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Abstrakt 
Tato b a k a l á ř s k á p r á c e popisuje, jak m ů ž e bý t princip T D D u p l a t n ě n u hardware, p ř evážně 
pro vývoj F P G A . Je p o p s á n a dů lež i t á teorie pro p o c h o p e n í kontextu. N a re ferenčním 
n á v r h u jsou p ř e d s t a v e n y n ě k t e r é d o s t u p n é a už i t ečné verifikační n á s t r o j e . Jeden z t ě c h t o 
n á s t r o j ů by l v y b r á n a p o m o c í T D D by l v y t v o ř e n a ú s p ě š n ě o t e s t o v á n n á v r h k o m u n i k a č n í h o 
modulu SPI . 

Abstract 
This bachelor's thesis describes, how test-driven development can be used i n hardware, 
especially for F P G A development. The essential theory for understanding the context is 
described. Some available tools for assertion-based hardware verification and unit-testing 
are presented and demonstrated on a reference design. One of the introduced tools was 
selected and wi th that a test-driven developed S P I interface was created and successfully 
verified. 
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Chapter 1 

Introduction 

Test-driven development ( T D D ) is a methodology, commonly used in software development. 
The concept of T D D is to write a test before the actual implementat ion of the code. The 
tests contain assertions and compare the expected result w i th the actual result. Gradua l ly 
adding tests and expanding functionality, while keeping previous tests passing and avoiding 
of unnoticed bugs. 

In F P G A development functional verification is usually done wi th testbenches and 
simulations. However complex designs are hard and t ime-consuming to verify. Therefore 
new verification tools and techniques are needed. Assertion-based verification, i n combination 
wi th test-driven development, can benefit for hardware design. Today, assertion-based 
verifications frameworks exist for F P G A development. Combin ing the test-driven development 
methodology and assertion-based verification can provide major advantages i n hardware 
verification where verification cycles take most of development t ime. 

The main goal of this thesis is to demonstrate how the T D D methodology can be applied 
in the hardware context, so in the further chapters instead of using F P G A design or F P G A 
development terms, hardware design and development w i l l be used. The next chapter 
describes the essential theory, the th i rd chapter introduces demonstrates and compares 
some assertion-based and test-driven techniques on a reference design. A demonstrational 
hardware was made using the introduced T D D techniques and the development report can 
be found i n the fourth chapter. Final ly , the stated facts and acquired results are summarized 
and evaluated in the final chapter. 

This thesis is shipped wi th a C D , which contains a l l the examples and the demonstrational 
hardware design. 
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Chapter 2 

Theory basis 

2.1 Test-driven development 

2.1.1 Asser t ions 

A n assertion is a (true-false) statement i n a program code denned by the developer, that 
(based on the developers knowledge) is always true.f ] They can be defined, e.g. in 
comments to help the programmers see through the code and use them to speed up the 
development process. M a n y programming languages support checked assertions, depending 
on the language, they can be defined wi th a bui l t - in keyword or function. They are evaluated 
during runtime and when some of them fail, the program exits w i th an assertion report. 
F rom the report, the developer can determinate which assertion failed, conclude what causes 
the error and fix i t . These assertions should be removed from the final code, some compilers 
have a switch for omit t ing them. 

2.1.2 Uni t - t e s t s 

A more sophisticated way of testing wi th assertions is using them i n unit-tests. The source 
code should be divided into ind iv idua l units, they can contain one or more functions, 
procedures, modules or objects. [6] Each unit should be tested individually, isolated from 
other test cases. In the test cases, assertions or similar techniques should be used to generate 
a report after running the test. 

The test cases can always be wri t ten from scratch, but some patterns w i l l be repeated 
in a l l tests, therefore it is obvious that one can take advantage of the reusability from the 
object-oriented programming. The first unit-test framework on this basis was developed in 
Small ta lk by K e n y Beck, whereof the xllnit architecture was specified. The implementat ion 
of the architecture varies for every programming language, but the four base classes are the 
same: 

• test case - the smallest unit of testing, every test should be inherited from this class 

• test fixture - it creates the test context and does a cleanup after running 

• test suite - a collection of test cases wi th the same fixture 

• test runner - it runs the test cases or suites and generates a report 
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2.1.3 T D D 

T D D is an agile software development methodology developed by the aforementioned 
software engineer, Ken t Beck. The main idea of the technique is to write (automated) 
tests before implementing the functionality and step forward only when al l tests have 
succeeded. O n l y that many functionality is implemented as many successfully pass the 
tests. 

Add some tests 

Run the tests 

Write the minimal amount 
of code to pass the tests 

ifa test succeeds 

Rewrite the test 

Refactor the code 

Run the tests 

Figure 2.1: T D D ' s development cycle based on Beck's definitionf ] 

Wi thou t adding tests, it is not possible to implement new functionality. W h e n a test 
succeeds ini t ial ly, it is meaningless and should be rewritten to fail and be in accordance 
wi th the new functionality. In order to do this successfully, the developer should know the 
precise specifications and requirements of the new feature. 

W h e n every added test fails, the m i n i m u m amount of code has to be wri t ten to pass 
the tests. The added code usually does nothing more than pass the tests and i n many cases 
it is not very elegant. Th is is the part of the methodology, it w i l l be fixed in the next step. 
W h e n some of the tests are unsuccessful, the code should be corrected un t i l it passes a l l 
the tests. 

Even i f a l l the tests are successful, the functionality is s t i l l not implemented, the code 
must be refactored. Th is means that the internal behavior of the code should be changed to 
eliminate duplicat ion. The external behavior must remain the same, so a l l the tests should 
successfully pass after refactoring. 

W h e n the refactoring is done and every test succeeds, the task of adding new functionality 
is completed. The tests are the guarantee that the feature works correctly, so the quali ty of 
the tests has an influence on the quali ty of the definitive code. To create new functionalities, 
these steps should be repeated as long as the software is not complete. 

The size of the steps can be chosen by the developer and can be changed any time 
during the development. However, this should be carried out w i th caution since making 
very smal l steps may result i n easy coding, yet the whole product w i l l be finished later due 
to the high number of iterations. 
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Increasing the size of the steps results i n a lower number of iterations, but the coding w i l l 
be more complex. For every project there is an opt imum, but it is s t i l l variable depending 
on the skills of the developer. Th is op t imum should be determined as soon as possible and 
be used in the whole process. It has to be changed when it is necessary. 

The methodology teaches how to write and interpret specifications. The errors are 
discovered earlier and faster, so debugging becomes quick and easy. It forces to write the 
simplest code, so the final code w i l l be clean and easy to understand. O n the other hand, 
it is hard to learn and not everybody can write good tests. It is not suitable for developing 
a program which does not have an exact specification. 

2.2 Hardware verification 

Accord ing to the P M B O K Guide[ l ] : 

• „ V a l i d a t i o n . The assurance that a product, service, or system meets the needs 
of the customer and other identified stakeholders. It often involves acceptance and 
suitabil i ty w i t h external customers. Contrast w i th verification." 

• „ V e r i f i c a t i o n . The evaluation of whether or not a product, service, or system 
complies w i th a regulation, requirement, specification, or imposed condit ion. It is 
often an internal process. Contrast w i th validation." 

In the hardware field, verification means a process that proves a homomorphic relationship 
between a register-transfer level ( R T L ) model of the developed hardware and his specifications 

2.2.1 S i m u l a t i o n a n d test ing 

The method is often called bug hunting, because its main objective is to find bugs i n the 
design. W i t h simulation, it is only possible to detect the errors, not to fix them. [11] A 
special software environment is necessary which compiles the design and runs i t . The 
output is often a waveform where the logic levels of inputs, outputs and inner signals are 
shown in the function of t ime. Since the unit under test needs some input variables, a 
testbench is needed to generate these. A l l inputs and outputs of the unit are connected to 
this testbench. 

The main disadvantage of this method is that it is t ime-consuming. Simulat ing a 
complex design can take days or more to run, and wi th the examination of the output 
waveform, the problem is similar. Eventual ly it is very hard or impossible to write a 
testbench which generates a l l possible input combinations. In many cases s imulat ion is 
used only for smal l parts of a larger module. 
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outputs in
pu

ts
 

w Design Under Test 

outputs 

Figure 2.2: T y p i c a l usage of a testbench i n simulation[4] 
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2.2.2 F o r m a l veri f icat ion 

Formal verification uses formal methods and mathematics to verify that the specifications 
are preserved in the implementation. [ ] It can completely prove the correctness of the 
design, not just draw some conclusions from test results. That is because testing can be 
successfull even then when it does not cover the whole system and the formal methods 
should always be working wi th the complete model . It is not always sure that a formal 
verification process w i l l be finite and w i l l be terminated at some point, but it can be s t i l l 
be helpful to find some errors in the design. 

W h e n a system can be represented by a finite-state machine or equivalent, it is possible 
to check algori thmical ly (e.g. by state space search) i f the system succesfully satisfies a 
given specification. This method is called model checking. 

A n alternative can be theorem proving which is a deductive verification process. The 
specifications and the model can be described mathematically, equivalence can be proved 
between them. This method is semi-automated, it often requires a significant manual effort 
of users.[11] 

Static analysis is l inked wi th automated analysis of the source code. It can be used 
not only for verification but for opt imal izat ion and code generation too; his main attribute 
is that it does not the model of the system and it avoids the execution of the code. 

2.2.3 F u n c t i o n a l veri f icat ion 

Funct ional verification is more pract ical than the formal one. It verifies the system by 
examining the inputs and outputs of various simulations. To facilitate the whole process, 
it uses more sophisticated techniques like constrained-random stimulus generation, self 
checking mechanisms, assertions and coverage-driven verification. 

W h e n verifying large systems, it is very difficult to test the complete set of input 
combinations. A suitable alternative is to generate random inputs which are circumscribed 
by constraints to be val id for testing. This is called constrained-random stimulus 
generation. The constraints can be targeted, e.g. to cause corner cases or given states of 
the system. 

W i t h coverage-driven verification it can be measured which parts of the system 
were correctly verified. The types of observable coverages are: 

• Code coverage 

• Funct ional coverage 

• P a t h coverage 

• F S M coverage 

• others . . . 

Assertion-based verification uses assertions (see 2.1.1), which can be helpful to 
formally express properties of the system and to verify awaited (partial) results. Fa i l ing an 
assertion terminates the verification and makes easy to find the source of the problem. 

Self checking mechanisms are based on calculat ing the outputs independently from 
the implementat ion and comparing them wi th the outputs received from the simulat ion. It 
can be used for detecting data loss and the correct order of the output data. Th is process 
can be fully automatized. 
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2.3 Test-driven development in hardware verification 

It is necessary to redefine the hardware development cycle and the verification process so 
that they should fit into the T D D paradigm. 

Write some testbenches 
with assertions 

Create an empty entity 
with the final i/o ports 

Write some testbenches 
with assertions 

Create an empty entity 
with the final i/o ports 

Run the tests 

if a test succeeds 

Rewrite the testbench 

Refactor the code 

Write the minimal amount 
of code to pass the tests 

Run the tests 

Figure 2.3: T D D ' s development cycle modified for hardware development 

Creat ing a testbench before implementing any module is not possible, because the 
testbench needs to instantiate the entity to test (see 2.2). So before creating the first 
group of tests, the final input /ou tput signals should be implemented into an empty entity. 

Implementing and running the testbenches can be done in the classical way, but using 
some macros or addi t ional tools can facilitate the development process. M a n y hardware 
verification environments have support for assertions, but it is also possible to extend the 
environment w i th unit-testing functionalities. W h e n the testbenches are created, they 
should fail at the in i t i a l run. 

Accord ing to Beck's second step the min ima l amount of code has to be implemented, 
which successfully passes a l l the tests. This newly added code is sometimes not synthesizable 
and it is often just a workaround which fakes the tests. To make the code complete and 
synthesizable, it has to be refactored in the similar way, which was mentioned in 2.1.3, 
combined by running the hardware synthesis. 

After the refactoring a synthesizable code should be produced. This can be reached by 
running a synthesis tool together w i th the s imulat ion during the refactoring process. W h e n 
it is done, the new functionality is successfully implemented and the whole process can be 
started over. 
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Chapter 3 

Available tools 

3.1 Reference design 

To demonstrate the available techniques which can facilitate the T D D process, a reference 
design was made based on the 16550 U A R T module. The U A R T is a simple bi-directional 
serial communicat ion device, it converts data bytes into ind iv idua l bits and sends them 
sequentially and vice-versa. 

Accord ing to the specification when no data is received, on the receiver port is logic 
1. The data transfer starts w i th a start bit (which is logic 0 for one baud-cycle), from the 
falling edge of this bit the receiver should be able to generate a synchronized baud rate 
using the clock signal. After the start bit the data bits are received, start ing wi th the 
first bi t , one i n every baud-cycle. The following received bits can be pari ty and/or stop 
bits, depending on the chosen configuration. The received data should be forwarded to the 
parallel port. The occuring pari ty and other errors should be signalized, such as the usage 
of the module. The transmitter should work on the same principle w i th the same parallel 
port, only in the opposite direction. To settle the difference between the baud rate and the 
clock signal, addi t ional F I F O modules should be connected to the transmitter and receiver. 
Another signals are needed to select the transmission configuration, indicate errors, usage, 
availabil i ty and decide the flow on the parallel port . The specification also mentions some 
signals for communicat ing wi th a serial modem. 

— elk err 

— rx tx 

UART 
— rst tx_ready 

— data wr rx_ready 

— data_in(8) data_out(8) 

Figure 3.1: Schematic of the simplified U A R T module 
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In the reference design, the above specification was significantly simplified. The data-flow 
configuration was fixated to 8 - N - l (8 data bits, no parity, 1 stop b i t ) . The baud rate 
selection was el iminated too, the signal is generated directly from the clock signal, d iv id ing 
it by 16. The original two-way 8-bit data port has been separated into independent input 
and output ports, the F I F O on the receiver side and the modem support were eliminated. 
Thanks to these simplifications, some configuration and indicat ional signals were necessary. 

The module was implemented using conventional hardware development techniques in 
V H D L . The final design was successfully verified by using simulations. 

3.2 Assertions 

To demonstrate the power of assertions on the reference design, some statements from the 
sub-modules' specifications were selected: 

• Receiver 

— when rxjready is i n logic 1, the received data should match wi th the sent 

— when a stop bit is not received at the end of the communication, the err port 
must be i n logic 1 for one clock cycle 

• Transmitter 

— the communicat ion should be started wi th a start-bit which is logic 0 

— each data bit should match wi th the tx port for 16 clock cycles 

— the communicat ion should be ended wi th a stop bit which is logic 1 

• F I F O 

— after a reset, on the empty port should be logic 1 

— after a write, on the empty port should be logic 0 

— when one byte is wri t ten and read, they must match 

— when mult iple bytes are wri t ten and read, they must match and the same order 
must be preserved ( F I F O ) 

— after wr i t ing 254 bytes, on the full port should be logic 1 

— after reading out a l l values, the last one should be preserved on the data port 

For each sub-module a new testbench was designed, containing assertions w i t h the 
statements listed above. The testbenches were implemented first i n V H D L using standard 
assertions, then they were converted into P S L and finally a l l three testbenches were rewrit ten 
into SystemVerilog. 

The testbenches were successfully compiled and run using the Mentor Graphics 's QuestaSim 
environment. A l l of the source codes (including some scripts for automated running) are 
available on the C D attached to the present paper. 

9 



3.2.1 V H D L 

The assertions i n V H D L can be defined i n linear structures (processes, functions, procedures) 
and i n concurrent descriptions (entities, architectures) too. The construction is not synthesizable, 
so they can be used only in simulations. 

assert condition report string severity l e v e l ; 
List ing 3.1: V H D L assert syntax 

W h e n the condition is false, the string is wr i t ten to the output console wi th the given level. 
This level can be note, warning, error or failure. If the severity-level pair is omitted, the 
default level w i l l be used, which is error. 

There are two modes of using these assertions i n the practice. The first is to add them 
directly into existing stimulus processes between other lines of code. This makes easier to 
check the value of a signal in a given t ime moment, because it is not necessary to search for 
the expected results i n the s imulat ion waveform. The second solution is to use concurrent 
assertions which are evaluated i n every t ime moment (e.g. two signals cannot be equal) 
or create a process which waits for a triggering event and evaluates assertions (e.g. two 
nanoseconds after setting a signal to high, an other has to be low). It is necessary to define 
the triggering events i n the stimulus processes which can be very complicated when having 
several tests. 

test_empty_after_reset : process begin 
wait u n t i l rst='l'; 
wait u n t i l r s t = ' 0 ' ; 

assert empty='1' 
report "Test: uempty_after_reset uFAILED!" 
severity error; 

assert empty^O' 
report "Test: uempty_after_reset uPASSED!" 
severity note; 

end process test_empty_after_reset; 
List ing 3.2: V H D L assertion in a separate process 

To prevent code repetit ion in the stimulus processes, assertions can be wri t ten into 
procedures/functions and they could be called when necessary. Unfortunately V H D L does 
not allow wait statements i n procedures/functions, so complex (e.g. timed) assertions 
should remain inside stimulus processes. 

Concurrent assertions are evaluated i n every discrete moment of the simulation process, 
so they are only useful for checking simple statements which are independent of t ime. For 
example, they can be used for checking that two signals are never in logic 1 at the same 
time, but it is not possible to validate what happens i n the next clock-cycle after triggering 
an event. 

assert write='l' and read='l' 
report "Read uand uwrite ucould unot ube uin ulogic ul uat uthe usame utime." 
severity f a i l u r e ; 

List ing 3.3: Concurrent V H D L assertion 
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It is a great advantage that assertions can be combined wi th almost any V H D L control 
structures. For example, the correctness of the transmitter module was verified using a for 
loop which compared the output dur ing t ime wi th the appropriate bit from the parallel 
input. 

for i i n 0 to 7 loop 
wait for clk_period*16; 

assert tx=data(i) 
report "Test: ubit u#" & integer'image(i) & "UFAILED" 
severity error; 

assert tx/=data(i) 
report "Test: ubit u#" & integer'image(i) & "UPASSED" 
severity note; 

end loop; 
List ing 3.4: Assert ion combined wi th a for loop 

To generate an advanced text-based output w i th assertion reports, it is necessary to 
define two assertions for each property (see the example above). One has to fail when the 
property is not true and the other should report when the negation of the property fails. 
Tha t is the only way to generate a report not just when a test fails, but when it succeeds 
too. It makes the report more transparent when different severity levels are used for the 
two assertions. W h e n running the simulator, a special option is needed to generate a text 
file containing the reports. 

W h e n the amount of input /output signals is large or the s imulat ion t ime is very long, 
the assertion report can become very difficult to follow. Whenever a test fails, checking 
the waveform is inevitable. Some simulation environments provide an option to show the 
assertions directly i n the waveform. 

The language is suitable for test-driven development, but only for smaller projects w i th 
a moderate number of tests. The s implic i ty of the concurrent assertions makes them almost 
entirely unnecessary, because a non-concurrent assertion i n a process can do the same and 
using only one type of assertions makes the code cleaner. 

3.2.2 P S L 

The Proper ty Specification Language ( P S L ) can be used to formally describe the properties 
of hardware designs. It is independent from hardware description languages, usually it is 
embedded into comments or wri t ten into separate files. His purpose is to define assertions, 
it provides very sophisticated and advanced solutions. The language can be divided into 
four layers.[2] 

Boolean layer 

In the boolean layer logic expressions can be specified on the lowest (true/false) level using 
standard H D L syntax. It is extended wi th u t i l i ty functions to detect e.g. one-hot-encoding, 
changes i n the value of the expression (together w i th determining his previous value) and 
wi th some logical operators. 
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Temporal layer 

The temporal layer specifies when the expressions from the previous layer should be val id . 
The t ime window of the val idi ty can be specified as Foundat ion Language ( F L ) temporal 
operators or by using Sequential Extended Regular Expressions ( S E R E ) . Combin ing these 
two methods, almost any property can be specified wi th P S L . The temporal units can be 
grouped into named sequences and so they are reusable. 

Verification layer 

In the verification layer restrictions, assertions, assumptions and functional coverage can be 
specified using the previous layers. Th is layer also offers the divis ion of the verification into 
verification units (vunit) which can be bound/unbound to modules and can be inherited. 

Model ing layer 

The modeling layer should contain the auxi l iary H D L code which is not part of the hardware 
design, but it helps to describe combinational signals and/or complex state machines. 

wire req; 

assign req = req_detect && req_mask; 

assert always (req ->next(ack)); 

Boolean layer 

Temporal layer 

Verification layer 

Modeling layer 

Figure 3.2: P S L Layers [ ] 

The P S L assertions could be direct ly integrated into any hardware description language 
(usually into testbenches) using comments and a special psl keyword, but they can be 
wri t ten into a separate file as well . Depending on the s imulat ion environment, some 
addi t ional switches may be needed to interpret these commented lines and show their 
output together w i th the s imulat ion results. S imi lar ly to V H D L assertions in separate 
processes, triggering events should be added i n the stimulus processes. 

— psl property name is always {(cond_l)} /-> {(cond_2)} @clk_ev; 
— psl assert (name) report "string"; 

List ing 3.5: P S L property definition and assertion syntax example in V H D L 

Because the P S L is logically separated from the testbench, it is not possible to write 
assertions inside stimulus processes. Instead of them, the conditions prior to an assertion 
could be described using the temporal layer. These conditions can be grouped into sequences 
and they can be used i n mult iple assertions. 
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The following example demonstrates a very long assertion which was used to test the 
functionality of the transmitter module. The same test was described much simpler in 
V H D L using a for loop (see l ist ing 3.4). 

— psl sequence data_bits is 
— psl {tx=data(0) [*16];tx=data(l) [*16]; 
— psl tx=data(2) [*16];tx=data(3) [*16]; 
— psl tx=data(4) [*16];tx=data(5) [*16]; 
— psl tx=data(6) [*16];tx=data(7) [*16]}; 
— psl property data_test is always 
— psl {tx_ready;not(tx_ready);tx[+]; 
— psl not (tx) 1*16]}• /=> data_bits; 
— psl assert data_test; 

List ing 3.6: Ma tch ing the tx output w i t h the data input using P S L 

Because the P S L is evaluated independently by the simulator, it is possible to combine 
it w i th V H D L (or other H D L ) assertions. The developer can always select that one for each 
assertion, which can describe its properties easier. 

Unl ike V H D L , it does not supports custom text-based output generation, so a final 
report generation has to be implemented i n the simulation environment, or by using e.g. 
T C L or other scripts. However, the assertion results can be summarized in the simulat ion 
waveform window, from which the developer can easily determine which assertion failed or 
passed i n a given t ime moment. 

In larger projects, P S L is not an opt imal solution, because it needs to be combined 
wi th another language which generates the stimulus processes. Us ing mult iple languages 
in larger projects and keeping them in accordance is a difficult task for any developer. The 
sequence-based property specification, however, is a very useful technique, it should be 
implemented i n other verification languages. 

3.2.3 S y s t e m V e r i l o g 

SystemVerilog is a hardware definition and verification language developed from Verilog-2005. 
Syntact ical ly the two languages are the same, the System Veri log is just extended wi th some 
features for verification such as object-oriented design and complex P S L - l i k e assertions. 

Non-concurrent assertions are supported and they are very similar to the V H D L ones. 
B y using them, it is possible to generate reports w i th advanced text-based output. Unl ike in 
V H D L , it does not need two assertions to generate output for both test failing and passing. 

label: 
assert (condition) 
$display("message uif uthe uassertion upasses"); 
else $error("message uif uthe uassertion ufails"); 

List ing 3.7: Non-concurrent assertion syntax i n System Veri log 

It supports concurrent assertions too, but i n much advanced level than V H D L . It 
was inspired by the P S L , so only few differences are present, e.g. the logical and t iming 
operators should be described using System Veri log syntax. Boolean values could be defined 
in sequences, they could be specified i n properties and finally they could be evaluated using 
assertions. 
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It also provides local variables inside sequences and properties which could be very 
helpful when testing reactions to external inputs. However, the the syntax of defining a 
value for a variable can be very complicated, e.g it is not possible to pass a value i n a 
discrete t ime moment without specifying at least a boolean value. 

property read; 
reg[0:7] input; 
en ##1 (1, input=rx) |=> data_read==input; 

endproperty; 
always @(posedge elk) assert property(read); 

Listing 3.8: P S L - l i k e assertion example wi th a local variable 

W h e n it is complicated to describe an advanced sequence wi th concurrent assertions, it is 
possible to combine standard SystemVerilog control and t iming structures w i t h non-concurrent 
assertions. 

always @(posedge data_req) begin 
#18 s t a r t _ b i t : 
assert (tx == 0) 

$display("Test: ustart_bit uPASSED! 1 1); 
else $error("Test: ustart_bit uFAILED!"); 

for (integer i=0;i<8;i++) begin; 
#32 data_bit: 

assert (tx==data[i]) 
$display("Test : udata_bit u #7od uPASSED!", i ) ; 
else $error ("Test: udata_bit u #7od uFAILED!", i ) ; 

end; 
#32 stop_bit: 
assert (tx==l) 

$display("Test: ustop_bit uPASSED!"); 
else $error("Test: ustop_bit uFAILED!"); 

end 
Listing 3.9: Assertions combined w i t h standard SystemVerilog control structures 

The text-based report generation of the two types of assertions could not be joined into 
one file. The concurrent assertions can use only the simulator 's bui l t - in report-generation 
system which shows only the failure/pass count of each assertion. Between assertion-based 
verification tools, SystemVerilog supports the most features, it can be used object-oriented, 
so an advanced unit-test framework can be created using just this language. 

A s a demonstration, the reference V H D L design was instantiated in a SystemVerilog 
testbench, there was no need to reimplement everything i n SystemVerilog. P S L - l i k e and 
non-concurrent assertions were used together, for each always that one which can describe 
the given properties simpler. 
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3.2.4 C o n c l u s i o n 

A l l of the previously mentioned tools are usable together w i th the T D D methodology. The 
automatizat ion of running the tests does not depend on the language of implementation, but 
on the used verification environment. It is an important fact, that checking the waveform 
window can not be avoided wi th automated test-report generation due to high number of 
possible input /ou tput signal combinations. 

The V H D L assertions are not suitable for product ion use, just like P S L , they should 
be used together. However, for a developer it is easier to use only one language and 
SystemVerilog does not need any other language to create advanced tests. The missing 
repetit ion operators could be substituted by non-concurrent assertions combined wi th standard 
control structures or by combining wi th P S L v /ben it is reall 
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Concurrent assertions only simple yes yes yes yes 
Non-concurrent assertions yes no yes yes yes 
Assertions combined wi th control structures yes no yes yes yes 
F u l l scale of repetit ion operators no yes yes no yes 
Advanced t iming options no no no yes yes 
C a n be combined wi th other languages no yes N/A no N / A 
Assertions groupable into units no yes yes yes yes 
Number of languages to know 1 1 2 1 2 
Suitable for product ion use no no yes yes yes 

Table 3.1: Compar ison of the three languages and they combinations 

Depending on the size and complexity of a hardware design, the table above can serve 
as a start ing point to select the best language (or language combination) for assertion-based 
test-driven development. For more complex projects, more advanced tools, such as unit-test 
frameworks or test automation scripts should be used. 
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3.3 Unit-test frameworks 

A s it has been mentioned before, unit-test frameworks provide an environment for automated 
testing which can be very useful for T D D . For implementing e.g. the x U n i t architecture, 
object-oriented programming should be supported by the H D L at least on the verification 
side. 

3.3.1 V h d l U n i t 

Unfortunately, V H D L does not support object-oriented programming, so it is not possible 
to implement the x U n i t architecture i n i t . However, it is possible to define macros for 
regularly used testing structures and implement external scripts for test automation and 
better report generation. 

The V h d l U n i t was made on this principle: procedures are helping the test creation and 
a T C L script generates a logically arranged report. Unfortunately, it is documented only 
in Po l i sh and it has not been not under development for the past nine years. 

After examining the source code, it is sure that the tool cannot be combined wi th P S L 
assertions, so except the h t m l test report generation and the unified testing it does not give 
anything more. It is not suitable for product ion use, because it is easier for a developer to 
write his own scripts and macros than using a non-documented framework. 

3.3.2 S V U n i t 

The S V U n i t framework can be divided into an object-oriented model of a unit-test framework 
for SystemVerilog and helper scripts for code generation implemented i n Per l . It is a very 
young tool s t i l l under development, in this document is introduced using [ ]. 

Objects 

svunit_pkg 

svunit_testcase 

#name: string 
-run_ut: boolean_t 

-success: boolean_t 
-error_count: int 
-verbose: boolean_t 

+new(name: string) 
+setup() 
+run_task() 

+tearDown() 
+run() 

+report() 
-pass(s: string) 
-fail(s: string) 
#fail_if(b: bit, s: string) 
#fail_unless(b: bit, s: string) 
+enable_verbose() 
+disable_verbose() 
+enable_unit_test{) 

+disable_unit_test{) 
+get_name() 
+get_runstatus() 
+get_results() 

svunit_testsuite 

#name: string 
-run_suite: boolean_t 

-list_of_svunits: svuni t jestcase 
-success: result_t 1:* 

+new(name: string) 
+run() 
+load_testcase(tc: svunit_testcase) 
+report() 
+addTestCase(tc: svuni t jss tcase) 

+addTestCases(tcsQ: svunit_testcase) 
+enable_suite() 
+disable_suite() 
+get_name() 
+get_runstatus() 
+get_results() 

svunit testrunner 

#name: string 
-run_suite: b o o l e a n j 
-list_of_suites: svunit_testsuite 
-success: boolean t 

+new(name: string) 
+addTestSuite(ts: svunit jestsuite) 
+addTestSuites(tss[]: svunit_testsuite) 
+loadTestSuites(ts: svunit_testsuite) 
+report() 
+get_name() 

Figure 3.3: S V U n i t class diagram 
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Each unit-test should be inherited from the svunit-testcase class, it is a file naming 
convention i n the framework which requires that the unit-test filename should be ended 
wi th junit-test.sv. In the unit-test three functions should be defined: 

• setup (): - here should be ini t ia l ized the test preconditions 

• run-test(): - this runs the tests 

• teardown(): - here should be implemented the cleanup 

The unit tests can be grouped into test suites using add-testcase() and add-testcases() 
functions. O n smaller hardware modules, sometimes one test suite should be enough for 
the whole module. For larger modules, it is recommended to aggregate only those tests 
which can tolerate each other's context. 

A l l test suites should be collected into a test runner inheri t ing the svunit-testrunner 
class and using the add-testsuite() and add-testsuites() functions. This test runner w i l l 
iterate a l l the test suites and they w i l l iterate each unit-test inside. The unit-tests and the 
test suites provide a flag to enable/disable their run. 

Final ly , in the highest level the user's test runner class should be instantiated and his 
run method should be called to start the testing. W h e n everything is set correctly, a l l test 
suites and tests w i l l be iterated and finally a report is made containing the results. 

Scripts 

To make the test-creation easier, a set of P e r l scripts are available. These scripts can 
generate unit-tests, test suites and test runner. They also provide adding unit-tests to 
existing test suites or adding a new test suite to the existing test runner. These scripts are 
using some global variables, which can be set in the svunit-test-globals.pl file, such as the 
format of the header text. 

• create_unit_test.pl 
The script takes an existing class or header file and generates for h i m a unit-test 
template using the file naming convention mentioned before. It takes a l l the functions 
from the original class and generates for each an empty test function wi th the prefix 
test- Each generated function is added into the run-test() function. 

For example, for the transmitter.sv file w i th a class named transmitter, it w i l l create a 
file transmitter-unit-test.sv w i th a class named transmitter-unit-test which is inherited 
from the svunit-testcase class. A n empty test-baud-gen() function is generated for 
testing the original baud_gen() function. F i n a l l y the test-baud_gen() and a l l other 
test functions are added into the run-test (). 

The tests should be implemented by the user using the 'FAILJF and 'FAIL-UNLESS 
macros or using any other methods which increment the error-count variable when 
an error occurs. 

# c r e a t e _ u n i t _ t e s t . p l [ -help / -out <output_file> / -i / 
-author "name" | -overwrite | <filename> ] 

List ing 3.10: create_unit_test.pl script syntax 

The „-i" argument enables the interactive mode which allows the user to select the 
functions to test, so some functions can be omit ted from testing. The description of 
any other argument is t r iv ia l . 
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• create_testsuite.pl 
The script creates a test suite for the unit-tests wi th in the current directory (or in a l l 
subdirectories when the „-r" argument is set), using a search for files that are ending to 
„-unit-test.sv". It creates a template which is inherited from the svunit-testsuite class 
and appends each test into the suite using the add-testcase() function. Interactive 
mode is supported just like in the script before and wi th the ,,-add" argument a single 
test can be added into an existing suite. 

# c r e a t e _ t e s t s u i t e . p l [ -help / -out <output_file> / -i / -r I 
-author "name" | -overwrite | -add <testname> ] 

List ing 3.11: create_testsuite.pl script syntax 

A s an output, a package file is generated that imports the svunit-pkg and includes al l 
required files for running the unit-tests. For larger projects, this package file should 
be modified by including addi t ional required files. 

• create_testrunner.pl 
The script works similar to the create-testsuite.pl, it aggregates test suites not unit-tests, 
the syntax is the same. 

• create_svunit.pl 
This script includes the previous three scripts and should be used on existing environments. 
It iterates through the current directory (or i n a l l subdirectories when the „-r" 
argument is set) and searches for a l l SystemVerilog files. For each declared class 
generates a unit-test, it aggregates the unit-tests into test suites based on the subdirectory 
structure. It also creates a test runner including a l l generated test suites. W h e n the 
„top" argument is set, an svunit-top.sv file is generated which instantiates the test 
runner and calls the run() function. A package file for including a l l necessary files is 
generated as well. 

# c r e a t e _ t e s t s u i t e . p l [ -help / -out <output_file> / -i / -r I -no_ut I 
-author "name" | -overwrite | -top ] 

List ing 3.12: create_svunit.pl script syntax 

On ly two simple assertions ( ' F A I L J F and ' F A I L J J N L E S S ) are supported, concurrent 
P S L - l i k e assertions are not. They can be added into the code and the simulator w i l l evaluate 
them, but the framework's test report w i l l not contain them. However, their combination 
would not make any sense, it just makes test creation diffucult. 

A n advanced simulat ion environment, such as the QuestaSim and a Unix-based operating 
system is necessary to use this framework. Unfortunately, the QuestaSim used in previous 
sections was licensed only for Windows, so it was not possible to t ry and demonstrate this 
framework. 
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3.3.3 M y H D L 

The M y H D L is not a unit-test framework, but a P y t h o n module which provides hardware 
description and verification using P y t h o n language. So a l l the advantages of Py thon , 
such as easy learning, s implic i ty and elegancy, can be used in hardware development. It 
supports concurrent hardware modeling similar like V H D L processes and signal-like classes 
for connecting endpoints. It has a bui l t - in simulator, but it supports Veri log co-simulation, 
too. 

It does not support hardware synthesis, but it can convert the P y t h o n descriptions to 
synthesizable V H D L / V e r i l o g code. High-level constructs are usable for hardware descriptions, 
such as objects and exception handling. W h e n running the code, it is hard to find the 
errors, because sometimes the interpreter just skips them without displaying any error 
or warning. P S L - l i k e assertions are not supported, testbenches have to be wri t ten using 
P y t h o n structures. 

The M y H D L alone does not support unit-testing, but it is possible to use P y t h o n 
assertions or a unit-test framework such as x U n i t or pytest. F r o m the T D D ' s point of view, 
it gives nothing more than V H D L combined wi th assertions, but it is possible that i n the 
future it w i l l support advanced t iming from the verification side. 

Some parts of the reference design were t r ied to reimplement i n M y H D L and testbenches 
were added, too, by using assertions. Dur ing the s imulat ion wi th the bu i l t - in simulator, it 
skipped running of mult iple processes without giving any notifications or error messages. 
W h e n the order of the processes in the code was changed, some errors were printed out, but 
from the output it was not possible to detect where the errors are occured. Conversion to 
V H D L / V e r i l o g code returned wi th similar errors. F r o m this it can be stated that M y H D L 
is not suitable for product ion use. 

3.3.4 C o n c l u s i o n 

Unfortunately, there was a problem w i t h every unit-test framework, so they were not 
demonstrated. None of them is ready for product ion use, but in the future they could 
be the essential tools of hardware development. 

Because unit-testing wi th the x U n i t architecture is defined as object-oriented, a fully 
object-oriented hardware description and verification language wi th P S L - l i k e concurrent 
assertions could be an op t imal solution. System Veri log is very close to that description, 
because the verification part can be fully object-oriented. B u t the potential is inside 
M y H D L too, because P y t h o n is a very powerful language from the semantical side. 
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Chapter 4 

Demonstration 

In the final part of this thesis, a complete hardware-design was made using test-driven 
development. The choice fell on an TV-bit paral lel- to-SPI interface which can communicate 
wi th M number of slaves. 

The implementat ion was planned to made using the S V U n i t framework, but it had 
platform collision problems, so finally it was made i n V H D L combined wi th SystemVerilog. 
The entity was made i n V H D L and it was instantiated in a System Veri log testbench. To 
make test running and report generation easier, a T C L script was created. 

busy tx_data rx_data addr(3) 

elk ss_ .1 

rst ss_ .2 — 

en ss_ 3 
SPI interface 

8-bit 
6 slaves 

ss_ 4 

c_pol ss_ 5 

c_pha ss_ 6 

sclk miso mosi 

Figure 4.1: Schematic of a 8-bit parallel- to-SPI interface which supports 6 slaves 

The S P I is a serial, synchronous and bi-directional communicat ion interface between 
two endpoints. One endpoint operates i n master, the second i n slave mode. The master 
generates the clock signal and initiates communicat ion, the slave is only active when the 
master allows it . It is possible to connect many different slave devices to one master, but 
only one slave can be active at a time. 
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4.1 Specification 

A s mentioned i n 2.3, a very accurate and clear specification is necessary before wr i t ing the 
tests. For the demonstration module it was made using [8] and [7]. 

P o r t descr ipt ions 

Name D a t a width M o d e Description 
elk 1 in C lock signal 
rst 1 in Asynchronous reset 
en 1 in Initiates a transaction when in high 
C-pol 1 in C lock polari ty selector 
C-pha 1 in C lock phase selector 
addr f log 2 M] in Slave address selector 
SS-1 1 out Selects the first slave when i n low 
ss-2 1 out Selects the second slave when i n low 
ss-3 1 out Selects the th i rd slave when i n low 

ss-M 1 out Selects the M - t h slave when i n low 
sclk 1 out S P I clock signal 
miso 1 in Master in slave out 
mosi 1 out Master out slave i n 
tx-data N in D a t a to transmit 
rx-data N out Received data 
busy 1 out B u s y indicator 

Input / o u t p u t 

Communica t ion through S P I requires four data wires. The master should generate a sclk 
signal and p u l l one from the ss signals to low to activate a slave. The bi-directional 
communicat ion is then realized through the master out, slave i n (mosi) and the master in , 
slave out (miso) wires. 

SPI master 

SCLK 

MOSI 

SPI slave 

SS 

Figure 4.2: S P I master and slave connected together 

The information which sent to the tx-data bus on the parallel side is t ransmit ted 
sequentially through the mosi wire, one-by-one. The data receiving works on the same 
principle, only i n the opposite direction through the rx-data bus and the miso wire. 
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T i m i n g 

From the clock signal's point of view, the S P I interface has four operational modes. The 
phase and the polari ty of the clock signal both have two varieties which can be combined. 
In order to set these values on the master, two input wires are needed, the C-pol for the 
polari ty and cjpha for the phase selection. The cjpol sets the in i t i a l value of the S P I clock 
signal, so when it is i n logic 0, the sclk starts from logic 0 or logic 1 when it is in logic 1. 
The edge of the clock signal which the S P I interface should react to can be set w i th the 
C-pha signal. 

c_pha=0 

c_pha=1 

-< 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 

X 2 X 3 X 4 X 5 X 6 X •> X 8 > 

Figure 4.3: S P I operation modes demonstrated on waveform 

The clock generation was completely removed from the design, it is necessary to provide 
an external clock signal which has to be twice as fast than the desired S P I clock frequency. 

M u l t i p l e slaves 

There are several techniques to connect a master w i th many slaves, but the most well known 
is to use common most, miso and sclk signals. For each slave device, the master has to 
possess one dedicated slave selection wire which are used to activate the appropriate slave 
device. Th is requires an addr bus which should be min imal ly code M number of addresses 
to select the proper slave device and M number of ss-X signals (where x £ (1; M — 1)). 

addr(2) 
SPI master 

sclk mosi miso ss_1 ss_2 ss_3 

sclk mosi miso ss 

SPI slave #2 

sclk mosi miso ss 

SPI slave #1 

sclk mosi miso ss 

SPI slave #3 

Figure 4.4: M u l t i p l e slaves connected to one master 
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T r a n s a c t i o n descr ip t ion 

W h e n the busy signal is i n logic 0, the module is idle and ready to begin a transaction, 
otherwise it w i l l ignore anything except reset (see below). 

The transaction can be ini t ia ted by setting the en signal to high. O n the first rising 
edge of the elk, the module latches the settings and the tx-data. O n the next rising edge, 
the busy flag is set and the sending of data has commenced. After a l l bytes were sent, the 
busy signal goes back to logic 0, which indicates that the received data is available on the 
rx-data. 

tx_data 000 ^ 0 1 0 ) T 

ss 

sclk 

mosi 

000 

111 011 111 

/ \ / \ / \ / 
/ \ / \ 

/ \ / \ 
ooo X 1 0 1 

/ \ 

Figure 4.5: S P I transaction waveform 

The waveform above shows an example transaction using a module which supports 3 
slaves and uses 3 bit data-width. It transfers the 010 sequence to the th i rd slave, while 
simultaneously receiving the 101 sequence. The clock polari ty and phase settings are both 
in logic 1. 

Reset a n d in i t ia l state 

W i t h the rst signal, it is possible to asynchronously set the module into its in i t i a l state. 
It can be triggered at any t ime and it causes the module to stop the current operation 
immediately and set the busy signal to logic 1 un t i l the rst goes back to logic 0. 

In the in i t i a l state a l l ss outputs are set back to logic 1, the mosi output is set into high 
impedance and the rx-data is cleared. 
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4.2 Implementation 

Before wr i t ing a test, it is necessary to create an empty top level entity for the module using 
the port descriptions and a testbench wi th only clock generation. To support the N-b i t 
data-width and M number of slaves, V H D L generics were used together w i th a custom base 
2 logar i thm function to determine the wid th of the addr bus. D u r i n g the tests, their default 
values (N=8, M = 3 ) were used to avoid complications when instantiat ing a V H D L module 
in SystemVerilog. 

Reset a n d in i t ia l state 

• W h e n the reset signal is active, the busy should be active too. 

• After the reset goes back to logic 0, the in i t i a l settings of the module should be set. 

These two simple facts were transformed into assertions i n the newly created testbench. 
For further operations it is necessary to reset the module at start, so the first triggering of 
the rst was added into the in i t ia l iza t ion part of the testbench. In the following sections, 
these extensions of the ini t ia l izat ion part w i l l not be mentioned. It should be understood 
that every possible combination, that the suitable test needs has been impl ic i t ly added. 

property i n i t i a l _ s t a t e ; 
r s t [*1:$] ##1 !rst |=> accept_on(rst) 
(ss==3'blll) && (rx_data==8'h00) && (mosi===l'bz) && Ibusy; 

endproperty; 
always @(posedge elk) assert p r o p e r t y ( i n i t i a l _ s t a t e ) ; 

List ing 4.1: Asser t ion for testing the in i t i a l state 

Because the reset signal is not handled, running these tests w i l l fail . Hereby allowing to 
continue wi th the next step of the T D D methodology, by implementing the code for passing 
the tests. 

i n i t : process (rst) begin 
i f (rst = '1') then 

busy <= '1'; 
ss <= (others => '1'); 
mosi <= >Z> ; 
rx_data <= (others => '0'); 

else 
busy <= '0'; 

end i f ; 
end process; 

List ing 4.2: The first lines of code after the failing tests 

W h e n the tests successfully pass, the implementat ion is ready and new tests can be 
added. This is done only in the first T D D iteration, because the added code (from the 
perspective of the two tests) is clean and does not contain any duplications. Refactoring 
w i l l be made later, after adding more tests. 
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C l o c k generat ion 

• W h e n the reset signal ia active, the busy should be active too. 

• After the reset goc3 back to logic 0, the in i t i a l 3ctting3 of the module should be 3ct. 

• After an enable sequence, the S P I clock has to be ini t ia l ized wi th the correct polarity. 

• The S P I clock should oscillate for N ticks, twice as slow than the elk. 

To pass the th i rd test, only one line has to be added (sclk < = c_pol), but refactoring 
w i l l be needed. Passing the fourth test needs a finite-state machine wi th four states. The 
starting idle state latches the C-pol setting and waits for the enable signal. The enable 
signal activates the start state, where the sclk signal is set to the aprorpiate clock polarity. 
The last two states are responsible for oscil lating the clock signal. W h e n the number of 
clock ticks equals to the data-width of the module, the F S M returns to the idle state. 

property sclk_generation; 
reg polarity; 
(en, polarity=c_pol) ##1 !en |=> accept_on(rst) 
(sclk == po l a r i t y ##1 sclk != polarity) [*8] ##1 sclk == polarity; 

endproperty; 
always @(posedge elk) assert property(sclk_generation); 

List ing 4.3: The test of the spi clock's oscillation 

This F S M is not the representation of the min ima l amount of code, but is the product 
of the refactoring. 

ticks=N 

Figure 4.6: S P I clock generation F S M 

D a t a transfer 

• . . . 

• The busy signal has to be i n logic 1 for N ticks after the enable sequence. 

• The correct slave has to be selected, but only when the transaction was ini t ia ted and 
the busy signal is high. 

• The bits of tx-data should appear on the mosi, one-by-one, then it has to return to 
high-impedance state. 

• W h e n the busy signal goes low after the transaction, the rx-data should contain the 
received bits from miso. 
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The tests described above were first made only for cjpha = 0. The busy indicator was 
added into the appropriate states of the F S M , together w i th the slave selection which was 
desribed wi th a l o g 2 M to M decoder. 

property tx_transaction; 
reg[0:7] tx; 
int unsigned i ; 
(en, tx=tx_data, i=0) ##1 !en |=> accept_on(rst) 
(tx[i]==mosi ##1 tx[i++]==mosi) [*8] ##1 mosi===l'bz; 

endproperty; 
always @(posedge elk) assert property(tx_transaction); 

List ing 4.4: Va l ida t ion of the t ransmit ted data 

The data sending and receiving were integrated into the tickl and tick2 states. There 
was already a counter for counting the number of sclk ticks, so it was used to select the 
appropriate byte to send. 

P h a s e selection 

To support the C-pha = 1 mode, the original transaction tests were duplicated and reclocked, 
so finally four tests cover the whole transaction system of the module. The implementat ion 
of these functionalities was made by adding some extra states to the existing F S M which 
was very complicated, but it passed a l l the tests. 

ticks=N,cont=0 

Figure 4.7: F S M which supports both clock phases 

F i n a l re factor ing 

The idle and start states are necessary, they cannot be eliminated, but the other five states 
could be joined into one work state by extending the range and the purpose of the cnt. 

In this newly added state, the counter counts from zero and it generates the sclk signal. 
W h e n the value of the elk variable equals zero, the appropriate slave is selected, the busy 
signal is set to logic 1 and when the clock's polari ty is set to zero, the first bit is sent out 
through the most wire. Further wr i t ing and reading is solved by checking the counter's 
value. Whether or not a reaction is needed, depends on the clock polari ty selection too. 
W h e n the counter reaches the final value, the machine sends the received N-bytes to the 
rx-data and returns to the idle state. 
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i f cnt=0 then 
i f phase='0 ' then 

mosi <= tx(N-l); 
end i f ; 

e l s i f cnt mod 2 = 0 then 
i f phase='0 ' then 

mosi <= tx(N-l-cnt / 2 ) ; 
else 

rx_data(N-cnt /2) <= miso; 
end i f ; 

else 
i f phase='0 ' then 

rx_data(N-l-cnt / 2 ) <= miso; 
else 

mosi <= tx(N-l-cnt / 2 ) ; 
end i f ; 

end i f ; 
List ing 4.5: Transaction handling wi th even-odd-zero checking 

4.3 Evaluation 

After the final refactoring of the code was synthesizable and it passed a l l the tests. Compared 
wi th the reference design, they were both communicat ion interfaces wi th easily available 
and well documented specifications. However, the development of the S P I interface was 
much faster, because wr i t ing the tests before implementat ion causes that the developer 
pays more attention to the specifications and memorizes them better. 

It can be stated that the use of SystemVerilog assertions is the best available solution 
yet for test-driven hardware development. Us ing them for very large projects w i th many 
tests but can be very difficult. 

Runn ing a s imulat ion can sometimes take hours or more and i n T D D , it is a very 
frequent operation. W h e n the s imulat ion of a module takes too much time, it has to be 
decomposed and the sub-modules should simulated separately. It does not decreases the 
simulat ion t ime, because the design remains the same, but it reduces the t ime of wait ing 
between the steps of T D D . 

The most difficult part of wr i t ing the testbenches is the t iming, especially when using 
concurrent assertions or assertions i n separate processes. For having good tests, it is 
necessary to add every possible combination of input signals into the tectbench's stimulus 
process and keep them i n accordance wi th the assertions. Seeing through two types of 
code-structure which are placed i n two different places is not an easy task for any developer. 
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Chapter 5 

Conclusion 

A designer knows he has achieved perfection not when there is nothing left 
to add, but when there is nothing left to take away. 

(Antoine de Saint-Exupéry) 

It is proved that the test-driven method highly facilitates the software development 
process. The red-green-refactor model always proves to be the most simplest and cleanest 
code which is an important quali ty factor of a software product. Saint-Exupery 's quote 
expresses the same idea: if one cannot simplify the code any further so that its functionality 
remains intact, then perfection has been achieved and the product is finished. 

F rom the previous chapters is evident that test-driven development methodology has a 
place i n the toolbox of a hardware developer as well . It helps the developer to understand 
the specifications deeper and forces h i m to write high quali ty tests. It does not matter when 
the tests are wri t ten, it takes the same amount of t ime to create them, so the metodology 
at the worst case is neither slower, than the classical hardware development. 

It is very important , that the methodology is not applicable one-to-one, because of the 
differences between software testing and hardware simulat ion. Creat ing a test to verify a 
function which calculates e.g. the square root of a number is much easier, than simulat ing 
an entity what does the same. However, the basic idea is the same, just the tests are 
grouped into testbenches and instead of testing the operation it is called simulation. 

To use T D D in larger projects, a complete and generally available unit-test, or at 
least, a test-automation framework is necessary. The continuation of the present paper 
in the future could be an object-oriented, x U n i t based hardware verification and unit-test 
framework. Since the now available s imilar tools does not support P S L - l i k e assertions and 
they were very useful in the demonstrational project, this future framework should support 
them as well . To make refactoring faster, the simulation environment should be extended 
wi th automated running of synthesis. 
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Appendix A 

Contents of CD 

• /demonstrat ion - directory containing the source files of the demonstration module 

• / latex - directory containing the DTp^X and other source files for creating the thesis 

• / p d f - directory containing the P D F version of the thesis 

• /examples - directory containing the source files of the assertion and unit-test 
examples 

— /examples/reference - directory containing the source files of the reference 
design 

— /examples /vhdl - directory containing the V H D L assertion examples 

— /examples/systemverilog - directory containing SystemVerilog assertion examples 

— /examples /ps l - directory containing the the P S L assertion examples 
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Appendix B 

Manual 

To run the simulations, M o d e l S i m / Q u e s t a S i m simulat ion environment is necessary. Unfortunately 
M o d e l S i m does not support SystemVerilog assertions, so the demonstrational module and 
the System Veri log assertion examples could not be run by using it. 

In each directory are files w i th .fdo extension which have to be started from the 
simulator's command line. Every testbench generates an assertion report into a .log file in 
his own directory. 

The reference and the demonstrational hardware designs both can be synthesized in 
X i l i n x I S E , by impor t ing a l l the .vhd files to an empty project. 
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