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Abstract 

In the mathematical modelling of physical systems, ordinary differential equations of 
various forms are used. Differential equations describing these systems are often com­

plex nonlinear equations, however using suitable approximations of nonlinearity, one can 
derive simple equations called Duffing equations which can be studied analytically. In 
mathematical modelling of mechanics, the problem of finding periodic solutions to these 
Duffing equations is closely related to the existence of periodic vibrations of its corre­

sponding nonlinear oscillator. In this work, the analysis of the solutions and existence of 
solutions in the autonomous and nonautonomous cases of the considered Duffing equation 
are carried out supported by simulations in M A T L A B . 
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1 Introduction 
The mathematical modelling of physical systems often lead to the need to use equations 
that describe how these systems change over time. These equations are known as dy­
namical systems and they consist of systems of differential equations. The dominant way 
of modelling how these physical systems change over time is by use of the differential 
equations. These differential equations often appear in the mathematical modelling of 
mechanics and are complex and nonlinear. Nevertheless, these nonlinearities can be ap­
proximated by simpler equations under some assumptions and these "simpler equations" 
are the so called Duffing equations. In its original form, the Duffing equation has only 
one extra nonlinear stiffness term compared to the linear second-order differential equa­
tion, which is the foundations of the theory of vibrations[2]. The origins of this Duffing 
equation can be traced back to the original work of the author George Duffing(see [1] for 
review). Al though several real world systems cannot be described accurately by these 
equations, they can be used to study the behaviour of real world systems qualitatively. 

This work is aimed at studying the qualitative behaviour of a physical system particularly 
a nonlinear oscillator. The goal is to derive the Duffing equation from the chosen nonlinear 
oscillator and use tools from the theory of dynamical systems to study the qualitative 
behaviour of the autonomous variant of the system. Then further use the qualitative 
theory of boundary value problems particularly the method of lower and upper solutions 
to find conditions guaranteeing the existence of periodic solutions in the nonautonomous 
case and finally perform simulations to illustrate obtained results. 

The organisation of this thesis is as follows; 

In the second section, we show how the considered Duffing equation is obtained from 
a physical system using laws of motion and Taylor approximations. 

The third section is the theoretical part where we present definitions and notions in 
dynamical systems necessary to study the qualitative behaviour of the autonomous vari­
ant of the considered Duffing equation. In the same section we introduce the theory of 
boundary value problems particularly the method of lower and upper functions which wi l l 
be required in the next section. 

The fourth section is dedicated for the qualitative analysis of the autonomous Duff­
ing equation where we obtain the phase portrait from level sets to study the behavior 
of solutions in the autonomous case. In this same section we find conditions guarantee­
ing existence of solutions in the nonautonomous case using previously introduced theories. 

In the fifth section we perform simulations in M A T L A B to illustrate results obtained 
from the previous sections. 

15 



2 Derivation of considered Duffing Equation 
In this section, we derive the considered Duffing equation describing a mechanical oscil­
lator. This section is based off the work of [10] and some results from [2]. 
Duffing equations are usually second order differential equation wi th a cubic nonlinearity. 
For simplicity we usually assume no external or damping force and end up wi th a much 
simpler general form of the Duffing equation given by 

y " ± a y ± i y
3 = 0. (2.1) 

The considered Duffing equation models the oscillator shown in figure 2.0.1 and consists of 
a unit mass which is restricted in motion to the horizontal x-axis, and two linear springs. 
We assume in our case that the springs are attached to fixed barriers which may oscillate 
in the vertical direction. 

Let l(t) be the length of the the spring wi th respect to time. The movement of the mass is 
restricted to the horizontal axis, so the length l(t) changes wi th the position of the mass. 
Let furthermore, k be the spring constant, x(t) be the location of the unit mass at time 
t, and d(t) the distance of each barrier from the x-axis. Newton's second law of motion 

establishes the relation between the force and the product of mass(m) and acceleration(a), 
where m — 1 in our case. Since movement of the mass is in the x direction, all motion is 
restricted to the horizontal axis hence the force component in the horizontal direction is 
given by 

Fx = \F\cos(f3). (2.2) 
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\F\ is the magnitude of the resultant acting force and (3 is the angle the spring makes 
wi th the horizontal axis. \F\ is given by Hooke's law as 

|F| = -kX (2.3) 

where X = (l(t) — lo) is the spring stretch, and l0 is the length of the undeformed spring. 
B y making use of the well known Pythagorean theorem we have 

l2(t) = d2(t) + x2(t) 
r 1 (2-4) 

l{t) = ^Jd2(t)+x2{t). 

We consider the positive value only since it is the length of the spring. The cosine of the 
angle j3 is given by the equation 

cos(/3) 
x(t) 

w 
x(t) (2.5) 

Id2 {t) + x2{t) 

From the (2.3) and (2.2), we obtain 

Fx = 2(-k(l(t)-l0)cos(3). (2.6) 

From the (2.2) —(2.6), we obtain the second order differential equation 

x(t) 
x"(t) = 2k (l0 - sjd2{t) + x2(t) 

^/d2(t) + x2{t) 

•2k.r(t) I / 0 - 1 
\y/d?(t)+x*(t) , 

(2.7) 

If d(t) is a constant function, i.e., d[t) = d and we approximate the term -j=^2= = by 

its second-order Taylor expansion we get 

l0 l0 l0x2(t) 

^Jd2 + x2(t) d 2d3 

The equation (2.7) becomes 

*"(*) = 2k (± - l ) x(t) - ^ x 3 ( t ) , (2.8) 

and if we let a — 2k — 1) and b = we obtain the autonomous Duffing equation 

x " = ax- bx3. (2.9) 

O n the other hand if the barriers oscillate vertically, then d(t) is non constant and we 
instead replace as functions a, b wi th pit) and h(t) respectively, and we obtain the nonau-
tonomous Duffing equation 

x" = p(t)x - h(t)x3. (2.10) 
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3 Theoretical Part 
This section is dedicated to present some theoretical concepts for the analysis of the 
qualitative behavior of solutions to the chosen Duffing equation in the autonomous case 
and nonautonomous case. 

3.1 Concepts from theory of dynamical systems 
The idea of dynamical systems is a deterministic process describing a set of conceivable 
states and a rule of evolution of the state in time [11]. A dynamical system consists 
of a collection of first order differential equations which is usually derived from some 
differential equation of higher order. 
Consider the system of first-order differential equations 

x1 = fi (xi, X2-, • • • i xn) 

x'2 = h (xi,x2, ...,xn) 

Xn fn \ X\i X2, • • • i %n) • 

For some open set J C M.n, fi, f2, • • •, fn : J —>• K. are continuous functions. This system 
is called an autonomous system of differential equations since there is no dependence on 
time. From the theory of differential equations, we know that we can reduce the system 
to the form 

x' = f(x), (3.1) 

where x — (xi, x2, • • •, xn) and / = (/i, f2,..., fn). For the system of the form x' = f(x, t). 
we refer to it as a nonautonomous system since it depends on time. 

Definition 3.1. A solution to (3.1) on some interval I C M., is a vector x = (xi, x2,..., xn) 
of functions wi th Xi G C 1 ( J ) , % = 1 , . . . , n, which satisfies (3.1) on the interval /. 

• A solution is a General solution if it contains an arbitrary constant. This means 
we can have several solutions of the form of the general solution depending on the 
value of the arbitrary constant. 

• A Particular solution is a solution wi th no arbitrary constants. 

In the case of particular solution, we need to specify some condition(s) on the solution 
known as initial condition or Cauchy condition. We represent this condition as 

x(0) = x0, (3.2) 

where xo G J . Thus, we assign an init ial value of the solution x at a fixed point 0 and we 
have the Cauchy problem as 

x(0) = XQ. 

Theorem 3.2. ([3, Section 2.4, Theorem 1]). Let J be an open subset ofW1 and assume 
that f G C 1 ( J ) . Then for each point xo G J, there is a maximal interval I(xo) on 
which the initial value problem (3.3) has a unique solution, x(t); i.e., if the initial value 
problem has a solution y(t) on an interval I then I C I(x0) and y(t) = x(t) for all t E I. 
Furthermore, the maximal interval I(x0) is open; i.e., I(x0) = (a, 13). 
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Definition 3.3. The interval I(XQ) is the maximal interval of the solution of the Cauchy 
problem (3.3). 

Definition 3.4. ([3, Section 2.5, Definition 1]). Let J be an open subset of Mn and let 
/ G C 1 ( J ) . For xo G J, let <f>(t,xo) be the solution of the Cauchy problem (3.3) defined 
on its maximal interval of existence I(XQ). Then for t G I{XQ), the set of mappings <pt 

defined by 
<f>t M = (f>(t,Xo) 

is called the flow of the differential equation (3.1) or the flow defined by the differential 
equation (3.1). 

Remark 3.5. Under the assumption that the system (3.1) describes a dynamical system 
4>(t,x) on J. For a point x0 G J, the function 0(- ,x o ) : M —>• J defines a solution curve, 
trajectory, or orbit of the system (3.1) through the point xo in J. This trajectory through 
a point xo G J is the motion along the curve 

rxo = {x e J \ x = <p(t,x0) ,t e i(x0)}. 

Definition 3.6. The orbits of a solution 0(- ,x o ) is a collection of points (f)(t,xo), where 
t G i"(x 0 ) . 

In multidimensional autonomous systems like (3.1), we sometimes refer to the underlying 
space Mn as the phase space. 

Definition 3.7. The phase portrait of a system of differential equations (3.1), is the set 
of all orbits of (3.1) in the phase plane. 

Obviously we cannot draw all the orbits so the phase portrait is just a simplified graph 
showing several orbits. 

Definition 3.8. A equilibrium point of the system (3.1) is defined intuitively as a point 
x — (x~i, x~2, • • •, xn) where there is no change in the system, i.e, a point which satisfies 

0 = fi {x~i,x2, • • -,xn) 

0 = J2 {X~1,X~2, • • • ,X~n) 

0 = fn (X~1,X2, ...,XN). 

Points which do not satisfy the above equations are called regular points. 

3.1.1 Planar Dynamical system 

The system (3.1) is defined on the space MP. In this work, the considered Duffing equation 
is defined on M2 as we wi l l see in subsection 4.1. The planar dynamical system is given 
by 

x2 = h{xi,x2). 

In planar dynamical systems and for the scope of this work, we classify the orbits of (3.4) 
as homoclinic orbit, heteroclinc orbit and periodic orbit. 

19 



Definition 3.9. ([11, Chapter 1, Definition 1.4]). A cycle is a periodic orbit L 0 , such 
that each point XQ G LQ satisfies <t>t+T0(xo) = 4>t(xo) wi th some T 0 > 0, for all t G T . 

• A periodic orbit corresponds to closed curves which represents the periodic solutions 
of the system (3.4). 

• Homoclinic orbits are orbits which converge to the same equil ibrium point for t —> oc 
and t —> — oo. 

• Heteroclinic orbit are orbits for which t —> oo converges to one equil ibrium point 
and t —>• — oo converges to another equil ibrium point. 

Definition 3.10. Given the system (3.4), the matrix 

is called the Jacobian matrix of / = (/i, f?) at the point x. 

Definition 3.11. A n equilibrium point x is called a hyperbolic equilibrium point of the 
planar system (3.4) if none of the eigenvalues of the matrix Df (x) have zero real part. 

Remark 3.12. To analyse a nonlinear system, it is useful to determine its equilibrium 
points and to describe it's behaviour near the equilibrium points. It is shown that the 
local behaviour of the nonlinear system (3.4) near a hyperbolic equil ibrium point x is 
qualitatively determined by the behaviour of the linear system 

where the matrix A = Df(x), near the origin(see section 2 of [3] for review). The system 
(3.6) is referred to as the linearization of (3.4) at x. 

Definition 3.13. A n equil ibrium point x of (3.4) is called a sink if all of the eigenvalues 
of the matrix Df (x) have negative real part; it is called a source if all of the eigenvalues 
of Df (x) have positive real part; and it is called a saddle if it is a hyperbolic equilibrium 
point and Df (x) has at least one eigenvalue with a positive real part and at least one 
wi th a negative real part. 

Definition 3.14. A n equil ibrium point x G J is stable if for every e > 0 there exists a 
5 > 0 such that for each x0 G J 

|\x — x0\| < S 

implies that for the solution 0 ( - ,x o ) , 

\\<j)(t,x0) -x\\ < e V t > 0 . 

If the equil ibrium point does not satisfy these conditions, then it is unstable. 

Definition 3.15. A n equilibrium point x is asymptotically stable if it is stable and there 
exists S > 0 such that for each x0 G J such that 

Df(x) (3.5) 

x' = Ax (3.6) 

x — x0\\ < 5 

implies 

20 



Remark 3.16. A n equilibrium point can be classified as stable or unstable from computa­
tions of the Jacobian matrix (3.11) and it is given by the following theorem(see, e.g.,[3]). 

Theorem 3.17. Consider the hyperbolic equilibrium point x of (3.4)- x is stable if all 
the eigenvalues of the matrix Df{x) have negative real part and it is unstable if all of the 
eigenvalues of Df(x) have positive real part. 

Remark 3.18. We can infer from the above theorem also that a hyperbolic equilibrium 
point x is unstable if the eigenvalues of the matrix Df{x) are such that, at least one has 
positive real part and at least one has negative real part. 

If the equilibrium point is non hyperbolic, the theorem above does not apply hence we 
use the next theorem to analyse its stability. 

Theorem 3.19. ([3, Section 2.9, Theorem 3]). Let J be open and J C R2 such that 
XQ G J. Suppose that f G C 1 ( J ) and that f (x0) = 0. Suppose further that there exists a 
real valued function V G C 1 ( J ) satisfying V (xo) = 0 and V(x) > 0 if x ^ XQ. Then 

a. ifV'(x) < 0 for all x G J, x0 is stable; 
b. if V'(x) < 0 for all x G J\ {x0} , x 0 is asymptotically stable; 
c. if V'(x) > 0 for all x G J\ {XQ} , xo is unstable. 

Where 

V'(x) = V'xx (x1,x2) fi (xl,x2) + (xl,x2) f2 {x1,x2) for x = (x1,x2) G J. 

The function V(x) is known as the Lyapunov function. 

3.1.2 Hamiltonian system in M? 

The Hamiltonian system is a special type of nonlinear dynamical system which is used to 
describe several physical phenomena. The main advantage of this system is its ability to 
generate the global phase portrait of a given dynamical system in a more elegant way. 

Definition 3.20. Let J be an open subset of M 2 and let H G C 2 ( J ) . A system of the 
form 

dH(xi,x2) 
x' 

1 dx 2 
dH(xi,x2) 

2 dxi 

is called a Hamiltonian system wi th 1 degree of freedom on J. 

Clearly, (3.7) is a special case of the planar system (3.4) wi th 

dH(xl,x2) dH(xl,x2) 
fi{x1,x2) = ^ , J 2 [ x u x 2 ) -

(3.7) 

OX2 OX\ 

Second order differential equations of the form 

y" + /(z/) = o, (3.* 
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are known as conservative systems and they are special types of Hamiltonian systems as 
we w i l l see in section 4.1. Converting (3.8) to a system of differential equations, we can 
let x\ = y and x2 = y'. So (3.8) becomes 

x1 = x2 

The Hamiltonian of (3.9) is given by 

H(x1,x2) 
•'-2 

2 + Jo f { s ) d S -

(3.9) 

(3.10) 

In the modelling of physical systems, the Hamiltonian represents the total energy. 

Definition 3.21. Let c e l . The level set Xc of the Hamiltonian H is given by 

Xc = {(x1,x2) G M2 : H(x1,x2) = c}. 

Theorem 3.22. ([3, Section 2.14, Theorem 2J). The total energy H(xi,x2) of the Hamil­
tonian system (3.7) remains constant along orbits of (3.7). 

From Theorem 3.22, if we have a point XQ G J where J C 1 2 and 0(-, XQ) is a solution of 
the ini t ia l value problem (3.7),(3.2) on the interval I(XQ) C M , then 

H(<P(t,x0)) = H(x0) V t G J ( x 0 ) . 

Definition 3.23. A n equil ibrium point x of the system 

x' = f(x) 

at which Df (x) has no zero eigenvalues is called a nondegenerate equilibrium point of 
the system, otherwise, it is called a degenerate equil ibrium point of the system. 

It should be noted however that any nondegenerate equilibrium point of the planar system 
is either a hyperbolic equil ibrium point or a center of the linearized system. 

Theorem 3.24. ([3, Section 2.14, Theorem 2]) Any nondegenerate equilibrium point of an 
analytic Hamiltonian system (3.7) is either a (topological) saddle or a center; furthermore, 
x is a (topological) saddle for (3.7) if and only if it is a saddle of the Hamiltonian function 
H(xi,x2) and a strict local maximum or minimum of the function H(xi,x2) is a center 
for (3.7). 

Remark 3.25. From Theorem 3.24 we can deduce that given the Jacobian matrix of (3.7) 
at the equilibrium point x 

d2H ,_x 

M(x) 
dx2dx\ 

d2H 
dx\ 

ix 

x 

d2H 
OXn IX) 

d2H 
dx2dx\ x 

(3.11) 

if det(M(x)) < 0 then x is saddle of 3.7 and x is a center if det(M(x)) > 0. 
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3.2 Method of Lower and Upper functions 
Consider a general periodic nonautonomous second order differential equation of the form 

u" = f(t,u) (3.12) 

u(a) = u(b) , u\a)=u'{b). (3.13) 

Where b > a and / : [a, b] x 1 R be a continuous function of u and t. 

Definition 3.26. A solution to (3.12) is a function u : [a, b] —> M which has continuous 
derivatives up to the second order and satisfies (3.12) identically. 

Definition 3.27. ([4, Chapter 1, Definition 1.1]). A function a G C2(]a,b[) f l C ^ a . f t ] ) is 
a lower function of the periodic problem (3.12),(3.13) if 

1. For all t e]a, b [, a"(t) > f(t, a(t)), 
2. a(a) = a{b),a'(a) > a'(b). 

A function (3 G C2(]a, b[) n C\[a, b\) is an upper function of (3.12),(3.13)) if 
1. For all t e]a, b [, (3"{t) < f(t, (3{t)), 
2. /3(a) =/?(&),/3'(a) < (3'(b). 

Theorem 3.28. Let a and (3 be lower and upper functions of (3.12),(3.13) such that 
a ^ j3, define E = {(t,u) G [a, b] x M | a(t) ^ n ^ /?(£)} assume f : E —>• K. is 
continuous. 
Then the problem (3.12),(3.13) /ias at /east one solution u G C 2 ([a,6]) snc/i that for all 
t G [a, 6] 

a(t) < u{t) < 

The proof of the above theorem can be found i n [4]. 

Theorem 3.29. Letp,q : [a, 6] —>• K. 6e continuous functions such that p(t) > 0,q(t) > 
0 Vt G [a, 6] and / satisfies 

f(t, z)sgnz ^ p(t)\z\ — q(t) V t G [ a , 6 ] , and Wz G M, 

where 

sern z = < 

1 /or z > 0 

0 /or z = 0 

— 1 /or z < 0. 

Moreover, let a and (3 be upper and lower functions of the problem (3.12),(3.13). Then 
the problem (3.12),(3.13) has at least one solution u such that 

mm{a(tu),/3(tu)} < u(tu) < m a x { a ( t „ ) , /3(tu)}, 

for some tu G [a, b]. 
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This theorem follows from [7] Theorem 1.1, remark 1.2 and also from [8] remark 8.4. 

Consider the linear differential equation for free undamped oscillator 

u" = po(t)u + q0(t). (3.14) 

We wi l l need the corresponding homogeneous equation 

u"=p0(t)u. (3.15) 

The coefficients are continuous on some interval [a,b]. The Fredholm Alternative holds 
for (3.14),(3.13) and it is presented in the next theorem. 

Theorem 3.30. The problem (3.14),(3.13) has a unique solution for every q0 if and only 
if the problem (3.15),(3.13) has only the trivial solution. 

This theorem follows from [5], Chapter X I I , Part I, Section I. 

Theorem 3.31. Let the problem (3.15),(3.13) have a non trivial solution. Then the 
problem (3.14),(3.13) is solvable if and only if q0 satisfies 

rb 
/ qo{s)u0(s)ds = 0 
J a 

for every solution u0 to the problem (3.15),(3.13). 

The proof of this theorem can be found in [5]. 

Theorem 3.32. A necessary condition for the equation (3.15) to have a non trivial so­
lution possessing two zeroes is that 

rb 4 
/ \po(s)}_ds > . 
J a o — a 

This follows from [5], Corollary 5.1 . 
Here, [po(s)] is called the negative part of the function and it is given by; 

r / . x i \Po(t) \ ~Po(t) 
[ P ° ( * ) ] _ = 7> 

In general, for x G K. we have 
\x\ + X 

X 

X 

2 
\x\ — X 

2 
Theorem 3.33. A necessary condition for the problem (3.15),(3.13) to have a non trivial 
solution possessing two zeroes is that 

b 16 
\p0(s)}_ds > 

b — a 

This follows from [6], Lemma 3.12. 
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4 Analysis of solutions to the Duffing Equation 
In this section, we consider first the autonomous case of the considered Duffing equation. 
We w i l l determine the equil ibrium points and from that obtain the level sets to draw the 
phase portrait of the equation. We then further consider the non autonomous case of the 
Duffing equation where we prove existence and uniqueness of T-periodic solutions to the 
considered Duffing equation. 

4.1 Autonomous Case 
Considering the autonomous Duffing equation 

y" = ay-by3 (4.1) 

where a, b are constant and a, b > 0. To describe analytically the orbits, we can represent 
it as a system of first order differential equations by setting 

xi — y and x2 = y', 

then 
x\ = y' = X2, x2 = y" = ax\ — bx\. 

Hence we obtain the system 

x ' r X 2 „ 3 ( « ) 
x2 = ax\ — ox\. 

It is clear that the system is of the same form as a conservative system which is a special 
type of Hamiltonian system(see section 3 for review). The conservative system is of the 
form 

x[ = x2, 

X2 = ~f(Xl), 

where 

f(xi) = —ax\ + bx\ 

and the Hamiltonian of the conservative system is given by 
„2 

H(x1,x2) = ^-+ i' f(s)ds 
2 Jo 
x2 

= {-as + bs3)ds (4.3) 
2 Jo 

x\ ax\ bx\ 
= ~2 ~ ~T + ~T' 

To determine the equil ibrium points, we know that these occur when there is no change 
in the system, that is, when all derivatives are equated to 0. A t equilibrium points 

x2 = 0, 

ax i — bx\ = 0, 3 , (4-4) 
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x2 = O, 

X\ — O, X i = ± 

Hence we obtain the equil ibrium points 

s i = (0,0), s 2 

(4.5) 

,0 S3 (4.6) 

We classify each of the equil ibrium points as follows. 

C A S E s i : Considering the equil ibrium point s\, the Jacobian matrix (3.11) is given by 

M ( S l ) = a - 3 6 * ? I 

0 1 
a 0 

and the eigenvalues are then; A i = \/a and A 2 = — y/a. 
Hence we can deduce from definition 3.13 and remark 3.25 that S\ is a hyperbolic equi­
l ibr ium point and a saddle. It follows from Theorem 3.17 that s\ is unstable. 

C A S E s 2 , s 3 : Considering the equil ibrium point s2 and S 3 , the Jacobian matrix (3.11) 
is given by 

0 l " 
M{s2) = M ( s 3 ) -2a 0 

and the eigenvalues are then; A i = i\/2a and A2 = —iy/2a. 
We can infer from definition 3.13 and remark 3.25 that s2, S3 are non hyperbolic equilib­
r ium points and centres. A s for the stability we can use theorem 3.19 to determine the 
nature. 
If we choose the modified Hamiltonian(Total energy) as our Lyapunov function, we obtain 

V{xx,x2) 
.1 •) a.v l bx\ a 

H + 
2 4 46 

x | 0 
2 4 

xi ~ 

{—axi + bx\)x2 + x2(axi — bx\) 

0. 

Hence the equil ibrium points s2, S3 are stable by theorem 3.19. 

In order to describe the orbits of the system, we need the level set of H given by 

Xc = {(xux2) e R2 : H(xux2) = c} (4.7) 

where c is some admissible constant. 

The level curves corresponding to the equil ibrium points occurs at H(si) = 0 and 
H(s2) = H(s3) = — |r that is at c = 0 and c = — |r. We wi l l then analyse the level curves 
at these values and other regions of admissible c values. 
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Case 1 : For c = 0(X 0 ) 
The level curve for this case is given by H(x\,X2) = 0, hence we obtain 

X2 , ^ 4 _ a x i 

2 + 4 X l 2 

x2 

= 0 

bx\ 

x2 = ±daxj - -x\ 

with condition that ax\ — \x\ ^ 0. 

A 9 
-xx — axx ^ 0 

2 X l a X l + 2b 2b 
^ 0 

x: 
ay a2 

b) ^ 2b 

x. 
2a 2 a 

x\ < 

\ x\\ ^ 

2a 
V b 

a 

2a 
T 
^2a 

J 

'2a 

so we have 

2a 
— \ — ^ X\ < 0 or 0 < Xi ^ 

V b 
-orxi = 0. 

For the interval y ^ i i < 0 we have that 

x2 = ±dax( - -x\. 

for the interval 0 < x\ ^ y we have that 

x 2 = ±\\ax{ - -xi, 

for x i = 0, we have £2 = 0 
The level curve for this case is comprised of two homoclinic orbits and the point s\ 
which is shown in the image below 
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Figure 4.1.2: Level curves of X0 for a = b = 1 and a — b — \ 

Case 2 : For c ib • X 
4h 

The level curve for this case is given by H{x\,X2) = —fr, hence we obtain 

~, 2 
•'-2 

xi + 

We have that a, 6 > 0 so x<i = 0 and 

ax ; 
2 + 4 X f -

2 _ l _ _ 4 _ 2 

3̂ 2 "I- 2*̂ 1 OjOu^ 

,7'T 
a V 
6 J 

a ' 

^2 + 

6 J 

a y 

6 J 

= 0 

46 

26 
a* 

2b 

= 0 

,7'T 
a 
b 

X\ — ± 

The level curve for this case consists of the points S2 and S3 so we have that X 

as shown in the image below 
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1 

0 .5 

2 -1 .5 - 1 -0.5 0 0.5 1 1 5 

—1_ .•j 

-1 

Figure 4.1.3: Level curves of X_g? for a = b = 1 
4b 

Case 3: For c > 0 
The level curves for this case are given by H(xi,X2) = c, hence we obtain 

— + -x\ = c. 
2 4 1 2 
2 ^ 4 2 o 

Since c > 0 

wi th condition that 

2 ^ 4 2 o 

6 
x 2 = ± y axf - - x f + 2c, 

a x 2 - ^ x * + 2c > 0 

6 / 9 a \ 2 a 2 

2 a \ 2 4c a 2 

, a \ 2 46c + a 2 

* - b ) < ^ 2 ~ 

(4.9) 
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Case 4: For < c < 0 
From equations (4.8) and (4.9) 

Ob o — (XOb 1 -x\ + 2c 

x 2 = ± y ax\ — -xf + 2c 

wi th the condition that 

so we have 

ax\ - ^x\ + 2c ^ 0, 

a Ubc + a2 

b2 

I Abe + a2 

b2 
^ x 

/46c + a2 

b2 

Ubc + a2 

b2 

Ubc + a2 

b2 

(4.10) 

Since c < 0, then § - J^i¥- > 0, thus equation (4.10) yields 

/46c + a2 

62 \ 
a / 46c + a2 

b + V b2 ' 

We have two orbits for — ̂  ^ c < 0. For the interval y | — 
we have 

62 62 

x 2 = ± y axf — - x f + 2c. 

For the interval -^/f + ^ ^ ± ^ < x i < -^/f -
we have 

x 2 = ± y axf — - x f + 2c. 

The image for this case is shown on the next page 
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Figure 4.1.5: Level curves wi th — jr < c < 0 for a = 6 = 2, c = — \ and c = — \ 

Case 5: For c < 
For this case, we assume that X c 7̂  0. It follows from (4.9) that 

ax\ - + 2c ^ 0, 

b ( 9 a \ 2 „ a 2 

2 fa" ft) < 2 C + 2 T ' 
a 2 

46 
2 

This is a contradiction, hence for c < — ̂  we have Xc = <ft. 

From the cases established, we obtain the phase portrait of the autonomous differential 
equation (4.1) as follows 
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r 

Figure 4.1.6: Phase portrait of (4.1) wi th a = b = 2 

The phase portrait consists of the three equil ibria(si , s2 and S 3 ) , two homoclinic orbits 
and and closed periodic orbits. 

1. T i and T 2 consists of periodic orbits corresponding to positive and negative periodic 
solutions of (4.1). The level of Hamiltonian for this case is H(x\,x2) = c wi th 

4b ^ u ^ u -

2. T 3 and T 4 consists of two homoclinic orbits and the equil ibrium point s\ and forms 
the separatrix cycle of the phase portrait . The separatrix cycle divides the phase 
portrait into closed periodic orbits and sign changing orbits. The level of Hamilto­
nian for this case H(x\,x2) = c wi th c = 0 and correspond to non constant solutions 
such that l i m y(t) = Si and l i m y(t) = S\. 

3. T5 consists of sign changing orbits which correspond to periodic sign changing so­
lutions. The level of Hamiltonian for this orbit is H(x\,x2) = c wi th c > 0. 

4. The points Si and s2 which are the equil ibrium points of (4.1) are the constant 
solutions of the system. 
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4.2 Nonautonomous Case 
Consider 

u" = p(t)u - h(t)u3 (4.11) 

such that p, h : R —> R are continuous and T-periodic functions. 

Theorem 4.1. Let pit) > 0,h(t) > 0 Vt G R, t/jen t/je equation (4.11) aas at /east one 
positive T-periodic solution. 

To prove this theorem, we need to first establish the following lemmas. 

Lemma 4.2. If pit) > 0,h(t) > 0 Vt G R t/jen t/jere exists upper and lower function 
a and (3 of the problem 

u" = p{t)u - h(t)u3, 

u(0) = u(T) , u'(0) = u'[T) 

such that 

0</3(t)^a(t) V t e [ 0 , T ] . 

Proof. Since pit) > 0, h(t) > 0 Vt G R, there exists a positive constant c such that 

c > p ® Vt g R. (4.12) 
\h(t) 

If we put a(t) = c Vt G R, then since a(t) is constant then it satisfies the boundary 
conditions 

a(0) = a(T) = c, 

a(0) = a'(T) = 0 
Moreover, (4.12) yields 

h{t)c2 ^ pit) 

rearranging and mult iplying both sides by c 

0 ^ p{t)c - h{t)c3 

but a(t) = c and a"it) = 0 hence 

a"it) ^ p(t)a(t) - h(t)a3(t) Vt G [0, T] 

=4* a(t) is a lower function by definition. 
Similarly, there exists another constant d > 0 such that 

P ^ Vt g R. (4.13) 
\/>(t) 

If we put j3(t) — d Vt G R, since /3(t) is constant, then it satisfies the boundary condi­
tions and 

P'(t) = Q,=> p"(t) = 0 Vt G R. 
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Moreover, from (4.13) we get 
h(t)d2p(t), 

and mult iplying both sides by d and rearranging 

0<p(t )/3( t ) -Mt)/3 3 ( t ) G [0,71 

since (3"{t) = 0 

(5"{t) ^p{t)d-h{t)d3{t). 

So by definition, j3(t) is an upper function and we can deduce from from (4.12) and (4.13) 
that 

0 < (3{t) < P(t) 

=>> 0 < (3{t) < a(t) Vt G M 

• 
Lemma 4.3. Le£p,ii : [0, T] —> M 6e 6o£/i continuous functions such that u has continuous 
derivatives up to the second order and u{t) > 0 Vt G [0,T],u(0) = u(T),u'(0) = u'{T), 
u satisfies 

u"(t) <p(t)u(t) V £ G [ 0 , T ] . 

Then 

M < me^ !° P ( s ) d s , 

where 

M = m&x{u(t) : t G [0,T]}, 

m = mm{u(t) : t G [0,T]}. 

The proof of this can be found in [6]. 

Now we present the proof of theorem 4.1. 

Proof. It follows from lemma 4.2 that 3 a, (3 such that 

0<(3(t)^a(t) V £ G [ 0 , T ] (4.14) 

a"{t) ^ p{t)a{t) - h(t)a3(t)Vt G [0, T] 

a(0) = a{T),a'{0) ^ a\T). 
(4.15) 

(4.16) 
(3"(t)>p(t)(3(t)-h(t)(33(t)Vte[0,T] 

/3(0) = /3(T),/3'(0)</3'(T) 

We introduce a function to bound the right hand side of (4.11). To do this first we define 

S:=m&x{a(t) : t E [0,T]} • e V ^ ^ . 

We introduce the cutting function ip(z) := [z]+ — [z — 8]+. Clearly, 
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0 < <p(z) ^5 V z e R . 

Consider the auxiliary periodic problem 

'u" = p{t)u - h{t)[ip{u)f 

< u(0) = u(T) 

u'(0) = u'[T). 

(4.17) 

(4.1J 

Since 

sem z = < 

1 for z > 0 

0 for z = 0 

- 1 for z < 0. 

we have 

(p(£)<2 — /i(t) [<̂ (<2)]3) sgn z = p(t)z sgn z — h(t) [<p(z)]3 sgn, 

From equation (4.17) 
[<p(z)]á sgn z ^ [<p(z)]á^6á, 

hence 

)z - h{t)[v(z)f) sgnz ^ pit) | z | -h{t)S3 \/z G R , V * G [0,T]. 

We know that 0 < /3(f) < a(t) < o" V* G [0, T] 

It follows from (4.14)-(4.16) and the definition of ip that <p(a(t)) = a(t),ip((3(t)) 
f3(t) V t e [ 0 , T ] 
ait) and j3(t) are lower and upper functions of the auxiliary problem (4.18) 

Therefore all hypotheses of Theorem 3.29 are satisfied wi th a := 0 and b := T , 
f(t, z) := pit)z - h(t)[if(z)}3 and := 53h(t) 

Hence the auxiliary problem (4.18) has a solution u such that 

0 < /3(tu) < u(tu) < a(* u ) for some tu G [0,T] (4.19) 

We wi l l extend the function u T-periodically on the whole real axis 

1. We first show that 
u(t) ^ 0 Vt G M 

Suppose on the contrary that there exists t 0 G M. such that u(t0) < 0, (4.19) yields 
that 

such that 

Therefore 

3 a eR,b e}a,a + T[ 

u(t)<0 V i e ] a , 6 [ , u(a) = 0, u(b) = 0. 

p(u(i)) = 0 V i e [a, 6], 
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from equation (4.18) 

u"(t)=p(t)u(t)-h(t)[V(u(t))]3 

= p(t)u(t) Vt G [a, 6] 

u is a solution to the equation 
u" = p(t)u 

with two zeroes on the interval [a, b]. 
It follows from Theorem 3.32 with po(t) = pit), that 

[b\p(s)}-ds > (4.20) 

but we assume that pit) > 0 Vt G M , hence [p(t)]_ = 0 Vt G K. which is a contra­
diction to equation (4.20). 

2. We show that u(t) > 0 V t e l . 
Suppose on the contrary that there exists t 0 G K. such that w(t 0) = 0. 
in view of the above proved item (1), there exists a, b G K. s.t a < to < b and 

0 < u{t) ^5 Vt G [a, b] u{a) > 0, 

=><p(u(i)) = u(t) Vte[a,b]. 

B y equation (4.18) 

u"{t)=p{t)u{t)-h{t)[p{u{t))f 

= p{t)u{t) - h(t)u3(t) Vt G [a, b] 

u"(t) = (p{t) - h(t)u2(t)) u(t) Vt G [a,b]. 

u is a solution to the linear equation 

w " = (p(t) - h(t)u2(t))u (4.21) 

u(t) > 0 Vt G [a, 6], u (t 0) = 0. 
u is continuously differentiable function, hence u'(to) = 0 and u is a solution to 
(4.21) satisfying init ial conditions u(t0) = 0,u'(to) = 0 

The init ial value problem for the equation (4.21) is uniquely solvable and its so­
lution is w(t) = 0 for t G [a, b] which implies that u(t) = 0 Vt G [a, b] but 
u(a) > 0 which is a contradiction. 

3. F inal ly we prove that 
u(t) ^5 t e R . (4.22) 

From (4.18) 

u"(t) = p(t)w(t) - /i(t)[<p(u(t))}3 Vt G M 

Moreover 99 is everywhere non-negative and thus, 

<p(u(t)) ^ 0 Vt G M . 
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O n the other hand. 
h(t) > 0 Vt e 

hence u"{t) < p(t)u(t) Vt E M 
From lemma 4.3 

>\Ji Jo p i s ) d s max{u(t) : £ e [0,T]} < min{u(£) : £ e [0,T]} • eV 4 Jo " w " . (4.23) 

Since -u (£„) < a (tu), it follows from equation(4.19) that 

mm{u(t) : i G [0 ,T] }< max{a(t) :te[0,T}} 

Hence by equation (4.23) 

max{-u(£) : t E [0,T]} < max{a(t) : t E [0,T]e 

Therefore, (4.22) holds and 

u{t) > 0 => (p(u(t)) = u{t) Vt E M 

Hence a is a solution to (4.11) and -u > 0 and is T-periodic. 

\Ji So P(s)ds 

• 
Remark 4.4. In the autonomous case we have shown that equation (4.1) has three equili-
bia which are zero, positive and negative. This corresponds to constant solutions(periodic 
solutions wi th any period T ) . Moreover we have two homoclinic orbits, periodic solutions 
wi th positive and negative orbits and sign changing solutions. In the non autonomous 
case, we have proved the existence of at least one T-periodic positive solution which co­
incides wi th the facts known in the autonomous case. 

Next, we w i l l show that given two distinct positive solutions T-periodic in non-autonomous 
case, they are not ordered but oscillates around each other. 

Theorem 4.5. Let h(t) > 0 V t G R . Then for any distinct positive T-periodic solutions 
u\ and U2 to equation (4.11), the conditions 

m.iw{u2{t) - m(t) : t E [0, T]} < 0 (4.24) 

and 
max{u2(t) - ux(t) : t E [0,T]} > 0 (4.25) 

holds. 

Proof. Let u\ and u2 be distinct positive T-periodic solutions to (4.11). 
Suppose on the contrary that either (4.24) or (4.25) is not satisfied so without loss of 
generality, we can assume 

0<u2(t) < u i ( * ) V* E [0,T],u2(t) ^ Ul(t) (4.26) 
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u'[{t) = p{t)ui(t) - h(t)ul(t) 

= (p{t)-h{t)ul{t))Ul{t) V t e [0,T] 

put po(t) = pit) - h{t)u\{t) for t e [0,T] 

u'l(t) = p0(t)Ul(t) V t e [ 0 , T ] 

u\ is a solution to the equation 

z" = p0{t)z 

and satisfies 
u1(0) = u1(T),u'1(0) = u'1(T). 

O n the other hand 

u'2\t) = p(t)u2(t) - h(t)ul(t) 

= pit) - h{t)u\{t)] u2{t) + hit) \u\{t) - u2
2{t)] u2{t) 

if we put 

Then 

qQ(t) = h(t) u\{t) - u2
2{t) u2{t) Ví e [0,71 

u2{t) = p0{t)u2{t) + q0{t) V t G [ 0 , T ] 

u2 is a solution to the equation 

z" = p0(t)z + q0(t) V t G [ 0 , T ] , 

and satisfies 

u2(0) = u2(T),u/
2(0) = u/

2(T). 

Theorem 3.31 guarantees that u\ is orthogonal to qo, hence 

f 
Jo 

h(s) u\(s) - u2
2{s) u2(s)ui(s)ds = 0 

• 
Now we prove uniqueness, under the additional assumption that pit) = h(t). So the 
equation (4.1) is of the form 

u" = p(t)u - p(t)u3 

u" =p(t)u(l-u2) [ } 

A solution to (4.27) is u(t) = 1 which is T-periodic for every T > 0 

Theorem 4.6. Let pit) > 0 Vt eR and 

JQ
Tp(s)ds^^ (4.28) 

Then the constant solution u(t) = 1 is the unique T - periodic positive solution to equation 
(4.27) 
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To prove this we first state the Holder's inequality as a lemma. 

Lemma 4.7. Let f, g : [a, b] —> M continuous functions and A, /x > 0, sttc/i t/iat 

— H — = 1. T/ien 
A /i 

\f{s)g{s)\ds<[ \f\s)\xds) / \g{s)\»ds\ 

Now we can present the proof of Theorem 4.6 which is motivated by the results of [6]. 

Proof. Suppose on the contrary that u is a positive T-periodic solution to equation (4.27) 
such that u{t) ^ 1. 
It follows from Theorem 4.5 that 

m i n H t ) - l : t e [ 0 , T ] } < 0 

max{w(t) - 1 : t e [0,T]} > 0 1 ' ' 

Equation (4.27) implies that 

rT rT 

u"(s)ds= p(s)u(s)ds- p(s)u3(s)ds (4.30) 

but the left hand side yields u'(T) — u'(0) and from boundary conditions we know that 
u'{T) = u'(0) hence the left hand side reduces to 0. 

rT 
p(s)u(s)ds = / p(s)u3(s)ds (4.31) 

Jo 

Now making use of lemma 4.7 wi th A = 3/2, /x = 3, f(t) = p2/3(t), g(t) = p1/3(t)u(t), 
recall that 

p{s)u{s)ds = J p2/3{s) (p1/3{s)u{s)) ds 
2/3 / T \ 1/3 

p(s)u (s)ds 

from equation 4.31 

\ 2 /3 / T \ 1/3 

p(s)u(s)ds ^ I / p(s)ds / p(s)u(s)ds I 

1/3 
dividing both sides by the term (^JQ p(s)u(s)di 

V / 3
 fT 2/3 p(s)u(s)ds < / (pop(s)ds) 

p(s)u(s)ds < I p(s)ds (4.32) 
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Again from lemma 4.7 wi th A = 3, fi = 3/2, f(t) = p1/3(t), g(t) = p2/3(t)u2(t), recall 
that 

Tp(s)u2(s)ds = f p1/3(s) (p2/3(s)u2(s)) ds 
1/3 / rp \ 2/3 

p(s)u (s)ds 

Since (4.31) holds, 

The inequality becomes 

T PT 
p(s)u3(s)ds = / p(s)u(s)ds 

o Jo 

1/3 / T s, 2/3 

p(s)M 2 (s)rJs ^ l y p(s)rJs) I J p(s)u(s)dsj 
T I PT \ I I pT 

2/ 

from equation (4.32) 

rp / rp \ 1/3 / rp \ 2/3 

p(s)u2(s)ds ^ fy p(s)dsj (J p(s)dsj 
T PT 

p(s)u2(s)ds ^ / p(s)ds (4.33) 
o Jo 

If we consider the difference u(t) — 1, it satisfies 

(U(t) - iy = P(t)(u(t)) (i - (u(t))2 

= [-p(t)u(t)(l + u(t))](u(t) - 1) Vt G M 

If we set — p(t)u(t)(l + u(t)) = po(t) and let w(t) = u(t) — 1, then we have 

w"{t) =p0{t)w{t) V t e M 

w is a solution to the linear homogeneous equation 

z" = Po(t)z 

w is T-periodic because it is the difference between two T-periodic functions. 
Equation (4.29) implies 

mm{w(t) : t E [0,T]} < 0 

max{w(t) : t e [0,T]} > 0 

From Theorem 3.33 
r T 16 

[Po(s)]_ > 
0 6 — a 

Since > 0, then po(t) is everywhere negative 

[po{t)}_ = p{t)u{t){l + u{t)) VteR 

o 

t 15 
p(s)(l + u(s))u(s)ds > — . (4.34) 
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If we consider equations (4.32) and (4.33) we obtain 

/ p(s)u(s)(l + u(s))ds — / p(s)u(s)ds + / p(s)u2(s)ds 
Jo Jo Jo 

From (4.34) and (4.35) 

<2 f p(s)ds 
Jo 

p(s)ds > 

(4.35) 

This is a contradiction to (4.28) hence u(t) = 1 is a unique T-periodic solution to equation 
(4.27). • 

Corollary 4.8. Let y be a non constant positive periodic solution to the equation 

y" = ay- by3 (4.36) 

with a, b > 0 
Then the minimum period T of y satisfies 

2\/2 

Proof Put 

Then 

T > 

Y(t) = \]-y(t) 

Y"(t) = aY(t) - aY3{t) 

Y"(t) = aY(t) [ l - Y2(t) 

(4.37) 

(4.38) 

since Y is positive non constant T-periodic function, using Theorem 4.6 with p(t) = a, 
then 

ads > 
T 

aT > 
T 

T > -
a 

If we take the square root of both sides, since both sides are positive we get 

T > 

• 
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5 Simulations 
To support our results, we perform simulations wi th M A T L A B ™ on the considered Duff­
ing equation which gives a better il lustration of the facts known in the qualitative analysis 
of both the autonomous and non autonomous case. The M A T L A B ™ function ode45 is 
used to solve the Duffing equation numerically to obtain the desired results which corre­
sponds to the results already obtained. This function is M A T L A B ' s standard solver for 
ordinary differential equations and uses the Runge-Kutta method with a variable time 
step for efficient computation (see [9] for review). 

5.1 Autonomous case 
There is a continuous dependence of init ial conditions on the solution of a differential 
equation and as a result of this, the trajectory corresponding to a solution of the differ­
ential equation wi l l depend on the chosen init ial condition. The constants a and b are 
chosen to be a = 1 and b = 2, so the equation (4.1) becomes 

y" = y-2y\ (5.1) 

which can be represented as 

x[ = x2 

x'2 — X\ — 2x\. 
(5.2) 

To obtain better accuracy, the relative tolerance and absolute tolerance are both set 
to l e — 8. In subsection 4.1, we presented four cases representing different orbits of 
the solution to the Duffing equation. In this subsection, we present again four cases 
corresponding solutions of (5.1) based on different ini t ia l conditions. 

Case I: For this case we choose the init ial condition y(0) = y |, 2/'(0) = 0 and we can 
see that we obtain constant solution which corresponds to the equil ibrium point s2(see 
(4.6)). The image is shown below. 

0 1 2 3 4 5 

(a) y(t) against time (b) Phase plane plot 

Figure 5.1.7: Solutions of (5.1) corresponding to y(0) = J\, y'(0) = 0 
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Case II: Here, we choose the ini t ia l condition y(0) — y^o, 2/'(0) = 0 and we obtain 
periodic solution which correspond to the periodic orbits obtained in Case4 of subsection 
4.1. The results are shown below 

(a) y(t) against time (b) Phase plane plot 

Figure 5.1.8: Solutions of (5.1) corresponding to y(0) — JJQ, 2/'(0) = 0 

Case III: We choose the init ial condition y(0) = 1, y'(0) = 0 and we obtain again 
periodic solutions which converges to 0 as t —>• +oo. This is due to the fact that the case 
under consideration analogous to the autonomous case consisted of homoclinic orbits and 
the e q u i l i b r i u m point at the origin. The image is shown below 

•.-It:. 

(a) y(t) against time (b) Phase plane plot 

Figure 5.1.9: Solutions of (5.1) corresponding to y(0) = 1, y'(0) = 0 
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Case IV: Finally, we chose the ini t ia l condition y(0) = 1.12, y'(0) = 0 and we obtain 
again sign changing periodic solutions. This corresponds to the result obtained in Case 
3 of Section 4.1. The results are shown below in the figure 5.1.10 
The plot of solutions for a l l considered cases is shown in figure 5.1.11 
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5.2 Nonautonomous case 
We now consider the non-autonomous equation 

y" =p{t)y-h{t)y3. (5.3) 

We choose functions p(t) and h(t) which are T-periodic functions. The functions chosen 
as 

p(t) = 1 + Asm(^t 

h(t) = 2 + 
(5.4) 

wi th different amplitudes (A and B) and T has the same period as Case 4 of the au­
tonomous case in subsection 4.1. In the Case II of the autonomous simulation, we ob­
tained periodic solutions and we simulated wi th init ial condition y(0) = \f^, 2/'(0) = 0. 
To obtain the period of the solution in this case, we use the formula 

T 
X2 

, 0 ] ds, 

where T is the closed curve in the figure 5.1.8(b). We have found in Case 4 of section 
4.1 that . 

I b 
x2 = ± y ax\ - -x\ + 2c, 

and since we are considering the positive init ial condition, the interval for this solution is 

on the positive X\ axis and is given by Abc+o? 
h V b2 ^ X l ^ Y b ^ V b2 • 

We know the values of a and b so to determine the value of c, we substitute the init ial 
condition into x2 = 

+ Abc+a2 

ax\ — \x\ + 2c and obtain 

The period T is then 

T = 2 • 

2 • 

v/07 

v/07 

'03 

x\ -x\ + 2(-0.105) 

= dx\. 

dx\ 

'xj - xf - 0.21 

Solving the integral numerically, we obtain 

T Pa 4.5893. 
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We now substitute (5.4) into (5.3) wi th different A and B values and compare the so-
lutions(denoted by blue line) to the solution of Case II(denoted by red line) of the 
autonomous case and the results follows 

T imed) 

(a) Solution with A = 0, B = 0.01 

Time(t) 

(b) Solution with A = 0, B = 0.1 

(c) Solution with A = 0, B = 1 (d) Solution with A = 0.01, B = 0 

(e) Solution with A = 0.1, B = 0 (f) Solution with A = 1, B = 0 

Figure 5.2.12: Plots of nonautonomous case wi th y(0) 
10' 2/(0) = 0 
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4 6 
T i m e d ) 

(a) Solution with A = 0.01, B = 0.01 (b) Solution with A = 0.1, B = 0.1 

Time(t) 

(c) Solution with A = 1, B = 1 

Figure 5.2.13: Plots of nonautonomous case wi th y(0) 
10' 

2/(0) = 0 

O n the other hand, if A = 0 and B = 0, equation (5.3) has the constant y(t) = \J\ which 
is clearly T-periodic wi l l wi th period T = 4.5893. We compare the solutions of the init ial 
value problem 

y" = p(t)y - h(t)y3 

, y'(0) = 0 

wi th the solution y(t) = J\ of equation (5.1) and the results follows 
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4 6 
Time(t) 

(a) Solution with A = 0, B = 0.01 

Time(t) 

(b) Solution with A = 0, B = 0.1 

Time(t) 

(c) Solution with A = 0, B = 1 

Time(t) 

(d) Solution with A = 0.01, B = 0 

4 6 
T imed ) 

(e) Solution with A = 0.1, B = 0 (f) Solution with A = 1, B = 0 

Figure 5.2.14: Plots of nonautonomous case wi th y(0) = J\, y'(0) — 0 
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4 6 
T imed ) 

(a) Solution with A = 0.01, B = 0.01 

4 6 
T imed ) 

(b) Solution with A = 0.1, B = 0.1 

(c) Solution with A = 1, B = 1 

Figure 5.2.15: Plots of nonautonomous case wi th y(0) l 
2' 

3/(0) = 0 
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5.3 Summary of results 
The results obtained from all the simulations performed wi th the various init ial conditions 
and 

5.3.1 Simulation for autonomous case 

In the autonomous case we chose values for a, b and performed simulations with the 
different init ial values which corresponded to different solution curves or trajectories. It 
can be observed that the results obtained analytically, corresponds to the simulations 
under the condition that the simulation is performed under suitable tolerance levels and 
time intervals. It was however discovered that there are some numerical inaccuracies in 
solving numerically the autonomous differential equation with the init ial condition which 
yields homoclinic orbits. The ode45 solver in M A T L A B , on longer time intervals gives a 
solution which appears to be periodic for the case of homoclinic orbit which is not valid 
if solved analytically. 

5.3.2 Simulation for nonautonomous case 

In the nonautonomous case, we chose periodic functions for p(t) and h(t) in (5.4). The 
simulation for this case was done wi th varied amplitudes of the periodic functions and 
the period is set to the same value as the known period of the Case II of the simulation 
for the autonomous case. It can be observed that the period of the solutions in this case 
approaches the period of the Case II of the autonomous simulation as the amplitude 
approaches 0. However, for higher amplitudes, the solutions begin to exhibit chaotic 
behavior and are no more periodic. 
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Conclusion 
This work was aimed at analyzing the solutions to the Duffing equation considered and 
further perform simulations in M A T L A B to see how the analysis compares wi th numerical 
solutions. 

In the second section we derived the Duffing equation from a nonlinear oscillator using 
the Newton's second law of motion, Hooke's law and Taylor approximation. 

In the third section, we presented some theory from dynamical systems necessary for 
the analysis of solutions to the autonomous variant of the considered Duffing equation. 
Further, we presented some theory on method of lower and upper functions for a periodic 
problem which was necessary for the finding conditions guaranteeing existence of solutions 
in the nonautonomous case. 

In the fourth section we analyzed qualitatively the solutions to the considered Duffing 
equation. In the autonomous case, we found the equil ibrium points of (4.2), and wi th 
that derived all levels of hamiltonian corresponding to the solution of (4.1). In the last 

2 

part of subsection 4.1, we proved that for c < — |r of the hamiltonian level, (4.7) does 
not correspond to any solution of (4.1) and then generated the phase portrait from all the 
levels of hamiltonian considered. In the nonautonomous case of this section we proved 
existence of periodic solutions and uniqueness by making using of the method of upper 
and lower functions introduced in the third section. 

In the last section, we performed simulations of results from the previous sections. 
Due to dependence of solutions of differential equations on init ial conditions, we were 
able to simulate the solutions corresponding to the different levels of hamiltonian derived 
in the previous section. In the nonautonomous case we derived the period for the Case 4 
of subsection 4.1 and compared solutions of this case to the solution of (5.3) wi th p(t) and 
h(t) defined in (5.4). The solutions corresponding to the equilibria in the autonomous 
case was also compared wi th solutions of (5.3) having conditions (5.4). The results were 
then summarised for all the simulations performed. 
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A p p e n d i c e s 

A Autonomous case 
1 c l e a r a l l 
2 c l o s e a l l 
3 
4 9cWe d e f i n e r e l a t i v e t o l e r a n c e and a b s o l u t e t o l e r a n c e f o r t h e 

s i m u l a t i o n 
5 o p t i o n s = o d e s e t ( ' R e l T o l ' , 1 e —8, ' A b s T o l ' , 1 e—8); 
(i 
7 % D e f i n i t i o n of i n i t i a l v a l u e s f o r c o n s i d e r e d D u f f i n g e q u a t i o n 
s x s q r t = [ s q r t ( 0 . 5 ) , 0 ] ; 
9 x s q r t _ l = [ s q r t ( 0 . 7 ) , 0 ] ; 

10 xone = [ 1 , 0 ] ; 
11 x g l = [ 1 . 1 2 , 0 ] ; 
12 dx= @(t , x ) [ x ( 2 ) ; ( x ( l ) - 2 * x ( l ) ~ 3 ) ] ; 
13 
14 % N u m e r i c a l S o l u t i o n of t h e D u f f i n g e q u a t i o n on t i m e s p a n ( t s p a n ) 
is t s p a n = l i n s p a c e (0 ,10 , 1 0 0 0 0 ) ; 
16 [ 11 , x l ] = ode45 (dx , t s p a n , x s q r t , o p t i o n s ) ; 
17 [ t2 , x2] = ode45 (dx , t s p a n , x s q r t _ l , o p t i o n s ) ; 
is [ t3 , x3] = ode45 (dx , t s p a n , xone , o p t i o n s ) ; 
19 [ t4 , x4] = ode45 (dx , t s p a n , x g l , o p t i o n s ) ; 
20 

21 % A u x i l i a r y t o p l o t s o l u t i o n s and p h a s e p o t r a i t s at d i f f e r e n t 
i n i t i a l v a l u e s 

22 c o l o r s = [ ' b ' , ' r ' , ' g ' , ' m ' ] ; 
23 t i m e _ i n t e r v = [ t l , t2 , t3 , t4 ] ; 
24 s o l = [ x l , x2 , x3 , x4 ] ; 
25 
26 % P l o t s of s o l u t i o n s and c o r r e s p o n d i n g p h a s e p o t r a i t f o r e a c h 

i n i t i a l v a l u e 
27 f o r i = 1:4 
28 f i g u r e 
29 x t = s o l ( 1 : end , ( i *2) —1: i *2) ; 
30 t m = t i m e _ i n t e r v ( 1 : end , i ) ; 
31 p l o t ( t m , x t ( : , 1 ) , c o l o r s ( i ) ) 
32 y l i m ( [ - 1 . 5 1 . 5 ] ) 
33 x l a b e l ( ' T i m e ( t ) ') 

y l a b e l ( ' y ( t ) ') 
35 g r i d on 
36 f i g u r e 
37 p l o t ( x t ( : , l ) , x t ( : , 2 ) , c o l o r s ( i ) ) 
ss x l i m ( [ - 1 . 5 1 . 5 ] ) 
39 y l i m ( [ - 0 . 8 0 . 8 ] ) 
40 x l a b e l ( ' y ( t ) ') 
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y l a b e l ( " y ' ( t ) " ) 
42 g r i d on 
43 end 
44 

45 % P l o t s of a l l s o l u t i o n s a g a i n s t t i m e 
46 f i g u r e 
47 p l o t ( t 4 , x 4 ( : ,1) , ' m ' ) 
48 h o l d on 
49 p l o t ( t 3 , x 3 ( : ,1) , ' g ' ) 
so h o l d on 
s i p l o t ( t 2 , x 2 ( : ,1) , ' r ') 
52 h o l d on 
53 p l o t ( t l , x l (: ,1 ) , ' b ' ) 
54 x l a b e l ( ' T i m e ( t ) ') 
55 y l a b e l ( ' y ( t ) ') 
se l e g n d = l e g e n d (" $ y ( 0 ) = 1 . 1 2 , \ q u a d y ' (0 ) =0$ " , " $y (0) =1 , \ q u a d y ' ( 0 ) 

= 0 $ " , " $ y ( 0 ) = \ s q r t { 0 . 7 } , \ q u a d y ' (0 ) =0$ " , * $y (0) = \ s q r t { 0. 5 } , \ 
quad y ' ( 0 ) = 0 $ " ) ; 

57 set ( l e g n d , ' I n t e r p r e t e r ' , ' l a t e x ') ; 
58 l e g e n d ( ' L o c a t i o n ' , ' s o u t h e a s t ') 
59 g r i d on 
60 h o l d o f f 

63 

64 % E n d of Code 
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B N o n Autonomous case I 

1 c l e a r a l l 
2 c l o s e a l l 
3 
4 %Set t h e r e l a t i v e t o l e r a n c e and a b s o l u t e t o l e r a n c e 
5 o p t i o n s = o d e s e t ( ' R e l T o l ' , l e - 8 , ' A b s T o l ' , l e - 8 ) ; 
(i 

7 % D e f i n e t h e i n i t i a l v a l u e s of t h e d u f f i n g e u a t i o n 
s x s q r t _ l = [ s q r t ( 0 . 7 ) , 0 ] ; 

11 % D e f i n e t i m e l e n g h t and p e r i o d T 
12 t s p a n = l i n s p a c e (0 ,10 , 1 0 0 0 0 0 ) ; 
13 T = 4 . 5 8 9 3 ; 
14 
15 % V e c t o r of A m p l i t u d e v a l u e s of A and B t o be t e s t e d 
16 i t e r v a r = [ 0 . 0 1 , 0 . 1 , 1 ] ; 
17 
is % S o l u t i o n o f t h e i n i t i a l v a l u e p r o b e l m of t h e a u t o n o m o u s cas 
19 dx= @(t , x ) [ x ( 2 ) ; ( x ( l ) - 2 * x ( l ) ~ 3 ) ] ; 
20 [ t2 , x2] = ode45 (dx , t s p a n , x s q r t _ l , o p t i o n s ) ; 
21 
22 

23 % C o m p a r i s o n of s o l u t i o n s i n a u t o n o m o u s case w i t h t h e 
n o n a u t o n m o u s case 

24 f o r i = 1 : l e n g t h ( i t e r v a r ) 
25 A = 0; 
26 B = i t e r v a r ( i ) ; 
27 dx2= @(t , x ) [ x ( 2 ) ; ( 1 + A * s i n ( 2 * ( p i / T ) * t ) ) * x ( l ) - ( 2 + B * s i n ( 2 * ( p i / T 

) * t ) ) * x ( l ) ~ 3 ] ; 
28 [ t21 , x21] = ode45 (dx2 , t s p a n , x s q r t _ l , o p t i o n s ) ; 

% P l o t of t h e s o l u t i o n of t h e a u t o n o m o u s case w i t h t h e 
d i f f e r e n t n o n a u t o n o m o u s 

%cas es 
f i g u r e 
p l o t ( t 2 , x 2 ( : ,1) , ' r ') 

34 h o l d on 
p l o t ( t 2 1 , x 2 1 ( : ,1) , ' b ' ) 35 

36 
37 
38 
39 
40 end 
41 
42 

x l a b e l ( ' T i m e ( t ) ' 
y l a b e l ( ' y ( t ) ' ) 
g r i d on 
h o l d o f f 
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43 f o r i = 1 : l e n g t h ( i t e r v a r ) 
44 A = i t e r v a r ( i ) ; 
45 B = 0; 
46 dx2= @(t , x ) [ x ( 2 ) ; ( 1 + A * s i n ( 2 * ( p i / T ) * t ) ) * x ( l ) - ( 2 + B * s i n ( 2 * ( p i / T 

) * t ) ) * x ( l ) ~ 3 ] ; 
47 [ 121 , x21] = ode45 (dx2 , t s p a n , x s q r t _ l , o p t i o n s ) ; 
48 

49 % P l o t of t h e s o l u t i o n of t h e a u t o n o m o u s case w i t h t h e 
d i f f e r e n t n o n a u t o n o m o u s 

so %cases 
51 f i g u r e 
52 p l o t ( t 2 , x 2 (: ,1 ) , ' r ') 
53 h o l d on 
54 p l o t ( t 2 1 , x 2 1 (: ,1 ) , ' b ') 
55 x l a b e l ( ' T i m e ( t ) ') 
56 y l a b e l ( ' y ( t ) ' ) 
57 g r i d on 
58 h o l d o f f 
59 end 
60 

61 

62 f o r i = 1 : l e n g t h ( i t e r v a r ) 
63 A = i t e r v a r ( i ) ; 
64 B = i t e r v a r ( i ) ; 
es dx2= @(t , x ) [ x ( 2 ) ; ( 1 + A * s i n ( 2 * ( p i / T ) * t ) ) * x ( l ) - ( 2 + B * s i n ( 2 * ( p i / T 

) * t ) ) * x ( l ) ~ 3 ] ; 
ee [ 121 , x21] = ode45 (dx2 , t s p a n , x s q r t _ l , o p t i o n s ) ; 
67 

68 % P l o t of t h e s o l u t i o n of t h e a u t o n o m o u s case w i t h t h e 
d i f f e r e n t n o n a u t o n o m o u s 

69 %cases 
70 f i g u r e 
71 p l o t ( t 2 , x 2 (: ,1 ) , ' r ') 
72 h o l d on 
73 p l o t ( t 2 1 , x 2 1 (: ,1 ) , ' b ') 
74 x l a b e l ( ' T i m e ( t ) ') 

y l a b e l ( ' y ( t ) ') 
76 g r i d on 
77 h o l d o f f 
78 end 
79 

so % E n d of c o d e . 
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C Non Autonomous case II 

1 c l e a r a l l 
2 c l o s e a l l 
3 
4 %Set t h e r e l a t i v e t o l e r a n c e and a b s o l u t e t o l e r a n c e 
5 o p t i o n s = o d e s e t ( ' R e l T o l ' , l e - 8 , ' A b s T o l ' , l e - 8 ) ; 
(i 

7 % D e f i n e t h e i n i t i a l v a l u e s of t h e d u f f i n g e u a t i o n 
s x s q r t = [ s q r t ( 0 . 5 ) , 0 ] ; 

11 % D e f i n e t i m e l e n g t h and p e r i o d T 
12 t s p a n = l i n s p a c e (0 ,10 , 1 0 0 0 0 0 ) ; 
is T = 4 . 5 8 9 3 ; 

16 % V e c t o r of A m p l i t u d e v a l u e s of A and B t o be t e s t e d 
17 i t e r v a r = [ 0 . 0 1 , 0 . 1 , 1 ] ; 
18 
19 % S o l u t i o n o f t h e i n i t i a l v a l u e p r o b e l m of t h e a u t o n o m o u s cas 
20 dx= @(t , x ) [ x ( 2 ) ; ( x ( l ) - 2 * x ( l ) ~ 3 ) ] ; 
21 [ 11 , x l ] = ode45 (dx , t s p a n , x s q r t , o p t i o n s ) ; 
22 

23 

24 % C o m p a r i s o n of s o l u t i o n s i n a u t o n o m o u s case w i t h t h e 
n o n a u t o n m o u s case 

25 f o r i = 1 : l e n g t h ( i t e r v a r ) 
20 

2 7 

28 

29 

30 
31 

A = 0; 
B = i t e r v a r ( i ) ; 
dx2= @(t , x ) [ x ( 2 ) ; ( 1 + A * s i n ( 2 * ( p i / T ) * t ) ) * x ( 1 ) - ( 2 + B * s i n ( 2 * ( p 

) * t ) ) * x ( l ) ~ 3 ] ; 
[121 ,x21] = ode45 (dx2 , t s p a n , x s q r t , o p t i o n s ) ; 

% P l o t of t h e s o l u t i o n of t h e a u t o n o m o u s case w i t h t h e 
d i f f e r e n t n o n a u t o n o m o u s 

32 % cases 
33 f i g u r e 
34 p l o t ( t l , x l (: , 1) , ' r ') 
35 h o l d on 
so p l o t ( t 2 1 , x 2 1 (: , 1) , 'b ') 

y l i m ( [ - 1 . 5 1 . 5 ] ) 
x l a b e l ( ' T i m e ( t ) ') 
y l a b e l ( ' y ( t ) ' ) 
g r i d on 
h o l d o f f 

37 
38 
39 
40 
41 
42 end 
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43 

44 

45 f o r i = 1 : l e n g t h ( i t e r v a r ) 
46 A = i t e r v a r ( i ) ; 
47 B = 0; 
48 dx2= @(t , x ) [ x ( 2 ) ; ( 1 + A * s i n ( 2 * ( p i / T ) * t ) ) * x ( l ) - ( 2 + B * s i n ( 2 * ( p i / T 

) * t ) ) * x ( l ) ~ 3 ] ; 
49 [ 121 , x21] = ode45 (dx2 , t s p a n , x s q r t , o p t i o n s ) ; 
50 

51 % P l o t of t h e s o l u t i o n of t h e a u t o n o m o u s case w i t h t h e 
d i f f e r e n t n o n a u t o n o m o u s 

52 %cases 
53 f i g u r e 
54 p l o t ( t l , x l (: ,1 ) , ' r ') 
55 h o l d on 
se p l o t ( t 2 1 , x 2 1 (: ,1 ) , ' b ') 
57 y l i m ( [ - 1 . 5 1 . 5 ] ) 
58 x l a b e l ( ' T i m e ( t ) ') 
59 y l a b e l ( ' y ( t ) ' ) 
60 g r i d on 
61 h o l d o f f 
62 end 
63 

64 

65 f o r i = 1 : l e n g t h ( i t e r v a r ) 
ee A = i t e r v a r ( i ) ; 
67 B = i t e r v a r ( i ) ; 
es dx2= @(t , x ) [ x ( 2 ) ; ( 1 + A * s i n ( 2 * ( p i / T ) * t ) ) * x ( l ) - ( 2 + B * s i n ( 2 * ( p i / T 

) * t ) ) * x ( l ) ~ 3 ] ; 
69 [ 121 , x21] = ode45 (dx2 , t s p a n , x s q r t , o p t i o n s ) ; 
70 

71 % P l o t of t h e s o l u t i o n of t h e a u t o n o m o u s case w i t h t h e 
d i f f e r e n t n o n a u t o n o m o u s 

72 % cases 
73 f i g u r e 
74 p l o t ( t l , x l (: ,1 ) , ' r ') 
75 h o l d on 
76 p l o t ( t 2 1 , x 2 1 (: ,1 ) , ' b ') 
77 y l i m ( [ - 1 . 5 1 . 5 ] ) 
78 x l a b e l ( ' T i m e ( t ) ') 

y l a b e l ( ' y ( t ) ') 
so g r i d on 
s i h o l d o f f 
82 end 
83 

84 % E n d of c o d e . 

59 


