlets. This capability was not defined by the first specification. Requests led to
a creation of the second portlet specification. A final version of the second specification,
called JSR 286, was released on the 12th of July in 2008. This version is the latest revision
of the portlet specification.

The JSR 286 extends the first specification while maintaining the backward compatibil­
ity. The backward compatibility was an important issue because there were many portals
and portlets, developed according to the first specification. New main features of the spec­
ification are a coordination between portlets through events and public render parameters,
resource serving, portlet filters and a support of the A J A X 1 2 technology [12]. The following
chapters will describe news in the JSR 286 [10].

3.2.1 Coordination between portlets

The coordination between portlets, according to the JSR 168, could be achieved by using
Sessions with limitations. The most important limitation was that the coordination was

1 1 Web application ARchive
1 2 Asynchronous JavaScript and X M L

18

restricted to work only between portlets in the same portlet application [11]. JSR 286
came up with two new types of coordination which do not have the limitation of their
predecessor. These types of coordination allow a cooperation between portlets, developed
by different developers. Both types use the loosely coupled publish/subscribe model that
enables an independent development of coordinating portlets. A developer only defines data
that are understandable by a portlet and a connection between portlets is made at runtime
of the portlet application. Using coordinating portlets, portal administrators and users can
build an integrated composite application by combining of these components without any
intervention to the source code of portlet applications [12].

Portlet events

Portlet events react to actions or a change of a state that are typical results of user inter­
actions. Events are generated by a portlet or by the portlet container. A portlet which
receives an event may change its state or create new events that should be delivered to
other portlets. Events are placed after action requests in the life cycle of portlets. Thus,
received events can not directly change the content of a portlet.

The JSR 286 specification defines the EventPortlet interface that contains only one
method, called processEvent. The processEvent method takes two parameters, an object
of the EventRequest and an object of the EventResponse. Portlets must implement this
interface in order to receive events. A predefined event may be triggered by the setEvent
method of a response object, during processing of an action or an event. Events are identi­
fied by QNames 1 3 and may contain a value which must be a serializable object. A n access to
a name, a QName and a value are provided by methods getName, getQName and getValue
of an Event object which is gained from the getEvent method of the EventRequest.

A configuration of portlet events is placed in the portlet deployment descriptor. A
portlet event is defined by the event-definition tag. Relationships between portlets and
events are divided into two situations which reflect that the defined event can be published
or processed by a portlet. Publishing is defined by the supported-publishing-event tag.
A n event may be published by the setEvent method that is called inside the processAction
method or the processEvent method of the portlet, as shown in the Listing 3.7. A n element
of the supported-processing-event tag defines a processing relationship. In this situation
a portlet listens to incoming events and processes them in the processEvent method. A n
example of processing is shown in the Listing 3.8.

<portlet-app ...>

<portlet>

<portlet-name>PortletA</portlet-name>

<supported-publishing-event>

<qname xmlns:x="http://fit.vutbr.cz/portal/portlets/ns">x:event</qname>

</supported-publishing-event>

</portlet>

<portlet>

<portlet-name>PortletB</portlet-name>

<supported-processing-event>

<qname xmlns:x="http://fit.vutbr.cz/portal/portlets/ns">x:event</qname>

</supported-processing-event>

</portlet>

<event-definition>

1 3 X M L qualified names - http://www.w3.Org/TR/xmlschema-2/#QName

19

http://fit.vutbr.cz/portal/portlets/ns%22%3ex:event%3c/qname
http://fit.vutbr.cz/portal/portlets/ns%22%3ex:event%3c/qname
http://www.w3.Org/TR/xmlschema-2/%23QName

15 <qname xmlns:x="http://fit.vutbr.cz/portal/portlets/ns">x:event</qname>

16 <value-type>org.gatein.examples.games.sudoku.entity.Service</value-type>

17 </event-definition>

18 </portlet-app>

Listing 3.6: A n example of the definition of an event

1 public void processAction(ActionRequest req, ActionResponse res) {

2 QName qname = new QName("http://fit.vutbr.cz/portal/portlets/ns" , "event");

3 res.setEvent(qname, new S e r v i c e (n u l l , "Rahan.wz.cz"));

4 }

Listing 3.7: A n example of a processAction method of the PortletA from the Listing 3.6

1 public void processEvent(EventRequest req, EventResponse res) {

2 Event e = req.getEventO ;

3 i f (e.getNameO.equals("event"))

4 res.setRenderParameterC'serviceName", ((Service) e.getValueO) .getNameO) ;

5 }

Listing 3.8: A n example of a processEvent method of the PortletB from the Listing 3.6

Public render parameters

Public render parameters are properties of a portlet that are shared to other portlets.
While portlet events create additional event calls, public renders parameters are commonly
stored in the U R L . Thus, public render parameters enable the browser navigation and
bookmarking to the end-user.

A public render parameter must be declared in the portlet deployment descriptor by
the public-render-parameter tag. Portlets that share a parameter may read, edit and
delete it in any part of their life cycle. Sharing as well as the declaration must be defined in
the portlet deployment descriptor by the supported-public-render-parameter tag. A n
example of the portlet deployment descriptor with public render parameters is shown in
the Listing 3.9.

1

2

3

4

5

6

7
8

9
10

11

12

13

14

<portlet-app ...>

<portlet>

<portlet-name>PortletA</portlet-name>

<supported-public-render-parameter>param</supported-public-render-parameter>

</portlet>

<portlet>

<portlet-name>PortletB</portlet-name>

<supported-public-render-parameter>param</supported-public-render-parameter>

</portlet>

<public-render-parameter>

<identifier>param</identifier>

<qname xmlns:x="http://fit.vutbr.cz/portal/portlets/ns">x:param</qname>

</public-render-parameter>

</portlet-app>

Listing 3.9: A n example of declaring and sharing public render parameters

20

http://fit.vutbr.cz/portal/portlets/ns%22%3ex:event%3c/qname
http://fit.vutbr.cz/portal/portlets/ns
http://Rahan.wz.cz
http://fit.vutbr.cz/portal/portlets/ns%22%3ex:param%3c/qname

Portlets which support a public render parameter may access it, using the
getPublicParameterMap method of a request and edit or delete it, using setRenderPa-
rameter or removePublicRenderParameter methods of a response. Each public render
parameter is identified by a QName.

3.2.2 Resource serving

Resources can be served by two different ways in the portlet application. The first way is
used for static resources. It uses direct links with URLs which direct to a resource, stored in
the portlet application. This type of resource serving is already supported in the JSR 168
and it is typically used for accessing images, scripts, etc. The second way was added to
the JSR 286 in order to provide serving of dynamic resources by portlets. While direct
links are created for static resources, links that direct back to the origin portlet are created
for dynamic resources. This fact allows to serve resources which may be protected by the
portlet security and can leverage the portlet context. The following text will describe a
mechanism which is defined for serving of dynamic resources.

A resource may be served by a portlet by implementing the ResourceServingPortlet
interface which has a single method, called serveResource. In the life cycle of the portlet
the serveResource method follows the render method. A single portlet can serve several
resources, each resource is determined by a resource identifier and by a H T T P method which
invokes serving. H T T P methods, such as POST, P U T or D E L E T E are commonly used for
changing a state of the portlet. On the other hand G E T method should be used for getting
the current state or some other data without changing them. The serveResource method
takes two parameters. The H T T P method and a resource identifier may be accessed from
the first parameter which is an object of the ResourceRequest interface. For these purposes
the interface provides getResourcelD and getMethod methods. The interface also provides
a functionality for accessing the portlet mode, the window state, request information, etc.
The second parameter is an object of the ResourceResponse interface whose main purpose
is to create an output of a type which is defined by the setContentType method. The
output is made by a writer that is available by the getWriter method of the response.

Request URLs which head to a served resource may be created by the createResour-
ceURL method of the PortletRequest which is an ancestor of the ActionRequest and
the RenderRequest. The createResourceURL method returns an ResourceURL object.
Another way of creating a resource U R L is to create it by the portlet :resourceURL JSP
tag. A n example of a usage of the tag is shown in the Listing 3.10.

<portlet:resourceURL var="helloURL" id="helloURL" escapeXml="false">

<portlet:param name="name" value="Mike" />

</portlet:resourceURL>

Listing 3.10: A n example of the creation of a resource U R L by a JSP tag

The request, invoked by a U R L which is defined in the Listing 3.10, can be processed
in the serveResource method, as shown in the Listing 3.11.

Dynamic resources are cached according to a caching level. Levels indicate which
changes in the portal page should invoke reloading of cached resources. getCachability

and setCachability methods of the ResourceURL allow managing of caching levels. There
are three levels: PAGE for keeping the cached resource until any state of the page changes,
PORTLET for keeping the cached resource until a portlet state changes and FULL which indi­
cates that keeping of the cached resource does not depend on any state change. If a caching

21

level of the resource U R L is not set, a level of a parent resource will be used. If there is no
parent, the PAGE level will be used.

1

2

3

4
5

public void serveResource(ResourceRequest req, ResourceResponse res)

throws PortletException, IOException {

i f ("helloURL" .equals(req.getResourcelDO))

res.getWriter0.writeC'Hello " + req.getParameter("name"));

}

Listing 3.11: A n example of the serveResource method

Serving fragments through portlets

The resource serving mechanism is often used for serving fragments through portlets. Typ­
ically, a content of a portlet is changed or updated asynchronously, according to a fragment
which is obtained from the serveResource method by an A J A X request to a resource U R L .
Despite this method allows to change a content of the portlet, it has several restrictions
(e.g. it is not allowed to change the portlet state).

3.2.3 Portlet Filter

Filters are Java components that are based on servlet filters. Typically, filters are used for
pre-processing of requests, post-processing of responses or changing output data without an
interference to the source code of the portlet. Filters are provided for all life cycle methods
(render, processAction, processEvent and serveResource). The life cycle of a filter
contains loading, the instantiation, the initialization, filtering and the destruction.

Interfaces and classes, related to filters, are located in the javax .portlet . f i l t e r pack­
age. There are four interfaces, one for each life cycle method of the portlet. Interfaces have
the doFilter method which performs filtering. Moreover they extend the P o r t l e t F i l t e r

interface which provides the rest of life cycle methods of a filter, such as the i n i t method for
the initialization and the destroy method for the destruction. The i n i t method takes an
object of the FilterConf i g that provides an access to the portlet context and to the config­
uration of the filter, given by the portlet deployment descriptor. Each doFilter method of
a filter takes three parameters: a request object, a response object and a FilterChain ob­
ject. Response and request object types are given by a name of the interface that defines the
method (e.g. the ActionRequest for the ActionFilter). A n object of the FilterChain

may create a sequence of filters, associated with a single life cycle method of the portlet.
When all filters in the sequence are processed (their doFilter methods are called), the
filtered life cycle method of a portlet is triggered. The next filter in the chain is invoked by
calling of the doFilter method of the FilterChain. The body of the doFilter method
of a filter should be separated into two parts, as shown in the Listing 3.12. The source
code, placed in the first part, is triggered before the life cycle method of the portlet and the
second part is triggered after its processing. If the doFilter method of the FilterChain

is not called in the method, the filtered life cycle method will not be processed.

22

public void doFilter(ActionRequest request, ActionResponse response,

F i l t e r C h a i n chain) throws IOException, PortletException {

// some code triggered before processing of the action request (e.g. wrapping)

chain.doFilter(request, response);

// some code triggered after processing of the action request (e.g. wrapping)

}

Listing 3.12: A n example of a doFilter method

A filter interface (e.g. ActionFilter) should be implemented in order to create a
filter. A single filter can be used for filtering of multiple life cycle methods by imple­
menting multiple filter interfaces. Request and response objects (e.g. ActionRequest,
ActionResponse) may be wrapped in the doFilter method, using predefined wrappers
(e.g. ActionRequestWrapper, ActionResponseWrapper). The wrapping functionality is
used for the modification of request or response object. Wrapped request or response ob­
ject is passed to the doFilter method of a FilterChain object instead of the original
object.

Filters are configurated by the portlet deployment descriptor. A n element of the f i l t e r

tag contains information about the filter, such as a name, a Java class, supported life cycle
phases of filtered portlets and initialization parameters. A n element of the filter-mapping
tag defines an association between a filter and a portlet or a group of portlets. A n example
of a filter configuration is shown in the Listing 3.13.

1

2

3

4
5

6

7
8
9

10

<filter>

<filter-name>ActionFilterl</filter-name>

< f i l t e r - c l a s s > c o m . t e s t . f i l t e r . A c t i o n F i l t e r K / f i l t e r - c l a s s >

<lifecycle>ACTTON_PHASE</lifecycle>

<init-param><name>parl</name><value>vall</value></init-param>

</filter>

<filter-mapping>

<filter-name>ActionFilterl</filter-name>

<portlet-name>FilteredPortlet</portlet-name>

</filter-mapping>

Listing 3.13: A n example of a portlet filter configuration

3.2.4 Caching

Content caching is used for improving of request time of the portal and reducing of the
load on servers. The portlet specification provides an expiration based caching mechanism,
separated to each portlet. A content of a portlet is cached until the expiration time passes
or an action or a event request is triggered. A n expiration time may be set in the port-
let deployment descriptor, using the expiration-cache tag or during runtime, using the
setProperty method of the RenderRequest interface with the first parameter which is set
to a value of the EXPIRATTON_CACHE. The behaviour of the caching mechanism may be
also configured by a scope. There are two defined scopes. The PRIVATE_SC0PE is used for
data which cannot be shared between users. On the other hand the PUBLIC_SC0PE scope
is used for a shared content. The scope of the request as well as the expiration time may
be specified in the portlet deployment descriptor or by the setProperty method with the
CACHE_SC0PE key.

23

Caching of dynamic resources is not based on the expiration based mechanism. The
description of resource caching is available in the section 3.2.2.

3.2.5 Annotations

The JSR 286 specification defines several annotations. These annotations were created
in order to reduce the source code for dispatching of requests in life cycle methods of
a portlet. A n annotation is placed in front of the life cycle method which processes or
renders the request, identified by a name or a QName. There are following annotations:
@ProcessAction(name="<name>") for an action, OProcessEvent(qname="<qname>") for
an event and @RenderMode(name="<name>") for a render action. A n example of a usage of
the OProcessEvent annotation is shown in the Listing 3.14.

1 OProcessEvent(qname="-[http: //fit.vutbr.cz/portal/portlets/ns}event")

2 public void eventl(EventRequest req, EventResponse res) {

3 Event e = req.getEventO ;

4 res.setRenderParameterO'serviceName", ((Service) e.getValueO) .getNameO) ;

5 }

Listing 3.14: A n example of the OProcessEvent annotation that reduces the example in
the Listing 3.8.

24

Chapter 4

Analysis and proposal

A practical task of this thesis was to develop a portlet implementation of the Sudoku game
for Red Hat company. The final product should be a part of the Gateln portal and the
JBoss Enterprise Portal Platform as an example portlet that shows how portlets may be
designed and developed. The secondary purpose of the portlet is its usage in a process of
the quality assurance of both portals.

4.1 Analysis

The Sudoku game is a logic-based number placement puzzle. There are many versions of
the game. The basic version has 81 cells, placed in 9 horizontal rows and 9 vertical columns.
Except for rows and columns, cells are divided to 9 uniformed boxes with a size of 3x3.
Each cell can contain a number value in a range from 1 to 9. A solved game contains all
values from the range in each row, column and 3x3 box. A Sudoku puzzle is created by
omitting of few number values from a solved game. A difficulty of a puzzle is given by a
count and a placement of omitted values [].

4.1.1 Specification of requests

The portlet implementation of the Sudoku game should include:

• generating of new games on demand

• loading and playing of games from periodical remote services

• loading and playing of previously played or saved games of a user (games must be
unfinished)

• loading and playing of games played by other users

• capabilities to check, to reset or to pause the current played game of a user

• visualizing of statistics about the current game of a user

• visualizing of information about the best solvers and summarized statistics about all
games

• managing of periodical remote services by an administrator

25

• providing of a skinnable user interface

The portlet must be capable of operating for multiple users at single moment. Details
of logged users are provided by the portal. A n access to the portlet must be provided for a
user even if he/she is not logged in the portal. In this situation the implementation must
not allow following actions to an anonymous user: saving of the current game, loading of
previously saved or played game solutions and changing of a skin of the user interface. A n
administrator as well as a user is distinguished, using information which are provided from
the portal.

The portlet should comply with the second portlet specification (JSR 286) in order to
achieve an easy portability to various types of deployment environments. The final product
must be compatible with following portals and their deployment environments:

• Gateln 3.2.0.Final with JBoss AS 5.1.0

• Gateln 3.2.0.Final with JBoss AS 6.0.0

• Gateln 3.2.0.Final with Tomcat 6

• Gateln 3.2.0.Final with Tomcat 7

• JBoss Enterprise Portal Platform 5.2.0

4.1.2 Available solutions

Due to the fact that the Sudoku game is very popular, the portlet developed in this thesis
was the first of its kind. There are some gadget implementations, provided by iGoogle.com 1

but most of these implementations are only fragments of a page from different web pages,
inserted in a form of a gadget.

On the other hand there are many web services that provide and allow to play games.
Typically, each service contains its own application for playing games. Some of these
services were used as periodical remote services for obtaining new games. For example the
DailySuDoku.com 2 server publishes Sudoku games with various difficulties every day.

4.1.3 Use cases

The behaviour of the application from an end-user point of view in a form of a use case
diagram is shown in the Figure 4.1. The use case diagram is a part of U M L 3 that is a graph­
ical language, used for the representation, the specification, proposing and documenting of
software systems.

The diagram contains three types of end-users: an administrator, a user and an anony­
mous user. Anonymous users can perform actions over games, such as loading, creating,
playing, pausing, checking, resetting and accessing of statistics. Users share all actions
of anonymous users and add personalized actions, such as loading and saving of game
solutions, changing of a skin and loading of previously played unfinished game solutions.
Administrators have capabilities of users, moreover they can manage periodical remote
services.

xhttp: / / www.igoogle.com
2http: / / www.dailysudoku.com/
3Unified Modeling Language

26

http://iGoogle.com1
http://DailySuDoku.com2
http://www.igoogle.com
http://www.dailysudoku.com/

U s e C a s e D i a g r a m j

Load a previously played unfinished g a m e j) (C h a n g e a skin of the user interface") Q5how summar ized statistics of all games

Show statistics of the current game

Reset a solution of the current g a m e

Check a solution of the current g a m e

Load a game played by other users

Create (generate) a new g a m e

Figure 4.1: A l l use cases of the Sudoku portlet

4.2 Proposal

The application is separated in two individual parts. The first part, called "Client side",
is responsible for providing of a logic for playing of games, maintaining of game states and
accessing to statistics and game lists. The Client side communicates with the second part,
called "Server side", in order to get, create or edit persistent data of games.

4.2.1 Server side

The Server side of the application is a persistent storage of services, games, solutions of
games and saved game solutions with a set of operations over them. A scheme of stored data
is shown in a form of a conceptual model in the Figure 4.2. The conceptual model contains
five entities: games, game solutions, saved game solutions, last played game solutions and
services. Information about users are provided by the portal. Thus, a user entity is not
used.

• Basic immutable information about a Sudoku game are placed in the entity, called
Game. The Game entity contains initialization values, such as the creation time
and initialization field values that contain fixed values of a Sudoku game. A game
type specifies how a game was created. There are two types: generated and service.
A Game entity with the generated type was algorithmically generated within this
application with a difficulty, specified by a difficulty attribute. On the other hand a
Game entity with the service type was obtained from a periodical remote service. If
the game is of the service type, it will contain a reference to a Service entity.

• In order to play a game, a Game solution entity must be created. Each solution is
owned by a user who is distinguished by his/her identificator. The entity persists
following attributes: a time stamp of the start, lasting in seconds, field values, a

27

counter of usages of the solution check, user's rating and an indicator which denotes
whether the solution is solved or not.

• A game solution can be saved during solving, using the Saved game solution entity.
The Saved game solution entity contains an image of the current state of solution,
identified by a name.

• A last played game solution is an association between a portal user and one of his/her
game solutions which is persisted in the Last played game solution entity.

• The Service entity encases information about a periodical remote service, such as
a name, a U R L , an expiration time and an indicator for enabling/disabling. The
expiration time, stored in the check time attribute, contains a duration in seconds
after which the service, located at the U R L , should be checked for a new game.

Conceptual model"^~

' serv ices
id in teger (l l)

' name
U

varchar(255)

url varchar(255)

^ check_t ime i n t e g e r (l l)

^ enabled t iny int (l)

J
- t -
O

c games
id integers 11)

init_time date

init_values blob

type varchar(40)

J type_difficulty varchar(40) Ü J
Ah type service id

v.
integer (11)

' J

f saved game solutions ^

id integers 11)

name varchar(255)

saved date

lasting i n t e g e r (l l)

_ values blob

s » « game_solutionJd integer (11)
J

I <x

f g a m e solutions

id in teger (l l)

1 u s e r j d varchar(255) o
I user_name varchar(255)

1 values blob

J start_time date

' lasting i n t e g e r (l l)

"1 f inished t iny int (l)

j check_count i n t e g e r (l l)

^ rating small int(5) GS
V P ^ gamejd integer (11)

v. J

l a s t p l a y e d g a m e s o l u t i o n s
u s e r i d

v^i game_solution_id
varchar(255)

integer(ll)

Figure 4.2: The conceptual model of data

Entities are managed by controllers that provide a set of allowed operations for this
purpose. There is one controller for each entity. A l l controllers extend a Controller class
that provides an access to persistent entities.

28

• The GamesController enables to create and to get Game entities, moreover it includes
operations for getting of statistics.

• The GameSolutionsController creates, edits and gets Game solution entities. En­
tities may be filtered by their owner.

• The SavedGameSolutionsController creates and gets Saved game solution entities
of users.

• The LastPlayedGameSolutionsController modifies and gets Last played game so­
lution entities of users.

• The ServicesController creates, edits and gets Service entities.

Incoming communication of the Server side is not directly processed in a controller.
There is another layer for dispatching of requests, processing of input data and creating
of responses. The layer encases the functionality of controllers, moreover it adds other
key capabilities, such as generating of games, obtaining of games from periodical remote
services and checking of game solutions. There are several classes which create the layer,
built according to the Facade design pattern.

• The GameRestFacade provides the generation of games and the encased functional­
ity of the GamesController. The generation of game values is performed by the
Generator class, as shown in the form of a U M L sequence diagram in the Figure 4.3.

• The GameSolutionRestFacade provides the game checking capability and the en­
cased functionality of the GameSolutionsController. Checking is performed by the
method check of the GameUtil class.

• The SavedGameSolutionRestFacade encases the functionality of the
SavedGameSolutionsController.

• The LastPlayedGameSolutionRestFacade encases the functionality of the
LastPlayedGameSolutionsController.

• The ServiceRestFacade provides obtaining of games from periodical remote services
and the encased functionality of the ServicesController.

The following text will be dedicated to obtaining of games from periodical remote
services. Obtaining is realized by a driver that is acquired for a service from a factory.
This architecture corresponds to the Factory design pattern. The factory class, called
PeriodicalServiceFactory, contains the method newDriverFor with a Service entity
which is a single parameter that the driver should be acquired for. The driver is chosen
from a group of drivers whose names and class names are provided in the constructor of
the factory class. Each driver must implement the PeriodicalServiceDriver interface
that defines i n i t , isExpired and get Game methods. A usage of these methods is shown
in a form of a U M L sequence diagram in the Figure 4.4. The i n i t method attempts to
initialize the driver to work with a service that is given by a parameter. If the method fails,
the IllegalStateException will be thrown. The isExpired method checks whether the
last obtained game of this service is expired. If the last obtained game is expired, a new
game could be obtained by the getGame method. The AbstractPeriodicalServiceDriver

29

sd T h e g a m e g e n e r a t i o n J

G a m e R E S T F a c a d e G a m e s c o n t r o l l e r : G e n e r a t o r

R e q u e s t

1: c r e a t e (game) |

2: r e s p o n s e

K

1.5: c r e a t e (g a m e) l

1.6: 1
I

A request from the Portlet s ide~|^

g a m e : G a m e

1.1 : g e n e r a t e (g a m e . d e t D i f f i c u l t y O)

! •
1.2 : v a l u e s i

,

1 .3 : set ln i tValues(val i] ies)

1
1.4: I

f. I I
I

Figure 4.3: The sequence diagram of the game generation

provides an abstract implementation of the PeriodicalServiceDriver. A driver should
extend this class and implement getGame and isCapable methods. The isCapable method
checks if a service, given by a parameter, may be managed by the driver. This method is
used in the i n i t method. The getGame method takes a Game entity as a parameter that
is a last obtained game of the service. The body of the method should obtain a game
from the periodical remote service, it should then check if the game is equal to the last
obtained game. If games are equal, the null value should be returned. In the opposite case
an obtained Game entity should be returned. A n implemented driver must be added to the
configuration of the portlet application in order to be used. Configuration details are de­
scribed in the section 6.2.1. The Figure 4.5 shows a U M L class diagram of all these classes,
moreover it contains an implemented driver, called RahanWzCzPeriodicalServiceDriver.

4.2.2 Client side

The Client side provides a logic for playing of games, a storage for the current state of
a played game and a persistent storage for preferences of users. This part of application
is made of a portlet which provides all these functionalities. The logic and the state is
managed by a set of ECMAScr ip t classes which are loaded by the portlet. The relation
between classes may be seen in a form of a U M L class diagram in the Figure 4.6. Classes
manipulate with a fragment of a document, generated by the portlet, according to the
current state of a game or user requests. The game state is stored periodically or after a
change by creating a request to the Server side. Other operations which require stored data
send requests to the Server side as well.

• The Game class is a basic element of the game logic which directs the initialization,

30

sd O b t a i n i n g o f a r e m o t e g a m e J

S e r v i c e s R e s t F a c a d e

1

1: g e t R e m o t e G a | m e (s e r v i c e , l a s t G a m e)
s e r v i c e : S e r v i c e

1.7: g a m e

1 . 1 : « c r e a t e »
-yi

Per iod i c a l S e r v i c e F a c t o r y

1.2: newDr i ve rFo r (se rv i ce) i

•

1 . 2 . 2 : d r i v e r

K_ 1

1 . 2 . 1 : «create>:
L .yi d r i v e r : P e r i o d i c a l S e r v i c e D r i v e r

opt;

[dr iver != null
1 .3 : i s E x p i r a t e d (l a s t G a m e)

1.4: i s E x p i r a t e d

opt J

1.8: nul l

[i sExp i ra ted = = t rue]
1.5: g e t G a m e (l a s t G a m e)

1.6: g a m e

Figure 4.4: The sequence diagram of the getRemoteGame procedure for obtaining of remote
published games

starting, resetting, storing and ending of a game.

• The GameTimer class is a timer for measuring of lasting of a game. The timer may
be stopped and then started again.

• The GameBoard class contains a set of game board fields and provides an easy access
for setting and accessing of their values. The game board may be disabled if playing
of the game is forbidden.

• The GameBoardField class represents a field of a game board with a blank or a filled
value which may be fixed.

• The GameToolbar class provides functionalities of saving, loading, checking, resetting,
etc. The class includes a group of buttons which are available according to the
game state. Each button has a predefined function which mediated one of listed
functionalities. Typically, when a user presses a button, a request to the Server side
is made. Received data are processed in the function of the button as well.

31

The a rch i tec tu re of per iod ica l s e r v i c e dr ivers J

<<lnterface>>
Period icalServiceDriver

+init(service : Service) : void
+isExpirated(lastGame : Game) : bool.. .
+getGame(lastGame : Game) : Game

7 T
AbstractPeriodicalServiceDriver

+init(service : Service) : void
+isExpirated(lastGame : Game) : boolean
#isCapableOf(service : Service): boolean

Periodica IServiceFactory
driverClasses : List<Class>

+ PeriodicalServiceFactory()
+ PeriodicalServiceFactory(relativePath : String)
+ PeriodicalServiceFactory(drivers : List<String>)
+ newDriverFor(service : Service) : PeriodicalServiceDri..
- loadConfig(relativePath : String) : List<String>

RahanWzCzPeriodiclServiceDriver
#isCapableOf(service : Service) : boolean
+getGame(lastGame : Game) : Game

Figure 4.5: The class diagram of the architecture of drivers for obtaining of games which
are published on periodical remote services

G a m e l o g i c c l a s s d i a g r a m ~J

Game

- t i m e r : T imer
- g a m e B o a r d : G a m e B o a r d
- t o o l b a r : Toolbar
- n a m e s p a c e : s t r ing
-appPath : str ing
- g a m e : object
- g a m e S o l u t i o n l d : int
- f in ished : boolean = false

+ G a m e (n a m e s p a c e : s t r ing , appPath : string)
+ in i t (loadl_astGameSolut ion : boolean = false)
+star t (game : object = null)
+ p a u s e d
+ reset!)
+checkEnd() : boolean
#store(force : boolean = false) : boolean
#end()

GameBoard

- p a r e n t : G a m e
- r o o t E l e m e n t : str ing
- e n a b l e d : boolean
- g a m e P l a y e d : boolean
- f ie lds : array

+ G a m e B o a r d (g a m e P a r e n t , rootElement)
+ init()
+setEnab led (enab led : boolean)
+set ln i tF ie lds(game : object)
+setField(index : integer , va lue : integer)
+setF ie lds (gameSolut ion : object)

I
GameTimer

- p a r e n t : G a m e
- t ime_out_ id : int
- t i m e o u t : int
- p a u s e d : boolean

+ G a m e T i m e r (g a m e P a r e n t : G a m e , r o o t E l e m e n t : str i . .
+star t (t imeout = 0)
+ pa u s e d
+ render!)
+ isPaused() : boolean
+ isStarted() : boolean
+getTimeout() : int

81
GameBoard Field

- va lue : int
- f ixed : boolean

+GameBoardF ie ld (va lue :
+getValue() : int
+ hasValue() : boolean
+setValue(value : int)
+ isFixed() : boolean

int, f ixed : boole. .

GameToolbar

- p a r e n t : G a m e
-but tons : array

+ G a m e T o o l b a r (g a m e P a r e n t : G a m e)
+setBut tonsEnab le (g roup : int, enab le : boole. .

Figure 4.6: The class diagram of classes, related to the game logic

32

Chapter 5

Implementation

The implementation of the portlet application was made according to JSR 286, with a usage
of other technologies. The application is a single project that contains the implementation
of the Server side and the Client side.

The Client side is implemented as a portlet that represents the user interface (UI) of
the portlet application. The portlet is defined in the SudokuPortlet class which extends
the GenericPortlet class. The portlet supports view, edit and help modes by overriding
of doView, doEdit and doHelp methods. Users are distinguished, using data, obtained by
the getRemoteUser method. The user customization, such as a skin of the game board is
stored in portlet preferences. The portlet does not directly communicate with the Server
side. The communication is made by JavaScript scripts which are included in the generated
fragment of the portlet content. More details about the portlet and its UI may be found in
the following section.

The Server side is implemented separately from the portlet, as described in the proposal
of the portlet application. Techniques which were used during the implementation of the
Server site are discussed in the section 5.3.

5.1 User interface

The UI of the portlet is created by fragments of H T M L documents that are styled by C S S 1

styles. The interaction between a user and the UI is done by a group of JavaScript scripts.
Data are obtained from the Server side, using A J A X , and they are processed by JavaScript
scripts as well as the interaction is. The application uses the Humanity 2 icon theme.

5.1.1 View mode

A n application for playing of a Sudoku game is a part of the view mode of the portlet. The
view mode contains the game board, the game toolbar and statistics. The interface in this
mode adapts itself to the window state of the portlet. If the window state is normal, the
game board with the game toolbar or statistics will be viewed. A user may switch manually
between both options. If the window state is maximized, all components will be displayed.

The game board is automatically resizable according to a width of the portlet. Users
may control the game board, using the mouse or the keyboard. Both control styles may be

1 Cascading Style Sheets
2https://launchpad.net/humanity

33

https://launchpad.net/humanity

combined. Controlling through the keyboard is based on moving around the game board
with arrows. A value is directly typed into a focused game board field. Controlling through
the mouse is made by using a hint that is shown after a mouse click on a game board field.
The hint is a menu with possible values of the field. After clicking on a menu item a value
of the item is set as a value of the field and the hint is closed.

The game toolbar mediates actions, such as creating of new games, saving of the current
game, etc. A group of dialogs is created for purposes of these actions. For example, a dialog
for creating of a new game is a wizard which allows generating of a new game or loading of
a previously played game or loading of games from periodical remote services.

5.1.2 Edit mode

The edit mode enables changing of a skin of the game board and managing of periodical
remote services.

Changing of a skin is enabled to logged user who may choose from a set of predefined
themes or create an own custom theme. The current theme of a user is stored in portlet
preferences. Predefined themes are specified in the configuration of the portlet application.
This configuration is specified in the section 6.2.1.

Managing of periodical remote services is only restricted for portal administrators who
may view all services in a separated tab and add or edit them by a dialog.

5.1.3 Help mode

The help mode contains a link to a user documentation. The user documentation is a P D F
document that explains the UI of the portlet application.

5.2 Algorithm for generation of Sudoku games

The generation of Sudoku games is carried out by the Backtracking algorithm. A solved
game is generated by the algorithm and then several solved values are blanked according
to a level of a game difficulty. The generation is always performed on the Server side.

The Backtracking algorithm is a method of deep searching, related to the brute-force
search technique but it only enumerates possible candidates of a solution. If the current
candidate does not comply, it will go backward a try a different candidate until it finds a
proper solution [2].

5.3 Used technologies

A l l technologies which were used during the development process of the portlet application
are noted in this chapter. The whole project was managed by Apache Maven tool. Tech­
nologies such as JavaScript, A J A X , jQuery and Selenium IDE were used in the Client side
and Java Persistence A P I , REST, JUnit, JSoup were used in the Server side. Details about
technologies and their usage in the portlet application are listed in following sections.

5.3.1 Apache Maven

Apache Maven is a software tool for managing, building and deploying of software projects.
A managed project is specified with its dependencies, build order, required plug-ins and

34

directories in a form of a Project Object Model (POM) which is an X M L document, located
in a root directory of the project in the pom.xml file. There are other tools for described
purposes but Maven was chosen because it is capable of dynamic loading of libraries from
remote or local repositories. This quality eases the development process of developed ap­
plications [6].

5.3.2 Java Persistence A P I

The Java Persistence A P I (JPA) is a part of the Java E E platform for managing of persisted
data from relational databases. Schemes of databases are mapped to objects, called entities.
A n instance of an entity represents a row of a database table. Columns of a database table
are mapped to properties of the mapped entity object, using annotations [24]. The Listing
5.1 shows the Service entity class with an identificator column and a name column which
is mapped to a table, called services.

A group of entities may be managed by a single instance of the Entity Manager, defined
by a persistence unit. A persistence unit contains connection information to a database,
class names of entities, related to this connection, and configuration options of the Entity
Manager. Persistence units are stored in the persistence.xml file. A n initialized Entity
Manager provides A P I for creating, updating, removing, finding and querying over entities,
specified in the persistence unit. A database does not have to be created before using of
entities or the Entity Manager. The Entity Manager can create a database according to
entities. The creation of a database is configurated by an option of the persistence unit
[15].

SXmlRootElement OEntity STable(name = "services")

public Service implements S e r i a l i z a b l e {

Sid SGeneratedValue(strategy = GenerationType.IDENTITY) SColumn(name = "id")

private Integer i d ;

SBasic(optional = false) SColumn(name = "name", nullable = false)

private String name;

// ... other properties, constructors, getters and setters

}

Listing 5.1: A n example of an entity class

For purposes of querying over entities the Java Persistence Query Language (JPQL)
was created. The J P Q L is similar to the S Q L 3 language but it does not work directly
with database tables and columns. A J P Q L query operates over entities which may be also
returned as responses. A n advantage of the J P Q L over the SQL is that the same J P Q L
query may be run on different database engines [24].

The J P A was used in controller and entity classes of the Server side which are described
in the section 4.2.1. A part of the Service entity class is shown in the Listing 5.1. Another
example, placed in the Listing 5.2, shows how the entity may be added to the database by
the Entity Manager. Typically, the source code of the Listing is similar to the body of a
method of a controller.

The portlet application defines two persistence units. The first unit is used for testing
of controllers and entities, as described in the section 6.1.1. This testing unit contains
a connection to a H S Q L D B database, stored in the memory. The second unit provides
a connection to a H S Q L D B database as well as the previous unit but this database is a

'Structured Query Language

35

default storage of data of the application. Furthermore it is persistently stored in a file
which is automatically created during the first running of the portlet application.

EntityManagerFactory emf = Persistence.createEntityManagerFactoryC'unitName");

EntityManager em = emf.createEntityManager();

try {

em.getTransactionQ .beginO ;

em.persist(new S e r v i c e (n u l l , "Rahan.wz.cz"));

em.getTransactionO .commitO ;

} catch (Exception ex) {

em.getTransactionO .rollbackO ;

} f i n a l l y {

em. closeQ ;

emf.close();

}

Listing 5.2: Persisting of a Service entity by the Entity Manager

A usage of the J P A eases following parts of a development process of the portlet applica­
tion: the deployment, testing and a possible migration to other deployment environments.
The H S Q L D B database engine is not required. It can be easily changed to another suitable
database engine in the configuration of persistence units.

5.3.3 R E S T

Representational state transfer (REST) is a data-oriented software architecture which con­
sist of clients and servers. A client makes a request for data, located in a U R I , 4 over the
H T T P protocol and a server responds with data or a state message. The communication
is stateless and cacheable. Requests are distinguished according to a U R I and a H T T P
method. Each H T T P method is used for another action: G E T for getting of data, P O S T
for creating of data, P U T for modifying of data and D E L E T E for removing of data [26].

RESTful applications may be built by a mechanism, specified in the J A X - R S . The J A X -
RS is a specification of A P I for creating of RESTful Web Services in the Java. This concept
is based on mapping between methods of Java classes and requests. Mapping is described
by a set of annotations. A mapped Java class contains an annotation ©Path that specifies
a relative path of requests, processed by this class. A path is relative to a URI that is
specified in the web deployment descriptor. Each method may define its relative path to a
path of class with possible parameters, a H T T P method that may be processed and sets
of consumed and produced types of data. The J A X - R S allows to transfer serialized Java
objects with usage of the J A X B . 5 Objects are automatically transformed according to the
definition of consumed or produced types of data [8].

A n example of a class with two methods is shown in the Listing 5.3. The first method,
called create, is mapped to a path ./game/ and to P O S T H T T P method and it consumes
a J S O N 6 document which is transformed to an object of the Game class. After processing
of the object a response with a state is produced. On the other hand the f i n d method is
mapped to G E T H T T P method and to a path with a parameter and it does not consume
any data. For example, this method may be invoked by a request to the ./game/1 path.

4Uniform Resource Identifier
Java Architecture for X M L Binding

6JavaScript Object Notation

36

http://Rahan.wz.cz

The method produces an object of the Game class, transformed to an X M L or a JSON
document according to the H T T P Accept Header of the request.

1

2

3

4
5

6

7

@Path("game")

public class GameRestFacade {

SPOST SConsumes({"application/json"})

public Response create(Game game) { / * ... * / }

@GET @Path("{id}") OProduces({"application/xml", "application/json"})

public Game find(@PathParam("id") Integer id) {/*... * / }

}

Listing 5.3: A n example of a usage of the J A X - R S .

The portlet application is designed to be compatible with R E S T . Classes with name
which ends with RestFacade, specified in the section 4.2.1, are implemented according to
the J A X - R S , as described in the previous paragraph. These classes create a R E S T server
which provides an access to data and functionalities of the Server side. A role of a R E S T
client is represented by the Client side.

5.3.4 JavaScript

JavaScript is a scripting language from a family of ECMAscripts , designed to add an in­
teraction to web pages. Commonly, a script which is written in JavaScript is embedded
directly in a H T M L document and it manipulates with the content and the structure of the
document [25].

JavaScript contains a format for a representation of data, called JavaScript Object
Notation (JSON). J S O N provides an easy way for interchanging of data in text-based
protocols, such as the H T T P [1].

The user interface of the Client side of the portlet application is partially written in
JavaScript with a usage of A J A X and the jQuery library. Data between the Client side
and the Server side are transmitted in the J S O N format.

Asynchronous JavaScript and X M L (A J A X) is a group of web-based technologies which
allow receiving, processing and displaying of data from a server by a client without refreshing
of the whole web page. Typically, data are received in a form of an X M L or a JSON
document, then a JavaScript program modifies the D O M of the web page according to
received data [18].

A J A X was used for a communication between the Client side and the Server side in
order to provide a fluent user interface of the Sudoku game.

5.3.6 jQuery

jQuery is a JavaScript library which simplifies JavaScript programming, document travers­
ing, event handling, A J A X interactions, etc. Except for these qualities, jQuery provides a
plug-in architecture that allows to add a huge amount of additional functionalities for web
applications [16].

jQuery is used with several plug-ins in the Client side of the portlet application alongside
with JavaScript, as described in the section 5.3.4. Used plug-ins are:

7Document Object Model

5.3.5 A J A X

37

• jQuery U I 8 plug-in provides various kinds of widgets, such as dialogs, tabs, etc.

• Color Picker 9 plug-in represents a widget for selecting of a colour.

• DataTables 1 0 plug-in creates data tables with many features.

• jWiza rd 1 1 plug-in is used for wizard-like dialogs.

• Ra ty 1 2 plug-in provides a star-rating functionality.

5.3.7 JSoup

JSoup is a Java library for downloading, extracting and manipulating with a D O M of H T M L
documents. The main feature of the library is a capability of browsing with selectors which
are similar to selectors, used in jQuery and CSS []. The portlet application uses JSoup
A P I functions in order to obtain data from periodical remote services. The code in the
Listing 5.4 shows how easily may data be extracted from a H T M L document with the
JSoup library.

1 Document doc = Jsoup.connect("http://rahan.wz.cz/daily_sudoku.php").get();

2 Elements inputs = doc.select("table t r td input");

3 for (Element input : inputs)

4 System.out.println(input.attributes().get("value"));

Listing 5.4: A n example of a usage of the JSoup library.

5.3.8 JUni t

JUnit is a framework for automated unit testing. Typically, a unit test checks a method of
a class and all unit tests of all methods of a class create a test case. This test case is encased
to a Java class which may be run repeatedly. Commonly, test cases are automatically run
after successful building of the application for verification of its functionalities [3]. The
usage of JUnit in the portlet application is described in the section 6.1.1.

5.3.9 Selenium I D E

Selenium automates web-browsers by test cases that enable testing from the point of view
of the user interface of the web application. Selenium IDE is a plug-in for Mozilla Firefox 1 3

that may be used for creating and running of test cases. It records activities of a user on a
web page. A recorded activity is stored to a file and it runs repeatedly as a test case [20].
The description of a usage is placed in the section 6.1.2.

8http://jqueryui.com/
9http: / / www.eyecon.ro/colorpicker/

1 0http://datatab les.net/
1 1https:// github. com / dominicbarnes/j Wizard
1 2http: / / www.wbotelhos.com/raty/
1 3http: / / www.mozilla.org/en-US / firefox/

38

http://rahan.wz.cz/daily_sudoku.php%22).get(
http://jqueryui.com/
http://www.eyecon.ro/colorpicker/
http://datatab
http://les.net/
http://www.wbotelhos.com/raty/
http://www.mozilla.org/

5.4 Possible improvements

The current implementation may be improved in issues, such as the security and the inter-
nationalisation.

The security issue is related to the communication between the Client side and the
Server side. The communication is not protected and it does not use any authentication.
The protection of the communication may be made by replacing the H T T P protocol by the
secured H T T P S protocol but this replacement depends on capabilities of the deployment
environment. The authentication of users and their requests is more important issue be­
cause in the current implementation a user may change data of other users by the manual
creation of requests to the Server side. There are more possible solutions. The first solution
may be made by adding of some authentication mechanism to the current situation where
sides of the communication are separated. The second solution rests on using of the serve
resource mechanism from the portlet specification. This solution solves the problem but
brings another one. The whole code from all R E S T facade classes would be aggregated
to the portlet class without any possibility to use the mechanism, specified by the J A X -
RS specification that would be unproductive. The best as well as the hardest solution
is to extend the portlet specification in order to provide the functionality of the J A X - R S
specification in the resource serving mechanism. The serveResource method would be
complemented by a set of annotations for mapping of requests and by the possibility of
dispatching of requests to other methods outside the portlet class.

English is the only language of the user interface at this moment. The internation-
alisation of the portlet may be implemented by the mechanism, specified by the portlet
specification.

39

Chapter 6

Testing and deployment

The portlet application was continuously tested in order to ensure its functionalities and to
simplify its deployment to environments, defined in the specification of requests. The portlet
application was designed to be configurable without any intervention to source codes. The
configuration helps during the migration and the customization of the portlet application
to deployment environments.

6.1 Testing

Testing as well as the architecture of the portlet application was separated to individual
parts. The Server side was tested, using JUnit tests and partially Selenium IDE tests that
were used for testing of the Client side.

6.1.1 J U n i t tests

The first group of unit test suites was designed to verify the generation of games and other
small utilities of the portlet application, for example checking of the correctness of game
solutions.

The second more extensive group is designed to test all controllers and their operations
over entities by several test cases that test all of them together. For these purposes a
separated data source in a form of a HSQL database, stored temporarily in the memory, is
automatically created during testing.

Tests are located at the /src/test/java path and they may be run simultaneously by
Apache Maven, using the C L I 1 command mvn test that is triggered in the root directory
of the portlet application.

6.1.2 Selenium I D E tests

Several Selenium IDE tests were created to simulate basic user activities in the portlet
application. Tests are useful during the development of the user interface, especially for
functionality, implemented in JavaScript. Due to the fact that the user interface is quite
extensive, manual testing would take a long time. On the other hand Selenium IDE tests
are finished in a matter of seconds. The R E S T part of the portlet application is verified
during tests as well as the user interface.

1 Command-line interface

40

The Selenium IDE has its issues, given by the nature of this tool. Tests are bound to
a web page which means if a change in the D O M of the web page is made, the test may
be broken. Due to this issue, Selenium IDE tests were not used as JUnit tests but only for
testing during the implementation process.

6.2 Deployment
The portlet application was ported to all environments, specified in the analysis. The
deployment process, such as building, testing, packaging and deploying are made by using
of Apache Maven.

The deployment process is customized by various configuration options. Furthermore it
depends on the application server that is bound to the used portal. Currently, the portlet
application is provided for Apache Tomcat and JBoss A S application servers. Building,
testing, packaging and deploying is made by a single command. The command for JBoss AS
is shown in the Listing 6.1.

mvn clean package jboss:hard-deploy -P "jboss-as" \

-Denv.JB0SS_H0ME=<path to JBoss AS home directory>

Listing 6.1: The command for launching of the portlet application on JBoss AS .

After triggering of the command the portlet may be added to a portal page. In Gateln
portal the portlet must be imported in the Application Registry section and then it may
be added to a portal page.

6.2.1 Configuration

A configuration of the Client side rests on following items.

• Periodical remote services may be disabled in the remotePublishersEnabled ini­
tialization parameter of the portlet deployment descriptor which is located in the
/src/main/webapp/WEB-INF/portlet.xml file.

• Drivers of periodical remote services are defined in the X M L document, located in the
/src/main/webapp/WEB-INF/sudoku-portlet-periodical-service-drivers.xml

file. Drivers that are specified in this document are available to be used for services
which are managed in the edit mode of the portlet by an administrator.

• Predefined skins of the game board are located in the /src/main/webapp/WEB-INF-
/sudoku-portlet-skins .xml file. One of these predefined skins may be set as the
default skin in order to provide a skin that is optimized to the appearance of the
portal.

The Server side is bound to the application server of the portal at a path, defined in
the /src/main/webapp/WEB-INF/jboss-web.xml file for JBoss AS and in the /src/main-
/webapp/META-INF/context.xml file for Apache Tomcat. The default path is /sudoku-game.

Without any intervention to the configuration, the portlet application uses a HSQL
database, stored in a file. The data source may be changed to another database, using the
/src/main/setup/jboss-ds.xml file on JBoss AS and the /src/main/webapp/META-INF-
/context .xml file on Apache Tomcat. Moreover the dialect of a new database source must
be set in the /src/main/resources/META-INF/persistence.xml file on both application
servers.

41

Chapter 7

Conclusion

The question of portals, introduced in the first chapter, is quite extensive. Important prin­
ciples and properties of portals are explained in the second chapter that also contains basic
information about the categorization of portals and characteristics of basic elements of the
portlet environment. Furthermore it includes the description of the Enterprise portal which
is the most common portlet type. The second chapter continues with the section about an
open-source portal solution, called Gateln portal. The last part of the chapter is dedicated
to portlets that are components of portals. Each portal contains portal pages which are oc­
cupied by these components in order to create their content. The communication between
portlets and the portal is mediated through the portlet container, described in this chapter
as well. The development of portlets is defined by two specifications. The third chapter
describes these specifications. The first specification, published as JSR 168, defines the life
cycle, the configuration, states, modes, preferences and sessions of the portlet. JSR 286 is a
complement for the first specification and it adds capabilities, such as the coordination be­
tween portlets, resource serving, portlet filters and the caching mechanism. Content of both
specifications is explained in detail and the most important parts are shown in examples.

The aim of the practical part was to develop a portlet implementation of the Sudoku
game for Red Hat company which may use it as an exemplary portlet in Gateln portal.
The analysis of the portlet application is placed in the fourth chapter. The implementation
should provide the generation of games on demand, obtaining of games from periodical
remote services, statistics of playing, etc. These capabilities are summarized in the specifi­
cation of requests section. Before a next phase of the development available solutions were
explored and some of them were chosen as periodical remote services. After the analysis a
proposal, described in the fifth chapter, was designed. The architecture that is designed in
the proposal separates the portlet application to two parts, the Server side and the Client
side. The Server side persists games and other required data. Moreover it answers to re­
quests for these data from the Client side which is a portlet, developed according to portlet
specifications. The portlet provides the view portlet mode for playing of games, the edit
portlet mode for the customization and the management of periodical remote services and
the help portlet mode for accessing to the user documentation. Implementation details are
placed in the sixth chapter that also contains a list of used technologies with their basic
characterisation and possible improvements of the current implementation. Deployment in­
structions and methods of testing of the portlet application are described in the last chapter
of the thesis.

The final version of the developed portlet implementation of the Sudoku game was
submitted to Red Hat company for the inclusion into Gateln portal. The application may

42

be improved, as suggested in the implementation chapter. Furthermore the thesis will be
publicly available in order to provide a tutorial for developers who start to develop portlets.

43

Bibliography

[1] Introducing J SON [online]. Available from: http://www.json.org/ [Accessed
2012-04-13].

[2] B . Antal. The Backtracking Algorithm Technique [online]. Available from:
http://www.devarticles.com/c/a/Development-Cycles/The-Backtracking-
Algorithm-Technique/1/ [Accessed 2012-04-05].

[3] K . Beck. JUnit pocket guide. Pocket References Series. O'Reilly, 2004. ISBN
9780596007430.

[4] C. Bishop. What is a Web Application Server? [online]. Available from:
http://www.resultantsys.com/index.php/general/what-is-a-web-application-server/
[Accessed 2012-02-14].

[5] H . Collins. Enterprise knowledge portals: next-generation portal solutions for
dynamic information access, better decision making, and maximum results.
A M A C O M , 2003. ISBN 9780814407080.

[6] Sonatype Company. Maven: the definitive guide. O'Reilly Series. O'Reilly, 2008.
ISBN 9780596517335.

[7] D. Cowar and Y . Yoshid. JSR 154: Servlet Specification Version 2.4 [online].
Available from: http://www.jcp.org/en/jsr/detail?id=154 [Accessed 2012-02-15].

[8] M . Hadley and P. Sandoz. JSR 311: JAX-RS: The Java API for RESTful Web
Services [online]. Available from: http://jcp.org/en/jsr/detail?id=311 [Accessed
2012-04-12].

[9] J . Hedley. JSoup: Java HTML Parser. Available from: http://jsoup.org/ [Accessed
2012-04-07].

[10] S. Hepper. JSR 286: Java Portlet Specification 2.0 [online]. Available from:
http://www.jcp.org/en/jsr/detail?id=286 [Accessed 2012-01-04].

[11] S. Hepper and A . Abdelnur. JSR 168: Java Portlet Specification 1.0 [online].
Available from: http://www.jcp.org/en/jsr/detail?id=168 [Accessed 2012-01-04].

[12] S. Hepper and O. Koth. What's new in the Java Portlet Specification V2.0 (JSR
286)? [online]. Available from: http://www.ibm.com/developerworks/
websphere/library/techarticles/0803_hepper/0803_hepper.html [Accessed 2012-03-08].

[13] T. Heute. Gateln Portal vs JBoss Enterprise Portal Platform [online]. Available
from: http://jboss-epp.professional-blog.com/?p=28 [Accessed 2012-02-26].

44

http://www.json.org/
http://www.devarticles.com/c/a/Development-Cycles/The-Backtracking-
http://www.resultantsys.com/index.php/general/what-is-a-web-application-server/
http://www.jcp
http://jcp.org/en/jsr/detail?id=311
http://jsoup.org/
http://www.jcp
http://www.jcp
http://www.ibm.com/developerworks/
http://jboss-epp.professional-blog.com/?p=28

[14] T. Heute, S. Mumford, and L . Texier. Gateln User Guide [online]. Available from:
http: / / docs.jboss.com/gatein / portal/3.1.0-FINAL / user-guide /
en-US/pdf/GateIn%20User%20Guide%20en.pdf [Accessed 2012-02-26].

[15] Sun Microsystems Inc. Interface EntityManager [online]. Available from:
http://docs.oracle.eom/javaee/5/api/javax/persistence/EntityManager.html
[Accessed 2012-04-11].

[16] jQuery Foundation. jQuery is a new kind of JavaScript Library [online]. Available
from: http://jquery.com/ [Accessed 2012-04-13].

[17] K . Mukhar, C. Zelenak, J .L. Weaver, and J . Crume. Beginning Java EE 5: from
novice to professional. Expert's voice in Java. Apress, 2006. ISBN 9781590594704.

[18] S.D. Olson. Ajax on Java. Java Series. O'Reilly, 2007. ISBN 9780596101879.

[19] J . Ottinger. What is an App Server? [online]. Available
from:http://www.theserverside.com/news/1363671 /What-is-an-App-Server [Accessed
2012-02-10].

[20] Selenium Project. Selenium Documentation [online]. Available from:
http://seleniumhq.org/docs/02_selenium_ide.html [Accessed 2012-04-26].

[21] T. Rourke. Application server [online]. Available from:
http://searchsqlserver.techtarget.com/definition/application-server [Accessed
2012-02-12].

[22] N . M . L . Sood. Sudoku Gems. Diamond Pocket Books (P) Ltd . ISBN 9788128812989.

[23] A . Tatnall. Web portals: the new gateways to Internet information and services. Idea
Group, 2005. ISBN 9781591404385.

[24] Y . Vasiliev. Beginning Database-Driven Application Development in Java EE: Using
GlassFish. From Novice to Professional. Apress, 2008. ISBN 9781430209638.

[25] W3Schools. JavaScript Introduction [online]. Available from:
http://www.w3schools.com/js/js_intro.asp [Accessed 2012-04-13].

[26] Wikipedia. Representational State Transfer [online]. Available from:
http://en.wikipedia.org/wiki/Representational_State_Transfer [Accessed 2012-04-09].

45

http://docs.jboss.com/gatein
http://docs.oracle.eom/javaee/5/api/javax/persistence/EntityManager.html
http://jquery.com/
http://www.theserverside.com/news/1363671
http://seleniumhq.org/docs/02_selenium_ide.html
http://searchsqlserver.techtarget.com/definition/application-server
http://www.w3schools.com/js/js_intro.asp
http://en.wikipedia.org/wiki/Representational_State_Transfer

Appendix A

Content of attached C D

The attached C D contains source codes of the implemented portlet application and a user
documentation.

• user-guide.pdf - a user guide

• R E A D M E - a basic description of the application and installation instructions

• pom.xml - a configuration of Apache Maven

• src - a directory with source codes

• target/site/apidocs - a directory with the Javadoc A P I documentation in H T M L
format

46

Appendix B

Samples of Sudoku portlet

Screenshots show the implemented portlet, deployed on Gatein portal.

LLj Site jTjj^ Group • £ Dashboard Site Edit

^Gateln
p Navigation Sample-Ext Page Portal

& Sudoku game l " ^] ^ ! " ^

J |_£ New J J £J1 Save 11 ^j] Load 11 <• Reset 11 ̂ Chec k

2 4 6 7 8

1 - • — ® — n|

9 (T
[T

T)
2}
3)

1 7 8 5
5 ~~®—

2

T)
2}
3)

5 2 1 8

6 2 3 1

6 2 1

3 7 1 9 6

1 8
2:24|0|]PaiJse| ^Statistics

Done

H Q Q

I

& Slides from portal presentation at JUDCon London 2011

Ji Gateln Portal 3.2.0 BetaQl Released!

& Looking for an excellent Web DesignerAVeb Developer to hire

Become the new JBoss Portlet Bridge lead I

& Gale In Pönal onthe roadio JBoss AS7

& Galeln 3.2 M l reached

New Blog, New Project Lead and New Release!

Sneak preview of Gateln navigation i l8n

& Does Developing Portlets Make You a Better Developer?

Q Calendar H Q S

Figure B . l : The portlet in the view mode and in the normal window state.

47

>j» Gate In

Group ^ ' f Dashboard Site Editor

; -r SrteMap Group Navigation Sample-Ext Page Portal

• Home > game

J Sudoku game SD

3:14|DDPBiBe|

Done

rjN«w| J £ä| Load J J (• Reset 11 ̂ Cfieck |

2 4
18 1 fäT 1

6
•1

7 8

1 : ! P
9

J LU 3

7 5 2

5 2 1

6 2 3 1

6 2 1

3 7 1 9 6

1 8

_j Statistics of thisgame

Best solvers
No players solved this game yet.

Statistics of the game
* The generated came with harddrfficulty.
' The game was. played by 1 players and -solved by 0 of the
* The average rating at game is
* The average solution time isOSO seconds.

ijjj Total statistics

The best solvers on the portal
* name cl player Solved games

met 1
Spended time [s]

Statistics of all games
• There are currently 4. garner, which were sokied far 1 times

• The eve rage -solution time ts2:07 -seconds.

• The average ratmg « A A A A A

by 1 players in a time of 2:07

Figure B.2: The portlet in the view mode and in the maximized window state.

Q> SurJoku g a m e H E L S
L^New ffi Save! Load 1 \ Q Resetj! ^ Check!

6 9 1 4
JI Statistics of this game

Best solvers

Ma players solved thisgame yet.

Statistics of the game
• The generated game with easy difficulty.
• The game was played by 1 players and served uyC of them.
• The average rating of game is

3 4 1 5 8 6 7 9 2

JI Statistics of this game

Best solvers

Ma players solved thisgame yet.

Statistics of the game
• The generated game with easy difficulty.
• The game was played by 1 players and served uyC of them.
• The average rating of game is 2 5 9 7 3 4 1 8 6

JI Statistics of this game

Best solvers

Ma players solved thisgame yet.

Statistics of the game
• The generated game with easy difficulty.
• The game was played by 1 players and served uyC of them.
• The average rating of game is 2 5 9 7 3 4 1

The game mas solved!

Congratulations! You have
succesfully solved this game. It
took; you 197 seconds.

Did you enjoy this game? Please,
rate it.

rjiuicn urne rsuwu seconos.

1 7
The game mas solved!

Congratulations! You have
succesfully solved this game. It
took; you 197 seconds.

Did you enjoy this game? Please,
rate it.

rjiuicn urne rsuwu seconos.

1 7
The game mas solved!

Congratulations! You have
succesfully solved this game. It
took; you 197 seconds.

Did you enjoy this game? Please,
rate it.

I

on the portal

i Solved games Spended time (a)
5 21:34
4 27:27
1 5:2B

5 9 7 6 4 3 2

The game mas solved!

Congratulations! You have
succesfully solved this game. It
took; you 197 seconds.

Did you enjoy this game? Please,
rate it.

I

on the portal

i Solved games Spended time (a)
5 21:34
4 27:27
1 5:2B

8 3 6 2 9 1 4

The game mas solved!

Congratulations! You have
succesfully solved this game. It
took; you 197 seconds.

Did you enjoy this game? Please,
rate it.

I

on the portal

i Solved games Spended time (a)
5 21:34
4 27:27
1 5:2B

• There are currently 17 games which were solved fer 11 times by 11 players in atimE ef
54:29 seconds

• Trie average solution time rs52fi seconds.
• The average rating is ir * * ir ' '

1 7 4 3 6 5 8 2 9
• There are currently 17 games which were solved fer 11 times by 11 players in atimE ef

54:29 seconds
• Trie average solution time rs52fi seconds.
• The average rating is ir * * ir ' '

9 2 3 4 7 8 6 5 1

• There are currently 17 games which were solved fer 11 times by 11 players in atimE ef
54:29 seconds

• Trie average solution time rs52fi seconds.
• The average rating is ir * * ir ' '

9 2 3 4 7 8 6 5 1

CO 8 5 1 2 9 3 4 7

3:17

Figure B.3: The end of a game

48

Group ' y Dashboard ^ _ Site Editor Root

n Sample-Eft Page Penal

Home > game

) Sudoku game •') Ras Reader H B 0 I
Q New ^ Save i ^ Load C Reset ^ Check Slides from portal presentation at JUDCon London 2011

4 6 7 8
& Gateln Portal 3.2.0 BemOl Released!

4 6 7 8 Looking for an excellent Web Designer/Web Developer to hire

•3 Become the new JBoss Portlet Bridge lead I
1

Looking for an excellent Web Designer/Web Developer to hire

•3 Become the new JBoss Portlet Bridge lead I
1 ^ Gatein Portal on the road to JBoss AS7

9 Create a new game: Select a game from a remote publislier

v v Time of creation » ease!

4 Remote publisher/Daily Sodoku 2012»4f27 22:11:57

Remotepublisner/RahanWzCz 2Q12flJ4ff7 22Jl Jfl
ter Developer?

2
Search: f First Previous 1 New Lasl

2
Cancel Previous Finish

6 2 1

7 1 9 6

1
2:45 J Continue ||| Statistics 1
Dane

•' >Todo - - n 1 I £pr-Calendar HL=JL°J 1 1 © Calculator

1 - II III , , III III , , I I

Figure B.4: Loading of a remote published game

Sudekj game H Q 0
Skin Remote publishers

Thecurrentskin: Custom - I

Gams board prefrences

Font color: m
Border color: m
Fields prefrences

Font of f ield: Arial.He h/etjca.-iarit-se rif

Bac kgroud color:

Bac aground color of fixed field: 1 •
Save 1 R

Done

1 G

Figure B.5: The portlet in the edit mode during managing of a custom skin of the game
board.

Q Sodoku game

Skin Remote publishers

1 a Add a new publisher

Name - State URL 0 Expiration

Daily Sudoku ft http://www.dairys.. 6:00 f
RahanWzCz http://ral1ar1.w2 .c.. 20:00 f

First Previous 1 Next Last

Dsn;

Figure B.6: The portlet in the edit mode during managing of periodical remote services.

49

http://www.dairys
http://ral1ar1.w2

