
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SYSTEMS

TEST DRIVEN DEVELOPMENT FOR FPGA DESIGN
T E S T DRIVEN D E V E L O P M E N T FOR FPGA DESIGN

BAKALÁŘSKÁ PRAČE
B A C H E L O R ' S T H E S I S

AUTOR PRÁCE DAVID HALÁSZ
A U T H O R

VEDOUCÍ PRÁCE Ing. VÁCLAV ŠIMEK
S U P E R V I S O R

BRNO 2013

Abstrakt
Tato b a k a l á ř s k á p r á c e popisuje, jak m ů ž e bý t princip T D D u p l a t n ě n u hardware, p ř evážně
pro vývoj F P G A . Je p o p s á n a dů lež i t á teorie pro p o c h o p e n í kontextu. N a re ferenčním
n á v r h u jsou p ř e d s t a v e n y n ě k t e r é d o s t u p n é a už i t ečné verifikační n á s t r o j e . Jeden z t ě c h t o
n á s t r o j ů by l v y b r á n a p o m o c í T D D by l v y t v o ř e n a ú s p ě š n ě o t e s t o v á n n á v r h k o m u n i k a č n í h o
modulu SPI .

Abstract
This bachelor's thesis describes, how test-driven development can be used i n hardware,
especially for F P G A development. The essential theory for understanding the context is
described. Some available tools for assertion-based hardware verification and unit-testing
are presented and demonstrated on a reference design. One of the introduced tools was
selected and wi th that a test-driven developed S P I interface was created and successfully
verified.

Klíčová slova
aserce, verifikace, H D L , F P G A , n á v r h hardware, simulace, T D D , tes tovac í soubor, t e s tován i
ap l ikačních jednotek

Keywords
assertion, verification, H D L , F P G A , hardware design, testbench, simulation, test-driven
development, T D D , unit-tests

Citace
D a v i d Halász : Test Dr iven Development for F P G A Design, b a k a l á ř s k á p ráce , Brno , F I T
V U T v B r n ě , 2013

Test Driven Development for FPGA Design

Prohlášení
Proh lašu j i , že jsem tuto baka l á ř skou p rác i vypracoval s a m o s t a t n ě na s t u d i j n í m pobyte na
K H B O v Belg i i pod v e d e n í m pana dr. ing. Jeroena Boydense a ing. Robbie Vinckeho, a
na V U T v B r n ě pod v e d e n í m pana Ing. Václava Šimka.

Dáv id Halász
M a y 10, 2013

Poděkování
C h t ě l bych p o d ě k o v a t l idem v komisi výbě rového ř ízení E R A S M U S , k te ř í m i umožni l i , abych
mohl studovat na K H B O . Dá le panu Ing. Šimkovi za veden í t é t o p r á c e a z a m ě s t n a n c ů m
v ý z k u m n é skupiny E P na K H B O za už i t ečné rady a pomoc.

© Dáv id Halász , 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté informačních
technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem
je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Theory basis 3
2.1 Test-driven development 3

2.1.1 Assertions 3
2.1.2 Unit-tests 3
2.1.3 T D D 4

2.2 Hardware verification 5
2.2.1 Simulat ion and testing 5
2.2.2 Formal verification 6
2.2.3 Funct ional verification 6

2.3 Test-driven development i n hardware verification 7

3 Available tools 8
3.1 Reference design 8
3.2 Assertions 9

3.2.1 V H D L 10
3.2.2 P S L 11
3.2.3 System Veri log 13
3.2.4 Conclusion 15

3.3 Unit-test frameworks 16
3.3.1 V h d l U n i t 16
3.3.2 S V U n i t 16
3.3.3 M y H D L 19
3.3.4 Conclusion 19

4 Demonstrat ion 20
4.1 Specification 21
4.2 Implementation 24

4.3 Eva lua t ion 27

5 Conclusion 28

A Contents of C D 30

B M a n u a l 31

1

Chapter 1

Introduction

Test-driven development (T D D) is a methodology, commonly used in software development.
The concept of T D D is to write a test before the actual implementat ion of the code. The
tests contain assertions and compare the expected result w i th the actual result. Gradua l ly
adding tests and expanding functionality, while keeping previous tests passing and avoiding
of unnoticed bugs.

In F P G A development functional verification is usually done wi th testbenches and
simulations. However complex designs are hard and t ime-consuming to verify. Therefore
new verification tools and techniques are needed. Assertion-based verification, i n combination
wi th test-driven development, can benefit for hardware design. Today, assertion-based
verifications frameworks exist for F P G A development. Combin ing the test-driven development
methodology and assertion-based verification can provide major advantages i n hardware
verification where verification cycles take most of development t ime.

The main goal of this thesis is to demonstrate how the T D D methodology can be applied
in the hardware context, so in the further chapters instead of using F P G A design or F P G A
development terms, hardware design and development w i l l be used. The next chapter
describes the essential theory, the th i rd chapter introduces demonstrates and compares
some assertion-based and test-driven techniques on a reference design. A demonstrational
hardware was made using the introduced T D D techniques and the development report can
be found i n the fourth chapter. Final ly , the stated facts and acquired results are summarized
and evaluated in the final chapter.

This thesis is shipped wi th a C D , which contains a l l the examples and the demonstrational
hardware design.

2

Chapter 2

Theory basis

2.1 Test-driven development

2.1.1 Asser t ions

A n assertion is a (true-false) statement i n a program code denned by the developer, that
(based on the developers knowledge) is always true.f] They can be defined, e.g. in
comments to help the programmers see through the code and use them to speed up the
development process. M a n y programming languages support checked assertions, depending
on the language, they can be defined wi th a bui l t - in keyword or function. They are evaluated
during runtime and when some of them fail, the program exits w i th an assertion report.
F rom the report, the developer can determinate which assertion failed, conclude what causes
the error and fix i t . These assertions should be removed from the final code, some compilers
have a switch for omit t ing them.

2.1.2 Uni t - t e s t s

A more sophisticated way of testing wi th assertions is using them i n unit-tests. The source
code should be divided into ind iv idua l units, they can contain one or more functions,
procedures, modules or objects. [6] Each unit should be tested individually, isolated from
other test cases. In the test cases, assertions or similar techniques should be used to generate
a report after running the test.

The test cases can always be wri t ten from scratch, but some patterns w i l l be repeated
in a l l tests, therefore it is obvious that one can take advantage of the reusability from the
object-oriented programming. The first unit-test framework on this basis was developed in
Small ta lk by K e n y Beck, whereof the xllnit architecture was specified. The implementat ion
of the architecture varies for every programming language, but the four base classes are the
same:

• test case - the smallest unit of testing, every test should be inherited from this class

• test fixture - it creates the test context and does a cleanup after running

• test suite - a collection of test cases wi th the same fixture

• test runner - it runs the test cases or suites and generates a report

3

2.1.3 T D D

T D D is an agile software development methodology developed by the aforementioned
software engineer, Ken t Beck. The main idea of the technique is to write (automated)
tests before implementing the functionality and step forward only when al l tests have
succeeded. O n l y that many functionality is implemented as many successfully pass the
tests.

Add some tests

Run the tests

Write the minimal amount
of code to pass the tests

ifa test succeeds

Rewrite the test

Refactor the code

Run the tests

Figure 2.1: T D D ' s development cycle based on Beck's definitionf]

Wi thou t adding tests, it is not possible to implement new functionality. W h e n a test
succeeds ini t ial ly, it is meaningless and should be rewritten to fail and be in accordance
wi th the new functionality. In order to do this successfully, the developer should know the
precise specifications and requirements of the new feature.

W h e n every added test fails, the m i n i m u m amount of code has to be wri t ten to pass
the tests. The added code usually does nothing more than pass the tests and i n many cases
it is not very elegant. Th is is the part of the methodology, it w i l l be fixed in the next step.
W h e n some of the tests are unsuccessful, the code should be corrected un t i l it passes a l l
the tests.

Even i f a l l the tests are successful, the functionality is s t i l l not implemented, the code
must be refactored. Th is means that the internal behavior of the code should be changed to
eliminate duplicat ion. The external behavior must remain the same, so a l l the tests should
successfully pass after refactoring.

W h e n the refactoring is done and every test succeeds, the task of adding new functionality
is completed. The tests are the guarantee that the feature works correctly, so the quali ty of
the tests has an influence on the quali ty of the definitive code. To create new functionalities,
these steps should be repeated as long as the software is not complete.

The size of the steps can be chosen by the developer and can be changed any time
during the development. However, this should be carried out w i th caution since making
very smal l steps may result i n easy coding, yet the whole product w i l l be finished later due
to the high number of iterations.

4

Increasing the size of the steps results i n a lower number of iterations, but the coding w i l l
be more complex. For every project there is an opt imum, but it is s t i l l variable depending
on the skills of the developer. Th is op t imum should be determined as soon as possible and
be used in the whole process. It has to be changed when it is necessary.

The methodology teaches how to write and interpret specifications. The errors are
discovered earlier and faster, so debugging becomes quick and easy. It forces to write the
simplest code, so the final code w i l l be clean and easy to understand. O n the other hand,
it is hard to learn and not everybody can write good tests. It is not suitable for developing
a program which does not have an exact specification.

2.2 Hardware verification

Accord ing to the P M B O K Guide[l] :

• „ V a l i d a t i o n . The assurance that a product, service, or system meets the needs
of the customer and other identified stakeholders. It often involves acceptance and
suitabil i ty w i t h external customers. Contrast w i th verification."

• „ V e r i f i c a t i o n . The evaluation of whether or not a product, service, or system
complies w i th a regulation, requirement, specification, or imposed condit ion. It is
often an internal process. Contrast w i th validation."

In the hardware field, verification means a process that proves a homomorphic relationship
between a register-transfer level (R T L) model of the developed hardware and his specifications

2.2.1 S i m u l a t i o n a n d test ing

The method is often called bug hunting, because its main objective is to find bugs i n the
design. W i t h simulation, it is only possible to detect the errors, not to fix them. [11] A
special software environment is necessary which compiles the design and runs i t . The
output is often a waveform where the logic levels of inputs, outputs and inner signals are
shown in the function of t ime. Since the unit under test needs some input variables, a
testbench is needed to generate these. A l l inputs and outputs of the unit are connected to
this testbench.

The main disadvantage of this method is that it is t ime-consuming. Simulat ing a
complex design can take days or more to run, and wi th the examination of the output
waveform, the problem is similar. Eventual ly it is very hard or impossible to write a
testbench which generates a l l possible input combinations. In many cases s imulat ion is
used only for smal l parts of a larger module.

in
pu

ts

Testbench outputs in
pu

ts
 outputs in

pu
ts

Design Under Test

outputs in
pu

ts

w Design Under Test

outputs

Figure 2.2: T y p i c a l usage of a testbench i n simulation[4]

5

2.2.2 F o r m a l veri f icat ion

Formal verification uses formal methods and mathematics to verify that the specifications
are preserved in the implementation. [] It can completely prove the correctness of the
design, not just draw some conclusions from test results. That is because testing can be
successfull even then when it does not cover the whole system and the formal methods
should always be working wi th the complete model . It is not always sure that a formal
verification process w i l l be finite and w i l l be terminated at some point, but it can be s t i l l
be helpful to find some errors in the design.

W h e n a system can be represented by a finite-state machine or equivalent, it is possible
to check algori thmical ly (e.g. by state space search) i f the system succesfully satisfies a
given specification. This method is called model checking.

A n alternative can be theorem proving which is a deductive verification process. The
specifications and the model can be described mathematically, equivalence can be proved
between them. This method is semi-automated, it often requires a significant manual effort
of users.[11]

Static analysis is l inked wi th automated analysis of the source code. It can be used
not only for verification but for opt imal izat ion and code generation too; his main attribute
is that it does not the model of the system and it avoids the execution of the code.

2.2.3 F u n c t i o n a l veri f icat ion

Funct ional verification is more pract ical than the formal one. It verifies the system by
examining the inputs and outputs of various simulations. To facilitate the whole process,
it uses more sophisticated techniques like constrained-random stimulus generation, self
checking mechanisms, assertions and coverage-driven verification.

W h e n verifying large systems, it is very difficult to test the complete set of input
combinations. A suitable alternative is to generate random inputs which are circumscribed
by constraints to be val id for testing. This is called constrained-random stimulus
generation. The constraints can be targeted, e.g. to cause corner cases or given states of
the system.

W i t h coverage-driven verification it can be measured which parts of the system
were correctly verified. The types of observable coverages are:

• Code coverage

• Funct ional coverage

• P a t h coverage

• F S M coverage

• others . . .

Assertion-based verification uses assertions (see 2.1.1), which can be helpful to
formally express properties of the system and to verify awaited (partial) results. Fa i l ing an
assertion terminates the verification and makes easy to find the source of the problem.

Self checking mechanisms are based on calculat ing the outputs independently from
the implementat ion and comparing them wi th the outputs received from the simulat ion. It
can be used for detecting data loss and the correct order of the output data. Th is process
can be fully automatized.

6

2.3 Test-driven development in hardware verification

It is necessary to redefine the hardware development cycle and the verification process so
that they should fit into the T D D paradigm.

Write some testbenches
with assertions

Create an empty entity
with the final i/o ports

Write some testbenches
with assertions

Create an empty entity
with the final i/o ports

Run the tests

if a test succeeds

Rewrite the testbench

Refactor the code

Write the minimal amount
of code to pass the tests

Run the tests

Figure 2.3: T D D ' s development cycle modified for hardware development

Creat ing a testbench before implementing any module is not possible, because the
testbench needs to instantiate the entity to test (see 2.2). So before creating the first
group of tests, the final input /ou tput signals should be implemented into an empty entity.

Implementing and running the testbenches can be done in the classical way, but using
some macros or addi t ional tools can facilitate the development process. M a n y hardware
verification environments have support for assertions, but it is also possible to extend the
environment w i th unit-testing functionalities. W h e n the testbenches are created, they
should fail at the in i t i a l run.

Accord ing to Beck's second step the min ima l amount of code has to be implemented,
which successfully passes a l l the tests. This newly added code is sometimes not synthesizable
and it is often just a workaround which fakes the tests. To make the code complete and
synthesizable, it has to be refactored in the similar way, which was mentioned in 2.1.3,
combined by running the hardware synthesis.

After the refactoring a synthesizable code should be produced. This can be reached by
running a synthesis tool together w i th the s imulat ion during the refactoring process. W h e n
it is done, the new functionality is successfully implemented and the whole process can be
started over.

7

Chapter 3

Available tools

3.1 Reference design

To demonstrate the available techniques which can facilitate the T D D process, a reference
design was made based on the 16550 U A R T module. The U A R T is a simple bi-directional
serial communicat ion device, it converts data bytes into ind iv idua l bits and sends them
sequentially and vice-versa.

Accord ing to the specification when no data is received, on the receiver port is logic
1. The data transfer starts w i th a start bit (which is logic 0 for one baud-cycle), from the
falling edge of this bit the receiver should be able to generate a synchronized baud rate
using the clock signal. After the start bit the data bits are received, start ing wi th the
first bi t , one i n every baud-cycle. The following received bits can be pari ty and/or stop
bits, depending on the chosen configuration. The received data should be forwarded to the
parallel port. The occuring pari ty and other errors should be signalized, such as the usage
of the module. The transmitter should work on the same principle w i th the same parallel
port, only in the opposite direction. To settle the difference between the baud rate and the
clock signal, addi t ional F I F O modules should be connected to the transmitter and receiver.
Another signals are needed to select the transmission configuration, indicate errors, usage,
availabil i ty and decide the flow on the parallel port . The specification also mentions some
signals for communicat ing wi th a serial modem.

— elk err

— rx tx

UART
— rst tx_ready

— data wr rx_ready

— data_in(8) data_out(8)

Figure 3.1: Schematic of the simplified U A R T module

8

In the reference design, the above specification was significantly simplified. The data-flow
configuration was fixated to 8 - N - l (8 data bits, no parity, 1 stop b i t) . The baud rate
selection was el iminated too, the signal is generated directly from the clock signal, d iv id ing
it by 16. The original two-way 8-bit data port has been separated into independent input
and output ports, the F I F O on the receiver side and the modem support were eliminated.
Thanks to these simplifications, some configuration and indicat ional signals were necessary.

The module was implemented using conventional hardware development techniques in
V H D L . The final design was successfully verified by using simulations.

3.2 Assertions

To demonstrate the power of assertions on the reference design, some statements from the
sub-modules' specifications were selected:

• Receiver

— when rxjready is i n logic 1, the received data should match wi th the sent

— when a stop bit is not received at the end of the communication, the err port
must be i n logic 1 for one clock cycle

• Transmitter

— the communicat ion should be started wi th a start-bit which is logic 0

— each data bit should match wi th the tx port for 16 clock cycles

— the communicat ion should be ended wi th a stop bit which is logic 1

• F I F O

— after a reset, on the empty port should be logic 1

— after a write, on the empty port should be logic 0

— when one byte is wri t ten and read, they must match

— when mult iple bytes are wri t ten and read, they must match and the same order
must be preserved (F I F O)

— after wr i t ing 254 bytes, on the full port should be logic 1

— after reading out a l l values, the last one should be preserved on the data port

For each sub-module a new testbench was designed, containing assertions w i t h the
statements listed above. The testbenches were implemented first i n V H D L using standard
assertions, then they were converted into P S L and finally a l l three testbenches were rewrit ten
into SystemVerilog.

The testbenches were successfully compiled and run using the Mentor Graphics 's QuestaSim
environment. A l l of the source codes (including some scripts for automated running) are
available on the C D attached to the present paper.

9

3.2.1 V H D L

The assertions i n V H D L can be defined i n linear structures (processes, functions, procedures)
and i n concurrent descriptions (entities, architectures) too. The construction is not synthesizable,
so they can be used only in simulations.

assert condition report string severity l e v e l ;
List ing 3.1: V H D L assert syntax

W h e n the condition is false, the string is wr i t ten to the output console wi th the given level.
This level can be note, warning, error or failure. If the severity-level pair is omitted, the
default level w i l l be used, which is error.

There are two modes of using these assertions i n the practice. The first is to add them
directly into existing stimulus processes between other lines of code. This makes easier to
check the value of a signal in a given t ime moment, because it is not necessary to search for
the expected results i n the s imulat ion waveform. The second solution is to use concurrent
assertions which are evaluated i n every t ime moment (e.g. two signals cannot be equal)
or create a process which waits for a triggering event and evaluates assertions (e.g. two
nanoseconds after setting a signal to high, an other has to be low). It is necessary to define
the triggering events i n the stimulus processes which can be very complicated when having
several tests.

test_empty_after_reset : process begin
wait u n t i l rst='l';
wait u n t i l r s t = ' 0 ' ;

assert empty='1'
report "Test: uempty_after_reset uFAILED!"
severity error;

assert empty^O'
report "Test: uempty_after_reset uPASSED!"
severity note;

end process test_empty_after_reset;
List ing 3.2: V H D L assertion in a separate process

To prevent code repetit ion in the stimulus processes, assertions can be wri t ten into
procedures/functions and they could be called when necessary. Unfortunately V H D L does
not allow wait statements i n procedures/functions, so complex (e.g. timed) assertions
should remain inside stimulus processes.

Concurrent assertions are evaluated i n every discrete moment of the simulation process,
so they are only useful for checking simple statements which are independent of t ime. For
example, they can be used for checking that two signals are never in logic 1 at the same
time, but it is not possible to validate what happens i n the next clock-cycle after triggering
an event.

assert write='l' and read='l'
report "Read uand uwrite ucould unot ube uin ulogic ul uat uthe usame utime."
severity f a i l u r e ;

List ing 3.3: Concurrent V H D L assertion

10

It is a great advantage that assertions can be combined wi th almost any V H D L control
structures. For example, the correctness of the transmitter module was verified using a for
loop which compared the output dur ing t ime wi th the appropriate bit from the parallel
input.

for i i n 0 to 7 loop
wait for clk_period*16;

assert tx=data(i)
report "Test: ubit u#" & integer'image(i) & "UFAILED"
severity error;

assert tx/=data(i)
report "Test: ubit u#" & integer'image(i) & "UPASSED"
severity note;

end loop;
List ing 3.4: Assert ion combined wi th a for loop

To generate an advanced text-based output w i th assertion reports, it is necessary to
define two assertions for each property (see the example above). One has to fail when the
property is not true and the other should report when the negation of the property fails.
Tha t is the only way to generate a report not just when a test fails, but when it succeeds
too. It makes the report more transparent when different severity levels are used for the
two assertions. W h e n running the simulator, a special option is needed to generate a text
file containing the reports.

W h e n the amount of input /output signals is large or the s imulat ion t ime is very long,
the assertion report can become very difficult to follow. Whenever a test fails, checking
the waveform is inevitable. Some simulation environments provide an option to show the
assertions directly i n the waveform.

The language is suitable for test-driven development, but only for smaller projects w i th
a moderate number of tests. The s implic i ty of the concurrent assertions makes them almost
entirely unnecessary, because a non-concurrent assertion i n a process can do the same and
using only one type of assertions makes the code cleaner.

3.2.2 P S L

The Proper ty Specification Language (P S L) can be used to formally describe the properties
of hardware designs. It is independent from hardware description languages, usually it is
embedded into comments or wri t ten into separate files. His purpose is to define assertions,
it provides very sophisticated and advanced solutions. The language can be divided into
four layers.[2]

Boolean layer

In the boolean layer logic expressions can be specified on the lowest (true/false) level using
standard H D L syntax. It is extended wi th u t i l i ty functions to detect e.g. one-hot-encoding,
changes i n the value of the expression (together w i th determining his previous value) and
wi th some logical operators.

11

Temporal layer

The temporal layer specifies when the expressions from the previous layer should be val id .
The t ime window of the val idi ty can be specified as Foundat ion Language (F L) temporal
operators or by using Sequential Extended Regular Expressions (S E R E) . Combin ing these
two methods, almost any property can be specified wi th P S L . The temporal units can be
grouped into named sequences and so they are reusable.

Verification layer

In the verification layer restrictions, assertions, assumptions and functional coverage can be
specified using the previous layers. Th is layer also offers the divis ion of the verification into
verification units (vunit) which can be bound/unbound to modules and can be inherited.

Model ing layer

The modeling layer should contain the auxi l iary H D L code which is not part of the hardware
design, but it helps to describe combinational signals and/or complex state machines.

wire req;

assign req = req_detect && req_mask;

assert always (req ->next(ack));

Boolean layer

Temporal layer

Verification layer

Modeling layer

Figure 3.2: P S L Layers []

The P S L assertions could be direct ly integrated into any hardware description language
(usually into testbenches) using comments and a special psl keyword, but they can be
wri t ten into a separate file as well . Depending on the s imulat ion environment, some
addi t ional switches may be needed to interpret these commented lines and show their
output together w i th the s imulat ion results. S imi lar ly to V H D L assertions in separate
processes, triggering events should be added i n the stimulus processes.

— psl property name is always {(cond_l)} /-> {(cond_2)} @clk_ev;
— psl assert (name) report "string";

List ing 3.5: P S L property definition and assertion syntax example in V H D L

Because the P S L is logically separated from the testbench, it is not possible to write
assertions inside stimulus processes. Instead of them, the conditions prior to an assertion
could be described using the temporal layer. These conditions can be grouped into sequences
and they can be used i n mult iple assertions.

12

The following example demonstrates a very long assertion which was used to test the
functionality of the transmitter module. The same test was described much simpler in
V H D L using a for loop (see l ist ing 3.4).

— psl sequence data_bits is
— psl {tx=data(0) [*16];tx=data(l) [*16];
— psl tx=data(2) [*16];tx=data(3) [*16];
— psl tx=data(4) [*16];tx=data(5) [*16];
— psl tx=data(6) [*16];tx=data(7) [*16]};
— psl property data_test is always
— psl {tx_ready;not(tx_ready);tx[+];
— psl not (tx) 1*16]}• /=> data_bits;
— psl assert data_test;

List ing 3.6: Ma tch ing the tx output w i t h the data input using P S L

Because the P S L is evaluated independently by the simulator, it is possible to combine
it w i th V H D L (or other H D L) assertions. The developer can always select that one for each
assertion, which can describe its properties easier.

Unl ike V H D L , it does not supports custom text-based output generation, so a final
report generation has to be implemented i n the simulation environment, or by using e.g.
T C L or other scripts. However, the assertion results can be summarized in the simulat ion
waveform window, from which the developer can easily determine which assertion failed or
passed i n a given t ime moment.

In larger projects, P S L is not an opt imal solution, because it needs to be combined
wi th another language which generates the stimulus processes. Us ing mult iple languages
in larger projects and keeping them in accordance is a difficult task for any developer. The
sequence-based property specification, however, is a very useful technique, it should be
implemented i n other verification languages.

3.2.3 S y s t e m V e r i l o g

SystemVerilog is a hardware definition and verification language developed from Verilog-2005.
Syntact ical ly the two languages are the same, the System Veri log is just extended wi th some
features for verification such as object-oriented design and complex P S L - l i k e assertions.

Non-concurrent assertions are supported and they are very similar to the V H D L ones.
B y using them, it is possible to generate reports w i th advanced text-based output. Unl ike in
V H D L , it does not need two assertions to generate output for both test failing and passing.

label:
assert (condition)
$display("message uif uthe uassertion upasses");
else $error("message uif uthe uassertion ufails");

List ing 3.7: Non-concurrent assertion syntax i n System Veri log

It supports concurrent assertions too, but i n much advanced level than V H D L . It
was inspired by the P S L , so only few differences are present, e.g. the logical and t iming
operators should be described using System Veri log syntax. Boolean values could be defined
in sequences, they could be specified i n properties and finally they could be evaluated using
assertions.

13

It also provides local variables inside sequences and properties which could be very
helpful when testing reactions to external inputs. However, the the syntax of defining a
value for a variable can be very complicated, e.g it is not possible to pass a value i n a
discrete t ime moment without specifying at least a boolean value.

property read;
reg[0:7] input;
en ##1 (1, input=rx) |=> data_read==input;

endproperty;
always @(posedge elk) assert property(read);

Listing 3.8: P S L - l i k e assertion example wi th a local variable

W h e n it is complicated to describe an advanced sequence wi th concurrent assertions, it is
possible to combine standard SystemVerilog control and t iming structures w i t h non-concurrent
assertions.

always @(posedge data_req) begin
#18 s t a r t _ b i t :
assert (tx == 0)

$display("Test: ustart_bit uPASSED! 1 1);
else $error("Test: ustart_bit uFAILED!");

for (integer i=0;i<8;i++) begin;
#32 data_bit:

assert (tx==data[i])
$display("Test : udata_bit u #7od uPASSED!", i) ;
else $error ("Test: udata_bit u #7od uFAILED!", i) ;

end;
#32 stop_bit:
assert (tx==l)

$display("Test: ustop_bit uPASSED!");
else $error("Test: ustop_bit uFAILED!");

end
Listing 3.9: Assertions combined w i t h standard SystemVerilog control structures

The text-based report generation of the two types of assertions could not be joined into
one file. The concurrent assertions can use only the simulator 's bui l t - in report-generation
system which shows only the failure/pass count of each assertion. Between assertion-based
verification tools, SystemVerilog supports the most features, it can be used object-oriented,
so an advanced unit-test framework can be created using just this language.

A s a demonstration, the reference V H D L design was instantiated in a SystemVerilog
testbench, there was no need to reimplement everything i n SystemVerilog. P S L - l i k e and
non-concurrent assertions were used together, for each always that one which can describe
the given properties simpler.

14

3.2.4 C o n c l u s i o n

A l l of the previously mentioned tools are usable together w i th the T D D methodology. The
automatizat ion of running the tests does not depend on the language of implementation, but
on the used verification environment. It is an important fact, that checking the waveform
window can not be avoided wi th automated test-report generation due to high number of
possible input /ou tput signal combinations.

The V H D L assertions are not suitable for product ion use, just like P S L , they should
be used together. However, for a developer it is easier to use only one language and
SystemVerilog does not need any other language to create advanced tests. The missing
repetit ion operators could be substituted by non-concurrent assertions combined wi th standard
control structures or by combining wi th P S L v /ben it is reall

Q

tn
>

y nece

CD

PH

ssary.

CD

PH +
hH

Q

tn
> S

y
st

em
V

er
il

o
g

S
V

+
P

S
L

Concurrent assertions only simple yes yes yes yes
Non-concurrent assertions yes no yes yes yes
Assertions combined wi th control structures yes no yes yes yes
F u l l scale of repetit ion operators no yes yes no yes
Advanced t iming options no no no yes yes
C a n be combined wi th other languages no yes N/A no N / A
Assertions groupable into units no yes yes yes yes
Number of languages to know 1 1 2 1 2
Suitable for product ion use no no yes yes yes

Table 3.1: Compar ison of the three languages and they combinations

Depending on the size and complexity of a hardware design, the table above can serve
as a start ing point to select the best language (or language combination) for assertion-based
test-driven development. For more complex projects, more advanced tools, such as unit-test
frameworks or test automation scripts should be used.

15

3.3 Unit-test frameworks

A s it has been mentioned before, unit-test frameworks provide an environment for automated
testing which can be very useful for T D D . For implementing e.g. the x U n i t architecture,
object-oriented programming should be supported by the H D L at least on the verification
side.

3.3.1 V h d l U n i t

Unfortunately, V H D L does not support object-oriented programming, so it is not possible
to implement the x U n i t architecture i n i t . However, it is possible to define macros for
regularly used testing structures and implement external scripts for test automation and
better report generation.

The V h d l U n i t was made on this principle: procedures are helping the test creation and
a T C L script generates a logically arranged report. Unfortunately, it is documented only
in Po l i sh and it has not been not under development for the past nine years.

After examining the source code, it is sure that the tool cannot be combined wi th P S L
assertions, so except the h t m l test report generation and the unified testing it does not give
anything more. It is not suitable for product ion use, because it is easier for a developer to
write his own scripts and macros than using a non-documented framework.

3.3.2 S V U n i t

The S V U n i t framework can be divided into an object-oriented model of a unit-test framework
for SystemVerilog and helper scripts for code generation implemented i n Per l . It is a very
young tool s t i l l under development, in this document is introduced using [].

Objects

svunit_pkg

svunit_testcase

#name: string
-run_ut: boolean_t

-success: boolean_t
-error_count: int
-verbose: boolean_t

+new(name: string)
+setup()
+run_task()

+tearDown()
+run()

+report()
-pass(s: string)
-fail(s: string)
#fail_if(b: bit, s: string)
#fail_unless(b: bit, s: string)
+enable_verbose()
+disable_verbose()
+enable_unit_test{)

+disable_unit_test{)
+get_name()
+get_runstatus()
+get_results()

svunit_testsuite

#name: string
-run_suite: boolean_t

-list_of_svunits: svuni t jestcase
-success: result_t 1:*

+new(name: string)
+run()
+load_testcase(tc: svunit_testcase)
+report()
+addTestCase(tc: svuni t jss tcase)

+addTestCases(tcsQ: svunit_testcase)
+enable_suite()
+disable_suite()
+get_name()
+get_runstatus()
+get_results()

svunit testrunner

#name: string
-run_suite: b o o l e a n j
-list_of_suites: svunit_testsuite
-success: boolean t

+new(name: string)
+addTestSuite(ts: svunit jestsuite)
+addTestSuites(tss[]: svunit_testsuite)
+loadTestSuites(ts: svunit_testsuite)
+report()
+get_name()

Figure 3.3: S V U n i t class diagram

16

Each unit-test should be inherited from the svunit-testcase class, it is a file naming
convention i n the framework which requires that the unit-test filename should be ended
wi th junit-test.sv. In the unit-test three functions should be defined:

• setup (): - here should be ini t ia l ized the test preconditions

• run-test(): - this runs the tests

• teardown(): - here should be implemented the cleanup

The unit tests can be grouped into test suites using add-testcase() and add-testcases()
functions. O n smaller hardware modules, sometimes one test suite should be enough for
the whole module. For larger modules, it is recommended to aggregate only those tests
which can tolerate each other's context.

A l l test suites should be collected into a test runner inheri t ing the svunit-testrunner
class and using the add-testsuite() and add-testsuites() functions. This test runner w i l l
iterate a l l the test suites and they w i l l iterate each unit-test inside. The unit-tests and the
test suites provide a flag to enable/disable their run.

Final ly , in the highest level the user's test runner class should be instantiated and his
run method should be called to start the testing. W h e n everything is set correctly, a l l test
suites and tests w i l l be iterated and finally a report is made containing the results.

Scripts

To make the test-creation easier, a set of P e r l scripts are available. These scripts can
generate unit-tests, test suites and test runner. They also provide adding unit-tests to
existing test suites or adding a new test suite to the existing test runner. These scripts are
using some global variables, which can be set in the svunit-test-globals.pl file, such as the
format of the header text.

• create_unit_test.pl
The script takes an existing class or header file and generates for h i m a unit-test
template using the file naming convention mentioned before. It takes a l l the functions
from the original class and generates for each an empty test function wi th the prefix
test- Each generated function is added into the run-test() function.

For example, for the transmitter.sv file w i th a class named transmitter, it w i l l create a
file transmitter-unit-test.sv w i th a class named transmitter-unit-test which is inherited
from the svunit-testcase class. A n empty test-baud-gen() function is generated for
testing the original baud_gen() function. F i n a l l y the test-baud_gen() and a l l other
test functions are added into the run-test ().

The tests should be implemented by the user using the 'FAILJF and 'FAIL-UNLESS
macros or using any other methods which increment the error-count variable when
an error occurs.

c r e a t e _ u n i t _ t e s t . p l [-help / -out <output_file> / -i /
-author "name" | -overwrite | <filename>]

List ing 3.10: create_unit_test.pl script syntax

The „-i" argument enables the interactive mode which allows the user to select the
functions to test, so some functions can be omit ted from testing. The description of
any other argument is t r iv ia l .

17

http://svunit-test-globals.pl
http://create_unit_test.pl
http://create_unit_test.pl
http://create_unit_test.pl

• create_testsuite.pl
The script creates a test suite for the unit-tests wi th in the current directory (or in a l l
subdirectories when the „-r" argument is set), using a search for files that are ending to
„-unit-test.sv". It creates a template which is inherited from the svunit-testsuite class
and appends each test into the suite using the add-testcase() function. Interactive
mode is supported just like in the script before and wi th the ,,-add" argument a single
test can be added into an existing suite.

c r e a t e _ t e s t s u i t e . p l [-help / -out <output_file> / -i / -r I
-author "name" | -overwrite | -add <testname>]

List ing 3.11: create_testsuite.pl script syntax

A s an output, a package file is generated that imports the svunit-pkg and includes al l
required files for running the unit-tests. For larger projects, this package file should
be modified by including addi t ional required files.

• create_testrunner.pl
The script works similar to the create-testsuite.pl, it aggregates test suites not unit-tests,
the syntax is the same.

• create_svunit.pl
This script includes the previous three scripts and should be used on existing environments.
It iterates through the current directory (or i n a l l subdirectories when the „-r"
argument is set) and searches for a l l SystemVerilog files. For each declared class
generates a unit-test, it aggregates the unit-tests into test suites based on the subdirectory
structure. It also creates a test runner including a l l generated test suites. W h e n the
„top" argument is set, an svunit-top.sv file is generated which instantiates the test
runner and calls the run() function. A package file for including a l l necessary files is
generated as well.

c r e a t e _ t e s t s u i t e . p l [-help / -out <output_file> / -i / -r I -no_ut I
-author "name" | -overwrite | -top]

List ing 3.12: create_svunit.pl script syntax

On ly two simple assertions (' F A I L J F and ' F A I L J J N L E S S) are supported, concurrent
P S L - l i k e assertions are not. They can be added into the code and the simulator w i l l evaluate
them, but the framework's test report w i l l not contain them. However, their combination
would not make any sense, it just makes test creation diffucult.

A n advanced simulat ion environment, such as the QuestaSim and a Unix-based operating
system is necessary to use this framework. Unfortunately, the QuestaSim used in previous
sections was licensed only for Windows, so it was not possible to t ry and demonstrate this
framework.

18

http://create_testsuite.pl
http://create_testsuite.pl
http://create_testsuite.pl
http://create_testrunner.pl
http://create-testsuite.pl
http://create_svunit.pl
http://create_testsuite.pl
http://create_svunit.pl

3.3.3 M y H D L

The M y H D L is not a unit-test framework, but a P y t h o n module which provides hardware
description and verification using P y t h o n language. So a l l the advantages of Py thon ,
such as easy learning, s implic i ty and elegancy, can be used in hardware development. It
supports concurrent hardware modeling similar like V H D L processes and signal-like classes
for connecting endpoints. It has a bui l t - in simulator, but it supports Veri log co-simulation,
too.

It does not support hardware synthesis, but it can convert the P y t h o n descriptions to
synthesizable V H D L / V e r i l o g code. High-level constructs are usable for hardware descriptions,
such as objects and exception handling. W h e n running the code, it is hard to find the
errors, because sometimes the interpreter just skips them without displaying any error
or warning. P S L - l i k e assertions are not supported, testbenches have to be wri t ten using
P y t h o n structures.

The M y H D L alone does not support unit-testing, but it is possible to use P y t h o n
assertions or a unit-test framework such as x U n i t or pytest. F r o m the T D D ' s point of view,
it gives nothing more than V H D L combined wi th assertions, but it is possible that i n the
future it w i l l support advanced t iming from the verification side.

Some parts of the reference design were t r ied to reimplement i n M y H D L and testbenches
were added, too, by using assertions. Dur ing the s imulat ion wi th the bu i l t - in simulator, it
skipped running of mult iple processes without giving any notifications or error messages.
W h e n the order of the processes in the code was changed, some errors were printed out, but
from the output it was not possible to detect where the errors are occured. Conversion to
V H D L / V e r i l o g code returned wi th similar errors. F r o m this it can be stated that M y H D L
is not suitable for product ion use.

3.3.4 C o n c l u s i o n

Unfortunately, there was a problem w i t h every unit-test framework, so they were not
demonstrated. None of them is ready for product ion use, but in the future they could
be the essential tools of hardware development.

Because unit-testing wi th the x U n i t architecture is defined as object-oriented, a fully
object-oriented hardware description and verification language wi th P S L - l i k e concurrent
assertions could be an op t imal solution. System Veri log is very close to that description,
because the verification part can be fully object-oriented. B u t the potential is inside
M y H D L too, because P y t h o n is a very powerful language from the semantical side.

19

Chapter 4

Demonstration

In the final part of this thesis, a complete hardware-design was made using test-driven
development. The choice fell on an TV-bit paral lel- to-SPI interface which can communicate
wi th M number of slaves.

The implementat ion was planned to made using the S V U n i t framework, but it had
platform collision problems, so finally it was made i n V H D L combined wi th SystemVerilog.
The entity was made i n V H D L and it was instantiated in a System Veri log testbench. To
make test running and report generation easier, a T C L script was created.

busy tx_data rx_data addr(3)

elk ss_ .1

rst ss_ .2 —

en ss_ 3
SPI interface

8-bit
6 slaves

ss_ 4

c_pol ss_ 5

c_pha ss_ 6

sclk miso mosi

Figure 4.1: Schematic of a 8-bit parallel- to-SPI interface which supports 6 slaves

The S P I is a serial, synchronous and bi-directional communicat ion interface between
two endpoints. One endpoint operates i n master, the second i n slave mode. The master
generates the clock signal and initiates communicat ion, the slave is only active when the
master allows it . It is possible to connect many different slave devices to one master, but
only one slave can be active at a time.

20

4.1 Specification

A s mentioned i n 2.3, a very accurate and clear specification is necessary before wr i t ing the
tests. For the demonstration module it was made using [8] and [7].

P o r t descr ipt ions

Name D a t a width M o d e Description
elk 1 in C lock signal
rst 1 in Asynchronous reset
en 1 in Initiates a transaction when in high
C-pol 1 in C lock polari ty selector
C-pha 1 in C lock phase selector
addr f log 2 M] in Slave address selector
SS-1 1 out Selects the first slave when i n low
ss-2 1 out Selects the second slave when i n low
ss-3 1 out Selects the th i rd slave when i n low

ss-M 1 out Selects the M - t h slave when i n low
sclk 1 out S P I clock signal
miso 1 in Master in slave out
mosi 1 out Master out slave i n
tx-data N in D a t a to transmit
rx-data N out Received data
busy 1 out B u s y indicator

Input / o u t p u t

Communica t ion through S P I requires four data wires. The master should generate a sclk
signal and p u l l one from the ss signals to low to activate a slave. The bi-directional
communicat ion is then realized through the master out, slave i n (mosi) and the master in ,
slave out (miso) wires.

SPI master

SCLK

MOSI

SPI slave

SS

Figure 4.2: S P I master and slave connected together

The information which sent to the tx-data bus on the parallel side is t ransmit ted
sequentially through the mosi wire, one-by-one. The data receiving works on the same
principle, only i n the opposite direction through the rx-data bus and the miso wire.

21

T i m i n g

From the clock signal's point of view, the S P I interface has four operational modes. The
phase and the polari ty of the clock signal both have two varieties which can be combined.
In order to set these values on the master, two input wires are needed, the C-pol for the
polari ty and cjpha for the phase selection. The cjpol sets the in i t i a l value of the S P I clock
signal, so when it is i n logic 0, the sclk starts from logic 0 or logic 1 when it is in logic 1.
The edge of the clock signal which the S P I interface should react to can be set w i th the
C-pha signal.

c_pha=0

c_pha=1

-< 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8

X 2 X 3 X 4 X 5 X 6 X •> X 8 >

Figure 4.3: S P I operation modes demonstrated on waveform

The clock generation was completely removed from the design, it is necessary to provide
an external clock signal which has to be twice as fast than the desired S P I clock frequency.

M u l t i p l e slaves

There are several techniques to connect a master w i th many slaves, but the most well known
is to use common most, miso and sclk signals. For each slave device, the master has to
possess one dedicated slave selection wire which are used to activate the appropriate slave
device. Th is requires an addr bus which should be min imal ly code M number of addresses
to select the proper slave device and M number of ss-X signals (where x £ (1; M — 1)).

addr(2)
SPI master

sclk mosi miso ss_1 ss_2 ss_3

sclk mosi miso ss

SPI slave #2

sclk mosi miso ss

SPI slave #1

sclk mosi miso ss

SPI slave #3

Figure 4.4: M u l t i p l e slaves connected to one master

22

T r a n s a c t i o n descr ip t ion

W h e n the busy signal is i n logic 0, the module is idle and ready to begin a transaction,
otherwise it w i l l ignore anything except reset (see below).

The transaction can be ini t ia ted by setting the en signal to high. O n the first rising
edge of the elk, the module latches the settings and the tx-data. O n the next rising edge,
the busy flag is set and the sending of data has commenced. After a l l bytes were sent, the
busy signal goes back to logic 0, which indicates that the received data is available on the
rx-data.

tx_data 000 ^ 0 1 0) T

ss

sclk

mosi

000

111 011 111

/ \ / \ / \ /
/ \ / \

/ \ / \
ooo X 1 0 1

/ \

Figure 4.5: S P I transaction waveform

The waveform above shows an example transaction using a module which supports 3
slaves and uses 3 bit data-width. It transfers the 010 sequence to the th i rd slave, while
simultaneously receiving the 101 sequence. The clock polari ty and phase settings are both
in logic 1.

Reset a n d in i t ia l state

W i t h the rst signal, it is possible to asynchronously set the module into its in i t i a l state.
It can be triggered at any t ime and it causes the module to stop the current operation
immediately and set the busy signal to logic 1 un t i l the rst goes back to logic 0.

In the in i t i a l state a l l ss outputs are set back to logic 1, the mosi output is set into high
impedance and the rx-data is cleared.

23

4.2 Implementation

Before wr i t ing a test, it is necessary to create an empty top level entity for the module using
the port descriptions and a testbench wi th only clock generation. To support the N-b i t
data-width and M number of slaves, V H D L generics were used together w i th a custom base
2 logar i thm function to determine the wid th of the addr bus. D u r i n g the tests, their default
values (N=8, M = 3) were used to avoid complications when instantiat ing a V H D L module
in SystemVerilog.

Reset a n d in i t ia l state

• W h e n the reset signal is active, the busy should be active too.

• After the reset goes back to logic 0, the in i t i a l settings of the module should be set.

These two simple facts were transformed into assertions i n the newly created testbench.
For further operations it is necessary to reset the module at start, so the first triggering of
the rst was added into the in i t ia l iza t ion part of the testbench. In the following sections,
these extensions of the ini t ia l izat ion part w i l l not be mentioned. It should be understood
that every possible combination, that the suitable test needs has been impl ic i t ly added.

property i n i t i a l _ s t a t e ;
r s t [*1:$] ##1 !rst |=> accept_on(rst)
(ss==3'blll) && (rx_data==8'h00) && (mosi===l'bz) && Ibusy;

endproperty;
always @(posedge elk) assert p r o p e r t y (i n i t i a l _ s t a t e) ;

List ing 4.1: Asser t ion for testing the in i t i a l state

Because the reset signal is not handled, running these tests w i l l fail . Hereby allowing to
continue wi th the next step of the T D D methodology, by implementing the code for passing
the tests.

i n i t : process (rst) begin
i f (rst = '1') then

busy <= '1';
ss <= (others => '1');
mosi <= >Z> ;
rx_data <= (others => '0');

else
busy <= '0';

end i f ;
end process;

List ing 4.2: The first lines of code after the failing tests

W h e n the tests successfully pass, the implementat ion is ready and new tests can be
added. This is done only in the first T D D iteration, because the added code (from the
perspective of the two tests) is clean and does not contain any duplications. Refactoring
w i l l be made later, after adding more tests.

24

C l o c k generat ion

• W h e n the reset signal ia active, the busy should be active too.

• After the reset goc3 back to logic 0, the in i t i a l 3ctting3 of the module should be 3ct.

• After an enable sequence, the S P I clock has to be ini t ia l ized wi th the correct polarity.

• The S P I clock should oscillate for N ticks, twice as slow than the elk.

To pass the th i rd test, only one line has to be added (sclk < = c_pol), but refactoring
w i l l be needed. Passing the fourth test needs a finite-state machine wi th four states. The
starting idle state latches the C-pol setting and waits for the enable signal. The enable
signal activates the start state, where the sclk signal is set to the aprorpiate clock polarity.
The last two states are responsible for oscil lating the clock signal. W h e n the number of
clock ticks equals to the data-width of the module, the F S M returns to the idle state.

property sclk_generation;
reg polarity;
(en, polarity=c_pol) ##1 !en |=> accept_on(rst)
(sclk == po l a r i t y ##1 sclk != polarity) [*8] ##1 sclk == polarity;

endproperty;
always @(posedge elk) assert property(sclk_generation);

List ing 4.3: The test of the spi clock's oscillation

This F S M is not the representation of the min ima l amount of code, but is the product
of the refactoring.

ticks=N

Figure 4.6: S P I clock generation F S M

D a t a transfer

• . . .

• The busy signal has to be i n logic 1 for N ticks after the enable sequence.

• The correct slave has to be selected, but only when the transaction was ini t ia ted and
the busy signal is high.

• The bits of tx-data should appear on the mosi, one-by-one, then it has to return to
high-impedance state.

• W h e n the busy signal goes low after the transaction, the rx-data should contain the
received bits from miso.

25

The tests described above were first made only for cjpha = 0. The busy indicator was
added into the appropriate states of the F S M , together w i th the slave selection which was
desribed wi th a l o g 2 M to M decoder.

property tx_transaction;
reg[0:7] tx;
int unsigned i ;
(en, tx=tx_data, i=0) ##1 !en |=> accept_on(rst)
(tx[i]==mosi ##1 tx[i++]==mosi) [*8] ##1 mosi===l'bz;

endproperty;
always @(posedge elk) assert property(tx_transaction);

List ing 4.4: Va l ida t ion of the t ransmit ted data

The data sending and receiving were integrated into the tickl and tick2 states. There
was already a counter for counting the number of sclk ticks, so it was used to select the
appropriate byte to send.

P h a s e selection

To support the C-pha = 1 mode, the original transaction tests were duplicated and reclocked,
so finally four tests cover the whole transaction system of the module. The implementat ion
of these functionalities was made by adding some extra states to the existing F S M which
was very complicated, but it passed a l l the tests.

ticks=N,cont=0

Figure 4.7: F S M which supports both clock phases

F i n a l re factor ing

The idle and start states are necessary, they cannot be eliminated, but the other five states
could be joined into one work state by extending the range and the purpose of the cnt.

In this newly added state, the counter counts from zero and it generates the sclk signal.
W h e n the value of the elk variable equals zero, the appropriate slave is selected, the busy
signal is set to logic 1 and when the clock's polari ty is set to zero, the first bit is sent out
through the most wire. Further wr i t ing and reading is solved by checking the counter's
value. Whether or not a reaction is needed, depends on the clock polari ty selection too.
W h e n the counter reaches the final value, the machine sends the received N-bytes to the
rx-data and returns to the idle state.

26

i f cnt=0 then
i f phase='0 ' then

mosi <= tx(N-l);
end i f ;

e l s i f cnt mod 2 = 0 then
i f phase='0 ' then

mosi <= tx(N-l-cnt / 2) ;
else

rx_data(N-cnt /2) <= miso;
end i f ;

else
i f phase='0 ' then

rx_data(N-l-cnt / 2) <= miso;
else

mosi <= tx(N-l-cnt / 2) ;
end i f ;

end i f ;
List ing 4.5: Transaction handling wi th even-odd-zero checking

4.3 Evaluation

After the final refactoring of the code was synthesizable and it passed a l l the tests. Compared
wi th the reference design, they were both communicat ion interfaces wi th easily available
and well documented specifications. However, the development of the S P I interface was
much faster, because wr i t ing the tests before implementat ion causes that the developer
pays more attention to the specifications and memorizes them better.

It can be stated that the use of SystemVerilog assertions is the best available solution
yet for test-driven hardware development. Us ing them for very large projects w i th many
tests but can be very difficult.

Runn ing a s imulat ion can sometimes take hours or more and i n T D D , it is a very
frequent operation. W h e n the s imulat ion of a module takes too much time, it has to be
decomposed and the sub-modules should simulated separately. It does not decreases the
simulat ion t ime, because the design remains the same, but it reduces the t ime of wait ing
between the steps of T D D .

The most difficult part of wr i t ing the testbenches is the t iming, especially when using
concurrent assertions or assertions i n separate processes. For having good tests, it is
necessary to add every possible combination of input signals into the tectbench's stimulus
process and keep them i n accordance wi th the assertions. Seeing through two types of
code-structure which are placed i n two different places is not an easy task for any developer.

27

Chapter 5

Conclusion

A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.

(Antoine de Saint-Exupéry)

It is proved that the test-driven method highly facilitates the software development
process. The red-green-refactor model always proves to be the most simplest and cleanest
code which is an important quali ty factor of a software product. Saint-Exupery 's quote
expresses the same idea: if one cannot simplify the code any further so that its functionality
remains intact, then perfection has been achieved and the product is finished.

F rom the previous chapters is evident that test-driven development methodology has a
place i n the toolbox of a hardware developer as well . It helps the developer to understand
the specifications deeper and forces h i m to write high quali ty tests. It does not matter when
the tests are wri t ten, it takes the same amount of t ime to create them, so the metodology
at the worst case is neither slower, than the classical hardware development.

It is very important , that the methodology is not applicable one-to-one, because of the
differences between software testing and hardware simulat ion. Creat ing a test to verify a
function which calculates e.g. the square root of a number is much easier, than simulat ing
an entity what does the same. However, the basic idea is the same, just the tests are
grouped into testbenches and instead of testing the operation it is called simulation.

To use T D D in larger projects, a complete and generally available unit-test, or at
least, a test-automation framework is necessary. The continuation of the present paper
in the future could be an object-oriented, x U n i t based hardware verification and unit-test
framework. Since the now available s imilar tools does not support P S L - l i k e assertions and
they were very useful in the demonstrational project, this future framework should support
them as well . To make refactoring faster, the simulation environment should be extended
wi th automated running of synthesis.

28

Bibliography

[1] A Guide to the Project Management Body of Knowledge. Project Management
Institute, 4th edition, November 2009. I S B N 978-1933890517.

[2] Jasper Design Automat ion . Proper ty specification language.
h t t p : / / o s k i t e c h . c o m / p a p e r s / p s l - u c b 0 4 0 5 . p d f , 2005. [Online], [cit. 2013-04-25].

[3] Ken t Beck. Test Driven Development: By Example. Addison-Wesley Professional,
November 2002. I S B N 978-0321146533.

[4] J . Bergeron. Writing Testbenches: Functional Verification of HDL Models. Springer,
second edition, 2003. I S B N 978-1-4020-7401-1.

[5] C . A . R . Hoare. A n axiomatic basis for computer programming. Communications of
the ACM, 12(10):576-580, October 1969.

[6] Doro ta Huiz inga and A d a m Kolawa . Automated Defect Prevention: Best Practices in
Software Management. W i l e y - I E E E Computer Society Press, October 2007.
I S B N 978-0470042120.

[7] Moto ro l a Inc. Spi block guide v03.06.
h t t p : / / w w w . e e . n m t . e d u / ~ t e a r e / e e 3 0 8 1 / d a t a s h e e t s / S 1 2 S P I V 3 . p d f , J an 2000.
[Online], [rev. 2003-02-04], [cit. 2013-04-25].

[8] Scott Larson. Serial peripheral interface (spi) master (vhdl). h t t p : / / w w w . e e w i k i .
n e t / d i s p l a y / L O G I C / S e r i a l + P e r i p h e r a l + I n t e r f a c e + (S P I) + M a s t e r + (V H D L) .
[Online], [rev. 2013-04-11], [cit. 2013-04-25].

[9] B r y a n Mor r i s and R o b Saxe. svunit: Br ing ing agile methods into functional
verification. Technical report, X t r e m e E D A , Ot tawa, Canada, 2009.

[10] A l o k Shanghavi. W h a t is formal verification? EE Times-Asia.

[11] Marce la Š imková . Hardware accelerated functional verification, d ip lomová p ráce ,
F I T V U T v B r n ě , Brno , 2011.

29

http://oskitech.com/papers/psl-ucb0405.pdf
http://www.ee.nmt.edu/~teare/ee3081/datasheets/S12SPIV3.pdf
http://www.eewiki

Appendix A

Contents of CD

• /demonstrat ion - directory containing the source files of the demonstration module

• / latex - directory containing the DTp^X and other source files for creating the thesis

• / p d f - directory containing the P D F version of the thesis

• /examples - directory containing the source files of the assertion and unit-test
examples

— /examples/reference - directory containing the source files of the reference
design

— /examples /vhdl - directory containing the V H D L assertion examples

— /examples/systemverilog - directory containing SystemVerilog assertion examples

— /examples /ps l - directory containing the the P S L assertion examples

30

Appendix B

Manual

To run the simulations, M o d e l S i m / Q u e s t a S i m simulat ion environment is necessary. Unfortunately
M o d e l S i m does not support SystemVerilog assertions, so the demonstrational module and
the System Veri log assertion examples could not be run by using it.

In each directory are files w i th .fdo extension which have to be started from the
simulator's command line. Every testbench generates an assertion report into a .log file in
his own directory.

The reference and the demonstrational hardware designs both can be synthesized in
X i l i n x I S E , by impor t ing a l l the .vhd files to an empty project.

31

