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Abstract
In the mathematical modelling of physical systems, ordinary differential equations of
various forms are used. Differential equations describing these systems are often com-
plex nonlinear equations, however using suitable approximations of nonlinearity, one can
derive simple equations called Duffing equations which can be studied analytically. In
mathematical modelling of mechanics, the problem of finding periodic solutions to these
Duffing equations is closely related to the existence of periodic vibrations of its corre-
sponding nonlinear oscillator. In this work, the analysis of the solutions and existence of
solutions in the autonomous and nonautonomous cases of the considered Duffing equation
are carried out supported by simulations in MATLAB.
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1 Introduction
The mathematical modelling of physical systems often lead to the need to use equations
that describe how these systems change over time. These equations are known as dy-
namical systems and they consist of systems of differential equations. The dominant way
of modelling how these physical systems change over time is by use of the differential
equations. These differential equations often appear in the mathematical modelling of
mechanics and are complex and nonlinear. Nevertheless, these nonlinearities can be ap-
proximated by simpler equations under some assumptions and these "simpler equations"
are the so called Duffing equations. In its original form, the Duffing equation has only
one extra nonlinear stiffness term compared to the linear second-order differential equa-
tion, which is the foundations of the theory of vibrations[2]. The origins of this Duffing
equation can be traced back to the original work of the author George Duffing(see [1] for
review). Although several real world systems cannot be described accurately by these
equations, they can be used to study the behaviour of real world systems qualitatively.

This work is aimed at studying the qualitative behaviour of a physical system particularly
a nonlinear oscillator. The goal is to derive the Duffing equation from the chosen nonlinear
oscillator and use tools from the theory of dynamical systems to study the qualitative
behaviour of the autonomous variant of the system. Then further use the qualitative
theory of boundary value problems particularly the method of lower and upper solutions
to find conditions guaranteeing the existence of periodic solutions in the nonautonomous
case and finally perform simulations to illustrate obtained results.

The organisation of this thesis is as follows;

In the second section, we show how the considered Duffing equation is obtained from
a physical system using laws of motion and Taylor approximations.

The third section is the theoretical part where we present definitions and notions in
dynamical systems necessary to study the qualitative behaviour of the autonomous vari-
ant of the considered Duffing equation. In the same section we introduce the theory of
boundary value problems particularly the method of lower and upper functions which will
be required in the next section.

The fourth section is dedicated for the qualitative analysis of the autonomous Duff-
ing equation where we obtain the phase portrait from level sets to study the behavior
of solutions in the autonomous case. In this same section we find conditions guarantee-
ing existence of solutions in the nonautonomous case using previously introduced theories.

In the fifth section we perform simulations in MATLAB to illustrate results obtained
from the previous sections.
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2 Derivation of considered Duffing Equation
In this section, we derive the considered Duffing equation describing a mechanical oscil-
lator. This section is based off the work of [10] and some results from [2].
Duffing equations are usually second order differential equation with a cubic nonlinearity.
For simplicity we usually assume no external or damping force and end up with a much
simpler general form of the Duffing equation given by

y′′ ± αy ± γy3 = 0. (2.1)

The considered Duffing equation models the oscillator shown in figure 2.0.1 and consists of
a unit mass which is restricted in motion to the horizontal x-axis, and two linear springs.
We assume in our case that the springs are attached to fixed barriers which may oscillate
in the vertical direction.

Let l(t) be the length of the the spring with respect to time. The movement of the mass is
restricted to the horizontal axis, so the length l(t) changes with the position of the mass.
Let furthermore, k be the spring constant, x(t) be the location of the unit mass at time
t, and d(t) the distance of each barrier from the x-axis. Newton’s second law of motion

Figure 2.0.1: Nonlinear oscillator

establishes the relation between the force and the product of mass(m) and acceleration(⃗a),
where m = 1 in our case. Since movement of the mass is in the x direction, all motion is
restricted to the horizontal axis hence the force component in the horizontal direction is
given by

Fx = |F⃗ | cos(β). (2.2)
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|F⃗ | is the magnitude of the resultant acting force and β is the angle the spring makes
with the horizontal axis. |F⃗ | is given by Hooke’s law as

|F⃗ | = −kX (2.3)

where X = (l(t) − l0) is the spring stretch, and l0 is the length of the undeformed spring.
By making use of the well known Pythagorean theorem we have

l2(t) = d2(t) + x2(t)

l(t) =
√

d2(t) + x2(t).
(2.4)

We consider the positive value only since it is the length of the spring. The cosine of the
angle β is given by the equation

cos(β) = x(t)
l(t)

= x(t)√
d2(t) + x2(t)

.
(2.5)

From the (2.3) and (2.2), we obtain

Fx = 2(−k(l(t) − l0) cos β). (2.6)

From the (2.2)−(2.6), we obtain the second order differential equation

x′′(t) = 2k
(

l0 −
√

d2(t) + x2(t)
)

x(t)√
d2(t) + x2(t)

= 2kx(t)
 l0√

d2(t) + x2(t)
− 1

 .

(2.7)

If d(t) is a constant function, i.e., d(t) = d and we approximate the term l0√
d2(t)+x2(t)

by
its second-order Taylor expansion we get

l0√
d2 + x2(t)

≈ l0
d

− l0x
2(t)

2d3 .

The equation (2.7) becomes

x′′(t) = 2k

(
l0
d

− 1
)

x(t) − kl0
d3 x3(t), (2.8)

and if we let a = 2k
(

l0
d

− 1
)

and b = kl0
d3 , we obtain the autonomous Duffing equation

x′′ = ax − bx3. (2.9)

On the other hand if the barriers oscillate vertically, then d(t) is non constant and we
instead replace as functions a, b with p(t) and h(t) respectively, and we obtain the nonau-
tonomous Duffing equation

x′′ = p(t)x − h(t)x3. (2.10)
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3 Theoretical Part
This section is dedicated to present some theoretical concepts for the analysis of the
qualitative behavior of solutions to the chosen Duffing equation in the autonomous case
and nonautonomous case.

3.1 Concepts from theory of dynamical systems
The idea of dynamical systems is a deterministic process describing a set of conceivable
states and a rule of evolution of the state in time[11]. A dynamical system consists
of a collection of first order differential equations which is usually derived from some
differential equation of higher order.
Consider the system of first-order differential equations

x′
1 = f1 (x1, x2, . . . , xn)

x′
2 = f2 (x1, x2, . . . , xn)
...

x′
n = fn (x1, x2, . . . , xn) .

For some open set J ⊆ Rn, f1, f2, . . . , fn : J → R are continuous functions. This system
is called an autonomous system of differential equations since there is no dependence on
time. From the theory of differential equations, we know that we can reduce the system
to the form

x′ = f(x), (3.1)
where x = (x1, x2, . . . , xn) and f = (f1, f2, . . . , fn). For the system of the form x′ = f(x, t),
we refer to it as a nonautonomous system since it depends on time.

Definition 3.1. A solution to (3.1) on some interval I ⊆ R, is a vector x = (x1, x2, . . . , xn)
of functions with xi ∈ C1(I), i = 1, . . . , n, which satisfies (3.1) on the interval I.

• A solution is a General solution if it contains an arbitrary constant. This means
we can have several solutions of the form of the general solution depending on the
value of the arbitrary constant.

• A Particular solution is a solution with no arbitrary constants.

In the case of particular solution, we need to specify some condition(s) on the solution
known as initial condition or Cauchy condition. We represent this condition as

x(0) = x0, (3.2)

where x0 ∈ J . Thus, we assign an initial value of the solution x at a fixed point 0 and we
have the Cauchy problem as x′ = f(x)

x(0) = x0.
(3.3)

Theorem 3.2. ([3, Section 2.4, Theorem 1]). Let J be an open subset of Rn and assume
that f ∈ C1(J). Then for each point x0 ∈ J , there is a maximal interval I(x0) on
which the initial value problem (3.3) has a unique solution, x(t); i.e., if the initial value
problem has a solution y(t) on an interval I then I ⊆ I(x0) and y(t) = x(t) for all t ∈ I.
Furthermore, the maximal interval I(x0) is open; i.e., I(x0) = (α, β).

18



Definition 3.3. The interval I(x0) is the maximal interval of the solution of the Cauchy
problem (3.3).

Definition 3.4. ([3, Section 2.5, Definition 1]). Let J be an open subset of Rn and let
f ∈ C1(J). For x0 ∈ J , let ϕ (t, x0) be the solution of the Cauchy problem (3.3) defined
on its maximal interval of existence I (x0). Then for t ∈ I (x0), the set of mappings ϕt

defined by
ϕt (x0) = ϕ (t, x0)

is called the flow of the differential equation (3.1) or the flow defined by the differential
equation (3.1).

Remark 3.5. Under the assumption that the system (3.1) describes a dynamical system
ϕ(t, x) on J . For a point x0 ∈ J , the function ϕ(·, x0) : R → J defines a solution curve,
trajectory, or orbit of the system (3.1) through the point x0 in J . This trajectory through
a point x0 ∈ J is the motion along the curve

Γx0 = {x ∈ J | x = ϕ (t, x0) , t ∈ I(x0)} .

Definition 3.6. The orbits of a solution ϕ(·, x0) is a collection of points ϕ(t, x0), where
t ∈ I(x0).

In multidimensional autonomous systems like (3.1), we sometimes refer to the underlying
space Rn as the phase space.

Definition 3.7. The phase portrait of a system of differential equations (3.1), is the set
of all orbits of (3.1) in the phase plane.

Obviously we cannot draw all the orbits so the phase portrait is just a simplified graph
showing several orbits.

Definition 3.8. A equilibrium point of the system (3.1) is defined intuitively as a point
x̄ = (x̄1, x̄2, . . . , x̄n) where there is no change in the system, i.e, a point which satisfies

0 = f1 (x̄1, x̄2, . . . , x̄n)
0 = f2 (x̄1, x̄2, . . . , x̄n)
...
0 = fn (x̄1, x̄2, . . . , x̄n) .

Points which do not satisfy the above equations are called regular points.

3.1.1 Planar Dynamical system

The system (3.1) is defined on the space Rn. In this work, the considered Duffing equation
is defined on R2 as we will see in subsection 4.1. The planar dynamical system is given
by

x′
1 = f1(x1, x2)

x′
2 = f2(x1, x2).

(3.4)

In planar dynamical systems and for the scope of this work, we classify the orbits of (3.4)
as homoclinic orbit, heteroclinc orbit and periodic orbit.
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Definition 3.9. ([11, Chapter 1, Definition 1.4]). A cycle is a periodic orbit L0, such
that each point x0 ∈ L0 satisfies ϕt+T0(x0) = ϕt(x0) with some T0 > 0, for all t ∈ T .

• A periodic orbit corresponds to closed curves which represents the periodic solutions
of the system (3.4).

• Homoclinic orbits are orbits which converge to the same equilibrium point for t → ∞
and t → −∞.

• Heteroclinic orbit are orbits for which t → ∞ converges to one equilibrium point
and t → −∞ converges to another equilibrium point.

Definition 3.10. Given the system (3.4), the matrix

Df(x̄) =


∂f1

∂x1
(x̄) ∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄) ∂f2

∂x2
(x̄)

 (3.5)

is called the Jacobian matrix of f = (f1, f2) at the point x̄.

Definition 3.11. An equilibrium point x̄ is called a hyperbolic equilibrium point of the
planar system (3.4) if none of the eigenvalues of the matrix Df (x̄) have zero real part.

Remark 3.12. To analyse a nonlinear system, it is useful to determine its equilibrium
points and to describe it’s behaviour near the equilibrium points. It is shown that the
local behaviour of the nonlinear system (3.4) near a hyperbolic equilibrium point x̄ is
qualitatively determined by the behaviour of the linear system

x′ = Ax, (3.6)

where the matrix A = Df(x̄), near the origin(see section 2 of [3] for review). The system
(3.6) is referred to as the linearization of (3.4) at x̄.

Definition 3.13. An equilibrium point x̄ of (3.4) is called a sink if all of the eigenvalues
of the matrix Df (x̄) have negative real part; it is called a source if all of the eigenvalues
of Df (x̄) have positive real part; and it is called a saddle if it is a hyperbolic equilibrium
point and Df (x̄) has at least one eigenvalue with a positive real part and at least one
with a negative real part.

Definition 3.14. An equilibrium point x̄ ∈ J is stable if for every ε > 0 there exists a
δ > 0 such that for each x0 ∈ J

||x̄ − x0|| < δ

implies that for the solution ϕ(·, x0),

||ϕ(t, x0) − x̄|| < ϵ ∀t > 0.

If the equilibrium point does not satisfy these conditions, then it is unstable.

Definition 3.15. An equilibrium point x̄ is asymptotically stable if it is stable and there
exists δ > 0 such that for each x0 ∈ J such that

∥x̄ − x0∥ < δ

implies
lim
t→∞

∥ϕ (t, x0) − x̄∥ = 0.
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Remark 3.16. An equilibrium point can be classified as stable or unstable from computa-
tions of the Jacobian matrix (3.11) and it is given by the following theorem(see, e.g.,[3]).

Theorem 3.17. Consider the hyperbolic equilibrium point x̄ of (3.4). x̄ is stable if all
the eigenvalues of the matrix Df(x̄) have negative real part and it is unstable if all of the
eigenvalues of Df(x̄) have positive real part.

Remark 3.18. We can infer from the above theorem also that a hyperbolic equilibrium
point x̄ is unstable if the eigenvalues of the matrix Df(x̄) are such that, at least one has
positive real part and at least one has negative real part.
If the equilibrium point is non hyperbolic, the theorem above does not apply hence we
use the next theorem to analyse its stability.

Theorem 3.19. ([3, Section 2.9, Theorem 3]). Let J be open and J ⊆ R2 such that
x0 ∈ J . Suppose that f ∈ C1(J) and that f (x0) = 0. Suppose further that there exists a
real valued function V ∈ C1(J) satisfying V (x0) = 0 and V (x) > 0 if x ̸= x0. Then

a. if V ′(x) ≤ 0 for all x ∈ J , x0 is stable;
b. if V ′(x) < 0 for all x ∈ J\ {x0} , x0 is asymptotically stable;
c. if V ′(x) > 0 for all x ∈ J\ {x0} , x0 is unstable.

Where

V ′(x) = V ′
x1 (x1, x2) f1 (x1, x2) + V ′

x2 (x1, x2) f2 (x1, x2) for x = (x1, x2) ∈ J.

The function V (x) is known as the Lyapunov function.

3.1.2 Hamiltonian system in R2

The Hamiltonian system is a special type of nonlinear dynamical system which is used to
describe several physical phenomena. The main advantage of this system is its ability to
generate the global phase portrait of a given dynamical system in a more elegant way.

Definition 3.20. Let J be an open subset of R2 and let H ∈ C2(J). A system of the
form

x′
1 = ∂H(x1, x2)

∂x2

x′
2 = −∂H(x1, x2)

∂x1

(3.7)

is called a Hamiltonian system with 1 degree of freedom on J .

Clearly, (3.7) is a special case of the planar system (3.4) with

f1 (x1, x2) = ∂H (x1, x2)
∂x2

, f2 (x1, x2) = −∂H (x1, x2)
∂x1

.

Second order differential equations of the form

y′′ + f(y) = 0, (3.8)
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are known as conservative systems and they are special types of Hamiltonian systems as
we will see in section 4.1. Converting (3.8) to a system of differential equations, we can
let x1 = y and x2 = y′. So (3.8) becomes

x′
1 = x2

x′
2 = −f(x1).

(3.9)

The Hamiltonian of (3.9) is given by

H (x1, x2) = x2
2

2 +
∫ x1

0
f(s)ds. (3.10)

In the modelling of physical systems, the Hamiltonian represents the total energy.

Definition 3.21. Let c ∈ R. The level set χ
c of the Hamiltonian H is given by

χ
c = {(x1, x2) ∈ R2 : H(x1, x2) = c}.

Theorem 3.22. ([3, Section 2.14, Theorem 2]). The total energy H(x1, x2) of the Hamil-
tonian system (3.7) remains constant along orbits of (3.7).

From Theorem 3.22, if we have a point x0 ∈ J where J ⊆ R2 and ϕ(·, x0) is a solution of
the initial value problem (3.7),(3.2) on the interval I(x0) ⊆ R, then

H(ϕ(t, x0)) = H(x0) ∀t ∈ I(x0).

Definition 3.23. An equilibrium point x̄ of the system

x′ = f(x)

at which Df (x̄) has no zero eigenvalues is called a nondegenerate equilibrium point of
the system, otherwise, it is called a degenerate equilibrium point of the system.

It should be noted however that any nondegenerate equilibrium point of the planar system
is either a hyperbolic equilibrium point or a center of the linearized system.

Theorem 3.24. ([3, Section 2.14, Theorem 2]) Any nondegenerate equilibrium point of an
analytic Hamiltonian system (3.7) is either a (topological) saddle or a center; furthermore,
x̄ is a (topological) saddle for (3.7) if and only if it is a saddle of the Hamiltonian function
H(x1, x2) and a strict local maximum or minimum of the function H(x1, x2) is a center
for (3.7).

Remark 3.25. From Theorem 3.24 we can deduce that given the Jacobian matrix of (3.7)
at the equilibrium point x̄

M(x̄) =


∂2H

∂x2∂x1
(x̄) ∂2H

∂x2
2

(x̄)

−∂2H

∂x2
1

(x̄) − ∂2H

∂x2∂x1
(x̄)

 , (3.11)

if det(M(x̄)) < 0 then x̄ is saddle of 3.7 and x̄ is a center if det(M(x̄)) > 0.
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3.2 Method of Lower and Upper functions
Consider a general periodic nonautonomous second order differential equation of the form

u′′ = f(t, u) (3.12)
u(a) = u(b) , u′(a) = u′(b). (3.13)

Where b > a and f : [a, b] × R → R be a continuous function of u and t.

Definition 3.26. A solution to (3.12) is a function u : [a, b] → R which has continuous
derivatives up to the second order and satisfies (3.12) identically.

Definition 3.27. ([4, Chapter 1, Definition 1.1]). A function α ∈ C2(]a, b[) ∩ C1([a, b]) is
a lower function of the periodic problem (3.12),(3.13) if

1. For all t ∈]a, b [, α′′(t) ≥ f(t, α(t)) ,
2. α(a) = α(b), α′(a) ≥ α′(b).

A function β ∈ C2(]a, b[) ∩ C1([a, b]) is an upper function of (3.12),(3.13)) if
1. For all t ∈]a, b [, β′′(t) ≤ f(t, β(t)) ,
2. β(a) = β(b), β′(a) ≤ β′(b).

Theorem 3.28. Let α and β be lower and upper functions of (3.12),(3.13) such that
α ⩽ β, define E = {(t, u) ∈ [a, b] × R | α(t) ⩽ u ⩽ β(t)} and assume f : E → R is
continuous.
Then the problem (3.12),(3.13) has at least one solution u ∈ C2([a, b]) such that for all
t ∈ [a, b]

α(t) ⩽ u(t) ⩽ β(t)

The proof of the above theorem can be found in [4].

Theorem 3.29. Let p, q : [a, b] → R be continuous functions such that p(t) > 0, q(t) >
0 ∀t ∈ [a, b] and f satisfies

f(t, z)sgnz ⩾ p(t)|z| − q(t) ∀t ∈ [a, b], and ∀z ∈ R,

where

sgn z =


1 for z > 0
0 for z = 0
−1 for z < 0.

Moreover, let α and β be upper and lower functions of the problem (3.12),(3.13). Then
the problem (3.12),(3.13) has at least one solution u such that

min{α(tu), β(tu)} ⩽ u(tu) ⩽ max{α(tu), β(tu)},

for some tu ∈ [a, b].
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This theorem follows from [7] Theorem 1.1, remark 1.2 and also from [8] remark 8.4.

Consider the linear differential equation for free undamped oscillator

u′′ = p0(t)u + q0(t). (3.14)

We will need the corresponding homogeneous equation

u′′ = p0(t)u. (3.15)

The coefficients are continuous on some interval [a,b]. The Fredholm Alternative holds
for (3.14),(3.13) and it is presented in the next theorem.

Theorem 3.30. The problem (3.14),(3.13) has a unique solution for every q0 if and only
if the problem (3.15),(3.13) has only the trivial solution.

This theorem follows from [5], Chapter XII, Part I, Section I.

Theorem 3.31. Let the problem (3.15),(3.13) have a non trivial solution. Then the
problem (3.14),(3.13) is solvable if and only if q0 satisfies∫ b

a
q0(s)u0(s)ds = 0

for every solution u0 to the problem (3.15),(3.13).

The proof of this theorem can be found in [5].

Theorem 3.32. A necessary condition for the equation (3.15) to have a non trivial so-
lution possessing two zeroes is that∫ b

a
[p0(s)]− ds >

4
b − a

.

This follows from [5], Corollary 5.1 .
Here, [p0(s)]_ is called the negative part of the function and it is given by;

[p0(t)]_ = |p0(t)| − p0(t)
2

In general, for x ∈ R we have
[x]+ = |x| + x

2

[x]_ = |x| − x

2 .

Theorem 3.33. A necessary condition for the problem (3.15),(3.13) to have a non trivial
solution possessing two zeroes is that∫ b

a
[p0(s)]_ds >

16
b − a

.

This follows from [6], Lemma 3.12.
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4 Analysis of solutions to the Duffing Equation
In this section, we consider first the autonomous case of the considered Duffing equation.
We will determine the equilibrium points and from that obtain the level sets to draw the
phase portrait of the equation. We then further consider the non autonomous case of the
Duffing equation where we prove existence and uniqueness of T-periodic solutions to the
considered Duffing equation.

4.1 Autonomous Case
Considering the autonomous Duffing equation

y′′ = ay − by3 (4.1)

where a, b are constant and a, b > 0. To describe analytically the orbits, we can represent
it as a system of first order differential equations by setting

x1 = y and x2 = y′,

then
x′

1 = y′ = x2, x′
2 = y′′ = ax1 − bx3

1.

Hence we obtain the system x′
1 = x2

x′
2 = ax1 − bx3

1.
(4.2)

It is clear that the system is of the same form as a conservative system which is a special
type of Hamiltonian system(see section 3 for review). The conservative system is of the
form

x′
1 = x2,

x′
2 = −f(x1),

where
f(x1) = −ax1 + bx3

1

and the Hamiltonian of the conservative system is given by

H(x1, x2) = x2
2

2 +
∫ x1

0
f(s)ds

= x2
2

2 +
∫ x1

0
(−as + bs3)ds

= x2
2

2 − ax2
1

2 + bx4
1

4 .

(4.3)

To determine the equilibrium points, we know that these occur when there is no change
in the system, that is, when all derivatives are equated to 0. At equilibrium points

x2 = 0,

ax1 − bx3
1 = 0,

(4.4)
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⇒
x2 = 0,

x1 = 0, x1 = ±
√

a

b
.

(4.5)

Hence we obtain the equilibrium points

s1 = (0, 0), s2 =
(√

a

b
, 0
)

, s3 =
(

−
√

a

b
, 0
)

. (4.6)

We classify each of the equilibrium points as follows.

CASE s1: Considering the equilibrium point s1, the Jacobian matrix (3.11) is given by

M(s1) =
[

0 1
a − 3bx2

1 0

]

=
[
0 1
a 0

]

and the eigenvalues are then; λ1 =
√

a and λ2 = −
√

a.
Hence we can deduce from definition 3.13 and remark 3.25 that s1 is a hyperbolic equi-
librium point and a saddle. It follows from Theorem 3.17 that s1 is unstable.
CASE s2, s3: Considering the equilibrium point s2 and s3, the Jacobian matrix (3.11)
is given by

M(s2) = M(s3) =
[

0 1
−2a 0

]

and the eigenvalues are then; λ1 = i
√

2a and λ2 = −i
√

2a.
We can infer from definition 3.13 and remark 3.25 that s2, s3 are non hyperbolic equilib-
rium points and centres. As for the stability we can use theorem 3.19 to determine the
nature.
If we choose the modified Hamiltonian(Total energy) as our Lyapunov function, we obtain

V (x1, x2) = x2
2

2 − ax2
1

2 + bx4
1

4 + a2

4b
= x2

2
2 + b

4

(
x2

1 − a

b

)2
,

V ′(x1, x2) = (−ax1 + bx3
1)x2 + x2(ax1 − bx3

1),
= 0.

Hence the equilibrium points s2, s3 are stable by theorem 3.19.

In order to describe the orbits of the system, we need the level set of H given by

χ
c = {(x1, x2) ∈ R2 : H(x1, x2) = c} (4.7)

where c is some admissible constant.
The level curves corresponding to the equilibrium points occurs at H(s1) = 0 and
H(s2) = H(s3) = −a2

4b
that is at c = 0 and c = −a2

4b
. We will then analyse the level curves

at these values and other regions of admissible c values.
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Case 1 : For c = 0(χ0)
The level curve for this case is given by H(x1, x2) = 0, hence we obtain

x2
2

2 + b

4x4
1 − ax2

1
2 = 0

x2
2 = ax2

1 − bx4
1

2

x2 = ±
√

ax2
1 − b

2x4
1

with condition that ax2
1 − b

2x4
1 ⩾ 0,

⇒ b

2x4
1 − ax2

1 ⩽ 0

b

2x4
1 − ax2

1 + a2

2b
− a2

2b
⩽ 0

b

2

(
x2

1 − a

b

)2
⩽

a2

2b(
x4

1 − 2a

b
x2

1 + a2

b2

)
⩽

a2

b2

x2
1 ⩽

2a

b

|x1| ⩽
√

2a

b

⇒ −
√

2a

b
⩽ x1 ⩽

√
2a

b

so we have

−
√

2a

b
⩽ x1 < 0 or 0 < x1 ⩽

√
2a

b
orx1 = 0.

For the interval −
√

2a
b
⩽ x1 < 0 we have that

x2 = ±
√

ax2
1 − b

2x4
1,

for the interval 0 < x1 ⩽
√

2a
b

we have that

x2 = ±
√

ax2
1 − b

2x4
1,

for x1 = 0, we have x2 = 0
The level curve for this case is comprised of two homoclinic orbits and the point s1 = 0
which is shown in the image below
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Figure 4.1.2: Level curves of χ0 for a = b = 1 and a = b = 1
2

Case 2 : For c = −a2

4b
, χ

− a2
4b

The level curve for this case is given by H(x1, x2) = −a2

4b
, hence we obtain

x2
2

2 + b

4x4
1 − ax2

1
2 = −a2

4b

x2
2 + b

2x4
1 − ax2

1 = −a2

2b

x2
2 + b

2

[(
x2

1 − a

b

)2
− a2

b2

]
= −a2

2b

x2
2 + b

2

(
x2

1 − a

b

)2
= 0

We have that a, b > 0 so x2 = 0 and b

2

(
x2

1 − a

b

)2
= 0

x2
1 − a

b
= 0

x2
1 = a

b

x1 = ±
√

a

b

The level curve for this case consists of the points s2 and s3 so we have that χ
− a2

4b

= {s2, s3}
as shown in the image below

28



Figure 4.1.3: Level curves of χ
− a2

4b

for a = b = 1

Case 3: For c > 0
The level curves for this case are given by H(x1, x2) = c, hence we obtain

x2
2

2 + b

4x4
1 − ax2

1
2 = c,

x2
2 + b

2x4
1 − ax2

1 = 2c.

(4.8)

Since c > 0

⇒ x2
2 = − b

2x4
1 + ax2

1 + 2c,

x2 = ±
√

ax2
1 − b

2x4
1 + 2c,

(4.9)

with condition that
ax2

1 − b

2x4
1 + 2c ≥ 0

⇒ b

2

(
x2

1 − a

b

)2
⩽ 2c + a2

2b(
x2

1 − a

b

)2
⩽

4c

b
+ a2

b2(
x2

1 − a

b

)2
⩽

4bc + a2

b2
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for c > 0 ∣∣∣∣x2 − a

b

∣∣∣∣ ⩽
√

4bc + a2

b2

a

b
−
√

4bc + a2

b2 ⩽ x2
1 ⩽

a

b
+
√

4bc + a2

b2

|x1| ⩽

√√√√a

b
+
√

4bc + a2

b2

Hence, we have the orbit

x2 = ±
√

ax2
1 − b

2x1 + 2c , −

√√√√a

b
+
√

4bc + a2

b2 ⩽ x1 ⩽

√√√√a

b
+
√

4bc + a2

b2

The curve for this case is shown in the image below

Figure 4.1.4: Level curves with c > 0 for a = b = 1, c = 1
2 and c = 1

10
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Case 4: For −a2

4b
< c < 0

From equations (4.8) and (4.9)

x2
2 = ax2

1 − b

2x4
1 + 2c

x2 = ±
√

ax2
1 − b

2x4
1 + 2c

with the condition that
ax2

1 − b

2x4
1 + 2c ⩾ 0,∣∣∣∣x2

1 − a

b

∣∣∣∣ ⩽
√

4bc + a2

b2 ,

so we have

−
√

4bc + a2

b2 ⩽
(

x2
1 − a

b

)
⩽

√
4bc + a2

b2 ,

⇒ a

b
−
√

4bc + a2

b2 ⩽ x2
1 ⩽

a

b
+
√

4bc + a2

b2 .

(4.10)

Since c < 0, then a
b

−
√

4bc+a2

b2 > 0, thus equation (4.10) yields
√√√√a

b
−
√

4bc + a2

b2 ⩽ |x1| ⩽

√√√√a

b
+
√

4bc + a2

b2 .

We have two orbits for −a2

4b
⩽ c < 0. For the interval

√
a
b

−
√

4bc+a2

b2 ⩽ x1 ⩽
√

a
b

+
√

4bc+a2

b2

we have

x2 = ±
√

ax2
1 − b

2x4
1 + 2c.

For the interval −
√

a
b

+
√

4bc+a2

b2 ⩽ x1 ⩽ −
√

a
b

−
√

4bc+a2

b2

we have

x2 = ±
√

ax2
1 − b

2x4
1 + 2c.

The image for this case is shown on the next page
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Figure 4.1.5: Level curves with −a2

4b
< c < 0 for a = b = 2, c = −1

8 and c = −1
4

Case 5: For c < −a2

4b

For this case, we assume that χ
c ̸= ϕ. It follows from (4.9) that

ax2
1 − b

2x4
1 + 2c ⩾ 0,

b

2

(
x2

1 − a

b

)2
⩽ 2c + a2

2b
,

⇒ c + a2

4b
⩾ 0.

This is a contradiction, hence for c < −a2

4b
we have χ

c = ϕ.

From the cases established, we obtain the phase portrait of the autonomous differential
equation (4.1) as follows
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Figure 4.1.6: Phase portrait of (4.1) with a = b = 2

The phase portrait consists of the three equilibria(s1, s2 and s3), two homoclinic orbits
and and closed periodic orbits.

1. Γ1 and Γ2 consists of periodic orbits corresponding to positive and negative periodic
solutions of (4.1). The level of Hamiltonian for this case is H(x1, x2) = c with
−a2

4b
< c < 0.

2. Γ3 and Γ4 consists of two homoclinic orbits and the equilibrium point s1 and forms
the separatrix cycle of the phase portrait. The separatrix cycle divides the phase
portrait into closed periodic orbits and sign changing orbits. The level of Hamilto-
nian for this case H(x1, x2) = c with c = 0 and correspond to non constant solutions
such that lim

t→∞
y(t) = s1 and lim

t→−∞
y(t) = s1.

3. Γ5 consists of sign changing orbits which correspond to periodic sign changing so-
lutions. The level of Hamiltonian for this orbit is H(x1, x2) = c with c > 0.

4. The points s1 and s2 which are the equilibrium points of (4.1) are the constant
solutions of the system.
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4.2 Nonautonomous Case
Consider

u′′ = p(t)u − h(t)u3 (4.11)
such that p, h : R → R are continuous and T -periodic functions.

Theorem 4.1. Let p(t) > 0, h(t) > 0 ∀t ∈ R, then the equation (4.11) has at least one
positive T -periodic solution.

To prove this theorem, we need to first establish the following lemmas.

Lemma 4.2. If p(t) > 0, h(t) > 0 ∀t ∈ R then there exists upper and lower function
α and β of the problem

u′′ = p(t)u − h(t)u3,

u(0) = u(T ) , u′(0) = u′(T )

such that
0 < β(t) ⩽ α(t) ∀t ∈ [0, T ].

Proof. Since p(t) > 0, h(t) > 0 ∀t ∈ R, there exists a positive constant c such that

c ⩾

√√√√p(t)
h(t) ∀t ∈ R. (4.12)

If we put α(t) = c ∀t ∈ R, then since α(t) is constant then it satisfies the boundary
conditions

α(0) = α(T ) = c,

α′(0) = α′(T ) = 0
Moreover, (4.12) yields

h(t)c2 ⩾ p(t)
rearranging and multiplying both sides by c

0 ⩾ p(t)c − h(t)c3

but α(t) = c and α′′(t) = 0 hence

α′′(t) ⩾ p(t)α(t) − h(t)α3(t) ∀t ∈ [0, T ]

⇒ α(t) is a lower function by definition.
Similarly, there exists another constant d > 0 such that

d ⩽

√√√√p(t)
h(t) ∀t ∈ R. (4.13)

If we put β(t) = d ∀t ∈ R, since β(t) is constant, then it satisfies the boundary condi-
tions and

β′(t) = 0, ⇒ β′′(t) = 0 ∀t ∈ R.
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Moreover, from (4.13) we get
h(t)d2p(t),

and multiplying both sides by d and rearranging

0 ⩽ p(t)β(t) − h(t)β3(t) ∈ [0, T ]

since β′′(t) = 0

β′′(t) ⩽ p(t)d − h(t)d3(t).

So by definition, β(t) is an upper function and we can deduce from from (4.12) and (4.13)
that

0 < β(t) ⩽

√√√√p(t)
h(t) ⩽ c = α(t)

⇒ 0 < β(t) ⩽ α(t) ∀t ∈ R

Lemma 4.3. Let p, u : [0, T ] → R be both continuous functions such that u has continuous
derivatives up to the second order and u(t) > 0 ∀t ∈ [0, T ], u(0) = u(T ), u′(0) = u′(T ),
u satisfies

u′′(t) ⩽ p(t)u(t) ∀t ∈ [0, T ].

Then

M ⩽ me

√
T
4

∫ T

0 p(s)ds
,

where
M = max{u(t) : t ∈ [0, T ]},

m = min{u(t) : t ∈ [0, T ]}.

The proof of this can be found in [6].

Now we present the proof of theorem 4.1.

Proof. It follows from lemma 4.2 that ∃ α, β such that

0 < β(t) ⩽ α(t) ∀t ∈ [0, T ] (4.14)

and
α′′(t) ⩾ p(t)α(t) − h(t)α3(t)∀t ∈ [0, T ]

α(0) = α(T ), α′(0) ⩾ α′(T ).
(4.15)

β′′(t) ⩾ p(t)β(t) − h(t)β3(t)∀t ∈ [0, T ]
β(0) = β(T ), β′(0) ⩽ β′(T )

(4.16)

We introduce a function to bound the right hand side of (4.11). To do this first we define

δ := max{α(t) : t ∈ [0, T ]} · e

√
T
4

∫ T

0 p(s)ds
.

We introduce the cutting function φ(z) := [z]+ − [z − δ]+. Clearly,
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0 ⩽ φ(z) ⩽ δ ∀z ∈ R. (4.17)
Consider the auxiliary periodic problem

u′′ = p(t)u − h(t)[φ(u)]3

u(0) = u(T )
u′(0) = u′(T ).

(4.18)

Since

sgn z =


1 for z > 0
0 for z = 0
−1 for z < 0,

we have (
p(t)z − h(t)[φ(z)]3

)
sgn z = p(t)z sgn z − h(t)[φ(z)]3 sgn z.

From equation (4.17)
[φ(z)]3 sgn z ⩽ [φ(z)]3 ⩽ δ3,

hence (
p(t)z − h(t)[φ(z)]3

)
sgn z ⩾ p(t) | z | −h(t)δ3 ∀z ∈ R, ∀t ∈ [0, T ].

We know that 0 < β(t) ⩽ α(t) ⩽ δ ∀t ∈ [0, T ]

It follows from (4.14)-(4.16) and the definition of φ that φ(α(t)) = α(t), φ(β(t)) =
β(t) ∀t ∈ [0, T ]
α(t) and β(t) are lower and upper functions of the auxiliary problem (4.18)

Therefore all hypotheses of Theorem 3.29 are satisfied with a := 0 and b := T ,
f(t, z) := p(t)z − h(t)[φ(z)]3 and q(t) := δ3h(t)

Hence the auxiliary problem (4.18) has a solution u such that

0 < β(tu) ⩽ u(tu) ⩽ α(tu) for some tu ∈ [0, T ] (4.19)

We will extend the function u T -periodically on the whole real axis
1. We first show that

u(t) ⩾ 0 ∀t ∈ R

Suppose on the contrary that there exists t0 ∈ R such that u(t0) < 0, (4.19) yields
that

∃ a ∈ R, b ∈ ]a, a + T [

such that
u(t) < 0 ∀t ∈ ]a, b[, u(a) = 0, u(b) = 0.

Therefore
φ(u(t)) = 0 ∀t ∈ [a, b],
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from equation (4.18)

u′′(t) = p(t)u(t) − h(t)[φ(u(t))]3

= p(t)u(t) ∀t ∈ [a, b]

u is a solution to the equation
u′′ = p(t)u

with two zeroes on the interval [a, b].
It follows from Theorem 3.32 with p0(t) = p(t), that∫ b

a
[p(s)]−ds >

4
b − a

, (4.20)

but we assume that p(t) > 0 ∀t ∈ R, hence [p(t)]− = 0 ∀t ∈ R which is a contra-
diction to equation (4.20).

2. We show that u(t) > 0 ∀t ∈ R.
Suppose on the contrary that there exists t0 ∈ R such that u(t0) = 0,
in view of the above proved item (1), there exists a, b ∈ R s.t a < t0 < b and

0 ⩽ u(t) ⩽ δ ∀t ∈ [a, b] u(a) > 0,

⇒φ(u(t)) = u(t) ∀t ∈ [a, b].

By equation (4.18)

u′′(t) = p(t)u(t) − h(t)[φ(u(t))]3

= p(t)u(t) − h(t)u3(t) ∀t ∈ [a, b]
u′′(t) =

(
p(t) − h(t)u2(t)

)
u(t) ∀t ∈ [a, b].

u is a solution to the linear equation

w′′ = (p(t) − h(t)u2(t))u (4.21)

u(t) ≥ 0 ∀t ∈ [a, b], u (t0) = 0.
u is continuously differentiable function, hence u′(t0) = 0 and u is a solution to
(4.21) satisfying initial conditions u(t0) = 0, u′(t0) = 0

The initial value problem for the equation (4.21) is uniquely solvable and its so-
lution is w(t) = 0 for t ∈ [a, b] which implies that u(t) = 0 ∀t ∈ [a, b] but
u(a) > 0 which is a contradiction.

3. Finally we prove that
u(t) ⩽ δ t ∈ R. (4.22)

From (4.18)

u′′(t) = p(t)u(t) − h(t)[φ(u(t))]3 ∀t ∈ R

Moreover φ is everywhere non-negative and thus,

φ(u(t)) ⩾ 0 ∀t ∈ R.
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On the other hand,
h(t) > 0 ∀t ∈ R,

hence u′′(t) ⩽ p(t)u(t) ∀t ∈ R
From lemma 4.3

max{u(t) : t ∈ [0, T ]} ⩽ min{u(t) : t ∈ [0, T ]} · e

√
T
4

∫ T

0 p(s)ds
. (4.23)

Since u (tu) ≤ α (tu) , it follows from equation(4.19) that

min{u(t) : t ∈ [0, T ]} ⩽ max{α(t) : t ∈ [0, T ]}

Hence by equation (4.23)

max{u(t) : t ∈ [0, T ]} ⩽ max{α(t) : t ∈ [0, T ]e
√

T
4

∫ T

0 p(s)ds
.

Therefore, (4.22) holds and

u(t) > 0 ⇒ φ(u(t)) = u(t) ∀t ∈ R

Hence u is a solution to (4.11) and u > 0 and is T -periodic.

Remark 4.4. In the autonomous case we have shown that equation (4.1) has three equili-
bia which are zero, positive and negative. This corresponds to constant solutions(periodic
solutions with any period T ). Moreover we have two homoclinic orbits, periodic solutions
with positive and negative orbits and sign changing solutions. In the non autonomous
case, we have proved the existence of at least one T -periodic positive solution which co-
incides with the facts known in the autonomous case.

Next, we will show that given two distinct positive solutions T -periodic in non-autonomous
case, they are not ordered but oscillates around each other.

Theorem 4.5. Let h(t) > 0 ∀t ∈ R. Then for any distinct positive T -periodic solutions
u1 and u2 to equation (4.11), the conditions

min{u2(t) − u1(t) : t ∈ [0, T ]} < 0 (4.24)

and
max{u2(t) − u1(t) : t ∈ [0, T ]} > 0 (4.25)

holds.

Proof. Let u1 and u2 be distinct positive T -periodic solutions to (4.11).
Suppose on the contrary that either (4.24) or (4.25) is not satisfied so without loss of
generality, we can assume

0 < u2(t) ⩽ u1(t) ∀t ∈ [0, T ], u2(t) ̸≡ u1(t) (4.26)
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⇒ u′′
1(t) = p(t)u1(t) − h(t)u3

1(t)
=
(
p(t) − h(t)u2

1(t)
)

u1(t) ∀t ∈ [0, T ]

put p0(t) = p(t) − h(t)u2
1(t) for t ∈ [0, T ]

u′′
1(t) = p0(t)u1(t) ∀t ∈ [0, T ]

u1 is a solution to the equation

z′′ = p0(t)z
and satisfies

u1(0) = u1(T ), u′
1(0) = u′

1(T ).
On the other hand

u′′
2(t) = p(t)u2(t) − h(t)u3

2(t)
=
[
p(t) − h(t)u2

1(t)
]

u2(t) + h(t)
[
u2

1(t) − u2
2(t)

]
u2(t)

if we put
q0(t) = h(t)

[
u2

1(t) − u2
2(t)

]
u2(t) ∀t ∈ [0, T ]

Then
u′′

2(t) = p0(t)u2(t) + q0(t) ∀t ∈ [0, T ]
u2 is a solution to the equation

z′′ = p0(t)z + q0(t) ∀t ∈ [0, T ],

and satisfies
u2(0) = u2(T ), u′

2(0) = u′
2(T ).

Theorem 3.31 guarantees that u1 is orthogonal to q0, hence∫ T

0
h(s)

[
u2

1(s) − u2
2(s)

]
u2(s)u1(s)ds = 0

Now we prove uniqueness, under the additional assumption that p(t) = h(t). So the
equation (4.1) is of the form

u′′ = p(t)u − p(t)u3

u′′ = p(t)u(1 − u2)
(4.27)

A solution to (4.27) is u(t) = 1 which is T -periodic for every T > 0

Theorem 4.6. Let p(t) > 0 ∀t ∈ R and∫ T

0
p(s)ds ⩽

8
T

(4.28)

Then the constant solution u(t) = 1 is the unique T - periodic positive solution to equation
(4.27)
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To prove this we first state the Hölder’s inequality as a lemma.

Lemma 4.7. Let f, g : [a, b] → R continuous functions and λ, µ > 0, such that
1
λ

+ 1
µ

= 1. Then

∫ b

a
| f(s)g(s) | ds ≤

(∫ b

a
| f(s) |λ ds

)1/λ (∫ b

a
| g(s) |µ ds

)1/µ

Now we can present the proof of Theorem 4.6 which is motivated by the results of [6].

Proof. Suppose on the contrary that u is a positive T -periodic solution to equation (4.27)
such that u(t) ̸≡ 1.
It follows from Theorem 4.5 that

min{u(t) − 1 : t ∈ [0, T ]} < 0
max{u(t) − 1 : t ∈ [0, T ]} > 0

(4.29)

Equation (4.27) implies that
∫ T

0
u′′(s)ds =

∫ T

0
p(s)u(s)ds −

∫ T

0
p(s)u3(s)ds (4.30)

but the left hand side yields u′(T ) − u′(0) and from boundary conditions we know that
u′(T ) = u′(0) hence the left hand side reduces to 0.

⇒
∫ T

0
p(s)u(s)ds =

∫ T

0
p(s)u3(s)ds (4.31)

Now making use of lemma 4.7 with λ = 3/2, µ = 3, f(t) = p2/3(t), g(t) = p1/3(t)u(t),
recall that ∫ T

0
p(s)u(s)ds =

∫ T

0
p2/3(s)

(
p1/3(s)u(s)

)
ds

⩽

(∫ T

0
p(s)ds

)2/3 (∫ T

0
p(s)u3(s)ds

)1/3

from equation 4.31

∫ T

0
p(s)u(s)ds ⩽

(∫ T

0
p(s)ds

)2/3 (∫ T

0
p(s)u(s)ds

)1/3

dividing both sides by the term
(∫ T

0 p(s)u(s)ds
)1/3

⇒
(∫ T

0
p(s)u(s)ds

)2/3

≤
∫ T

0
(p0p(s)ds)2/3

⇒
∫ T

0
p(s)u(s)ds ≤

∫ T

0
p(s)ds (4.32)
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Again from lemma 4.7 with λ = 3, µ = 3/2, f(t) = p1/3(t), g(t) = p2/3(t)u2(t), recall
that ∫ T

0
p(s)u2(s)ds =

∫ T

0
p1/3(s)

(
p2/3(s)u2(s)

)
ds

⩽

(∫ T

0
p(s)ds

)1/3 (∫ T

0
p(s)u3(s)ds

)2/3

.

Since (4.31) holds,
⇒
∫ T

0
p(s)u3(s)ds =

∫ T

0
p(s)u(s)ds

The inequality becomes

∫ T

0
p(s)u2(s)ds ⩽

(∫ T

0
p(s)ds

)1/3 (∫ T

0
p(s)u(s)ds

)2/3

from equation (4.32)

∫ T

0
p(s)u2(s)ds ⩽

(∫ T

0
p(s)ds

)1/3 (∫ T

0
p(s)ds

)2/3

∫ T

0
p(s)u2(s)ds ⩽

∫ T

0
p(s)ds (4.33)

If we consider the difference u(t) − 1, it satisfies

(u(t) − 1)′′ = p(t)(u(t))
(
1 − (u(t))2

)
= [−p(t)u(t)(1 + u(t))](u(t) − 1) ∀t ∈ R

If we set −p(t)u(t)(1 + u(t)) = p0(t) and let w(t) = u(t) − 1, then we have

w′′(t) = p0(t)w(t) ∀t ∈ R

w is a solution to the linear homogeneous equation

z′′ = p0(t)z

w is T -periodic because it is the difference between two T -periodic functions.
Equation (4.29) implies

min{w(t) : t ∈ [0, T ]} < 0
max{w(t) : t ∈ [0, T ]} > 0

From Theorem 3.33 ∫ T

0
[p0(s)]− ds >

16
b − a

.

Since p(t) > 0, then p0(t) is everywhere negative

[p0(t)]− = p(t)u(t)(1 + u(t)) ∀t ∈ R

⇒
∫ T

0
p(s)(1 + u(s))u(s)ds >

16
T

. (4.34)
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If we consider equations (4.32) and (4.33) we obtain∫ T

0
p(s)u(s)(1 + u(s))ds =

∫ T

0
p(s)u(s)ds +

∫ T

0
p(s)u2(s)ds

≤ 2
∫ T

0
p(s)ds

(4.35)

From (4.34) and (4.35) ∫ T

0
p(s)ds >

8
T

.

This is a contradiction to (4.28) hence u(t) = 1 is a unique T -periodic solution to equation
(4.27).

Corollary 4.8. Let y be a non constant positive periodic solution to the equation

y′′ = ay − by3 (4.36)

with a, b > 0
Then the minimum period T of y satisfies

T >
2
√

2√
a

(4.37)

Proof. Put

Y (t) =
√

b

a
y(t)

Then
Y ′′(t) = aY (t) − aY 3(t)

⇒ Y ′′(t) = aY (t)
[
1 − Y 2(t)

] (4.38)

since Y is positive non constant T-periodic function, using Theorem 4.6 with p(t) = a,
then ∫ T

0
ads >

8
T

aT >
8
T

T 2 >
8
a

If we take the square root of both sides, since both sides are positive we get

T >
2
√

2√
a

.
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5 Simulations
To support our results, we perform simulations with MATLAB™ on the considered Duff-
ing equation which gives a better illustration of the facts known in the qualitative analysis
of both the autonomous and non autonomous case. The MATLAB™ function ode45 is
used to solve the Duffing equation numerically to obtain the desired results which corre-
sponds to the results already obtained. This function is MATLAB’s standard solver for
ordinary differential equations and uses the Runge-Kutta method with a variable time
step for efficient computation(see [9] for review).

5.1 Autonomous case
There is a continuous dependence of initial conditions on the solution of a differential
equation and as a result of this, the trajectory corresponding to a solution of the differ-
ential equation will depend on the chosen initial condition. The constants a and b are
chosen to be a = 1 and b = 2, so the equation (4.1) becomes

y′′ = y − 2y3, (5.1)

which can be represented as x′
1 = x2

x′
2 = x1 − 2x3

1.
(5.2)

To obtain better accuracy, the relative tolerance and absolute tolerance are both set
to 1e − 8. In subsection 4.1, we presented four cases representing different orbits of
the solution to the Duffing equation. In this subsection, we present again four cases
corresponding solutions of (5.1) based on different initial conditions.

Case I: For this case we choose the initial condition y(0) =
√

1
2 , y′(0) = 0 and we can

see that we obtain constant solution which corresponds to the equilibrium point s2(see
(4.6)). The image is shown below.

(a) y(t) against time (b) Phase plane plot

Figure 5.1.7: Solutions of (5.1) corresponding to y(0) =
√

1
2 , y′(0) = 0
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Case II: Here, we choose the initial condition y(0) =
√

7
10 , y′(0) = 0 and we obtain

periodic solution which correspond to the periodic orbits obtained in Case4 of subsection
4.1. The results are shown below

(a) y(t) against time (b) Phase plane plot

Figure 5.1.8: Solutions of (5.1) corresponding to y(0) =
√

7
10 , y′(0) = 0

Case III: We choose the initial condition y(0) = 1, y′(0) = 0 and we obtain again
periodic solutions which converges to 0 as t → +∞. This is due to the fact that the case
under consideration analogous to the autonomous case consisted of homoclinic orbits and
the equillibrium point at the origin. The image is shown below

(a) y(t) against time (b) Phase plane plot

Figure 5.1.9: Solutions of (5.1) corresponding to y(0) = 1, y′(0) = 0
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Case IV: Finally, we chose the initial condition y(0) = 1.12, y′(0) = 0 and we obtain
again sign changing periodic solutions. This corresponds to the result obtained in Case
3 of Section 4.1. The results are shown below in the figure 5.1.10
The plot of solutions for all considered cases is shown in figure 5.1.11

(a) y(t) against time (b) Phase plane plot

Figure 5.1.10: Solutions of (5.1) corresponding to y(0) = 1.12, y′(0) = 0

Figure 5.1.11: Plot of all solutions(y(t) against time).
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5.2 Nonautonomous case
We now consider the non-autonomous equation

y′′ = p(t)y − h(t)y3. (5.3)

We choose functions p(t) and h(t) which are T -periodic functions. The functions chosen
as

p(t) = 1 + A sin
(2π

T
t
)

h(t) = 2 + B sin
(2π

T
t
) (5.4)

with different amplitudes(A and B) and T has the same period as Case 4 of the au-
tonomous case in subsection 4.1. In the Case II of the autonomous simulation, we ob-
tained periodic solutions and we simulated with initial condition y(0) =

√
7
10 , y′(0) = 0.

To obtain the period of the solution in this case, we use the formula

T =
∮

Γ

( 1
x2

, 0
)

ds⃗,

where Γ is the closed curve in the figure 5.1.8(b). We have found in Case 4 of section
4.1 that

x2 = ±
√

ax2
1 − b

2x4
1 + 2c,

and since we are considering the positive initial condition, the interval for this solution is
on the positive x1 axis and is given by

√
a
b

−
√

4bc+a2

b2 ⩽ x1 ⩽
√

a
b

+
√

4bc+a2

b2 .

We know the values of a and b so to determine the value of c, we substitute the initial
condition into x2 =

√
ax2

1 − b
2x4

1 + 2c and obtain

0 =

√√√√√√ 7
10

2

−

√ 7
10

4

+ 2c

0 =
√

7
10 −

( 7
10

)2
+ 2c

0 = 7
10 −

( 7
10

)2
+ 2c

0 = 0.21 + 2c

c = −0.105.

The period T is then

T = 2 ·
∫ √

0.7
√

0.3

1√
x2

1 − x4
1 + 2(−0.105)

dx1

= 2 ·
∫ √

0.7
√

0.3

1√
x2

1 − x4
1 − 0.21

dx1.

Solving the integral numerically, we obtain

T ≈ 4.5893.
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We now substitute (5.4) into (5.3) with different A and B values and compare the so-
lutions(denoted by blue line) to the solution of Case II(denoted by red line) of the
autonomous case and the results are as follows

(a) Solution with A = 0, B = 0.01 (b) Solution with A = 0, B = 0.1

(c) Solution with A = 0, B = 1 (d) Solution with A = 0.01, B = 0

(e) Solution with A = 0.1, B = 0 (f) Solution with A = 1, B = 0

Figure 5.2.12: Plots of nonautonomous case with y(0) =
√

7
10 , y′(0) = 0
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(a) Solution with A = 0.01, B = 0.01 (b) Solution with A = 0.1, B = 0.1

(c) Solution with A = 1, B = 1

Figure 5.2.13: Plots of nonautonomous case with y(0) =
√

7
10 , y′(0) = 0

On the other hand, if A = 0 and B = 0, equation (5.3) has the constant y(t) =
√

1
2 which

is clearly T -periodic will with period T = 4.5893. We compare the solutions of the initial
value problem

y′′ = p(t)y − h(t)y3

y(0) =
√

1
2 , y′(0) = 0

with the solution y(t) =
√

1
2 of equation (5.1) and the results are as follows
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(a) Solution with A = 0, B = 0.01 (b) Solution with A = 0, B = 0.1

(c) Solution with A = 0, B = 1 (d) Solution with A = 0.01, B = 0

(e) Solution with A = 0.1, B = 0 (f) Solution with A = 1, B = 0

Figure 5.2.14: Plots of nonautonomous case with y(0) =
√

1
2 , y′(0) = 0
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(a) Solution with A = 0.01, B = 0.01 (b) Solution with A = 0.1, B = 0.1

(c) Solution with A = 1, B = 1

Figure 5.2.15: Plots of nonautonomous case with y(0) =
√

1
2 , y′(0) = 0
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5.3 Summary of results
The results obtained from all the simulations performed with the various initial conditions
and

5.3.1 Simulation for autonomous case

In the autonomous case we chose values for a, b and performed simulations with the
different initial values which corresponded to different solution curves or trajectories. It
can be observed that the results obtained analytically, corresponds to the simulations
under the condition that the simulation is performed under suitable tolerance levels and
time intervals. It was however discovered that there are some numerical inaccuracies in
solving numerically the autonomous differential equation with the initial condition which
yields homoclinic orbits. The ode45 solver in MATLAB, on longer time intervals gives a
solution which appears to be periodic for the case of homoclinic orbit which is not valid
if solved analytically.

5.3.2 Simulation for nonautonomous case

In the nonautonomous case, we chose periodic functions for p(t) and h(t) in (5.4). The
simulation for this case was done with varied amplitudes of the periodic functions and
the period is set to the same value as the known period of the Case II of the simulation
for the autonomous case. It can be observed that the period of the solutions in this case
approaches the period of the Case II of the autonomous simulation as the amplitude
approaches 0. However, for higher amplitudes, the solutions begin to exhibit chaotic
behavior and are no more periodic.
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Conclusion
This work was aimed at analyzing the solutions to the Duffing equation considered and
further perform simulations in MATLAB to see how the analysis compares with numerical
solutions.

In the second section we derived the Duffing equation from a nonlinear oscillator using
the Newton’s second law of motion, Hooke’s law and Taylor approximation.

In the third section, we presented some theory from dynamical systems necessary for
the analysis of solutions to the autonomous variant of the considered Duffing equation.
Further, we presented some theory on method of lower and upper functions for a periodic
problem which was necessary for the finding conditions guaranteeing existence of solutions
in the nonautonomous case.

In the fourth section we analyzed qualitatively the solutions to the considered Duffing
equation. In the autonomous case, we found the equilibrium points of (4.2), and with
that derived all levels of hamiltonian corresponding to the solution of (4.1). In the last
part of subsection 4.1, we proved that for c < −a2

2b
of the hamiltonian level, (4.7) does

not correspond to any solution of (4.1) and then generated the phase portrait from all the
levels of hamiltonian considered. In the nonautonomous case of this section we proved
existence of periodic solutions and uniqueness by making using of the method of upper
and lower functions introduced in the third section.

In the last section, we performed simulations of results from the previous sections.
Due to dependence of solutions of differential equations on initial conditions, we were
able to simulate the solutions corresponding to the different levels of hamiltonian derived
in the previous section. In the nonautonomous case we derived the period for the Case 4
of subsection 4.1 and compared solutions of this case to the solution of (5.3) with p(t) and
h(t) defined in (5.4). The solutions corresponding to the equilibria in the autonomous
case was also compared with solutions of (5.3) having conditions (5.4). The results were
then summarised for all the simulations performed.
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Appendices
A Autonomous case

1 c l e a r a l l
2 c l o s e a l l
3

4 %We d e f i n e r e l a t i v e t o l e r a n c e and abso lu t e t o l e r a n c e f o r the
s imu la t i on

5 opt ions = odeset ( ’ RelTol ’ ,1 e −8, ’ AbsTol ’ ,1 e−8) ;
6

7 %D e f i n i t i o n o f i n i t i a l va lue s f o r cons ide r ed Duf f ing equat ion
8 xsqr t = [ sq r t ( 0 . 5 ) , 0 ] ;
9 xsqrt_1 = [ sq r t ( 0 . 7 ) , 0 ] ;

10 xone = [ 1 , 0 ] ;
11 xg1 = [ 1 . 1 2 , 0 ] ;
12 dx= @( t , x ) [ x (2 ) ; ( x (1 )−2∗x (1 ) ^3) ] ;
13

14 %Numerical So lu t i on o f the Duf f ing equat ion on timespan ( tspan )
15 tspan = l i n s p a c e (0 ,10 ,10000) ;
16 [ t1 , x1]=ode45 (dx , tspan , xsqrt , opt ions ) ;
17 [ t2 , x2]=ode45 (dx , tspan , xsqrt_1 , opt ions ) ;
18 [ t3 , x3]=ode45 (dx , tspan , xone , opt ions ) ;
19 [ t4 , x4]=ode45 (dx , tspan , xg1 , opt ions ) ;
20

21 %Auxi l i a ry to p l o t s o l u t i o n s and phase p o t r a i t s at d i f f e r e n t
i n i t i a l va lue s

22 c o l o r s = [ ’b ’ , ’ r ’ , ’ g ’ , ’m’ ] ;
23 t ime_interv = [ t1 , t2 , t3 , t4 ] ;
24 s o l = [ x1 , x2 , x3 , x4 ] ;
25

26 %Plot s o f s o l u t i o n s and correspond ing phase p o t r a i t f o r each
i n i t i a l va lue

27 f o r i =1:4
28 f i g u r e
29 xt = s o l ( 1 : end , ( i ∗2) −1: i ∗2) ;
30 tm = time_interv ( 1 : end , i ) ;
31 p lo t (tm , xt ( : , 1 ) , c o l o r s ( i ) )
32 ylim ([ −1.5 1 . 5 ] )
33 x l a b e l ( ’Time( t ) ’ )
34 y l a b e l ( ’ y ( t ) ’ )
35 g r id on
36 f i g u r e
37 p lo t ( xt ( : , 1 ) , xt ( : , 2 ) , c o l o r s ( i ) )
38 xlim ([ −1.5 1 . 5 ] )
39 ylim ([ −0.8 0 . 8 ] )
40 x l a b e l ( ’ y ( t ) ’ )
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41 y l a b e l ( " y ’ ( t ) " )
42 g r id on
43 end
44

45 %Plot s o f a l l s o l u t i o n s aga in s t time
46 f i g u r e
47 p lo t ( t4 , x4 ( : , 1 ) , ’m’ )
48 hold on
49 p lo t ( t3 , x3 ( : , 1 ) , ’ g ’ )
50 hold on
51 p lo t ( t2 , x2 ( : , 1 ) , ’ r ’ )
52 hold on
53 p lo t ( t1 , x1 ( : , 1 ) , ’ b ’ )
54 x l a b e l ( ’Time( t ) ’ )
55 y l a b e l ( ’ y ( t ) ’ )
56 l egnd = legend ( " $y (0 ) =1.12 ,\ quad y ’ ( 0 )=0$ " , " $y (0 ) =1,\quad y ’ ( 0 )

=0$ " , " $y (0 )=\sq r t {0 .7} ,\ quad y ’ ( 0 )=0$ " , " $y (0 )=\sq r t {0 .5} ,\
quad y ’ ( 0 )=0$ " ) ;

57 s e t ( legnd , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
58 l egend ( ’ Locat ion ’ , ’ s outheas t ’ )
59 g r id on
60 hold o f f
61

62

63

64 %End o f Code
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B Non Autonomous case I

1 c l e a r a l l
2 c l o s e a l l
3

4 %Set the r e l a t i v e t o l e r a n c e and abso lu t e t o l e r a n c e
5 opt ions = odeset ( ’ RelTol ’ ,1 e −8, ’ AbsTol ’ ,1 e−8) ;
6

7 %Def ine the i n i t i a l va lue s o f the du f f i n g euat ion
8 xsqrt_1 = [ sq r t ( 0 . 7 ) , 0 ] ;
9

10

11 %Def ine time lenght and per iod T
12 tspan = l i n s p a c e (0 ,10 ,100000) ;
13 T = 4 . 5893 ;
14

15 %Vector o f Amplitude va lue s o f A and B to be t e s t ed
16 i t e r v a r = [ 0 . 0 1 , 0 . 1 , 1 ] ;
17

18 %So lut i on o f the i n i t i a l va lue probelm o f the autonomous cas
19 dx= @( t , x ) [ x (2 ) ; ( x (1 )−2∗x (1 ) ^3) ] ;
20 [ t2 , x2]=ode45 (dx , tspan , xsqrt_1 , opt ions ) ;
21

22

23 %Comparison o f s o l u t i o n s in autonomous case with the
nonautonmous case

24 f o r i =1: l ength ( i t e r v a r )
25 A = 0 ;
26 B = i t e r v a r ( i ) ;
27 dx2= @( t , x ) [ x (2 ) ;(1+A∗ s i n (2∗ ( p i /T) ∗ t ) ) ∗x (1 )−(2+B∗ s i n (2∗ ( p i /T

) ∗ t ) ) ∗x (1 ) ^ 3 ] ;
28 [ t21 , x21 ]=ode45 ( dx2 , tspan , xsqrt_1 , opt ions ) ;
29

30 %Plot o f the s o l u t i o n o f the autonomous case with the
d i f f e r e n t nonautonomous

31 %case s
32 f i g u r e
33 p lo t ( t2 , x2 ( : , 1 ) , ’ r ’ )
34 hold on
35 p lo t ( t21 , x21 ( : , 1 ) , ’ b ’ )
36 x l a b e l ( ’Time( t ) ’ )
37 y l a b e l ( ’ y ( t ) ’ )
38 g r id on
39 hold o f f
40 end
41

42
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43 f o r i =1: l ength ( i t e r v a r )
44 A = i t e r v a r ( i ) ;
45 B = 0 ;
46 dx2= @( t , x ) [ x (2 ) ;(1+A∗ s i n (2∗ ( p i /T) ∗ t ) ) ∗x (1 )−(2+B∗ s i n (2∗ ( p i /T

) ∗ t ) ) ∗x (1 ) ^ 3 ] ;
47 [ t21 , x21 ]=ode45 ( dx2 , tspan , xsqrt_1 , opt ions ) ;
48

49 %Plot o f the s o l u t i o n o f the autonomous case with the
d i f f e r e n t nonautonomous

50 %case s
51 f i g u r e
52 p lo t ( t2 , x2 ( : , 1 ) , ’ r ’ )
53 hold on
54 p lo t ( t21 , x21 ( : , 1 ) , ’ b ’ )
55 x l a b e l ( ’Time( t ) ’ )
56 y l a b e l ( ’ y ( t ) ’ )
57 g r id on
58 hold o f f
59 end
60

61

62 f o r i =1: l ength ( i t e r v a r )
63 A = i t e r v a r ( i ) ;
64 B = i t e r v a r ( i ) ;
65 dx2= @( t , x ) [ x (2 ) ;(1+A∗ s i n (2∗ ( p i /T) ∗ t ) ) ∗x (1 )−(2+B∗ s i n (2∗ ( p i /T

) ∗ t ) ) ∗x (1 ) ^ 3 ] ;
66 [ t21 , x21 ]=ode45 ( dx2 , tspan , xsqrt_1 , opt ions ) ;
67

68 %Plot o f the s o l u t i o n o f the autonomous case with the
d i f f e r e n t nonautonomous

69 %case s
70 f i g u r e
71 p lo t ( t2 , x2 ( : , 1 ) , ’ r ’ )
72 hold on
73 p lo t ( t21 , x21 ( : , 1 ) , ’ b ’ )
74 x l a b e l ( ’Time( t ) ’ )
75 y l a b e l ( ’ y ( t ) ’ )
76 g r id on
77 hold o f f
78 end
79

80 %End o f code .
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C Non Autonomous case II

1 c l e a r a l l
2 c l o s e a l l
3

4 %Set the r e l a t i v e t o l e r a n c e and abso lu t e t o l e r a n c e
5 opt ions = odeset ( ’ RelTol ’ ,1 e −8, ’ AbsTol ’ ,1 e−8) ;
6

7 %Def ine the i n i t i a l va lue s o f the du f f i n g euat ion
8 xsqr t = [ sq r t ( 0 . 5 ) , 0 ] ;
9

10

11 %Def ine time length and per iod T
12 tspan = l i n s p a c e (0 ,10 ,100000) ;
13 T = 4 . 5893 ;
14

15

16 %Vector o f Amplitude va lue s o f A and B to be t e s t ed
17 i t e r v a r = [ 0 . 0 1 , 0 . 1 , 1 ] ;
18

19 %So lut i on o f the i n i t i a l va lue probelm o f the autonomous cas
20 dx= @( t , x ) [ x (2 ) ; ( x (1 )−2∗x (1 ) ^3) ] ;
21 [ t1 , x1]=ode45 (dx , tspan , xsqrt , opt ions ) ;
22

23

24 %Comparison o f s o l u t i o n s in autonomous case with the
nonautonmous case

25 f o r i =1: l ength ( i t e r v a r )
26 A = 0 ;
27 B = i t e r v a r ( i ) ;
28 dx2= @( t , x ) [ x (2 ) ;(1+A∗ s i n (2∗ ( p i /T) ∗ t ) ) ∗x (1 )−(2+B∗ s i n (2∗ ( p i /T

) ∗ t ) ) ∗x (1 ) ^ 3 ] ;
29 [ t21 , x21 ]=ode45 ( dx2 , tspan , xsqrt , opt ions ) ;
30

31 %Plot o f the s o l u t i o n o f the autonomous case with the
d i f f e r e n t nonautonomous

32 %case s
33 f i g u r e
34 p lo t ( t1 , x1 ( : , 1 ) , ’ r ’ )
35 hold on
36 p lo t ( t21 , x21 ( : , 1 ) , ’ b ’ )
37 ylim ([ −1.5 1 . 5 ] )
38 x l a b e l ( ’Time( t ) ’ )
39 y l a b e l ( ’ y ( t ) ’ )
40 g r id on
41 hold o f f
42 end
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43

44

45 f o r i =1: l ength ( i t e r v a r )
46 A = i t e r v a r ( i ) ;
47 B = 0 ;
48 dx2= @( t , x ) [ x (2 ) ;(1+A∗ s i n (2∗ ( p i /T) ∗ t ) ) ∗x (1 )−(2+B∗ s i n (2∗ ( p i /T

) ∗ t ) ) ∗x (1 ) ^ 3 ] ;
49 [ t21 , x21 ]=ode45 ( dx2 , tspan , xsqrt , opt ions ) ;
50

51 %Plot o f the s o l u t i o n o f the autonomous case with the
d i f f e r e n t nonautonomous

52 %case s
53 f i g u r e
54 p lo t ( t1 , x1 ( : , 1 ) , ’ r ’ )
55 hold on
56 p lo t ( t21 , x21 ( : , 1 ) , ’ b ’ )
57 ylim ([ −1.5 1 . 5 ] )
58 x l a b e l ( ’Time( t ) ’ )
59 y l a b e l ( ’ y ( t ) ’ )
60 g r id on
61 hold o f f
62 end
63

64

65 f o r i =1: l ength ( i t e r v a r )
66 A = i t e r v a r ( i ) ;
67 B = i t e r v a r ( i ) ;
68 dx2= @( t , x ) [ x (2 ) ;(1+A∗ s i n (2∗ ( p i /T) ∗ t ) ) ∗x (1 )−(2+B∗ s i n (2∗ ( p i /T

) ∗ t ) ) ∗x (1 ) ^ 3 ] ;
69 [ t21 , x21 ]=ode45 ( dx2 , tspan , xsqrt , opt ions ) ;
70

71 %Plot o f the s o l u t i o n o f the autonomous case with the
d i f f e r e n t nonautonomous

72 %case s
73 f i g u r e
74 p lo t ( t1 , x1 ( : , 1 ) , ’ r ’ )
75 hold on
76 p lo t ( t21 , x21 ( : , 1 ) , ’ b ’ )
77 ylim ([ −1.5 1 . 5 ] )
78 x l a b e l ( ’Time( t ) ’ )
79 y l a b e l ( ’ y ( t ) ’ )
80 g r id on
81 hold o f f
82 end
83

84 %End o f code .
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