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Abstract 
The devices on which we rely in our day-to-day lives use complicated protocols. One of 
the heavily used protocols is W i - F i . The growing complexity also increases the room for 
error during implementation. This thesis studies the W i - F i protocol and the use of fuzz 
testing to generate semi-valid frames, which could reveal vulnerabilities when sent to the 
tested device. Special attention was devoted to testing the W i - F i stack in the ESP32 and 
ESP32-2S systems. The output of the thesis is a fuzzer capable of testing any W i - F i device, 
a special ESP32 monitoring tool and a set of ESP32 test programs. The tools did not find 
any potential vulnerabilities. 

Abstrakt 
Zariadenia, na ktoré sa každodenne spoliehame, sú stále zložitejšie a využívajú zložitejšie 
protokoly. Jedným z týchto protokolov je W i - F i . S rastúcou zložitosťou sa zvyšuje aj 
potenciál pre implementačně chyby. Táto práca skúma W i - F i protokol a použitie fuzz 
testingu pre generovanie semi-validných vstupov, ktoré by mohli odhaliť zraniteľné miesta 
v zariadeniach. Špeciálna pozornosť bola venovaná testovaniu W i - F i v systéme ESP32 a 
ESP32-S2. Výsledkom práce je fuzzer vhodný pre testovanie akéhokoľvek W i - F i zariadenia, 
monitorovací nástroj špeciálne pre ESP32 a sada testovacích programov pre ESP32. Nástroj 
neodhalil žiadne potenciálne zraniteľnosti. 
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Rozšířený abstrakt 

Bezpečnosť zariadení, na ktoré sa každodenne spoliehame, stále naberá na dôležitosti. 
Tieto zariadenia sú čoraz zložitejšie a so zložitosťou sa zvyšuje aj potenciál pre chyby v im­
plementácií. Jeden z protokolov, na ktorý sa každodenne spoliehame je W i - F i . Táto práca 
sa zaoberá automatizovaným testovaním W i - F i stacku rôznych zariadení, predovšetkým 
však systémom ESP32. Práca vznikla v spolupráci s firmou Espressif, ktorá je výrobcom 
spomínaného systému. 

Pre čo najlepšie otestovanie implementácie W i - F i bolo potrebné preštudovať protokol 
W i - F i . Konkrétny štandard pre protokol všeobecne známy ako W i - F i je I E E E 8 0 2 . i l . V 
práci je rozdiel medzi týmito menami konkrétnejšie vysvetlený. Sú tu priblížené základné 
pojmy potrebné pre prienik do problematiky. Väčšia pozornosť je venovaná zasielaným 
rámcom, kedy sú zasielané, a obzvlášť štruktúre týchto rámcov. V súvislosti s rôznymi 
typmi rámcov je priblížený aj proces asociácie a pripojenia k prístupovému bodu. 

zaoberá potencionálnymi zraniteľnosťami, preto boli analyzované najčastejšie 
chyby, ktoré ich môžu spôsobiť. Sú predstavené existujúce nástroje určené pre hladanie 
zraniteľností. Medzi týmito nástrojmi sú aj fuzzery. Nástrojom pre fuzz testing bola veno­
vaná bližšia pozornosť samostatná kapitola. 

Cieľom práce bolo navrhnúť fuzzer, ktorý by využil znalosti získané štúdiom W i - F i , 
zraniteľností, ktoré sa bežne môžu vyskytovať pri implementácií W i - F i a existujúcich fuzze-
rov. Počas dizajnu boli tieto skúsenosti zohľadnené a bol navrhnutý nový fuzzer. Ten je 
rozdelený na tri hlavné časti: generátor testovacích dát, časť zaisťujúca komunikáciu a časť 
monitorujúca testovaný systém. 

Generátor dát využíva modelový fuzzing a voliteľne náhodný fuzzing niektorých ele­
mentov. Tento prístup bol zvolený z dôvodu najväčšej efektivity testovania s ohľadom 
na dostupné informácie o systéme. Efektivitu testovania hodnotíme z pohľadu potenciálu 
odhaliť vstupy spôsobujúce pád systému alebo iné neželané správanie. Informácie, ktoré sú 
dostupné o vnútornom stave testovaného systému sú minimálne a nie je možné zistiť, aká 
časť kódu je skutočne otestovaná. Z dôvodu príliš veľkej náročnosti testovania pomocou 
čisto náhodných vstupov, bol zvolený spôsob generovania rámcov podľa vopred stanovených 
pravidiel. Výsledné rámce boli vždy skoro valídne, okrem vybranej jednej časti. Ako prík­
lad môže byť testovanie dĺžky poľa s podporovanými rýchlosťami prenosu. Podľa štandardu 
musí byť toto pole dlhé najviac 8 bytov, no fuzzer skúsil aj väčšie veľkosti. Generované dáta 
boli volené s ohľadom na už existujúce zraniteľnosti odhalené v iných systémoch. 

Pre monitorovanie testovaného zariadenia boli vytvorené viaceré monitorovacie nástroje. 
Každý nástroj je vhodný pre iný účel. Najdôležitejšia je sonda, ktorá je využívaná pri 
monitorovaní IoT systémov ako je ESP32. Je pripojená na sériový port a sleduje jeho 
výstupy. Pr i restarte tú to skutočnosť zašle monitoru, ktorý zaznamená posledné zaslané 
rámce, ktoré môžu byť ďalej skúmané. 

Casť, ktorá generuje rámce a časť, ktorá monitoruje testované zariadenie sú spojené 
jadrom. To sa stará o komunikáciu medzi týmito časťami a s testovaným zariadením. 

Výsledný nástroj bol vyhodnotený na základe toho, koľko z už známych vytipovaných 
zraniteľností by dokázal odhaliť. Na základe porovnaní je možné tvrdiť, že väčšinu by 
odhaliť aj dokázal. Ako záverečný test boli pomocou implementovaného nástroja otestované 
systémy ESP32, ESP32-S2, mobilný telefón, tlačiareň a smart hodinky. Boli nájdené len 
minimálne odchýlky od očakávaného správania. Nič nenasvedčovalo tomu, že by testované 
zariadenia zlyhali, alebo obsahovali nejaké z testovaných zraniteľností. 

http://IEEE802.il
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Chapter 1 

Introduction 

There is a saying: "Every non-trivial program has at least one bug." This is especially true 
when dealing with input from an external source, as, many times, there is an infinite number 
of different inputs that can be passed to a program. Devices in wireless networks must be 
able to validate the input passed to them. The input may come from a friendly device, 
a malicious attacker, or a malfunctioning device. When an input is not considered, it can 
potentially lead to complete control by the attacker. Fuzzing or creating pseudo-random 
data to the programs is one way to find such inputs. 

This thesis aims to design a tool (or set of tools) able to find vulnerabilities in the W i - F i 
implementation of, mainly, the ESP32 by Espressif Systems Co. The thesis was written, 
and the tool was developed as an assignment by the Espressif. The ESP32 chips are used 
by millions of devices worldwide, and such vulnerabilities would have tremendous impacts. 
The developed tool could also serve as a form of regression testing for the developers of 
the ESP32 W i - F i stack. Apart from the ESP32 chip, the tool should be able to test any 
device with W i - F i capability. The W i - F i specification, together with known previous types 
of vulnerabilities, should be studied to develop the best possible testing strategy. The tool 
should provide an effective way to create W i - F i frames, which are the most likely to cause 
problems and reveal faults in the W i - F i stack implementation. Potential to reveal faults 
should be based on the research and previous experience with the vulnerabilities found. The 
effectiveness of the tool is not evaluated as the ability to find all possible faults. Instead, it is 
considered the ability to test most of the known and possible vulnerabilities in a reasonable 
amount of time. Fuzz testing is an appropriate form of testing for this objective. It has 
many forms. As a part of this thesis, they will be studied, and the best possible design for 
the specific use-case should be used. The existing tools should be evaluated and compared 
to the newly created testing tool. 

This thesis first describes the W i - F i standard and its internals in Chapter 2. Then the 
potential vulnerabilities with the common causes and tools for their discovery are outlined 
in Chapter 3. Chapter 4 takes a closer look at fuzz testing, its advantages and some 
tools, which could be used for fuzzing W i - F i . The design of a new fuzzer, based on lessons 
learned from previous chapters, is described in Chapter 5 and the implementation details in 
Chapter 6. Lastly, the final design was evaluated by its ability to reveal previously known 
vulnerabilities and tested on real devices in Chapter 7. 

4 



Chapter 2 

IEEE 802.11 

Detailed knowledge of the W i - F i protocol, the frames sent, and the communication process 
is needed to test the W i - F i implementations adequately. This chapter describes a family of 
network protocols for wireless local area networking called IEEE 802.11. It was created and 
now is maintained by the I E E E 1 802 L A N / M A N Standards Committee. The description is 
based mainly on the second edition of the book 802.11 Wireless Networks: The Definitive 
Guide by Matthew Gast [21]. Here different names for the 802.11 protocol will be described, 
the relation to other I E E E 802 standards, the terms needed to understand later chapters, 
and what comprises the different 802.11 packets. 

2.1 Different names 

Common names for the I E E E 802.11 standard are Wi-Fi or Wireless Ethernet. To establish 
what they mean, we need to look at the historical evolution and content of the standard. 

2.1.1 W i - F i 

The I E E E 802.11 is most often called W i - F i . There is, however, a difference between 
them. W i - F i Certified devices are marked by the logo shown in figure 2.1, which is 
"an internationally-recognized seal of approval for products indicating that they have met 
industry-agreed standards for interoperability, security, and a range of application-specific 
protocols" [36]. The device must be tested by one of the authorized test laboratories. The 
certificate granted to a device by W i - F i Alliance [37] to mark its compatibility with the 
I E E E 802.11 standard. The implication is that all W i - F i devices are I E E E 802.11 capable, 
but not all devices capable of using the I E E E 802.11 standard are W i - F i certified. 

2.1.2 Wireless Ethernet 

Another name for the 802.11 is wireless Ethernet. The name comes from the shared linage 
with the wired 802.3 - Ethernet (also not entirely correct name) standard. 

X I E E E - Institute of Electrical and Electronics Engineers 
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CERTIFIED 

Figure 2.1: The Wi-Fi Certified logo [38] is used to confirm that the device is compatible 
with 802.11 and was tested by the W i - F i Alliance certified laboratory. 

2.1.3 Names in this publication 

For the purposes of this publication, the mentioned names can and will be used interchange­
ably. When describing technicalities of the standard, the standard will be called 802.11. 
The preferred name elsewhere will be W i - F i , as it is the most common. 

2.2 I E E E 802 networks 

I E E E 802 describes a series of specifications for local area network technologies, one of which 
is the 802.11. Based on the OSI model, networks are divided into seven layers (pictured in 
Table 2.1). The specifications concerning I E E E 802 networks are focused on the two lowest 
layers of the OSI model - the physical and data link layers. They all specify both of these 
components. 

7 Application 
6 Presentation 
5 Session 
4 Transport 
3 Network 
2 Data Link 
1 Physical 

Table 2.1: The OSI network model with the highlighted Data Link and Physical layers, 
which are specified by the 802.11. 

802 divides the data link layer into two sublayers M A C (Media Access Control) and L L C 
(Logical Link Control), as shown in figure 2.2. As the name suggests, M A C is responsible 
for controlling the access to the shared medium for sending and receiving data. Its imple­
mentation is different for different protocol standards (such as 802.3, 802.11). 802.2 specifies 
L L C as the upper sublayer of the data link layer. It encapsulates data for higher layers, 
provides error checking and frame synchronization. The 802.11 uses this encapsulation, as 
do other 802 specifications. 

The physical layer is different for every 802 protocol, as well as for every version of 
802.11. The base version, for example, includes a specification for two physical layers: 
frequency-hopping spread-spectrum (FHSS) and direct-sequence spread-spectrum (DSSS) 
modulation. Radio transmission of 802.11 requires a complex physical layer. More infor­
mation about the physical layer is probably out of the scope of this thesis. If the reader 

(i 



802 
Overview 

and 
Architecture 

802.1 
Management 

802.3 
MAC 

802.3 
PHY 

802.5 
MAC 

802.5 
PHY 

802.2 Logical link control (LLC) 

802.11 MAC 

802.11 
FHSS PHY 

802.11 
DSSS PHY 

802.11a 
OFDM PHY 

802.11b 
HR/DSSS 

PHY 

Data l ink layer 
LLC sublayer 

MAC sublayer 

Physical layer 

Figure 2.2: The division of the 802 standards into the OSI model layers and sublayers. The 
Figure is adopted from the 802.11 Wireless Networks: The Definitive Guide [21]. 

is interested, the book 802.11 Wireless Networks: The Definitive Guide [21], on which this 
chapter is based, contains more information. 

2.3 Transmission 

802.11 is a wireless standard. It uses (mainly) electromagnetic field as a medium, which 
means it must be treated as unreliable. Wi th more and more W i - F i devices in close prox­
imity, all using the same shared medium, the chances of disturbance and collision climb 
greatly. Details of the transmission vary version by version, but some of the terms remain. 
Those will be explained in this section. 

2.3.1 Frequencies 

When using the electromagnetic field as a medium, the wireless devices are constrained to 
operate in a particular frequency band. Regulatory bodies control the use of frequencies. 
Each region has its own regulatory body, which has its own rules for frequency use. The 
base version of the 802.11 standard uses the 2.4GHz frequency band. Those frequencies 
are generally free to use if the transmitted power is under a certain threshold. Other than 
by 802.11, the band is used by Bluetooth or microwaves. The frequency is divided into 
channels. What exactly constitutes a channel depends on the used physical layer. It could 
be a frequency band when a DSSS 2 physical layer is used or a hopping pattern when FHSS 
3 is used. The devices agree on the physical parameters of the communication during the 
scanning and association. 

More recent versions of the standard allow the use of the 5GHz band for higher through­
put and lower latency. The two mentioned frequencies are the most widely used. 

2 D S S S - Direct Sequence Spread Spectrum 
3 F H S S - Frequency Hopping Spread Spectrum 
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2.3.2 Physical components 

The 802.11 network consists of a few types of physical components. 

Wireless medium 

The 802.11 generally uses an electromagnetic field as a medium. Nevertheless, the standard 
permits also other types of physical layers. The base 802.11 standardized use of two radio 
frequencies and one infrared physical layer. 

Access point 

Access points serve as a bridge from a wireless network to the rest of the world. 

Stations 

Stations are computing devices whose data the networks wirelessly transmit. They are 
mostly battery operated. 

Distribution system 

Thanks to limited transmitting power and disturbance of the medium, one access point 
covers only a limited amount of space. A distribution system with more access points is 
used in order to make the covered area larger. It connects them into an extended service 
area. 

2.4 Network types 

The basic building block of an 802.11 network is the basic service set (BSS), a group of 
stations that communicate with each other. The communication takes place in a basic 
service area with fuzzy boundaries. The BSS is divided into two types. 

Independent 

The first type of BSS is the independent basic service set (IBSS) network. It is comprised of 
more peer stations. They communicate directly with each other, without any access points. 
The stations must be a direct communication range. IBSSs are sometimes called ad hoc 
networks. 

Infrast ruct ure 

The second type of BSS is the infrastructure BSS. The name is never shortened to avoid 
confusion. Those networks use access points. A n access point is used even when trying to 
communicate with stations within a direct communication range. Stations must associate 
themself with an access point to obtain network services. The use of access points has 
advantages other than the apparent ability to communicate with the outside world. It can 
assist stations trying to save power. During communication, a station can signal this to 
the access point, which then buffers frames for that station and transmits them later. This 
reduces the time the station needs to stay active, which reduces power consumption at the 
expense of latency. 

8 



2.5 Frame Format 

Thanks to the more complicated nature of wireless networking, the M A C frames are more 
complicated than their wired equivalents. 802.11 uses three types of frames with different 
fields, which are then divided into more subtypes. In wireless networks, data transfer must 
be synchronized to avoid interference. There needs to be a mechanism to request access 
to the medium, confirm the operation's success, or find access points. Furthermore, the 
wireless interface must be able to configure itself based on the network correctly. 

2.5.1 Radiotap 

Radiotap is a type of pseudo-header, which is not sent over the network but is used to 
configure the network interface when sending and get information about the interface when 
receiving frames. The configuration is heavily dependent on network card drivers because 
the radiotap headers might be ignored. Some drivers set the interface based on the radiotap 
header, some need to be configured by other means, and some use only a subset of the 
parameters configured in the header. The data rate, timestamp, or channel used are a few 
of the fields contained in the radiotap header. 

2.5.2 Frame control 

Two bytes at the start of each 802.11 frame are frame control. They contain frame type, 
subtype, or direction flags. The semantics of some bits can be changed based on the type 
and subtype of the frame. The frame control structure, which can be seen in figure 2.3 and 
the Table 2.2 shows the type and subtype of the frame. 

1 

Version 
I 

Type I o J, 1 

Subtype 
To DS From More Retry Power More WEP Order 

DS frag. mng data 

1 I 2 3 I 4 5 J 6 J 7 1 8 9 10 11 12 13 14 15 16 

Figure 2.3: Frame control bits at the start of every 802.11 frame contain the most funda­
mental information about frames. The content affects the semantics of the following bytes. 
The figure is adopted from the 802.11 Wireless Networks: The Definitive Guide [21]. 

Version 

At the time of writing the text, only one version is used. It has version number 0. 

To DS and From DS 

They are separate fields because of the possibility to use IBSS without DS or use DS as a 
bridge. The exact meaning is shown in the Table 2.3. 

To DS=0 To DS=1 

From DS=0 
Control and management frames 
IBSS data frames 

Data frames from station 
in infrastrucutre network 

From DS=1 
Data frames received for station 
in infrastructure network 

Data frames in wireless bridge 

Table 2.3: Meaning of different combinations of To DS and From DS bits. 
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Value Subtype name 
Management 

(type=00) 
0000 Association request 
0001 Association response 
0010 Reassociation request 
0011 Reassociation response 
0100 Probe request 
0101 Probe response 
1000 Beacon 
1010 Disassociation 
1011 Authentication 
1100 Deaut hent ication 
1101 Action 

Control 
(type=01) 

1010 Power Save (PS)-Poll 
1001 Block A C K 
1011 RTS 
1100 CTS 
1101 Acknowledgement (ACK) 
1110 Contention-Free (CF)-End 
111 1 CF-End+CF-Ack 
Data 

(type=10) 
0000 Data 
0001 Data+CF-Ack 
0010 Data+CF-Poll 
0011 Data+CF-Ack+CF-Poll 

Table 2.2: Types and subtype values together with their meaning. The type and subtype 
in this table are written least-significant-bit first. The table is not complete. It contains 
only a subset of all frame subtypes. 

More fragment 

More fragment flag is used when a higher-level protocol packet is too large to be transmitted 
at once. It can be used by some management frames as well. When another part of the 
fragment is to be transmitted, the bit is set to 1. 

Retry 

The frame is flagged by setting the retry bit to 1 to signal when the frame must have been 
retransmitted. 
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Power management 

The 802.11 specification includes a power-saving mechanism, which allows the stations to 
power the network interface and receive frames targeted to them later. The station indicates 
this intention to the receiver by setting the power management bit of the last message to 1. 

More data 

This bit is used for power saving too. It should be set to 1 by the access point when more 
frames are available to be sent, addressed to a device that announced going into a sleep 
state. 

W E P 

Wired Equivalent Privacy (WEP) is used to protect and authenticate data. When this 
mechanism is used, the bit is set to 1. Other encryption mechanisms should be used 
instead of W E P since it is not considered safe anymore. 

Order 

Strict ordering can be enforced, which is indicated by setting order bit to 1. Strict ordering 
means the frames are transmitted in order. This costs additional time and resources at 
both ends of the communication. 

2.6 Control frames 

Control frames assist in the delivery of data frames. They conduct access to the wireless 
medium and provide MAC-layer reliability functions. 

2.6.1 Acknowledgement 

Acknowledgement (ACK) frames are used as a confirmation when the transmission was 
successful. They do not contain the sender's address, only the receiver's. The later version 
of the standard use more effective block acknowledgements (BA). They were introduced in 
802.lie, and from 802.l ln, their support was mandatory. 

2.6.2 Request to send and Clear to send 

Request to send (RTS) is used by the device when it wants to gain control of the medium in 
order to transfer larger frames. RTS is used only for unicast. Clear to send (CTS) frames 
are sent as a response to the RTS. 

2.7 Management frames 

Management frames are used for purposes of identification of access points, authentication, 
and association. They can contain up to 4 addresses based on subtype and variable-length 
information such as devices capabilities. The further mentioned information elements in the 
frames are often only a typical representation of the frame. The specification is extensive 
and adds more and more information elements to different subtypes in each version. 
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2.7.1 Beacon 

Beacon frames are used by access points to announce the existence of the network. They 
contain information about supported data rates and other parameters needed by the device 
to join the network. The basic service area is defined by the area where the beacon frames 
appear. 

2.7.2 Probe request and response 

Probe request is used for similar reasons as a beacon frame. It is transmitted by a mobile 
station trying to find an access point. The request can contain a specific SSID of the network 
the station is trying to find, or it can contain a wildcard symbol (in reality, an empty string), 
which means it is trying to find all networks. The number of SSIDs in the request can be 
more than one. 

The probe response is sent as a response from the access point to the requesting station. 
It can contain most of the same parameters about the network as a beacon frame. Some 
of the information elements should be only in beacon frames and some only in the probe 
responses. 

2.7.3 Disassociation and deauthentication 

Disassociation frames are used to end an association relationship, and Deauthentication 
frames are used to end an authentication relationship. Both contain reason code with fixed 
length. 

2.7.4 Association and Reassociation Request 

When the station wants to connect to the access point, it must associate with it first. This 
can be done by the association request frame. It contains capabilities, SSID of the access 
point, and listen interval. The capabilities must be compatible with the access point for 
the association to happen. The reassociation request can be used when moving within the 
same extended service area. In addition to the field in association request, it contains the 
address of the current access point. 

The responses to those requests are called Association/Reassociation Response. They 
contain the status of the association and association ID. 

2.7.5 Authentication 

Authentication is done by exchanging series of authentication frames. They include au­
thentication algorithm used, status code, and challenge text. 

2.8 Data frames 

Data frames are used to encapsulate higher-level protocols. Based on the direction flags 
(From DS, To DS), the number and semantics of addresses in the header change. The body 
with higher-level protocols comes after them. The body can be encrypted, which is signalled 
by the W E P flag in frame control. The encrypted data start with their own headers. 
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2.9 Association process 

The frames are divided into three classes based on authentication and the association state 
of the devices. The states of the device can be: 

1. Initial state 

2. Authenticated 

3. Authenticated and associated 

The device can receive only the frames within its own class or lower, illustrated by 
Figure 2.5. The data can only be sent when a device is associated with the access point. 

2.9.1 Scanning 

The first step for the device to starts using the network is to find the network. Scanning can 
be done actively by sending probe request frames and waiting for a response or passively by 
listening to beacon frames sent by other devices. The scanning device can filter the found 
networks based on the parameters of the communication and the network: 

• SSID - The SSID is a string of characters assigned to an extended service set. 

• BSS Type - The device can select if it scans for the ad-hoc networks, infrastructure 
networks with access points, or both. 

• Channel List - The scanning can be broad and include all the channels available, or 
it could be narrowed to include only some subset of them. The channels are dependent 
on the physical layer used. 

• Minimal and maximal channel time - The device must change the physical 
parameters of the communication in order to change the channels. When scanning, it 
alternates between the channels. The time the scans one channel can usually be set 
by the minimal and maximal time. 

Passive scanning 

Passive scanning does not require transmission from the scanning device. It only listens to 
the beacon frames coming from the other devices. The beacon frame can be transmitted 
on different channels. The station systematically moves through the specified channels to 
and records the received beacon frames. They contain the channel the device operates in 
and other crucial information. The beacon frames are broadcasted and do not have to be 
acknowledged. 

Active scanning 

Some access points are set to not transmit beacon frames in order to stay hidden. Active 
scanning must be used to discover them. The station device sends a probe request with 
the specified SSID, to which the other device responds with the probe response containing 
similar info as the beacon frames. The probe response could also contain an empty SSID, 
which is considered a wildcard symbol, meaning the device is trying to scan for all networks 
in the radio range. The probe response destination is the device, which sent the probe 
request and must be confirmed by acknowledgement. 
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2.9.2 Authentication 

Authentication is used to ensure the devices trying to associate are allowed to do so. Au­
thentication can be open-system when all devices are allowed to associate or shared-key 
based on W E P . The standard does not restrict the authentication only to the access point. 
However, the authentication to the access point is characteristic. 

Open authentication 

Open authentication does not implement any cryptographic algorithms or any restrictions 
on authentication. The access point could implement a whitelist of the M A C addresses 
allowed to authenticate, but those could be changed in software. The authentication is 
initiated by the client, who sends the authentication frame with the algorithm set to open 
and sequence number set to 1. If the access point accepts the open authentication, it should 
respond by authentication frame with the algorithm set to open-system, sequence set to 2 
and successful status code. 

Shared-key authentication 

The shared-key authentication requires the transmission of at least four frames. The au­
thentication is also initiated by the client, who sends the authentication frame with the 
algorithm set to shared-key. The access point then sends an authentication frame with 128 
bytes of challenge text. 

The W E P uses RC4, which is a symmetric stream cypher. The encryption is done by 
XORing the cypher stream with the plaintext data. The cypher stream is generated from 
a 24-bit initialization vector (IV) and 40 bit secret key. When using the W E P , only the 
frame body is encrypted. The header and the IV are in plaintext, followed by the encrypted 
frame body and integrity check value, ending with the plaintext frame control sequence. 
The frame using W E B is illustrated in the figure 2.4. 

Clear Clear 
__J- . _ _ J L _ c 

Frame 
header IV Frame body ICV 

4B 

FCS 

4B 
• 

Encrypted 

Figure 2.4: The diagram shows the encrypted and clear parts of the frame using W E P . 
The figure is adopted from the 802.11 Wireless Networks: The Definitive Guide [21]. 

At the time, it was considered to be appropriate, but now flaws in the RC4 cyphers are 
known, and it is no longer safe to use. The RC4 itself must be licensed from the R S A Se­
curity and cannot be implemented without it. This prevents open-source implementations. 
W E P is often implemented in the hardware of the wireless cards, which allows its use even 
with open-source drivers. 
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2.9.3 Association 

The device can be associated with only one access point at a time, as is specified by the 
standard. The process of association is started by the station with an association request. 
The access point responds with association response. Whether the response is positive or 
negative is on the access point, and the standard does not specify how to determine the 
response status. 

Class 1,2,3 
frames 

Class 1, 2 
frames 

or 
association failure 

Class 1 
frames 

or authentication 
failure 

State 3 
Authenticated and 

associated 

Successful 
association Disassociation 

State 2 
Authenticated 

Successful 
authentication Deauthentication 

Text 

State 1 

Initial state 

Deauthentication 

Figure 2.5: Diagram of the 802.11 communication for different classes of frames. The figure 
is adopted from the 802.11 Wireless Networks: The Definitive Guide [21]. 

2.10 Association process in the newer versions. 

The association model of the original W i - F i protocol is expanded to allow more advanced 
encryption and authentication to be used. The newer version of the protocol's encryption is 
built on the association to the open network and subsequent authentication and encryption 
by more advanced methods. For example, the widespread W P A 2 encryption uses the data 
frames (four frames in total) to arrange secure connection. 
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Chapter 3 

Vulnerability detection 

When software engineering was in its infancy, security was not considered to be a priority. 
Thanks to the rise of the internet and the wide usage of wireless networks, this has changed. 
Vulnerabilities could enable an attacker to access the user's data, corporate, or government 
secrets. Some estimates from authors of the book Fuzzing for Software Security Testing 
and Quality Assurance [32] state: "More than 70% of modern security vulnerabilities are 
programming flaws, with only less than 10% being configuration issues, and about 20% 
being design issues." Using tools to increase the chances of finding programming flaws 
could significantly reduce the number of vulnerabilities. This chapter describes the security 
goals, potential vulnerabilities, and tools designed to discover them. It is based on the 
findings from the book mentioned. 

3.1 Security goals 

To define what a vulnerability is, first, we need to define the goals of the security. In some 
applications, where the intended use does not depend on them, not all security goals must 
be preserved. The three primary security goals are: 

• Confidentiality 

• Integrity 

• Availability 

3.2 Potential vulnerabilities 

Vulnerability analysis is a process of finding weaknesses in software or systems, which could 
potentially lead to breaking one of the wanted security goals. Not all bugs result in security 
vulnerabilities. For those that do, proof of concept can be used to prove its potential to be 
harmful. 

3.2.1 Categories of vulnerability causes 

Potential vulnerabilities can be categorized into programming, configuration, or design 
issues, as previously stated. The categories can be further divided into their causes. 
The causes mentioned in this section are related to this thesis, but many more exist. 
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Memory corruption errors 

The most prevalent methods of computer systems exploitation have their roots in memory 
management and corruption. The memory corruption can result in full execution rights on 
the attacked system. 

The memory corruption errors include: 

• Stack overflow - memory on the stack getting corrupted 

• Heap overflow - memory corruption on the heap, usually allocated at runtime 

• Format string errors - now can be easily detected by static analysis 

• Integer errors - errors in signedness, numerical wrapping, or field truncation 

• Off-by-one - typically one too many bytes in the buffer, or improper condition checking 

• Other memory overwrites - overwriting function pointers, credentials, etc. 

Race condition 

Race conditions are a type of vulnerability, which arise due to unforeseen timing events and 
are typical in multithreaded or asynchronous applications. They are difficult to exploit, but 
with enough patience, an attacker could manage to do it. Sometimes putting the system 
under more load can increase the likelihood of exploiting the fault. 

Denial of service 

As the name suggests, denial of service is the act of overwhelming a system to the point 
at which it can no longer serve its legitimate purpose. It could be caused by a crash 
of the system due to a programming error. Alternatively, it could be due to a design 
decision that allows the attacker to send lots of simple requests, which causes enormous 
resource consumption. The stress caused by this could also lead to a revelation of other 
vulnerabilities. 

3.3 Exploitation of the vulnerabilities 

How the vulnerabilities are exploited and what mitigation techniques can be used to lessen 
the impact of vulnerabilities will be explained on the example of stack overflow - one of 
the most prevalent vulnerabilities. The first widely accessible tutorial on exploiting buffer 
overflow is considered an article published in the Phrack web magazine. Its name was 
Smashing the stack for fun and profit by Elias Levy, also known as Aleph One [2]. This 
article is the source of most of the section. 

Before the attacker is able to exploit a buffer overflow, the attacker must know the 
architecture and some essential information about the exploited system. The knowledge of 
architecture is crucial to perform code execution by exploiting a buffer overflow. The archi­
tecture determines the instruction codes, which the attacker must know. If the exploited 
device is desktop or server, the chances are it uses an x86-64 instruction set. If the device 
is a smartphone or smartwatch, it probably uses an A r m instruction set. And if the device 
is an IoT device, it could use an A r m or RISC-V instruction set. 
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The memory layout of the program is also crucial. The attacker must know the direction 
of growth of the stack and if the stack pointer points to the top of the stack or the first 
empty space. Another crucial piece of information for the attacker is the calling convention 
of the platform. This determines how the parameters are passed to the function and how 
the result is returned. These information are not hard to get and cannot be treated as 
a secret. 

6x00000000 

>— stackframe [0x60] 

OxFFFFFFFF 

Figure 3.1: Address space of the program loaded into the memory after the function was 
called. 

For example, if the device uses x86 32bit architecture and runs a Linux operating sys­
tem, the address space during the execution of some program could look like in the figure 
3.1. The stack grows from the higher addresses to the lower. If the program contains 
stack overflow, its exploitation could be relatively simple. The longer input could rewrite 
the function's return address, and from the moment the program tries to return, the attacker 
controls what instruction is executed next. The typical payload also contains a shellcode, 
which runs an interactive shell. If this is executed in a program running with root privi­
leges, the attacker also has those. The less typical stack layout, which grows from the lower 
addresses, is also exploitable, as shown in the article by Zhodiac [40]. 

3.4 Exploit mitigation 

Some techniques were developed to combat exploitation, which make the exploitation 
harder. Some of them require even hardware support. However, the techniques mentioned 
cannot completely protect the vulnerable device. The information about the mitigations is 
sourced mainly from the book The Art of Software Security Assessment: Identifying and 
Preventing Software Vulnerabilities [12]. The list is not complete. Many more protections 
against code injection, control-flow hijack, and data corruptions exist. 
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3.4.1 Data executaion prevention 

The address space is divided into pages, which could belong to the stack, heap, or contain 
the program's instructions. The pages could be marked by N X (non-executable) bit, which 
prevents the data from being decoded and executed as instructions. Effective use of the data 
execution prevention (DEP) requires hardware support. 

3.4.2 Stack cookies 

As a way to combat stack overflow specifically, Stack cookies (or stack canary) are used. 
It is a few bytes (how many depends on the architecture) written to the address space after 
the local variables and before the return address. The bytes are random and are different in 
each function invocation. Before the function returns, it compares the content of the stack 
canary with the source of the random data. When they are different, the content has been 
modified and so could be modified the return address. Instead of return, the program exits 
without giving control to the attacker. In certain situations, the attacker can control the 
program even before returning from the function by overwriting the data around the return 
pointer. Local variables are not protected at all. They are often preventively reordered by 
the compiler to move the buffer after other variables, so the attacker cannot overwrite them 
by the stack overflow. 

3.4.3 A S L R 

Address space layout randomization is one of the more advanced and more effective mitiga­
tion techniques. Each time the program is loaded into the memory, it is loaded to a different 
address. The same is true for the stack, heap and libraries. The program must be compiled 
with the support for position independent code for this to work. The P a X project states 
the goal of the A S L R as following: "The goal of Address Space Layout Randomization is 
to introduce randomness into addresses used by a given task. This will make a class of 
exploit techniques fail with a quantifiable probability and also allow their detection since 
failed attempts will most likely crash the attacked task." [29] 

3.5 IoT vulnerabilities 

According to market analysis by Mordor Intelligence [27] the IoT chip market in 2020 was 
valued at USD 12 billion and is expected to grow to more than twice its size in 2026. 
This presents enormous potential for chipmakers but also for malicious agents. Currently, 
the IoT is present mainly in home entertainment, but more and more home appliances use 
the IoT approach. It is expected that more IoT devices will be used as asset trackers, health 
monitors, security systems, smart city sensors, and smart meters, or wearable trackers. 
The security of IoT devices was not always such an important quality. The Mirai malware, 
which caused one of the most disruptive DDoS attacks, was spread by connecting to the IoT 
devices and trying common default passwords. Its variants, like Satori, also used some 
implementation vulnerabilities [3]. 

The exploit mitigation techniques used in desktop and server computers are often not 
implemented in embedded devices. Many of them run their programs in privileged modes 
on "bare metal" without any operating system. Their runtime, memory, or power usage 
can be constrained by hard limits, which are hard to achieve. Additional protection would 
also impose additional load on the devices. 
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For example, D E P in desktop computers is implemented in M M U (Memory Manage­
ment Unit). The M M U is not present in the microcontrollers, but many of them have 
an M P U (Memory Protection Unit), which can enforce read, write and executive permis­
sions. However, through the fact that most of the programs in embedded computer run in 
privileged mode, it can be disabled. Its use in the FreeRTOS is only optional. The FreeR-
TOS is currently one of the most popular operating systems for IoT devices. Additionally, 
the M P U implementations leave some things to be desired [41]. The A S L R is also rarely 
used in the embedded systems. Some effort is being put into making the code produced by 
the compiler more resistant to the attacks. The most popular C / C + + compilers have the 
option to enable stack cookies. This is available without special hardware support. The ad­
dition of new L L V M passes to the L L V M toolchain also allowed the privilege overlaying 
used in the E P O X Y [10]. 

3.6 ESP32 

The thesis focuses on the ESP32 system. The ESP32 is series of microcontrollers with 
integrated W i - F i and Bluetooth capabilities [13]. The systems in the series differ in their 
performance, capabilities and even architecture, with the ESP32-C3 being based on RISC-
V [16] architecture and the rest of them being Xtensa CPUs [15]. They are very popular, 
together with their predecessor, the ESP8266. The ESP8266 gained popularity thanks to 
its price and W i - F i capabilities. The ESP32 series continues the trend. The ESP32 devices 
usually use the FreeRTOS operating system, as it is the most popular across all the IoT 
systems. 

From the security features, the ESP provides: 

• Secure boot 

• Flash encryption 

. Hardware acceleration for the A E S , SHA-2, RSA, E C C , R N G 

Probably the most attractive features of the ESP32 are the Bluetooth and W i - F i capa­
bilities. Even though the usual operating system for the chip is an open-source FreeRTOS, 
the W i - F i stack implementation is proprietary. This makes security assessment significantly 
harder. The W i - F i provides the following features: 

• 802.11 b /g /n certification 

• Automatic beacon monitoring 

• Simultaneous support for Infrastructure Station, Software Access Point and promis­
cuous mode 

3.6.1 Exploit mitigation 

According to the ESP32 datasheet, the device has M M U [15]. The memory is divided into 
instruction memory and data memory. This results in an effect similar to the N X marked 
pages in x86 architecture. The data from the stack cannot be executed. 
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During compilation, Stack cookies can be turned on. This can be done for all function or 
their subset. Impact on performance is dependent on the level of selected stack protection. 
The system also supports a similar feature targeting heap corruptions. 

3.6.2 Previous exploits 

During the life of the ESP32 chips, a few critical vulnerabilities were found. One vulnera­
bility even required hardware revision, and the affected devices could not be fixed. Other 
exploits will be presented in section 3.8. The vulnerabilities are often identified by the 
C V E identification number. The mission of the C V E program [1] according to them is: 
"The mission of the CVE (Common Vulnerabilities and Exposures) Program is to identify, 
define, and catalogue publicly disclosed cybersecurity vulnerabilities." Most of the recently 
publicly disclosed information are listed in the catalogue. 

CVE-2019-17391 

The ESP32 provides a One Time Programmable (OTP) memory used for the secret keys 
used in the secure boot process and flash encryption. The talk at Black Hat Europe by 
Limited Results [23] revealed critical vulnerability allowing the attacker with physical access 
to read the value of the O T P memory and bypassing the secure boot process. The vulnera­
bility was assigned C V E identification number CVE-2019-17391 [14]. The method used was 
glitching, which is manipulating the input voltage by the attacker to inject faults during 
critical operations. The author also found other ESP32 vulnerabilities by this method. 

3.7 Exist ing tools 

To effectively find vulnerabilities in a system, a variety of different tools could be used. They 
could be used to help with manual analysis (i.e. reverse engineering tools as radare2 1 ) or 
even fully automatic scripts to gain access to W i - F i access point with weak encryption. This 
section will focus more on the semi-automatic or fully automatic tools called vulnerability 
or security scanners. 

3.7.1 Nonexploitation vulnerability scanners 

The tools that run specific tests to find vulnerabilities from the database of known vul­
nerabilities are nonexploitation vulnerability scanners. They may perform port scanning, 
capture traffic, or other techniques to get more information about the scanned system to 
compare it to the database. The tools will not perform any exploitation but will only log the 
results. Because of this, the results may contain false positives. The scanner will also not 
find any unknown vulnerabilities. One example of a nonexploitation scanner is Nessus 2 . 

3.7.2 Exploitation scanners/Frameworks 

The exploit itself, or something called proof of concept (POC), must be performed, which 
undeniably prooves exploitability. Exploitation scanners, same as the nonexploitation scan­
ners, have a database of known vulnerabilities that they test. Unlike them, however, they 

1radare2 - h t t p s : / / r ada . r e / 
2Nessus - ht tps: / /www.tenable.com/products/nessus/ 
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try to exploit the tested system. They can utilize the ability to pivot, which uses one exploit 
to enable others until sufficient privileges are gained. 

Metasploit 3 framework represents one of the most popular scanning and remote ex­
ploitation tools. It is a free collection of scripts and programs. The paid version includes 
even more features. 

Aircrack-ng 1 is a collection of tools to assess W i - F i network security. It includes 
tools for monitoring, attacking, testing, and cracking W i - F i networks. It can be used to 
find weaknesses in W i - F i networks, perform replay attacks, or create fake access points. 
Network driver capabilities are different for every driver. Aircrack-ng is able to verify them 
or switch the card to monitor mode, which is needed for frame injection into a wireless 
interface. 

3.7.3 Fuzzers 

Fuzzers are another tool for finding vulnerabilities in systems. Unlike the mentioned scan­
ners, the fuzzing can reveal previously unknown exploits as it does not employ any exploit 
database. Fuzzing is explained in detail in Chapter 4 together with examples of existing 
fuzzers. 

3.8 W i - F i vulnerabilities 

W i - F i was described in chapter 2. This section includes some examples and vulnerabilities 
specific to W i - F i . The source for this information is the book Hacking Exposed Wireless [39]. 
This thesis focuses on fuzzing the W i - F i implementation of devices. The types of attacks 
presented here are unlikely to be executed or revealed by fuzzing, but they are provided 
to illustrate other exploitation methods. The most likely error types found by fuzzing are 
memory corruption errors explained in 3.2.1. 

Denial of service 

Availability is a security goal for all W i - F i networks. One of the most accessible attacks that 
the 802.11 family of protocols is vulnerable to is the denial of service by deauthentication 
frames. The attacker can send a deauthentication frame as if it was from an access point, 
which forces the client to unconnect, and he must then try to reconnect again. The client 
device has no way to be protected if the device follows the standard in all versions of the 
protocol, where management frames are not encrypted. This attack can also be used to 
find the SSID of hidden networks. Network hiding is not a very effective way of protection, 
as it is transmitted in plain text in many packets, one of which is a reassociation request. 

Apple A W D L exploit 

Recent (at the time of writing) publication of iOS zero-click radio proximity exploit by 
Ian Beer [5] at Google Project Zero is an example of what exactly could happen when 
untrusted input is improperly checked. The exploit allows for full access to the user data 
without the user's knowledge, denial of service by restarting the device, or execution rights 
to the attacker, all wirelessly. 

3 Metasploit - ht tps: / /www.metasploit .com/  
4 Aircrack-ng - h t tps : / /www.a i rc rack-ng .o rg / 
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The exploit is based on buffer overflow in drivers for Apple Wireless Direct Link 
(AWDL), Apple's proprietary mesh networking protocol. The A W D L is based on 802.11 
but has significant differences, especially in the management frames. It is enabled by default 
on every iOS device. 

The vulnerability was found by reverse engineering and analyzing leaked function name 
symbols, and it took approximately six months. The exploit illustrates the creative use of 
resources and hard work required to find vulnerabilities in modern devices. It also illustrates 
that usage of test automation tools for W i - F i testing could be beneficial. It is possible, the 
W i - F i fuzzing would reveal such vulnerability, and it is highly probable that the use of fuzz 
testing during development would reveal it before deployment. 

ESP32/ESP8266 Zero P M K Installation 

The vulnerability found by Matheus Garbelini [20] allows the attacker to take control of 
the W i - F i device in an enterprise network. The attack is performed by sending EAP-Fa i l 
message in the final step of the connection to the access point. It allows the attacker in 
radio range to replay, decrypt, or spoof frames via a rogue access point. The catalogue 
number assigned to the vulnerability is CVE-2019-12587. A fuzzer called Greyhound was 
used for finding this vulnerability. The tool is better described in the next chapter in section 
4.7.4. The tool also discovered two other vulnerabilities in the ESP32 and ESP8266. They 
are described in the articles ESP32/ESP8266 EAP client crash (CVE-2019-12586) [18] 
and ESP8266 Beacon Frame Crash (CVE-2019-12588) [19]. The exploits can be found on 
GitHub 5 . 

5 E S P 3 2 / E S P 8 2 6 6 W i - F i Attacks Gi tHub 
esp32_esp8266_attacks 
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Chapter 4 

Fuzz testing 

We want to test the behaviour of the W i - F i stack of IoT devices. Fuzz testing or fuzzing is 
ideal for this. The effectiveness of fuzzing can be seen in the vulnerabilities found, like the 
ones presented in the previous chapter. It would test the devices against real-world threats, 
which means, if we find some vulnerability, an attacker can use it too if he is in the radio 
proximity of the device. 

This chapter describes what fuzz testing is, its purpose, capabilities, and limitations. 
The information in the chapter is based on the book Fuzzing for Software Security Testing 
and Quality Assurance [32]. 

4.1 What is fuzz testing? 

Fuzzing is a technique of negative testing. The most traditional form of negative testing is 
fault injection, which exists in two forms. The first form of fault injection is injecting faults 
to the actual tested device or system to test the testing capability. This technique was 
used traditionally in hardware development, but it could also be used in the software. The 
second form refers to injecting faults into data with the purpose of testing data-processing 
capability. The fuzz testing belongs to the second form and is performed by programs called 
fuzzers. 

4.2 Advantages and disadvantages of fuzzing 

Fuzzing is a type of testing. No type of testing is perfect, and as such, every type has some 
weak points and some advantages. It cannot replace other test procedures, but it should 
complement them. Fuzz testing is, at the moment, not considered a mainstream testing 
technique. Not all developers routinely use it. Whether it is due to knowledge requirements, 
time constraints, or something different. The fuzzing is effective for finding specific types 
of errors, which are less complex, but it is not a "silver bullet" for every error. It can be 
used during development or by an attacker with malicious intent. 

One of the first practical uses of fuzzing was by Professor Barton Miller and group 
around him, when they tried to input random data into core U N I X utilities (such as Is, 
grep) in the article An Empirical Study of the Reliability [25]. He was also the first to use 
the term fuzzing in the context of testing software. They found that many of them would 
crash. This shows that random inputs could lead to new execution paths previously thought 
not to be reachable or just not sufficiently secured. Random inputs do not assume anything 
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about the program's internal structure, leading to finding new corner cases. The fuzzers can 
be used to test almost all programs or protocol implementations. Due to the consequences 
of a remote breach by a hacker, one of the areas where fuzzing is the most critical is testing 
network protocols. 

Fuzz testing can be considered a cost-effective testing tool or tool for vulnerability 
analysis. It can cover test cases, which would require a deep knowledge about a specific 
system, such as reverse engineering. Additionally, it takes less time. Simple fuzzers can be 
quick and cheap to be implemented. Those are generally based on sending purely random 
data to the system under test (SUT). For some programs, this could reveal a significant 
number of bugs, but for the better-tested programs, this is almost always too inefficient. 
The input space of most of the test subjects is too large to employ purely random fuzzing. 
The book Fuzzing for Software Security Testing and Quality Assurance says about the goal 
of the fuzzing the following: 

If we consider a program to be a complex finite state machine, then the goal 
of fuzzing is to perform a random walk through the state space, searching for 
undefined states. 

This is too inefficient to be performed just by random data. For those purposes, more 
fuzzers started to employ a more "intelligent" approach to fuzzing. Section 4.3 contains 
further information about more efficient fuzzing techniques. 

The intelligent fuzzers have some information about the protocol or program they are 
fuzzing. They are usually made to conform to the formal definition rather than concrete 
implementation. This encourages resource reuse, and one fuzzer can be used as a test for 
many competing implementations. 

4.3 Intelligent fuzzing 

The motivation to make fuzzers more "intelligent" came from the inefficiency of fuzzers, 
which provide only random data, and do not consider their meaning. A random test will 
only scratch the surface and model just the first message in communication. However, 
a more complex approach could test message structures or even message sequences. Each 
of the more knowledgeable fuzzers comes with some assumptions and is not as generic as 
purely random fuzzers. Some heuristics are used based on experiences with where the most 
critical vulnerabilities are usually located. For example, the incorrect checksum can be 
tested just once. Alternatively, the length of an array can be tested for corner cases, off by 
one, signedness errors, etc. Based on perceived knowledge about fuzzed message structures, 
the fuzzers could be divided into groups. 

4.3.1 Fuzz data generation 

Fuzzer test cases can be generated based on the input source, attack heuristics, and ran­
domness. Because the fuzzers are used only for negative testing, the generated data should 
be semi-valid, meaning it contains some fault. 
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Four main approaches and their combinations are used to create semi-valid data: 

• Test cases are created and hand-tuned for a specific protocol by an expert in the field. 
It mostly resembles traditional automated testing. Each test has a specific purpose. 
Many of the commercial fuzzers use this method. 

• Cycling through protocol and inserting data incrementally and deterministically. 

• Randomly inserting data for a specified period of time. This can be deterministic if 
the seed of the pseudo-randomness is configurable. 

• Library of known errors is used. 

4.3.2 Price of intelligent fuzzing 

Creating more intelligent fuzzers comes at a price. It is significantly more time-consuming. 
The trade-off needs to be taken into account when creating a fuzzer. The focus on effec­
tiveness, by design, also reduces the possible input set size, which could hide some errors. 

4.4 Fuzzing process 

The process of fuzzing includes a few steps. The fuzzer sends a sequence of messages to 
the SUT. Then the response and changes to the system are analyzed. 

A typical response to fuzzing is one of the following: 

• Valid response 

• Error response - may be valid, if the protocol describes it as such 

• Anomalous response - unexpected but nonfatal reaction (slowdown, corrupted mes­
sage) 

• Crash or other failures 

Monitoring is a critical part of the fuzzing process. Its result should be a pass or fail. If 
one of the inputs causes a crash of the system, it can resolve itself by restarting. This means 
the monitoring must be constant. The failures should be noted and analyzed manually later. 

4.5 Black-box and white-box fuzzing 

The term black-box testing is used when testing is done without knowing the system's 
internal structure. The opposite of this is white-box testing, where the tester has access 
to all the source code and information about the tested system. Fuzzing was generally 
a black-box testing technique. Later, some information about system internals was used 
to help with testing. This is often called grey-box testing. Coverage guided fuzzing is one 
of the most effective tools that use grey-box testing. The coverage of the code is used to 
find new internal states of the target binary. This allowed general fuzzers to be used for 
effective fuzzing of arbitrary binaries. 

The fuzzing with knowledge of the internal structure can still be considered white-
box testing. John Neystadt, in the article Automated Penetration Testing with White-Box 
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Fuzzing [28] provides introspective how to use fuzzing as a white-box testing tool. For him, 
the fuzzing is used for: 

White-box fuzzing or smart fuzzing is a systematic methodology that is used 
to find buffer overruns (remote code execution); unhandled exceptions, read ac­
cess violations (AVs), and thread hangs (permanent denial-of-service); leaks and 
memory spikes (temporary denial-of-service); and so forth. 

White-box testing cannot be used every time. When the attacker does not have access 
to binaries or design of system internals, the only solution is to use black-box testing with 
public interfaces. Those public interfaces, however, are not always reliable enough and do 
not provide enough information. When this is the case, specific solutions must be applied 
to each one. 

4.6 Case study 

A case study on the fuzzing usage on small web-application (450 lines of code) done in the 
article Automated Penetration Testing with White-Box Fuzzing [28] shows the differences 
in the levels of intelligence and fuzzer knowledge about the system. The application was 
developed with four planned defects. 

Technique Effort Code coverage Defects found 
Combination of black box + dumb 10 min 50% 25% 
Combination of white box + dumb 30 min 80% 50% 
Combination of black box + smart 2 hr 80% 50% 
Combination of white box + smart 2.5 hr 99% 100% 

Table 4.1: The results of the case study in Automated Penetration Testing with White-Box 
Fuzzing [28]. 

The results in the Table 4.1 confirm that with the increasing levels of intelligence and 
fuzzer knowledge, the percentage of the code covered by the tests increases. Also, the 
simple fuzzers which do not use any introspective, only random inputs can find a significant 
number of defects with a small amount of effort. This suggests that if the effort required 
for creating specially tuned fuzzers is too big, the random fuzzers can cover a relatively big 
portion of code and should be used. 

4.7 W i - F i fuzzing 

This thesis is focused on fuzzing W i - F i implementation of IoT devices, which do not have 
to have any other interfaces than W i - F i and whose source code can be secret. Fuzzing 
such devices is challenging. Not all wireless devices advertise themself, so there needs to be 
a reliable way to detect the tested device. Nearby devices can affect the test results or can 
crash by also receiving fuzzed frames. Some protection such as the Faraday cage should 
be used to limit the impact of the environment. W i - F i fuzzing is rarely used. The more 
notable accomplishments are mentioned further. 
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4.7.1 Johnny Cache and David Maynor 

The first known use of W i - F i fuzzing was presented by Johnny Cache and David Maynor 
in their Black Hat USA 2006 talk Device Drivers:Don't build a house on a shaky foun­
dation [9]. Around that time, the fuzzers were used to find many critical vulnerabilities 
in browsers and kernels [26]. The authors identified W i - F i as a potential target based on 
things, which are still valid with implementations of modern versions of W i - F i . The W i - F i 
is a complicated protocol, which is now, after another 15 years of development, even more 
extensive. This leads to some inconsistencies between the implementations, which could 
be used for fingerprinting the devices (can be used for targeting exploits to the level of 
firmware version). The complexity also leads to the big room for errors. The fuzzing space 
of their fuzzer was relatively small. They focused on the fundamental parts of the protocol. 

The fuzzed information: 

• Association redirection (association response from different M A C than the device 
tried to associate) 

• Different Source, BSSID, or both 

• Other unspecified fields 

They found many critical vulnerabilities in multiple devices allowing remote code execu­
tion, even under root privileges. Even though, according to them, most often a direct return 
shell is not possible, bots and other malicious shellcode can be designed. The findings also 
say that a bug could be triggered by the frames sent a long time ago. The developed tool 
is not publicly available at the moment. 

4.7.2 Laurent Butt i 

Laurent Butt i and his colleagues followed the findings of Johnny Cache and David Maynor 
by creating the open-source fuzzing tool wifuzzit [6] [8]. The details about the tool can be 
found further in the chapter with other tools (4.8.1). 

Their work on the proposed fuzzer identified some limitations with fuzzing W i - F i : 

• The resulting fuzzer should be fast. The scanning process requires channel hopping, 
and if the fuzzer cannot respond in time, the message will not be delivered. 

• Another limitation is that we cannot be sure that the frame was analyzed by the 
driver, which could introduce false negatives. 

• Some drivers accept beacon frames only if there are also probe responses. 

The research also identified some interesting information elements to test: 

. W P A , R S N (Security) 

. W M M (Quality of Service) 

• W P S (Wireless Provisioning Services) 

• Proprietary IEs (Atheros, Cisco, ...) 
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The research continued after the talks mentioned [7], and the final results were multi­
ple critical vulnerabilities. One of them was confirmed to be exploitable to remote code 
execution with the exploit available to the public through the Metasploit [33]. 

4.7.3 Mathy Vanhoeft 

The author of the K R A C K 1 and Dragonblood 2 exploits also notably contributed to the 
W i - F i fuzzing. Mathy Vanhoeft presented his W i - F i fuzzing research at the Black Hat 
USA 2017 conference. It was called WiFuzz: detecting and exploiting logical flaws in the 
Wi-Fi cryptographic handshake [35]. His goal was not only to expose common programming 
errors such as buffer overflows but to also expose logical vulnerabilities. One example is that 
some messages in a handshake can be skipped, causing it to use or negotiate an uninitialized 
cryptographic key. 

The method of their research was to build a model of the W i - F i handshake, which de­
scribes the correct behaviour and then automatically generate invalid executions. The in­
valid handshake could be something like dropping some message, injecting messages, gen­
erating an invalid field, or switch encryption. 

The results were quite surprising, when all twelve of the tested access points showed some 
irregularities. Not all of them were exploitable, but they at least showed some diversion 
from the standard. This can be used for fingerprinting. However, some of the diversions 
found can be exploitable with proof of concept available online [34]. The most prominent 
finding is that the OpenBSD client was missing the state machine of the 4-way handshake, 
leading to a trivial man-in-the-middle attack against it. 

WiFuzz 

The developed tool was called WiFuzz. It is a model-based fuzzer with a proven record. 
Unfortunately, the tool is not publicly available. 

4.7.4 A S S E T 

The A S S E T Research Group based in Singapore University of Technology and Design devel­
oped another promising W i - F i fuzzer called Greyhound [17]. The tool has some similarities 
to the WiFuzz. It also uses the model of the W i - F i protocol to find irregularities and 
deviations from the standard. The fuzzer speculates about the state of the tested device, 
then generates, mutates, sends a frame, and finally analyzes the response. Similarly to the 
WiFuzz, it can alter the order of the sent frames, send them more times, or change the 
fields inside the frame. The Greyhound uses probabilities in mutating the protocol layers 
based on discovered vulnerability reports, which should accelerate the fuzzing. According 
to the developers, the tool is a part of an unspecified commercial pen-testing tool and is 
not open-sourced [4]. Unfortunately, the tool was found too late to influence the design of 
a new fuzzer. 

To date, the published results include three vulnerabilities with C V E numbers assigned 
to them and a claimed new Denial-of-Service attack. The newly claimed attack was found 
when the fuzzer was integrated into a commercial pen-testing tool. The vulnerabilities with 
the C V E numbers assigned were connected to the ESP32 and ESP8266. 

X K R A C K - ht tps: / /www.krackattacks.com/  
2 Dragonblood - https://wpa3.mathyvanhoef.com/ 
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4.8 Exist ing tools 

During the research, a few tools used for W i - F i fuzzing were found. Some tools advertise 
that they can fuzz W i - F i , but in reality, they test IP frames through a wireless network. 
The tools were examined and tested, but they were found not to be appropriate for further 
development for the needs of the thesis. Only open-source projects were included in this 
list. The previous section lists other projects. Even though their results may be better and 
are more advanced, they are not publicly available under open-source licenses. 

4.8.1 Fuzzers 

cfuzz 

cfuzz is the result of a more recent open-source effort with capabilities similar to the goals 
set out in this thesis. It was made as a Bachelor thesis by Bart Pleiter at Radboud Uni­
versity [30]. The fuzzer is written in C language. It should be capable of fuzzing probe 
response, authentication frames, and association response frames. According to the thesis 
results, it was successfully used to discover a vulnerability in Nintendo DSI X L . 

The source code had problems with compilation. The code had to be significantly 
modified to allow correct linking of the compiled targets. The inspection of the code revealed 
that the interface is not ready to be easily extended. 

wifuzzit 

A W i - F i fuzzer wifuzzit has been used for similar purposes as the intentions of this thesis. 
The fuzzer is open-source and capable of finding vulnerabilities, as documented by the list 
of discovered vulnerabilities on the GitHub page 3 . It was developed by Laurent Butti , who 
also presented the work on BlackHat Europe 2007. 

The main reason not to use this program is its age. It was developed in 2007 in Python2, 
which is now not supported. The fuzzer used a patched version of the Sully fuzzing frame­
work. The patches are no longer compatible, and Sully is also not maintained anymore. 
The effort to make the fuzzer work under a modern system with some support would be 
greater than the rewrite to Python3 with a maintained fork of the Sully framework. This 
fork would have to be patched again to add support for frame injection to wireless interfaces. 

Another reason not to use this solution is its performance. The use of a Python in­
terpreter means the execution is slower than it could be. The author himself sees it as a 
drawback [6]. W i - F i fuzzing is time-sensitive. For future extensions and more advanced 
operations, the performance of the Python program does not have to suffice. 

4.8.2 Frameworks 

Scapy 

Scapy 4 is a popular framework as the authors say able to: "forge or decode packets of a wide 
number of protocols, send them on the wire, capture them, match requests and replies, and 
much more." The framework is easy to use, able to craft W i - F i semi-valid frames for fuzzing 
with minimal effort. It is even recommended by one of the authors of the first public win 

3wifuzzit - h t t p s : / / g i t h u b . c o m / 0 x d 0 1 2 / w i f u z z i t /  
4 Scapy - h t t p s : / / s c a p y . n e t / 
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fuzzing, David Maynor, in the article Beginner's Guide to Wireless Auditing [24] However, 
its major drawback is that it is slow, which can cause problems in fuzzing W i - F i . 

BooFuzz 

BooFuzz ; ) is a fork of the now unmaintained Sully open-source Python framework with 
some improvements. According to documentation, its main selling points are easy data 
generation, extensible failure detection, and recording of test data. The SUT can be reset 
by the framework in case of a crash. Even low-level network protocols as Ethernet, IP, or 
U D P are supported. Unfortunately, 802.11 support is not present. 

4.9 Summary 

The Espressif Systems company is interested in the improvement of their testing procedures. 
Fuzzing would be a convenient method for this goal. From the research done, we concluded 
that the existing solutions are not suitable. The existing solutions are not available under 
an open-source licence (WiFuzz, Greyhound), are not usable (cfuzz), or the potential to 
be extended is small (wifuzzit). This means a fuzzer must be designed and implemented, 
which is described in the following chapters. 

5 BooFuzz - h t tps : / /g i thub .com/ j tpereyda /boofuzz 
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Chapter 5 

Design 

In this chapter, the design decisions taken during the development of the fuzzer will be 
discussed. Designing a good fuzzer is not easy. It should not rely too much on the knowledge 
of the fuzzed protocol or make too many assumptions. The designer could be making the 
same assumptions as the vendors implementing the devices, resulting in not discovering 
some vulnerabilities. Nevertheless, it also must use some heuristics to make the fuzzing 
time feasible. 

5.1 Design Requirements 

During the research, a few of the existing solutions and prototypes were tried, leading to 
the establishment of the requirements in this section. 

Performance requirements 

During testing, we validated a claim that some devices have a threshold under which they 
must receive the response to their requests [6] [30]. This threshold can be hard to maintain 
using interpreted languages. For this reason, we set for ourselves the goal that we must 
be able to respond to a request in under 0.01 seconds. This threshold was found to be 
a realistic boundary for the examined real access points. The measurements can be seen in 
performance testing in Table 7.1. 

Autonomous detection of vulnerabilities 

The fuzzer aims to be configured once and be run without intervention, so vulnerabilities 
must be detected autonomously. Not all of them can be detected this way because of the 
nature of fuzzing. It only detects vulnerabilities, which cause significant side effects. 

Reproducible tests 

The fuzzer can run for long periods of time. When the program finds input that uncovers 
vulnerability in SUT, the program must be able to repeat the inputs. 
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Vulnerability logging 

Reproducible results are related to another requirement - the logging of the results. It would 
be counter-productive to log all frames sent, so there needs to be a way to log detected 
vulnerabilities together with the inputs, which lead to their discovery. It may be possible 
that it was triggered before detection, so we need to log a few of the last frames. 

Minimizing interference 

Due to the nature of wireless networks, we need to be able to minimize interference from 
other devices. Unless the devices are in a Faraday cage, other devices in proximity may be 
using W i - F i and alter the results. This means the resulting program must be able to filter 
out traffic other than that from SUT. 

Configurability 

Parameters that make sense to be configurable must be configurable without recompilation 
of the code. This includes: 

• type and subtype of frames, which should be fuzzed 

. SUT M A C address 

• sensitivity of vulnerability detection 

• amount of logged data 

• seed for pseudorandom operations 

Modularity 

Some aspects of the solution may change with time or with the tested devices, such as 
the monitoring tool used. That is why the program must be flexible enough to be able to 
change modules without big changes to the rest of the system. 

We decided to focus the testing on the ESP32 platform. This dictates the need to 
integrate ESP32 monitoring. The coupling of the ESP32 monitor, however, should not be 
mandatory. 

5.2 Structure 

From the requirements stated, we designed a modular program with the following modules: 

• Core - registering other parts, data handling, primary communication with SUT 

• Frame fuzzer - creating fuzzed frames, this can be in response to some request re­
ceived, or just by internal state 

• Monitor - monitoring vulnerabilities, can communicate with SUT by secondary chan­
nels 
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5.3 Fuzzer core 

The core is the central part of the fuzzer. It connects individual parts to each other and 
to the SUT. It also parses configuration and starts other modules. We made a decision 
to use libpcap 1 for communication with SUT. The decision was based on the experiments 
with W i - F i injection in Python done in the bachelor thesis Fuzzing Wi-Fi in IoT devices 
[30], which were repeated and confirmed. The solution implemented in Python did not 
conform to the performance requirements. The libpcap was chosen thanks to its interface 
and low-performance penalty. 

The individual parts (frame fuzzer, monitor) each have a specific interface. This means 
they can be easily replaced by a different implementation, which is used when choosing 
different frame types to fuzz. 

SUT 

Secondary monitoring interface 

Figure 5.1: Diagram for newly designed W i - F i fuzzer. 

Some of the frame subtypes should be sent as a response. Others are sent without 
any external action. That is why those two cases need to be separated and configured by 
themself. 

Push fuzzing 

The simpler case is when the fuzzer sends packets without external prompts. We call 
this case push fuzzing because it only pushes the produced frames to the wireless interface. 
The fuzzer requests new semi-valid data from the frame fuzzer and then sends them using the 
specified interface. We do not have guarantees of the frame reaching the fuzzed device. Real 
devices try to mitigate this problem by sending the requests multiple times preemptively, 
even before the acknowledgement could be delivered. This increases the likelihood of at 
least one frame reaching the device. The user should be able to configure this behaviour. 
Also, the W i - F i drivers modify the behaviour, which cannot be configured without changes 
in them (at least the tried Realtek 2 drivers and Intel drivers). The sent data should be 
logged for the purposes of recreating potential found vulnerabilities. The logging is provided 
by the monitor, and the sent data is passed to it. The next frame should not be sent right 
after the previous, and the waiting period should be configurable. When the frame fuzzer 

1 l ibpcap - https://www.tcpdump.org/ 
2 Realtek Aircrack drivers - h t t p s : / / g i t h u b . c o m / a i r c r a c k - n g / r t l 8 1 8 8 e u s 
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exhausts its pool of possible generated frames, the core should gracefully shut down the 
rest of the system and provide fuzzing results and detected abnormalities. 

Response fuzzing 

The response type fuzzing should listen on the specified interface for request from the 
tested device. When the appropriate request from the appropriate device is detected, the 
core should request the data from the frame fuzzer and log it using the monitor. The next 
request should be sent only when another request is detected. 

5.3.1 Set-Up and Tear-Down 

Some vulnerabilities found by previous works revealed that the W i - F i state of the device 
(authenticated, associated) could affect whether the fault is accessible. This is why there 
should be a way for the fuzzer to get the device to a specified state before sending the crafted 
frame and then, after the test was performed, return it to a resumable state. In testing, this 
mechanism is generally called set-up and tear-down functions, and the fuzzer core should 
allow the test to utilize them. Illustration of such mechanism is in Figure 5.2. 

Fuzzer SUT 

Set Up 

authenticate 1 

authenticate 2 

associate req. 

associate resp. 

fuzz frame 

Tear Down 
deauthenticate 

>- Testing 

Figure 5.2: Diagram showing example of the initial Set-Up phase associating the device to 
the fuzzer, then fuzzing itself and then Tear-Down phase - deauthentication. 

35 



5.3.2 Communication with frame fuzzer 

The communication with the frame fuzzer could be two-way. At a minimum, the frame 
fuzzer needs to know the M A C address of the fuzzed device. This can be provided during 
the initialization. If the need arises, the request must be possible to pass to fuzzer for 
the analysis or response generation. One of the possible applications would be fuzzing 
an encrypted network or authentication. 

5.3.3 Communication with monitor 

The communication between frame fuzzer and monitor should not be direct. It is possible 
that in some cases, the monitor has information about the internal state of the SUT from 
the probes (6.2.5). This information, however, is not likely that it would fundamentally 
help with the data generation. When the need arises, the monitor informs the core, which 
decides the best course of action and which data generation source for subsequent frames 
should be used. 

5.4 Monitor 

For purposes of the thesis, the tested platform can be every device with W i - F i networking 
implemented. We could be testing any client or access point since we are implementing 
a black-box fuzzer. The problem with the completely black-box approach with the generic 
interface is inconsistent feedback from the system under test (SUT). It cannot be reliably 
monitored just by W i - F i . If we use other interfaces, they must be tailored to a specific 
device. We chose to focus mainly on testing an ESP32 microcontroller development board. 
But the design of the fuzzer should be flexible enough to allow fuzzing of other devices. 

5.4.1 Universal vulnerability detection 

When a frame is sent through the W i - F i , it can be considered undelivered until an A C K 
is received. But this has a few caveats. For example, with beacon frames, it is impossible 
to know if the SUT received the frame. Even under relatively controlled conditions, we do 
not have a way to know if a frame was received and parsed unless we have some external 
monitoring tool installed on the device. 

Acknowledgement monitoring 

This means the only way to detect any malfunction in the device by W i - F i is by checking 
for their responses. The simplest way is to set a threshold. For example, if the device does 
not respond to 10 frames in a row with A C K , we can suspect the device is malfunctioning. 
This approach was used by cfuzz [30]. The problem with this approach is the structure of 
the A C K frame. It does not contain the frame source, only the receiver. We cannot be 
sure that nearby devices did not respond to the fuzzed frame. This can be problematic, 
for example, in beacon frames, which are broadcasted to every listening device. For this 
reason, the resulting fuzzer does not provide monitoring based on this approach. 

Passive monitoring 

Another way to detect malfunction is to have a different threshold for time without any 
communication. A typical device connected to a network should be sending and receiving 
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some frames within a reasonable timeframe. When a device sends some frame containing 
its M A C address as a source, we can assume the device is still working properly, or at 
least the damage did not cause any denial of service. This approach can be called passive 
monitoring because the monitor only passively listens to communication around it and does 
not actively send any frames. Alternatively, similar solutions are called heartbeat signal 
monitoring. 

Active monitoring 

The last option is to pick a valid frame to which the device should respond. We can call 
this approach active monitoring, as the monitor actively participates in communication 
with SUT. Theoretically, one candidate for the frame type could be a request to send. 
This, however, has the same problem as the acknowledgement frames - the response does 
not contain the sender. Also, from our trials, not every device responds to such requests. 
For access points, the probe response frame is a good candidate. For stations, we did not 
find a suitable frame type. 

5.4.2 ESP32 monitoring 

The fuzzing can be improved by providing some insight into the inner workings of the system 
under test. The wider the range of the targeted devices, the less they have in common. 
If we focus on a specific set of devices, we can create more accurate monitoring tools. 

The ESP32 provides a serial interface through U A R T , which could be used for reliable 
communication with the fuzzing program. This interface also allows us to estimate its 
internal state closer. The ESP32 can be configured to output verbose logs which contain 
the state of the W i - F i module (initialized, authenticated, associated) and changes between 
them (initialized —> authenticated). 

The IoT devices generally try to minimize power consumption by reduction of the 
executed instructions to the bare minimum. This leads to disabling security features as 
stack and heap smashing protection. The ESP32 provides those protections. During testing, 
we do not need to look at the power consumption, so they can be activated. They provide 
additional information about possible unwanted stack or heap modifications. Based on the 
previous data, buffer overflows are one of the most prominent critical implementation bugs, 
so it is important, we have the potential to monitor them. 

Remote probes 

We focus mainly on the ESP32, but the final fuzzer must be ready to fuzz this wide variety 
of devices. The solution we used is to create a distinct probe for every supported device 
and then communicate remotely with the monitor used in fuzzer. This probe can be as 
complicated as the specific user needs. When the probe detects malfunction or state change, 
it notifies the monitor, which then executes appropriate action. The used approach allows 
for flexibility, a wide array of possible use-cases and implementations. A special monitor 
connected to the fuzzer must complement this probe. 

5.4.3 Logging 

The logging is an important part of the resulting fuzzer. It should notify the user about 
detected anomalies and the frames, which potentially caused them. The identification of the 

37 



exact frame, which caused the anomalous response is likely impossible during the fuzzing 
itself. Also, it can be caused by a stream of frames. Logging should store a certain number 
of the previously sent frames, which should be written to more permanent storage when 
the anomaly is suspected. 

5.5 Frame fuzzer 

Model-based, protocol-specific fuzzing will be used to create semi-valid frames. The fuzzing 
will be divided into specific management frame subtypes (probe response, authentications) 
done by a specific fuzzer. 

The decision to use model-based fuzzing came from various requirements. The totally 
random fuzzing in itself is highly inefficient. To approximate the semi-valid communication 
to the real one, it must include some delay between sending the requests. For example, the 
time from sending the first authentication frame to sending the successful association re­
sponse to the open access point is approximately 0.05 seconds. This would limit the number 
of association frames the devices could receive from the fuzzer. 

The model-based approach was chosen because it utilizes the only information available 
about the tested device. We do not know anything about the executed code or about the 
design of the W i - F i stack. This somewhat limits the potential of the fuzzing, but it also 
allows to test a wide range of devices when the only thing they have in common is the W i - F i 
protocol. 

5.5.1 Fuzzing approach 

The goal of the resulting fuzzer is to find major implementation flaws, which will heavily 
alter the functionality of the tested device. As such, the priority was on finding vulnerabil­
ities already identified by other means in other projects. For example, the historically very 
prevalent flaws are connected to buffer overflows or string copying. 

The buffer overflows could be triggered by specifying a different length of the field than 
the real length. The string vulnerabilities are mostly caused by improper usage of functions 
like strcpy, strcmp, or strlen. Unexpectedly long frames could also cause some problems. 
Some vulnerabilities found in devices were caused by the changed order of the sent frames, 
or the frames arrived at the unexpected phase of association. We concentrate more on the 
fuzzing of the frames themself. 

Even the model-based fuzzing does not guarantee sufficiently small fuzzing space. Some 
vulnerabilities could theoretically be found only by specific order of the fields with the spe­
cific values. This is, however, still too broad space to fuzz practically. To avoid the ex­
ponential state explosion, we can fuzz only one specific feature at a time. Hopefully, the 
reduced space will contain most of the vulnerabilities. 

Advertisement subtypes fuzzing 

While fuzzing the tag parameters, in the frame subtypes used for the advertisement of 
the access point and its parameters, like the probe response, or the beacons, the frame 
will contain some valid parameters. During testing, when contained parameters were not 
sufficient, the tested devices dropped the frames without looking at the content (the logs 
contained the message about missing information elements, even if the elements would be 
parsed and checked later, we assume the added valid information elements do not influence 
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the fuzzing). The frame must still contain at least the parameters absolutely needed for 
correct operation. The fuzzed parameter will be at the last place, before the checksum. 
The reason for this is, when we declare the wrong length of the field in the first place, all 
that happens is, the data behind it will be interpreted as the type of the next tag parameter. 
This assumption is based on the fact that its correct interpretation is required for the basic 
operation of the device and other checks are not likely to be needed. 

String fuzzing 

Character strings are a part of the W i - F i protocol, and often, in other applications, they are 
a common source of vulnerabilities. Typical causes are improper uses of string functions (in 
C language printf), where the user-provided string is passed as the first argument, which 
is a format string. The vulnerability can be triggered by providing format strings such as 
M

0/oS", which could be used to read from the memory or „°/on", which could be used to write 
to memory. The copying without bounds checking (using functions as strcpy) could be 
revealed by providing strings containing null byte such as "aaa\0aaa". 

The device might allow using UTF-8 or even old UTF-1 encoding. The wast variety of 
the characters and their proper handling proved to be challenging, which is proved by some 
known vulnerabilities like the CVE-2015-1157 in iPhone [11]. 

Length fuzzing 

The various fields in the frames are usually preceded by their length. A buffer overflow may 
happen when the length of the field is not correct and if the length check is not correctly 
implemented. This has caused many issues in the past and should be part of fuzzing. 

The time complexity of trying every possible length combination is too high. For this 
reason, the fuzzing is divided into a few levels based on the fuzzed coverage. The simplest set 
is designed to be the most effective, with only the boundary values included. For example, 
the supported rates parameter in beacon frames should have a length at most 8, and its 
length is stored in 8bits. The lengths tried during fuzzing should include: 0, 1, MIN-1, 
M I N , MIN+1, M A X - 1 , M A X , M A X + 1 , 127, 128, 253, 254, 255 

• 0 - invalid length, the field is not pointless 

• 1 - could potentially reveal an off-by-one error 

. MIN-1, M I N , MIN+1, M A X - 1 , M A X , M A X + 1 - the boundary checks 

• 127 - greatest signed number in 8bits using the two's complement 

• 128 - smallest signed number in 8bits using the two's complement 

• 255 - greatest unsigned number in 8bits 
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5.6 Summary 

The designed fuzzer is modular, with all the parts replaceable. It employs the set-up 
and tear-down procedures common from the classic software unit testing. In contrast to 
other fuzzers, the newly designed fuzzer can use secondary channels to communicate with 
the tested device in addition to the W i - F i interface. The design of the data produced took 
into account previously found vulnerabilities, common errors and other problematic areas. 
Testing will be reproducible thanks to the deterministic data generation and configurable 
seed for semi-random data. 
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Chapter 6 

Implementation 

The implementation of the fuzzer is in the language C++. The standard version of the lan­
guage is specifically C++20. The implementation is divided into various libraries and 
programs, which together make the final testing tool. 

6.1 Fuzzer Core 

The core of the fuzzer is used to couple different parts of the system, configure and lunch 
them. 

6.1.1 Configuration 

The parser parses the configuration file during startup, stored into config classes for each 
of the components. Parsing user input is error-prone, so the availability of Y A M L parsers 
can help signifncantly. The one used in this fuzzer is called yaml-cpp 1 . During startup, 
the configuration file is parsed by the parser, which is then stored into config classes for 
each of the components. The options include the selected monitor, frame subtype, or 
period between sending frames. Specific options and format can be found in the project 
R E A D M E . m d file 2 . The example of configuration used for fuzzing the beacon frames on 
the ESP32 can be seen in Figure 7.2. 

6.1.2 Sniffing 

For the frame capturing, the function pcap_next is used. This function takes one frame at 
a time from the captured queue and processes it. From testing, this solution seems to be 
sufficiently fast, and the delay was not an issue. The advantage of this solution compared 
to the pcap_loop callbacks is more straightforward interfacing with the rest of the fuzzer. 

6.2 Monitor 

The requirement for different monitor options resulted in the base Monitor interface, which 
is implemented by different final monitors. 

1 yaml-cpp library - h t tps : / /g i thub .com/ jbeder /yaml -cpp /  
2 wifuzz+H— h t t p s : / /github.com/xvengeOO/f uzze r -dp / 
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6.2.1 Watchdog 

A resettable watchdog was implemented for the purpose of keeping track of the time since 
the last known state of the SUT. It is notified every time the monitor detects activity in 
SUT, which resets the countdown to the value specified during initialization. When this 
silent period expires, the watchdog runs a specified function, which is a notification for the 
monitor, that the SUT is likely inoperative. This period must be carefully chosen. A too 
short period means lots of false positives, but a period too long gives the SUT chance to 
reboot and be operational again before the detection takes place. 

After the watchdog expires, it can be reset again by notifying it again. This allows the 
watchdog to be reused and to detect other malfunctions after the device was reset. 

6.2.2 Notification monitor 

The notification monitor is a type of monitor that relies on external calls to notify itself 
about the activity of the SUT. It is useful when the fuzzed frame subtype is a response. 
The fuzzer core must listen to traffic from the SUT anyway, so it can notify the monitor 
when doing so. It includes a watchdog for guarding the silent period. 

6.2.3 Passive monitor 

The other subtypes of frames do not require listening to the incoming traffic. During fuzzing 
of those frames, the passive monitor can be used. It listens on the specified interface, which 
does not have to be the same as the one sending fuzzed frames. When a frame that is from 
the SUT arrives, it resets its watchdog. Other functionality is identical to the notification 
monitor. 

6.2.4 Probe monitor 

The monitor used when the SUT is connected to the remote probe. The communication 
between the probes and the monitor is implemented with the gRPC 3 framework. The choice 
for this framework comes from its flexibility. It can be implemented in a wide array of 
languages and can send a wide array of data. In the future, when it is required, the probe 
can be easily expanded to send complicated data structures, which can be used for more 
effective fuzzing. It does not include a watchdog. Instead, it relies on the probe to tell the 
monitor about the state of the device. 

Not every use-case requires external probes. When the functionality is not needed, the 
program can be compiled without the support for the gRPC based monitor and then it 
does not require them as dependencies. 

3 g R P C framework - h t t p s : / / g r p c . i o / 
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6.2.5 Remote probe 

The remote probe for ESP32 is implemented as a separate Python application. The gRPC 
provides a compiler to the Python language. It also uses pyserial to deserialize the output 
from ESP32. Communication is only one way. The output is used to get information 
about the state of the ESP32. It is checked against a list of phrases, which indicate the 
malfunction. It was created from the documentation of the ESP32 A P I and independent 
testing. The list includes the following words: 

• panic • corrupt 

• dump . 
• failure 

• exception 
, . • protect 

• watch 
• triggered • reboot 

6.3 Frame fuzzer 

The creation of the frames is handled by the frame fuzzer. To make the creation of the 
new fuzzers easier, it uses the new feature of the C++20 - the coroutines. They are used 
in generators, which replicate the generator functions found in Python. The generator 
implementation is based on the article From Algorithms to Coroutines in C++ by Kenny 
Kerr [22]. 

At the time of writing, the coroutines are not considered to be a very mature feature 
of C++. From the main three compilers, only G C C and Visual Studio does not consider it 
to be experimental. Even then, they require special options during compilation. In G C C , 
the compilation itself is not always hassle-free, and some versions of the compiler produce 
internal compiler errors. The performance penalty in real use in the application was not 
measurable, even though some overhead is required. Their use, however, has compelling 
advantages. The generators better represent the modelled logic of the fuzzing. They signif­
icantly sped up the development process and reduced the room for errors. Without them, 
the internal states of the fuzzers would have to be manually saved and loaded during each 
invocation or passed by other means to the producing function. This in itself distinguishes 
the fuzzer from similar products. 

Similar model fuzzers are mostly written in interpreted languages like Python, which 
allow for those kinds of abstractions. For most applications, their performance is sufficient. 
However, for some applications, like fuzzing W i - F i or Bluetooth wireless protocols, it can 
be limiting, and better performance is needed. The resulting data-producing library is 
separated from the rest of the fuzzer so that it can be reused. The data is produced 
through a unified interface. The library provides useful components, which can be useful 
outside of the W i - F i fuzzing, such as fuzzing strings or general fields. 

The fuzzer, for now, implements: probe response, beacon, deauthentication, disassoci-
ation and authentication frames fuzzing. 
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6.4 ESP32 test programs 

We want to test the implementation of the ESP32 W i - F i stack. This is difficult to perform 
because we do not know what portion of the code we tested. The functions used for 
one operation (for example, active scanning) may use the same implementation as the 
same operation in another context, or it may not. We do not know unless we try to 
reverse engineer the proprietary library implementing the functionality. Also, compared to 
testing devices ctS ctCCCSS points, whose software is always running and the device always 
communicates with its surroundings, the applications for testing ESP32 W i - F i stack needs 
to be specially written. This brings some challenges. We could test some real application, 
which tries to connect to the access point. However, the testing would most likely discover 
bugs in the application itself and its logic, not in the W i - F i stack. A better way of testing the 
W i - F i implementation is to isolate the steps and only provide minimal software overhead. 
For this, special test programs had to be written. The software would only do one specific 
thing until something causes the reset of the device. For example, when testing the beacon 
frames, the device should listen for such frames and then and try to parse them. Further 
details are specified in each case. 

6.4.1 Probe response test 

The probe response frames are used for active scanning. The station device sends a probe 
request with some details about its capabilities, and the access point responds with details 
about its capabilities. The probe response can contain a specific SSID. The stated test 
cases should test only the active scanning. 

In testing, the probe request from the tested device does not contain any SSID. It is 
done by using the esp_wif i_scan_start function with the scanning method set to active 
scanning. The channel is set to the specific channel, the same as the channel of the fuzzer. 
The ESP32 then prints the SSID and some information from the received probe response 
frame, if it was accepted. The sent frames are most of the time not valid, and the firmware 
drops them, as it should. 

To simulate the process of connecting to specific access point, another test using the 
probe response was created. It tries to connect to the access point with a specific SSID, 
which is the SSID in the fuzzed frames (when the SSID is not fuzzer at the moment). The 
reason for it is that it may internally use different implementation than active scanning by 
itself, and this use-case is more common. Under connection is specifficaly meant the process 
of discovery, authentication, association and assignment of IP address. The fuzzer responds 
to every probe request from the tested device. It does not look at the SSID provided. 

6.4.2 Beacon frame test 

The beacon frames are used for advertising the presence of the access point. This can be 
then used to initialize the connection. In contrast to the probe response frames used for 
active scanning, the beacon frames are not responding to any frame. The access point sends 
them without any prompts. This passive scanning can be tested by a similar program to the 
active scanning. The difference is in the scanning method, which is set to passive scanning. 

The test program that tries to connect to the falsified access point cannot be used. The 
connection only accepts the probe response frames. It does not try to associate itself with 
the access point when only the beacon frames are available. 
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6.4.3 Deauthentication and disassociation frame test 

The mentioned frame types and the problems with fuzzing them are similar, so they are 
categorized as one. Creating a test program for fuzzing the two frame subtypes is not as 
straightforward as previous frames. The deauthentication frames by themself are simple. 
However, the states in which the device may accept them are numerous. From the speci­
fication of the 802.11, the deauthentication frames should be accepted in any state. This 
would mean that any test application with the W i - F i library initialized should always react 
the same. Whether in the initialized, authenticated, or associated state, when active or 
passive scanning. We cannot prove that this is the case in the real implementation, so the 
test cases include all of the mentioned states. 

6.5 Test Runner 

To effectively run tests on the ESP32, a bash script was written. It can compile and flash 
the prepared source files to the ESP32, run the remote monitor probe, and run the fuzzer 
with the specified configuration. The script is flexible, and the various parameters allow to 
specify the location of all the required files. The build and flash to the ESP can be skipped 
if the user knows the correct application already runs on the chip. Also, the monitor probe 
for the ESP32 can be disabled when the user wants to monitor the serial communication 
by themself or when other monitoring is wanted. 

6.6 Summary 

The implemented fuzzer follows the design decisions outlined in the Chapter 5. Together 
with the fuzzer, a remote probe for the ESP32 monitoring and test runner with test pro­
grams for the ESP32 were implemented. The latest language features were used to make 
the extensibility easier. 
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Chapter 7 

Testing 

The testing is divided into multiple parts. The first should confirm the fulfilment of the 
requirements set in the beginning and during the design stage, including the functional 
requirements. The second should be testing real devices using the implemented tools. 

7.1 Design requirements 

The design requirements are covered mainly by the general decisions while developing the 
fuzzing tool. 

• The reproducibility of tests is ensured by the deterministic data generation. 

• Vulnerability logging is performed by the monitor. 

• Minimizing interference should be done by only reacting to the frames with the 
source address set to the SUT M A C . 

• The resulting fuzzer can be configured. 

• It is modular on more levels. The remote probes can be changed for more sophisti­
cated ones. The crucial parts of the fuzzer can be replaced thanks to generic interfaces, 
and the fuzzer generation can also be extended without major changes. 

• The autonomous vulnerability detection is hard to verify when the fuzzing did 
not find any vulnerabilities. However, the conditions can be simulated. The test 
application for ESP32 was written, which caused the watchdog to reset the device. 
The result is the fuzzer detecting reset by watchdog and saving the last sent frames. 
The same can be said about the monitors using the watchdog. 

• The performance requirements were also satisfied. The details about testing are 
presented in the next section. 

7.2 Performance requirements 

The performance requirements were tested by running the probe response test and mea­
suring the time between captured probe requests and the first probe response. The data 
were filtered to include only data from the measured devices. The measurement was done 
by a third device, as shown in Figure 7.1 that acts as an independent observer. 
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Measuring Interface 

Figure 7.1: The diagram is showing the physical configuration of the participating devices 
and the measuring device. They were all located approximately 30cm from each other. 

The measurements were compared to the real access points ZTE Home Gateway Speed-
port Entry 2i, TP-Link Archer C6 and software access points created by android phones 
and windows laptop. The reference measurements were done by mimicking the previous 
setup with the Samsung Galaxy S9 acting as the client and the access points in the place 
of the fuzzer. The results were processed by sorting and removing the top and bottom 
10% of the measured intervals. They show that the time to respond of real access points 
is around 0.003 seconds, which can be seen in Table 7.1. The measured software access 
points vary more. The results also show that the implemented fuzzer is sufficiently fast 
and the requirement of response time under 0.01 seconds is satisfied. A l l of the response 
fuzzing is based on the same implementation, which means the measured performance is 
representative of all the fuzzed response frames. 

Device average time to respond (s) max time to respond (s) 
Z T E 0.003 0.003 
T P Link 0.003 0.003 
Galaxy S9 0.009 0.010 
Huawei P30 lite 0.002 0.006 
Windows laptop 0.004 0.005 
Fuzzer 0.007 0.009 

Table 7.1: The results from testing the time to respond to probe requests on various devices. 
The data was filtered from obviously outlying measurements. 

7.3 Functional testing 

To test the functionality of the fuzzer, Wireshark 1 was used. The tool allows for visualiza­
tion of the sent and received frames. Two wireless interfaces were used. The first was used 
by the fuzzer, and the second, independent, interface was used for traffic monitoring to en­
sure the sent frames contained the data we expect. When the format of the captured frames 
is not according to the specification, the Wireshark marks them as malformed. We assume 

1 Wireshark - h t t p s : / /www.wireshark.org/ 
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the Wireshark is able to capture and display the data correctly. It is tried and tested soft­
ware, and if the parsing would be wrong, the hexadecimal representation of the frame could 
be checked. Before the experiment starts, the interfaces must be configured appropriately. 
They have to be in the monitor mode, which allows reading all of the frames that reach the 
wireless interface. This also allows for frame injection using certain drivers. The interfaces 
also have to be on the same channel. 

7.3.1 Beacon frames 

To test the correct injection of the fuzzed beacon frames, the fuzzer was configured with 
the configuration seen in Figure 7.2. 

fuzzer_type: "beacon" 
interface: wlp7s0f4u2u2 
random_seed: 420 
src_mac: "8c:dc:02:d3:28:If" # zte router 
test_device_mac: "3c:71:bf:a6:e6:dO" # ESP 
channel: 5 
set_up: " n u l l " 
tear_down: " n u l l " 
fuzz_random: 10 

monitor: 
frame_history_len: 20 
dump_file: "/home/user/dump" 
type: grpc 
server_address: 0.0.0.0:50051 

controller: 
wait_duration_ms: 100 
packet_resend_count: 3 

Figure 7.2: The fuzzer configuration for testing the ESP32 system by sending the beacon 
frames. The wait duration was chosen based on testing done by modifying the data gener­
ation and manual inspection of the scan output, in order to make sure all the frames were 
scanned successfully. 

The produced frames should be broadcasted and received by nearby devices. The re­
ception depends on the physical properties of the signal, interference and distance from the 
fuzzer interface. The correct parsing and displaying of the frame depends on the W i - F i 
implementation of the receiving device. The expected behaviour is following: 

• The Wireshark sniffing through the independent interface will capture almost all the 
frames sent. 

• The devices nearby will display some of the SSIDs present in the frames sent. 
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The real findings exactly follow the expected behaviour. The output of the ESP32 
system can be seen in Figure 7.3, and a Screenshot from the Android phone scan is shown 
in Figure 7.4. Figure 7.5 shows a more detailed look at the frames sent by the fuzzer. 

I (8790) scan: Total APs scanned = 2 
I (8790) scan: SSID AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
I (8790) scan: RSSI -20 
I (8790) scan: Authmode WIFI_AUTH_0PEN 
I (8790) scan: Pairwise Cipher WIFI_CIPHER_TYPE_N0NE 
I (8800) scan: Group Cipher WIFI_CIPHER_TYPE_N0NE 
I (8800) scan: Channel 5 

Figure 7.3: A sample output of the ESP32 through the serial interface during the functional 
test of the beacon fuzzing. The program running on the system is passive scanning the 
channel 5 and listing the found networks. 

1 
Current network 

Figure 7.4: Screenshot from the Android phone scanning for the W i - F i networks during 
fuzzing beacon frames. The found networks include the SSID from the frames sent by the 
fuzzer. 

7.3.2 Probe response 

Similar setup to the beacon frame fuzzing is required for the probe response fuzzing. The dif­
ference is that the response needs to receive a probe request frame from the SUT, and the 
frame is sent with the destination set to the tested device M A C address. In the configu­
ration, only the fuzzer_type is changed to the "prb_resp". The tested application was 
also changed to perform active scanning instead of passive. Wireshark can capture both 
the requests and the replies. This is shown in Figure 7.6. It includes the expected source 
and destination M A C addresses, The ESP32 output looks the same as in Figure 7.3. 
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> Frame 1982: 116 bytes on wire (928 b i t s ) , 116 bytes captured (928 b i t s ) on i n t e r f a c e wlp3s0, i d 0 
> Radiotap Header vO, Length 56 
> 802.11 r a d i o i n f o r m a t i o n 
, IEEE 802.11 Beacon frame. F l a g s : C 
. IEEE 802.11 W i r e l e s s Management 

> F i x e d parameters (12 bytes) 
- Tagged parameters (20 bytes) 

- Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 18, 24, 36, 54, [Mbit/sec] 
Tag Number: Supported Rates (1) 
Tag l e n g t h : 8 
Supported Rates: 1(B) (0x82) 
Supported Rates: 2(B) (0x84) 
Supported Rates: 5.5(B) (0x8b) 
Supported Rates: 11(B) (0x96) 
Supported Rates: 18 (0x24) 
Supported Rates: 24 (0x30) 
Supported Rates: 36 (0x48) 
Supported Rates: 54 (0x6c) 

~ Tag: DS Parameter s e t : Current Channel: 5 
Tag Number: DS Parameter set (3) 
Tag l e n g t h : 1 
Current Channel: 5 

Tag Number: SSID parameter set (0) 
Tag l e n g t h : 5 

- SSID: 
. [Expert Info (Warning/Undecoded): T r a i l i n g s t r a y c h a r a c t e r s ] 

[ T r a i l i n g s t r a y c h a r a c t e r s ] 
[ S e v e r i t y l e v e l : Warning] 
[Group: Undecoded] 

Figure 7.5: Screenshot from Wireshark showing one of the frames sent by the fuzzer during 
SSID fuzzing. 

Espressi_... B r o a d c a s t 802.11 102 Probe Request, SN=17, FN=0, F l a g s = C, S 
zte_d3:28... Espressi_a6... 802.11 119 Probe Response, SN=132, FN=0, Fl a g s = C, 
zte_d3:28... Espressi_a6... 802.11 119 Probe Response, SN=132, FN=0, Flags=....R...C, 
zte_d3:28... Espressi_a6... 802.11 119 Probe Response, SN=132, FN=0, Flags=....R...C, 

Figure 7.6: Screenshot from Wireshark with the fuzzer responding to the probe request 
from the tested ESP32. The screenshot also shows that the used wireless interface driver 
automatically retries the transmission when acknowledgement was now received. This is 
indicated by the R in the listing. 

7.3.3 Disassociation and Deauthentication 

The functional testing of the disassociation and deauthentication frame fuzzing was similar 
to the beacon frame tests. The main tool for verification of the expected results was 
Wireshark. 

7.3.4 Authentication 

To test the responding to the authentication frames, authentication frame from the tested 
device must be sent first. This is done when the device is trying to connect. Most of 
the devices send probe request frames before the authentication. Presumably, it confirms 
the existence of the network and the correct destination M A C address of the authentica­
tion frame. Manually dissected messages from the authentication exchange can be seen in 
sFigure 7.7. 

7.4 Fuzzing coverage 

The fuzzing coverage is difficult to measure exactly. We could measure the ratio of the 
possible unique frames produced by the fuzzer to all unique frames. The design of fuzzed 
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0.000... Espressi... 
0.0 07... zte_d3:2... 
0.122... Espressi... 
0.123... zte_d3:2... 
0.12 9... zte_d3:2... 

Destination Protocol Length 

Broadc... TXT T 0 9 
Espres... 802 .11 118 
zte_d3... 802 .11 90 
Espres... 802 .11 91 
Espres... 802 .11 86 

Probe Request, SN= 
Probe Response, SI 
A u t h e n t i c a t i o n , SI 
A u t h e n t i c a t i o n , SI 
D e a u t h e n t i c a t i o n , 

Figure 7.7: Screenshot from Wireshark showing the authentication frames sent from 
the SUT and the fuzzed response. They are preceded by the probe request - probe re­
sponse exchange and followed by the deauthentication initiated by the fuzzer. The shown 
capture was dissected manually to not include retransmitted frames. 

intentionally minimizes this ratio because of time limitations. This metric would also ignore 
the fact that the W i - F i devices can have different internal states during which they behave 
differently. A more telling metric could be the coverage of known vulnerabilities in W i - F i 
implementations discoverable by fuzzing. For this, a list of such vulnerabilities must be 
created. As a source, we used the list of vulnerabilities found by other fuzzers and evaluated 
the vulnerabilities found in the C V E list [1]. The list of vulnerabilities that could be found 
by fuzzing was created by filtering the database one by one for keywords: " W i - F i " , "frame", 
"buffer overflow". The compiled table can be seen in the Appendix A . 

The fuzzing coverage is still hard to validate against the selected vulnerabilities. The best 
way to validate our claims would be to run the fuzzer against the devices with the vulnera­
ble software. Since we do not have access to those devices and the exact pay loads are (with 
the exception of one) not publicly available, we can only make assumptions about them 
and evaluate whether the implemented fuzzer produces such frames. 

7.4.1 Categorization of the found vulnerabilities 

We divided the completed list into four categories: the reproducible by fuzzer, reproducible 
by fuzzer using random fuzzing, not reproducible by the new fuzzer, and the vulnerabilities 
we cannot reliably categorize without the details about exploit. The discoveries which are 
discoverable by fuzzing are not discussed in this section. 

Vulnerabilities, which may be reproducible by the random fuzzing 

This would be inefficient and would depend on the seed selected and the amount of produced 
frames with the random data. Those vulnerabilities would be better discoverable if all 
possible information elements were modelled in the fuzzer. 

. CVE-2014-9902 

. CVE-2017-6956 

. CVE-2017-11121 

. CVE-2019-12588 
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Unknown 

The vulnerabilities mentioned could be found by fuzzing, but their categorization is impos­
sible without further information about them. 

• CVE-2011-0196 - no mention of the frame types or fields triggering the vulnerability 

. CVE-2017-6957, CVE-2011-0172 - no mention of the exact vulnerable elements 

Vulnerabilities not discoverable by the fuzzer 

. CVE-2007-5651, CVE-2008-1144, CVE-2019-12587, CVE-2019-12586 - currently not 
fuzzing frames beyond the association frames 

• CVE-2017-6957 - the fuzzer does not support reassociation frames fuzzing 

• CVE-2017-11120 - would require implementation of action frame fuzzing and the 
R R M neighbour report fuzzer 

• CVE-2019-1826 - would need to fuzz data type frames with QoS information 

7.4.2 Results 

From the categorized vulnerabilities, we can see, the fuzzer is able to fuzz most of the infor­
mation elements fields. The cases not covered by the fuzzer are results of the fuzzer design 
and usage of model fuzzing. Better results would require modelling of every information 
element, type, and subtype of the W i - F i specification. This is somewhat mitigated by the 
usage of random fuzzing in specific instances. The most numerous reason for the fuzzer 
not being able to find the vulnerability comes from the focus on fuzzing the frames not re­
quiring the knowledge of network password. The authentication through E A P is performed 
after the association and was not tested. In the future, fuzzing of all the vulnerabilities 
not discoverable currently should be added. The design of the fuzzer allows this extension 
without significant barriers in general design. 

7.5 Device testing 

The fuzzer was used to test devices. The test was focused on the ESP32 and ESP32-S2 
chips but included mobile phone stations, a printer, or a smartwatch. 

7.5.1 Experiment design 

The setup used for the experiment is the same as the one described in Section 7.3. The exact 
configuration used is different for every test case. The configuration used for the ESP32 
tests can be found in the repository 2 with the ESP32 program sources and the test runner. 

The tests were trying to find anomalies in the SUT behaviour during and after the 
fuzzing. Such anomalies could be restarts, visible slowdowns, inability to use W i - F i or 
unexpected lack of send frames. During the whole duration of the test, the Wireshark was 
capturing frames on the channel used. The captured frames were monitored during the 
test. The captures were also later manually inspected for any anomalies. 

2 Test runner wi th test cases and configurations - ht tps: / /gi thub.com/xvengeOO/fuzz_runner 
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7.5.2 ESP32 and ESP32-S2 

The main testing device was ESP32. The testing of the ESP32-S2 variant did not reveal any 
differences in their behaviour and was the same in every observable way. For this reason, 
they are described together. ESP32 is an M C U with integrated W i - F i and Bluetooth 
connectivity used in a wide array of devices. Testing an ESP32 chip as a station has 
an advantage compared to ordinary station devices. It can be automated, the scanning can 
be configured, and even the authentication can be automated. This was leveraged during 
the fuzzing to cover more possible errors. 

Findings 

The monitor did not find any critical failures or hangups. During the subsequent inspection 
of the communication by Wireshark 3 , a large amount of traffic from the tested device was 
found. When the device is associated but does not have an IP address, the device spams 
null data frames, which can be seen in the screenshot in figure 7.8. This causes a large 
temperature increase in the device. The amount of sent frames is in hundreds. They are 
divided only by occasional D H P C Discover packets, which are sent in an effort of obtaining 
IP address. 

34 772... Espressi_... zte_ _d3 28 : I f 802 11 84 N u l l f u n c t i o n 
34 773... Espressi_... zte_ _d3 28 : I f 802 11 84 N u l l f u n c t i o n 
34 774... Espressi_... z t e . _d3 28 : I f 802 11 84 N u l l f u n c t i o n 
34 774... Espressi_... z t e . _d3 28 : I f 802 11 84 N u l l f u n c t i o n 
34 775... Espressi_... z t e . _d3 28 : I f 802 11 84 N u l l f u n c t i o n 
34 775... Espressi_... zte_ _d3 28 : I f 802 11 84 N u l l f u n c t i o n 
34 77 6... Espressi_... zte_ _d3 28 : I f 802 11 84 N u l l f u n c t i o n 

Figure 7.8: Screenshot from Wireshark showing the spam of null function frames. 

The further inspection showed that the device created the event corresponding to the 
station connected state and then waited for the IP. This was in line with the test appli­
cation, the example application provided by the ESP-IDF and any real application trying 
to communicate using the W i - F i stack. Every 10 seconds, the device sends probe request 
frames, to which the fuzzer replies with valid probe response frames. When the fuzzer 
does not send the response, the connection times out, the device deauthenticates by itself 
and, depending on the configuration, retries the association from the beginning. When 
the fuzzer responds to the probe requests, the device starts spamming null function frames 
(data frame without any data). The frames were a result of the device trying to tell the 
access point about its intention to go to a power-saving state. Similar behaviour can be 
seen in other station devices. On the ESP32, this could potentially mean reduced battery 
life for the device, as the chip started producing significant heat, which to the point of 
potential lighter burns (we do not have the exact temperature, as the ESP32 does not have 
an internal sensor). 

7.5.3 Samsung Galaxy S9 

The testing of the Samsung Galaxy S9 revealed a weakness in the design of the fuzzer. It is 
a smartphone running Android operating system version 10. The design of the fuzzer was 
based on the assumption that the M A C address can be tied to the device. Even though 

3 Wireshark - h t t p s : //www.wireshark.org/ 
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the M A C address can be changed, we assumed it would not happen during the connec­
tion/scanning. 

What happened: 

1. The fuzzer was started with the target device set to the current address of the phone. 
The address was collected using the Wireshark. The first three bytes indicated the 
vendor - Samsung. 

2. The phone W i - F i menu was opened, which started active scanning indicated by probe 
requests captured by Wireshark and detected by the fuzzer. 

3. The fuzzer started responding to the requests with valid probe responses. 

4. The phone detected the frames and showed the SSID "FUZZING" from the responses. 

5. We select the SSID to try to connect to the fuzzer. 

6. The phone sends the disassociation frame to the previously connected access point. 

7. The M A C address of the scanning phone no longer shows up in the network capture. 

8. The device with a previously unseen M A C address (private address, not belonging to 
the Samsung vendor) sends a probe request frame containing the SSID "FUZZING". 

9. When the fuzzer does not respond to the device, the association fails, and the phone 
reconnects to the previous access point. 

10. When the fuzzer responds with the same valid responses (same SSID and capabilities 
as previously send responses), the new device tries to authenticate and associate itself 
with the fuzzer. 

11. The phone then considers itself connected but tries to get an IP address. 

12. This is tried indefinitely until it does so or the user disconnects manually. 

1 0 . 0000... zte_d7:35... SamsungE_l5... 
2 0.2268... zte_d7 : 35... 32 : e9 :b6 : f 1... 
3 0.2917... 32:e9:b6:... zte_d7:35:2b 
4 0.2996... zte_d7:35... 32 : e9 :b6 : f 1... 
5 0.3239... 32:e9:b6:... zte_d7:35:2b 
6 0.3306... zte_d7:35... 32 : e9 :b6 : f 1... 
7 0.3381... 32:e9:b6:... zte_d7:35:2b 
8 0.3381... 32:e9:b6:... zte_d7 : 35 : 2b 

802. 11 118 Probe Response, SN=37| 
802 . 11 118 Probe Response, SN=37 
802. 11 101 A u t h e n t i c a t i o n , SN=19 
802 . 11 90 A u t h e n t i c a t i o n , SN=37 
802 . 11 170 A s s o c i a t i o n Request, 
802 . 11 103 A s s o c i a t i o n Response, 
802 . 11 84 N u l l f u n c t i o n (No dat 
802. 11 84 N u l l f u n c t i o n (No dat 

Figure 7.9: A screenshot from Wireshark showing the randomization of the M A C addresses 
before authentication. 

After a short investigation of the cause, the cause was found in the Android OS doc­
umentation - MAC Randomization [31]. The feature was introduced in Android 9 as an 
option in the developer menu and as a feature always present in Android 10. The M A C 
address randomization is used for increased privacy of the user. The randomized address 
is harder to track. The randomization can be turned off in the menu, but only after a 
successful connection and IP assignment. 
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Figure 7.10: A screenshot from the Samsung Galaxy S9 running Android 10 with M A C 
randomization and open menu of the connected network, which allow the switching off the 
feature. 

The feature cannot be reliably added to the existing fuzzer, and for this reason, we 
cannot try automatic fuzzing beyond the class 1 frames (device does not have to be au­
thenticated or associated). Even if the randomization was not present, automatic testing 
would require a more complicated setup or a user constantly trying to connect. The manual 
fuzzing would be too labour intensive. Only the class 1 frames were fuzzed. The results 
did not reveal any flaws in the system, and the device seemed to function without any 
problems. 

The SSIDs from the beacon frames did show up in the network list menu. The resend 
count had to be increased to 20 in order to ensure reliable scanning. The disassociation 
and deauthentication frames had to be tested with manual intervention. The device did 
dissociate and deauthenticate every time, even though the length of the message was wrong. 
The authentication fuzzing had no effect because the device was dropping the authentication 
frames when it was not trying to authenticate. 
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7.5.4 H P Deskjet 3545 

We tried the fuzzer on a W i - F i capable H P Deskjet 3545 printer. The W i - F i acts as an access 
point and a station device at the same time. It produces a large number of beacon frames. 
To test the station portion of the W i - F i stack, the scanning had to be periodically turned 
on manually. This turned on the active scanning. The printer also reacted to the beacon 
frames, and some SSID did show up in the menu. 

The process was labour intensive and very inefficient. The scanning ran for about 15 
seconds, after which the found networks are displayed. For this reason, only a small portion 
of the fuzzed frames was tried. The testing did not show any malfunctions or abnormal 
behaviour. The printer did react to the deauthentication and disassociation frames, even 
with invalid parameters. 

7.5.5 Samsung Galaxy Watch Active2 

The Samsung Galaxy Watch Active2 is a smartwatch with Tizen operating system and 
W i - F i station capabilities. The device was tested only by fuzzing the class 1 frames, which 
include beacon, probe response, deauthentication and disassociation frames. The SSIDs 
from beacon and probe response frames did show up in the network menu, but the watch 
continued to work without noticeable side effects. 

The fuzzing of deauthentication frames did show some interesting behaviour. The watch 
did disconnect from the network when the fuzzer sent deauthentication frames with the 
source address of the associated access point, as expected. However, after the test was 
rerun, the watch could not connect to the access point. The watch removed the SSID 
from its database, and even after providing the correct password, the watch was unable to 
connect. This was tried repeatedly to confirm the results. The inability to connect was 
probably not caused by the fuzzed fields themselves. 

The issue is resolved by itself when the watch is left alone and reconnects to the access 
point. The problem only shows when the user tries to connect manually and sets the 
password in the menu. At that time, the fuzzing is already turned off and should not affect 
the device. The watch cannot connect, but after a couple of minutes, it reconnects by itself. 
The result is DoS, but the same effect has sending valid deauthentication frames. This is 
an attribute of the W i - F i protocol itself. 

7.6 Summary 

The testing confirmed the fulfillment of the functional requirements set in the design stage. 
Compared to the commercial solutions, the fuzzer has some deficiencies. The evaluation 
of the fuzzing space revealed some room for improvement especially in the fuzzing of the 
E A P authentication. Even though the deficiencies exist, the fuzzer vould be able to expose 
majority of vulnerabilities from the compiled list. Testing of devices using the fuzzer did 
not reveal any vulnerabilities. 
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Chapter 8 

Conclusion 

The thesis was studying W i - F i protocol and its implementations in various devices. The ex­
amined devices included smartphone, smartwatch, printer and most importantly, the W i -
F i stack of the ESP32 and ESP32-2S chips used in a wide array of devices worldwide. 
The knowledge gained when observing the W i - F i devices was used to implement testing 
tools. The testing used fuzzing, which is generally a technique of sending semi-random 
data to the system under test. Different fuzzing techniques were examined, with their re­
spective advantages and weaknesses. Based on them, the most appropriate was selected for 
the design of the final fuzzer. 

The goal of the thesis was to implement an open-source fuzzing tool capable of testing 
W i - F i protocol for different devices, which was successfully done. Its purpose is to detect 
implementation errors that could be exploited for malicious attacks. The capability to 
detect the errors was based on the list of the known vulnerabilities found by the already 
existing fuzzers or by other means. The resulting tool is one of only a few publicly available. 
The other available W i - F i fuzzing tools are impractical to extend or unmaintained and with 
little room to progress. The design of the fuzzer provides easy to extend architecture and 
set-up/tear-down function, which no other fuzzer provides, allow for automatic testing of 
more than basic frames. The testing revealed potential problems with fuzzing modern 
devices, which use M A C address randomization. We could not overcome those, and they 
would require an isolated testing environment with some modifications to the tool. 

Another goal of the thesis was to test the implemented tool on the ESP32 and ESP32-S2 
W i - F i stack. This was automated using the specialized testing applications for the chip, 
a special monitoring probe connected to the serial output of the chip and the runner script. 
The results did not reveal any anomalies in its behaviour during the testing. The manual 
examination of the captured data showed the same. 

In the future, the tool could be developed further and provide more efficient fuzzing 
for the various information elements in the frames. Testing of other chips used for IoT 
devices could also be easily implemented thanks to the design of the decoupled remote 
probes. For now, the tool provides good coverage of the core features of the W i - F i standard 
using the model fuzzing and some coverage of the more obscure features using the random 
fuzzing. 
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Appendix A 

Test vulnerabilites 

Res. Vuln. ID Type Description 
O K CVE-2006-6059 STA Buffer overflow in MA521nd5.SYS driver 

5.148.724.2003 for NetGear MA521 via beacon 
or probe responses with a long supported rates 
information element 

O K CVE-2006-6125 STA Heap-based buffer overflow in the wireless driver for 
NetGear WG311vl via management frame with a long 
SSID 

O K CVE-2006-6332 STA Stack-based buffer overflow in MadWifi via long infor­
mation element - This bug was proven to be remotely 
exploitable. 

O K CVE-2007-0933 STA Buffer overflow in the wireless driver D-Link D W L -
G650+ via beacon frame with a long T I M Information 
Element 

O K CVE-2007-5474 A P Atheros Vendor Specific Information Element Over­
flow 

O K CVE-2007-5475 A P Marvell Driver Multiple Information Element Over­
flows 

N O CVE-2007-5651 A P Extensible Authentication Protocol Vulnerability 
N O CVE-2008-1144 A P Marvell driver E A P o L - K e y length overflow 
O K CVE-2008-1197 A P Marvell driver Nul l SSID association request vulnera­

bility 
O K CVE-2008-4441 A P Marvell driver vulnerability by malformed association 

request containing the W E P flag 
R N D CVE-2017-6956 STA Buffer overflow in Broadcom W i - F i when handling an 

802.l lr (FT) authentication response, leading to re­
mote code execution via a long ROKH-ID field in a 
Fast BSS Transition Information Element (FT-IE) 

O K CVE-2009-0052 A P Atheros driver truncated reserved management frame 
vulnerability 

Table A . l : The first part of the vulnerability list used for the fuzz coverage evaluation. 
Their source is documentation of wifuzzit [7], which found them, the bachelor thesis by 
Bart Pleiter [30] and the vulnerability database [1]. 

62 



Res. Vuln. ID Type Description 
- CVE-2011-0196 A P AirPort in Mac OS X denial of service via W i - F i 

frames. 
- CVE-2011-0172 A P AirPort in Mac OS X denial of service via W i - F i 

frames (different vulnerability than CVE-2011-0162). 
O K CVE-2014-9901 STA The Qualcomm W i - F i driver in Android device makes 

incorrect snprintf calls. 
R N D CVE-2014-9902 STA Buffer overflow in Qualcomm W i - F i driver in Android 

via a crafted Information Element (IE) in an 802.11 
management frame 

O K - STA Nintendo DSi X L crash by E R P information tag in 
probe response frames 

N O CVE-2019-1826 A P A vulnerability in the quality of service (QoS) feature 
of Cisco Access Points due to improper input valida­
tion on QoS fields. 

N O CVE-2017-6957 STA Buffer overflow in the Broadcom W i - F i chips via a 
specialy crafted reassociation response frame with a 
Cisco IE (156) 

N O CVE-2017-11120 STA Buffer overflow in Broadcom W i - F i chips via a mal­
formed R R M neighbor report frame 

R N D CVE-2017-11121 STA Broadcom W i - F i chips, properly crafted malicious 
Fast Transition frames can potentially trigger inter­
nal buffer overflows. 

Table A.2: The second part of the vulnerability list used for the fuzz coverage evaluation. 
Their source is documentation of wifuzzit [7], which found them, the bachelor thesis by 
Bart Pleiter [30] and the vulnerability database [1]. 
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Appendix B 

Contents of the included storage 
media 

Directory Description 
bin/ Directory with the compiled fuzzer 
doc/ Directory with the text documentation 
fuzzer/ Directory with the fuzzer source files 
tests/ Directory with test runner, with the ESP32 test program 

sources and configurations 

Table B . l : The directory structure of the included storage media. 
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