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Abstract 
 

We deal with regularities of the distances in the solar system in chapter 2. On starting with the 
Titius--Bode law, these prescriptions include, as ``hidden parameters", also the numbering of 
planets or moons. We reproduce views of mathematicians and physicists of the controversy 
between the opinions that the distances obey a law and that they are of a random origin. 
Hence, we pass to theories of the origin of the solar system and demonstrations of the chaotic 
dynamics and planetary migration, which at present lead to new theories of the origin of the 
solar system and exoplanets. We provide a review of the quantization on a cosmic scale and 
its application to derivations of some Bode-like rules. 
 
We have utilized the fact in chapter 3 that the areal velocity of a planet is directly proportional 
to the appropriate number of the planet, while its distance is directly proportional to the 
square of this number. We have confirmed a previous proposal of the quantization of the 
planetary orbits, but with the first possible orbit of a planet in the solar system identical only 
to an order of magnitude. Using this method, we have treated moons of two planets and one 
extrasolar system. We have investigated a successive numbering and suggested a Schmidt-
like formula in the planets and the Jovian moons. 
 
We have introduced some new functions (called ``normalized parameters") of usual 
parameters of extrasolar systems in chapter 4. One pair of these parameters exhibits areas, 
where the density of exoplanets is higher. One of these parameters along with the specific 
angular momentum indicate two groups of exoplanets with the Gaussian distributions. We 
have found that for five multi-planet extrasolar systems, the power function leads to the best 
determination of the product of the exoplanet distance and the stellar surface temperature by 
the specific angular momentum. We have revealed the role of the Schmidt law. We have also 
considered the spectral classes of the stars. We have also explored the data of 2321 exoplanet 
candidates from the Kepler mission. 
 
We have determined the theoretical number of exoplanets using the statistical analysis of 
extrasolar systems for the spectral classes F, G, K and M in chapter 5. We have predicted 
many possible habitable exoplanets for the stellar spectral class G. The stellar spectral class F 
should have by 52% less possible habitable exoplanets than the class G, the stellar spectral 
class K should have by 67% less possible habitable exoplanets than the class G and the stellar 
spectral class M should have by 90 % less possible habitable exoplanets than the class G, i. e., 
the least possible habitable exoplanets. 



We have also found the dependence of effective temperature of exoplanets on the orbital 
parameters of exoplanets. Using the model of planetary atmospheres, we have predicted 
habitable zones for the stellar spectral classes F, G, K and M. 
 
In chapter 6 some brief conclusions are presented, concerning a comparison of the results 
from the chapter 2, chapter 3,  chapter 4 and chapter 5.  
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Chapter 1

Motivation

The 20th century is held as the golden age of astronomy and astrophysics, when
many persistent questions were solved and the human view of the universe changed
radically. In spite of this, at the beginning of the 21st century, one cannot find
satisfactory answers to some questions our ancestors posed as early as in the 16th
century. For instance, Kepler looked for a universal law, in his Mysterium cosmo-
graphicum, to explain the planetary distances in the solar system. Nowadays, when
discoveries of other planetary systems occur, such a law could explain the distances
of their planets.

The ongoing search of extrasolar planets is one of the most attractive fields of
research in astrophysics and astronomy. Up to February 11, 2012, 759 exoplanets in
609 extrasolar systems have been discovered near stars with similar mass as the Sun.
There is also discovery related to the so-called Earth-like planets. With regards to
these discoveries, one intriguing question is whether there is relationship between
orbit distance of the planets and their stars.

On our planet we find extreme conditions under which organisms are able to
not only sustain metabolic processes, but thrive and grow. This understand- ing
informs our precepts on how life formed in our solar system and also the possibility
of similar processes in exoplanetary systems. The habitable zone is a key concept
in our understanding of the conditions under which basic life can form and survive.
In particular, the response of different atmospheres to varying amounts of stellar
flux allows the determination of habitable zone boundaries for known exoplanetary
systems.

9
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Chapter 2

Regularities in systems of planets
and recent works

2.1 Introduction

The solar system wakes admiration and an attempt at a reasonable argument for this
feeling suggests regularities in the systems of planets and moons. In this chapter,
we restrict ourselves to the regularities that the distances of secondaries from their
primaries indicate. Other parameters leading to the concept of resonances are not
treated (cf. [Murray and Dermott (1999)], pages 9, 321). A frequent argument in
favor of a formal treatment of the regularities is the failure of the theories of the
origin of the solar system, which should be essential at least from the materialist
viewpoint. At present, rather new theories are spoken of the successful theories of a
new generation and the weight of the usual argument is lesser. Some theories seem
to confirm the regularity formulae. Therefore, we include also the theories of the
origin of the solar system and the extrasolar planets.

Neglecting that both the major sciences, mathematics and physics, have under-
gone a historical development, we pay attention to the fact that as late as at the
times of J. Kepler, astronomy (and astrology) was counted to the mathematics. Ke-
pler’s inventions have ushered the establishment of the astronomy as a physical
field. Even though till 1781 only six planets of the solar system were known, their
distances from the Sun were measured with an appropriate precision.

In 1766, J. Titius von Wittenberg formulated his famous note on planetary dis-
tances. J. Bode has published this note and readdressed it, see [Nieto (1972)]. A
temporary success of the Bode law may consist also in the fact that it is not quite
simple. A geometric progression is obvious only after a subtraction of 0.4 AU (as-
tronomic units) from the distance from the planet to the Sun.

The objection that empirical formulae may be arbitrarily complicated has led to
attempts at simple formulae. So, Armellini’s law has the form, rnA = 1.53n, where
n assumes the values: −2 for Mercury, −1 for Venus, 0 for the Earth, 1 for Mars,

11
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2 for the asteroid Vesta, 3 for the asteroid Camilla, 4 for Jupiter, 5 for Saturn, 6
for Centaur Chiron, 7 for Uranus, 8 for Neptune and 9 for Pluto [de Oliveira Neto
(1996)].

Kant (1755) understood the origin of the solar system as a scientific problem
and worded the nebular hypothesis. By his theory, the Sun and the planets became
from the gas, which had been located in the volume of the present solar system and
had had a high temperature. He assumed that the gravitation could bring about the
origin of a proto-Sun and transform the irregular motion into a rotation. The planets
originated from the rotating mass.

Independently, Laplace (1796) indicated that the solar system had become from
gas and assumed not only a high temperature of the matter, but also its rotation. The
nebula rotated as a solid body. His scenario of the evolution includes the cooling,
contraction, enhancement of the rotation and flattening. The nebula shed a gaseous
ring, which becomes a ball. It repeats as many times as many the planets are.
Similarly, the moons of the planets have originated. The Sun has become from the
remainder of the nebula. From a single ring more small planets could originate. P.
S. Laplace confessed that he was not convinced by his hypothesis.

Maxwell (1859) has provided results confirmed by the flybys by the Voyager
spacecraft in the 1980s. In application to the solar nebula, he has remarked that the
gaseous ring itself cannot wrap into a spherical body, a planet. It has been stated that
the present planetary system and the Sun do not have the total angular momentum
that leads to an instability of the rotating nebula. The theories of the origin by the
external causes are called catastrophic.

The Chamberlin–Moulton planetesimal hypothesis has been proposed in 1905
by geologist T. C. Chamberlin and astronomer F. R. Moulton [Chamberlin (1905),
Moulton (1905)]. The external cause consists in that the star passed close enough
to the Sun. Jeans (1914) assumed close encounter between the Sun and a second
star. The difference from the previous hypothesis is in that Chamberlin and Moul-
ton assumed separation of some mass on the adjacent and opposite sides of the Sun
and the accretion of planetesimals. J. Jeans assumed the separation of the mass
only on the adjacent side of the Sun and a direct origin of planets. This hypothesis
has been assumed also by the mathematician and astronomer H. Jeffreys, who con-
sidered also a collision theory [Jeffreys (1924)]. In the 1920s, H. N. Russell was
persuaded by the Jean-Jeffreys tidal hypothesis to affirm that planetary systems are
“infrequent” and inhabited planets “matter of pure speculation.” Two decades later,
however, he gave up this opinion [Russell (1943)]. Russell (1935) measured spec-
tra of binary stars and was interested in the origin of planetary systems. Lyttleton
(1936) as an expert on the binary stars assumed that the Sun had been part of such
a system.

In contrast, the nebular hypothesis has been resumed. E.g., Nölke (1930) did
not derive the shedding of the rings from the assumption of the rotation, but the
turbulence. von Weizsäcker (1943) elaborated a similar theory. Kuiper (1951) uses
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the concept of a protoplanet. The electromagnetic forces have been considered by
Alfvén (1942), Dauvillier and Desguins (1942) and Schmidt (1944). In the 1960s,
the massive-nebula model [Cameron (1962)] and low-mass-nebula model coexisted
[Safronov (1960, 1969)]. The latter has evolved into a “standard” model [Lissauer
(1993)].

In section 2.2, we mention a discussion of the mathematicians, who have not
been satisfied with the statement that “the Bode law fits data well enough”. They
have constructed alternative hypotheses and have found that the likelihood ratio
differs significantly from unity in one case [Good (1969)] and it does not differ from
unity significantly in the other case [Efron (1971)]. Specialists may pay attention
to a hypothesis competing with the statement that the Bode law fits the data well.
They are not content with the repetition of a mathematician’s idea, but they use the
astronomical knowledge. They suggest a random origin of the regularities [Hayes
and Tremaine (1998), Murray and Dermott (1999), p. 5]. These imposing analyses
are not persuasive, on considering their model dependence [Lynch (2003)].

In section 2.3, we touch the resumed nebular hypothesis. The topic is esti-
mates of the total mass of the solar nebula and the distribution of its mass [Wei-
denschilling (1977), Hayashi (1981)] and a modification for the extrasolar nebu-
lae [Kuchner (2004)]. We mention next the ‘standard” model of planet formation
[Lissauer (1993)]. Finally, we touch dynamical theories of the Titius–Bode law
[Graner and Dubrulle (1994), Dubrulle and Graner (1994)]. These theories for the
restriction to the Titius–Bode law comprise well intended simplifications. In this
framework, Christodoulou and Kazanas (2008) have been able to provide a theory
of the dependence of the planetary distance on its ordinary number, which does not
express this dependence by a closed formula, but fits the data well. This means even
attempts at an application to extrasolar planets. We expand on a method of deriva-
tion of the rule involving squares of the ordinary numbers instead of the geometric
progression [Krot (2009)]. We provide the dependence of the planetary distances
on their ordinary numbers, which is no more based on the squares of the ordinary
numbers, but it is satisfactory.

Already in the book [Murray and Dermott (1999), p. 409], a whole chapter
is devoted to the chaos and long-term evolution along with appropriate references.
In section 2.4, we pay attention to such reports on numerical integration [Laskar
(1989), Sussman and Wisdom (1992)]. The theory of origin of the extrasolar planets
meets a difficulty that the Jupiter-mass planets are present on small orbits. This
has led to the theory of migrating planets [Murray, Hansen, Holman and Tremaine
(1998), Murray, Paskowitz and Holman (2002)]. Long-time scales are not accepted
by creationists [Spencer (2007)].

In section 2.5, we devote attention to the quantization on a cosmic scale. The
observed deviations of the absorption lines from the Lyman-α frequency have led
to a hypothesis of their origin, which includes the quantization of “megascopic”
systems [Greenberger (1983)]. The quantization of microscopic systems has been
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simulated [de Oliveira Neto (1996), Nottale, Schumacher and Gay (1997), Agnese
and Festa (1997), Rubčić and Rubčić (1998), Carneiro (1998), Agnese and Festa
(1998, 1999), Nottale, Schumacher and Lefèvre (2000)]. We concentrate ourselves
to the approaches, which replace a dynamical theory of the Titius–Bode law by the
quantization of orbits and thus derive rather the use of the square of a planet’s ordi-
nary number instead of the geometric progression. Next we remember the indirect
use of the quantization for the discretization of orbits. First, a wavefunction for
a planet is chosen and then the expectation value of the distance from the parti-
cle to the central body is compared with the observed distance from the planet to
the Sun [de Oliveira Neto, Maia and Carneiro (2004)]. Finally, we return to our
publications. Pintr and Peřinová (2003–2004) have commented on the proposal of
Mohorovičić (1938) positively and have modified it to the moons of giant planets
and extrasolar planets. Peřinová, Lukš and Pintr (2007) intended to replace the
close relationship of the paper [de Oliveira Neto, Maia and Carneiro (2004)] to the
article [de Oliveira Neto (1996)] by a connection with the paper [Agnese and Festa
(1997)]. This intention has been realized in part. Pintr, Peřinová and Lukš (2008)
have derived a discrete system of orbits using mainly the classical physics. Like an
incomplete dynamical theory of the Titius–Bode law, or the quantization of orbits
using wavefunctions, this theory assigns the distances to the nodal lines of standing
waves, even though indirectly, through a transformation.

The first five sections are based on the chapter [Peřinová, Lukš and Pintr
(2012)]. In this contribution the introduction presents a history of the interest in
distances from planets to the Sun and from moons to a central planet. In section
2.2, views of mathematicians and physicists of the contrast between the opinions
that the distances obey a law and that they are of a random origin are reproduced.
In sections 2.3 and 2.4, theories of the origin of the solar system and demonstrations
of the chaotic dynamics and planetary migration are mentioned. In section 2.5, a
review of the quantization on a cosmic scale and its application to derivations of
some Bode-like rules is provided.

2.2 Statistical decision making
In the Titius–Bode law doubling occurs, which enables anybody to write down a
mathematical formula for the planets Venus, Earth, Mars, Ceres, Jupiter, Saturn,
Uranus, Neptune and Pluto. The powers of two may be linearly extrapolated,

aMercury = a, aVenus = a+ b, aEarth = a+ 2b, aMars = a+ 4b, aCeres = a+ 8b,

aJupiter = a+ 16b, aSaturn = a+ 32b, aUranus = a+ 64b, aNeptune = a+ 96b,

aPluto = a+ 128b, (2.1)

where a = 0.4, b = 0.3, cf. [Christodoulou and Kazanas (2008), Povolotsky
(2007)]. The continuation in the formula up to Uranus is obvious.
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The Titius–Bode law with slight irregularities provokes to improvement, but
also to proposing formulas, whose “validity” is saved by the neglect of critique of
numbering of the planets, cf. [Nieto (1972)]. Good (1969) has emended the Bode
law to the form

bMercury = a+ b, bVenus = a+ 2b, bEarth = a+ 4b, bMars = a+ 8b, bCeres = a+ 16b,

bJupiter = a+ 32b, bSaturn = a+ 64b, bUranus = a+ 128b, bNeptune = a+ 256b,

bPluto = a+ 512b. (2.2)

Here a = 0.4, b = 0.075, however.
Just as Efron (1971) has indicated in a footnote of a statistician, it can be ex-

pected that he or she practises the “numerology”. It seems that the three purposes of
his article are given in descending order of importance for the astronomy: (1) The
validity of Bode’s law, (2) testing whether or not the observed sequence of numbers
follows some simple rule, (3) the logical basis of Fisherian significance testing.

The statistical decision making assumes:

(i) A statistical model describing what the statement means that Bode’s law is
real.

(ii) An alternative statistical model describing the statement that Bode’s law is
artifactual.

The question of the validity of Bode’s law is transformed to a problem of hypothesis
testing [Efron (1971)].

The statisticians apply Bode’s law only to the planets Venus through Uranus.
According to [Good (1969)], the statistical model (i) consists in a normal distribu-
tion of logarithms of planetary distances. These distances are independent random
variables. The means are given by the Titius–Bode law. All the variances are σ2.
It is accepted that the three parameters a, b, and σ2 are estimated. Model (ii) is
a uniform distribution of the logarithms of the planetary distances on some inter-
val [log δl, log δu], where the subscript l (u) stands for lower (upper), respecting the
observed order of the planets. It is accepted that the parameters log δl, log δu are
estimated. By the use of the Bayesian methods, it has been derived that the data
witness for Bode’s law. Efron (1971) admits that, in a non-Bayesian framework,
the result would be the same, but he adopts the Fisherian methodology along with
the model C instead of (ii).

A formulation of the model C demonstrates that, in the mathematical statistics,
it is not necessary to specify a joint distribution of the planetary distances com-
pletely. Such a distribution, if any, is characterized in terms of the ratios of the
planetary spacings to the difference between the distances of Uranus and Venus.
For simplicity, we speak of a spacing instead of the difference between the dis-
tances from a planet and its successor to the Sun. The planets can be mapped on the
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interval [0, 1], with 0 corresponding to Venus and 1 to Uranus and the points per-
taining to other planets respecting not only the observed order, but also the “law of
increasing differences.” This way, the model C “impertinently” draws near Bode’s
law. A classical statistical analysis has utilized a distance statistics, ∆, and it has
led to the conclusion that the data do not witness for Bode’s law.

It can be expected that a physicist’s viewpoint will differ from a matematician’s
method. Indeed, Hayes and Tremaine (1998) do not believe in the law of increasing
differences. They approach the generation of random planetary systems rather in the
sense of the simpler model (ii), with δl = 0.2 AU and δu = 50 AU. The generation
is completed by the rejection of some obviously unstable planetary systems. Nine
semi-major axes r0,. . . , r8 are generated. Then, a nonlinear least-squares fit of
the distances ri, i = 0, 1, . . . , 8, is performed to the “law” a + bci, with c being
another parameter. Next, a fit is performed on leaving out j out of nine planets,
j = 0, 1, 2, 3, and, for each j, the best reduction is chosen. The entire procedure is
repeated, but, after the generation of semi-major axes, one gap is inserted between
two neighbouring planets with the largest ratio of ri+1

ri
. It means that such planets

will have numbers i, i+ 2, and the numbering ends with number nine.
Nine “reasons” of rejecting have been formulated, first of all, the rejection need

not have been attempted at all. Further, such a reason has been a violation of the
condition

ri+1 − ri > ri+1Vi+1 + riVi, (2.3)

where, e.g., Vi = HMi
, 2HMi

, 4HMi
, 8HMi

, Mi being the mass of the planet i in the
solar system, HMi

is the fractional Hill radius,

HMi
= 3

√
Mi

3MSun

. (2.4)

When the observed distances in the solar system are processed in the same way
as the nine generated semi-major axes, the best fit is obtained in the case, where a
gap is added between Mars and Jupiter, whereas Mercury, Neptune and Pluto are
ignored.

The view of Lynch (2003) approaches the statement by Efron (1971) that the
statistical decision, whether the observed patterns have a physical basis or can be
ascribed to chance, depends on the model. He readresses the geometric progression
of orbital periods of five major satellites of Uranus. According to the literature,
the model leaves the period of Miranda unchanged and the following satellites have
the periods equal to the products of one (Ariel) to four (Oberon) random factors
respecting observed ratios of successive periods. He presents a simpler procedure
consisting just in random choice of orbital periods in bands covering the values
produced by the formula. In the original model, the probability of random origin
is about 80 per cent and, in the new model, it is about 20 per cent for the chosen
bands.
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Since the planetary radii and periods are related by Kepler’s third law, Lynch
(2003) investigates the solar system in a similar way. First of all, he simplifies the
Titius–Bode law to a geometric progression. Further, he repeats the comparison
of two models or procedures. The procedure, which is a continuation of the study
of major Uranian satellites, indicates that the probability of random origin is only
about 40 per cent. In the new model, it is 0.99 for the bands chosen in the similar
way as in the new investigation of the Uranian satellites. Even though rigorous
mathematical methods used by Efron (1971) may throw new light on these results,
Lynch (2003) is right that the possibility of a physical explanation for the observed
distributions remains open.

2.3 Theories of Bode-like laws

The rejected nebular hypothesis had the advantage that it assumed a mass in the
region of the present solar system. After the hypothesis has been resumed, a search
could begin for a shortcut of the road leading from the assumptions of the model to
the Titius–Bode law. In this section, we first remember an estimate of the total mass
of the solar nebula and distribution of its mass [Weidenschilling (1977)] and another
one for extrasolar nebulae [Kuchner (2004)]. We mention the model of planet for-
mation, which was standard till recent times [Lissauer (1993)]. We remember some
dynamical theories of the Titius–Bode law [Graner and Dubrulle (1994), Dubrulle
and Graner (1994), Krot (2009)]. These publications can be criticized, as any of
them provides not a unique approach, but at least two different ones. Exceptionally,
Christodoulou and Kazanas (2008) have been able to provide a unified approach.

2.3.1 Resumption of the nebular hypothesis

Weidenschilling (1977) remembers theories of cosmogony. Most such theories as-
sume that the planetary system formed from a nebula. It is assumed that the mass
fraction of Fe in the solar matter is 1.2 × 10−3. The mass fractions are at disposal
even for the terrestrial planets. To each such a planet, the mass is determined, which
has the solar composition. For the planets Jupiter, Saturn, Uranus and Neptune, one
proceeds differently, but also in such a way that the appropriate masses are deter-
mined.

Weidenschilling (1977) reconstructs the solar nebula by spreading the aug-
mented planetary masses through zones surrounding their orbits. He determines
the zones (AU) (0.22, 0.56) for Mercury, (0.56, 0.86) for Venus, (0.86, 1.26) for the
Earth, (1.26, 2.0) for Mars, (2.0, 3.3) for asteroids, (3.3, 7.4) for Jupiter, (7.4, 14.4)
for Saturn, (14.4, 24.7) for Uranus and (24.7, 35.5) for Neptune in terms of the
observed distances.

On the determination of the zones, surface densities can already be found. The
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surface density is preferred to the volume density, which can be determined only
on other assumptions about the vertical structure of the nebula. The surface density
proportional to r−

3
2 has been found, which continues the paper [Cameron and Pine

(1973)]. Anomalies (deviations from the power law with the exponent −3
2
) in Mer-

cury, Mars and asteroids are stated. Processes exist for selective removal of matter
from these regions.

So the nebular hypothesis includes the loss of light elements during the plane-
tary formation. The mass of the nebula must be at least between 0.01 and 0.1 solar
masses. We may calculate that the mass of the nebula is

Mnebula = 2π
∫ rnebula

0
rσEarth

(
r

rEarth

)− 3
2

dr

= 4πr2
EarthσEarth

√
rnebula

rEarth

, (2.5)

where σEarth = 32000 kgm−2, rnebula = 35.5 AU, outer limit of Neptune’s zone.
Hayashi (1981) pays attention to the importance of magnetic effects on the ori-

gin of the solar system. Nevertheless, he begins with a model of the solar nebula
without magnetic effects. He expounds the properties of the nebula, which entail
the magnetic effects, and their significance. He takes into account the magnetic and
turbulent viscosities. He attempts at an initial condition of a more ancient stage of
the evolution.

The model is related to the stages, where according to the theories of planetary
formation, the dust sedimented on the equatorial plane. The mass of the nebula is
of the order of 0.01 MSun. It is assumed that dP

dr
, where P is the pressure, has a

negligible value. The half-thickness of the nebula, with the temperature dependent
on r, is given. The nebula is heated by the Sun and the field temperature is

T = 280

√
rEarth

r
(2.6)

for the luminosity of the Sun identified with the present value.
In the interval [0.35, 36] AU, three kinds of the surface density are considered.

Two components of the total density are related only to the dust and gas, but the
density of rock increases from 2.7 AU (in the asteroid belt) due to the presence of
ice. The gas prevails. The exponent−3

2
is utilized and the surface density ρs(rEarth)

= 17000 kgm−2. As long as the magnetic effects are negligible, the volume density
is

ρ(r, z) = ρ0

(
r

rEarth

)− 11
4

exp

(
− z2

z2
0(r)

)
, (2.7)

where ρ0 = 1.4×10−6 kgm−3 and z0(r) = 0.0472rEarth

(
r

rEarth

) 5
4 . A simple vertical

structure is assumed, so that the surface density is

ρs(r) =
√
πρ0z0(r)

(
r

rEarth

)− 11
4
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= ρs(rEarth)
(

r

rEarth

)− 3
2

. (2.8)

Here
√
π1.4 × 10−6 × 0.0472rEarth =

√
π1.4 × 10−6 × 0.0472 × 1.5 × 1011 =

1.7× 104 kgm−2.
We note that the exponent 5

4
> 1. Magnitudes of the magnetic fields H1 and H2

are determined such that the vertical structure of the nebula is affected for H > H1,
with H being the magnitude of a field present in the solar nebula, and a deviation
from the Keplerian velocity of rotation occurs for H > H2. The field magnitudes
H1 and H2 decrease with the increase of r. In a uniformly ionized gas, magnetic
fields grow and decay according to a result of magnetohydrodynamics.

The turbulence of an “equilibrium” solar nebula leads to the origin of seed mag-
netic fields. A possibility of the redistribution of gas density in the solar nebula
is studied, which is caused by angular momentum transport due to the presence of
magnetic and mechanical turbulent viscosity. The effect of the mechanical viscosity
is reduced to the diffusion in the radial direction.

This way the exponent −3
2

can be derived. For the isothermal case, the expo-
nent −2 is given. It is admitted that, without further calculations, it is not certain
whether the effect of mechanical viscosity alone suffices or magnetic viscosity must
contribute. According to an accomplished theory of planetary formation, the plan-
ets have been formed except for Uranus and Neptune before the dissipation of the
solar nebula, Saturn being formed in an intermediate stage [Hayashi (1981)].

The magnetic effects on the structure of the nebula are negligible in regions of
the terrestrial planets, even though it is not valid for its outermost layers. Contrary
to this, these effects are significant in regions of the giant planets. Hayashi (1981)
recognizes a numerical simulation of the cloud that preceded the nebula. He dis-
cusses an initial condition of the collapse. He does not adopt the spherical Jeans
condition for it, but properties of the fragment of a rotating isothermal disk.

Kuchner (2004) reviews the mental pictures of the minimum-mass solar nebula.
He includes also the papers [Weidenschilling (1977), Hayashi (1981)]. He attempts
to take into account the extrasolar planets. He introduces the concept of a minimum-
mass extrasolar nebula. He concentrates himself to few-planet, i.e., two-planet and
three-planet systems discovered by precise Doppler methods. The astronomer can
infer planets with a suitable relation between the orbital period and the ratio of the
mass of the planet to the mass of the star corrected by the angle of sight. They
detect radial velocity variations of the planet.

Kuchner (2004) chooses 1000 MEarth for the augmented masses of most of the
extrasolar planets. The dependence of the surface density on the semi-major axis is
obtained by mixing of data of different systems. It emerges that the surface density
is proportional to r−2. Separately fitted nebulae are not taken too seriously and their
exponents are −2.42 through −1.50. The mixed data force one to admit even the
solar exponent −3

2
.

The minimum-mass solar nebula (exponent −3
2
) and the uniform-α accretion
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disk model [Shakura and Sunyaev (1973)] suggest that giant planets do not form at
the centre of the disk. Migration theories are quite acceptable, if the power law has
the exponent −β, β > 2. The minimum-mass solar nebula was based on Laplace’s
concept of the solar nebula that broke up into rings that condensed into planets.

2.3.2 Protoplanetary disks
The origin of the solar system is a recognized problem of science [Lissauer (1993)].
Models of planetary formation are developed using the solar system and limited
astrophysical observations of star-forming regions and circumstellar disks. Other
planetary systems are detected around main sequence stars and pulsars.

A theory of the origin should explain the following facts:

1. Both the orbits of the planets and those of most of asteroids are nearly copla-
nar and this plane is close to that of the Sun’s equator. The orbits of the
planets are nearly circular and planets orbit the Sun in the same sense as the
Sun rotates.

2. Spacing between the orbits of the planets increase with the distance from
the Sun. The orbits of eight planets do not cross. Even though Pluto’s orbit
crosses that of Neptune, the dwarf planet avoids close encounters with the
planet due to 3 : 2 resonance.

3. Comets orbit the Sun.

4. Six of the eight planets rotate around their axis in the same direction, in which
they revolve around the Sun (cf. point 1), and their obliquities (tilts of their
axes) are less than 30◦.

5. Most planets have natural satellites.

6. Planetary masses account for less than 0.2 % of the mass of the solar system.

7. Over 98 % of the angular momentum in the solar system is contained in the
orbital motions of the Jovian planets.

8. Planets and asteroids have compositions which are rather well known.

9. The size of asteroids and parameters of asteroidal orbits are rather well
known.

10. Nearly all meteorites come from the asteroid belt.

11. Ages of meteorites are relatively well known.

12. Isotopic ratios are about the same in all solar system bodies.
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13. Meteorites argue for rapid heating and cooling and for magnetic fields of
order 1 Gauss (10−4 T).

14. Most solid planetary and satellite surfaces are heavily cratered.

Point 1 suggested the hypothesis of planetary formation in a flattened disk [Kant
(1755), Laplace (1796)]. In the 1990s, the evidence for the presence of appropri-
ately large disks around pre-main sequence stars increased. Protoplanetary disks
contain a mixture of gas and condensed matter. A lower bound on the mass of
the protoplanetary disk has been mentioned above [Weidenschilling (1977)]. The
planetesimal hypothesis asserts that planets grow within circumstellar disks through
pairwise accretion of small solid bodies, the so-called planetesimals. Sufficiently
massive planetary bodies embedded in a gas-rich disk can gravitationally capture
much gas and produce Jovian-type planets. The absence of a planet in the dynam-
ically stable region inside Mercury’s orbit can be attributed to two reasons. Close
to the early Sun, nebula temperatures were such high that condensation of material
did not take place. Possibly, solid planetesimals felt so strong a gas drag that their
decay depleted the region considered of condensed matter [Lissauer (1993)].

Theories considering instabilities of the gas leading to giant gaseous protoplan-
ets fail to explain just compositions of the Jovian planets. Models of planetary
growth from small solid bodies do not suffer from such dificulties. Heating in the
consequence of the collapse of a molecular cloud core to the solar system dimen-
sions is admitted. Afterwards the disk can cool. Various compounds condense
into microscopic grains. The motions of small grains in a protoplanetary disk are
strongly coupled to the gas. The vertical component of the star’s gravity causes
sedimentation onto the midplane of the disk. Models suggest that the volume of the
solid material was able to agglomerate into bodies of macroscopic size at least in
the terrestrial planet region of the solar nebula [Weidenschilling and Cuzzi (1993)].

With respect to a possible pressure gradient in the radial direction, the gas cir-
cles the star less rapidly than the Keplerian rate. Large particles which move at
nearly the Keplerian speed experience a headwind, and so the material that survives
to form the planets, must accomplish the transition from cm size to km size rather
quickly. Further forces upon planetesimals are remembered besides the star’s grav-
ity. They are gravitational interactions with other planetesimals and protoplanets.
Further mutual inelastic collisions and gas drag.

It is stated that the simplest analytic approach to the evolution of planetesimal
velocities is based on methods of the kinetic theory of gases. For the final stages of
the evolution, the number of planetesimals becomes small enough that a direct treat-
ment of individual planetesimal orbits is feasible. A numerical n-body integration
has been replaced by the alteration of precessing elliptic orbits by close encounters
with other planetesimals.

Physical collisions dissipate part or all of the relative kinetic energy of colliding
bodies. Models comprise a Boltzmann collision operator for hard spheres modi-



22 Chapter 2

fied to allow for inelastic collisions and gravitational interaction. Gas drag damps
excentricities and inclinations of planetesimals, especially small ones.

It is accepted that 3-body effects may be neglected. After Safronov (1969),
accretion zones and the protoplanet as the largest body in the given zone are intro-
duced. The region, in which 3-body effects are significant, is limited with the radius
of protoplanet’s Hill Sphere

hS = 3

√
M

3Ms

a, (2.9)

where M and Ms are the masses of the protoplanet and the star, respectively, and a
is the semi-major axis of protoplanet’s orbit.

It is mentioned that the accretion rate of a protoplanet is enhanced by the squared
ratio of the escape velocity from the point of contact to the relative velocity of the
bodies. It is pointed out that during simulation of early stages, a simultaneous cal-
culation of the velocity evolution and size evolution in the planetesimal swarm is
necessary. It was found that the size evolution is of two kinds. The slower evolu-
tion exhibits a regular growth of all planetesimals. The more rapid evolution that
is related to exceptional planetesimals shows a “runaway” accretion to the largest
planetesimal in the local region. The discrete form of the coagulation equation has
solutions of two kinds (bifurcation) [Safronov (1969)].

The condition of low velocities of planetesimals for the runaway accretion is
remembered. When a protoplanet consumes most of the planetesimals within its
gravitational reach, its mass is equal to the so-called isolation mass and the rapid
runaway growth may cease. Mechanisms of further growth have been considered.
Attention is drawn to the origin of semi-major axes of protoplanets in an arithmetic
progression. Such a configuration is not dynamically stable for a long time. Cross-
ing orbits, close gravitational encounters and violent collisions are predicted. It can
be referred to, e.g., the paper [Wetherill (1990)].

The necessity of a high velocity, post-runaway growth phase is emphasized.
Times closer to 108 are given. Next it is stated that the model of minimum-mass
protoplanetary disk does not yield appropriate times for the cores of the giant plan-
ets. The exposition of giant planet atmospheres in [Lissauer (1993)] begins with
the hypothesis that the atmospheres of the terrestrial planets and other small bodies
come from material accreted as solid planetesimals. The view is adopted that first
the core of a giant planet was formed. The masses of such cores are of order 10
MEarth. The accretion of the gaseous envelopes of the giant planets long lacked
explanation.

The origin of planetary rotation, point 4, is a question, which is difficult to an-
swer. Although part of literature denies a random occurrence, part relies on stochas-
tic factors. The angular momenta brought in by individual planetesimals and hy-
drodynamic accretion of gas provide planets with rotational angular momentum
perpendicular to the midplane of the disk essentially, because the disk is flat.

The analogy of the moons and rings of the giant planets to miniature planetary
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systems is admitted. Inside Roche’s limit, where tidal forces from the planet suffice
to disrupt a moon held together only by its gravity, planetary rings dominate. In the
outer regions of the satellite systems of Jupiter, Saturn and Neptune, small bodies
on highly excentric and inclined orbits occur. This way planetary satellites can be
classified as “regular” and “irregular”. Regular satellites are related to a circum-
planetary disk. Irregular moons may be captured planetoids from the solar nebula.
The satellites of Earth and Mars and some other planetary satellites are harder to
classify in this manner.

The analogy of the circumplanetary disk to the larger circumsolar disk is nearly
imperfect. Satellite systems are much more compact than the planetary system and
are evolved dynamically. Most satellite rotations have been locked by planetary
tidal forces. Among several moons mean motion commensurabilities persist. Satel-
lites of satellites have not been observed. For the explanation of this simplification,
many reasons have been brought in.

The Earth’s Moon is different and indicates a stochastic event. Complexity
of the satellite systems of the four giant planets in our solar system suggests that
stochastic processes participated in satellite formation. It is pointed out to, e.g.,
little total mass in the asteroid region and their large number. Also the excentricities
and inclinations of the orbits of these bodies are higher than the planetary values.
We remember also the diversity of the composition. Proximity to Jupiter is an
explanation. For dynamical models of the formation of the asteroid belt, one refers
to the papers [Wetherill (1989, 1991, 1992)].

The division of comets into two groups is mentioned: short-period comets, with
the orbital period shorter than 200 years, and long-period comets, which return
after more than 200 years. Hyperbolic orbits are admitted as consequences of
perturbations by the planets. The long-period comets come from the Oort cloud.
Some short-period comets come from the Oort cloud, but most of them populate
the Kuiper belt. The origin of comets, especially the Oort cloud, is connected to
the ejection of small planetesimals from the giant planet region. This excludes a re-
striction of the study to the minimum-mass protoplanetary disk. Also the outer limit
of Neptune’s zone cannot be the edge of the protoplanetary disk, on considering the
formation of the Kuiper belt from planetesimals.

In conclusion, the planetesimal hypothesis is a viable theory of the growth of the
terrestrial planets, the cores of the giant planets, and the smaller bodies present in
the solar system. The formation of solid bodies of planetary size should be common
around young stars, which do not have stellar companions at planetary distances.
On certain conditions, planets could form within circumpulsar disks. A summary of
the theory of planetary growth from planetesimal accretion within a circumstellar
disk is provided in [Lissauer (1993)]. Several different ideas have been added,
e.g., the rule that a more massive protoplanetary disk of the same radial extent will
probably produce a smaller number of larger planets.
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2.3.3 Dynamical theories of the Titius–Bode law
Graner and Dubrulle (1994) point out to the book [Nieto (1972)], in which the
notion of a dynamical theory of the Titius–Bode law has been introduced. In spite
of the diversity of these theories, in each of the models a Titius–Bode like law arises.
Let us note that it means a geometric progression in planetary distances.

Essentially, a description using partial differential equations, which are sym-
metric, is assumed. The symmetries considered are:

(P1) the invariance with respect to the rotation around an axis z,

(P2) the invariance with respect to the dilatation (scale transformation) in the plane
perpendicular to z,

(P3) the time independence.

On denoting gj(r, θ) the physical quantities obeying these equations and γj the
respective exponents, Λγjgj(Λr, θ), where Λ > 0, satisfy also these equations.

Unfortunately, the exposition comprises imperfections, which we do not evalu-
ate, but must mention them. A physical quantity g(r, θ) with an exponent γ and its
Fourier series decomposition

g(r, θ) = Re

{∑
m

am(r) exp [i(mθ + θm)]

}
, (2.10)

where θm are real numbers, are considered. However, the closest usual form of this
equation is

g(r, θ) =
∑
m

am(r) exp(imθ). (2.11)

We see that both Re and θm are superfluous and that the usual statement that a0(r)
is a real number, is substituted with a feeling of a0(r) being a complex number. But
it cannot be defined uniquely.

It is assumed that the coefficient am of the decomposition fulfils a symmetric
equation

hm

(
ama

∗
m

r2γ
,
r

am

∂am
∂r

)
= 0, (2.12)

where hm has arisen in a manipulation and the asterisk means the complex conju-
gation. As a first-order ordinary differential equation, it can be cast to the form

∂am
∂r

=
am
r
Hm

(
|am|2

r2γ

)
, (2.13)

where Hm has arisen in another manipulation, if the dependence of the second
argument on the first one can be made explicit. Using the substitution

bm =
am
rγ

, x = log
(
r

r0

)
, (2.14)
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where r0 is a normalizing radius, we obtain that

∂bm
∂x

= bmGm

(
|bm|2

)
, (2.15)

where Gm = Hm − γ. As long as |bm|2 is small, we may utilize the property

Gm(|bm|2) = µm + ikm + (ηm + iκm)|bm|2 + O(|bm|4), (2.16)

where

µm + ikm = Gm(|bm|2)
∣∣∣
|bm|2=0

, ηm + iκm =
dGm(|bm|2)

d|bm|2

∣∣∣∣∣
|bm|2=0

. (2.17)

Let us remark that, in the paper [Graner and Dubrulle (1994)], the subscript m at µ,
η, k and κ is omitted. Neglecting the dependence of Gm on |bm|2 at all, we obtain
that

bm = B0

(
r

r0

)µ
exp

[
ik log

(
r

r0

)]
, (2.18)

where µ ≡ µm, k ≡ km. A derivation of a Titius–Bode law is possible in the case of
one mode, or in the case of independence of the modal index m. It is also necessary
to assume k 6= 0. Equal phase cylinders are of the form r = rn, where

rn = r0K
n, K = exp

(
2π

k

)
. (2.19)

We have criticized that the derivation is only pertinent tom 6= 0, so it can hardly
be applied to rotationally symmetric solutions, which are important. In spite of this,
Graner and Dubrulle (1994) modify the solution (2.18) to include further the linear
term of the Taylor series of the function Gm in |bm|2. The distances rn change, do
not form a geometric progression and only illustrate the so-called nonlinear Titius–
Bode law.

Dubrulle and Graner (1994) utilize the theory from [Graner and Dubrulle
(1994), part I] even though, in part I, the assumption (P3) of time independence
was made too, which is not made here at first. Therefore, they mention the scale
invariance of equations for the hydrodynamic description of the solar nebula. The
scalar invariance need not always occur as a consequence of the polytropic gas law

P = P0

(
ρ

ρ0

)1+ 1
n

, (2.20)

where P is the pressure, ρ the volume density, P0 and ρ0 are the normalizing pres-
sure and the normalizing density, respectively, and n is the polytropic index, which
constrains the validity of the scale invariance to n = 3. That is why, Dubrulle and
Graner (1994) assume P = 0. Another difficulty presents the Poisson equation, in
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which the second-order partial derivatives occur, while the outline of a theory has
included only the first-order derivatives. Therefore, an integral expression of the
gravitational potential with the linear density is assumed.

On specifying the equilibrium solution, the assumption of the time indepen-
dence is abandoned again and the stability of the equilibrium solution is studied by
the method of linearization around this solution. The linearized equation is solved
by the method of the Fourier series decomposition, which is appropriate to the sur-
face density decreasing like r−2. An option is typical of these problems and their
adversity. We obtain

ṽ2 =

(
∂

∂x
− 1

)
φ̃, (2.21)

where ṽ is the scale-invariant tangential component of the velocity and φ̃ is the
scale-invariant gravitational potential of the disk.

The question arises, which mode k (k is a wavenumber of the Fourier series) is
suitable for a derivation of the Titius–Bode law. Dubrulle and Graner (1994) argue
for k = kc, where kc separates, which wavenumbers are low and which are high.
The low wavenumbers (< kc) are linearly stable and the high wavenumbers (> kc)
are linearly unstable. The critical wavenumber kc depends on Meg

MC
, where Meg is

an effective gravitating disk mass, substituting for its actual mass, MD, in a rather
complicated manner, and MC is the mass of the central body.

Christodoulou and Kazanas (2008) have dealt with equilibrium structures of
rotating fluids with cylindrical symmetry. They have derived exact results and are
convinced that the results are relevant to the location of the planetary orbits. The
famous Titius–Bode law also expresses this location, but it is actually opposed to
the authors’ effort.

The Lane–Emden equation is mentioned, which describes the equilibria of non-
rotating fluids. This equation has a spherical symmetry. It can be modified to
an equation with cylindrical symmetry easily, what have been utilized by physi-
cists outside astrophysics. In the astrophysics, the paper [Jeans (1914)] may be
typically quoted. The results for a finite polytropic index n are known, whereas
Christodoulou and Kazanas (2008) deal with the case where n→∞.

The Titius–Bode “law” is held for the Titius–Bode algorithm. It is also referred
to the critiques, which we consider in this review, or to papers, which somewhat
underpin this rule. Typically, a pertinent paper expresses both cons and (at least
essentially) pros.

Some methodologically related analyses are mentioned. The simple cylindrical
formulation is defended [Jeans (1914)]. Rules are evaluated, which would approx-
imate the observed distances. Only two rules are considered. Such rules rely on a
consecutive numbering of planets, to which both asteroid Ceres is counted and the
dwarf planet Pluto. The rules do not predict positions of the end bodies. The rule
of arithmetic mean, 1

2
(ai−1 + ai+1), has errors up to 23.5 and 27.9%. The rule of
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Index i Planet Mi Error (%)
1 Mercury
2 Venus 0.8 -9.0
3 Earth 1.9 8.7
4 Mars 2.4 16.3
5 Ceres 2.0 11.7
6 Jupiter 1.8 8.5
7 Saturn 2.2 16.3
8 Uranus 1.1 -4.3
9 Neptune 0.9 -5.5

10 Pluto

Table 2.1: Magnification ratios Mi of planetary orbits and relative errors of the
means with exponent 1

2
.

geometric mean, (ai−1ai+1)
1
2 , has errors up to −11.8 and −14.0 %.

In the same vein, we could try another possibility, the rule of the mean with the
exponent of 1

2
, [1

2
(a

1
2
i−1 +a

1
2
i+1)]2. Having tried it, we obtain the error up to 16.3 % in

two cases. A good fit to the rule of the arithmetic mean in the bodies that neighbour
the end ones is stated. In the intermediate bodies, the rule of the geometric mean is
suitable. The use of the rule, which better predicts the distance to the body, leads
to errors up to 5.0 and 9.1 %. We have not improved it using the rule of the mean
with exponent 1

2
! It is obvious that the Titius–Bode law begins with a three-term

arithmetic progression, which is the shortest nontrivial progression of this kind.
Christodoulou and Kazanas (2008) then mention interesting connections or

analogies. In optics, an analogue of the quantity

Mi ≡
ai+1 − ai
ai − ai−1

(2.22)

can be found. Obviously, it is a quantity reducing to the Titius–Bode base two and
independent of their coefficients a and b.

We have calculated the ratios Mi according to equation (2.22) and obtained
results can be found in Table 2.1 (we insert the error of the rule of the mean with
exponent 1

2
). The ratiosMi can be further rounded to 1 and 2. So the three-term

arithmetic progression leads to 1 for single Venus and the Titius–Bode law leads to
2 for the Earth to Saturn. In what preceded, we have presented a continuation of the
Titius–Bode rule.

Nevertheless, Christodoulou and Kazanas (2008) have concentrated themselves
to the Lane–Emden equation. They have not been attracted by the generous
identification of the Titius–Bode sequence with the geometric progression, which
has been done by Graner and Dubrulle (1994) and Dubrulle and Graner (1994).
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Christodoulou and Kazanas (2008) distinguish these notions. They have evaluated
also the approach of the cited authors.

The isothermal equilibrium is assumed, i.e., the pressure balances the general
gravity. The cylindrical symmetry is assumed. It is assumed that the angular veloc-
ity has the form

Ω(r) = Ω0fCK

(
r

r0

)
, (2.23)

where Ω0 = Ω(0) for centrally condensed models and fCK(x) is an infinite-
dimensional parameter such that fCK(0) = 1. It is assumed that an isothermal
equation of state for the pressure P and the gas density ρ holds (it is a volume
density, but it has much in common with the surface density with respect to the
cylindrical symmetry)

P = c2
0ρ, (2.24)

where c0 is the isothermal sound velocity. It is declared that for finite polytropic
indices, significantly different results are not obtained.

Euler’s equation for the unknown functions ρ, Ω, P , and φ is presented,

1

ρ

dP

dr
+

dφ

dr
= Ω2r, (2.25)

but we already know that Ω ≡ Ω(r) is rather a parameter. Poisson’s equation for
these functions is also given,

1

rd−1

d

dr
rd−1dφ

dr
= 4πGρ, (2.26)

where d = 2 with respect to the cylindrical symmetry and G is the gravitational
constant. On the elimination of φ and with the substitution x = r

r0
, an equation is

obtained, which may be called the Lane–Emden equation with rotation,

1

x

d

dx
x

d

dx
log τ + τ =

β2
0

2x

d

dx
(x2f 2

CK), (2.27)

where τ = ρ
ρ0

and β2
0 =

Ω2
0

2πGρ0
. Here ρ0 is the maximum density.

For β0fCK = 0, equation (2.27) differs from the usual Lane–Emden equation by
the assumed cylindrical symmetry of the matter described and the polytropic index
n→∞. Closed solutions are presented. We ask for which next choice of β0fCK,
the solution will be viable and physically meaningful. It is assumed that

τ =
β2

0

2x

d

dx
(x2f 2

CK), (2.28)

then the term with the derivatives on the left-hand side of equation (2.27) equals
zero,

1

x

d

dx
x

d

dx
log τ = 0. (2.29)
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Then the density depends on two integration constants, A and k,

τ(x) =
β2

0

2
Axk−1 (2.30)

and β0fCK also depends on the integration constant B,

β0fCK(x) =

√
Ag(x) +B

x
, (2.31)

where

g(x) =

{
xk+1

k+1
, if k 6= −1,

log x, if k = −1,
(2.32)

implying that dg
dx

= xk for all values of k. Five points are added to this result.
Point 4 on the composite profiles is important. These profiles can be utilized to the
predictions we have mentioned above and we will also return to them below. The
striking assumption (2.29) is connected with the enthalpy gradient being constant.

Even though the surface density corresponds to k = −1
2
, also k = 1 is inter-

esting, for which we obtain a finite value at the axis of the cylinder, τ(0) = β2
0 ,

which cannot be changed on a choice of A, since necessarily A = 2 with respect to
the boundary condition f(0) = 1. The boundary condition τ(0) = 1 is mentioned,
which contradicts the property τ(0) = β2

0 , in general. The boundary conditions are
“imposed” to the desired function at the axis of the cylinder. It is stated that it has
been performed using a numerical integration.

The solution for τ(0) = β2
0 and dτ

dx

∣∣∣
x=0

= 0 represents a “baseline” solution,
about which the solution oscillates that fulfils the proper initial condition. The oscil-
latory behaviour of the density profiles is utilized for fitting the observed planetary
distances to the density peaks. A construction of the density profile and rotation law
in three regions, x ≤ x1, x1 < x < x2, x ≥ x2 is described. The model depends
on at least three parameters, x1 > 0, x2 > x1, and 1 − k ≡ δ > 2, with k being
related to the region x1 < x < x2. The fourth parameter of the model is β0. The
mentioned four parameters have been chosen such that they predict the observed
planetary distances. In the discussions, many further interesting connections with
research of planet formation are presented. The model has been applied to the solar
nebula. An application to the satellites of Jupiter and the five planets of 55 Cancri
is possible.

In the paper [Christodoulou and Kazanas (2008)], solutions have been found
successfully, which exhibit a pronounced oscillatory behaviour. The adaptable
slope of the profile of the differential rotation leads to arithmetic partial or geo-
metric partial progressions of the mass density peaks. It is a clear explanation of
the Titius–Bode “law” of planetary distances. A criticism of the explanations of
the order invoking new dynamical laws or “universal” constants and solar-system
“quantizations” is indicated. At this place, we could object that the choices of
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slopes of the profile of the differential rotation have only been verified using a nu-
merical integration. It is admitted that the currently available observations have
not supported the idea that our solar system is a representant of the planetary sys-
tems around stars. The most similar systems such as 55 Cancri and HD37124 are
mentioned.

Krot (2009) mentions his statistical theory of gravity. He promises to expound
the gravitational condensation. He derives an antidiffusion equation. To our opin-
ion, this derivation is faulty. His equation (48) is the beginning, but it already ex-
presses what one has intended to derive. After a certain time, the maximum value of
the density from the reference time t0 is present in a point at a distance ∆r from the
origin, where the maximum was attained at the time t0. Thus, the density is closer
to the origin than it was at the time t0. It does not seem to be an error, but equation
(48) is not so evident. Then the antidiffusion equation is combined with the Euler
equation. The uniform rotation around the axis z is assumed. For example, a dis-
tribution with the shape of oblate ellipsoid, but still the Laplacian–Gaussian one, is
derived.

The derivation of the distribution of specific angular momentum λ, λ = Ωh2,
where Ω is the angular velocity of the uniform rotation around the axis z and h is
the distance from the axis z, is promised. Let us note that it means the double of
the areal velocity. This distribution is

f(λ) =
α(1− ε2

0)

2Ω
exp

(
−α(1− ε2

0)

2Ω
λ

)
, (2.33)

where α ≡ α(t) is a positively defined monotonically increasing function and ε0 is
a constant, ε2

0 is a squared eccentricity of ellipse [Krot (2009)].
Schmidt’s hypothesis is a picture that particles or planetesimals, which have

sufficiently close values of the specific angular momentum or those of the areal
velocity, condense or accrete [Schmidt 1944]. The hypothesis may include just
cutting of the distribution of the areal velocities to equal parts.

A solution of this problem is described. We look for specific angular momenta
µn, λn, such that

µn =
λn + λn+1

2
, (2.34)

λn =

∫ µn
µn−1

λf(λ)dλ∫ µn
µn−1

f(λ)dλ
. (2.35)

Using the approximation

λn ≈
λn+1 + λn−1

2
, (2.36)

we obtain λn in the form of an arithmetic progression. This way, Schmidt (1944)
has derived his law for planetary distances, rn. Then he has encountered the fact
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that it is not accurate enough for all the planets together. He has recommended to
use it separately for the terrestrial planets and the Jovian planets.

The approximation (2.36) is based on the possibility of considering f(λ) a con-
stant in the interval [µn−1, µn]. Krot (2009) performs at least the linear approxima-
tion of the function f(λ) (his equation (101)),

f(λ) ≈ α(1− ε20)

2Ω
[1− α(1− ε20)

2Ω
λ]. (2.37)

He adds a generalization of the Schmidt law using the inverted equation

λn =
√

2GMSunrn. (2.38)

We will return to the derivation below.
The proposed theory is applied to the formation of the solar system. As usual,

the whole enterprise with the planets is based on merely eight planets and on the
dwarf planet Pluto. We criticize the fitting of data to the theoretic dependence. An
excessive number of parameters, namely seven, only the number of planets minus
one, have been proposed. So we are very close to a mere data transformation,
which is not recommended. Every further comparison then results in favor of this
incorrect procedure, whose inappropriateness may not be conceded by the author.

Now, the planets are successively numbered, although the asteroid belt might
deserve its number. The asteroid belt is equated one planet usually. Krot (2009)
simply neglects this belt. We criticize a large number of parameters for express-
ing a relatively small number of observed distances. Let us see, how the author
has arrived at this solution. The author has processed various assumptions to the
“hypothesis” that the cloud of particles has an exponential distribution of specific
angular momentum λ with the probability density (2.33). Later he has sacrificed
this assumption to the approximation (2.37). On substituting into equation (2.35),
he has obtained that

λn ≈
µn+µn−1

2
− α(1−ε20)

6Ω
(µ2

n + µnµn−1 + µ2
n−1)

1− α(1−ε20)

4Ω
(µn + µn−1)

, (2.39)

where µn is defined by equation (2.34). On substituting (2.34) into (2.39) and using
the property

λ̄ =
2Ω

α(1− ε2
0)
, (2.40)

the author obtains the finite difference equation

λn =
λ̄(Cn +Dn)− 1

3
(C2

n + CnDn +D2
n)

4λ̄− (Cn +Dn)
, (2.41)

whereCn = λn+1+λn,Dn = λn+λn−1 and where, for readability, we have already
written the equality sign instead of the more correct ≈.



32 Chapter 2

We mind that this finite difference equation is not completed with initial or
boundary conditions. Before we complete it, we will return to the original formu-
lation. The sequence to be found is not denoted by a single letter, but it has the
form

(λ1, µ1, λ2, µ2, λ3, µ3, . . .). (2.42)

So the finite difference equations (2.34) and (2.35) are equations for a single se-
quence, even though it is denoted by two letters. But it is justified by the alternation
of the equations. We begin with equation (2.35) for n = 1, where we put µ0 = 0,
hopefully. The author has not explained it. We proceed with equation (2.34) for
n = 1, etc. Another assumption to be considered is the hypothesis that the se-
quence is finite. In the model of formation of the solar system, it follows from the
finite number of the planets.

Krot (2009) does not recommend a length of the sequence. The author demon-
strates that the longer sequence that includes Pluto does not fit well. Although we
have not made numerical calculations, we could also exclude Pluto. Then we obtain

(λ1, µ1, λ2, µ2, . . . , λ7, µ7, λ8). (2.43)

To each term of this sequence, an equation exists. We simplify the last equation
with the assumption µ8 = +∞. This assumption is reasonable. In combination
with the approximation (2.37) it should rather be assumed that µ8 = λ̄. So we
have arrived at fifteen equations for fifteen unknowns, which depend only on the
parameter of the distribution f(λ). It is unique for the time being. It is far from the
result by Krot (2009), who asserts something else.

To assess the equations, which are solved in an obviously incorrect way, we
note that somewhere a “usual” mistake occurs and the numbering is shifted by one.
Certainly, λ0 = a0 for n = 0 in equation

λn = a0 + dn, (2.44)

where d is the difference and a0 is the first (the zeroth) term of the arithmetic pro-
gression. Later in the misleading substitution,

λn = Zn, n = 1, 2, 3, . . . , (2.45)

n ≥ 1 already.
Since, in equation (2.41), the variable n is comprised only as the subscript, we

can utilize our note. In this equation, we put n = 2, . . . , 7, considering the boundary
conditions

λ1 =
λ̄(λ2 + λ1)− 1

3
(λ2 + λ1)2

4λ̄− (λ2 + λ1)
, (2.46)

λ8 =
λ̄(2λ̄+ λ8 + λ7)− 1

3

[
(2λ̄+ λ8 + λ7)2 − 2λ̄(λ8 + λ7)

]
4λ̄− (2λ̄+ λ8 + λ7)

. (2.47)
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Although the problem is formulated, it is meaningless to expound its solution. One
of many reasons is that Krot (2009) proceeds in a completely different way. We
will explain the essence of our method using a different class of distributions of the
specific angular momentum than (2.33).

Let us assume that the random variable λ has the log uniform distribution, i.e.,
that log λ has the uniform distribution on the interval [log λmin, log λmax]. Then

f(λ) =
1

λ log
(
λmax

λmin

) . (2.48)

Then the finite difference equation (2.35) becomes

λn =
µn − µn−1

log
(

µn
µn−1

) , n = 1, . . . , 8, (2.49)

where µ0 = λmin, µ8 = λmax. Given the differential rotation of the form

Ω0

(
h
h0

)(k−1)/2
, with h0 ≡ r0, the specific angular momentum will be

λ = λ0

(
h

h0

) k+3
2

, − 3 < k < 1, (2.50)

where λ0 is the specific angular momentum for h = h0. Our distribution of dis-
tances has the probability density

l(h) =
k + 1

hk+1
max − hk+1

min

hk, k 6= −1, (2.51)

where hmin and hmax are the least and greatest possible distances, respectively. For
k = −1, a limiting formula with the logarithm holds. Since

h

h0

=

(
λ

λ0

) 2
k+3

, (2.52)

it holds that

f(λ) = l(h)

∣∣∣∣∣dhdλ

∣∣∣∣∣
=

k + 1

λ
2(k+1)
k+3

max − λ
2(k+1)
k+3

min

λ
k−1
k+3 , k 6= −1. (2.53)

For k = −1, a limiting formula with the logarithm holds, see above.
We have solved this problem with a small change, on leaving out the case n = 1,

namely Mercury. Contrary to [Krot (2009)], we include the asteroid Ceres with
number n = 5. Here n = 8 means Uranus. But the optimal choice of µ1 and µ8
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leads to relative errors up to forty per cent. Then the difference equation (2.35) has
also the form

λn =
2k + 2

3k + 5

µ
3k+5
k+3
n − µ

3k+5
k+3

n−1

µ
2k+2
k+3
n − µ

2k+2
k+3

n−1

, n = 2, 3, 4, 5, 6, 7, 8, k 6= −5

3
,−1. (2.54)

For k = −5
3
,−1, a limiting formula with the logarithm holds. We search, moreover,

for the optimum k. We have found that the best fit is achieved for k = −2.228,
min=0.017387.

For the numerical illustration, we assume that

a1 = 0.3871, a2 = 0.7233, a3 = 1.0000, a4 = 1.5237,
a5 = 2.765, a6 = 5.2028, a7 = 9.580, a8 = 19.141, (2.55)

rEarth = 1.49597870691× 1011, MSun = 1.9891× 1030, G = 6.67428× 10−11,

(2.56)

where aj , j = 1, . . . , 8, are the main half-axes of planet orbits beginning the Mer-
cury and ending Uranus in the astronomical units, rEarth is the astronomical unit,
MSun is the mass of the Sun and G is the gravitational constant. The values aj for
j 6= 5 are according to [Krot (2009)], a5 corresponds to the asteroid Ceres and it
has been involved according to [Christodoulou and Kazanas (2008)].

We choose k 6= −1, but in the surroundings of the value k = −1. We search for
15 unknowns creating the sequence

(µ1, λ2, µ2, λ3, µ3, λ4, µ4, λ5, µ5, λ6, µ6, λ7, µ7, λ8, µ8), (2.57)

which obey the equation

8∑
n=2

(
dn − an
an

)2

= min, (2.58)

where

dn =
λ2
n

2GMSun

1

rEarth

, (2.59)

µn =
λn + λn+1

2
, n = 2, 3, 4, 5, 6, 7, (2.60)

λn =
2k + 2

3k + 5

µ
3k+5
k+3
n − µ

3k+5
k+3

n−1

µ
2k+2
k+3
n − µ

2k+2
k+3

n−1

, n = 2, 3, 4, 5, 6, 7, 8. (2.61)

Probability density function f(λ) of specific angular momentum λ is proportional
to λ

k−1
k+3 , k = −2.228. The nebula is divided formally into rings suitable for assign-

ment of the angular momentum to circular loops of the radii dn. The values of dn
and errors dn−an

an
100% can be found in Table 2.2.
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Index n Planet dn Error (%)
2 Venus 0.702972 -2.81
3 Earth 0.994763 -0.52
4 Mars 1.578346 3.59
5 Ceres 2.745513 -0.70
6 Jupiter 5.079846 -2.36
7 Saturn 9.748512 1.76
8 Uranus 19.085846 -0.29

Table 2.2: The radii dn and their relative errors dn−an
an

100 %.

2.4 Chaotic behaviour and migration

Laskar (1989) has reported on an extensive analytic system of averaged differential
equations describing secular evolution of the orbits of eight main planets, accurate
to the second order in the planetary masses and to the fifth order in eccentricity and
inclination. His effort reminds one of the numerical integration of the long-term
evolution of the solar system, e.g., [Sussman and Wisdom (1988)]. Through the
analysis of results, it has been decided, whether the initial conditions of the solar
system lead to a quasiperiodic or a chaotic solution. In the time of the publication,
direct numerical integration was not yet able to take into account the inner planets
and their orbital motion was held for too rapid. Laskar (1989) has estimated the
maximum Lyapunov exponent to be about 1

5
Myr−1. It indicates a chaotic motion.

This conclusion has been left for next evaluation.
Sussman and Wisdom (1992) have numerically integrated the evolution of the

whole planetary system for a time span of nearly 100 million years. They have
estimated the Lyapunov exponent to be about 1

4
Myr−1. They have confirmed the

characteristics of Pluto’s motion [Sussman and Wisdom (1988)]. They have en-
countered the complication that the subsystem of the Jovian planets is chaotic or
quasiperiodic in the dependence on the initial values. The method of integration
resembles an approach intended for a provocation of the chaos, but it can be used
in a regime, which excludes that the exponential divergence is a numerical artifact.

Murray, Hansen, Holman and Tremaine (1998) have elaborated an explanation
of the presence of Jupiter-mass planets in small orbits. E.g., a planet orbits τ Bootis
at a distance of 0.0462 AU (Internet gives a more recent value of 0.0481 AU).
They have assumed that the giant planets may form at orbital radii of several AU
and then migrate inwards. Such a planet originates in a planetesimal disk and it
decreases the angular momentum of the planetesimals with resonant interactions.
The planetesimals either collide with or are ejected by the planet. The ejection
process removes orbital energy from the planet, which moves closer to the star.
Other consequences of a close encounter may be a collision of the planetesimal
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with the star or a long-term capture into a mean-motion resonance.
Murray, Paskowitz and Holman (2002) have concentrated themselves to the res-

onant migration of planets, which produces large eccentricities. In their study, they
have distinguished the migration due to ejection of planetesimals and that by tidal
torques. These possibilities rely respectively on the assumptions of planetesimal
and gas disks. The resonant migration in the gas disk is related to two bodies of
roughly Jupiter mass.

Spencer (2007) reviews the migrating planets from a creationist’s standpoint.
He remembers the Nebular Hypothesis, which comprised the idea that all the plan-
ets in the our solar system formed in the regions, where they are now located. Extra-
solar planetary systems require rather pictures of a migration. As the long accepted
“naturalistic” origins explanations for our solar system do not operate for extrasolar
planetary systems, planetary scientists modify past theories for our solar system.
It is welcome, when the nebular models have had problems with the formation of
Uranus and Neptune. The Nice model is much appealing. The theory has been
published as the paper [Tsiganis, Gomes, Morbidelli and Levinson (2005)]. The
initial order of the giant planets JSNU has changed to the actual order JSUN after
6.6 Myr. It can be described also as a “rapid inclination of the orbits of Uranus and
Neptune and exchange of their orders in distance from the Sun”. The time axis is
drawn in the length of over 80 Myr. Spencer (2007) does not accept naturalistic
origins scenarios that conflict with the biblical time scale.

It can be expected that long time spans, not only 109 yr, but also 1018 yr, lead to
considerations of the inclusion of the quantum gravity and the uncertainty relations.
For them, we refer to the essay [Page (2010)].

2.5 Quantization on a cosmic scale

In this section, we provide an account of our publications. Pintr and Peřinová
(2003–2004) have reported on the proposal of Mohorovičić (1938). The then popu-
lar Bohr–Sommerfeld quantum theory has convinced him of the occurrence of “al-
lowed” orbits in planetary science. His “magnification ratios” cf., [Christodoulou
and Kazanas (2008)]) are lesser than one (reduction ratios). Another peculiar hy-
pothesis is the connection of the allowed orbits with moons, which have “subjected”
themselves to the primaries later. Peřinová, Lukš and Pintr (2007) have tried to use
the concept of wavefunction instead of or together with the notion of an allowed
orbit. Pintr, Peřinová and Lukš (2008) have returned to the allowed orbits using
mainly the classical physics. Some modern physics concepts are applied as well.

Before this account, we review ideas which influenced us. Greenberger (1983)
admitted that quantization of “megascopic” systems exists, which has a macro-
scopic limit in common with the familiar quantization of microscopic systems. de
Oliveira Neto (1996) and Agnese and Festa (1998) have constructed Bode-like laws
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for our solar system. Later, de Oliveira Neto, Maia and Carneiro (2004) have pro-
vided a continuation of the paper [de Oliveira Neto (1996)], using the concept of
a wavefunction. Interesting coincidences can be found even in the application of
these ideas to extrasolar planets.

2.5.1 Quantization of megascopic systems
Greenberger (1983) has concerned himself with absorption lines in quasars with a
high red-shift parameter z. He assumes that a hydrogen atom is attracted gravita-
tionally to a quasar. The world is quantized on a microscopic scale and is quantized
on a cosmic scale as well by the model theory. He restricts himself to the absorption
of the Lyman-α frequency of ultraviolate radiation by an atom, i.e., the transition
from the level n = 1 to n = 2. When the atom also passes over into a higher grav-
itational state, the absorption lines different from the Lyman-α line will be present
in the analogy with the Raman effect.

Greenberger (1983) has expressed the quantized gravitational energy as

En = −E0

n
2
3

, (2.62)

where E0 can only be derived theoretically in a complicated way and it is not as yet
observable. In observing the absorption lines with the wavelengths λk, k = 1, 2, we
must consider jumps from the gravitational levels nk1 to nk2 and the equation

hc

λk
− hc

λα
=

E0

1 + z

(
n
− 2

3
k1 − n

− 2
3

k2

)
, k = 1, 2, (2.63)

where h is Planck’s constant and λα is the wavelength of the Lyman-α line seen on
the Earth. From this

λα
λ1
− 1

λα
λ2
− 1

=
n
− 2

3
11 − n

− 2
3

12

n
− 2

3
21 − n

− 2
3

22

, (2.64)

and E0 is not needed.
An analysis of absorption spectra of four quasars has provided good fit for two

of them and the third comparison has been also meaningful. The fourth case has
provided an illustration of the method at least. This complicated procedure is not
similar to the Titius–Bode law. Considerations of elliptical rings around the normal
elliptical galaxies in [Malin and Carter (1980)] remind us of the Titius–Bode law.
The major half-axes very closely fit the formula

rn = r0n
2
3 . (2.65)

Greenberger (1983) distinguishes the “kinetic” momentum from the canonical
momentum and remembers that

[x, pc] = ih̄, (2.66)
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where x is a position coordinate and pc the canonical momentum. We assume that
the physical system is described by a Hamiltonian H . Then

ẋ ≡ dx

dt
= − i

h̄
[x,H] =

∂H

∂pc
(2.67)

and the kinetic momentum is p = mẋ, when the “system” means a particle of the
mass m. We have understood that the author considers equations for ẋ of the form

[x, ẋ] = C(ẋ), (2.68)

where the commutator C may depend on ẋ again. We obtain an equation for the
Hamiltonian H of the form

∂2H

∂p2
c

= − i
h̄
C

(
∂H

∂pc

)
. (2.69)

For the original treatment, we refer to [Greenberger (1983)].
de Oliveira Neto (1996) starts with an imaginary observer, who is compelled to

apply the quantum theory to our solar system by his/her cosmic size. He represents
the mean planetary distances by the formula

rnm =
n2 +m2

2
r0, 0 ≤ m ≤ n, (2.70)

where n and m are integers and r0 is the mean distance of Mercury to the Sun. In
the dependence on a planet, we note that

n(Mercury) = 1, n(Venus) = n(Earth) = n(Mars) = 2, n(Jupiter) = 4,

n(Saturn) = 5, n(Uranus) = 7, n(Neptune) = 9, n(Pluto) = 10. (2.71)

Next,m(p) = n(p) for p = Mercury, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto.
Three of the inner planets are described only by a variation of m: m(Venus) = 0,
m(Earth) = 1, m(Mars) = 2. Besides the planets and Pluto, the dwarf planet,
some asteroids have been represented.

Nottale, Schumacher and Gay (1997) continue the approach in the book [Not-
tale (1993)]. They assume that at very large time-scales, the solar system can be
described in terms of fractal trajectories governed by a Schrödinger-like equation.
They let the fractal motion depend on a universal constant w0 having the dimen-
sion of a velocity. According to an illustrative example by Greenberger (1983), a
connection of w0 with the fundamental length λ may be

w0λ =
GM

c
, (2.72)
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where M = MSun. The average distance to the Sun is given in the form

〈rn`〉 =
1

2
[3n2 − `(`+ 1)]

GM

w2
0

, (2.73)

where n is the principal number of the quantized orbit and ` is the number of quanta
of the angular momentum, ` = 0, 1, . . . , n−1. It has been found that the appropriate
value for the inner system is w0 = (144.3±1.2) km s−1 and w0→ wout for the outer
system, wout = w0

5
, where w0 = (140± 3) km s−1.

Agnese and Festa (1997) remind the paper [Greenberger (1983)], especially his
equation (8) where, without loss of generality, they write λ̄f instead of λf , λ̄ = λ

2π
.

We have understood that these authors propose the commutator

[x,mẋ] = i(h̄+mcλ̄), (2.74)

where h̄ = h
2π

is the reduced Planck constant and

ẋ = − i
h̄

[x,H]. (2.75)

As above, we obtain that
∂2H

∂p2
c

=
1

m
+
cλ̄

h̄
, (2.76)

or

H =

(
1

m
+
cλ̄

h̄

)
p2
c

2
+ potential energy. (2.77)

It is just the direction, in which Greenberger (1983) did not intend to proceed. It
is obvious that, sometimes, an alternative expression for the kinetic energy may be
useful.

Agnese and Festa (1997) do not utilize the full quantum mechanics, but the
Bohr–Sommerfeld discretization rules for (multiply) periodic motions∮

pjdqj = nj2πh̄, (2.78)

where qj , pj are generalized coordinates and canonically conjugate momenta, re-
spectively, and nj are integers. Using the equation

h̄ =
ẽ2

αcc
, (2.79)

where c is the velocity of light and the charge of the electron ẽ,

ẽ =
e√
4π
ε0, (2.80)



40 Chapter 2

with the elementary charge e = 1.602 × 10−19C, the permittivity of the vacuum
ε0, the constant of fine structure αc, we obtain that the periodic plane motions of a
particle should fulfil the equations∮

prdr = k2π
ẽ2

αcc
, (2.81)∮

pϕdϕ = l2π
ẽ2

αcc
, (2.82)

where k and l are the radial and azimuthal numbers, respectively. This way the
particle-mass independence of the orbits is not obtained. Hypothetically, the authors
replace

ẽ2

αc
→ GMm

αg
, (2.83)

which gives ∮
prdr = k2π

GMm

αgc
, (2.84)∮

pϕdϕ = l2π
GMm

αgc
, (2.85)

where αg is the gravitational constant. This assumption entails the particle-mass,
m, the independence of orbits. Nevertheless, a new quantization rule is not needed,
when one correctly writes pc instead of p and uses the new kinetic energy. In appli-
cation to the solar system, we put M = MSun. The principal number n = k + l is
introduced.

The major half-axes of the elliptic orbits have the form

an = aSun
1 n2, (2.86)

where
aSun

1 =
1

α2
g

GMSun

c2
. (2.87)

For circular orbits, the canonical momentum pr = 0, k = 0. The estimation of aSun
1

has been carried out and, simultaneously, the numbers n(p) for the planets have
been searched for. It has been found that aSun

1 = (0.0439± 0.0004) AU and

n(Mercury) = 3, n(Venus) = 4, n(Earth) = 5, n(Mars) = 6, n(Ceres) = 8,

n(Jupiter) = 11, n(Saturn) = 15, n(Uranus) = 21, n(Neptune) = 26,

n(Pluto) = 30. (2.88)

From this
1

αg
= 2113± 15. (2.89)
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It can be objected that the number of parameters is greater by one than the number
of observations, so that the solution of the problem is too easy. But it would be an
oversimplified opinion, since most of the unknowns are integers. Such parameters
cannot be counted as “full-blown” degrees of freedom. Intuitively, a quasicontin-
uum of consecutive integers (here 3, 4, 5, 6) would be counted as a value of a single
parameter.

The assumption that αg is a universal constant is tested by satellites of the plan-
ets. The first allowed orbit, which lies out of the planet, has a relatively high (≥ 19)
principal number for Mercury, Venus, the Earth, and Mars. For the giant planets,
such orbits have lesser numbers. But the “universality” of the constant αg has not
been confirmed.

Agnese and Festa (1997) indicate that the spin of a purely gravitationally
bounded celestial body may be proportional to the square of its mass,

J =
1

2

Gm2

αgc
. (2.90)

In fact, the law J = pM2, where p is a proportionality constant, has been proposed,
with p = 8 × 10−17 m2kg−1s−1 [Wesson (1981)]. In continuation, these authors
have calculated G/(2αgc) = 2.35× 10−16 m2kg−1s−1.

Rubčić and Rubčić (1998) have criticized the vacant orbits in the quadratic law
in [Agnese and Festa (1997)]. They have been aware that it is advantageous to ana-
lyze the terrestrial planets and the Jovian planets as separate systems. The quadratic
law governs even the satellites of Jupiter, Saturn and Uranus [Rubčić and Rubčić
(1995, 1996)].

They relate the quantization in the cosmic world to the effect of chaos [Nottale
(1993, 1996)]. Rubčić and Rubčić (1998) begin with the “quantization” of the
specific angular momentum Jn

mn
, where Jn is the angular momentum of the planet

and mn is its mass. Then Jn
mn

= nH ′, with H ′ = fAM , where M is the mass of the
central body,

A = 2π
G

αcc
, (2.91)

and f indicates the impossibility of an invariable quantization of the systems con-
sidered. Particularly, f = 2.41±0.03 for the terrestrial planets and f = 12.61±0.16
for the Jovian ones. The principle of consecutive numeration is respected. Espe-
cially, Mercury, Venus, the Earth, Mars, Ceres are numbered by 3, 4, 5, 6, 8 and,
e.g., Jupiter, Saturn and Uranus are labeled by 2, 3 and 4, respectively. The asteroid
Ceres only represents the main belt, which is related to numbers 7 to 9.

As an approximation, the radius of the nth orbit is

rn =
1

G
(fA)2Mn2. (2.92)
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Through an analysis of the behaviour of f−1, a rougher approximation (cf., equation
(13) in [Rubčić and Rubčić (1998)]) has been derived,

rn =
GM

v2
0k

2
n2, (2.93)

where v0 = (25.0 ± 0.7) kms−1 and k = 1 for the Jovian planets and the satellites
of Uranus, k = 2, 4 for the satellites of Jupiter and Saturn, respectively, and k =
6 for the terrestrial planets. The value v0 ≈ 24 kms−1 is one of increments of
galactic redshifts [Arp and Sulentic (1985), Rubčić and Rubčić (1998)], cf., also
[Arp (1998)].

The universal constant A can be written in the form

A =
h

m2
0

, (2.94)

where m2
0 = αcm

2
P, mP is Planck’s mass.

After the observation of quantized redshifts, Dersakissian (1984) formulated a
cosmic form of quantum theory. The studies of the redshift of galaxies reverberate
also in [Carvalho (1985)]. In that paper, the quantized gravitational energy (2.62)
has been obtained using a model, which we understand on paying attention to an
illustrative example in [Greenberger (1983)]. Indeed, the equation for p, [x, p] =
ih̄g(x), where g(x) is a potential function, can be written as an equation for H ,

∂2H

∂p2
c

=
1

m
g(x), (2.95)

which leads to the Hamiltonian by Carvalho (1985) on generalization to three di-
mensions, where, e.g., g(r) must replace g(x) and be proportional to 1

|r|2 .

2.5.2 Tentative “universal” constants

Carneiro (1998) remembers Dirac’s hypothesis that cosmological large numbers, as
mass M , radius R and age T of our Universe can be related to the typical values
of mass m, size r and life time t appearing in particle physics, by a scale factor
Λ ∼ 1038–1041 [Dirac (1937, 1938)]

T

t
=
R

r
=
(
M

m

) 1
2

= Λ. (2.96)

A simple one-dimensional analysis is utilized for introducing new concepts as a
scaled quantum of action H ,

H

h
= Λ3. (2.97)
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If Universe rotates, its spin must be of the order H
2π
∼ 108 Js. Another, intermediate,

scale of quantization related to the angular momenta of stars is proposed, whose
values concentrate around H′

2π
∼ 1042 Js,

T ′

t
=
R′

r
=

(
M ′

m

) 1
3

= λ. (2.98)

Here λ =
√

Λ, T ′ ∼ 104 s, R′ ∼ 104 m and M ′ ∼ 1030 kg. For the astrophysical
meaning of these values, we refer to the paper [Carneiro (1998)]. Gravitation con-
stants of three kinds are considered, G = G2 on the Λ scale, G′ = G3 on the λ scale
and g on the microscopic scale,

Gn = g
(
Mn

m

) 1
n
−1

, n = 2, 3, (2.99)

where M2 = M and M3 = M ′. Here g can be named the strong gravity constant
[Recami, Raciti, Rodrigues, Jr., and Zanchin (1994)]. It has been guaranteed that
G3 = G2, or G′ = G.

In a continuation of [Agnese and Festa (1997)], it has been chosen

H ′ = 2π
√
GMm2r1, (2.100)

where m is the average mass of planets of the solar system and r1 ≡ aSun
1 , and

calculated that H ′ = 1.2× 1042 Js for m = 2.10× 1026 kg [Carneiro (1998)].
Agnese and Festa (1998) have considered the universal constant of the form

v∗ = αgc (2.101)

and have found that v∗ ∼ 143.7 km s−1. An elliptical orbit has been tried for
Pluto, (n, l) = (30, 29), and for 1996TL66, (n, l) = (44, 36), which is not much
valued even by themselves. They have analyzed about twenty star–planet pairs.
The extrasolar planets can be discovered near the star. The mass of these stars was
not known, but it can be at least roughly estimated from the star type. From the
theory, it follows that the ratio of the orbital periods of planets orbiting different
stars at the level n = 1 equals the ratio between the masses of the respective stars.
The predictions have agreed fairly for (stars) HD187123, τ Bootis and HD75289
and their companions.

Agnese and Festa (1999) have refined the analysis in the paper [Agnese and
Festa (1997)] with the assumption that the distance of Jupiter from the Sun has
least changed since the formation. They have obtained that

aSun
1 = 0.04297 AU,

1

aSun
g

= 2086± 14. (2.102)
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The planetary system of υ Andromedae with three planets was paid attention to.
These planets are called b, c, d and the planet c is the most massive. From the
orbital period and the principal number of the planet, the mass of the star can be
found. As the mass of υ Andromedae is known with some accuracy, it has been
feasible to number the planet c with n = 4. The authors then have corrected the
mass of the star. Similarly, the numbers n = 1 for the planet b and n = 7 for the
planet d have been determined, but the value of the stellar mass have no more been
changed. The authors are aware that their scheme contradicts the theories of the
planet migration. Since the numbers n = 1, 4, 7 are not consecutive, it is natural to
assume the existence of smaller, not yet observed, planets.

Nottale, Schumacher and Lefèvre (2000) have continued the study in [Nottale
(1996)]. They have accepted the gravitation coupling (not the “structure”) constant
αg = w0

c
. Planets in the inner solar system and exoplanets have been treated alto-

gether. The mean velocity has been calculated from the parent star mass, M , and
the planet period, P , as v = 3

√
M
P

. The histogram of the values of |δn| =
∣∣∣144
v
− n

∣∣∣,
with n being the nearest integer of 144

v
, has been plotted. The distribution has dif-

fered from the uniform one significantly. Rather a condensation of δn about δn = 0
has been observed.

de Oliveira Neto, Maia and Carneiro (2004) apply full quantum mechanics in
contrast to [Agnese and Festa (1997)]. Such an approach is peculiar in that the inde-
terminism of the complete quantum mechanics does not permit to find the planetary
distances with certainty. As in many similar cases, the predictions are formulated
in terms of the planetary mean distances. In the application of the full quantum me-
chanics, wave functions are associated with the planets. For the calculation of the
planetary mean distances, squares of moduli of these wave functions are used. Next
comments may resemble the philosophy of quantum mechanics. A superposition
of planetary wave functions is a wave function again. But this function does not de-
scribe all the planets simultaneously. At least in quantum mechanics, Schrödinger’s
cat paradox is not related to a description of two cats, but to that of two states of
a single cat. In application to the planetary formation, we need a nonstandard in-
terpretation of quantum mechanics indeed. Let us consider a weighted average of
squares of moduli of wave functions, which differs from a square of a modulus
of an appropriate superposition of these functions in the neglect of the interference
terms. The weighted average respecting the masses of protoplanets much resembles
the solar nebula according to the paper [Christodoulou and Kazanas (2008)].

de Oliveira Neto, Maia and Carneiro (2004) remember the paper [Nelson
(1966)] based on the idea from the paper [Fényes (1952)]. A cosmic Brownian
motion could lead to the validity of a Schrödinger-type diffusion equation. In the
framework of this model, we can hardly imagine a Brownian motion, whose com-
plexity would depend on the number of the planets to be formed. A theory of planet
formation must then content with the superposition of wave functions, which “para-
doxically” do not correspond to states of a single protoplanet, but diretly to the
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Body k ` rk` [AU] Error [%]
— 1

2
0 0.055 —

Mercury 3
2

1 0.332 -15
Mercury 3

2
0 0.387 -1

Venus 5
2

2 0.829 15
Earth 5

2
1 0.995 -0.5

Earth 5
2

0 1.050 5
Mars 7

2
3 1.548 2

Hungaria 7
2

2 1.824 -6
Hungaria 7

2
1 1.990 2.5

Hungaria 7
2

0 2.046 5.5
Vesta 9

2
4 2.488 5.5

Ceres 9
2

3 2.875 9
Hygeia 9

2
2 3.151 -0.5

Camilla 9
2

1 3.317 -4.5
Camilla 9

2
0 3.372 -3

Jupiter 11
2

0 5.031 -3
— 13

2
0 7.021 —

Saturn 15
2

0 9.343 -2
Chiron 17

2
0 11.997 -12.5

Chiron 19
2

0 14.982 9.5
Uranus 21

2
0 18.300 -4.5

— 23
2

0 21.948 —
HA2 (1992), DW2 (1995) 25

2
0 25.929 4.5

Neptune 27
2

0 30.241 0.5
— 29

2
0 34.885 —

Pluto 31
2

0 39.861 1

Table 2.3: Predicted distances of bodies from the Sun.

protoplanets.

It is proper to remember the book [Nottale (1993)], where the inner and outer
planetary systems are treated separately. de Oliveira Neto, Maia and Carneiro
(2004) solve the time-independent Schrödinger equation with Newton’s potential
in two dimensions. In order a relationship to the planetary system to be estab-
lished, also the component of the Hamiltonian, which is the kinetic energy, must be
changed, as we have mentioned above. As Peřinová, Lukš and Pintr (2007) proceed
almost in the same way, deviating only in detail, we do not give the theory twice,
we present it only in what follows. Using the numbers k, k = n − 1

2
, where n is

the principal quantum number and `, ` = l−1, the following correspondences have
been established in Table 2.3.
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It is obvious that, only in several cases, the assumption of circular orbits [Ag-
nese and Festa (1997)] l = n, or `+ 1 = k + 1

2
, or ` = k − 1

2
is used.

2.5.3 Membrane model
Mohorovičić (1938) returned to the matter of distances of the bodies of the solar
system. He established a law, which can be expressed as follows: The distance of
every body of the solar system from the Sun is given in the astronomic units by the
formula

r∓k = 3.363(1∓ 0.88638k), (2.103)

where the minus sign corresponds to inner parts of the solar system and the plus sign
describes the more remote regions of the solar system. The number k can assume
positive integer values for the minus sign, it can take both positive and negative
integer values for the plus sign in the formula (2.103). If other real numbers are
substituted, the result corresponds to unstable orbits. This formula encompasses all
inner planets and asteroids, giant planets, and even the distances of comets. It can-
not be recommended without tables, in which the numeration of planets is striking.
In comparison with the Titius–Bode series, we have k = 1, 2, 3, 5, 14 for the bodies
that are respected by the Titius–Bode series. But the Mohorovičić formula is dou-
ble similar as proposals of some other authors. Perhaps, the split is peculiar. So far
we have mentioned the terrestrial planets and the asteroid Ceres, the formula with
the upper sign. We have k = 5,−5,−13,−17,−20 for farther bodies, which are
described by the Titius–Bode series well or wrong. The Titius–Bode series would
give good predictions to the bodies with k = 5,−5,−13 and the lower sign. These
chosen values evidence the attention paid to the asteroids and comets. Typical is
the condensation of orbits in the asteroid belt, where at 3.363 AU there is also the
interface.

Pintr and Peřinová (2003–2004) generalize the Mohorovičić formula for stars
of different masses, noting that the formula (2.103) can be rewritten in the form

ak = alim(1∓ 0.88638k), (2.104)

where alim = 3.363 AU for our solar system. Substituting

alim =
GMs

µ2
gc

21.5× 1011
, (2.105)

whereMs is the stellar mass, c is the speed of light and µg is a Mohorovičić constant
with the property

1

µg
= 18448.1, (2.106)

they obtain the calculated distances of the bodies in AU in the form

ak =
GMs(1∓ 0.88638k)

µ2
gc

21.5× 1011
. (2.107)
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In a comparison with the paper [Agnese and Festa (1997)], it can be stated that the
interface, alim, is obtained for n = 10, but the correspondence is very rough.

The relation (2.107) has been modified and for distances of moons of the giant
planets, a similar relation has been obtained

ak =
GMp(1∓ 0.88638k)

µ2
gc

2
, (2.108)

where the distance is measured in meters. Tables for moons and rings of Jupiter,
Saturn, Uranus and Neptune are presented, in which they observe that:
(i) In the case of Jupiter, k = 18 for an inner moon and k = 8 for an outer moon is
utilized.
(ii) In the case of Saturn, k = 33 for an inner ring and k = 14 for an outer ring is
utilized.
(iii) In the case of Uranus, the interface is not utilized, the ring and moons are outer.
(iv) In the case of Neptune, the interface is not utilized, the moons are outer.
When the interface is utilized, the tables lack indication of the sign in the formula
(2.108).

The formula (2.107) has been applied to the systems of υ Andromedae and 47
Ursae Majoris. The interface has not been utilized. The planets are inner.

Peřinová, Lukš and Pintr (2007) have solved the Schrödinger equation with
appropriately modified Hamiltonian deviating in detail from the paper [de Oliveira
Neto, Maia and Carneiro (2004)]. They formulate the problem as follows. They
consider a body of the mass Mp, which orbits a central body of the mass Ms and
has the potential energy V (x, y, z) in its gravitational field. As planets and moons
of the giant planets revolve approximately in the same plane, they consider z = 0.
As they revolve in the same direction, they choose directions of the axes x, y and
z such that the planets or moons of giant planets revolve anticlockwise. Then they
write the modified Schrödinger equation for the wave function ψ = ψ(x, y) from
the part of the Hilbert space L2(R2) ∩ C2(R2) and the eigenvalue 0 > E ∈ R in
the form

− h̄2
M

2Mp

(
∂2

∂x2
+

∂2

∂y2

)
ψ + V (x, y)ψ = Eψ, (2.109)

where h̄M ≈ 1.48 × 1015Mp, V (x, y) = V (x, y, z) and E is the total energy.
Negative values of E classically correspond to the elliptic Kepler orbits and the
localization property (bound state) is also conserved in the quantum mechanics for
such total energies E. The factor 1.48 × 1015 is not a dimensionless number, but
the unit of its measurement is m2s−1. With respect to the unusual unit, they do not
wonder that Agnese and Festa (1997) consider this factor in the form of a product,
such that h̄M = λ̄McMp, where λ̄M ≈ 4.94× 106 m.

They transform equation (2.109) into the polar coordinates,

− h̄2
M

2Mp

(
∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r
+

1

r2

∂2ψ̃

∂θ2

)
+ Ṽ (r)ψ̃ = Eψ̃, (2.110)
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where ψ̃ ≡ ψ̃(r, θ)=ψ(r cos θ, r sin θ), Ṽ (r) = V (r cos θ, r sin θ) does not depend
on θ. Particularly, they choose

Ṽ (r) = −GMpMs

r
. (2.111)

With respect to the Fourier method, they assume a solution of equation (2.111) in
the form

ψ̃(r, θ) = R(r)Θ(θ). (2.112)

The original eigenvalue problem is transformed equivalently to two eigenvalue
problems

Θ′′(θ) = −ΛΘ(θ), (2.113)

Θ(0) = Θ(2π) (2.114)

and

R′′(r) +
1

r
R′(r) +

{
−Λ

r2
+

[
E − Ṽ (r)

2Mp

h̄2
M

]}
R(r) = 0, (2.115)

lim
r→0+

[
√
rR(r)] = 0,

√
rR(r) ∈ L2((0,∞)). (2.116)

The solution of the problem (2.113)–(2.114) has the form

Θ`(θ) =
1√
2π

exp (i`θ) (2.117)

for ` = ±
√

Λ ∈ Z.
Here ` = 0 should mean a body, which does not revolve at all. In the classical

mechanics, such a body moves close to a line segment ending at the central body,
and it spends a short time in the vicinity of this body. Peřinová, Lukš and Pintr
(2007) utilize some – not all – of the concepts of quantum mechanics and will not
avoid the case ` = 0 [de Oliveira Neto, Maia and Carneiro (2004)]. In the formula
(2.117), ` = 1, 2, . . . ,∞ corresponds to the anticlockwise revolution.

On respecting (2.111), equation (2.115) becomes

R′′(r) +
1

r
R′(r) +

{
− `

2

r2
−B − 2Mp

h̄2
M

(
−GMpMs

r

)}
R(r) = 0, (2.118)

where

B = −2MpE

h̄2
M

= − 2

(λ̄Mc)2

E

Mp

. (2.119)

It holds that
MpGMpMs

h̄2
M

=
GMs

(λ̄Mc)2
. (2.120)
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On substituting r = ρ

2
√
B

and introducing

R̃(ρ) = R

(
ρ

2
√
B

)
, (2.121)

equation (2.118) becomes

R̃′′(ρ) +
1

ρ
R̃′(ρ) +

(
−1

4
+
k

ρ
− `2

ρ2

)
R̃(ρ) = 0, (2.122)

where
k =

GMs

(λ̄Mc)2
√
B
. (2.123)

For later reference, it holds inversely that

√
B =

GMs

(λ̄Mc)2k
, (2.124)

−E
Mp

=
(λ̄Mc)

2

2
B =

(GMs)
2

2(λ̄Mc)2k2
. (2.125)

Expressing R̃(ρ) in the form

R̃(ρ) =
1
√
ρ
u (ρ) , (2.126)

they obtain an equation for u(ρ),

u′′(ρ) +

[
−1

4
+
k

ρ
−
(
`′2 − 1

4

)
1

ρ2

]
u (ρ) = 0, (2.127)

where `′ = `. It is familiar that this equation has two linear independent solutions
Mk,`′(ρ), Mk,−`′(ρ), if `′ is not an integer number. When `′ is integer, the solution
Mk,−`′(ρ) must be replaced with a more complicated solution. It can be proven that
the other solution is not regular for ρ = 0 (it diverges as ln ρ for ρ → 0). The
remaining solution Mk,`(ρ) can be transformed to a wave function from the space
L2((0,∞)) if and only if k − `− 1

2
= nr is any nonnegative integer number. They

choose this function to be

uk`(ρ) = Ck`Mk,`(ρ), (2.128)

whereCk` is an appropriate normalization constant andMk,`(ρ) is a Whittaker func-
tion, namely

Mk,`(ρ) = ρ`+
1
2 exp

(
−ρ

2

)
Φ
(
`− k +

1

2
, 2`+ 1; ρ

)
, (2.129)
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where Φ is the confluent (or degenerate) hypergeometric function. In the formula
(2.128), the constant Ck` has the property∫ ∞

0
r[Rk`(r)]

2 dr = 1, (2.130)

or it is

Ck` = 2
√
B

1

(2`)!

√√√√ (n+ `− 1)!

2k(n− `− 1)!
. (2.131)

Then

Rk`(r) = 2
√
B

√√√√(n− `− 1)!

2kΓ(n+ `)
exp(−r

√
B)(2r

√
B)`L2`

n−`−1(2r
√
B), (2.132)

where n = k+ 1
2
, L2`

n−`−1(2r
√
B) is a Laguerre polynomial and the relation (2.124)

holds.
Having solved the modified Schrödinger equation, they address an interpreta-

tion of the formulae derived. The probability density Pk`(r) of the revolving body
occurring at the distance r from the central body is

Pk`(r) = r[Rk`(r)]
2, r ∈ [0,∞). (2.133)

Mean distances of the planets are given by the relation

rk` =
∫ ∞

0
rPk`(r) dr (2.134)

=
(λ̄Mc)

2

4GMs

[(2k − nr)(2k − nr + 1) + 4nr(2k − nr) + nr(nr − 1)] , (2.135)

where nr = n − ` − 1, k = 1
2
, 3

2
, 5

2
, . . . ,∞ and ` = 0, 1, 2, . . . , n. In fact, it is

a particular case d = 2 of a formula depending on the dimension d. It reduces to
the familiar formula for d = 3. The derivations in the framework of the results of
[Nouri (1999)] are easy.

Peřinová, Lukš and Pintr (2007) recall that de Oliveira Neto, Maia and Carneiro
(2004) have defined the Bohr radius of the solar system r 1

2
0 = 0.055 AU. As Agnese

and Festa (1997) have preferred circular orbits, they expect an approach with ` =
k − 1

2
, which has not been adopted by de Oliveira Neto, Maia and Carneiro (2004).

As Agnese and Festa (1997) have demonstrated, such an approach may require a
different Bohr radius.

The orbits, on which big bodies – planets – may originate, are listed in Table
2.4. It emerges that for every number k, there exists only one stable orbit, on which
a big body – a planet – may originate. Then they can interpret the number k as
the principal quantum number and ` as the orbital quantum number equal to the
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Body k ` rk` [AU] Error [%]
— 1

2
0 0.055 —

Mercury 3
2

1 0.332 −15
Venus 5

2
2 0.83 15.5

Mars 7
2

3 1.54 1.5
Vesta 9

2
4 2.49 5.5

Fayet comet 11
2

5 3.64 −3.5
Jupiter 13

2
6 5.03 −3.5

Neujmin comet 15
2

7 6.636 −2.5
— 17

2
8 8.46 —

Saturn 19
2

9 10.5 10
— 21

2
10 12.77 —

Westphal comet 23
2

11 15.26 −2.5
Pons–Brooks comet 25

2
12 17.97 4

Uranus 27
2

13 20.9 9
— 29

2
14 24.055 —

— 31
2

15 27.43 —
Neptune 33

2
16 31.02 3

— 35
2

17 34.84 —
Pluto 37

2
18 38.88 −1.5

— 39
2

19 43.134 —

Table 2.4: Bodies with stable circular orbits.
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number of possible orbits, but only for the greatest ` there exists a stable orbit of a
future body. A planet which does not confirm this theory, is the Earth. Since the
description based on the modified Schrödinger equation for the planetary system is
not fundamental, it could not fit all the stable orbits. Other deviations are likely to
be incurred by collisions of the bodies in early stages of the origin of the planets,
thus nowadays it is already possible to observe elliptical orbits, which are very close
to circular orbits.

Using the graphs of the probability densities that they have plotted for every
predicted orbit of this system, they have obtained expected results. The graphs of
the probability densities for each orbit with k ≤ 9

2
and with 11

2
≤ k ≤ 39

2
are

contained in figure 3.1 and in figure 3.2, respectively. The vertical axis denotes
the probability density Pk`(r) and the longitudinal axis designates the planetary
distance r from the Sun. In figure 3.1, the graph for n = 2 is interpreted such that
the highest probability density is assigned to the orbit of the radius of 0.332 AU and
from the calm shape of the graph they infer that an ideal circular orbit is tested.

Figure 2.1: Probability densities for a particle in states with quantum numbers k,
`, which correspond, respectively (n = k + 1

2
), to Mercury (n = 2, ` = 1), Venus

(n = 3, ` = 2), Mars (n = 4, ` = 3) and asteroid Vesta (n = 5, ` = 4). Here
k ∈ {3

2
, 5

2
, . . . , 9

2
} and r is measured in AU.

The previous procedure has been applied to moons of giant planets [Peřinová,
Lukš and Pintr (2007)]. It emerges that the moons of giant planets are also fitted by
the modified Schrödinger equation and appropriate expectation values. Especially,
the predicted stable circular orbits of Jupiter’s moons are presented in Table 2.5. For
Jupiter it holds thatMs = M (Jupiter) and the Bohr radius of this system is r1 = 6287
km. It emerges that the predicted lunar orbits fit the measured orbits of the moons
orbiting Jupiter.

Pintr, Peřinová and Lukš (2008) have paid attention to the following event. In
the year 2004, a new theory emerged, which assumes basing on a study of chemical
compounds in meteorites and a study of astronomical objects of the distant universe
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Figure 2.2: Probability densities for a particle in states with quantum numbers k,
`, which correspond, respectively (n = k + 1

2
), to Fayet comet (n = 6), Jupiter

(n = 7), Neujmin comet (n = 8), Saturn (n = 10), Westphal comet (n = 12),
Pons-Brooks comet (n = 13), Uranus (n = 14), Neptune (n = 17) and Pluto
(n = 19), k ∈ {11

2
, 13

2
, . . . , 39

2
}, ` = n− 1. Here r is measured in AU.

that, like most low-mass stars, the Sun formed in a high-mass star-forming region,
where some stars went supernova [Desch, Healy and Leshin (2004)]. The radiation
from massive stars carves out ionized cavities in the dense clouds, within which the
stars formed. Such regions are called H II (ionized hydrogen regions). Examples of
these regions of star formations are the Orion Nebula, the Eagle Nebula, and many
other nebulae. The decisive argument of this new theory is the presence of isotope
60Fe in meteorites. This isotope is unstable and it may originate only in cores of
high-mass stars. The presence of the isotope 60Fe in our solar system favours the
hypothesis that the Sun was born near high-mass stars in ionized clouds of gas and
dust. The protagonist of the new theory is Hester and the group of astronomers in
the Arizona State University [Hester, Desch, Healy and Leshin (2004)]. The origin
of the solar system happened probably as follows: A shock wave, which compresses
molecular gas into dense cores, is driven in advance of an ionization front. After
the cores emerge into the H II region interior, they evaporate. Some of the cores
contain a star and a circumstellar disk. The disk evaporates. The massive stars pelt
the low-mass young stellar objects and the protoplanetary disks, which surround
them, with ejecta.

Assuming this to be a probable mechanism of the origin of stellar systems, Pintr,
Peřinová and Lukš (2008) attempt to find answers to some basic questions about the
traits of the solar system. They consider our solar system on some simplifications:

(i) The orbits of the bodies about the Sun are considered to be circular.

(ii) These orbits lay in one plane with respect to the Sun.
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Body k ` rk` [km] Error [%]
— 1

2
0 6287 —

— 3
2

1 37722 —
Halo ring 5

2
2 94305 5.5–−23.5

Outer ring 7
2

3 176036 43–−27.5
— 9

2
4 282915 —

Io 11
2

5 414942 −1.5
Europa 13

2
6 572117 −14.5

— 15
2

7 754440 —
— 17

2
8 961911 —

Ganymede 19
2

9 1.19×106 11
— 21

2
10 1.452×106 —

Callisto 23
2

11 1.735×106 −8

Table 2.5: Moons of Jupiter with stable circular orbits.

They do not explain the elliptical orbits and the inclinations of these orbits. Then
they can define a two-dimensional planetary model of a radius r0.

Pintr, Peřinová and Lukš (2008) argue that an ionized nebula is the medium,
where hydromagnetic waves may propagate at a velocity, vA (Alfvén’s velocity).
For understanding possible evolution of the solar system, they introduce the circu-
lar membrane model (two-dimensional model) of the radius r0. It describes a per-
fectly flexible circular membrane of a constant thickness [Brepta, Půst and Turek
(1994)]. It is pulled with a force Fl over a unit of length acting at the distance r0

from the centre of the membrane. In formulating the equation of motion, they take
into account only the transverse displacements w, assuming that they are small in
comparison with the size of the circular membrane. They let µA denote the mass of
a unit of area.

Introducing polar coordinates r and ϕ with the relations x = r cosϕ and y =
r sinϕ, they solve the appropriate problem for the transverse displacement w̃ using
the method of separation of variables. This method is based on solutions in the form

w̃(r, ϕ, t) = R(r, ϕ)T (t), (2.136)

where T (t) is a solution of a simpler problem and

R(r, ϕ) = R1(r)Φ(ϕ), (2.137)

withR1(r) and Φ(ϕ) solutions of simpler problems. Below, Jn(z) will be the Bessel
function of the order n, µ(n)

m will be positive roots of the equation

Jn(µ) = 0, (2.138)
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and

λ(n)
m = ±µ

(n)
m

r0

, n = 0, 1, . . . ,∞, m = 1, 2, . . . ,∞. (2.139)

Omitting the standard developments, they state that

w̃nm(r, ϕ, t) = R1nm(r)Φn(ϕ)Tnm(t), n = 0, 1, . . . ,∞, m = 1, 2, . . . ,∞,
(2.140)

where they have taken into account the multiplicity of the solutions and

R1nm(r) = CnJn

(
µ(n)
m

r

r0

)
, (2.141)

with λ(n)
m ≥ 0,

Φn(ϕ) = An cos(nϕ) +Bn sin(nϕ), (2.142)

Tnm(t) = Enm exp(iΩnmt), (2.143)

where

Ωnm = λ(n)
m

√
Fl
µA

. (2.144)

The superposition form of a solution suggests that, without a loss of generality,
they may specify

Anm = 1, Bnm = −i, Cnm = 1, Enm = 1. (2.145)

The superposition solution (2.140) is valid for any circular membrane. For
n = 0, the membrane has a nonzero amplitude at the point with r0 = 0. For
other n, Jn(0) = 0. The subscripts n and m control the number of nodal lines. The
membrane has 2n radial nodal segments and m nodal circles including the circum-
ference.

The membrane model considered must take into account the massMs of a future
central body and the membrane radius r0 must also be connected with this mass. A
multiplicity has been conceded. A distance ar is defined in the form

ar =
GMs

c2
, (2.146)

which is known as half the Schwarzschild radius. On using the fine structure con-
stant αe, the radii r(a)

0 are defined in the form

r
(a)
0 =

ar
αae
, (2.147)

where αe has the property 1
αe
' 137.0 and a is an exponent, a = 0, 1, 2, ...,∞.

Substituting Ms = MSun, Pintr, Peřinová and Lukš (2008) have observed the ne-
cessity of the following radii: r(0)

0 = 1.48 km, half the Schwarzschild gravitational
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radius of the Sun; r(4)
0 = 3.481 AU, the membrane for terrestrial planets (the centre

of the asteroid belt); r(5)
0 = 476.897 AU, the membrane for giant planets and r(6)

0

= 65334.9 AU, the membrane for formation of the Oort cloud of comets.
Pintr, Peřinová and Lukš (2008) replace a mechanical velocity v with the Alfvén

velocity vA. They rewrite the angular frequency of the membrane (2.144) in the
form

Ω(a)
nm =

µ(n)
m

r
(a)
0

vA. (2.148)

They may calculate the time of revolution of the ionized parts,

T (a)
nm = 2π

r
(a)
0

µ
(n)
m

1

vA

. (2.149)

This period depends on the physical properties of the membrane. It is assumed
that a future body revolving on a circular orbit about born central body at a distance
r(a)
nm inherits this period from the wave. The velocity of such a body can be written

in two forms,

v(a)
nm =

2πr(a)
nm

T
(a)
nm

=

√
GMs

r
(a)
nm

, (2.150)

or (cf., [Murray and Dermott (1999)])

(2π)2r(a)3
nm = GMsT

(a)2
nm . (2.151)

This equation for r(a)
nm has the solution

r(a)
nm =

3

√√√√GMsT
(a)2
nm

(2π)2
= 3

√√√√GMsr
(a)2
0

µ
(n)2
m v2

A

, (2.152)

where (2.149) have been utilized.
The membrane model admits that, under conditions present at the origin of stel-

lar systems, a hydromagnetic wave originates, whose nodal lines provide stable
orbits of future planets. For the calculation of possible orbits of planets, it has been
assumed that n = 1 and the Alfvén velocity for the inner parts of the solar system
was v(4)

A = 16500 ms−1 (Table 2.6) and for the formation of the outer planets, it was
v

(5)
A = 7000 ms−1, while n = 0 (Table 2.7).

In application to giant planets, it holds that Ms= Mp. A membrane model of
Jupiter’s system has been formulated with r(0)

0 = 0.0014 km, half the Schwarzschild
gravitational radius of Jupiter, r(4)

0 = 496043 km, the membrane for small moons
(rings), r(5)

0 = 6.796×107 km, the membrane for natural moons, and r(6)
0 = 9.310×

109 km, the membrane for the remotest parts of the system.
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m µ(1)
m r [AU] Body

1 3.832 1.390 Mars
2 7.016 0.930 Earth
3 10.173 0.725 Venus
4 13.323 0.606 asteroid 1999 MN
5 16.471 0.526 —
6 19.616 0.468 —
7 22.760 0.424 —
8 25.903 0.389 Mercury

Table 2.6: Distances of formation of inner bodies of the solar system up to 0.389
AU.

m µ(0)
m r [AU] Body

1 2.405 89.364 planet X
2 5.520 51.359 —
3 8.654 38.050 Pluto – Charon
4 11.792 30.963 Neptune
5 14.931 26.455 —
6 18.071 23.294 —
7 21.212 20.934 —
8 24.353 19.090 Uranus
9 27.494 17.610 Halley comet

10 30.635 16.384 —
11 33.776 15.352 —
12 36.917 14.468 —
13 40.058 13.701 —
14 43.200 13.029 —
15 46.341 12.434 —
16 49.483 11.901 —
17 52.624 11.423 —
18 55.766 10.989 —
19 58.907 10.596 —
20 62.049 10.234 —
21 65.190 9.903 —
22 68.331 9.590 Saturn
.. . . . . . . . . .

Table 2.7: Distances of formation of outer bodies of the solar system up to 9.59 AU.
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A similar model of Saturn’s system has been reported with r(0)
0 = 0.00042 km,

half the Schwarzschild gravitational radius of Saturn, r(4)
0 = 14803 km, the mem-

brane for small moons (centre of rings), r(5)
0 = 2.028 × 107 km, the membrane for

natural moons, and r(6)
0 = 2.778× 109 km, the membrane for the remotest parts.

In application to planets of υ Andromedae, it holds that Ms = M (υ And). A
membrane model of the υ-Andromedae system has been formulated with r

(0)
0 =

1.705 km, half the Schwarzschild gravitational radius of υ Andromedae, r(4)
0 =

4.003 AU, the membrane for terrestrial planets (probable centre of planetoids), r(5)
0

= 548.432 AU, the membrane for Jovian planets, and r
(6)
0 = 75135.2 AU, the

membrane for the remotest parts of the system.
The last calculations have been related to the star GJ876. Such a model has

been presented with r(0)
0 = 0.474 km, half the Schwarzschild gravitational radius

of GJ876, r(4)
0 = 1.114 AU, the membrane for terrestrial planets (probable centre

of planetoids), r(5)
0 = 152.607 AU, the membrane for Jovian planets, and r(6)

0 =
20907.2 AU, the membrane for the remotest parts of the system.
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Areal velocities of planets and their
comparison

3.1 Introduction
The formation of the solar system and its development are well described in [Mont-
merle, Augereau and Chaussidon (2006)]. The existing theories presume the age
of the solar system as 4.5 milliard years and that the entire system was created ap-
proximately 100 million years after the formation of the Sun. Despite of this, some
of the chronological events of the formation of the system still remain unknown to
us.

Comparing with the young T Tauri stars, we can say that the Sun formed in the
centre of a protoplanetary disk with the dimensions of approximately 1000 AU. The
planets formed in the first 10 million years after the formation of the protoplanetary
disk. The development of the solar system was terminated approximately 90 million
years after the formation of the protoplanetary disk.

Very interesting papers have been devoted to the mechanism in protoplanetary
disks [von Weizsäcker (1943, 1947)]. Turbulent processes have been described
in nascent protoplanetary nebulae. These topics have been the subject of many
papers. The beginning of modern theories dates since Kuiper [Kuiper (1951)], who
has shown that the protoplanetary nebulae would have to be more massive than the
algebraic sum of masses of all planets.

We can divide papers describing the distribution of distances into several cate-
gories. Many empirical formulae describe the distances on the condition of suitable
numbering of planets [ Pintr, Peřinová and Lukš (2008)], [ Nottale, Schumacher and
Lefèvre (2000)]. Graner and Dubrulle have shown that using the rotational symme-
try and the scale invariance, we can derive a geometric progression for any model
system in the form

rn = r0K
n, (3.1)

where n is an integer number, r0 is an initial distance, and K is a constant that

59
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determines the distribution of distances in the system [Graner and Dubrulle (1994)],
[Dubrulle and Graner (1994)]. A successive numbering of planets is assumed as is
respectable to such an impressive formula. Krot has created an evolutionary model
of the rotating and gravitating spherical body [Krot (2009)]. He has remembered
that with the aid of specific angular momentum of protoplanets, Schmidt derived
the square root of radius Rn of the orbit for the nth protoplanet [Schmidt (1944)],

√
Rn = a+ bn, (3.2)

where a and b are constants. Then he has generalized the Schmidt law for the solar
system, leaving (3.2) a mere linear approximation.

The first quantum formulas are comparable in complexity with (3.2). Agnese
and Festa [Agnese and Festa (1997, 1999)] have described the distances of planets
in the solar system as a gravitational atom [Greenberger (1983)] using the famous
Bohr-Sommerfeld rules. The successive numbering is possible only for the terres-
trial planets. The other planets are numbered “suitably”, i.e., so that a best fit is
achieved. They have shown that this description can be applied to extrasolar sys-
tems. They have proposed a gravitational constant in conformity with the clue to the
unification of gravitation and particle physics [Wesson (1981)]. The hypothesis of
a fundamental orbital distance 0.055 AU has been a very interesting result [Agnese
and Festa (1997, 1999), Nottale (1993), Nottale, El Naschie, Al-Athel, Ord, editors
(1996)]. A derivation of the Schrödinger equation [Nelson (1966, 1985)] from the
Newton mechanics has inspired many variations of quantum description [Green-
berger (1983), Carvalho (1985), Chechelnitsky (2000), Neto, Maia and Carneiro
(2004)]. We can find solutions of the Schrödinger equation in [de Oliveira Neto,
Maia and Carneiro (2004), Peřinová, Lukš and Pintr (2007)], which lead to possi-
ble discrete orbits by means of the quantum averaging. The distances of planets
obtained in such a way exhibit a dependence on the main and orbital quantum num-
bers. The probability densities have been derived for each orbit and the number
of possible orbits in the solar system has been reduced [Peřinová, Lukš and Pintr
(2007)].

Till now 360 extrasolar planets have been discovered near stars with similar
mass as the Sun. Every day we observe new extrasolar planets or protoplanetary
disks. Theories of migrating planets suppose that, if two high mass planets form
near each other, both the planets will change orbits around the star and also the
collisions with next big bodies will change orbits of planets in a young planetary
system [Murray et al. (1998), Murray, Paskowitz and Holman (2002), Spencer
(2007)]. According to these theories, the predictions of orbits are very problematic.

In section 3.2, we will expound the method under application and use it for the
planets in the outer part of the solar system. In section 3.3, we will apply it to the
systems of moons around Jupiter and Uranus. In section 3.4, we will consider the
extrasolar system HD10180 [Lovis et al. (2010)].
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3.2 Correlation of areal velocities
Agnese and Festa (1997, 1999) have invented allowed planetary orbits with the
major semi-axes and excentricities

ān = ā1n
2, ε̄nl =

√
1− l2

n2
, (3.3)

respectively, where ā1 means a possible first orbit of a planet, n is a principal num-
ber and l is an azimuthal number, l = 1, . . . , n, n = 1, 2, 3, . . . ,∞. Assuming l = n
(circular orbits), they describe the distribution of planetary distances in words that
we formalize as

r(p) = ān(p), (3.4)

where p = Mercury, Venus, Earth, Mars, (Ceres,) Jupiter, Saturn, Uranus, Nep-
tune, Pluto and n(Mercury) = 3, n(Venus) = 4, n(Earth) = 5, n(Mars) =
6, n(Ceres) = 8, n(Jupiter) = 11, n(Saturn) = 15, n(Uranus) = 21,
n(Neptune) = 26, n(Pluto) = 30. It can be seen that the inner planets are succes-
sively numbered and the outer planets are rather numbered with a step of 5. For the
first orbit it holds that

ā1 =
GMSun

α2
gc

2
, (3.5)

where G is the gravitational constant, c is the speed of light, αg is a gravitational
structure constant, 1/αg = 2113 ± 15 [Agnese and Festa (1997)], and MSun is the
mass of the Sun in application to the first possible orbit in the solar system. We
remark that the gravitational structure constant, whose value was calculated from
data of the solar system, has been tested against extrasolar planets and provided an
orbit ā1 = 0.055 AU [Agnese and Festa (1997, 1999), Nottale (1993), Nottale et al.
(1996)]. This description has shown a very interesting connection between a model
of the solar system and the hydrogen atom. We will show that it is also possible to
use quantum physics for the determination of the distribution of orbits in planetary
systems.

Let us consider the solar system, where we implement a simplification that the
orbits of planets are circular and the positions of planetary orbits are in one plane.
We can define a circular planetary model of the solar system, which looks like the
model of hydrogen atom from the “old quantum theory”. In the old quantum theory,
it was only possible to explain the structure of the hydrogen atom or an ionized
atom with a single electron. The absorption or emission lines for spectroscopy
were obtained in terms of the energy differences of the electron on various orbits.
For these orbits it holds that (cf. Bohr’s model of hydrogen atom)

mev̄nr̄n = nh̄, (3.6)

where me is the mass of electron, v̄n is the velocity of electron revolving around the
nucleus, r̄n is the distance of electron to the nucleus, and h̄ is the reduced Planck
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p v(p)r(p) n(p) K(p) K(approx) n(p)K(approx)

Jupiter 1.02× 1016 10 1.02× 1015 1.00× 1015 1.00× 1016

Saturn 1.38× 1016 14 9.87× 1015 1.00× 1015 1.40× 1016

Uranus 1.95× 1016 20 9.75× 1015 1.00× 1015 2.00× 1016

Neptune 2.45× 1016 25 9.80× 1015 1.00× 1015 2.50× 1016

Table 3.1: Parameters K(p), K(approx) and n(p) for the outer part of the solar sys-
tem.

constant. These orbits may not be occupied simply by more and more electrons,
because the Coulombic interaction between these particles is not negligible. This
quantization of orbits can be formally generalized to macroscopic bodies and the
velocities related to the gravity. Agnese and Festa (1997) have modified the relation
(3.6) to the form

mpv̄nr̄n = n(h̄+mpcλ̄), (3.7)

where mp is the mass of planet, v̄n is the orbital velocity of planet, r̄n is its distance
to the central star, c is the speed of light and λ̄ is a fundamental length.

With respect to the weak equivalence principle in the case of circular orbits,
the velocities will only depend on the gravitational potential in the distance r to
the Sun (the central body). On neglecting h̄ on the right-hand side of the relation
(3.7), the independence of allowed orbits of the mass mp is obtained. In contrast to
the electrons in the atom, the orbits around the Sun can be occupied by more than
one macroscopic body as far as the gravitational interactions between them can be
neglected. This ad hoc hypothesis explains the regularity of the planetary orbits
dependent on the given, maybe too generous assumption.

Let us study the simplified model of the solar system and take into account the
following consideration, which comes out of Kepler’s second law: Areas which are
swept out by the radius vector of planet in equal time intervals are equal, so the
elementary area swept out by the radius vector of planet in the aphelium in the time
dt is the same as the elementary area swept out by the radius vector of planet in
the perihelium in the time dt. For the area which is swept out by the radius vector
of planet in the circular model, Kepler’s second law is valid as well. For the areal
velocities of planets, w(p), it holds that

2w(p) = v(p)r(p). (3.8)

Let us compare the areal velocities of planets for the outer part of the solar system,
with the allowed areal velocities w̄n, 2w̄n = v̄nr̄n, which will be appropriately
defined.

From Table 3.1, we can substitute a formula v(p)r(p) = n(p)K(p) by a new
formula v̄nr̄n = nK(approx), where n = n(p) and K(approx) is a constant, viz., an
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Figure 3.1: Comparison of real data v(p)r(p) (×) with the formula n(p)K(approx)

(◦) for the outer parts of the solar system.

approximate value of K(p), or

v(p)r(p) ≈ n(p)K(approx), (3.9)

where p = Jupiter, Saturn, Uranus, Neptune. A comparison of real data v(p)r(p)
with the approximate formula n(p)K(approx) is illustrated in Figure 3.1.

We find v̄n, r̄n such that they fulfil the relation

v̄nr̄n = nK(approx) (3.10)

and Newton’s gravitational law

v̄n =

√
GMSun

r̄n
. (3.11)

We arrive at
r̄n = ā1n

2, (3.12)

where

ā1 =
[K(approx)]2

GMSun

= 0.052 AU. (3.13)

We will show that the planets can be numbered successively using n(J) to
n(J) + 3, where J stands for the planet Jupiter, unlike 10, 14, 20, 25 in Table
3.1. Traditionally, we use the least squares method. We can determine the number
n(J) and a constant K such that

[1.02− n(J)K]2 + [1.38− (n(J) + 1)K]2 + [1.95− (n(J) + 2)K]2
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p v(p)r(p) n(p) K(p) K(approx) n(p)K(approx)

Io 7.31× 1012 7 1.04× 1012 1.00× 1012 7.00× 1012

Europa 9.21× 1012 9 1.02× 1012 1.00× 1012 9.00× 1012

Ganymedes 1.16× 1013 12 9.67× 1011 1.00× 1012 1.20× 1013

Callisto 1.50× 1013 15 1.00× 1012 1.00× 1012 1.50× 1013

Table 3.2: Parameters K(p), K(approx) and n(p) for the Jovian system of moons.

+ [2.45− (n(J) + 3)K]2 = min. (3.14)

This happens for n(J) = 2, K = 0.4857× 1016. We have arrived at a Schmidt-like
formula.

The formula (3.12) is in accordance with the papers of Agnese and Festa [Ag-
nese and Festa (1997), (1999)], but we do not use the gravitational structure constant
for the definition of a possible first orbit. This is the main point in our considera-
tions.

Now we can introduce a new parameter ρl of the system in the formula (3.13),
which we call the length density of orbits,

ρl =
G

[K(approx)]2
(3.15)

in units kgm−1. This new parameter can be used for the classification of extrasolar
systems.

3.3 Systems of moons around planets
The procedure which we derived above, is valid also for systems of moons around
planets. For a system of moons, the formula (3.12) is valid, where for the first orbit
it holds that

ā1 =
1

ρlMp

, (3.16)

where Mp is a mass of a planet that moons revolve around.
For the Jovian system, it holds that MJupiter = 1.9× 1027 kg, ā1 = 7890.79 km,

K(approx) = 1.00 × 1012 m2s−1. In Table 3.2, the parameters for the Jovian system
of moons can be found. A comparison of real data v(p)r(p) with the approximate
formula n(p)K(approx) is illustrated in Figure 3.2.

We will show that the moons can be labelled with successive numbers n(I) to
n(I) + 3, where I stands for the moon Io, unlike 7, 9, 12, 15 in Table 3.2. Again, we
use the least squares method. We can find the number n(I) and a constant K such
that

[7.31− n(I)K]2 + [9.21− (n(I) + 1)K]2 + [11.6− (n(I) + 2)K]2
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Figure 3.2: Comparison of real data v(p)r(p) (×) with the formula n(p)K(approx)

(◦) for the Jovian system of moons.

+ [15.0− (n(I) + 3)K]2 = min. (3.17)

This takes place for n(I) = 3, K = 2.40× 1012. We have indicated a Schmidt-like
formula.

For the Uranian system it is valid that MUranus = 8.7 × 1025 kg, ā1 = 1723.28
km, K(approx) = 1.00 × 1011 m2s−1. In Table 3.3, the parameters for the Ura-
nian system of moons can be found. A comparison of real data v(p)r(p) with the
approximate formula n(p)K(approx) is illustrated in Figure 3.3.

p v(p)r(p) n(p) K(p) K(approx) n(p)K(approx)

Miranda 8.68× 1011 9 9.64× 1011 1.00× 1011 9.00× 1011

Ariel 1.05× 1012 11 9.57× 1011 1.00× 1011 1.10× 1012

Umbriel 1.24× 1012 12 1.04× 1011 1.00× 1011 1.20× 1012

Titania 1.59× 1012 16 9.94× 1011 1.00× 1011 1.60× 1012

Oberon 1.84× 1012 18 1.02× 1011 1.00× 1011 1.80× 1012

Table 3.3: Parameters K(p), K(approx) and n(p) for the Uranian system of moons.
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Figure 3.3: Comparison of real data v(p)r(p) (×) with the formula n(p)K(approx)

(◦) for the Uranian system of moons.

3.4 Extrasolar system HD 10180
We can also apply our consideration to extrasolar systems. For such systems it
holds that

ā1 =
[K(approx)]2

GMs

, (3.18)

where Ms is a mass of a central star. Here Ms=1.06 ± 0.05MSun. We calculate
further orbits according to the formula (3.12).

The planetary system HD10180 was introduced in [Lovis et al. (2010)]. It is
the most explored extrasolar system with 7 planets. This extrasolar system was ex-
amined with the aid of measurements of the radial velocities of the system HARPS
and that is why we selected it for our considerations.

The planet b is at the distance 0.02226 AU to the central star with the mass 1.4
times more than the mass of the Earth, the planet c is at the distance 0.0641 AU
to the central star with the mass 13.16 times more than the mass of the Earth, the
planet d is at the distance 0.1286 AU to the central star with the mass 11.91 of the
mass of the Earth, the planet e is at the distance 0.2695 AU to the central star with
the mass 25.3 of the mass of the Earth, the planet f is at the distance 0.4923 AU to
the central star with the mass 23.5 of the mass of the Earth, the planet g is at the
distance 1.422 AU to the central star with the mass 21.3 of the mass of the Earth,
the planet h is at the distance 3.4 AU to the central star with the mass 65.2 of the
mass of the Earth.

The formulae (3.3) and (3.12), with ā1 = 0.055 AU do not provide an appro-
priate allowed orbit, because the distance of the planet b to the central star r(b), is
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Figure 3.4: Comparison of real data v(p)r(p) (×) with the formula n(p)K(approx)

(◦) for the system HD10180.

much nearer than the radius of a possible first orbit ā1. For the system HD10180,
it holds that K(approx) = 1.00× 1014 m2s−1, with the first orbit ā1 = 0.000484 AU
and the length density of orbits ρl = 6.67×10−39 kgm−1. If we compare the length
density of orbits with the solar system, the system HD10180 has 100 times denser
orbits than the solar system. Therefore, the architecture HD10180 is much nearer
than the solar system. The extrasolar system HD10180 meets the formula (3.12), if
we apply the correct first distance ā1. In Table 3.4, the parameters for the system
HD10180 are arranged. A comparison of real data v(p)r(p) with the approximate
formula n(p)K(approx) is illustrated in Figure 3.4.

p v(p)r(p) n(p) K(p) K(approx) n(p)K(approx)

b 6.86× 1014 7 9.80× 1013 1.00× 1014 7.00× 1014

c 1.15× 1015 12 9.59× 1013 1.00× 1014 1.20× 1015

d 1.63× 1015 16 1.02× 1014 1.00× 1014 1.60× 1015

e 2.36× 1015 24 9.84× 1013 1.00× 1014 2.40× 1015

f 3.19× 1015 32 9.98× 1013 1.00× 1014 3.20× 1015

g 5.42× 1015 54 1.00× 1014 1.00× 1014 5.40× 1015

h 8.38× 1015 84 9.98× 1013 1.00× 1014 8.40× 1015

Table 3.4: Parameters K(p), K(approx) and n(p) for the system HD10180.
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Chapter 4

Statistical and regression analyses of
detected extrasolar systems

4.1 Introduction

A total of 759 planets in 609 extrasolar systems have been identified as of Febru-
ary 11, 2012 [Schneider (2012)]. We know also 99 multi-planet extrasolar systems
with more than 2 planets in one system. In [Cassan et al. (2012)], it has been es-
timated that each of the 100 billion stars in our Galaxy hosts on average at least
1.6 planets and 160 billion stars are alone in our Galaxy. Many planets could also
be in the habitable zones, where the liquid water could be on the exoplanet surface
and also potential conditions for the life. For determining the habitable zones, bulk
composition, atmosphere, and potential chemical interactions are very important.
Stellar characteristics that are also very important include mass and luminosity, sta-
ble variability, high metallicity and at least orbital properties. The orbital properties
have been studied by Laskar [Laskar (2000)]. In [Braun (2011)], it is argued that
the physical quantities of the exoplanets are functions of astrophysical parameters
of the central (host) stars, such as the stellar luminosity. Forms of such parametric
dependence are investigated here by using statistical methods. Earlier some efforts
have been made to study the statistical properties of exoplanets ([Lineweaver and
Grether (2003), Grether (2006)] and references therein), but not many extrasolar
systems were known at that time. Now we know 490 host stars.

Considerations of scaling have led us to two normalized parameters. As we
know many extrasolar systems, we can compare them and prepare a statistical study
of the position of exoplanets around host stars. In section 4.2, we present the joint
distribution of normalized distance and normalized mass and that of the specific an-
gular momentum and the normalized mass. In section 4.3, we look for the charac-
teristics shared by six multi-planet systems such as solar system and five extrasolar
systems. We state supremacy of the power function and assess the prediction of
further proposed parameters by the specific angular momentum. In section 4.4, we
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continue this analysis within the four spectral classes of the stars. We illustrate the
possible prediction of the product of the exoplanet distance and the stellar surface
temperature by the specific angular momentum. Topically, we perform this study
for the Kepler exoplanet candidates in section 4.5.

4.2 Normalization of extrasolar systems
For the statistical study, we need all extrasolar planets in one scale. For a stable
orbit of planet, it is valid that

Fg =
GMsMp

r2
p

= Fo = Mp

v2
p

rp

, (4.1)

where Fg is the gravitational force, Fo is the centrifugal force, G is the gravitational
constant and rp is the distance of planet from the central star, Ms is the mass of the
star, Mp is the mass of the planet, and vp is the velocity of the planet. We can write

r2
p =

GMsMp

Fo

(4.2)

and we get after a modification

rp√
Ms

=

√
GMp

Fo

. (4.3)

We understand the left-hand side of equation (4.3) as the first normalized pa-
rameter for all extrasolar systems. We will use this normalized parameter for the
creation of graphs of extrasolar systems on the x axis. As the second normalized
parameter, we use equation (4.1) and we get after a modification

Mp

Ms

=
GMp

v2
prp

. (4.4)

We understand the left-hand side of equation (4.4) as the second normalized pa-
rameter for all extrasolar systems and we will use this parameter for the creation of
graphs of extrasolar systems on the axis y.

The radial velocity detection method detects the exoplanets according to the
displacements in the star spectral lines due to the Doppler effect. This method is
most productive for the discovering of most exoplanets and it has the advantage for
an application to stars with a wide range of characteristics. Nevertheless, using this
method, we cannot determine planet’s true mass, this method can only set a lower
limit on the mass. Most exoplanets were detected by this detection method.

With the transiting method (the Kepler mission), we measure star’s dimensions
in time, which depend on the size of exoplanet. This method determines planet’s
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true radius, but not the mass of exoplanets and the exoplanets should be confirmed
with other methods for the detection of exoplanets.

It is very difficult to make a correct interpretation of the exoplanets data, because
the selective factors for each detection method play the key role. In Fig. 4.1, we
can see a distribution of extrasolar systems after the normalization. We have used
data for exoplanets, which were confirmed by two and more detection methods and
according to this we have decreased the effect of the selective factor to the minimum
value.

In Fig. 4.1, we can see areas, where the density of extrasolar planets is higher
than elsewhere. The reason could be the selective factor according to the detection
methods or a possible probability that the formation of exoplanets around stars is
higher in specific distances from the central stars. In this figure, we can see the
distribution of extrasolar systems according to the parameter vprp. The exoplanets
form two groups with the Gaussian distributions. The explanation of higher proba-
bilities for the formation of exoplanets around stars can be found in [Pintr, Peřinová
and Lukš (2012)]. There the same idea has been applied to our equation (4.1). On
using the Bohr-Sommerfeld hypothesis of quantization of angular momentum, a
new constant g has been introduced in the form

Mpvprp =
npg

2π
, (4.5)

where np is a planetary quantum number and the distances of planets could be
rewritten in the known form of gravitational Bohr-type radius,

rp =
n2

pGMs

v2
0

, (4.6)

where v0 = 144 km/sec for planetary systems in accordance with [ Nottale, Schu-
macher and Lefèvre (2000)].

4.3 Regression method for the solar system and five
multi-planet extrasolar systems

In [Pintr, Peřinová and Lukš (2012)], we have shown that the celestial systems can
be described with the parameter vprp. Now we will focus in the study of the solar
system and the multi-planet extrasolar systems HD10180 [Lovis et al. (2011)],
Kepler - 20 [Fressin et al. (2011)], 55Cnc [Marcy et al. (2002)], Gliese 876 [Marcy
et al. (2001)] and Upsilon Andromedae [Butler et al. (1999)]. We would like to find
physical parameters for the solar system and five multi-planet extrasolar systems,
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Figure 4.1: Normalization of extrasolar systems detected by the radial velocities.
On the left-hand side, the density of exoplanets is higher in the specific areas. On
the right-hand side, the exoplanets form two groups with the Gaussian distributions.

which are normalized (collective) in the dependence on distances of planets from
the central stars. We can find these characteristics in Table 4.1.

In this paper, we use the statistical regression methods. A regression model
relates Y to a function of X and β in the form

Y = f(X, β), (4.7)

where β are unknown parameters, X are independent variables, and Y is a depen-
dent variable. The observed data (xi, yi), i = 1, 2, ..., n, with n the number of
observations, satisfy equations

yi = f(xi, β) + εi, (4.8)

where εi is an error term.
For a linear regression, we have two parameters β0 and β1 and it is valid that

yi = β0 + β1xi + εi. (4.9)

The residual
εi = yi − fi (4.10)

is the difference between the true value of the dependent variable yi and the value
of the dependent variable predicted by the model fi. We measure the goodness of
fit by the coefficient of determination R2,

R2 =
SSreg

SStot

, (4.11)
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where SSreg is the regression sum of squares,

SSreg =
n∑
i=1

(fi − yavg)2, (4.12)

and SStot is the total sum of squares,

SStot =
n∑
i=1

(yi − yavg)2. (4.13)

In (4.12) and (4.13), yavg is the mean of observed values yi. When the model func-
tion is not linear in the parameters, the sum

∑n
i=1 ε

2
i must be minimized by an iter-

ative procedure.
We have also tried to interpolate our real data for the multi-planet extrasolar

systems using these interpolations:

• Linear interpolation: Y = A+Bx.

• Logarithmic interpolation: Y = ln(A+Bx).

• Exponential interpolation: Y = ABx.

• Power interpolation: Y = AxB.

• Polynomial interpolation: Y = A0 + A1x+ A2x
2 + ...An−1x

n−1.

First we have studied the dependence of the distance of planets rp from the
central stars on the parameter vprp for the multi-planet extrasolar systems. At the
same time, we have found the best interpolation method for real data.

We have applied the regression analysis to other physical parameters of planets,
i. e., rpTeff , rpL, and rpJ , where Teff ≡ Teff,s is the effective temperature of stellar
surface, L ≡ Ls is the luminosity of a star, J ≡ Js is the stellar irradiance. Using
the best interpolation method, we have found such parameters that are normalized
for the solar system and five multi-planet extrasolar systems.

We have calculated the luminosity of a star in the form [Luminosity of stars
(2004)]

L ≡ Ls = 4πR2
sσT

4
eff , (4.14)

where Rs is the stellar radius, which is given in Table 1 in radii of the Sun, σ is
the Stefan-Boltzmann constant. We have used the Stefan-Boltzmann law for the
calculation of the stellar irradiance,

J ≡ Js = σT 4
eff . (4.15)
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Figure 4.2: Finding the best interpolation for real data rp on vprp for the solar
system and five multi-planet extrasolar systems. The best is the power interpolation
with the coefficient of determination R2 = 0.957.
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According to Fig. 4.2, we can describe the dependence of rp on the parameter
vprp by the power interpolation with the coefficient of determination R2 = 0.957.
The regression relation is in the form

y ≈ Kx1.769, (4.16)

where y = rp, K = 3× 10−17, and x = vprp.
Krot (2009) has shown that if we apply a statistical theory to a formation of

protoplanets around a spheroidal body, we can derive the original Schmidt law in
the form √

rn = a+ bn, (4.17)

where rn is the distance of planets from the central star, n is a natural number, and
a, b are independent constants, and generalize it. Graner and Dubrulle (1994) have
shown that the empirical laws are implicitly based on the assumption of the rotation
and the scale invariance in the form

rn = r0K
n, (4.18)

where K is a constant.
Laskar has presented a simplified model of planetary accreation based on the

conservation of mass and momentum [Laskar (2000)]. He has derived the initial
mass distribution in the form

m(a) =

(
C̃

k

) 1
3

a
1
2 (ρ(a))

2
3 , (4.19)

where a is a semi-major distance of planetesimals, ρ(a) = ζap, C̃ = C
√
µ, C is the

angular momentum deficit and µ = GMs. Using this relation, we get the planetary
distributions corresponding to different initial mass distributions in the forms

• For p = −1
2
, we get a

1
3 = a

1
3
0 +

(
C̃
kζ

) 1
3 ni

3
,

we have 1
4
< k < 1

2
.

• For p = 0, we get
√
a =
√
a0 +

(
C̃
2ζ

) 1
3 ni,

we have the power n2
i distribution for a(ni).

• For p = −3
2
, we get log a = log(a0) +

(
2 C̃
ζ

) 1
3 ni,

we have the Bode-like power law.

Here ni is the order increment.
We can modify our regression equation (4.16) to the form

1.769
√
rp ≈ 1.769

√
3× 10−17x, (4.20)
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and arrive at the Schmidt-like law similar to laws (4.17) and (4.18) for five multi-
planet extrasolar systems. Our regression result is also very similar to the power
n2

i law in [Laskar (2000)], with the constant initial distribution of planetesimals for
p = 0 .

Let us discuss the dependence of physical parameters rpL, rpTeff , and rpJ on the
parameter vprp. The luminosity of stars L ≡ Ls is one of many physical parameters
for the determination of habitable zones [Turnbull and Tarter (2003)]. According to
Fig. 4.3, we can find that the coefficient of determination for the parameter rpL is
R2 = 0.837 and this parameter is not the collective normalized parameter for five
multi-planet extrasolar systems. Better collective normalized parameter for such
systems is the dependence including the irradiance of a star J ≡ Js, rpJ , with the
coefficient of determination R2 = 0.962. The best collective normalized parameter
for such systems is rpTeff with the coefficient of determination R2 = 0.991. The
regression relation for the parameter rpTeff is in the form

y ≈ Kx1.892, (4.21)

where y = rpTeff , K = 2× 10−15 and x = vprp. We have a similar result, with the
power n2

i distribution as in [Laskar (2000)].
Why is the parameter rpTeff a collective normalized parameter for five multi-

planet extrasolar systems? As this parameter is directly proportional to the mass of
central star Ms and according to (4.21), it is valid that

rpTeff ≈ K(vprp)1.892 (4.22)

and after the substitution vp =
√

GMs

rp
, we get

Teff ≈ K(GMs)
0.946r−0.054

p . (4.23)

4.4 Regression method for all detected exoplanets
Similarly as in the previous section, we will study the dependence of the param-
eter rpTeff on the parameter vprp for all 759 detected extrasolar systems. As the
distances of exoplanets from the central star could depend on Teff , we will pay at-
tention to the spectral classes of stars F, G, K and M. This is justified since the life
times of spectral classes of stars O, B and A are so small that the complex life will
never form on the planets associated with them. According to [Schneider (2012)],
spectral classes of our interest can be characterized as:

• spectral class F with Teff between 6000− 7500 K,
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Figure 4.3: Dependence of the parameters rpTeff , rpL, and rpJ on vprp for the
solar system and five multi-planet extrasolar systems. According to the regression
analysis, the best power interpolation is with the coefficient of determination R2 =
0.991 for the parameter rpTeff .
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Figure 4.4: Dependence of the parameters rpTeff , rpL, and rpJ on the parameter
vprp for the stellar spectral class G. According to the regression analysis, the best
is the power interpolation with the coefficient of determination R2 = 0.983 for the
parameter rpTeff .

• spectral class G with Teff between 5200− 6000 K,

• spectral class K with Teff between 3700− 5200 K,

• spectral class M with Teff less than 3700 K.

For stars belonging to the spectral type G, we can find from Fig. 4.4 that the pa-
rameter rpTeff depends on the parameter vprp with the coefficient of determination
R2 = 0.995. The obtained equation of regression is in the form

rpTeff ≈ Kx1.976, (4.24)

where K = 1× 10−16 and x = vprp.

For the stellar spectral type G, we observe that the parameter rpL, L ≡ Ls, has
big scattering with the coefficient of determination R2 = 0.895. For the parameter
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Figure 4.5: Dependence of the parameters rpTeff , rpL, and rpJ on vprp for the
stellar spectral class F. According to the regression analysis, the best is the power
interpolation with the coefficient of determination R2 = 0.997 for the parameter
rpTeff .

rpJ , we get better results with the coefficient of determination R2 = 0.979. From
this it follows that the parameter rpTeff , Teff ≡ Teff,s, affects mainly the orbits of ex-
oplanets. We get also the power n2

i distribution, with the constant initial distribution
of planetesimals for p = 0, as in [Laskar (2000)].

For stars of the spectral type F, we can find from Fig. 4.5 that the parameter
rpTeff depends on the parameter vprp with the coefficient of determination R2 =
0.997. The predicted equation of regression is in the form

rpTeff ≈ Kx1.9963, (4.25)

where K = 4× 10−17 and x = vprp.

For the stellar spectral type F, it is valid that the parameter rpL has big scat-
tering with the coefficient of determination R2 = 0.923. For the parameter rpJ ,
we get better results with the value of reliability R2 = 0.995. From Fig. 4.5, it is
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Figure 4.6: Dependence of the parameters rpTeff , rpL, and rpJ on vprp for the
stellar spectral class K. According to the regression analysis, the best is the power
interpolation with the coefficient of determination R2 = 0.776 for the parameter
rpTeff .

obvious that for the stellar spectral type F, the parameter rpTeff affects mainly the
orbits of exoplanets. We get also the power n2

i distribution, with the constant initial
distribution of planetesimals for p = 0, as in [Laskar (2000)].

For stars of the spectral type K, we can find from Fig. 4.6 that the parameter
rpTeff depends on the parameter vprp with the coefficient of determination R2 =
0.776. The predicted equation of regression is in the form

rpTeff ≈ Kx1.807, (4.26)

where K = 4× 10−14 and x = vprp.

For stars of the stellar spectral type K, it is valid that the parameters rpTeff and
rpL have the same regressions with the coefficient of determination R2 = 0.974.
This is the main difference from stars of the spectral type G. For stars of the spectral
type K, the parameter rpTeff affects mainly the orbits of exoplanets. In Fig. 4.6, we
can see two types of distributions. Many exoplanets are described by the power
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Figure 4.7: Dependence of the parameters rpTeff , rpL, and rpJ on vprp for the
stellar spectral class M. According to the regression analysis, the best is the power
interpolation with the coefficient of determination R2 = 0.974 for the parameter
rpTeff .

regression, but some exoplanets deviate from this function. We get also the power
n2

i distribution, with the constant initial distribution of planetesimals for p = 0, as
in [Laskar (2000)].

For stars of the spectral type M, we can find from Fig. 4.7 that the parameter
rpTeff depends on the parameter vprp with the coefficient of determination R2 =
0.974. The predicted relation of regression is in the form

rpTeff ≈ Kx1.814, (4.27)

where K = 5× 10−14 and x = vprp.

For stars of the stellar spectral type M, it is valid that the parameter rpL has
the coefficient of determination R2 = 0.950. For the parameter rpJ , we get better
results with the coefficient of determination R2 = 0.967. From Fig. 4.7, it is ob-
vious that the parameter rpTeff affects mainly the orbits of exoplanets. This result
is similar to that for the stars of spectral types G and F. We get also the power n2

i
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Figure 4.8: Dependence of the parameter rpTeff on vprp for different stellar spectral
classes.

distribution, with the constant initial distribution of planetesimals for p = 0, as in
[Laskar (2000)].

For 759 exoplanets detected by various methods, we have found that the dis-
tances of exoplanets from the central star obey, in general, the Schmidt law and
these distances rp depend on the stellar surface temperature Teff . Each stellar spec-
tral class has a different regression of the parameter rpTeff on vprp. The stellar
spectral class M has a steeper regression of the parameter rpTeff than the stellar
spectral classes K and G. To the contrary, the stellar spectral class F has a smaller
slope of regression for the parameter rpTeff as is obvious in Fig. 4.8.

4.5 Kepler exoplanet candidates
The Kepler mission is designed to discover Earth-size planets orbiting another stars
in our Milky Way galaxy. The Kepler mission is now in a full operation. First results
were published on February 2010 [Borucki et al. (2010), Borucki et al. (2011a)],
with initial discoveries of short period exoplanets. On December 2011, there were
total of 2321 candidates [Borucki et al. (2011b), Koch and Gould (2012)]. 207
candidates are similar in size to the Earth, 680 candidates are super-Earths, 1181
candidates are Neptune-size exoplanets, 203 candidates are Jupiter-size exoplanets
and 55 candidates are larger than Jupiter.
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Figure 4.9: Dependence of the parameters rpTeff , rpL, and rpJ on vprp for the
Kepler candidates. According to the regression analysis, the best is the power inter-
polation with the coefficient of determination R2 = 0.993 for the parameter rpTeff .

Exoplanet data obtained from the Kepler mission are carefully analyzed in
[Borucki et al. (2011b), Batalha et al. (2012)]. Initially, in [Borucki et al. (2011b)]
first four months data were analyzed. In [Borucki et al. (2011b)], the Kepler can-
didates were divided into four groups according to the vetting flags. The flag no. 1
marks out a published and confirmed planet, the flag no. 2 marks out a strong prob-
ability candidate, which confirms all tests, the flag no. 3 marks out a moderate
probability candidate, which does not confirm all tests and the flag no. 4 marks out
an insufficient follow-up to perform full suite of vetting tests. Recently in [Batalha
et al. (2012)], the Kepler data of first 16 months are analyzed in detail. Inter-
estingly they confirm considerable increase in the fraction of smaller planets with
longer orbital periods. The present study complements the analysis in [Batalha et
al. (2012)], because we have investigated the statistical distribution of the Kepler
candidates which have not been explored in [Batalha et al. (2012)]. To be pre-
cise, we have tested our previous considerations on the Kepler exoplanet candidates
again, cf. Fig. 4.9.
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The star luminosity L and the star irradiance J have no effect on the regression
of distances of exoplanets. We have also applied these characteristics to 2321 ex-
oplanet candidates from the Kepler mission. We have approved all regressions of
exoplanets for rpTeff , rpL, and rpJ .
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System Planet rp [m] vprp Class Ms Rs Teff [K]
HD10180 c 9.59× 109 1.16× 1015 G1V 1.06 1.20 5911
HD10180 d 1.92× 1010 1.65× 1015 G1V 1.06 1.20 5911
HD10180 e 4.04× 1010 2.38× 1015 G1V 1.06 1.20 5911
HD10180 f 7.37× 1010 3.22× 1015 G1V 1.06 1.20 5911
HD10180 g 2.13× 1011 5.47× 1015 G1V 1.06 1.20 5911
HD10180 h 5.09× 1011 8.46× 1015 G1V 1.06 1.20 5911
Kepler-20 b 6.79× 109 9.06× 1014 G8 0.91 0.94 5466
Kepler-20 e 7.58× 109 9.58× 1014 G8 0.91 0.94 5466
Kepler-20 c 1.39× 1010 1.30× 1015 G8 0.91 0.94 5466
Kepler-20 f 1.65× 1010 1.41× 1015 G8 0.91 0.94 5466
Kepler-20 d 5.17× 1010 2.50× 1015 G8 0.91 0.94 5466

55 Cnc e 2.33× 109 5.29× 1014 K0IV-V 0.91 0.94 5196
55 Cnc b 1.72× 1010 1.44× 1015 K0IV-V 0.91 0.94 5196
55 Cnc c 3.59× 1010 2.08× 1015 K0IV-V 0.91 0.94 5196
55 Cnc f 1.17× 1011 3.75× 1015 K0IV-V 0.91 0.94 5196
55 Cnc d 8.62× 1011 1.02× 1016 K0IV-V 0.91 0.94 5196
Solar Mercury 5.79× 1010 2.64× 1015 G2V 1.00 1.00 5800
Solar Venus 1.08× 1011 3.79× 1015 G2V 1.00 1.00 5800
Solar Earth 1.50× 1011 4.46× 1015 G2V 1.00 1.00 5800
Solar Mars 2.27× 1011 5.49× 1015 G2V 1.00 1.00 5800
Solar Jupiter 7.78× 1011 1.02× 1016 G2V 1.00 1.00 5800

Gliese 876 b 3.12× 1010 1.18× 1015 M4V 0.33 0.36 3100
Gliese 876 c 1.94× 1010 9.27× 1014 M4V 0.33 0.36 3100
Gliese 876 d 3.11× 109 3.71× 1014 M4V 0.33 0.36 3100
Gliese 876 e 5.00× 1010 1.49× 1015 M4V 0.33 0.36 3100
Ups And b 8.83× 109 1.22× 1015 F8V 1.27 1.48 6074
Ups And c 1.29× 1011 4.66× 1015 F8V 1.27 1.48 6074
Ups And d 3.81× 1011 8.02× 1015 F8V 1.27 1.48 6074
Ups And e 7.85× 1011 1.15× 1016 F8V 1.27 1.48 6074

Table 4.1: Characteristics of the solar system and multi-planet extrasolar systems.
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Chapter 5

Exoplanet habitability for stellar
spectral classes F, G, K and M

5.1 Introduction

The initiation of life and the progress of biological evolution are probably extremely
rare things in the Universe. In astrobiology, the habitable zone is the scientific term
for the region around a star within which it is theoretically possible for a planet with
sufficient atmospheric pressure to maintain liquid water on its surface. This concept
is in accordance with the conditions favorable for the life on the Earth, because the
liquid water is essential for all known forms of life. The idea of habitable zone
originates from the fact that the liquid water is essential condition for the terrestrial
life. Extrasolar planets in this zone are considered the most promising sites to host
an extraterrestrial life.

Human interest in the habitable extrasolar planets is centuries-old. However, the
initial interest and approaches were limited to the speculation and science fiction
[Dole (1964), Gilster (2004)] and references therein. To be precise, the evidence
of extrasolar planets was not available till mid-1990s. Consequently, any statistical
analysis of extrasolar planets was not possible. Such investigations become possible
only after the access of data from the missions dedicated to extrasolar planets. For
example, the information about 800+ extrasolar planets and 2700+ Kepler candi-
dates is now available [Schneider (2013)]. The availability of these data has led, in
general, to several statistical analyses of extrasolar planets in the recent past [Kane
et al. (2012), Borucki et al. (2011b), Pintr, Peřinová, Lukš and Pathak (2013)]
and references therein. It has also initiated investigations specifically focused in
the detection of habitable exoplanets. To be precise, the Kepler mission is specifi-
cally designed to survey a part of the Milky Way galaxy to discover the Earth-size
planets in or near the habitable zone [Kepler mission (2013)]. Further, several re-
sources have been developed for the analysis of habitable planets [Kane and Gelino
(2012), Morris (2010), Circumstellar habitable zone simulator (2009)] and the hab-
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itable exoplanets have been studied from various perspectives [Jones, Sleep and
Underwood (2008), Cuntz (2012), Wetherill (1996), Lineweaver, Fenner and Gib-
son (2004)]. This recent interest in habitable exoplanets has been further amplified
with the recent observations of HARPS search, which have shown the existence
of very low-mass habitable exoplanets around the stars HD20794, HD85512 and
HD192310 [Pepe et al. (2011)]. All these recent developments have led to many
interesting questions. One of them is: Is there any particular spectral class, where
habitable exoplanets are more probable? This question is extremely relevant to the
future searches.

Water is held for one of the most important species in exoplanetary atmospheres.
Space-based transit observations have indicated that water is present in significant
quantities in the exoplanets for which such observations have been possible. But
observations of astronomical water spectra from the ground and spaceborne tele-
scopes are so far difficult [Tinetti et al. (2012)].

Two strategies of the search have been identified for the life in other worlds
[Schulze-Makuch et al. (2011)]. Two different indices have been proposed for
them, the Earth Similarity Index (ESI) and the Planetary Habitability Index (PHI).
The authors are convinced that the index ESI is related only to one type of the
habitability. In general, the index PHI is appropriate. The authors hold their pro-
posals for cumulative, the values can be updated and refined when new information
is obtained. The proposals have been applied to the solar system, giant planets and
their moons and other bodies. There is the hope that in the future a more accurate
assessment of the distribution of life in the Universe will be possible.

In this chapter, we will deal with the habitability of exoplanets around the stars
of spectral classes F, G, K and M. In Section 5.2, we explain the concept of the
habitability of exoplanets. In Section 5.3, we present the statistical analysis of ex-
trasolar systems and establish the theoretical number of exoplanets in the habitable
zones. In Section 5.4, we discuss the effective temperature of exoplanets. In Section
5.5, we continue in this analysis. We determine the planetary surface temperature
using the model of planetary atmospheres. In Section 5.6, we present new calcula-
tion of habitable zones in the framework of this model for the stellar spectral classes
F, G, K and M. We illustrate the possible prediction of the product of the number of
habitable zones and the total infrared optical thickness.

5.2 Exoplanet habitability

Optically thin atmospheres have been used and 600 million habitable planets in
our Milky Way Galaxy have been estimated in 1964 [Dole (1964)]. Gilster has
popularized these ideas by capturing the imagination exploring the possibilities of
space colonization of other planetary systems [Gilster (2004)]. With the discovery
of large Super-Earth type planets, the concept of habitable zones has been adopted.
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The estimation of a habitable zone is difficult due to a number of factors. The in-
ner edge rinner and the outer edge router of the habitable zone have been determined
in the form [Kane and Gelino (2012)],

rinner =

√
Ls

Sinner

, router =

√
Ls

Souter

, (5.1)

where Ls is the absolute luminosity of the star, Sinner and Souter are stellar fluxes for
the inner edge and the outer edge of the habitable zone, respectively,

Sinner = 4.190× 10−8T 2
eff − 2.139× 10−4Teff + 1.268,

Souter = 6.190× 10−9T 2
eff − 1.319× 10−5Teff + 0.2341, (5.2)

where Teff is the effective stellar surface temperature. New service has been estab-
lished for the exoplanet community, which provides the habitable zone information
for each exoplanetary system with known planetary orbital parameters [Kane and
Gelino (2012)]. The service includes a table with the information of the percentage
of orbital phase spent within the habitable zone, the effective planetary temperatures
and of other basic planetary properties.

The habitable zone boundaries can be also computed according to empirical
formulae in the form

rinner =

√
Ls

1.1
, router =

√
Ls

0.53
, (5.3)

where the value 1.1 is the magnitude of stellar flux at the inner boundary of the hab-
itable zone and the value 0.53 is the magnitude of stellar flux at the outer boundary
of the habitable zone [Morris (2010)]. The evolution of habitable zones has been
also studied, because stars become gradually more luminous during their main se-
quence lives and the habitable zones must migrate outward. Very important factors
have been used for the calculation of habitable zones such as the influence of tidal
braking and orbital period of planets. The habitability of known extrasolar sys-
tems based on measured stellar properties has been discussed in [Jones, Sleep and
Underwood (2008)]. Computer models have been applied to 152 exoplanetary sys-
tems that are sufficiently well characterized. The proportion of the systems that
could contain habitable Earth-mass planets has been determined.

Many authors have determined positions of habitable planets from empirical
laws. Cuntz has identified four new possible hypothetical planetary positions in
0.081, 0.41, 1.51 and 2.95 AU from the star in 55 Cancri System [Cuntz (2012)].
Possible habitability conditions for these planets have been also discussed.

Some authors have focused in the formation and habitability of extrasolar plan-
ets [Wetherill (1996)]. 500 new simulations of planetary formation have been used.
These simulations show that from 5% to 15% of the simulated planetary systems
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associated with stars as small as 0.5 of the Sun mass MSun and as large as 1.5 of
MSun involve habitable planets.

Atmospheric conditions and their influence on habitable planets have been dis-
cussed in [Selsis et al. (2007)]. Atmospheric models for the evolution of Venus and
Mars have been used and both the theoretical and empirical distances of habitable
planets for the stars of spectral types F, G, K and M have been derived. These re-
sults have been applied to the extrasolar system Gliese 581. The antigreenhouse
effect has been discussed in [McKay, Lorenz and Lunine (1999)]. The antigreen-
house equation has been applied to the Titan moon. A simple expression for the
vertical convective fluxes in planetary atmospheres can be found in [Lorenz and
McKay (2003)]. The grey radiative model of an atmosphere has been used for the
calculation of greenhouse effect and the derivation of an analytic expression for the
convective flux.

The galactic habitable zone and the age distribution of complex life in the Milky
Way have been discussed in [Lineweaver, Fenner and Gibson (2004)]. The Galactic
habitable zone between 7 and 9 kiloparsecs from the Galactic centre has been iden-
tified that widens with time and is composed of stars that formed between 4 and 8
billion years ago.

The correct eccentricity of exoplanet is one of the main parameters for the hab-
itability. The eccentricity distributions for the Kepler planet candidates have been
compared and it has been shown that the mean eccentricity of the Kepler planet
candidates decreases with the decreasing planet size [Kane et al. (2012)]. Smaller
planets are preferentially found in low-eccentricity orbits. We will use the Kepler
planet candidates [Borucki et al. (2011b)] for the study of habitable zones for cer-
tain stellar spectral classes.

5.3 Statistical analysis of exoplanet habitability
We use the normalized parameter rnorm

p in the form [Pintr, Peřinová, Lukš and
Pathak (2013)]

rnorm
p =

rp√
Ms

, (5.4)

where rp is the distance of exoplanet from the central star and Ms is the mass of
central star. For the statistical study, we need all extrasolar planets in one scale.
We use the first 50 neighbour exoplanets for each stellar spectral class. We can
calculate the difference of normalized distances of two neighbour exoplanets from
the central star, ∆norm

n,n−1,
∆norm
n,n−1 = rnorm

pn − rnorm
pn−1

, (5.5)

where n is the order of exoplanet.
We get the average of differences of normalized distances of neighbour exo-

planets from the central star, namely, the average normalized difference ∆norm,avg
n
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for n exoplanets from the stellar spectral classes F, G, K and M in the form

∆norm,avg
n =

1

n

n∑
i=2

∆norm
i,i−1. (5.6)

The average of differences of unnormalized distances of neighbour exoplanets from
the central star, namely, the average unnormalized difference ∆unnorm,avg

n is of the
form

∆unnorm,avg
n = ∆norm,avg

n

√
Mavg

s . (5.7)

Using the data for the stellar spectral class F from [Borucki et al. (2011b)], we
get the average mass of central star Mavg

s = 2.195 × 1030, the average normalized
difference ∆norm,avg

n for the 50 neighbour exoplanets,

∆norm,avg
50 = 8.353× 10−8, (5.8)

and the average unnormalized difference in AU

∆unnorm,avg
50 = 8.251× 10−4. (5.9)

For the stellar spectral class G, we get the average mass of central star Mavg
s =

1.972× 1030, the average normalized difference ∆norm,avg
50

∆norm,avg
50 = 3.371× 10−8, (5.10)

and the average unnormalized difference in AU

∆unnorm,avg
50 = 3.156× 10−4. (5.11)

For the stellar spectral class K, we get the average mass of central star Mavg
s =

1.214× 1030, the average normalized difference ∆norm,avg
50 ,

∆norm,avg
50 = 4.291× 10−8, (5.12)

and the average unnormalized difference in AU

∆unnorm,avg
50 = 3.152× 10−4. (5.13)

Thus, the average unnormalized difference for the first 50 neighbour exoplanets is
3.15× 10−4 AU for the stellar spectral class K.

For the stellar spectral class M, we get the average mass of central star Mavg
s =

8.101× 1029, the average normalized difference ∆norm,avg
12 ,

∆norm,avg
12 = 1.466× 10−6, (5.14)

and the average unnormalized difference in AU

∆unnorm,avg
12 = 8.796× 10−3. (5.15)
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Thus, the average unnormalized difference for the first 12 neighbour exoplanets is
8.796×10−3 AU for the stellar spectral class M. We are not able to get all 50 neigh-
bour exoplanets from [Borucki et al. (2011b)], because more Kepler candidates are
under measurements for this stellar spectral class.

Morris has shown that the luminosity of star gradually increases during the
main sequence [Morris (2010)]. As the star gets more luminous, the habitable zone
moves outward the star. According to this, we can define three stages of habitable
zones during the stellar life:

• habitable zone at zero age of main sequence (ZAMS),

• habitable zone transit during the life of star on main sequence (HZT),

• habitable zone at the end of main sequence (MSE).

We know the width w of habitable zone during the life of star [Morris (2010)].
We determine the average unnormalized difference for exoplanets ∆unnorm,avg. The
theoretical number of exoplanetsNp in the habitable zone for a stellar spectral class
is obtained in the form

Np =
w

∆unnorm,avg
. (5.16)

We can find these characteristics in Table 5.1.

stellar spectral class w ZAMS w HZT w MSE Np ZAMS Np HZT Np MSE
F 0.444 0.640 0.718 538.182 775.758 870.303
G 0.354 0.510 0.573 1120.253 1613.924 1813.291
K 0.116 0.167 0.187 368.254 530.159 593.651
M 0.067 0.097 0.109 7.617 11.028 12.392

Table 5.1: Widths of habitable zones in AU and the theoretical numbers of habitable
exoplanets.

We can see two trends in Table 5.1. Firstly, we can detect many possible hab-
itable exoplanets for the stellar spectral class G, the stellar spectral class F has by
52% less possible habitable exoplanets than the class G, the stellar spectral class K
has by 67% less possible habitable exoplanets than the class G and the stellar spec-
tral class M has by 90% less possible habitable exoplanets than the class G, i. e.,
the least possible habitable exoplanets. The stellar spectral class G is the best class
for possible habitable exoplanets. Secondly, from Table 5.1 it is obvious that the
theoretical number of possible exoplanets Np increases with the life-length of star.
The number Np increases by 61% between the zero-age of main sequence (ZAMS)
and the main-sequence end (MSE).
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5.4 Effective temperatures of exoplanets
We can determine the effective temperature of exoplanet Teq by equating the energy
received from the star and the energy radiated by the exoplanet. Under the black-
body approximation, the flux of the exoplanet F is in the form

F =
S(1− AB)

4
, (5.17)

where S is the flux of the central star and AB is the Bond albedo. We obtain the
effective temperature of an exoplanet,

T 4
eq =

R2
sT

4
eff

4r2
p

, (5.18)

where Rs is the radius of star, Teff is the effective temperature of stellar surface.
The effective temperatures of the Kepler exoplanet candidates have been calculated
according to the formula

Teq = Teff

√
Rs

2rp

[f(1− AB)]
1
4 , (5.19)

where f is the factor of full atmospheric thermal circulation [Borucki et al.
(2011b)]. The relationship of luminosity and temperature of the extrasolar sys-
tems can be found in [Donnison and Williams (2001)]. It has been shown that all
extrasolar planets fit on reasonable line in the Hertzsprung-Russell diagram.

We have applied the regression methods for the calculation of effective temper-
atures of exoplanets to the 2321 Kepler exoplanet candidates [ Pintr, Peřinová, Lukš
and Pathak (2013)]. We have used equation (5.19), with f = 1 and AB = 0.3. We
have found the dependence of parameter r3

pTeq on the parameter vprp.

For the stellar spectral classes F and G, we can obtain the relation (cf. Fig. 5.1,
with the coefficient of determination R2 = 0.9987),

y = Cx5, (5.20)

where C = 5× 10−43 in units [s5Km−7] or

Teq = Cv5
pr

2
p. (5.21)

For the stellar spectral class K, we can obtain the relation (cf. Fig. 5.2, with the
coefficient of determination R2 = 0.9688),

y = Cx4.52, (5.22)
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Figure 5.1: Dependence of the parameter r3
pTeq on the parameter vprp for the stellar

spectral classes F and G. According to the regression analysis, the best is the power
interpolation with the coefficient of determination R2 = 0.9987 for the parameter
r3

pTeq.

Figure 5.2: Dependence of the parameter r3
pTeq on the parameter vprp for the stellar

spectral class K. According to the regression analysis, the best is the power interpo-
lation with the coefficient of determination R2 = 0.9688 for the parameter r3

pTeq.
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Figure 5.3: Dependence of the parameter r3
pTeq on the parameter vprp for the stel-

lar spectral class M. According to the regression analysis, the best is the power
interpolation with the coefficient of determination R2 = 0.8366 for the parameter
r3

pTeq.

where C = 1× 10−35 in units [s4.52Km−6.04] and

Teq = Cv4.52
p r1.52

p . (5.23)

For the stellar spectral class M, we can obtain the relation (cf. Fig. 5.3, with the
coefficient of determination R2 = 0.8366),

y = Cx4.28, (5.24)

where C = 9× 10−32 in units [s4.28Km−5.56] and

Teq = Cv4.28
p r1.28

p . (5.25)

5.5 Surface temperature of exoplanets
Stars are a major source of heat in an otherwise cold Universe. When a star radia-
tion strikes a planet and is absorbed and not reflected, it can cause the planet surface
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to warm up. On the Earth, the water exists in the liquid state at surface temperatures
Tsur between 273 K and 373 K and the liquid water is essential for the life. Planets
that possess it would be probably habitable. But it is very difficult to determine
the correct surface temperatures of the exoplanets, because many factors play key
role. Star-light and green-house gases are the big ones, but one must also take into
account clouds, convection, evaporation of seawater, absorption of sunlight in the
atmosphere, etc. A radiative-convective model has been used under the semigrey
approximation in [Lorenz and McKay (2003)]. It has been assumed that the atmo-
sphere and gases react in the same way upon the light in the infrared spectral range.
A simple grey radiative-convective model has been introduced in the form

Fo = F (1 + 0.75τ), (5.26)

where Fo is the orbital flux of exoplanet and F is the flux of the central star in the
approximation of the black body and τ is the infrared optical thickness. The gas
optical-thickness can be expressed in the form [Levenson (2012)]

τi = ki
√
Pi, (5.27)

where ki is the gas proportionality-constant, e. g., kCO2 = 0.029, kH2O = 0.087,
and Pi is the partial gas-pressure in the form

Pi = qiP, (5.28)

where P is the overall atmospheric-pressure, qi is the volume fraction of gas. The
total infrared optical thickness of the exoplanet atmosphere τ is the sum of all gas
optical thicknesses τi,

τ =
∑
i

τi. (5.29)

For the determination of correct surface temperature Tsur, we should also add
mechanisms which cool the planetary surface. These mechanisms are the absorp-
tion of sunlight by the atmosphere and the sensible heat (conduction and convec-
tion). We can define the absorption of sunlight (cooling mechanism) in the form
[McKay, Lorenz and Lunine (1999), Lorenz and McKay (2003)]

Fabs = F [1− exp(−τvis)], (5.30)

where Fabs is the absorption flux in the atmosphere and τvis is the visual optical
thickness. We can find a relationship between the visual optical thickness τvis and
the infrared optical thickness τ in the form [Levenson (2012)]

τvis = 0.36(τ − 0.723)0.411. (5.31)

From (5.31), it follows that for τ < 0.723, we have to assign τvis = 0 to avoid
imaginary numbers.
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For the determination of cooling during the conduction and the convection, we
use the formula [Lorenz and McKay (2003)]

Fc =
(F − Fabs)τ

E +Dτ
, (5.32)

where Fc is the convective flux of exoplanet atmosphere, E and D are constants.
The best fit for these constants is E = 1 and D = 1 [Lorenz and McKay (2003)].

The surface heat flux of the exoplanet Fsur is expressed as

Fsur = Fo − Fabs − Fc = FQ, (5.33)

where

Q = 0.75τ +
exp(−τvis)

1 + τ
. (5.34)

Using the Stefan-Boltzmann law, we get the surface temperature Tsur of the exo-
planet in the form

Tsur = TeqQ
1
4 . (5.35)

5.6 Habitable zones for stellar spectral classes
Substituting (5.21) into (5.35) and using the Kepler law

v2
p =

GMavg
s

rp

, (5.36)

where G is the gravitational constant, we obtain the distance of an exoplanet from
the central star for the stellar spectral classes F and G,

rp =
C2(GMavg

s )5Q
1
2

T 2
sur

, (5.37)

where Mavg
s = 2.195× 1030 kg for the stellar spectral class F and Mavg

s = 1.972×
1030 kg for the stellar spectral class G, C = 5×10−43 for the stellar spectral classes
F and G.

Substituting (5.23) into (5.35) and using the Kepler law (5.36), we obtain the
distance of an exoplanet from the central star for the stellar spectral class K in the
form

rp =

C(GMavg
s )2.26Q

1
4

Tsur

1.351

, (5.38)

where Mavg
s = 1.214× 1030 kg and C = 1× 10−35.
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Figure 5.4: Dependence of the distance of the habitable exoplanet from the central
star rp on the total infrared optical thickness τ for the stellar spectral class F.

Substituting (5.25) into (5.35) and using the Kepler law (5.36), we obtain the
distance of an exoplanet from the central star for the stellar spectral class M in the
form

rp =

C(GMavg
s )2.14Q

1
4

Tsur

1.163

, (5.39)

where Mavg
s = 8.101× 1029 kg and C = 9× 10−32.

We can determine the boundaries of habitable zones under the condition for the
liquid water that the surface temperature of exoplanets Tsur should be between 273
K and 373 K (cf., Figs. 5.4, 5.5, 5.6, 5.7).
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Figure 5.5: Dependence of the distance of the habitable exoplanet from the central
star rp on the total infrared optical thickness τ for the stellar spectral class G. For
Venus τ = 88.010, for the Earth τ = 1.888, for Mars τ = 0.745, for the minimum
boundary τ = 0.723.

Figure 5.6: Dependence of the distance of the habitable exoplanet from the central
star rp on the total infrared optical thickness τ for the stellar spectral class K.
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Figure 5.7: Dependence of the distance of the habitable exoplanet from the central
star rp on the total infrared optical thickness τ for the stellar spectral class M.
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Conclusions

This doctoral thesis provides a summary of results concerning the detailed investi-
gation of regularities in planetary systems and also statistical analysis of extrasolar
systems.

We have concerned with a specific astronomical theme in chapter 2, the regular-
ities in the distances of planets from the respective central bodies. Historically, this
topic is restricted to appropriate mentions of the Titius–Bode law. We have taken
into account that this narrow theme has been elaborated on in recent years due to
the advances in the discoveries of the extrasolar planetary systems. The doubt that
the regularity has emerged accidentally is an alternative to the hypothesis that some
law is in force in conjunction with causes of some deviations from it. A relative cer-
tainty can be achieved by mathematical methods of the statistical decision making.
But it entails to try to define a complicated random sample.

Stochasticity elements can be expected in the dynamics of the rotating nebula.
We have not dealt with such scenarios, but with some acceptable estimates of the
mass distribution in the primordial nebula. The present dynamical theories of the
origin of the planetary system assume a mixture of gas and condensed matter. We
have admitted that a number of authors are searching for a shortcut of the pathway
leading from the assumptions of the model to the regularities of the planetary orbits.
We have considered a formal division of the nebula into rings defined by optimum,
“convenient”, assignment of the angular momentum to circular loops to be easy to
describe.

Even though we have not aimed just at detailed calculations, we have taken
into account that they are feasible at present, also due to the competition with the
research demonstrating the chaotic behaviour and migration of the planets. The pos-
sibility of the chaotic behaviour has already been admitted in the past and it seems
to be a reason why other researchers moved away the quantization of a theory with
an unusual kinetic energy somewhere to the frontier of the observable universe. We
have included a formal use of the quantization to discretization of orbits and vari-
ous efforts for finding a physical underpinning of such an advantage. In extremity,

101



102 Chapter 6

the vibration modes of a circular membrane with orbits of planets or moons can
be compared. The mechanical vibrations model a specific magnetohydrodynamical
behaviour, which is expected in the region of the birth of stars and their planetary
systems.

Basing on the numerical agreement between calculation and real data in chapter
3, we have found suitable numbers of the planets and a proportionality constant of
their areal velocities to this numbers. We have derived that the distance of the planet
to the central star is directly proportional to the square of this number. In this way
we have obtained the first possible orbit of a planet at the distance 0.052 AU in the
solar system and 0.000484 AU in the system HD10180. Analogously, we have got
the first possible orbit of a moon at the distance 7890.79 km in the Jovian system of
moons and 1723.28 km in the Uranian moon system.

We conclude that the distances of the planets and moons in gravitational systems
can be obtained as follows:

Areal velocities of planets relate to integral numbers, viz., suitable numbers of
the planets. These velocities are directly proportional to the appropriate numbers of
the planets with a proportionality constant K(approx).

Distances of the planets in the gravitational system are directly proportional to
the squares of the numbers of the planets and the proportionality constant, the radius
of a possible first orbit ā1 depends on the parameter K(approx).

After a normalization of all extrasolar systems in chapter 4, we have found the
areas, where the density of exoplanets is higher and have also conjectured that these
exoplanets form in two groups with the Gaussian distributions. For five multi-planet
extrasolar systems, we have found that the best collective physical parameter is the
dependence of the parameter rpTeff on vprp. For 759 exoplanets detected by the
method of radial velocities, we have found that the distances of exoplanets from
the central star obey, in general, the Schmidt law and these distances rp depend on
the stellar surface temperature Teff . Each stellar spectral class has a little different
regression of rpTeff on vprp. The star luminosity L and the star irradiance J have
no effect on the regression of distances of exoplanets. We have applied these char-
acteristics also to 2321 exoplanet candidates from the Kepler mission. We have
confirmed all regressions of exoplanets for rpTeff , rpL and rpJ . We have confirmed
the results based on the power n2

i distribution, with the constant initial distribution
of planetesimals for p = 0 in [Laskar (2000)]. All semi-major distances of exo-
planets follow an n2

i - power distribution for spectral classes F, G, K and M. We get
the best power fit of exoplanet distribution for the spectral class F. We get the worse
power fit of exoplanet distribution for the spectral class K.

Taking into account the planets of the solar system in chapter 5, the only planets
that could be in the habitable zone are the Earth and Mars (in the future). As to
the extrasolar planets, there are many candidates for the habitable ones. Using
the regression analysis, we can find many possible habitable exoplanets for the
stellar spectral class G. The stellar spectral class F could have by 52% less possible
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habitable exoplanets than the class G, the stellar spectral class K could have by
67% less possible habitable exoplanets than the class G. The stellar spectral class M
could have by 90% less possible habitable exoplanets than the class G, i. e., the least
possible habitable exoplanets. The stellar spectral class G is the most promising
class for possible habitable exoplanets. This finding is expected to be useful for
the missions dedicated to the detection of habitable planets. To be precise, as the
possibility of detecting a habitable planet is much higher for the star from the stellar
spectral class G, the exoplanet detection missions can be focused on the region
around the stars of this spectral class. Using the model of planetary atmospheres,
we have also found habitable zones for the stellar spectral classes F, G, K and M.
We show that the main parameter is the total infrared optical thickness.
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1994, p. 268 (in Czech).

[13] Butler, R. P.; et al. The Astrophysical Journal 1999, 526, 916.

[14] Cameron A. G. W. Icarus 1962, 1, 13–69.

[15] Cameron, A. G. W.; Pine, M. R. Icarus 1973, 18, 377–406.

[16] Carneiro, S. Found. Phys. Lett. 1998, 11, 95-102.

[17] Carvalho, J. C. Lett. Nuovo Cimento 1985, 6, 337-342.

105



106 Bibliography

[18] Cassan, A.; et al. Nature 2012, 481, 167.

[19] Chamberlin, T. C. Carnegie Institution Year Book # 3 for 1904; Carnegie Inst.:
Washington, DC, 1905, pp. 208-233.

[20] Chechelnitsky, A. M. Hot Points in Astrophysics JINR (Dubna, Russia, Au-
gust) 2000, 22-26.

[21] Circumstellar habitable zone simulator 2009. Available from: < http :
//astro.unl.edu/naap/habitablezones/animations/stellarHabitableZone.html >.

[22] Christodoulou, D. M.; Kazanas, D. (2008). Exact solutions of the isother-
mal Lane–Emden equation with rotation and implications for the formation of
planets and satellites, arXiv:astro-ph/0706.3205 v2.

[23] Cuntz, M. Publications of the Astronomical Society of Japan 2012, 64, article
No.73.

[24] Dauvillier, A.; Desguins, E. La genèse de la vie; Hermann: Paris, 1942.
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