BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

USING INHERITANCE DEPENDENCIES TO ACCELER-
ATE ABSTRACTION-BASED SYNTHESIS OF FINITE-
STATE CONTROLLERS FOR POMDPS.

VYLEPSENi SYNTEZY KONTROLERU PRO POMDP S VYUZITIM ABSTRAKCE A PODOBNOSTI.

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR ALEKSANDR SHEVCHENKO
AUTOR PRACE

SUPERVISOR doc. RNDr. MILAN CESKA, Ph.D.

VEDOUCI PRACE

BRNO 2024



-r

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment [l

Institut: Department of Intelligent Systems (DITS) 157070
Student: Shevchenko Aleksandr

Programme: Information Technology

Title: Using inheritance dependencies to accelerate abstraction-based synthesis of

finite-state controllers for POMDPs.

Category: Formal Verification
Academic year: 2023/24

Assignment:

1.

Study the state-of-the-art controller synthesis methods for Partially Observable Markov Decision
Processes (POMDPs) based on MDP abstraction.

2. Evaluate these methods on practically relevant case studies and identify their limitations.
3. Design possible improvements and extensions of the methods that exploit inheritance dependencies
between sub-POMDPs.
4. Implement the improvements and extensions within the tool PAYNT.
5. Carry out a detailed evaluation of the implemented methods including an extension of the existing
benchmarks.
Literature:

Kochenderfer, M.J., Wheeler, T.A., and Wray K.H, Algorithms for Decision Making, MIT Press 2021.
Milan Ceska, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen. Shepherding hordes of
Markov chains. In Proc. of TACAS'19. Springer, 2019.

Andriushchenko, R., Ce$ka, M., Junges, S., and Katoen, J.P. Inductive synthesis of finite-state
controllers for POMDPs. In UAI'22. Proceedings of Machine Learning Research.

Andriushchenko, R., Ceska, M., Junges, S., Katoen, J.P. and Stupinsky, S. PAYNT: A Tool for
Inductive Synthesis of Probabilistic Programs. In CAV 2021. Springer.

Requirements for the semestral defence:
ltems 1, 2 and partial 3 and 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Ceska Milan, doc. RNDr., Ph.D.
Consultant: Andriushchenko Roman, Ing.
Head of Department:  Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2023

Submission deadline:  9.5.2024

Approval date: 23.4.2024

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno


https://www.fit.vut.cz/study/theses/

Abstract

Partially observable Markov decision process is an important model for autonomous plan-
ning used in many areas, such as robotics and biology. This work focuses on the Abstraction-
Refinement framework for the inductive synthesis of finite-state controllers (FSCs) for
POMDPs. The classic version of AR requires model checking of a quotient MDP for an
entire set of compatible choices of the subfamily in each iteration. We propose an algo-
rithm that uses inheritance dependencies to reduce the size of the quotient MDP’s mask
and accelerate model checking for subfamilies of FSCs. We also introduce a smart version
of this algorithm, which preserves all its advantages and reduces its weaknesses. During
the experiments, it turned out that our approach also affects the operation of other parts
of the synthesis, e.g. model building. Depending on the POMDP model, we observe both
speedups and slowdowns in comparison to AR. On average, our approach speeds up the
overall synthesis time by 1.2 times, and in some cases up to the factor 10.

Abstrakt

Césteéné pozorovatelny Markovsky rozhodovaci proces (POMDP) je dfilezitym modelem
pro autonomni planovani, ktery se pouziva v mnoha oblastech, jako je robotika a biologie.
Tato prace se zaméfuje na metodu Abstraction-Refinement pro induktivni syntézu konecéné
stavovych kontroléru (FSC) pro POMDP. Klasicka verze AR vyzaduje model checking quo-
tient MDP pro celou mnozinu kompatibilnich akci podrodiny v kazdé iteraci. My navrhu-
jeme algoritmus, ktery vyuziva dédi¢né zavislosti ke snizeni velikosti masky pro quotient
MDP a ke zrychleni model checkingu pro podrodiny FSC. Také predstavujeme chytrou
verzi tohoto algoritmu, ktera zachovava vSechny jeho vyhody a snizuje jeho slabiny. Béhem
experimenti se ukazalo, ze nas pristup také ovliviiuje Cinnost jinych ¢asti syntézy, jako
je napr. model building. V zavislosti na modelu POMDP, pozorujeme jak zrychleni, tak
zpomaleni ve srovnani s AR. V praméru nase metoda zrychluje celkovou dobu syntézy 1.2
krat a v nékterych pripadech az desetkrat.
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Rozsireny abstrakt

Pravdépodobnost jiz dlouho slouzi jako zdkladni nédstroj pro modelovani nejistot a pri-
jiméni informovanych rozhodnuti. Markovsky fetézec (MC, nebo diskrétni MC) je nejpop-
ularnéjsim modelem pro integraci pravdépodobnosti do pfechodovych systému. Je zvlasteé
vhodny pro modelovani nahodnych jevu, poskytuje matematicky zaklad pro pochopeni
evoluce systému v pribéhu ¢asu [7]. Markovské Fetézce a jejich rozsifeni nabizeji mocny
nastroj pro analyzu stochastickych systému. Jsou vyuzivany v mnoha oblastech: robotice
(planovani strategii pro roboty, vyhybani se chybam [23]), biologii (vyhynuti populaci, $ifeni
epidemii [1]), financich (ménovy trh, investic¢ni strategie [25]) atd.

Nékteré systémy mohou zahrnovat souc¢asné procesy se stiidavym chovanim. Determini-
sticka struktura MC postrada flexibilitu, kterd je potrebné pro jejich adekvatni reprezentaci.
Z tohoto duvodu Markovsky rozhodovaci proces (MDP) prichdzi jako ndhrada za MC.
MDP umoznuje souziti nedeterministickych rozhodnuti a pravdépodobnostnich prechodi,
poskytuje podrobnéjsi reprezentaci systému zahrnujicich jak ndhodnost, tak soubéznost [7].
V MDP se predpoklada, ze stav systému je plné pozorovatelny, coz znamena, ze o ném exis-
tuje Uplnd informace. Bohuzel to neni vzdy pravda, napriklad kvili nedokonalosti senzoru
(nebo jiného ndstroje pro monitorovani stavii) [20]. Césteéné pozorovatelny Markovsky
rozhodovaci proces (POMDP) je obecnéjsi a realistictéjsi model, ktery predpoklada, ze ex-
istuje nejistota ohledné ucinku akci a skuteéného stavu svéta. POMDP jsou vypocetné
naroc¢néjsi nez MDP kvuli pridané slozitosti ¢astecné pozorovatelnosti.

Rezoluce nedeterminismu je providéna prostfednictvim planovacu [7]. Existuji dva
problémy spojené s analyzou POMDP — jak efektivné reprezentovat planovace a najit ten
optiméalni. Belief MDP je jednou z moznych reprezentaci planovact. Belief je informacni
vektor, ktery reprezentuje distribuci pravdépodobnosti mezi stavy POMDP. Belief MDP
je vytvoren na zakladé vSech dosazitelnych beliefs [29]. Poté se optimdlni planova¢ hleda
model checkingem belief MDP. Nicméné, pokud je belief prostor pro POMDP spojity, model
checking se stava vypocetné nefeSitelnym. Jinak muze byt belief MDP vytvofen pomoci
aproximacnich technik. To vede ke sniZeni pfesnosti a mozné ztraté nejlepsiho feseni [22].
Planovace mohou byt také zakédovany konecéné stavovym kontrolérem (FSC) s vyuzitim
vnitiniho pamétového stavu. FSC umoznuje kompaktni reprezentaci planovaci, proto neni
potiFeba pamatovat si celou historii akci a pozorovani [27]. Vysledkem aplikace FSC na
POMDP je induced MC. MDP je vhodny model pro syntézu kontrolérii, protoze umoziuje
definovat kontrolované akce. Nicméné, kazdy FSC udrzuje velikost planovace omezenou a
ve vétsiné pripadu je pocet vSech moznych FSC nekoneény. To déla problém nalezeni
optimalniho pldnovace nerozhodnutelnym [26].

Induktivni syntéza FSC [5] je moderni metoda syntézy FSC, kterd pracuje s rodinami
planovaci. To umoznuje prozkoumat planovace s riznymi velikostmi paméti, prizpusobuje
se tak slozitosti daného POMDP [3]. Hlavni omezeni této metody vychazi z problému FSC
popsaného vyse. Nekonecné rostouci prostor planovaci déla problém nalezeni optimalniho
FSC nerozhodnutelnym. Abstraction-Refinement framework pro induktivni syntézu [13]
pracuje s abstrakci rodiny. Quotient MDP je spoleénou abstrakci celé rodiny, ktera za-
chovavéa chovani vSech jednotlivych realizaci (FSC). Umoziiuje pfepinat mezi realizacemi a
simulovat chovani induced MC, ktery ptvodné nebyl v rodiné pritomen. Model checking
quotient MDP poskytuje spodni a horni hranice hodnoty FSC [5]. Pokud cely interval
mezi témito hranicemi spliuje specifikované podminky, jsou prijata vSechna mozna reSeni.
Pokud se zcela nachazi mimo pozadovany interval, je celd rodina odmitnuta. Jinak je ro-
dina rozdélena na dvé poloviny (podrodiny), které jsou prozkoumavany oddélené. Pokud
podrodina neni pfijata ani odmitnuta, je znovu rozdélena na dvé poloviny. Pro feasibil-



ity synthesis problem, tento proces konéi, kdyz je bud nalezeno vhodné feseni, nebo jsou
odmitnuty vSechny realizace. Rozdéleni (pod)rodiny postupné snizuje pocet kompatibilnich
akci a provadi se omezenim quotient MDP. Omezeni v podstaté aplikuje masku vybranych
akci na quotient MDP.

Hlavnim tkolem této prace je vytvorit metodu, ktera zrychluje model checking rodin
FSC za pouziti dédi¢né zavislosti pro AR (IDAR). Vysledky model checkingu rodiny (rodice)
mohou byt uzitecné i pro analyzu jejich pfimych podrodin (déti). Necht je stav quotient
MDP vagni, pokud existuje nenulova pravdépodobnost, Ze jeho optimalni akce z planovace
rodiCe neziistane optimalni pro dité. Stavy, které ztratily svou optimalni akci, se stavaji
vagnimi. Predchudci vagnich stavi jsou také oznaceni jako vagni. Poté jsou tyto informace
pouzity k vytvoreni masky. Pokud je stav vagni, jsou zachovany vsechny jeho dostupné
akce. Jinak je zachovana pouze optimalni akce. IDAR snizuje velikost masky pro kazdou
podrodinu. Pro model checking MDP s PCTL syntaxi je algoritmicka slozitost polynomidlni
ve velikosti MDP [28]. Kazdy nevagni stav quotient MDP vyznamné urychluje jeho model
checking eliminaci nedeterminismu.

Rozsitend verze IDAR (EIDAR) bere v ivahu umisténi optimélnich akei nejen pro stavy,
které ztratily néjaké své akce, ale také pro jejich predchtidce. EIDAR vytvarii mnozinu
affected stavii tim, ze pifimo prochézi optiméalnimi akcemi k jejich pavodnim stavim. Tim
vyrazné snizuje pocet affected stavu ve srovnani s vignimi. Vyslednd maska je tedy mensi,
coz prispiva k urychleni model checkingu. Nicméné, popsand vylepsSeni nezrychluji syntézu
pro kazdy model POMDP, nds program se proto muze rozhodnout, zda pouzit dédi¢né
zavislosti, ¢i nikoliv (Smart EIDAR). SEIDAR, hlavni pfinos této prace, je navrzen tak,
aby uzivatele usetfil manualni volby mezi AR, IDAR a EIDAR. SEIDAR zahajuje svou
¢innost v EIDAR, sbird urcité statistiky béhem prvnich nékolika iteraci a rozhoduje, zda
prejit na AR, nebo zustat v EIDAR.

Vsechny nové pristupy se ukéazaly jako konzistentni s klasickym AR. Nezavisle na ve-
likosti paméti FSC se optimalni vysledek nezavisi na zvolené metodé. Béhem experimentu
se ukazalo, ze velikost masky také ovliviiuje ¢innost jinych ¢asti syntézy (naptf. model
buildingu). V pruméru SEIDAR zrychluje celkovou dobu syntézy 1.2 krdt, model building
1.54 krat a model checking 1.61 krat. V nékterych pripadech pro feasibility synthesis prob-
lem zrychleni presahuje desetkrat. Na zakladé experimentid je pro uzivatele rozumné vzdy
volit SEIDAR pred AR.
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Chapter 1

Introduction

Probability has long served as a fundamental tool for modelling uncertainties and making
informed decisions. Markov chain (MC, or discrete-time MC) is the most popular model for
the integration of probabilities into transition systems. It is particularly suited for modelling
random phenomena, providing a mathematical foundation to understand the evolution of
systems over time [7]. Markov chains and their extensions offer a powerful tool for the
analysis of stochastic systems. They are used in many areas: robotics (planning strategies
for robots, error avoidance [23]), biology (population extinction, spread of epidemics [1]),
finance (currency market, investment strategies [25]), etc.

However, some systems may involve concurrent processes with interleaving behaviour.
MC’s deterministic structure lacks the flexibility needed to represent them adequately. For
this reason, the Markov decision process (MDP) comes to replace MC. MDP allows for the
coexistence of nondeterministic decisions and probabilistic transitions, providing a more de-
tailed representation of systems involving both randomness and concurrency [7]. In MDPs,
it is assumed that the system’s state is fully observable, meaning there is complete informa-
tion about it. Unfortunately, this is not always true, for example, due to the imperfection
of sensors (or any other tool for monitoring states) [20]. The partially observable Markov
decision process (POMDP) is a more general and realistic model, assuming that there is
uncertainty about both the effects of actions and the true state of the world. POMDPs
are computationally more challenging than MDPs due to the added complexity of partial
observability.

The resolution of nondeterminism is performed by policies (schedulers) [7]. There are
two problems related to POMDP analysis — how to represent policies and find the optimal
one efficiently. Belief MDP is one of the possible representations of policies. Belief is an
information vector that represents probability distributions over POMDP’s states. Belief
MDP is built based on all reachable beliefs [29]. Then, the optimal policy is found by the
model checking of belief MDP. However, if the belief state space of POMDP is continuous,
model checking becomes computationally unsolvable. Otherwise, the belief MDP can be
constructed using approximation techniques. It leads to decreased accuracy and a possible
loss of the best solution [22]. Policies can also be encoded by a finite-state controller (FSC)
using an internal memory state. FSCs allow policies to be represented compactly, therefore
there is no need to remember the entire history of actions and observations [27]. The result
of applying FSC over POMDP is induced MC. MDP is a suitable model for controller
synthesis, as it allows to define controllable actions. However, each FSC keeps the policy
size bounded and in most cases, the number of all possible FSCs is infinite. It makes the
problem of finding the optimal policy undecidable [26].



This paper describes two state-of-the-art methods for the synthesis of FSCs. A belief-
based approach synthesises FSCs using the concept of beliefs. In this case, FSC can be
derived from finite or infinite belief MDP. However, deriving FSC from large or infinite belief
MDP requires a finite approximation — cut-offs or clipping [10]. Another approach, inductive
synthesis of FSCs [5], works with families of policies. It allows for the exploration of policies
with varying memory sizes, adapting to the complexity of the underlying POMDP [3]. The
main limitation of this method stems from the FSC problem described above. Infinitely
growing policy space makes the problem of finding the optimal FSC undecidable.

There are several approaches for identifying the best FSC within the design space.
CounterExample-Guided Inductive Synthesis (CEGIS) performs an enumerative search
within a family of FSCs [4]. Realisations that violate the specification provide facts
(counterexamples) and help avoid the consideration of other certainly violating FSCs.
Abstraction-Refinement framework for inductive synthesis [13] operates with an abstraction
of the family. Quotient MDP is a common abstraction for the entire family preserving the
behaviour of all individual realisations (FSCs). It allows to switch realisations and simulate
the behaviour of an induced MC, which is not originally presented in the family. Model
checking of the quotient MDP provides lower and upper bounds of the FSCs value [5]. If
the entire interval between these bounds meets the specified conditions, all candidate solu-
tions are accepted. If it fully lies outside the desired interval, the entire family is rejected.
Otherwise, the family is split into two halves (subfamilies), which are explored separately.
If the subfamily is not accepted or rejected, it is divided in half again. For the feasibility
synthesis problem, the synthesis terminates when either a feasible solution is found, or all
realisations are rejected. Splitting of a (sub)family gradually decreases the number of com-
patible actions (choices) and is performed by restriction of the quotient MDP. Restricting
essentially applies a mask of selected choices on the quotient MDP.

Contributions

The main task of this work is to create a method that accelerates model checking of families
of FSCs using Inheritance Dependencies for AR (IDAR). Model-checking results of a family
(parent) can also be useful for the analysis of its direct subfamilies (children). Let a state of
the quotient MDP be vague if there is a non-zero probability that its optimal choice from
the parent’s scheduler does not remain optimal for the child. States that lost their optimal
choice become vague. Predecessors of vague states are marked as vague too. Then this
information is used to create the mask. If a state is vague, all its available choices are kept.
Otherwise, only the optimal choice is preserved. IDAR reduces the size of the mask for each
subfamily. For the MDP model checking with the PCTL syntax, the algorithmic complexity
is polynomial in the size of MDP [28]. Therefore, each non-vague state of the quotient MDP
significantly accelerates its model checking by eliminating the nondeterminism.

The Extended version of IDAR (EIDAR) considers the location of optimal choices not
only for states that lost some of their choices but also for their predecessors. EIDAR
creates a set of affected states by going directly through optimal choices to their origin
states. It significantly reduces the number of affected states compared to the vague ones.
Therefore, the resulting mask is smaller, contributing to a more accelerated model checking.
However, since the described improvements do not speed up the synthesis for each POMDP
model, our program can decide whether to use inheritance dependencies or not (Smart
EIDAR). SEIDAR, the main contribution of this thesis, is designed to save the user from
manually choosing between AR, IDAR and EIDAR. SEIDAR starts its operation in EIDAR,



collects certain statistics within the first few iterations and decides whether to switch to
AR or remain in EIDAR.

All new approaches proved to be consistent with classic AR. Regardless of the amount
of FSC’s memory, the optimal result does not depend on the chosen method. During the
experiments, it turned out that the size of the mask also affects the operation of other parts
of the synthesis (e.g. model building). On average, SEIDAR speeds up the overall synthesis
time by 1.2 times, model building by 1.54 times and model checking by 1.61 times. In some
cases for the feasibility synthesis problem, the speedups exceed 10 times. Based on the
experiments, it is reasonable for the user to always choose SEIDAR over AR.

Structure of this paper

Chapter 2 introduces the fundamental theory about Markov chains and Markov decision
processes. Chapter 3 compares two state-of-the-art methods for the FSC’s synthesis — belief-
based and inductive synthesis and describes their benefits and limitations. In Chapter 4, we
introduce the novel algorithm that uses inheritance dependencies to accelerate the inductive
synthesis — IDAR and its extensions. Chapter 5 provides the experimental evaluation of the
proposed improvements. Chapter 6 summarises the results and describes ideas for future
work. Finally, Appendices A and B describe the contents of the included storage media
and the basic information to get started with PAYNT.



Chapter 2

Preliminaries

This chapter covers the fundamental concepts essential for understanding the subject of
this paper. It begins with an introduction to the Markov model and Markov chains. Then,
it gradually delves into the principles of partially observable Markov decision processes and
the role of finite-state controllers.

2.1 Markov Model and Discrete-Time Markov Chains

A Markov model is a stochastic model representing dynamic systems characterized by the
Markov property. This property, also referred to as a first-order Markov assumption or
memorylessness, means that the probability of the next observation depends only on the
current state, regardless of past observations [17].

Definition 1 (DTMC). [7, 8] A discrete-time Markov chain (DTMC, MC) D is a tuple
(S, so, P), where

e S is a finite, non-empty set of states,
e 59 € S is the initial state,

e P:S xS —10,1] is the transition probability matriz, where

VSES:ZP(S,S'):L

s'eS
and which follows the Markov property:
P[Xp1 = skr1 | Xp = spy -+, Xo = S0] = P[Xpy1 = spq1 | Xp = si] = P8k, Sky1),
where X, € S is a random variable describing the state of D in time k& > 0.

The transition probability matrix P is a two-dimensional array representing all possible
transitions between the states of S, n = |S]:

P(s0, s0) P(so,s1) ... P(s0,8n-1)
P P(Sl,SO) P(sl,sl) P(Sl,sn_l)
P(Sn_l,SO) P(Sn_l,sl) e P(Sn—lasn—l)



Figure 2.1: A discrete-time Markov chain (MC) for a 3-sided die.

A transition probability graph is a commonly used graphical representation of MC, as shown
in Figure 2.1. Nodes represent states and arrows indicate non-zero transitions [8]. An arrow
from the outside often depicts the initial state. States from which it is possible to transition
back to itself with probability 1 are called absorbing. A path w is a non-empty sequence
of states obtained by execution of an MC [24]. Probability of a finite path wss, can be
computed as follows:

Plwin] = 1 ifn=20
Wfinl = P(wg,w1) - Plwp—1,wp) ifn>0"

where w; is the ith state of wy;, and n = |wpin|. A transient probability t,(s) == P[X, = s |
X = sg| represents the probability that the system is in state s at the time step n, assuming
that the agent started its operation in the initial state so [8]. Transient probability t,(s)
directly depends on the transient probabilities of all states of the system at time n — 1.
Equation (2.1) is known as the Chapman-Kolmogorov equation for the n-Step Transition
Probabilities.

ta(s) = 3 tn_1(s) P(s', 5), (21)
s’'eS
wo={ ] il

Let t, := [tn(s) | s € S| denote the row vector of transient probabilities at the time
step n. It can be computed using the transition probability matrix by (2.2):

tn = tn—IP- (22)

To calculate a bounded reachability rn<i(s) of a state s, it is necessary to modify the
MC’s structure [7]. By making state s absorbing, its transient probability accumulates with
each step, resulting in r,<(s) = tx(s). An essential aspect of MC’s analysis is computing a
probability of eventually reaching a set of states B. It is also called an unbounded reachability
probability rs of B from s. If B is not reachable from s, then ry =0, and r, =1 if s € B.
Otherwise, ry is computed using equation (2.3).

rs = Z P(s,s")ry. (2.3)

s’'es



Example 1. Simulating a 3-sided die with a fair coin.

Let us simulate the behaviour of a 3-sided die using coin tosses. The probability of
tossing each side has to be equal. The corresponding MC is illustrated in Figure (2.1).

a) What is the probability of completing the simulation within a maximum of 4 coin
tosses? The correct approach is to use the equation (2.2) and summarize the values of
transient probabilities for states 1,2, 3, which are already absorbing:

0 05 05 0 0 0]
0 0 0 05 05 0

p_ |05 0 0 0 0 05
0O 0 0 1 0 0
O 0 0 0 1 0

0 0 0 0 0 1]

lo = [17 07 07 07 07 O]
ty = toP* = [0.0625,0,0,0.3125,0.3125,0.3125]
Tn<a(1,2,3) = ta(1) + ta(2) + t4(3) = 0.9375

b) Verify the correctness of the created protocol (MC), ensuring that each side of the
die is tossed with the same probability of % Using equation (2.3) for state 3:

Tsy = 0.5z, + 0.5z,
Ts, = 0.521 + 0.522

Tsy = 0.5z, + 0.523

1 =0,20 =0,253 =1

The solution to this system of equations is xs, = % Using the same approach, z,, for

eventually reaching states 1 and 2 are also % Therefore, the protocol is correct.

O

2.2 Markov Decision Processes

This section is dedicated to the MC’s extension called the Markov decision process (MDP).
It is a complex model that can cope with more complicated tasks, which MC would not be
able to handle. MDP introduces the concept of controlled actions and is a core model for
sequential decision-making.

Definition 2 (MDP). [7, 15] A Markov decision process (MDP) M is a tuple (S, sg, Act, P),
where

e S is a finite, non-empty set of states,
e 59 € S is the initial state,
e Act is a finite, non-empty set of actions,

o P:Sx Act xS —[0,1] is the transition probability function, where

Vs € S,Va € Act : Z P(s,a,s') € {0,1}.
s’'eS



Figure 2.2: An example of Markov decision process (MDP).

If Yo cg P(s,a,s") =1, action « is called enabled in s [7]. Act(s) denotes the set of all
enabled actions for s and is required to be non-empty. [15] The behaviour of an MPD M
can be described as follows. The agent starts the operation from the initial state sg. If
after n > 0 steps the current state is s,, a choice between enabled actions Act(s, ) needs to
be done. If the agent lacks additional information about the frequency of available actions,
it is selected nondeterministically. The next state s,41 is selected randomly according to
the distribution P(s,«,-). An example of MDP is shown in Figure 2.2. This graphical
representation is inspired by [15].

Unlike MC, a path m = sg 20, S o, ety sn, in MDP also includes selected actions.
Its probability can be computed as follows:

n—1
Plr] = [] P(sk, o, s41)-
k=0
However, transient analysis for MDP is impossible without knowing how actions are se-
lected. Essentially, an MC is a special case of an MDP where only one action can be
executed in each state. The resolution of nondeterminism is crucial for determining proba-
bility measures, and this resolution is performed by deterministic schedulers (policies).

Definition 3 (Scheduler). [7]Let M = (S, so, Act, P) be an MDP. A scheduler for M is a
function o : ST — Act, such that

V5051 ...50 € ST :0(s051...5,) € Act(sy).
The path
o a1 o
mT=8) —> 81 —>82 —> ...

is called a o-path if
Vi>0:0;=0(sp...5i).

An important note: actions are not preserved in the history sgsi... sy, because each
action «;,1 < n is already chosen deterministically by o. If at some point any path fragment
is §; —iy Si+1, and o(sg ... S;) # «;, this path is not a o-path.



Figure 2.3: MDP for cleaning schedule.

Definition 4 (MC induced by MDP’s scheduler). [7] Let M = (S, so, Act, P) be an MDP
and o a scheduler on M. A MC induced by MDP’s scheduler is a Markov chain M, =
(ST, s0, P,), where for 0 = sgs1 ... 8y:

Py (0,0sn+1) = P(sn,0(0), snt1).

Actual state in M, depends on the history w, which can be infinite. It means, that
even if M is finite, M, is infinite. Between each o-path of M and paths w, in M, exists
one-to-one correspondence. For a o-path

ag (<31 [e %3
mT=8)—>81 —>82 — ...,
and 6, = s9s1 ... S, the corresponding w, path is

Wae :909192....

Example 2. Cleaning schedule using MDP (inspired by [7]).

Anna and Bob are planning a cleaning schedule for their apartment. They have created
an MDP (Figure 2.3) M that allows them to either flip a coin (action «) or directly assign
cleaning to someone (5 and ). Action p represents the cleaning itself. They have proposed
two approaches: a) each time, the coin decides who will clean up; b) the coin makes the first
decision, after which they alternate. Scheduler o, always selects « in s, while scheduler oy,
selects « only as the first action; actions 8 and « are chosen depending on s,,_1:

a ifn=0
oa(505 on) = o ifs,=s ou(505 o) = 68 ifs,1=8
alP0%L2n) = 5 otherwise. A (VI . S|

p otherwise.
By gradually following o, and o4, M, (Figure 2.4) and M,, (Figure 2.5) are obtained.
]

Definition 5 (Finite-memory scheduler). [7] Let M = (S, so, Act, P) be an MDP. A finite-
memory scheduler for M is a tuple oy, = (N, ng,7,0), where

e N is a finite set of nodes,

e ng is the initial node,

10



Figure 2.5: Induced MC for coin flipping
Figure 2.4: Induced MC for coin flipping. and alternating.

e n: N xS — Act is the action selection function, Vn € N,Vs € S : n(n,s) € Act(s),
e §: N xS — N is the transition function.

A memoryless scheduler is a finite-memory scheduler with just a single node. The
behaviour of a finite-memory scheduler oy, for an MDP M can be described as follows.
The agent starts its work in the initial state sy and the initial node ng. If after £ > 0 steps
the current state is sy and the node is ng, an action agy1 = n(ng, sk) is selected and O fm
evolves its node to ngy1 = 0(ng, sg). The next state spiq is selected randomly according
to the distribution P(s,«,-). This principle resembles the behaviour of a deterministic
finite automaton [7]. Therefore, an MC M/’, induced by oy, is finite. Its states can be
represented as pairs (s, ¢) and the transition probabilities are

Pc/r(<57 Q>7 <5/7 (]/>) = P(Svn(% 5)7 5/)7

considering that 6(q,s) = ¢'.

Model-checking algorithms for MDPs provide a systematic way to verify whether a
given MDP meets certain criteria. There is a large number of MDP model-checking al-
gorithms, involving linear or dynamic-programming approaches [29], Probabilistic Compu-
tation Tree Logic (PCTL) and Linear Temporal Logic (LTL) [15], etc. These algorithms
involve analysing the probabilistic behaviour of systems, computing probabilities for spec-
ified properties, and leveraging formal logic specifications to ensure correctness.

2.3 Partially Observable Markov Decision Processes

This section introduces the concept of partially observable Markov decision processes. Com-
pared to MDP, POMDP is a more general and realistic model, assuming that there is
uncertainty about both the effects of actions and the true state of the world.

Definition 6 (POMDP). [30, 3] A partially observable Markov decision process (POMDP)
is a tuple P = (M, Z,0), where

o M = (S, s0,Act, P) is the underlying MDP,

e Z is a finite set of observations,

11



a, B

Figure 2.6: An example of partially observable Markov decision process (POMDP).

e O:5 — Zis a deterministic observation function.

POMDP consists of an underlying MDP supplemented with observations and the obser-
vation function — the behaviour of MDP is also preserved in POMDP. Their main difference
lies in the presence of observations Z, corresponding to the properties of the world, which
can be detected by the agent’s sensor [27]. The observation may be the same across multiple
states. The agent lacks the knowledge of its current state and has information solely about
the observation [30].

By integrating observations into the MDP from Figure 2.2, the POMDP from Figure 2.6
is obtained. For simplicity, observations are indicated by colours: Z = {0, O, ©}. The
agent receives the same observations in states marked with the same colour. This graphical
representation of POMDP is inspired by [3].

Each path m = spaq...s, has its observation trace O(w) = O(Sp)ag...O(s,). Let
last(m) denote the last state of path 7 and Paths” the set of all finite paths of P. Scheduler o
is observation-based, if

Vr, 7' € Paths® : O(r) = O(n') = o(7) = o(7').

Further in this paper, all POMDP schedulers are assumed to be observation-based. As the
length of histories increases with each step, it becomes impractical to represent policies as
mappings from histories to actions [27]. Therefore, there are two key problems in POMDP
analysis: how to represent policies and find the optimal one efficiently.

2.3.1 Representation of policies by Belief MDP

A belief b is a probability distribution over states with the same observation [3]. Let by
be the initial belief state of POMDP P [27, 30]. According to the definition of P given
in Section 2.3, by = {sp — 1} (or bp(sg) = 1). Consider a time-step ¢, where the agent
chooses action « and belief is b;. By slightly modifying the Kolmogorov equation (2.1) for
the POMDP conditions, the probability of reaching state s is

Pls' | br,a] =) bi(s)P(s,a,5).
SES

12
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Under the same conditions, the probability of reaching a state with observation 2’ is
Pl [bal= > Pl |bsal
§'€8,0(s")=2'
Updated belief b1 for 2’ and s’ such that O(s’) = 2’ is obtained using Bayes’ rule:
Pls’ | b, ] Y ses bi(s)P(s,a, s)
Pl | bya] > ses bt(8) Yosnes,o(sm)=2 P85 @, s’
Equation (2.4) counts the probability of reaching s’ with the awareness, that observation 2’

is received. The updated belief by is a mapping of all states in .S to their values obtained
by equation (2.4):

bet1(s’) = (2.4)

bt+1 = {S — bt+1(s) | s € S} (25)

Belief encodes necessary information about previous actions and observations. Thus, a
scheduler can be represented as a mapping from belief states to actions [27]. However,
there is an uncountable amount of possible beliefs. Applying such a scheduler transforms
the initial discrete-time POMDP into a continuous-time MDP [30]. One possible solution
is to consider only reachable beliefs to construct an appropriate belief MDP. Let supp(b) :=
{s € S| b(s) > 0} be the support of b and O(b) = O(s) for any s € supp(b). Denote
b = [b,, 2] an updated belief for b after taking action a, O(V') = 2'.

Definition 7 (Belief MDP). [3] Let P = (S, so, Act, P, Z,O) be a POMDP. A belief MDP
of P is the MDP MPB = (B, by, Act, PB), where

o B is a set of all beliefs,
o by = {sp — 1} is the initial belief,
e Act is the set of actions,

o PB By x Act x Bag — [0,1] is the transition probability function such that

Pl2" | b,a] ifV = [b,a,z]
B /N ) s Sy
PE(b 0, b) = { 0 otherwise.

13



Figure 2.9: Infinite belief MDP for POMDP from Figure 2.8.

For the POMDP depicted in Figure 2.6, the corresponding belief MDP is finite (Fig-
ure 2.7). In such cases, the problem of finding the optimal policy is solvable with model
checking of belief MDP. However, in some cases, belief MDP for a discrete state POMDP
may have an infinite number of reachable beliefs.

Example 3. POMDP with infinite belief MDP.

Consider a POMDP P, depicted in Figure 2.8, where states sg and s; have the same
observation ©. Let 0 = { ©, O — a} be a deterministic, observation-based and memoryless
scheduler of P. Actions, which are not shown explicitly, are self-loops with probability 1.
Using equations (2.4, 2.5) and Definition 7, an infinite belief MDP from Figure 2.9 is
obtained.

O

Even for a simple POMDP, belief MDP can be infinite. That means that the belief

MDP representation of policies does not fully solve the problem of infinitely growing histo-

ries. Nevertheless, approximation techniques can be applied to infinite belief MDPs. This

concept is used in a belief-based approach for the finite-state controllers’ synthesis, which
will be discussed in Section 3.1.

2.3.2 Representation of policies by Finite-State Controllers

This method determines the choice of actions based on a state of internal memory [22].
The mapping from cyclic histories to actions can be represented by a finite-state controller
(FSC) [27]. Each FSC encodes a finite-space policy (scheduler).

Definition 8 (FSC). [5, 3] Let P = (S, s¢, Act, P, Z,0) be a POMDP. A finite-state con-
troller (FSC) for P is a tuple F = (N, ng,n,d), where

e N is a finite set of nodes,

e ng is the initial node,

e n: N X Z — Act is the action selection function,
e 0: N x Z — N is the update function.

FSC can also be specified using Definition 5 of finite-memory scheduler for MDP. The
main difference is that transitions between nodes of FSCs are based on observations, not
specific states. All FSCs in this paper are considered deterministic. Using memory for

14
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Figure 2.10: Field for the LRV from Example 4, which also represents a POMDP.
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Figure 2.11: FSC for the robot, which ignores the obstacles and goes directly to the target.

POMDP’s strategies is crucial. It allows the agent to apply different actions in states with
the same observation.

The behaviour of an FSC F for a POMDP P can be described as follows. The agent
starts its work in the initial state sg and the initial node ng. If after £ > 0 steps the current
state is s and the node is ng, an action ag11 = n(nk, O(sk)) is selected, and F evolves its
node to ngy1 = 0(ng, O(sk)). The next state sgy1 is selected randomly according to the
distribution P(s,«,-). An FSC is a k-FSC, if |[N| = k. When k = 1, the FSC represents a
memoryless policy. Denote F7(F}) a family of all (k-)FSCs for P.

Definition 9 (Induced MC for FSC). [3] Let P = (S, s¢, Act, P, Z,0) be a POMDP and
F = (N,ng,n,0) an FSC for P. The induced MC for FSC F is a Markov chain P¥ =
(S x N, (s0,n0), P7), where for all (s,n),(s',n') € S x N:

P7((s,n), (s, 1)) ::{ P <S’77<"’00<S>>’S’> iftﬁ;;ni?’o(s))’

Each FSC in conjunction with its corresponding POMDP generates an induced MC.
The number of all possible FSCs for a particular POMDP can be infinite. Therefore, the
problem of finding the optimal policy using FSC is undecidable [26]. However, the optimal
solution is not always required. Thus, the problem can be simplified to the search for an
FSC that satisfies given requirements.

Example 4. Robot control using POMDP and FSC.

Consider a Lunar Roving Vehicle (LRV, robot) located on the section (field) of the Moon,
consisting of 7 x 7 cells (Figure 2.10). The robot is in communication with the International
Space Station, so its field of view is limited. The LRV can move up 1, down |, left < or
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Figure 2.12: Induced MC for the robot, which goes directly to the target.

Figure 2.13: FSC for the robot, which takes into account the walls and boundaries.

right — to an adjacent cell. There is a 0.1 probability that it does not perform the specified
action. Therefore, after the first step, the robot does not know its exact location. However,
its scanner receives observations from the outside world, specifically:
— a normal cell.
O — a wall. If the robot moves there, it breaks.
— a cell next to the wall. Warns of danger.
— the final goal.

@ - i cell indicating the boundaries of the field. If the robot goes beyond it, visibility
is lost and it becomes uncontrollable.

Hence, the field can also be interpreted as POMDP. Its states are in format Xz, where X
is a row of the field, z is a column. Figure 2.10 shows a part of the POMDP for a cell Fb.
For clarity, the red transition means an error (probability 0.1), and the green one means
success (probability 0.9). States representing walls are considered absorbing. The task is
to create a policy following which the LRV reaches the final goal Bf and does not break.

a) Imagine a situation that NASA has not programmed the LRV to bypass the walls.
Suppose the LRV alternates — and 17 movements. This is realised by an FSC F, with 2
nodes (Figure 2.11). In this case, Z means that the transition is made for any given
observation.

Since the induced MC is too large for F,, Figure 2.12 illustrates only a part of P7. For
clarity, the states are indicated by the colour of the corresponding field cell. The probability
of getting into the O state is strictly greater than the probability of reaching De without a
single error:

Plw] = 0.9° ~ 0.59,

where w = Fb0 — Fcl — Ec0 — Edl — Dd0 — Del. It means that by following F,,
the robot very likely hits the wall. Moreover, this policy does not restrict the robot from
going beyond the boundaries.

16
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Figure 2.14: Induced MC for the robot, which takes into account the presence of walls and
boundaries.

b) Now imagine that the robot takes into account the presence of walls and boundaries.
Let the LRV’s behaviour be described by the following algorithm, where O(s) represents
the current observation:

1. Move 1 until O(s) becomes

2. Make a step back | until success (until O(s) returns to ©).

3. Make one move —.

4. If O(s) is O, go to step 1. If it is ©, move T until O(s) becomes @.
5. Make a step back | until success (until O(s) returns to ©).

6. Move — until O(s) becomes

Note that the action in step 3 may not always be executed, allowing the robot to move
in cycles (Eb <> Db or Ec <> Dc) for some time. The algorithm corresponds to the FSC F,
with 4 nodes (Figure 2.13), the induced MC P”? is shown in Figure 2.14. Following this
algorithm, the LRV avoids collisions with walls and stays within the boundaries. The
probability of the LRV reaching the target without an error is

Plw] = 0.9' ~ 0.23,

where w is the path, obtained by following green arrows of P7t. Moreover, by following
this policy, the robot reaches the goal with a probability of 1, as the task required. Note
that this is not the only suitable FSC for this field.

O

Finite-state controllers provide an efficient way of decision-making in partially observ-
able environments. Although determining the optimal policy using FSCs can be undecidable
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Figure 2.15: POMDP with a reward structure.

in the general case, the focus shifts to identifying FSCs that meet given requirements for
particular applications. Example 4 highlights the importance of choosing the right finite-
state controller to solve certain tasks.

2.4 Reward Structure and Value Function for POMDP

A reward structure is used for analysing the average behaviour of executions in a Markov
chain [7]. Reward is a real number describing the costs or bonuses of MC’s transitions. It
is used to compute quantities like time, energy consumption, queue size, etc.

Definition 10 (Reward Structure). [10] Let M = (S, so, Act, P) be an MDP. A reward
structure for M is a function R : S x Act x S — R such that either Vs,s’ € S,a € Act :
R(s,a,s") >0 (R is positive) or Vs,s' € S, € Act : R(s,a,s") < 0 (R is negative).

Intuitively, the value R (s, a,s’) stands for the reward earned on the transition from s
to s’ after taking action «. Formally, the total (cumulative) reward for a finite path 7
is defined as rew g (m) := Z';'o_ ! R(si, i, si+1). Let 7 denote an infinite path and
7[t] = soap - . . s; a finite prefix of 7. A total reward until reaching a set of goal states G C S

for 7 is defined as
rewr(m) if 3i e N:7m=7[i] A last(m) € GA
rew v r.q(7) = Vi <i:last(7[j]) ¢ G,
rew r(7T) otherwise.

Thus, rewr,c(7) represents the cumulative reward obtained along 7 until the first
visit of a goal state s € G. Let p denote the probability distribution, uj’:o a probability
measure of the MC induced by M, policy o and initial state sg for paths in M. An expected

total reward until reaching G from sg for policy o is

EXPS (s 0G) = [ rewnmo(d) - ufi(dn), (2.6)

#ePathsM

inf

where Paths{r\ﬁ- is a set of all infinite paths in M. As mentioned earlier, this paper assumes
observation-based policies for POMDP. Therefore, the expected total reward calculation
algorithm for MDP also works for POMDP.

Definition 11 (Maximal Expected Total Reward). Let P = (S, so, Act, P,Z,0) be a
POMDP. A mazimal expected total reward until reaching G C S from s in P is

EXPpR(s = 0G) := sup EXP% (s = 0G),

P
o€Xl .
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Figure 2.16: Belief MDP with belief reward structure.

where Zfbs denotes a set of all observation-based policies for P.

Computing the exact value of the maximal expected total reward for POMDP is unde-
cidable. Consider the definitions of belief and belief MDP, described in Subsection 2.3.1.
These concepts are combined with the reward structure into a belief reward structure.

Definition 12 (Belief Reward Structure). Let M?B = (B, by, Act, P?) be a belief MDP
of a POMDP P with an associated reward structure R. A belief reward structure R® based
on R for b,b’ € By and o € Act is given by

Y oses b(8) Xses.osn—ow) P(s: a8 )R(s, a, ')
PIO(¥) | b, '
Belief MDP induces a function which evaluates the expected total reward in n steps for

every given belief b. It quantifies the utility of b considering its potential reward. Denote
G :={be€ B | supp(b) C G} a set of goal beliefs for G, R*® := R U {00, —c0}.

Definition 13 (POMDP Value Function). Let M5B = (Buy, by, Act, PB) be a belief MDP
of a POMDP P with an associated reward structure R. For b € Buq, a n-step POMDP
value function V,, : Bapy — R is defined recursively as V(b) := 0 and

[ max > PBb, b)) - (RE(D, a, V) + Vo (V) if b ¢ G,
Vi (b) := b eBa

RE(b, o, V) :=

0 otherwise.

The optimal value function V* : By — R is defined as V*(b) := limy 00 Vi (). It
yields maximal expected total reward in P for the initial belief by = {sg — 1}:

EXPE3R (s0 = 0G) = EXPYE 15 (bo = 0GB) = V™ (bo)-

Example 5. [10] Mazimal expected total reward and belief reward structure.

Consider a POMDP P depicted in Figure 2.15, where R(s1, 3, s2) = 1, other rewards
are 0. The policy which selects a at sg and 8 at s; would maximize the expected total
reward in P. However, since O(sp) = O(s1) = ©, that policy is not observation-based.
Consider a policy o which for the first n € N steps in O selects « and then selects 5. The
probability of making a transition from sy to s9 in that case is 0.5™, so the expected total
reward until reaching s, is computed using equation (2.6):

EXP%  (s0 = 0{s2}) =0-05"4+1-(1—-0.5") =1 —0.5™.

For n — oo, the maximal expected total reward is EXP%B% (s} = L Corresponding

belief MDP with belief reward structure for P is depicted in Figure 2.16. Note that

EXPiE o ({50 1} £ 0{{s2 > 1}}) = V¥ ({s0 - 1}) = 1.
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Chapter 3

State-of-the-art Methods for the
Synthesis of FSCs

Even though the problem of finding the optimal finite-state controller is undecidable, FSC
remains an effective representation of POMDP’s policies. Real-world tasks can be solved
using FSCs, which satisfy given requirements. State-of-the-art methods for the synthesis of
FSCs provide advanced and efficient techniques for the search of such FSCs. This chapter
compares two state-of-the-art methods — belief-based and inductive synthesis, and describes
their benefits and limitations.

3.1 Belief-Based FSC Synthesis Method

This approach derives FSCs from finite or infinite belief MDP considering its approxima-
tions [3]. The fundamental idea is to construct a finite abstraction of the belief MDP by
unfolding its parts and to approximate values of beliefs that will not be explored. Then,
model checking computes the under-approximative expected total reward for the resulting
finite MDP. To achieve this, finite approximation techniques — belief cut-offs and belief clip-
ping — are applied. Belief clipping [10] provides a higher approximation quality than belief
cut-offs and is not fully described in this paper. The central problem of the belief-based
FSC synthesis method is answering the question of whether the maximal expected total
reward exceeds a given threshold EXPp%R(so = 0G) < A. This method aims at under-
approximating the actual value of the maximal expected total reward. If the lower bound
exceeds A, then EXPRTR (so = 0G) > .

The main idea of belief cut-offs is to suspend the exploration of the belief MDP at
certain beliefs, called cut-off beliefs. Then, it is assumed that the goal state is reached
and a sub-optimal reward is collected.

An under-approzimative value function is V| : Bag — R such that Vi(b) < V*(b) for
all b € Baq, where V| (b) is a cut-off value of b. In each cut-off belief, only one transition
remains, leading to a dedicated goal state b.,t. This transition is assigned a reward of
Vi (b), which leads to an under-approximation of the exact value of all beliefs. Figure 3.1
shows the updated belief MDP with a modified reward structure R’ for the belief MDP
from Figure 2.16 with a single cut-off belief b = {sy — i, s1 %} The key problem is
to determine an appropriate under-approximative value function. This function should be
computationally efficient yet offer cut-off values close to the optimum. For a positive reward
structure, the constant value of 0 is always a valid under-approximation. A more precise
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Figure 3.1: Belief MDP with cut-off approximation.

way is to compute suboptimal expected reward values for the states of POMDP using some
arbitrary observation-based policy.

In the next step, this method derives an FSC from the obtained finite belief MDP.
Consider a belief MDP M5B which is already finite without applying any approximation
techniques. Standard model-checking techniques can be used for MP? to compute a memo-
ryless policy o, : Baog — Act. In each b € Bay, 0,y selects an action that satisfies

EXP;’&% rs(b E0GB) = EXPﬁé‘RB(b E 0Gpg).
Then, o, can be translated into the corresponding FSC Fg = (B, bo,n,9), where § :
By x Z x Z — Byy takes into account the current and the following observations, in
contrast to the Definition 8. The action selection function is 7(b, O(b)) = 0,,,;(b) and the
update function is §(b, O(b),2") = b/, where b’ = [b, o,(b), 2], for all 2/ € Z. For a finite
belief MDP M35, with cut-offs, a detailed explanation is provided in [3].

Belief-based FSC synthesis method integrates the concepts of belief, reward structure
and finite approximation techniques. Under-approximation of the maximal expected to-
tal reward value brings flexibility in handling large or infinite belief MDPs. But at the
same time, determining the exact value in POMDP is undecidable. The choice of under-
approximative value function introduces a trade-off between computational efficiency and
precision.

3.2 Inductive Synthesis of FSCs

This approach is based on a policy iteration algorithm introduced in [19]. Hansen’s algo-
rithm solves infinite-horizon POMDPs by exploring a space of policies, which are encoded as
FSCs [27]. The inductive synthesis framework analyses finite families of FSCs by gradually
increasing their memory size.

Definition 14 (Family of full k-FSCs). [5, 21] Let P = (S, so, Act, P, Z,0) be a POMDP.
A family of full k-FSCs .7-",1) is a tuple (N, ng, K), where

e N is a set consisting of k£ nodes,
e ng € N is the initial node,

e K = N x Z is a finite set of parameters such that the domain of each parameter
ke Kis V. CActxN.
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Alternatively, F] often denotes the set of all possible k-FSCs for P [21]. Each member of
the family can be derived by selecting parameters for functions n(n, z), d(n, z) for alln € N,
z € Z. Therefore, the number of different k-FSCs in F[ is |FF| = (|Act||N|)INIZ]. The
main problem of the family’s analysis is finding the best controller with a fixed number of
nodes [18]. In many experiments, certain observations may occur only in a limited number
of states, or in some cases, may be unique (for example, O and O from F igure 2.10). There
is no need to use a large number of memory nodes for such observations. Instead, a memory
restriction p : Z — N is introduced, where p(z) denotes the number of memory nodes used
for the observation z.

Definition 15 (Reduced family of FSCs). [5] Let F/ = (N,ng, K) be a family of full
k-FSCs and g be a memory restriction model. A reduced family .7-"/7; for p is a subfamily
of F', where k = max,cz{u(2)}, each (n,z) € K implies n < u(z), and the domains V, ,
are as in FJ. If §(n,z) = n' and n’ > p(z’), the memory update is considered invalid for
the resulting observation 2’ and is modified to 6(n, z) = ng.

The reduced family for 7/ decreases the number of parameter domains: Y, ,{u(2)} <
k-|Z|. Such a family provides a smaller design space of FSCs and may require fewer memory
nodes.

Inductive synthesis consists of two stages. The outer stage is also called a memory
injection strategy [5]. The learner passes a selected subset of FSCs to the teacher and
receives the best FSC with additional information from the inner synthesis stage. Finally,
the learner either accepts the provided FSC or derives a new design space based on the
provided information. This process involves the execution of three foundational steps:

1. Adding memory: Allows FSCs to store more information by making the growth of
the memory size manageable. Generally, FSCs with a larger number of nodes can
represent more flexible strategies and yield better results.

2. Removing symmetries: Given the topology properties of FSCs, certain controllers
may be equivalent — encode the same policy [18]. The elimination of such symmetries
reduces the size of the family.

3. Analysing abstractions: Guiding the search based on the results obtained from the
inner stage, provided by the teacher.

The inner stage, also called the inductive synthesis loop, describes the internal processes
of the teacher responsible for identifying the best FSC within the design space. In the
following subsections, various realisations of the teacher will be presented. However, before
delving into these approaches, it is essential to look into their common groundwork. Denote
Distr(X) a set of all probability distributions on a finite set X.

Definition 16 (Family of MCs). [4, 12, 13] A family of MCs is a tuple ® = (S, sg, K,*B),
where

e S is a finite set of states,
e so € S is an initial state,

o K is a finite set of discrete parameters such that the domain of each parameter k € K
is Vk - S 5
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(¢) Dy, with ra(ko) = s1, ra(ke) = s1. (d) Dy, with r3(ko) = s1, r3(ks) = s3.

Figure 3.2: An example of all possible realisations of a family of MCs with different reachable
states.

o PB:S — Distr(K US) is a family of transition probability matrices.

For a single MC, the transition probability matrix maps states to distributions over
successor states. For the family of MCs, B maps states to distributions over parameters.
A concrete MC is obtained by instantiating each parameter with a value from its domain.

Definition 17 (Realisation). [4, 13] Let ® = (5, so, K,*B) be a family of MCs. A realisation
of ® is a function r : K — S, such that r(k) € Vi for all k£ € K. A realisation r yields
an MC D, = (S, sp,B(r)), where B(r) is the transition probability matrix in which each
k € K in ‘B is replaced by r(k).

The set of all realisations of ® is denoted as R®. The number of all possible realisa-
tions from R® is |R®| = [, |Vk|, which means that it is exponential in the number of
parameters.

There are two fundamental synthesis problems related to families of MCs. Threshold
synthesis problem is to identify sets of MCs satisfying and violating a given specification,
respectively. Maz/min synthesis problem is to find an MC that maximises/minimises a
given objective. Feasibility synthesis problem is a special case of the threshold synthesis
problem, which aims to find just one realisation that would meet the specification.

Example 6. Family of MCs with different reachable states.

Consider a family of MCs © = (S, sq, K,*B), where S = {sq, s1, S2, s3}, K = {ko, k1, k2 }
with domains Vi, = {so,s1}, Vi, = {s2}, Vk, = {s1,s3} and the family of transition
probability matrices B is defined as follows:

P(so) =0.5: ko +0.5: kg P(s1) =0.5:ky +0.5: ks
PB(s2) =0.5: k1 +0.5: ko B(sz) =1: ko
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All possible realisations of ® are shown in Figure 3.2. States, unreachable from sg, are
grayed out. This example demonstrates that MCs, yielded by distinct realisations from the
same family, may have different reachable states. Let ¢ = P>03(0{s3}) be a specification.
Unbounded reachability probability of s3 for r1 and r3 is 1, s3 is not reachable for rg and ro.
Then, the solution for the threshold synthesis problem is a set of realisations 7' = {ry,r3}.
For ¢ = ({{ss3}, the solution to the max synthesis problem is either 1 or r3.

O

3.2.1 One-By-One Synthesis Approach

Within this approach, each member of the family is analysed separately [14]. The teacher
receives a family of FSCs 7/ (.7-"];) and a set of constraints from the outer stage. Then, it
solves the threshold or max/min synthesis problem by enumerating through all realisations
r € R® [13]. For each yielded MC D,, model checking is performed based on the specified
constraints. Obtained results are provided to the learner for the next outer stage loop.
However, as mentioned earlier, the number of all possible realisations from R® is ex-
ponential in the number of parameters. The total number of states and parameters conse-
quently explodes, making this approach unusable for large problems [4]. This leads to the
necessity of applying more advanced techniques that exploit the family structure.

3.2.2 CounterExample-Guided Inductive Synthesis

Similar to the one-by-one approach, this method performs an enumerative search within a
family of FSCs (or a family of realisations induced by them). The key difference lies in
handling FSCs, which violate the specification. Such FSC provides facts, called counterez-
amples, and helps avoid the consideration of other certainly violating FSCs [5].

The CEGIS approach is illustrated in Figure 3.3 [4, 12]. The learner (synthesiser) takes a
set of realisations R® and aims to find a realisation satisfying the specification ®. Let
Q C R® be a set of realisations that need to be checked. The learner selects a realisation r
and asks the teacher (oracle, or verifier) whether it is a solution. If the teacher accepts r,
it reports success. Otherwise, it returns a set V of realisations all violating @ including 7.
Then, the learner prunes V from Q). In terms of parameters K of the family ®, the oracle
returns a set K’ of parameters such that all realisations obtained by changing only the
values assigned to K’ violate &.

An intuitive visualisation of CEGIS for a family of 16 realisations is presented in Fig-
ure 3.4. The currently considered (violated) realisation r is marked in yellow, red indicates
the set of other pruned realisations V \ . Once the teacher accepts the given realisation
(marked in green), the algorithm returns the result.

The key problem of this algorithm is to compute a set V of realisations that are all
violating @. Consider the threshold synthesis problem for a single specification ¢. If an
MC D ¥ ¢, a counterexample derived from a critical subsystem can provide diagnostic
information about the source of the failure.

Definition 18 (Counterexample). Let D = (S, sg, P) be an MC and s; ¢ S. A sub-MC
of D induced by C C S is the MC D] C = (SU{s 1}, so, P’), where the transition probability

matrix P’ is defined as 5)
o P(s ifseC,
Pi(s) = { [s1 — 1] otherwise.
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Figure 3.3: Schematic view on CounterExample-Guided Inductive Synthesis approach.

000 000 00 00 00
0000 0000 0000 0000 .000
0000 0000 20000 20000 20000
0000 0000 0000 0000 0000

Figure 3.4: An example run of CEGIS.

The set C' and the sub-MC D | C are called a counterezample (CE) for the property P<[07T]
on MC D, if D} C P [O(T N (CU{so}))].

Let D, be an MC that violates the specification ¢. To compute the rest of V, the teacher
computes a critical subsystem D | C' that is then used to derive a conflict. Then, the set of
violating realisations is computed directly from the conflict.

Definition 19 (Conflict). Let ® = (S, sg, K, ) be a family of MCs and C' C S. A conflict
is a set K¢ of relevant parameters given by |, supp(B(s)).

Definition 20 (Generalisation). Let r be a realisation and Ko C K be a conflict. A
generalisation of r induced by K¢ is the set 71 Ko = {1’ € R® |Vk € K¢ : r(k) = r'(k)}.

The size of a conflict | K| directly impacts the size of a generalisation. Smaller conflicts
potentially result in the generalisation of r to larger subfamilies r+ Ko C R®. Hence, the
CEs must consist of a minimal number of parameterised transitions.

Example 7. Applying CEGIS on a family of MCs.

Consider a family of MCs © = (S, sg, K,) from Figure 3.5, where S = {sq, s1, s2, s3},
K = {ko,k1} with domains Vi, = {s1,s2}, Vi, = {50, 52,53} and the family of transition
probability matrices B is defined as follows:

PB(so) =0.5: 51+ 0.5: ko B(s1) =1:k
PB(s2) =0.5: s34+ 0.5: ko PB(sz) =1:s3

Let ¢ = P<p2(0{s3}) be a specification. Consider a realisation r, = ¢ depicted in
Figure 3.6a. Note that a sub-MC D,, | C of D,, with C = {sq, s2,s3}, Ko = {ko} from
Figure 3.6b also does not satisfy . Thus, D,, | C serves as a counterexample, covering only
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(a) D, with r4(ko) = s2, ra(k1) = so. (b) D,., L C with C = {sp, s2, 83}

Figure 3.6: A violating realisation of the family and the corresponding counterexample.

parameter kg. Even with different values of k1, r, would still violate ¢. Consequently, a
generalisation r, 1T K¢ contains |V, | = 3 realisations, all of which can be rejected.

However, for realisations with kg set to si, it is not possible to construct a counterexam-
ple covering only one parameter. Therefore, each potential conflict would contain both kg
and k1, resulting in generalisations having only one realisation each. In that case, compared
to the one-by-one method, CEGIS would operate even slower because of the additional time
required for searching for CEs.

O

This framework also can be generalised to handle multiple-property specifications. It

can be achieved by constructing separate conflicts for each violated property. An advanced

oracle for computing the set of violating realisations V is presented in [4]. Its main features

are taking into account the position of the parameters and using the model-checking results
from an abstraction of the family.

3.2.3 Abstraction-Refinement Framework for Inductive Synthesis

This framework, in comparison to the one-by-one and CEGIS methods, introduces an
orthogonal all-in-one approach. Instead of considering members of a family of FSCs

(MCs) separately, the teacher operates with its abstraction, represented by a single quotient
MDP [5].

Definition 21 (Quotient MDP). [2] Let ©® = (5, s¢, K,) be a family of MCs. A quotient
MDP of ® is an MDP M® = (8,59, R®, P), where P(-,r) = B(r).
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Figure 3.7: The principle of Abstraction-Refinement framework for inductive synthesis.

Considering that a POMDP and a family of its FSCs induce a family of MCs, another
way to define a quotient MDP is viable [3]. For a POMDP P and a family of k-FSCs F} =

{F1,...,Fn} a quotient MDP is an MDP M(F}) = (Sx N, (s0,n0), {1,...,m}, PFT) with
P]:IZ:((S,’I’L),Z') = P]:ia

where P7i is the transition probability matrix of the MC induced by P and F;, as introduced
in Definition 9. Note that actions in quotient MDP preserve the behaviour of individual
realisations (FSCs). Therefore, it allows to switch realisations and simulate the behaviour
of an induced MC, which is not originally presented in the family ®. Moreover, multiple
realisations may share the same choice of action in some states. In such cases, the action is
not duplicated in the quotient MDP and represents several realisations at the same time. A
scheduler, which always selects the same realisation, is called consistent. Such a scheduler
yields a valid member of the family.

Definition 22 (Consistent scheduler). Let © = (S, sg, K,B) be a family of MCs and
M® = (8,59, R®, P) be a quotient MDP of ®. A (memoryless) scheduler o, for r € R®
is called r-consistent iff o,(s) = r for all s € S. A scheduler is called consistent iff it is
r-consistent for some r € R®.

Example 8. Quotient MDP and inconsistent schedulers.

Consider the family of MCs ® from Example 7. Note that Figure 3.5 already represents a
quotient MDP M® for ©. The number of all possible realisations is |Vi,| - |Vk,| = 6, but
M? remains compact due to the reduction of duplicate actions, as e.g. in sg each action
is shared by 3 realisations at once. An example of inconsistent scheduler may be generated
by selecting kg = s in sg, kg = s1 in so and any value of k.

O

Consider a quotient MDP M? for a family of MCs ®. Although M® overapproximates
the behaviour of ©, model checking of M? still provides useful information for the further
analysis of ® [2, 13]. Let ¢ = P<\(0{G}), G C S be a specification for the feasibility synthe-
sis problem. Model checking of M® computes maximising and minimising schedulers omaz
and o,,;,, which may not necessarily be consistent. These schedulers yield vectors pmas
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Algorithm 1 Feasibility synthesis for the Abstraction-Refinement framework

Input: A family of MCs ® = (S, so, K,B) with the set of realisations R, a specification
¢ =P(M{G}),GC S
Output: Realisation r € R® : D, |= ¢, or UNSAT if no such realisation exists

1: X« {R®} > Set of subfamilies awaiting model checking
2: M?® < buildQuotientMDP (D) > Applying Def. 21
3: while X # () do

4: X« any(X)

5: X+ x\{x}

6: MP[X] + restrict(M®, X) > Applying Def. 24
7 (Pmin, Omins Pmazs Omaz) modelCheck(./\/l® [X], )

8: if praz(so) < A then

9: return any(X)

10: end if

11: if pmm(SO) > A then

12: continue

13: end if

14: if omin is r-consistent for some r € X then

15: return r

16: end if

17: (X1,X 1) + split(X) > Applying Def. 23

18: .}:(—.}:U{XT,XJ_}
19: end while
20: return UNSAT

and pmin, containing upper and lower bounds of the reachability probability for all states
of the quotient MDP. One of the three possible scenarios from Figure 3.7a may occur. If
Pmin(80) > A, there is no solution for the feasibility problem — D, [~ ¢ for each realisation
r € R®. On the other hand, if piae(s0) < A, all members of the family satisfy ¢. If A
lies between the bounds and o,,;, is consistent, then o,,;, is a solution. Otherwise, if oymin
is not consistent, nothing can be concluded yet due to the too coarse abstraction. In that
case, M?® is refined by splitting R® into two subfamilies and each of them is analysed sep-
arately using the procedure described above. The refinement loop continues until either a
feasible solution is found, or all realisations are rejected. The termination of the procedure
is guaranteed due to the finite number of family members. This approach is summarised
in Algorithm 1. It can also be modified to solve threshold or max/min synthesis problems.

An intuitive visualisation of AR for a family of 16 realisations is presented in Figure 3.7h.
If the corresponding quotient MDP is too coarse, a set of realisations is marked in yellow.
Red indicates realisations certainly violating the specification. Once the bounds obtained
from model checking allow for accepting the subfamily (marked in green), AR returns the
result.

Definition 23 (Splitting). Let ® = (.5, s, K,B) be a family of MCs and X C R® a set of
realisations. For k € K and predicate Ay over S, splitting partitions X into

Xt ={re X |Ax(r(k)} and X, ={re X |-A(r(k))}
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To avoid rebuilding the quotient MDP in each iteration, splitting is performed on the
set of realisations, not on states of the quotient MDP. Restricting the actions of the quotient
MDP to the particular subfamily is crucial for the AR performance.

Definition 24 (Restricting). Let M® = (S, 59, R®, P) be a quotient MDP and X C R® a
set of realisations. A restriction of M® wrt. X is an MDP M®[X] = (S, so, R®[X], P),
where R®[X] = {r | r € X}.

A good splitting strategy involves choosing a parameter k € K and a predicate Ag,
which would reduce the number of model checkings required to classify all » € X. The
two key aspects of a good k are variance and consistency. These characteristics show how
the splitting may narrow the difference between p,,;n and ppq. and how it may reduce the
inconsistency of op,in and e, An efficient strategy, proposed in [13], selects k based on a
light-weighted analysis of the model-checking results for M®[X].

Since the AR approach is diametrically opposite to CEGIS, these methods behave differ-
ently for various models and specifications. Depending on the topology of the state space,
CEGIS may either manage to identify small conflicts and analyse only a few realisations,
or be unable to prune the state space and analyse each realisation individually. As for AR,
quotient MDP may yield tight bounds, so the synthesis takes only a couple of refinements,
or on the contrary, the abstraction could be too coarse and require refining subfamilies up
to the level of individual MCs.

3.3 Tools for Inductive Synthesis of Probabilistic Programs

PAYNT! (Probabilistic progrAm sYNThesizer [6]) is a tool for automatic synthesis of proba-
bilistic programs, supporting the synthesis of FSCs for POMDPs. It takes a program sketch,
describing a finite family of finite MCs, a specification, and finds a fitting realisation. A
sketch is a probabilistic program with holes in the PRISM (or JANI) language, and a real-
isation of the sketch is a function that maps every hole to one of its options [12]. PAYNT
implements an oracle-guided synthesis approach, supporting both CEGIS and AR methods
and their hybrid combination [3].

The implementation of PAYNT utilises the probabilistic model checker Storm [16], which
is able to analyse MDPs. Storm also provides a Python API, which PAYNT flexibly uses to
construct the overall synthesis loop. When analysing discrete-time models, Storm focuses
on PCTL logic. For SMT-solving, PAYNT uses Z3.

! Available at: https://github.com/randriu/synthesis
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Chapter 4

Acceleration of
Abstraction-Refinement
Framework

The Abstraction-Refinement framework for POMDPs stands out among other FSC syn-
thesis methods due to its all-in-one approach. A common abstraction for the entire family
of FSCs — quotient MDP — allows preserving the behaviour of all realisations within a
single MDP. Splitting of a (sub)family gradually decreases the number of compatible ac-
tions (choices) and is performed by restriction of the quotient MDP. Restricting essentially
applies a mask of selected choices on the quotient MDP. At the heart of the refinement
loop lies model checking, which is crucial for defining the upper and lower bounds of the
abstraction.

Model checking, as a powerful tool, can offer even more useful information for the
analysis of the family. Vectors pjuz and pmin, derived from o4, and o.,i,, respectively,
provide bounds for all states of the quotient MDP. However, only pmaz(s0) and pmin(so)
impact the synthesis scenario. In a feasibility synthesis problem ¢ = P<;(0{G}),G C S,
Omin S€rves as a memoryless and potentially inconsistent scheduler, providing the optimal
action for each quotient MDP’s state. Given that masks of families applied to the quotient
MDP may share common choices, can o,,;, be reused for the analysis of other families as
well? Is it feasible to avoid recalculating model checking multiple times for individual parts
of the quotient MDP? In this chapter, we propose improvements to the AR method that
accelerate the synthesis of FSCs using inheritance dependencies (IDAR). We also introduce
an extended version of this algorithm (EFIDAR) and a final product of this thesis, smart
version of EIDAR — SEIDAR. Figures 4.1 and 4.5 provide a schematic overview of these
algorithms, which are described in more detail in the following sections.

4.1 Inheritance Dependencies within Families of FSCs

The main objective of this approach is to reduce the size of the mask for each family so
that the optimum obtained from model checking does not change in comparison with AR.
Model-checking results of a family (parent) can be also useful for the analysis of its direct
subfamilies (children). Each child is obtained by replacing a parent’s hole with one of its
options or their interval. Therefore, the number of children in a family may be 2 or greater.
In this section, we consider the first scenario.
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Figure 4.1: The principle of IDAR. When the optimal choice for some state is omitted, it
and its predecessors are marked as vague.

Definition 25 (Vague state). Let M® = (S, s0, R, P) be a quotient MDP, X C D a
subfamily of MCs, Cx a set of compatible choices for X and o,,; the optimal memoryless
scheduler for the parent of X. A state s € S is vague if at least one of the following
conditions is met:

1. The optimal choice for s is omitted in Cy:
Oopt (5) ¢ CX,
2. At least one of the direct successors of s is vague:

3s' € S : 5 € supp(P(s,-)) A vague(s').

According to Algorithm 1, AR initially analyses the entire family R®. Therefore, this
family is the only one that does not have a parent. Model-checking results provide the
optimal memoryless scheduler o,y;, which allows for accessing the optimal choice for each
state of M?®. Assume that initially, the abstraction is too coarse and AR splits the family,
for convenience, into 2 subfamilies X and ) according to a hole H. Sets of compatible
choices C (for the superfamily) and Cy are equal, except for the choices connected with H
and left in Cy.

Initially, all states of M?® are considered non-vague. Our approach involves two stages
of classifying states from non-vague to vague. In the first stage, we examine states where
the number of actions decreased after splitting. Such a state remains non-vague for a child
inheriting the optimal parent choice. Otherwise, if the optimal choice is omitted, the state
becomes vague (the first condition from Definition 25). In the second stage, we iterate
through all vague states obtained in the first stage and mark their predecessors as vague
(the second condition). When we are no longer certain about the optimal choice in a
state s, the uncertainty propagates to all states, where s is reachable. Figure 4.1 illustrates
the described principle of marking states as vague.

Once the set of vague states V is identified, we need to use this information to create a
mask based on the child’s set of compatible choices. For vague states, all available choices
are kept. For non-vague states, retaining all available choices is unnecessary when the
optimal one is known for certain. In such cases, only the optimal choice is preserved.
After splitting, each child becomes a parent, and the algorithm repeats the process. It is
important to note that splitting of the subfamily has to be performed based on the full set
of its compatible choices, not on the mask. Otherwise, there is a risk of overlooking some
realisations.
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Figure 4.2: An example of quotient MDP with holes.

Algorithm 2 Using inheritance dependencies within families of FSCs for AR

Input: A family of MCs X, a set of compatible choices Cx
Output: A mask 9, or Cx for the first iteration
1: if parent(X) is None then
2 return Cy > The mask for the superfamily is not changed
3: end if
4: Oopt < parentScheduler(X)
5. V < findVagueStates(X, Cx, oopt) > A set of vague states
6: V < findVagueReachable(V) > Works with predecessors of each state
7. M + vagueToChoices(V, X, Cx, oopt)
8: return I

Algorithm 2 can be considered an extension of the restrict procedure from Algorithm 1
(row 6). It summarizes the described method and presents procedures resembling its pos-
sible implementation. As input, the algorithm takes a (sub)family X and a set of com-
patible choices Cy. If X is the superfamily, the mask is Cy. Otherwise, parentScheduler
retrieves the parent’s optimal scheduler. Procedures find VagueStates and find VagueReach-
able correspond to the two stages of classifying states from non-vague to vague. Finally,
vague ToChoices reduces Cy, and the result is returned as a mask 9.

This improvement reduces the size of the mask compared to the set of compatible choices
and accelerates model checking for children. In general, the fewer vague states there are,
the smaller the mask size is. For the MDP model checking with the PCTL syntax, the
algorithmic complexity is polynomial in the size of MDP [28]. Therefore, each non-vague
state of the quotient MDP significantly accelerates its model checking by eliminating the
nondeterminism. The consistency of IDAR and AR follows directly from Theorem 1, proved
in the following section.

Example 9. Applying IDAR on a quotient MDP.

Consider a hypothetical quotient MDP M? from Figure 4.2 with two holes Hg, 1 with
domains Vi, = {0,1}, Vi, = {2,3} and a feasibility synthesis problem ¢ = P<o3(0{f}).
For states 1 and 5, Hg = 1 is a self-loop. In the first iteration of IDAR, a mask is the set
of compatible choices C. Model checking of M?® for C returns minimising and maximising
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Figure 4.4: Classification of quotient MDP’s states into vague/non-vague (IDAR, left) or
affected /non-affected (EIDAR, right) and the resulting masks.

schedulers o, and opq,. Figure 4.3 shows induced MCs M, . (left) and M (right).
For state 3 in 0, both values of H; are optimal, so the choice is selected randomly. The
resulting bounds are py,in(0) = 0, Pz (0) = 0.55, and oy, is not consistent, therefore, the
abstraction is too coarse. Let M® be split in H; into X and ), where Cy = C\ {3 : H; = 2}
and Cy =C\ {3:H; = 3}.

For the child X, the optimal choice was omitted only in state 3. Thus, in the first
stage of IDAR, only state 3 is marked as vague. State 0 is its only predecessor, so after
both stages of classification, there are two vague states, as shown in Figure 4.4 (left). For
non-vague states, only choices from o,,;, are preserved in 9ty. Note that the new upper
bound Py (0) = 0.4 is less than the previous one.

Consider that AR is a DFS algorithm (as implemented in PAYNT) and children of X
are analysed earlier than ). Let X be split in H into X’ (preserves Ho = 0 in each state)
and X" (Ho = 1). All holes in X’ are substituted by some value and My = Cxr. Model
checking for X’ provides P(O{f}) = 0.2, satisfying . The resulting realisation is obtained
by substitutions Ho = 0 and H; = 3.

Omax

O

IDAR accelerates model checking by reducing the number of compatible choices. Be-
cause of that, sometimes IDAR can narrow the model-checking bounds. If the upper bound
passes down the border A after applying the mask, the number of AR iterations can also
decrease. However, narrower bounds do not guarantee that all realisations of the subfamily
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Figure 4.5: The principle of EIDAR. When is some state the optimal choice is omitted or
leads to an affected state, it is marked as affected.

meet the specification. For the feasibility synthesis problem, a consistent o,y is certainly a
solution. Otherwise, we cannot accept the entire subfamily based on the bounds, provided
by the mask. Each solution for the threshold or max/min synthesis problems should be
double-checked.

4.2 Extended IDAR

In the second stage of classic IDAR, a state is considered vague if some of its successors
lose the parent’s optimal choice. In this section, we propose an extended version of IDAR
(EIDAR). It takes into account the location of optimal choices not only for states that lost
their optimal choices but also for their predecessors.

Definition 26 (Affected state and affected choice). Let M® = (S, 59, R®, P) be a quotient
MDP, W C ® a subfamily of MCs, X C W a child of W, Cyy and Cy the corresponding
sets of compatible choices and o,,; the optimal memoryless scheduler for W. A state s € S
is affected if its optimal choice for the parent oy (s) is affected. A choice ¢ € Cyy is affected
if 3s € S : oope(s) = ¢ and at least one of the following conditions is met:

1. ¢ is omitted in Cy:
q ¢ Cx,

2. q leads to an affected state:
ds € S :s € supp(P(s0,q)) N affected(s),

where s, is the origin state of q.

Initially, all choices and states are considered non-affected. The EIDAR approach also
consists of two stages. Let Q be a set of affected choices, initially empty. In the first stage,
all optimal and omitted choices are added to Q (the first condition from Definition 26). In
the second stage, EIDAR takes a choice ¢ from Q and marks its origin state s, as affected.
Then, all unique optimal choices leading to s, are added to Q (the second condition).
When Q becomes empty, we obtain a set A of all affected states. Figure 4.5 illustrates the
described principle of marking states as vague. The mask of result choices 9t is created
in the same way as in Algorithm 2. Unlike IDAR, its extended version creates the set of
affected states by going directly through optimal choices to their origin states. EIDAR
significantly reduces the number of affected states compared to the vague ones. Therefore,
the resulting mask for EIDAR is smaller, contributing to a more accelerated model checking.
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Algorithm 3 Extended IDAR

Input: A family of MCs X, a set of compatible choices Cy
Output: A mask 9, or Cx for the first iteration

1: if parent(X) is None then

2 return Cy > The mask for the superfamily is not changed
3: end if

4: A<+ 0 > A set of affected states
5: Oopt <— parentScheduler(X)
6
7
8
9

. Q < optOmittedChoices(X, Cx, oopt) > A set of affected choices
: while Q # ) do
q « any(Q)
o Q« 2\ {¢}
10: So < stateOrigin(q)
11: A+ AU{s,}

12: L + optLeadingChoices(s,) > A set of all optimal choices leading to s,
13: while £ # () do

14: [ + any(L)

15: L+ L\ A{l}

16: if not wasInQ((!) then

17: Q« QU{l}

18: end if

19: end while

20: end while

21: M < affectedToChoices(A, X, Cx, oopt) > Similar to vagueToChoices from IDAR
22: return I

Algorithm 3 summarises the described changes. The input and output remain the same
as in Algorithm 2. Procedure optOmittedChoices corresponds to the first stage of EIDAR.
The set of all optimal choices leading to the state s, is obtained using optLeadingChoices.
The resulting mask is computed using affectedToChoices that is identical to vagueTo Choices
from IDAR. It is important to note that each choice can only enter Q once; otherwise, the
algorithm might get into an endless loop.

Observation 1. After applying EIDAR for a subfamily of MCs, the MC induced by its
optimal scheduler cannot have a transition from a non-affected state to an affected state.
Each non-affected state has a single choice in the mask — the optimal one from the parent’s
scheduler. According to Algorithm 3, the origin state of such choice should have become
affected earlier.

Theorem 1. Model checking of a quotient MDP for a given subfamily of MCs finds the
same optimal result (probability or reward) for classic AR and EIDAR.

Proof. Let M® = (S, s, R®, P) be a quotient MDP, W C ® a subfamily of MCs, X ¢ W
a child of W, o)y the optimal scheduler for W. Denote U% and U% the optimal schedulers
for X obtained by AR and EIDAR, respectively. According to Observation 1 there are two
possible scenarios for EIDAR:

I. Only non-affected states are reachable in the MC MU‘;E{ induced by U% (Figure 4.6,

left). It means, that UE and o)y are identical and the optimum does not change.
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Figure 4.6: Different scenarios of the affected states’ location for the MC induced by the
optimal scheduler using EIDAR.

Since all choices of the resulting mask for EIDAR are also available in the AR’s mask,
both these methods provide the same optimum.

II. The initial state sq is affected, and there is an unlimited number of ,non-affected
zones“ in M_g (Figure 4.6, right). Each zone contains only non-affected states.
Similar to scenario 1., bounds py,q: and py,, for states in these zones are preserved
from oyy. It means, that each non-affected state for EIDAR and AR contains the same
optimal results. Since all compatible choices are preserved in each affected state, the
final optimum for sy is the same for EIDAR and AR. Note that although the optimal
results are equal, the provided FSCs are not necessarily equal. AR could find an FSC
with the same value, but different selected choices — transitions from non-affected
states to the affected ones are not blocked for AR.

Thus, EIDAR is consistent with AR. Since the mask for EIDAR is a subset of the
IDAR’s mask, IDAR is also consistent with AR. O

Example 10. Applying EFIDAR on a quotient MDP.

Consider the quotient MDP M?® and the feasibility synthesis problem ¢ = P<q 3(0{f})
from Example 9. The first iteration of EIDAR is similar to IDAR and AR. It produces
the same schedulers 0,55, Omaz and the same subfamilies X and )). The only optimal and
not compatible choice for X is 3 : H1 = 2. Therefore, after the first stage of EIDAR, A
contains only state 3. Given that o,,;, from Figure 4.3 (left) is the optimal scheduler and
it does not include the choice 0 : Hg = 1, there are no states marked as affected during the
second stage. As a result, A = {3} (Figure 4.4, right) and the choice 0 : Hp = 1 is omitted
from the mask MM y.

The result of applying My on M? is an MC, yielding P(O{f}) = 0, thus satisfying .
However, as mentioned in the previous section, this does not guarantee that all realisations
of X meet . There are two possible realisations in X: r1(H1) = ro(H1) = 3, r1(Ho) =0
and ro(Hp) = 1. Model-checking results for r; and ry are 0.2 and 0, respectively. They both
meet given ¢ and can be accepted as possible solutions. If the value of A was 0.1 instead
of 0.3, accepting both r; and r2 would be inappropriate. Compared to IDAR, EIDAR
found a suitable realisation after just one splitting.

O
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Extended IDAR better minimises the mask’s size than IDAR. As will be shown in more
detail in Chapter 5, in some models the number of affected states is 37 times less than
the number of vague states. Further in this work, the phrase ,(E)IDAR® serves to avoid
referring to a specific version of the inheritance dependencies algorithm.

4.3 Smart EIDAR

The experiments described in Chapter 5 show that (E)IDAR does not always accelerate
the inductive synthesis. Sometimes, due to the different topology of POMDP models, the
number of vague/affected states of its quotient MDP is so large (around 95%) that the
classic AR terminates faster. The time spent on classifying states is often longer than
the time saved by (E)IDAR compared to AR. And yet, models with a small percentage of
vague/affected states and a large average number of choices per vague/affected state showed
positive results for (E)IDAR. An extension called Smart EIDAR (SEIDAR) is designed to
save the user from manually choosing between AR, IDAR and EIDAR when working with
any POMDP model.

IDAR and EIDAR complement the restrict procedure from Algorithm 1. Since all
three described methods produce equally valid masks, although, with different sizes, the
inductive synthesis can switch the method in different iterations during its runtime. The
main parameters for making this decision are:

1. The size of the superfamily. For smaller families of FSCs, using (E)IDAR is not
profitable, since their model checking time is already short, compared to the overall
synthesis time.

2. Percentage of vague/affected states. The lower the percentage — the smaller the mask.

3. The number of selected choices per vague/affected state. Effectively combines the first
two parameters. The larger this number, the larger the quotient MDP size and the
smaller the number of marked states.

IDAR and EIDAR require auxiliary structures for their run, so switching between these
methods would take some time to initialize the structures. The synthesis also cannot
be initialised with classic AR, as it is impossible to determine the above parameters in
AR. Switching from EIDAR to AR showed the best results among all available options.
Implementation of SEIDAR in PAYNT first analyses 20% of family members (or runs a
maximum of 100 iterations) on EIDAR. Collected statistics of the parameters are used to
decide if PAYNT should switch to AR or remain in EIDAR. For convenience, switching
takes place only once. The values of the parameters for PAYNT were determined based on
the conducted experiments. In this paper, SEIDAR from Section 5.5 is assumed, but there
is an unlimited number of possible variations for its realisation.
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Chapter 5

Experimental Evaluation

This chapter provides the experimental evaluation of the AR improvements described in
Chapter 4. First, the main aspects of implementation and the POMDP models, used for the
testing, are described. Then follows a series of experiments comparing AR, IDAR, EIDAR
and SEIDAR. As a result, the following research questions are answered:

Q1: Do conducted experiments confirm the consistency of (E)IDAR and AR?
Before studying how our methods accelerate the synthesis of FSC, it is necessary to
perform the test of correctness for our implementation. Our methods must yield FSCs
with equivalent optimal probabilities/rewards compared to AR.

Q2: What impact do our methods have on the synthesis? As shown in Exam-
ples 9 and 10, (E)IDAR affects the inductive synthesis in a specific way. How do the
narrowed bounds provided by model checking of a quotient MDP affect the number
of iterations of the selected algorithm?

Q3: Does EIDAR perform better compared to IDAR? Although in theory, EIDAR
outperforms IDAR, this is not always the case in practice. Computationally, EIDAR
is more complex and in some cases, it affects its efficiency. The overall speedup, along
with the speedup of model building and model checking, was measured on an existing

benchmark containing several models. The answer to this question also affects which
method should form the basis of SEIDAR.

Q4: Does SEIDAR outperform AR? SEIDAR saves the user from choosing which
method to use for a particular model. Therefore, the main contribution of this work
is SEIDAR. Is it reasonable to always prefer SEIDAR over AR?

5.1 Implementation

All described improvements are implemented in PAYNT (see Section 3.3) using Python
with C++ bindings for efficiency. The mask of selected choices 9 must be a C++ bit
vector due to the existing implementation of PAYNT. Therefore, when the program needs
to manipulate a bit vector directly, calling the appropriate function from C++ is more
profitable. Also, as practice shows, frequent access to the transition matrix of the quotient
MDP is time-consuming, since it is necessary to iterate through each state, each row (choice
of the state) and each column of the matrix (destination states). Hence, the transition
matrix is also accessed mostly in C++ code.
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Model ’ |S] ‘ |A] ’ |Z| ’ Spec. Model ‘ |S] ’ |A] ‘ |Z| |Spec.

web-mall 8 20 5 | Rmax drone-4-1 1226 | 2954 | 384 | Pz
grid-avoid-4-0 | 17 | 59 4 | Pnaz hallway?2 1500 | 7492 | 20 | Rimaz
4x3-95 22 | 82 9 | Rmax rocks-12 6553 | 32k | 1645 | Ruin
mini-hall2 27 77 | 12 | Rmax refuel-20 6834 | 25k 174 | Phax
query-s2 36 70 6 | Rnax rocks-16 11k 54k | 2761 | Rnin
refuel-06 208 | 565 | 50 | Pz LRV 18k | 105k | 2242 | Ryin
network-prio | 19k 34k | 4909 | Roaz

Table 5.1: Summary about the selected benchmark of POMDPs.

To make our algorithms work, it is necessary to initialise auxiliary structures. For
IDAR, this is a vector storing sets of direct predecessors for each quotient MDP’s state.
For EIDAR, this is a mapping from choices to their corresponding state. In classic PAYNT,
all available choices are numbered from zero and only a mapping from states to choices is
available. Since accessing the transition matrix is necessary to create both structures, the
corresponding functions are called from the C++ binding.

The second stage of IDAR, which includes iterating through all vague states and marking
their predecessors as vague, is implemented as a DFS procedure. As for EIDAR, the set
of affected choices Q from Algorithm 3 is represented by a queue. An auxiliary bit vector
stores the information about choices that already visited Q to ensure the uniqueness of the
choices in the queue.

The key procedure of (E)IDAR is affectedToChoices (vagueToChoices). Initially, the
mask 91 is created as a bit vector of ones. For non-affected (non-vague) states, the value
of all non-optimal choices in the mask is reset to zero. Since of all the choices, only those
compatible with the family are needed, a bitwise AND operation is performed between
the mask and the vector of compatible choices. The resulting mask is used later for model
building and model checking of the family. A detailed manual on running PAYNT), including
new flags for implemented improvements, is provided in Appendix B.

5.2 Selected Benchmark

The benchmark was run on a single core on Intel i5-10300H @2.5GHz CPU and 16GB
of RAM. It includes models of varying complexity and size (one model can have multiple
instances) to check whether SEIDAR can handle any problem no worse than AR. All selected
POMDP models, except for the LRV, were taken from [9, 11]. Table 5.1 summarises
the number of states |S|, the total number of actions |A| := )" |Act(s)|, the number of
observations |Z| and the specification for each included POMDP model. Unless mentioned
otherwise, we consider either max/min reachability probability P or max/min expected
total reward R (in the PRISM notation). In this and the following tables, all measurements
are rounded to a maximum of three decimal places for convenience.

The synthesis problem is given by the model instance, which is formed by the topology
of the POMDP model, the selected specification and the amount of memory k. All model
instances included in the benchmark can be divided into 2 groups — those where we can find
the best FSC for a given memory in a reasonable time (within a few minutes) and those
where we cannot do so (the synthesis lasts up to several years or more). For experimental
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Optimum P/R
Model = | Memory =g AR | EIDQR [ SEIDAR
web-mall 3 6.685 | 6.685 | 6.685 | 6.685
grid-avoid-4-0 | 5 0.920 | 0.929 | 0929 | 0.929
4x3-95 2 1468 | 1468 | 1.468 | 1.468
mini-hall2 2 2.687 | 2.687 | 2.687 | 2.687
query-s2 2 | 486.694 | 436.694 | 486.694 | 436.694

Table 5.2: Comparison between optimal values for model instances, whose synthesis takes
a short time (without explicitly specifying the number of iterations).

purposes, handling the second group of instances requires manually limiting the number of
iterations.

As will be seen from the results of the experiments, our methods consistently accelerate
models with a large design space. To better reveal the potential of SEIDAR, an LRV
model was created, inspired by Example 4. The total number of actions in LRV is 3 times
greater than in network-prio-2-8-20, which leads to better performance of SEIDAR. In this
interpretation of the Lunar Roving Vehicle, there are no walls and boundaries, but minerals
have to be collected. There are 3 minerals in a 9 x 9 field, each of which is ,,good“ with a
probability of 0.6. The robot has a sensor that allows scanning of each mineral, and the
closer they are to each other, the more accurate the measurements. The main task of the
LRV is to collect at least two good minerals, otherwise, it gets a penalty (reward). It is
also penalised for every collected ,bad“ mineral. According to the specification, the robot
has to reach the final cell with minimal penalty.

5.3 Consistency to AR and Impact on the Synthesis

Since the number of iterations needed to terminate (E)IDAR and AR is not always the same,
its explicit restriction may lead to different resulting FSCs. Therefore, the consistency check
of (E)IDAR can only be carried out on the first group of model instances. Table 5.2 lists
the results obtained for all four compared approaches (parameters for SEIDAR will be
described in Section 5.5). Different values of k were tested for each included model, and

only one is shown in the table.

Q1: All new approaches proved to be consistent with classic AR, thereby confirming
Theorem 1. The optimal result does not depend on the chosen method — the implementation
can be considered correct.

The impact of inheritance dependencies on the synthesis can be explored in two ways:
i) how the number of iterations changed for model instances from the first group, and ii)
how the optimal result changed on model instances with a limited number of iterations
(second group). Table 5.3 answers the first question. For each small model instance,
there is a change in the number of necessary iterations. Values obtained by EIDAR are
always different from the AR’s values. SEIDAR, since it switches to AR in these instances,
preserved its behaviour. The biggest change is observed in the grid-avoid-4-0 model: the
number of iterations for EIDAR is reduced by 30%.

Even though model checking for (E)IDAR can provide narrower bounds, on some models
(4x3-95, mini-hall2, query-s2) the number of iterations increased. The reason for this lies
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Iterations

Model | Memory ™—3g~TT5AR | EIDAR | SEIDAR
web-mall 3 43747 | 35029 | 35029 | 43747
gridavoid4-0 | 5 | 107202 | 107202 | 75452 | 107202
4x3-95 2 o1 | 913 | 913 911
mini-hall2 2 54403 | 55111 | 55111 | 54403
query-s2 2 665 675 667 665

Table 5.3: Comparison between the number of iterations for model instances, whose syn-
thesis takes a short time.

Optimum P/R
AR | IDAR | EIDAR | SEIDAR

Model | Spec. | Memory | Iterations

refuel-06 | Py 3 20000 | 0.051 | 0.051 | 0.032 0.032
200 0.002 | 0.023 | 0.023 0.002
hallway2 | Romas 1 2000 | 0.025 | 0.026 | 0.026 0.025
1000 | 0.001 | 0.001 | 0.019 0.002
refuel-20 1 Prnag 1 10000 | 0.001 | 0.001 | 0.019 0.002
rocks-16 | Rmin 3 100 46 no no no

Table 5.4: Comparison between optimal values for model instances, whose number of iter-
ations is explicitly limited. Experiments, where no P/R value satisfying the specification
was found within the specified number of iterations, are marked with ,no“.

in the specifics of Storm and is partially described in Theorem 1. If, as a result of model
checking, several FSCs are optimal at once, Storm takes any of them. The change in
the AR algorithm at a deep level influenced this choice. At some point, Storm chooses a
different FSC, which changes the further splitting of the family and the entire outcome of
the synthesis. Therefore, we cannot be sure how the number of iterations would change
without running the experiment.

Table 5.4 demonstrates the impact of limiting the number of iterations on the obtained
optimum for larger instances. In refuel-20, EIDAR finds an FSC that is 19 times better
than the one found by AR. However, (E)IDAR does not always find a more optimal FSC
compared to AR. For rocks-16, it didn’t manage to find any suitable FSC. In other ex-
periments not listed in this table (e.g. rocks-12, LRV'), the optimal result is equal for all
methods. Hence, we also cannot be sure that each method would return the same optimal
FSC within the same number of iterations.

Q2: Experiments show that the impact of inheritance dependencies on the synthesis is
ambiguous. We cannot claim that each approach would produce the same optimum for the
same number of iterations and vice versa.

5.4 Evaluation of the Synthesis Time for IDAR and EIDAR

Initially, the main task of this work was to create a method that accelerates model checking
(MC) of families of FSCs. However, during the experiments it turned out that the size of
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AR time (s)
overall| MB | MC

Speedup far (5)
overall | MB | MC | M

0.68 | 1.03 | 1.01 | 19.13

Model k | Iter.

=

grid-avoid | 5 - 39.4 4.94 | 6.51 111 1149 | 146 | 997
0.98 | 1.14 | 1.16 | 0.05

4x3-95 2 - 0.42 0.05 | 0.12 089 11091114 0.8
mini-hall2 | 2 - 22.09 | 2.32 | 4.71 0.92 1 108} 1.09 3-3

0.86 | 1.04 | 1.08 | 4.67
0.79 | 1.19|1.06 | 11.82
1.07 | 1.61 | 1.57 | 9.04
0.92 1.07 | 1.04 | 1.74
0.95 1.11 | 1.07 | 1.47
1.02 1.12 1 0.87
0.89 | 1.13|1.02 | 3.59

refuel-06 3| 20k | 31.13 | 5.33 8.7

drone-4-1 1] 1k 12.75 | 0.64 | 5.94

200 | 18.01 1.88 | 12.51

hallway2 ) 1 ok | 1203 | 1461 | 8390 077 10931076 9.07
‘ ‘ ‘ 0.64 | 093|076 | 37.68
108 | 1.61 | 1.73 | 3.09
odels |1 He | 14.67 | 2.16 | 5.97 159 | 332|373 | 3.53
- 116 | 1.76 | 1.82 | 29.72
10k | 139.64 | 21.12 | 59.46 S oo | s
078 | 1.01] 1 | 6.09

1k | 2204 | 09 | 1.66
refuel20 | 1 0.75 | 0.75 | 0.63 | 5.62

0.81 1.14 | 1.08 | 55.12
0.66 | 0.75| 0.6 | 57.85
0.94 1.21 | 1.22 | 5.37
0.95 1.63 | 1.65 | 9.78
1.5 1.83 |1 1.99 | 4.51
1.38 1.82 1 1.92 | 8.17
1.84 1.99 | 2.19 | 1.22
1.75 201|214 | 3.26
1.01 1.17 | 1.25 | 1.75
0.96 1.18 | 1.28 | 3.08
1.24 148 | 1.59 | 4.04
1.18 154 | 1.62 | 8.39

10k | 191.78 | 9.2 | 15.52

rocks-16 1] 1k 25.22 | 3.61 | 9.88

1] 500 | 38.89 | 6.37 | 18.67
LRV

3| 40 42.43 | 5.03 | 15.1

1] 100 | 19.14 1.11 1.27
network-prio

51 40 52.01 7.3 | 11.14

oRslollolslolslolsllolsllol ol sl ool slo R llol ol sl To il ol

Table 5.5: Evaluation of speedups for IDAR and EIDAR. Hyphen (-) indicates that the
experiment was completed without a limit on iterations. ,M.“ represents a method, ty
refers to the overall time spent by the method. Speedups are calculated as the AR time
divided by the time of the corresponding method. A speedup less than 1 implies a slowdown.
Models web-mall and query-s2 are not listed in the table, as their result is similar to 4x3-95.

the mask also affects the operation of other parts of the synthesis: model building (MB) and
various optimisations in PAYNT. Table 5.5 shows the resulting speedups. In most examples,
time ¢y for EIDAR is longer than for IDAR. However, this does not prevent EIDAR from
achieving better speedups (rocks-12). The worst overall speedups (slowdowns) are 0.68
(grid-avoid-4-0) for IDAR and 0.64 (hallway2) for EIDAR. Since the overall synthesis time
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% affected SC/AS

Model ¥ | It ' 95AR [ BIDAR | IDAR | EIDAR
grid-avoid-4-0 | 5| - 97 | 46.62 | 2.32 3.76
4x3-95 2 - | 3259 | 31.26 | 4.87 4.93
mini-hall2 21 - | 323 | 3038 | 4.46 451
refuel-06 3 [ 20k | 55.04 | 4023 | 845 13.89
drone-4-1 1] 1k | 94 86 1.55 1.54
200 | 43.55 | 4355 | 1.83 1.83
hallway2 Viok To281 | 2281 18 18
okl |1k [ 3519 | 1999 | 122.74 | 60419
10k | 36.77 | 19.17 | 106.97 | 538.44
1k | 66.93 | 5025 | 2.87 3.56
refuel-20 VI 10k T65.95 | 4631 | 2.96 3.29
rocks-16 1| 1k | 37.98 | 254 | 180.68 | 852.84
LRV 1] 500 | 27.36 | 0.74 | 262.18 | 1849.88
3 40 | 941 | 1.15 | 5899.88 | 46792.19
. 1] 100 | 5228 | 52.84 | 7833 | 544l
network-prio-2-8-20 | s G5 T 39.31 | 3148.47 | 7896.10

Table 5.6: Calculating the percentage of vague/affected states (,% affected“) and the
number of Selected Choices per vague/Affected State (,SC/AS“) for IDAR and EIDAR.
Columns ,% affected* and ,SC/AS“ show the average values for all run iterations.

includes tj, the speedups for MB and MC are generally better than the overall acceleration.
The best overall speedup (1.84) is observed in LRV. Although the overall speedup for rocks-
12 is only 1.7, MB and MC terminated 3.6 and 4 times faster, respectively. Increasing
the number of iterations enhances the effect of the corresponding experiment with fewer
iterations. If there is a slowdown (speedup) at 1000 iterations, the synthesis terminates even
slower (faster) at 10000 iterations (hallway2, rocks-12, refuel-20). Table 5.6 compares the
percentage of vague/affected states and the number of selected choices per vague/affected
state for the same set of model instances. In the absolute majority of results, the number of
affected states is less than vague ones. For LRV with k = 1, ,,% affected” decreased by 37
times. But in network-prio-2-8-20, there is a slight increase in the percentage of affected
states, since Storm at some point chooses a different FSC. Generally, the value of ,,SC/AS“
for EIDAR is greater than for IDAR, especially in larger models.

Q3: Both methods accelerate the synthesis. On average, IDAR speeds up the overall
time by 1.03 times, MB by 1.31 times and MC by 1.33 times. For EIDAR, the average
speedups are 1.09, 1.59, and 1.65, respectively. However, we cannot claim that one of the
methods is better than the other. Even though there are model instances on which IDAR
(or even AR) copes faster, EIDAR performs better on average. Therefore, it was EIDAR
that formed the basis of SEIDAR.

5.5 Selection of Parameters for SEIDAR

SEIDAR allows PAYNT to decide whether to switch to AR or remain in EIDAR after
a few iterations. The more iterations we perform to collect statistics, the more precise
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Model ’ k ‘ Iter. ‘ Overall sp. | Thresh. | Fam. size ’ % affected ’ SC/AS

grid-avoid 5 - 1.11 100 < 52.1 5.5
4x3-95 2 - 0.89 100 < 28.13 5.2
mini-hall2 2 - 0.86 100 < 40.34 4.28
refuel-06 3| 20k 1.07 100 > 42.29 13.87
drone-4-1 1 1k 0.95 100 > 86 1.62
hallway2 1| 2k 0.89 100 < 42.3 1.84
rocks-12 1| 1k 1.59 100 > 8.19 1144.07
refuel-20 1| 1k 0.75 100 > 52.86 4.91
rocks-16 1| 1k 0.95 100 > 2.09 1553.16
LRV 1| 500 1.38 100 > 0.74 2074.62
31 40 1.75 8 > 1.43 40644.47
network-prio 1| 100 0.96 20 > 44.11 3.42
51 40 1.18 8 > 73.71 13.35

Table 5.7: Calculating the size of the superfamily (,,Fam. size*), the percentage of affected
states and the number of Selected Choices per Affected State for EIDAR with the number
of iterations, given by the threshold. A common logarithm of the size of the superfamily
is compared with 15 (< or >). Its full value is not provided due to its enormous ranges
(up to 21822 after applying the common logarithm for network-prio-2-8-20 with k = 5).
Columns ,% affected* and ,,SC/AS“ show the average values for all run iterations.

the results become. On the other hand, the fewer iterations we perform before switching,
the greater the effect it will have on the synthesis. Switching occurs at the threshold of
100 iterations, or after analysing 20% of family members (PAYNT counts this value). In
the larger model instances where even 100 iterations take a lot of time and memory, we
lowered this threshold. For experimental purposes, where we manually limit the number
of iterations, the program also switches after performing 20% of this limit. The measured
parameters are described in Section 4.3. If the superfamily’s size is too small, SEIDAR
switches to AR right after the first iteration. This prevents wasting extra time in EIDAR
and allows immediately following the optimal method.

Table 5.7 lists the obtained measurements. In an ideal scenario, we want to switch
to AR in those examples where the overall speedup is less than 1. Otherwise, it is more
profitable to remain in EIDAR. However, there are slowed-down instances (e.g. rocks-16),
where all the conditions are met to stay in EIDAR: a big superfamily, a small percentage
of affected states and a large value of ,SC/AS“. On the contrary, there are also accelerated
instances with small family sizes (16M for grid-avoid-4-0, which is 100 times smaller than
that for 423-95). For this reason, it is impossible to choose the values of parameters so that
the best approach is selected for each model. The main task of SEIDAR is to preserve the
advantages of EIDAR (e.g. a big speedup of rocks-12) and eliminate its disadvantages (a
slowdown of hallway2).

In refuel-20 and network-prio-2-8-20 (k = 1), a switch to AR is necessary despite their
large family size. Therefore, we need the third parameter, ,SC/AS“, as its value is relatively
small in these examples. The percentage of affected states is the highest for drone-4-1, and
its ,SC/AS“ is low. However, there are also other models not presented in this chapter,
such as web-mall (k = 40), where a high ,% affected“ (96) was obtained together with a
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SEIDAR speedup

Model k | Iter. Svorall | e | MO Switched?
grid-avoid-4-0 5 - 1.01 1.01 | 1.02 Yes
4x3-95 2 - 1 1 1.03 Yes
mini-hall2 2 - 1 1 1 Yes
refuel-06 3| 20k 1.04 1.56 | 1.53 No
drone-4-1 1 1k 0.98 0.99 1 Yes
hallway? 1 200 1.03 1.02 | 1.03 Yos

ok | 1.03 | 1.03 | 1.03
1k 16 | 3.4 | 3.76
rocks-12 Vo T 172 365 (43 No

1k 1.32 1.06 | 0.95

refuel-20 ok T 139 (1.4 [0.99 Yes

rocks-16 1] 1k | 095 | 1.54 | 1.66 No
1500 | 1.39 | 1.84 ] 1.95

LRV 31 40 | 1.65 | 1.91 | 2.04 No

. 1] 100 | 0.96 1 1099 Yes

network-prio-2-8-20 | —— 4o e 1 57 No

Table 5.8: Evaluation of speedups for SEIDAR. The last column shows whether the switch
to AR occurred.

high value of ,SC/AS“ (36). Hence, including ,% affected“ as a parameter is also crucial
for achieving better efficiency.

As a result, the following thresholds are selected: 85 for ,% affected® and 5.5 for
»SC/AS“. The whole algorithm for SEIDAR can be described as follows. It starts its
operation in EIDAR and if the value of a common logarithm of the size of the superfamily
is less than or equal to 15, it immediately switches to AR. Otherwise, after 100 iterations
or a completed analysis of 20% of family members, the values of other parameters are exam-
ined. If the percentage of affected states is greater than 85 or the number of selected choices
per affected state is less than 5.5, PAYNT switches to AR; if not, it remains in EIDAR.
Following this algorithm, only grid-avoid-4-0 and rocks-16 are not behaving according to
the ideal scenario.

Table 5.8 shows the final comparison of SEIDAR and AR. In most experiments, higher
speedups are observed compared to Table 5.5. The most interesting result is obtained on
refuel-20. For EIDAR, this model gave one of the worst slowdowns (0.66), but switching to
AR sped it up to 1.39. Changing the methods yielded a better result than applying them
separately. So far, it is unclear what led to this result, but the reason again may lie in the
algorithm for choosing the optimal FSC in Storm.

The worst slowdown, obtained by EIDAR for hallway2 (0.64), was converted into a slight
speedup in SEIDAR. In LRV, where switching did not occur, the speedup decreased by 0.1
compared to EIDAR due to the experiments’ accuracy. In experiments where switching
to AR happened after the first iteration due to the small size of the superfamily, the
acceleration is close to 1. For 4z3-95 and mini-hall2, this helped to eliminate the slowdown,
but for grid-avoid-4-0 it reduced the speedup instead. Figure 5.1 compares the overall
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Figure 5.1: Comparison of overall speedups for IDAR, EIDAR and SEIDAR.

speedups for all described approaches. In models with several model instances, the value
obtained for a larger number of iterations (or larger k) is used in the plot.

Q4: On average, SEIDAR speeds up the overall synthesis time by 1.2 times, MB by 1.54
times and MC by 1.61 times. Based on the experiments, it is reasonable for the user to
always choose SEIDAR over AR. The worst overall slowdown (0.95) is negligible compared
to the best speedup (1.72).

5.5.1 Solving Feasibility Synthesis Problem with SEIDAR

As Table 5.4 shows, in some model instances with a limited number of iterations, our
method can find an FSC, significantly better than the one found by AR. This led us to the
idea of conducting additional experiments, where the feasibility synthesis problem would
replace the max/min synthesis problem. For hallway2, the corresponding specification
is R>», for refuel-20 — P>). The current implementation of SEIDAR so far does not
support feasibility specifications. Therefore, we made PAYNT to stop the synthesis when
the required optimum was reached.

Table 5.9 lists the measurements. For hallway2, the specified A was obtained in IDAR
and EIDAR within just 80 iterations. Due to this, we managed to achieve record speedups:
10.78 for the overall synthesis time, 15.23 for the MB and 10.57 for the MC. However, since
this model has a small family size, in SEIDAR there was an instant switch to AR, which
did not lead to any speedup. Even though in refuel-20 SEIDAR also has to switch to AR
(because of ,SC/AS*), its speedup is high (more than 6). This happens since EIDAR needs
only 56 iterations for its termination, which is insufficient for switching. Therefore, in this
case, the results of EIDAR and SEIDAR are similar.

5.5.2 Discussion

Even though SEIDAR accelerates the synthesis of almost every model instance, in theory we
expected a better result. Earlier in this paper we stated that for the MDP model checking
with the PCTL syntax, the algorithmic complexity is polynomial in its size. Therefore, each
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AR time (s) . Speedup
ov. [ MB [ e | AR M e e TR
80 | 10.78 | 14.87 | 10.16
80 9.76 | 15.23 | 10.57
1464 | 1.02 1.01 1.03
775 | 0.82 1.09 | 1.05
56 6.82 | 6.99 | 3.47
56 6.68 | 6.89 | 3.47

Model | k A

=

hall 110.02149 | 93.33 | 11.18 | 64.5 | 1464

I
E
S
I
refuel | 1 | 0.00083 | 18.54 | 0.73 | 1.32 | 775 E
S

Table 5.9: Speedups of IDAR, EIDAR and SEIDAR for the feasibility synthesis problem
with a threshold given by A. ,AR it* stands for the number of iterations needed for
terminating AR, while ,Iter.“ shows the actual number of iterations, run by our methods.

model instance should be accelerated at least as many times as the number of vague/af-
fected states is less than the total number of states. However, as Tables 5.5 and 5.8 show,
we could not speed up the overall synthesis time even by a factor of 2. The results ob-
tained in Subsection 5.5.1 for the feasibility synthesis problem can be considered as luck
rather than our algorithm’s efficiency. Most likely, in the model instances from Table 5.9
STORM accidentally chose different FSCs and significantly affected the further splitting of
subfamilies, so we do not take these results as a reference.

The most controversial result was obtained on the LRV model. The results from Ta-
ble 5.6 show that we keep all compatible choices in only 1% of states. Then, in theory, the
overall speedup should be large (around 100). However, as Tables 5.5 (EIDAR) and 5.8
(SEIDAR) show, in reality, the acceleration does not even reach factor 2. The reason for
this lies in the value of ,SC/AS“, which is 8 times higher for EIDAR than for IDAR. It
follows that non-affected states are those with a small number of compatible choices. The
highest concentration of choices gathered in affected states. Therefore, ,% affected” does
not show the real picture of how much we reduced the size of the mask. In addition, the
time ty; spent by the selected method takes a considerable part of the total synthesis time.
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Chapter 6

Final Considerations

6.1 Conclusion

The main goal of this work was to accelerate the abstraction-based synthesis of finite-
state controllers for POMDPs using inheritance dependencies of FSCs’ families. Primarily,
we intended to accelerate model checking, a key computational component of synthesis.
On the one hand, the result exceeded our expectations because model building and other
optimisations in PAYNT accelerated in addition to model checking. On the other hand,
this did not lead to a very significant speedup of the overall synthesis time.

We created the Inheritance Dependencies for the Abstraction-Refinement approach
(IDAR) and its extended, more efficient version — EIDAR. One of the goals of the ex-
periments was to find out which of these methods would form the basis of the final product
of this thesis — Smart EIDAR. As a result, SEIDAR starts its operation in EIDAR and
after a few iterations decides whether to switch to AR or remain in EIDAR. SEIDAR is
designed to save the user of PAYNT from choosing which method to use for a particular
POMDP model.

All new approaches proved to be consistent with classic AR. The optimal result, re-
gardless of the amount of memory, does not depend on the chosen method. Experiments
also show that the impact of inheritance dependencies on the synthesis is ambiguous. We
cannot claim that each approach would produce the same optimum for the same number of
iterations and vice versa. On average, SEIDAR speeds up the overall synthesis time by 1.2
times, model building by 1.54 times and model checking by 1.61 times. Based on the exper-
iments, it is reasonable for the user to always choose SEIDAR over AR. The worst overall
slowdown (0.95) is negligible compared to the best speedup (1.72). We also conducted addi-
tional experiments, where the feasibility synthesis problem replaced the max/min synthesis
problem. The record speedups were achieved: 10.78 for the overall synthesis time, 15.23
for the model building and 10.57 for the model checking.

6.2 Future Work

This thesis opens up a great horizon for possible future work. We applied the idea of
inheritance dependencies only for the inductive synthesis, in particular AR. Probably, a
similar approach could also be used in CEGIS or even in the belief-based FSC synthesis
method. Also, while writing this paper, we came up with the idea to look at inheritance
dependencies from the other side. What if we use this approach between siblings (families
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with a common parent)? Unfortunately, it is still unclear what information from one
sibling can be used to speed up the synthesis of the other one. Also, in the current version
of PAYNT, this is difficult to implement due to the DFS algorithm used in AR.

In some experiments, we observed a change in the required number of iterations to com-
plete the synthesis. We explained this phenomenon by the features of the model checking
in Storm. In the future, conducting a more in-depth analysis of the reasons that caused
this result would be appropriate. In addition, more experiments could be done and more
suitable parameters could be selected for switching in SEIDAR. An updated version of
SEIDAR would also support feasibility specifications.
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Appendix A

Contents of the included storage
media

e docs/ — the text report and its sources:

— xshevc01-POMDP.pdf — this text report.
— xshevc01-POMDP-print.pdf — the print version of the text report.

— src/ — the source form of the text report.

e src/ — the source codes of programs, including PAYNT), installation script, POMDP
models and C++ binding.

e README.md — contains installation instructions and user manual for running PAYNT.
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Appendix B

Manual

Installation

Folder src/ contains the extended version of PAYNT, which also requires Storm' and

Stormpy”. If you do not have them installed, use the installation script install.sh to
install Storm, Stormpy and other required dependencies. Complete compilation might take
up to an hour. The Python environment will be available in prerequisistes/venv.

Running PAYNT

main default flags:

--project PROJECT The path to the benchmark folder [required].
--pomdp-memory-size INTEGER Implicit memory size for POMDP FSCs [default: 1].
--profiling Run profiling.

new flags:

--use-inheritance Use inheritance dependencies (IDAR).
--use-inheritance-extended  Use extended inheritance dependencies (EIDAR).
--use-smart-inheritance Use smart inheritance dependencies (SEIDAR).
--iterations INTEGER Limit the number of iterations for the synthesis of FSCs

(experimental purposes).

Running selected model instances
If you want to run e.g. a 4z3-95 model with £ = 2 on AR, use

python3 paynt.py --project models/archive/cav23-saynt/4x3-95/
--pomdp-memory-size 2 --profiling

To run e.g. LRV with a limited number of iterations, write

python3 paynt.py --project models/archive/cav23-saynt/lrv/
--pomdp-memory-size 3 --profiling --iterations 40

To use another method, use the corresponding flag.

! Available at: https://github.com/moves-rwth/storm
2 Available at: https://github.com/moves-rwth/stormpy
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