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Abstract 
Par t ia l ly observable Markov decision process is an important model for autonomous plan­
ning used i n many areas, such as robotics and biology. This work focuses on the Abst rac t ion-
Refinement framework for the inductive synthesis of finite-state controllers (FSCs) for 
P O M D P s . The classic version of A R requires model checking of a quotient M D P for an 
entire set of compatible choices of the subfamily i n each iteration. We propose an algo­
r i thm that uses inheritance dependencies to reduce the size of the quotient M D P ' s mask 
and accelerate model checking for subfamilies of F S C s . We also introduce a smart version 
of this algori thm, which preserves a l l its advantages and reduces its weaknesses. Dur ing 
the experiments, it turned out that our approach also affects the operation of other parts 
of the synthesis, e.g. model bui lding. Depending on the P O M D P model, we observe both 
speedups and slowdowns i n comparison to A R . O n average, our approach speeds up the 
overall synthesis t ime by 1.2 times, and i n some cases up to the factor 10. 

Abstrakt 
Č á s t e č n ě pozorova te lný M a r k o v s k ý rozhodovac í proces ( P O M D P ) je dů l ež i t ým modelem 
pro a u t o n o m n í p lánován í , k t e r ý se použ ívá v mnoha oblastech, jako je robot ika a biologie. 
Tato p r á c e se zaměřu je na metodu Abstraction-Refinement pro i n d u k t i v n í syn t ézu konečně 
s tavových kon t ro lé rů ( F S C ) pro P O M D P . Klas ická verze A R vyžadu je model checking quo­
tient M D P pro celou m n o ž i n u kompa t ib i l n í ch akcí podrodiny v k a ž d é iteraci. M y navrhu­
jeme algoritmus, k t e r ý využ ívá děd ičné závislost i ke snížení velikosti masky pro quotient 
M D P a ke zrychlení model checkingu pro podrodiny F S C . Také p ř e d s t a v u j e m e chytrou 
verzi tohoto algoritmu, k t e r á zachovává všechny jeho v ý h o d y a snižuje jeho slabiny. B ě h e m 
e x p e r i m e n t ů se ukáza lo , že n á š p ř í s t u p t a k é ovlivňuje č innos t j i ných čás t í syntézy, jako 
je n a p ř . model bui ld ing. V závislost i na modelu P O M D P , pozorujeme jak zrychlení , tak 
z p o m a l e n í ve s rovnán í s A R . V p r ů m ě r u naše metoda zrychluje celkovou dobu syn tézy 1.2 
k r á t a v n ě k t e r ý c h p ř í p a d e c h až d e s e t k r á t . 
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Rozšířený abstrakt 
P r a v d ě p o d o b n o s t již dlouho slouží jako z á k l a d n í n á s t r o j pro mode lován í nejistot a př i­
j í m á n í in formovaných r o z h o d n u t í . M a r k o v s k ý ře tězec ( M C , nebo d i sk ré tn í M C ) je nejpop-
u lá rně j š ím modelem pro integraci p r a v d ě p o d o b n o s t i do p ř echodových sy s t émů . Je zv láš tě 
v h o d n ý pro mode lován í n á h o d n ý c h j evů , poskytuje m a t e m a t i c k ý zák lad pro p o c h o p e n í 
evoluce s y s t é m ů v p r ů b ě h u času [7]. Markovské ře tězce a jejich rozší ření nabízej í m o c n ý 
nás t ro j pro a n a l ý z u s tochas t i ckých sy s t émů . Jsou využ ívány v mnoha oblastech: robo t í ce 
(p lánování s t r a t eg i í pro roboty, v y h ý b á n í se c h y b á m [23]), biologii ( v y h y n u t í popu lac í , š íření 
ep idemi í [1]), f inancích (měnový t rh , invest iční strategie [25]) atd. 

N ě k t e r é s y s t é m y mohou zahrnovat současné procesy se s t ř í d a v ý m chován ím. Determini­
s t ická s t ruktura M C p o s t r á d á f lexibil i tu, k t e r á je p o t ř e b n á pro jejich a d e k v á t n í reprezentaci. 
Z tohoto d ů v o d u M a r k o v s k ý rozhodovac í proces ( M D P ) př icház í jako n á h r a d a za M C . 
M D P u m o ž ň u j e souži t í nede t e rmin i s t i ckých r o z h o d n u t í a p r a v d ě p o d o b n o s t n í c h p ř e c h o d ů , 
poskytuje pod robně j š í reprezentaci s y s t é m ů zahrnuj íc ích jak n á h o d n o s t , tak souběžnos t [7]. 
V M D P se p ř e d p o k l á d á , že stav s y s t é m u je p lně pozorovate lný , což z n a m e n á , že o n ě m exis­
tuje ú p l n á informace. Bohuže l to nen í v ž d y pravda, n a p ř í k l a d kvůl i nedokonalosti senzorů 
(nebo j i ného n á s t r o j e pro m o n i t o r o v á n í s t avů ) [20]. Č á s t e č n ě pozorova te lný M a r k o v s k ý 
rozhodovac í proces ( P O M D P ) je obecnějš í a real is t ič tě jš í model, k t e r ý p ř e d p o k l á d á , že ex­
istuje nejistota oh ledně ú č i n k ů akcí a s k u t e č n é h o stavu svě ta . P O M D P jsou v ý p o č e t n ě 
náročně jš í než M D P kvůl i p ř i d a n é s loži tost i čá s t ečné pozorovatelnosti. 

Rezoluce nedeterminismu je p r o v á d ě n a p r o s t ř e d n i c t v í m p lánovačů [7]. Ex i s tu j í dva 
p rob l é my spo jené s a n a l ý z o u P O M D P - jak efekt ivně reprezentovat p lánovače a naj í t ten 
op t imá ln í . Belief M D P je jednou z možných r ep rezen tac í p l ánovačů . Belief je in formační 
vektor, k t e r ý reprezentuje dis t r ibuci p r a v d ě p o d o b n o s t i mezi stavy P O M D P . Belief M D P 
je v y t v o ř e n na zák l adě všech dosaž i t e lných beliefs [29]. P o t é se o p t i m á l n í p l ánovač h l edá 
model checkingem belief M D P . N i c m é n ě , pokud je belief prostor pro P O M D P spoji tý, model 
checking se s t ává v ý p o č e t n ě ne řeš i t e lným. J inak m ů ž e bý t belief M D P v y t v o ř e n p o m o c í 
ap rox imačn ích technik. To vede ke snížení p ře snos t i a m o ž n é z t r á t ě nej lepšího řešení [22]. 
P l ánovače mohou bý t t a k é zakódovány konečně s t a v o v ý m kon t ro l é r em ( F S C ) s v y u ž i t í m 
v n i t ř n í h o paměťového stavu. F S C umožňu je k o m p a k t n í reprezentaci p lánovačů , proto nen í 
p o t ř e b a pamatovat si celou histori i akcí a pozorován í [27]. Výs ledkem aplikace F S C na 
P O M D P je induced M C . M D P je v h o d n ý model pro syn t ézu kon t ro lé rů , p r o t o ž e umožňu je 
definovat kon t ro lované akce. N icméně , k a ž d ý F S C udržu je velikost p lánovače omezenou a 
ve vě tš ině p ř í p a d ů je p o č e t všech m o ž n ý c h F S C nekonečný. To dě lá p r o b l é m nalezení 
o p t i m á l n í h o p lánovače n e r o z h o d n u t e l n ý m [26]. 

I n d u k t i v n í syn t éza F S C [5] je m o d e r n í metoda syn tézy F S C , k t e r á pracuje s rodinami 
p lánovačů . To umožňu je prozkoumat p lánovače s r ů z n ý m i velikostmi p a m ě t i , p ř i způsobu je 
se tak s loži tost i d a n é h o P O M D P [3]. H lavn í omezen í t é t o metody vycház í z p r o b l é m u F S C 
p o p s a n é h o výše . Nekonečně ros touc í prostor p l ánovačů dě lá p r o b l é m nalezení o p t i m á l n í h o 
F S C n e r o z h o d n u t e l n ý m . Abstraction-Refinement framework pro i n d u k t i v n í syn t ézu [13] 
pracuje s a b s t r a k c í rodiny. Quotient M D P je spo lečnou a b s t r a k c í celé rodiny, k t e r á za­
chovává chování všech j edno t l i vých real izací ( F S C ) . Umožňu je p ř e p í n a t mezi realizacemi a 
simulovat chování induced M C , k t e r ý p ů v o d n ě nebyl v r o d i n ě p ř í t o m e n . M o d e l checking 
quotient M D P poskytuje s p o d n í a h o r n í hranice hodnoty F S C [5]. P o k u d celý interval 
mezi t ě m i t o hranicemi splňuje specifikované p o d m í n k y , jsou p ř i j a t a všechna m o ž n á řešení . 
P o k u d se zcela nacház í mimo p o ž a d o v a n ý interval, je celá rodina o d m í t n u t a . J inak je ro­
dina rozdě lena na dvě poloviny (podrodiny), k t e r é jsou p r o z k o u m á v á n y oddě leně . Pokud 
podrodina nen í p ř i j a t a ani o d m í t n u t a , je znovu rozdě lena na dvě poloviny. P r o feasibil-



i ty synthesis p r o b l é m , tento proces končí , když je buď nalezeno v h o d n é řešení , nebo jsou 
o d m í t n u t y všechny realizace. Rozdě len í (pod)rodiny p o s t u p n ě snižuje p o č e t kompa t ib i l n í ch 
akcí a p rovád í se o m e z e n í m quotient M D P . O m e z e n í v p o d s t a t ě aplikuje masku v y b r a n ý c h 
akcí na quotient M D P . 

H l a v n í m úko lem t é t o p r á c e je vy tvo ř i t metodu, k t e r á zrychluje model checking rodin 
F S C za použ i t í děd ičné závislost i pro A R ( I D A R ) . Výs ledky model checkingu rodiny (rodiče) 
mohou bý t už i t ečné i pro a n a l ý z u jejích p ř í m ý c h podrodin (dě t í ) . Nechť je stav quotient 
M D P vágní , pokud existuje nenulová p r a v d ě p o d o b n o s t , že jeho o p t i m á l n í akce z p lánovače 
rodiče n e z ů s t a n e o p t i m á l n í pro d í t ě . Stavy, k t e r é z t ra t i ly svou o p t i m á l n í akci, se s távaj í 
vágn ími . P ř e d c h ů d c i vágních s t a v ů jsou t a k é označen i jako vágní . P o t é jsou tyto informace 
použ i t y k vy tvo řen í masky. P o k u d je stav vágní , jsou zachovány všechny jeho d o s t u p n é 
akce. J inak je zachována pouze o p t i m á l n í akce. ID A R snižuje velikost masky pro k a ž d o u 
podrodinu. P r o model checking M D P s P C T L s y n t a x í je a lgo r i tmická s loži tost po lynomiá ln í 
ve velikosti M D P [28]. K a ž d ý nevágní stav quotient M D P v ý z n a m n ě urychluje jeho model 
checking e l iminací nedeterminismu. 

Rozš í ř ená verze I D A R ( E I D A R ) bere v ú v a h u u m í s t ě n í o p t i m á l n í c h akcí nejen pro stavy, 
k t e r é z t ra t i ly ně jaké své akce, ale t a k é pro jejich p ř e d c h ů d c e . E I D A R vy tvá ř í m n o ž i n u 
affected s t a v ů t í m , že p ř í m o p rocház í o p t i m á l n í m i akcemi k jejich p ů v o d n í m s t a v ů m . T í m 
v ý r a z n ě snižuje p o č e t affected s t a v ů ve s rovnán í s vágn ími . Výs ledná maska je tedy menš í , 
což př i sp ívá k u rych len í model checkingu. N icméně , p o p s a n á vy lepšen í nezrychluj í syn t ézu 
pro k a ž d ý model P O M D P , n á š program se proto m ů ž e rozhodnout, zda použ í t děd ičné 
závislost i , či nikol iv (Smart E I D A R ) . S E I D A R , h lavn í p ř ínos t é t o p ráce , je n a v r ž e n tak, 
aby uživate le uše t ř i l m a n u á l n í volby mezi A R , I D A R a E I D A R . S E I D A R zahajuje svou 
č innos t v E I D A R , sb í rá u rč i t é stat ist iky b ě h e m p rvn í ch někol ika i te rac í a rozhoduje, zda 
přej í t na A R , nebo z ů s t a t v E I D A R . 

Všechny nové p ř í s t u p y se u k á z a l y jako konz i s t en tn í s k las ickým A R . Nezávis le na ve­
likosti p a m ě t i F S C se o p t i m á l n í výs ledek nezávis í na zvolené m e t o d ě . B ě h e m e x p e r i m e n t ů 
se ukáza lo , že velikost masky t a k é ovlivňuje č innos t j i ných čás t í syn tézy (nap ř . model 
bui ldingu). V p r ů m ě r u S E I D A R zrychluje celkovou dobu syn tézy 1.2 k r á t , model bui lding 
1.54 k r á t a model checking 1.61 k r á t . V n ě k t e r ý c h p ř í p a d e c h pro feasibility synthesis prob­
lém zrychlen í p řesahu je d e s e t k r á t . N a zák ladě e x p e r i m e n t ů je pro uživate le r o z u m n é vždy 
volit S E I D A R p ř e d A R . 
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Chapter 1 

Introduction 

Probabi l i ty has long served as a fundamental tool for model l ing uncertainties and making 
informed decisions. Markov chain ( M C , or discrete-time M C ) is the most popular model for 
the integration of probabilities into transi t ion systems. It is par t icular ly suited for modell ing 
random phenomena, providing a mathematical foundation to understand the evolution of 
systems over t ime [7]. Markov chains and their extensions offer a powerful tool for the 
analysis of stochastic systems. They are used i n many areas: robotics (planning strategies 
for robots, error avoidance [23]), biology (population extinction, spread of epidemics [1]), 
finance (currency market, investment strategies [25]), etc. 

However, some systems may involve concurrent processes wi th interleaving behaviour. 
M C ' s deterministic structure lacks the flexibil i ty needed to represent them adequately. For 
this reason, the Markov decision process ( M D P ) comes to replace M C . M D P allows for the 
coexistence of nondeterministic decisions and probabil ist ic transitions, providing a more de­
tailed representation of systems involving both randomness and concurrency [7]. In M D P s , 
it is assumed that the system's state is fully observable, meaning there is complete informa­
t ion about i t . Unfortunately, this is not always true, for example, due to the imperfection 
of sensors (or any other tool for moni tor ing states) [20]. The par t ia l ly observable Markov 
decision process ( P O M D P ) is a more general and realistic model, assuming that there is 
uncertainty about both the effects of actions and the true state of the world. P O M D P s 
are computat ional ly more challenging than M D P s due to the added complexity of par t ia l 
observability. 

The resolution of nondeterminism is performed by policies (schedulers) [7]. There are 
two problems related to P O M D P analysis - how to represent policies and find the opt imal 
one efficiently. Belief M D P is one of the possible representations of policies. Belief is an 
information vector that represents probabil i ty distributions over P O M D P ' s states. Belief 
M D P is buil t based on a l l reachable beliefs [29]. Then , the op t imal policy is found by the 
model checking of belief M D P . However, i f the belief state space of P O M D P is continuous, 
model checking becomes computat ional ly unsolvable. Otherwise, the belief M D P can be 
constructed using approximat ion techniques. It leads to decreased accuracy and a possible 
loss of the best solution [22]. Policies can also be encoded by a finite-state controller ( F S C ) 
using an internal memory state. F S C s allow policies to be represented compactly, therefore 
there is no need to remember the entire history of actions and observations [27]. The result 
of applying F S C over P O M D P is induced M C . M D P is a suitable model for controller 
synthesis, as it allows to define controllable actions. However, each F S C keeps the policy 
size bounded and i n most cases, the number of a l l possible F S C s is infinite. It makes the 
problem of finding the op t imal pol icy undecidable [26]. 
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This paper describes two state-of-the-art methods for the synthesis of F S C s . A belief-
based approach synthesises F S C s using the concept of beliefs. In this case, F S C can be 
derived from finite or infinite belief M D P . However, deriving F S C from large or infinite belief 
M D P requires a finite approximat ion - cut-offs or c l ipping [10]. Another approach, inductive 
synthesis of F S C s [5], works w i th families of policies. It allows for the exploration of policies 
w i th varying memory sizes, adapting to the complexity of the underlying P O M D P [3]. The 
main l imi ta t ion of this method stems from the F S C problem described above. Infinitely 
growing policy space makes the problem of finding the op t imal F S C undecidable. 

There are several approaches for identifying the best F S C wi th in the design space. 
CounterExample-Guided Inductive Synthesis ( C E G I S ) performs an enumerative search 
wi th in a family of F S C s [4]. Realisations that violate the specification provide facts 
(counterexamples) and help avoid the consideration of other certainly violat ing F S C s . 
Abstraction-Refinement framework for inductive synthesis [13] operates w i t h an abstraction 
of the family. Quotient M D P is a common abstraction for the entire family preserving the 
behaviour of a l l ind iv idua l realisations (FSCs ) . It allows to switch realisations and simulate 
the behaviour of an induced M C , which is not originally presented i n the family. M o d e l 
checking of the quotient M D P provides lower and upper bounds of the F S C s value [5]. If 
the entire interval between these bounds meets the specified conditions, a l l candidate solu­
tions are accepted. If it fully lies outside the desired interval, the entire family is rejected. 
Otherwise, the family is split into two halves (subfamilies), which are explored separately. 
If the subfamily is not accepted or rejected, it is d ivided in half again. For the feasibility 
synthesis problem, the synthesis terminates when either a feasible solution is found, or a l l 
realisations are rejected. Spl i t t ing of a (sub)family gradually decreases the number of com­
patible actions (choices) and is performed by restriction of the quotient M D P . Restr ic t ing 
essentially applies a mask of selected choices on the quotient M D P . 

Contributions 

The main task of this work is to create a method that accelerates model checking of families 
of F S C s using Inheritance Dependencies for A R ( I D A R ) . Model-checking results of a family 
(parent) can also be useful for the analysis of its direct subfamilies (children). Let a state of 
the quotient M D P be vague if there is a non-zero probabil i ty that its op t imal choice from 
the parent's scheduler does not remain opt imal for the chi ld . States that lost their opt imal 
choice become vague. Predecessors of vague states are marked as vague too. T h e n this 
information is used to create the mask. If a state is vague, a l l its available choices are kept. 
Otherwise, only the op t imal choice is preserved. I D A R reduces the size of the mask for each 
subfamily. For the M D P model checking wi th the P C T L syntax, the algori thmic complexity 
is po lynomia l i n the size of M D P [28]. Therefore, each non-vague state of the quotient M D P 
significantly accelerates its model checking by el iminat ing the nondeterminism. 

The Extended version of I D A R ( E I D A R ) considers the location of op t imal choices not 
only for states that lost some of their choices but also for their predecessors. E I D A R 
creates a set of affected states by going directly through opt imal choices to their origin 
states. It significantly reduces the number of affected states compared to the vague ones. 
Therefore, the resulting mask is smaller, contr ibut ing to a more accelerated model checking. 
However, since the described improvements do not speed up the synthesis for each P O M D P 
model, our program can decide whether to use inheritance dependencies or not (Smart 
E I D A R ) . S E I D A R , the ma in contr ibut ion of this thesis, is designed to save the user from 
manually choosing between A R , I D A R and E I D A R . S E I D A R starts its operation in E I D A R , 
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collects certain statistics wi th in the first few iterations and decides whether to switch to 
A R or remain i n E I D A R . 

A l l new approaches proved to be consistent w i t h classic A R . Regardless of the amount 
of F S C ' s memory, the op t imal result does not depend on the chosen method. D u r i n g the 
experiments, it turned out that the size of the mask also affects the operation of other parts 
of the synthesis (e.g. model bui lding) . O n average, S E I D A R speeds up the overall synthesis 
t ime by 1.2 times, model bui ld ing by 1.54 times and model checking by 1.61 times. In some 
cases for the feasibility synthesis problem, the speedups exceed 10 times. Based on the 
experiments, it is reasonable for the user to always choose S E I D A R over A R . 

Structure of this paper 

Chapter 2 introduces the fundamental theory about Markov chains and Markov decision 
processes. Chapter 3 compares two state-of-the-art methods for the F S C ' s synthesis - belief-
based and inductive synthesis and describes their benefits and l imitat ions. In Chapter 4, we 
introduce the novel a lgori thm that uses inheritance dependencies to accelerate the inductive 
synthesis - I D A R and its extensions. Chapter 5 provides the experimental evaluation of the 
proposed improvements. Chapter 6 summarises the results and describes ideas for future 
work. Final ly , Appendices A and B describe the contents of the included storage media 
and the basic information to get started wi th P A Y N T . 
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Chapter 2 

Preliminaries 

This chapter covers the fundamental concepts essential for understanding the subject of 
this paper. It begins w i t h an introduct ion to the Markov model and Markov chains. Then , 
it gradually delves into the principles of par t ia l ly observable Markov decision processes and 
the role of finite-state controllers. 

2.1 Markov Mode l and Discrete-Time Markov Chains 

A Markov model is a stochastic model representing dynamic systems characterized by the 
Markov property. Th is property, also referred to as a first-order Markov assumption or 
memorylessness, means that the probabil i ty of the next observation depends only on the 
current state, regardless of past observations [17]. 

Definition 1 ( D T M C ) . [7, 8] A discrete-time Markov chain (DTMC, MC) V is a tuple 
(S, so, P), where 

• S is a finite, non-empty set of states, 

• so G S is the initial state, 

• P : S x S —> [0,1] is the transition probability matrix, where 

and which follows the Markov property: 

IPpQ;+i = -Sfc+i | Xk = Sk,..., X0 = so] = F[Xk+i = Sk+i | Xk = sfe] = P(sk, Sfc+i), 

where Xk £ S is a random variable describing the state of T> i n t ime k > 0. 

The transi t ion probabi l i ty matr ix P is a two-dimensional array representing a l l possible 
transitions between the states of S, n = \S\: 

Vs G S : P(s>s') = 1 

s'es 

P := 

P(so,so) 
P(si,s0) 

P(s0,si) 
P(si,Sl) 

P(s0, Sn-l) 
P(si, Sn-i) 

P(sn-1,s0) P(sn-1,s1) P(sn-l,Sn-l) 

G 



Figure 2.1: A discrete-time Markov chain ( M C ) for a 3-sided die. 

A transition probability graph is a commonly used graphical representation of M C , as shown 
in Figure 2.1. Nodes represent states and arrows indicate non-zero transitions [8]. A n arrow 
from the outside often depicts the in i t i a l state. States from which it is possible to transi t ion 
back to itself w i t h probabil i ty 1 are called absorbing. A path a; is a non-empty sequence 
of states obtained by execution of an M C [24]. Probabi l i ty of a finite path ujfin can be 
computed as follows: 

1 i f n = 0 
P(u0,uJi)---P(ujn-i,ujn) i f n > 0 ' 

where oúí is the i t h state of uifm and n = \ujfin\- A transient probability tn(s) := F[Xn = s \ 
Xq = so] represents the probabi l i ty that the system is i n state s at the t ime step n , assuming 
that the agent started its operation i n the in i t i a l state sq [8]. Transient probabil i ty tn(s) 
directly depends on the transient probabilities of a l l states of the system at t ime n — 1. 
Equa t ion (2.1) is known as the Chapman-Kolmogorov equation for the n-Step Transition 
Probabilities. 

*»(*) = tn-l(s')P(s',S), (2.1) 
s'es 

to(s) 
0 i f s ^ s0, 
1 i f S = So. 

Let tn := [tn(s) | s € S] denote the row vector of transient probabilit ies at the time 
step n. It can be computed using the transi t ion probabil i ty mat r ix by (2.2): 

tn = t „ _ i P . (2.2) 

To calculate a bounded reachability rn<fc(s) of a state s, it is necessary to modify the 
M C ' s structure [7]. B y making state s absorbing, its transient probabil i ty accumulates w i th 
each step, resulting in rn<k(s) = tk(s). A n essential aspect of M C ' s analysis is computing a 
probabil i ty of eventually reaching a set of states B. It is also called an unbounded reachability 
probability rs of B from s. If B is not reachable from s, then rs = 0, and rs = 1 i f s € B. 
Otherwise, rs is computed using equation (2.3). 

E 
s'es 

r» = 2^ P(s,s')r8,. (2.3) 
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Example 1. Simulating a 3-sided die with a fair coin. 
Let us simulate the behaviour of a 3-sided die using coin tosses. The probabil i ty of 

tossing each side has to be equal. The corresponding M C is i l lustrated i n Figure (2.1). 
a) W h a t is the probabil i ty of completing the s imulat ion w i t h i n a m a x i m u m of 4 coin 

tosses? The correct approach is to use the equation (2.2) and summarize the values of 
transient probabilities for states 1, 2, 3, which are already absorbing: 

0 0 " 
0.5 0 
0 0.5 
0 0 
1 0 

0 1 . 

to = [1,0,0,0,0,0] 

tA = t 0 P 4 = [0.0625, 0, 0, 0.3125, 0.3125, 0.3125] 

r „ < 4 ( l , 2, 3) = U(l) + U(2) + t 4 (3) = 0.9375 

b) Verify the correctness of the created protocol ( M C ) , ensuring that each side of the 
die is tossed w i t h the same probabi l i ty of | . Us ing equation (2.3) for state 3: 

XSQ = 0 . 5 x S l -|- 0 . 5 x S 2 

xSl = 0 . 5 x i + 0.5x2 

xS2 = 0 . 5 x S o + 0.5x3 

x\ = 0 , x 2 = 0 , x 3 = 1 

The solution to this system of equations is x S o = | . Us ing the same approach, x S o for 
eventually reaching states 1 and 2 are also ^ . Therefore, the protocol is correct. 

• 

2.2 Markov Decision Processes 

This section is dedicated to the M C ' s extension called the Markov decision process ( M D P ) . 
It is a complex model that can cope wi th more complicated tasks, which M C would not be 
able to handle. M D P introduces the concept of controlled actions and is a core model for 
sequential decision-making. 

Definition 2 ( M D P ) . [7, 15] A Markov decision process (MDP) Mis a, tuple (S, s0, Act, P), 
where 

• S is a finite, non-empty set of states, 

• so G S is the initial state, 

• Act is a finite, non-empty set of actions, 

• P : S x Act x S —>• [0,1] is the transition probability function, where 

Vs G S, V a G Act : ^ P(s, a, a') G {0,1}. 
s'es 

P = 

0 0.5 0.5 0 
0 0 0 0.5 

0.5 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 
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Figure 2.2: A n example of Markov decision process ( M D P ) . 

If X^s'eS P(s> a> s') = a c t i ° n a is called enabled i n s [7]. ^4c£(s) denotes the set of a l l 
enabled actions for s and is required to be non-empty. [15] The behaviour of an M P D Ai 
can be described as follows. The agent starts the operation from the in i t i a l state sq. If 
after n > 0 steps the current state is sn, a choice between enabled actions Act(sn) needs to 
be done. If the agent lacks addi t ional information about the frequency of available actions, 
it is selected nondeterministically. The next state s „ + i is selected randomly according to 
the dis t r ibut ion P(s,a, •). A n example of M D P is shown i n Figure 2.2. Th is graphical 
representation is inspired by [15]. 

Unl ike M C , a path it = sq —> s\ —> ... > sn in M D P also includes selected actions. 
Its probabil i ty can be computed as follows: 

71—1 

= I I P(sk,ak,sk+1). 

However, transient analysis for M D P is impossible without knowing how actions are se­
lected. Essentially, an M C is a special case of an M D P where only one action can be 
executed i n each state. The resolution of nondeterminism is crucial for determining proba­
bi l i ty measures, and this resolution is performed by deterministic schedulers (policies). 

Definition 3 (Scheduler). [7]Let M = (S,s0,Act,P) be an M D P . A scheduler for M is a 
function a : S+ —>• Act, such that 

V s 0 s i • • • sn e S+ : CT(S0SI • • • sn) G Act(sn). 

The path 
«0 «1 «2 7T = S0 > Si > S2 > • • • 

is called a cr-path i f 
V i > 0 : cti = a(so ... Si). 

A n important note: actions are not preserved i n the history sos\.. .sn, because each 
action ai, i < n is already chosen deterministically by a. If at some point any path fragment 
is Si — ^ and a(so ... Si) ^ ai, this path is not a cr-path. 
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Figure 2.3: M D P for cleaning schedule. 

Definition 4 ( M C induced by M D P ' s scheduler). [7] Let M = (S,s0,Act,P) be an M D P 
and a a scheduler on M. A MC induced by MDP's scheduler is a Markov chain M.a = 
(S+, so, Pa), where for 9 = so^i • • • sn: 

Pa(9, Osn+i) = P(sn, a(9),sn+i). 

A c t u a l state i n A4a depends on the history u, which can be infinite. It means, that 
even if M. is finite, Ma is infinite. Between each cr-path of M. and paths uia in Ma exists 
one-to-one correspondence. For a cr-path 

«0 al a2 

n = so —> si —> S2 —> • • •, 

and 9n = sosi... sn the corresponding ua pa th is 
^o- = 9q9\92 .... 

Example 2. Cleaning schedule using MDP (inspired by [7]). 
A n n a and B o b are planning a cleaning schedule for their apartment. They have created 

an M D P (Figure 2.3) Á4 that allows them to either flip a coin (action a) or directly assign 
cleaning to someone {(5 and 7 ) . A c t i o n p represents the cleaning itself. They have proposed 
two approaches: a) each time, the coin decides who w i l l clean up; b) the coin makes the first 
decision, after which they alternate. Scheduler aa always selects a i n s, while scheduler a\, 
selects a only as the first action; actions j3 and 7 are chosen depending on sn-\: 

{ a if n = 0 
(3 if sn-i = B 

•t A 
7 it sn-i = A 
p otherwise. 

B y gradually following aa and erf,, M.Ca (Figure 2.4) and A4ab (Figure 2.5) are obtained. 

• 
Definition 5 (Fini te-memory scheduler). [7] Let Á4 = (S, so,Act, P) be an M D P . A finite-
memory scheduler for M. is a tuple u / m = (A?", 710,77, 5), where 

• N is a finite set of nodes, 

• no is the initial node, 
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Figure 2.5: Induced M C for coin flipping 
Figure 2.4: Induced M C for coin nipping. and alternating. 

• 77 : N x S —>• ^4ct is the action selection function, V n G iV, Vs G 5 : 77(71, s) G ^4c£(s), 

• 5 : N x S —> N is the t ransi t ion function. 

A memoryless scheduler is a finite-memory scheduler w i th just a single node. The 
behaviour of a finite-memory scheduler c r / m for an M D P . M can be described as follows. 
The agent starts its work in the in i t i a l state so and the in i t i a l node n$. If after k > 0 steps 
the current state is Sk and the node is ilk, an action ak+i = i](nk,Sk) is selected and c r / m 

evolves its node to rik+i = 6(rik,Sk). The next state s^+i is selected randomly according 
to the dis t r ibut ion P(s,a,-). Th is principle resembles the behaviour of a deterministic 
finite automaton [7]. Therefore, an M C M!a induced by Ofm is finite. Its states can be 
represented as pairs (s,q) and the transi t ion probabilities are 

pU(s,Q), (s',q')) = p(s,v(q,s),s'), 

considering that 5(q, s) = q'. 
Model-checking algorithms for M D P s provide a systematic way to verify whether a 

given M D P meets certain criteria. There is a large number of M D P model-checking al­
gorithms, involving linear or dynamic-programming approaches [29], Probabi l i s t ic C o m p u ­
tat ion Tree Logic ( P C T L ) and Linear Temporal Logic ( L T L ) [15], etc. These algorithms 
involve analysing the probabil ist ic behaviour of systems, computing probabilities for spec­
ified properties, and leveraging formal logic specifications to ensure correctness. 

2.3 Partially Observable Markov Decision Processes 

This section introduces the concept of par t ia l ly observable Markov decision processes. C o m ­
pared to M D P , P O M D P is a more general and realistic model, assuming that there is 
uncertainty about both the effects of actions and the true state of the world. 

Definition 6 ( P O M D P ) . [30, 3] A partially observable Markov decision process (POMDP) 
is a tuple V = (M, Z,0), where 

• M. = (S, so, Act, P) is the underlying MDP, 

• Z is a finite set of observations, 
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Figure 2.6: A n example of par t ia l ly observable Markov decision process ( P O M D P ) . 

• O : S —>• Z is a deterministic observation function. 

P O M D P consists of an underlying M D P supplemented wi th observations and the obser­
vation function - the behaviour of M D P is also preserved i n P O M D P . Thei r ma in difference 
lies i n the presence of observations Z , corresponding to the properties of the world, which 
can be detected by the agent's sensor [27]. The observation may be the same across multiple 
states. The agent lacks the knowledge of its current state and has information solely about 
the observation [30]. 

B y integrating observations into the M D P from Figure 2.2, the P O M D P from Figure 2.6 
is obtained. For simplicity, observations are indicated by colours: Z = { , O, O}. The 
agent receives the same observations i n states marked wi th the same colour. Th is graphical 
representation of P O M D P is inspired by [3]. 

Each path tt = so^o • • • sn has its observation trace 0(ir) = 0 ( S o ) « o • • • 0(sn). Let 
last(ir) denote the last state of path tt and Paths** the set of a l l finite paths of V. Scheduler a 
is observation-based, if 

V7r,7r' G Pathsv : O(vr) = O(vr') CT(TT) = a(ir'). 

Further i n this paper, a l l P O M D P schedulers are assumed to be observation-based. A s the 
length of histories increases wi th each step, it becomes impract ica l to represent policies as 
mappings from histories to actions [27]. Therefore, there are two key problems in P O M D P 
analysis: how to represent policies and find the opt imal one efficiently 

2.3.1 R e p r e s e n t a t i o n of policies by B e l i e f M D P 

A belief 6 is a probabil i ty dis t r ibut ion over states wi th the same observation [3]. Let bo 
be the in i t i a l belief state of P O M D P V [27, 30]. Accord ing to the definition of V given 
in Section 2.3, bo = {so i-> 1} (or bo(so) = 1). Consider a time-step t, where the agent 
chooses action a and belief is bt- B y slightly modifying the Kolmogorov equation (2.1) for 
the P O M D P conditions, the probabil i ty of reaching state s' is 

F[s' | bt,a] =Y/

bt(s)P(s,a,s'). 
s£S 
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Figure 2.7: F in i t e belief M D P for P O M D P from F i g - Figure 2.8: P O M D P wi th infi-
ure 2.6. nite belief M D P . 

Under the same conditions, the probabil i ty of reaching a state w i th observation z' is 

F[z'\bt,a] = I &*>«]• 
s'eS,0(s')=z' 

Updated belief bt+i for z' and s' such that O(s') = z' is obtained using Bayes' rule: 

P[z' | b t , a] E s € s M s ) E s » € s ; o ( s " ) = * ' P ( s ' Q ' s " ) 

Equat ion (2.4) counts the probabil i ty of reaching s' w i th the awareness, that observation z' 
is received. The updated belief bt+i is a mapping of a l l states i n S to their values obtained 
by equation (2.4): 

bt+i = { s ^ bt+1(s) \ s e S } . (2.5) 

Belief encodes necessary information about previous actions and observations. Thus, a 
scheduler can be represented as a mapping from belief states to actions [27]. However, 
there is an uncountable amount of possible beliefs. A p p l y i n g such a scheduler transforms 
the in i t i a l discrete-time P O M D P into a continuous-time M D P [30]. One possible solution 
is to consider only reachable beliefs to construct an appropriate belief MDP. Let supp(b) := 
{s G S | b(s) > 0} be the support of b and 0(b) = O(s) for any s G supp(b). Denote 
b' = [b, a, z'\ an updated belief for b after taking action a, 0(b') = z'. 

Definition 7 (Belief M D P ) . [3] Let V = (S, s0,Aci, P, Z, O) be a P O M D P . A belief MDP 
of V is the M D P MB = (BM, bo, Act, VB), where 

• Bjv[ is a set of all beliefs, 

• &o = {so !->• 1} is the initial belief, 

• Act is the set of actions, 

• VB : BM x Act x BM —> [0,1] is the transit ion probabil i ty function such that 

VB{b,a,b' 
\z' | b, a] i f b' = [b, a, z'\ 

0 otherwise. 
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Figure 2.9: Infinite belief M D P for P O M D P from Figure 2.8. 

For the P O M D P depicted i n Figure 2.6, the corresponding belief M D P is finite (Fig­
ure 2.7). In such cases, the problem of finding the op t imal policy is solvable w i t h model 
checking of belief M D P . However, i n some cases, belief M D P for a discrete state P O M D P 
may have an infinite number of reachable beliefs. 

Example 3. POMDP with infinite belief MDP. 
Consider a P O M D P V, depicted i n Figure 2.8, where states so and s\ have the same 

observation . Let a = { , O H->• a} be a deterministic, observation-based and memoryless 
scheduler of V. Act ions , which are not shown explicit ly, are self-loops w i th probabil i ty 1. 
Us ing equations (2.4, 2.5) and Defini t ion 7, an infinite belief M D P from Figure 2.9 is 
obtained. 

• 
Even for a simple P O M D P , belief M D P can be infinite. Tha t means that the belief 

M D P representation of policies does not fully solve the problem of infinitely growing histo­
ries. Nevertheless, approximat ion techniques can be applied to infinite belief M D P s . This 
concept is used in a belief-based approach for the finite-state controllers' synthesis, which 
w i l l be discussed i n Section 3.1. 

2.3.2 Representation of policies by Finite-State Controllers 

This method determines the choice of actions based on a state of internal memory [22]. 
The mapping from cyclic histories to actions can be represented by a finite-state controller 
(FSC) [27]. Each F S C encodes a finite-space pol icy (scheduler). 

Definition 8 ( F S C ) . [5, 3] Let V = (S,s0,Act,P, Z,0) be a P O M D P . A finite-state con­
troller (FSC) for V is a tuple T = (N, no, rj, 5), where 

• iV is a finite set of nodes, 

• no is the initial node, 

• 7] : N x Z —>• Act is the action selection function, 

• 5 : N x Z —>• N is the update function. 

F S C can also be specified using Defini t ion 5 of finite-memory scheduler for M D P . The 
main difference is that transitions between nodes of F S C s are based on observations, not 
specific states. A l l F S C s i n this paper are considered deterministic. Us ing memory for 

14 



f g 

A 

B 

C 

D 

E 

F 

G 

Figure 2.10: F i e l d for the L R V from Example 4, which also represents a P O M D P . 

Z :-> 

M 0 1 

Z : f 

Figure 2.11: F S C for the robot, which ignores the obstacles and goes direct ly to the target. 

P O M D P ' s strategies is crucial . It allows the agent to apply different actions i n states w i th 
the same observation. 

The behaviour of an F S C J- for a P O M D P V can be described as follows. The agent 
starts its work i n the in i t i a l state so and the in i t i a l node no. If after k > 0 steps the current 
state is Sfc and the node is n&, an action o^+i = v(nk, O(sk)) is selected, and T evolves its 
node to n^+i = S(nk, 0(sk))- The next state Sk+i is selected randomly according to the 
dis tr ibut ion P(s,a, •). A n F S C is a fc-FSC, i f \N\ = k. W h e n k = 1, the F S C represents a 
memoryless policy. Denote J-^{J-^) a family of a l l (fc-)FSCs for V. 

Definition 9 (Induced M C for F S C ) . [3] Let V = (S,s0,Act,P, Z,0) be a P O M D P and 
T = (N,no,rj, S) an F S C for V. The induced MC for FSC T is a Markov chain = 
(S x N, (s0, n0), PF), where for a l l (s, n), (s', n') G S x N: 

P?{{s,n),{s',n')):--
P(s,V(n,0(s)),s') 

0 
if n' = 5(n,0(s)), 
otherwise. 

Each F S C i n conjunction wi th its corresponding P O M D P generates an induced M C . 
The number of a l l possible F S C s for a part icular P O M D P can be infinite. Therefore, the 
problem of finding the op t imal policy using F S C is undecidable [26]. However, the opt imal 
solution is not always required. Thus, the problem can be simplified to the search for an 
F S C that satisfies given requirements. 

Example 4. Robot control using POMDP and FSC. 
Consider a Luna r Rov ing Vehicle ( L R V , robot) located on the section (field) of the M o o n , 

consisting of 7 x 7 cells (Figure 2.10). The robot is i n communicat ion wi th the International 
Space Stat ion, so its field of view is l imi ted. The L R V can move up f, down left <— or 
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Figure 2.12: Induced M C for the robot, which goes directly to the target. 

Figure 2.13: F S C for the robot, which takes into account the walls and boundaries. 

right —> to an adjacent cell . There is a 0.1 probabil i ty that it does not perform the specified 
action. Therefore, after the first step, the robot does not know its exact location. However, 
its scanner receives observations from the outside world, specifically: 

O - a normal cell. 
O - a wall. If the robot moves there, it breaks. 
O - a cell next to the wal l . Warns of danger. 
O - the final goal. 
% - a cell indicat ing the boundaries of the field. If the robot goes beyond it, v is ib i l i ty 

is lost and it becomes uncontrollable. 
Hence, the field can also be interpreted as P O M D P . Its states are in format Xx, where X 

is a row of the field, a; is a column. Figure 2.10 shows a part of the P O M D P for a cell Fb. 
For clarity, the red transi t ion means an error (probabili ty 0.1), and the green one means 
success (probabili ty 0.9). States representing walls are considered absorbing. The task is 
to create a pol icy following which the L R V reaches the final goal Bf and does not break. 

a) Imagine a si tuation that N A S A has not programmed the L R V to bypass the walls. 
Suppose the L R V alternates —>• and f movements. This is realised by an F S C Ta w i t h 2 
nodes (Figure 2.11). In this case, Z means that the transi t ion is made for any given 
observation. 

Since the induced M C is too large for 7" a, Figure 2.12 illustrates only a part of V^"-. For 
clarity, the states are indicated by the colour of the corresponding field cell. The probabil i ty 
of getting into the O state is s tr ict ly greater than the probabil i ty of reaching De without a 
single error: 

P[w] = 0.9 5 » 0.59, 

where LO = FbO Fcl EcO Edl DdO Del. It means that by following Fa, 
the robot very l ikely hits the wal l . Moreover, this pol icy does not restrict the robot from 
going beyond the boundaries. 
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Figure 2.14: Induced M C for the robot, which takes into account the presence of walls and 
boundaries. 

b) Now imagine that the robot takes into account the presence of walls and boundaries. 
Let the L R V ' s behaviour be described by the following algori thm, where O(s) represents 
the current observation: 

1. Move t un t i l O(s) becomes O. 

2. Make a step back 1 unt i l success (unti l O(s) returns to O) . 

3. Make one move —>. 

4. If 0(s) is O, go to step 1. If it is , move t un t i l 0(s) becomes • . 

5. Make a step back i un t i l success (unti l 0(s) returns to O) . 

6. Move —> un t i l 0(s) becomes O. 

Note that the action i n step 3 may not always be executed, al lowing the robot to move 
i n cycles (Eb Db or Ec Dc) for some time. The algori thm corresponds to the F S C J-j, 
w i th 4 nodes (Figure 2.13), the induced M C V'Fh is shown i n Figure 2.14. Fol lowing this 
algori thm, the L R V avoids collisions w i th walls and stays wi th in the boundaries. The 
probabil i ty of the L R V reaching the target without an error is 

P[w] = 0 . 9 1 4 » 0.23, 

where OJ is the path, obtained by following green arrows of . Moreover, by following 
this policy, the robot reaches the goal w i t h a probabil i ty of 1, as the task required. Note 
that this is not the only suitable F S C for this field. 

• 
Finite-state controllers provide an efficient way of decision-making i n par t ia l ly observ­

able environments. A l though determining the op t imal pol icy using F S C s can be undecidable 
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Figure 2.15: P O M D P wi th a reward structure. 

in the general case, the focus shifts to identifying F S C s that meet given requirements for 
part icular applications. Example 4 highlights the importance of choosing the right finite-
state controller to solve certain tasks. 

2.4 Reward Structure and Value Function for P O M D P 

A reward structure is used for analysing the average behaviour of executions i n a Markov 
chain [7]. Reward is a real number describing the costs or bonuses of M C ' s transitions. It 
is used to compute quantities like t ime, energy consumption, queue size, etc. 

Definition 10 (Reward Structure) . [10] Let M = (S,s0,Act,P) be an M D P . A reward 
structure for M. is a function 1Z : S x Act x S —>• M such that either Vs, s' G S, a G Act : 
lZ(s, a, s') > 0 (JZ is positive) or Ms, s' G S, a G Act : TZ(s, a, s') < 0 (JZ is negative). 

Intuitively, the value 1Z{s, a, s') stands for the reward earned on the transi t ion from s 
to s' after taking action a. Formally, the total (cumulative) reward for a finite path 7r 
is defined as r e w ^ ^ T r ) := X]i=o 1 ^-{sii ai> si+i)- L d ; jr denote an infinite path and 
TT[*] = -sooo • • • Si a finite prefix of 7r. A total reward until reaching a set of goal states G C S 
for 7r is defined as 

( vewM,n{^) i f 3 i G N : 7r = 7r[z] A last{-K) G G A 
Vj <i: last(ir[j]) <£ G, 

rew_A4j7 .̂(7r) otherwise. 

Thus, rew_A4I7^iG'(7r) represents the cumulative reward obtained along ff un t i l the first 
visit of a goal state s G G . Let /x denote the probabil i ty dis tr ibut ion, fi^° a probability 
measure of the M C induced by M., pol icy a and in i t i a l state so for paths in M.. A n expected 
total reward until reaching G from so for policy a is 

E X P 5 U > w ( a |= OGO := / rewM,n,G^) " ^ ° ( ^ ) > (2-6) 

where P a t / i s - ^ is a set of a l l infinite paths i n . M . A s mentioned earlier, this paper assumes 
observation-based policies for P O M D P . Therefore, the expected to ta l reward calculation 
algori thm for M D P also works for P O M D P . 

Definition 11 ( M a x i m a l Expected Tota l Reward) . Let V = (S, sq, Act, P, Z,0) be a 
P O M D P . A maximal expected total reward until reaching G C S from s i n V is 

E X P ^ ( a |= 0G) := sup E X P ^ ( s |= 0G), 
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Figure 2.16: Belief M D P wi th belief reward structure. 

where £ ^ b s denotes a set of a l l observation-based policies for V. 

Comput ing the exact value of the max ima l expected to ta l reward for P O M D P is unde-
cidable. Consider the definitions of belief and belief M D P , described i n Subsection 2.3.1. 
These concepts are combined w i t h the reward structure into a belief reward structure. 

Definition 12 (Belief Reward Structure) . Let MB = (BM,b0, Act,VB) be a belief M D P 
of a P O M D P V w i t h an associated reward structure 1Z. A belief reward structure 1ZB based 
on 1Z for b, b' G BM and a G Act is given by 

B ( h _ E s e s b(s) 52s>es;0(8>)=0(b>) p(s> a> s')n(s> a>s') 
1 J •" F[0(b>) | b,a] 

Belief M D P induces a function which evaluates the expected to ta l reward in n steps for 
every given belief b. It quantifies the u t i l i ty of b considering its potential reward. Denote 
GB ••= {b G BM I supp(b) C G} a set of goal beliefs for G, M°° : = K U {oo, - o o } . 

Definition 13 ( P O M D P Value Funct ion) . Let MB = (BM,b0, Act,VB) be a belief M D P 
of a P O M D P V w i th an associated reward structure 1Z. For b G BM, a n-step POMDP 
value function Vn : BM —>• M is defined recursively as Vb(6) := 0 and 

f max V VB(b,a,b') • (KB(b,a,b') + Vn-1(b')) i f b £ GB, 

\ 0 otherwise. 

The optimal value function V* : 23^ —>• M°° is defined as V*(b) := l im n ^.oo F n ( 6 ) . It 
yields max ima l expected total reward in V for the in i t i a l belief &o = {so ^ 1} : 

E X P £ £ ( a 0 |= OG) = E X P ^ B ( 6 o N 0G b) = F*(60). 

Example 5. [10] Maximal expected total reward and belief reward structure. 
Consider a P O M D P V depicted in Figure 2.15, where lZ(si, /3, S2) = 1, other rewards 

are 0. The policy which selects a at so and (3 at s i would maximize the expected total 
reward in V. However, since O(so) = O(si) = , that policy is not observation-based. 
Consider a pol icy a which for the first n G N steps in selects a and then selects j3. The 
probabil i ty of making a transi t ion from sq to S2 i n that case is 0 .5 n , so the expected total 
reward un t i l reaching S2 is computed using equation (2.6): 

E X P £ ] 7 e ( s 0 h= 0 { s 2 } ) = 0 • 0.5™ + 1 • (1 - 0.5") = 1 - 0.5". 

For n —>• 00, the max ima l expected to ta l reward is E X P ™ ^ | S 2 | = 1. Corresponding 
belief M D P wi th belief reward structure for V is depicted i n Figure 2.16. Note that 

E X P ^ B ( { S o H + 1} |= 0 { { ^ 2 ^ 1}}) = V*{{s0' y 1}) = 1. 

• 
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Chapter 3 

State-of-the-art Methods for the 
Synthesis of FSCs 

Even though the problem of finding the opt imal finite-state controller is undecidable, F S C 
remains an effective representation of P O M D P ' s policies. Real-world tasks can be solved 
using F S C s , which satisfy given requirements. State-of-the-art methods for the synthesis of 
F S C s provide advanced and efficient techniques for the search of such F S C s . This chapter 
compares two state-of-the-art methods - belief-based and inductive synthesis, and describes 
their benefits and l imitat ions. 

3.1 Belief-Based F S C Synthesis Method 

This approach derives F S C s from finite or infinite belief M D P considering its approxima­
tions [3]. The fundamental idea is to construct a finite abstraction of the belief M D P by 
unfolding its parts and to approximate values of beliefs that w i l l not be explored. Then , 
model checking computes the under-approximative expected to ta l reward for the resulting 
finite M D P . To achieve this, finite approximation techniques - belief cut-offs and belief clip­
ping - are applied. Belief c l ipping [10] provides a higher approximat ion quali ty than belief 
cut-offs and is not fully described in this paper. The central problem of the belief-based 
F S C synthesis method is answering the question of whether the max ima l expected total 
reward exceeds a given threshold E X P ™ ^ ( s o |= §G) < A. This method aims at under-
approximating the actual value of the max ima l expected to ta l reward. If the lower bound 
exceeds A, then E X P ^ ( s 0 |= 0G) > A. 

The ma in idea of belief cut-offs is to suspend the exploration of the belief M D P at 
certain beliefs, called cut-off beliefs. Then , it is assumed that the goal state is reached 
and a sub-optimal reward is collected. 

A n under-approximative value function is Vj, : BM —>• M°° such that Vj.(6) < V*(b) for 
a l l b G BM, where Vj.(6) is a cut-off value of b. In each cut-off belief, only one transi t ion 
remains, leading to a dedicated goal state 6 c u t . T h i s t ransi t ion is assigned a reward of 
Vj.(6), which leads to an under-approximation of the exact value of a l l beliefs. Figure 3.1 
shows the updated belief M D P wi th a modified reward structure TZ' for the belief M D P 
from Figure 2.16 wi th a single cut-off belief b = {sq I-> \,s\ I-> | } . The key problem is 
to determine an appropriate under-approximative value function. Th is function should be 
computat ional ly efficient yet offer cut-off values close to the opt imum. For a positive reward 
structure, the constant value of 0 is always a val id under-approximation. A more precise 
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Figure 3.1: Belief M D P wi th cut-off approximation. 

way is to compute subopt imal expected reward values for the states of P O M D P using some 
arbitrary observation-based policy. 

In the next step, this method derives an F S C from the obtained finite belief M D P . 
Consider a belief M D P , which is already finite without applying any approximation 
techniques. Standard model-checking techniques can be used for MB to compute a memo-
ryless policy ami '• BM ~^ Act. In each b £ BM, °~mi selects an act ion that satisfies 

E X P ^ H ( 6 |= 0GB) = E X P ™ S

X ^ 8 ( & |= 0GB). 

Then, om[ can be translated into the corresponding F S C TB = {BM-, bo, V> where 5 : 
BM x Z x Z —>• BM takes into account the current and the following observations, in 
contrast to the Defini t ion 8. The action selection function is 7/(6,0(6)) = crmi(b) and the 
update function is 5(b, 0(b), z') = &', where b' = [b, crmi(b), z'], for a l l z' G Z. For a finite 
belief M D P M~\A w i t h cut-offs, a detailed explanation is provided i n [3]. 

Belief-based F S C synthesis method integrates the concepts of belief, reward structure 
and finite approximat ion techniques. Under-approximat ion of the max ima l expected to­
ta l reward value brings flexibili ty i n handling large or infinite belief M D P s . B u t at the 
same time, determining the exact value i n P O M D P is undecidable. The choice of under-
approximative value function introduces a trade-off between computat ional efficiency and 
precision. 

3.2 Inductive Synthesis of FSCs 

This approach is based on a pol icy i teration algori thm introduced i n [19]. Hansen's algo­
r i thm solves infinite-horizon P O M D P s by exploring a space of policies, which are encoded as 
F S C s [27]. The inductive synthesis framework analyses finite families of F S C s by gradually 
increasing their memory size. 

Definition 14 (Family of full fc-FSCs). [5, 21] Let V = (S, s0,Act, P, Z, O) be a P O M D P . 
A family of full A:-FSCs is a tuple (N,no, K), where 

• iV is a set consisting of k nodes, 

• no £ N is the initial node, 

• K = N x Z is a finite set of parameters such that the domain of each parameter 
k G K is V(n,z) C Act x N. 
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Alternatively, J-T often denotes the set of a l l possible fc-FSCs for V [21]. Each member of 
the family can be derived by selecting parameters for functions 77(71, z), 5(n, z) for a l l n € N, 
z e Z. Therefore, the number of different fc-FSCs i n is \J%\ = (\Act\\N\)\NWz\. The 
main problem of the family's analysis is finding the best controller w i th a fixed number of 
nodes [18]. In many experiments, certain observations may occur only i n a l imi ted number 
of states, or i n some cases, may be unique (for example, O and C from Figure 2.10). There 
is no need to use a large number of memory nodes for such observations. Instead, a memory 
restriction /_* : Z —> N is introduced, where fi(z) denotes the number of memory nodes used 
for the observation z. 

Definition 15 (Reduced family of F S C s ) . [5] Let Tk = (N,no,K) be a family of full 
fc-FSCs and /_* be a memory restriction model . A reduced family for fj, is a subfamily 
of , where k = max z e z{ / j ( ,2 )} , each (n,z) G K implies n < fi(z), and the domains Vn,z 
are as in . If 5(n, z) = n' and n' > fJ-(z'), the memory update is considered inval id for 
the resulting observation z' and is modified to 5(n, z) = no-

The reduced family for Tk decreases the number of parameter domains: X ^ e z I M 2 ) } — 
k-\Z\. Such a family provides a smaller design space of F S C s and may require fewer memory 
nodes. 

Inductive synthesis consists of two stages. The outer stage is also called a memory 
injection strategy [5]. The learner passes a selected subset of F S C s to the teacher and 
receives the best F S C wi th addi t ional information from the inner synthesis stage. F ina l ly , 
the learner either accepts the provided F S C or derives a new design space based on the 
provided information. Th is process involves the execution of three foundational steps: 

1. Adding memory: Al lows F S C s to store more information by making the growth of 
the memory size manageable. Generally, F S C s wi th a larger number of nodes can 
represent more flexible strategies and yield better results. 

2. Removing symmetries: G i v e n the topology properties of F S C s , certain controllers 
may be equivalent - encode the same policy [18]. The el iminat ion of such symmetries 
reduces the size of the family. 

3. Analysing abstractions: Gu id ing the search based on the results obtained from the 
inner stage, provided by the teacher. 

The inner stage, also called the inductive synthesis loop, describes the internal processes 
of the teacher responsible for identifying the best F S C wi th in the design space. In the 
following subsections, various realisations of the teacher w i l l be presented. However, before 
delving into these approaches, it is essential to look into their common groundwork. Denote 
Distr(X) a set of a l l probabi l i ty distributions on a finite set X. 

Definition 16 (Family of M C s ) . [4, 12, 13] A family of MCs is a tuple D = {S,SQ,K,%, 
where 

• S is a finite set of states, 

• so G S is an initial state, 

• K is a finite set of discrete parameters such that the domain of each parameter k G K 
is Vk C S, 
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(a) T>ro w i t h r0{k0) = s0, r0(k2) = S i . (b) T>ri w i t h n(k0) = s0, ri{k2) = s 3 . 

0.5 0.5 0.5 

(c) T>r2 w i t h r2(k0) = s i , r2(k2) = S i . (d) T>r3 w i t h r 3 ( f c 0 ) = s i , r 3 ( f c 2 ) = s 3 . 

Figure 3.2: A n example of a l l possible realisations of a family of M C s wi th different reachable 
states. 

• : S —>• Distr(K U 5) is a family of transition probability matrices. 

For a single M C , the t ransi t ion probabil i ty matr ix maps states to distributions over 
successor states. For the family of M C s , maps states to distributions over parameters. 
A concrete M C is obtained by instantiat ing each parameter w i th a value from its domain. 

Definition 17 (Realisation). [4, 13] Let 2) = (S, so, K, <p) be a family of M C s . A realisation 
of 2) is a function r : K —>• 5, such that r(/c) G for a l l /c G A realisation r yields 
an M C T>r = (S, so,*$(r)), where *P(r) is the transi t ion probabil i ty mat r ix in which each 
k G K in *p is replaced by r(fc). 

The set of a l l realisations of 2) is denoted as 72.®. The number of a l l possible realisa­
tions from 72® is |72®| = I l fcex 1^1' w n i c n means that it is exponential i n the number of 
parameters. 

There are two fundamental synthesis problems related to families of M C s . Threshold 
synthesis problem is to identify sets of M C s satisfying and violat ing a given specification, 
respectively. Max/min synthesis problem is to find an M C that maximises/minimises a 
given objective. Feasibility synthesis problem is a special case of the threshold synthesis 
problem, which aims to find just one realisation that would meet the specification. 

Example 6. Family of MCs with different reachable states. 
Consider a family of M C s 2) = (5, so, K, where S = {so, si, S2, S3}, K = {ko, ki,k2} 

wi th domains Vk0 = {so,si}, T4 1 = {S2}, Vk2 = { « 1 , 5 3 } and the family of t ransi t ion 
probabil i ty matrices ^ is defined as follows: 

q j ( a „ ) = 0.5 : k0 + 0.5 : k2 $ ( s i ) = 0.5 : k\ + 0.5 : k2 

¥(s2) = 0.5 : h + 0.5 : k2 q j ( s 3 ) = 1 : k0 
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A l l possible realisations of 2) are shown i n Figure 3.2. States, unreachable from SQ, are 
grayed out. Th is example demonstrates that M C s , yielded by distinct realisations from the 
same family, may have different reachable states. Let <p = IP>o .8(0{ s 3}) be a specification. 
Unbounded reachability probabil i ty of S3 for n and rs is 1, S3 is not reachable for ro and T2 • 

Then, the solution for the threshold synthesis problem is a set of realisations T = {ri,ra}. 
For <f> = Q{s3}, the solution to the max synthesis problem is either r\ or 73. 

• 

3.2.1 One-By-One Synthesis Approach 

W i t h i n this approach, each member of the family is analysed separately [14]. The teacher 
receives a family of F S C s (J7^) and a set of constraints from the outer stage. Then, it 
solves the threshold or m a x / m i n synthesis problem by enumerating through a l l realisations 
r G V? [13]. For each yielded M C Vr, model checking is performed based on the specified 
constraints. Obta ined results are provided to the learner for the next outer stage loop. 

However, as mentioned earlier, the number of a l l possible realisations from V? is ex­
ponential in the number of parameters. The to ta l number of states and parameters conse­
quently explodes, making this approach unusable for large problems [4]. Th is leads to the 
necessity of applying more advanced techniques that exploit the family structure. 

3.2.2 CounterExample-Guided Inductive Synthesis 

Similar to the one-by-one approach, this method performs an enumerative search wi th in a 
family of F S C s (or a family of realisations induced by them). The key difference lies in 
handling F S C s , which violate the specification. Such F S C provides facts, called counterex­
amples, and helps avoid the consideration of other certainly violat ing F S C s [5]. 

The C E G I S approach is i l lustrated i n Figure 3.3 [4, 12]. The learner (synthesiser) takes a 
set of realisations TtP and aims to find a realisation satisfying the specification Let 
Q C VP be a set of realisations that need to be checked. The learner selects a realisation r 
and asks the teacher (oracle, or verifier) whether it is a solution. If the teacher accepts r , 
it reports success. Otherwise, it returns a set V of realisations a l l violat ing $ including r . 
Then , the learner prunes V from Q. In terms of parameters K of the family T>, the oracle 
returns a set K' of parameters such that a l l realisations obtained by changing only the 
values assigned to K' violate <£>. 

A n intuit ive visualisation of C E G I S for a family of 16 realisations is presented in F i g ­
ure 3.4. The currently considered (violated) realisation r is marked in yellow, red indicates 
the set of other pruned realisations V \ r. Once the teacher accepts the given realisation 
(marked i n green), the a lgori thm returns the result. 

The key problem of this a lgor i thm is to compute a set V of realisations that are a l l 
violat ing Consider the threshold synthesis problem for a single specification ip. If an 
M C V Y= (p, a counterexample derived from a cr i t ica l subsystem can provide diagnostic 
information about the source of the failure. 

Definition 18 (Counterexample). Let V = (S,so,P) be an M C and s± £ S. A sub-MC 
olV induced by C C S is the M C T>\.C = (<SU{sj_}, so ; P'), where the transi t ion probabil i ty 
matr ix P' is defined as 

p l f P(s) if s e c , 
\ [s± !->• 1] otherwise. 
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Figure 3.3: Schematic view on CounterExample-Guided Inductive Synthesis approach. 
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Figure 3.4: A n example run of C E G I S . 

The set C and the sub-MC T>\.C are called a counterexample (CE) for the property P<^[0T] 
on mc v, if v i e y= P < A [0(T n (C U {s0}))}. 

Let T>r be an M C that violates the specification ip. To compute the rest of V , the teacher 
computes a cr i t ica l subsystem V^C that is then used to derive a conflict. Then , the set of 
violat ing realisations is computed directly from the conflict. 

Definition 19 (Confl ict) . Let D = (S, s0, K,*$) be a family of M C s and C C S. A conflict 
is a set Kc of relevant parameters given by \JS&C supp(^P(s)). 

Definition 20 (Generalisation). Let r be a realisation and Kc C K be a conflict. A 
generalisation of r induced by i ^ c is the set r\Kc = {r1 G | VA: G i ^ c : r(k) = r'(k)}. 

The size of a conflict direct ly impacts the size of a generalisation. Smaller conflicts 
potentially result in the generalisation of r to larger subfamilies Kc Q HP. Hence, the 
C E s must consist of a min ima l number of parameterised transitions. 

Example 7. Applying CEGIS on a family of MCs. 
Consider a family of M C s T> = (S, so, K, *p) from Figure 3.5, where S = {so, si, S2, S 3 } , 

K = {ko,k\} w i th domains I 4 0 = {si,S2}, = {so,S2,S3} and the family of transi t ion 
probabil i ty matrices ^ is defined as follows: 

¥(s0) = 0.5 : a i + 0.5 : k0 qj(ai) = 1 : h 

¥(s2) = 0.5 : s3 + 0.5 : k0 ¥(s3) = 1 : s3 

Let (p = IP<o.2(0{-S3}) be a specification. Consider a realisation r a Y= tp depicted in 
Figure 3.6a. Note that a s u b - M C T>Ta i C of I> r a w i th C = {so, -S2, S 3 } , Kc = {ko} from 
Figure 3.6b also does not satisfy (p. Thus, T>Ta \.C serves as a counterexample, covering only 
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Figure 3.5: A visualisation of a family of M C s , containing a l l its possible realisations. 

(a) T>Ta w i t h ra(ko) = S2, ra(k\) = sq. (b) T>TalC w i t h C = {SQ,S2,S^}-

Figure 3.6: A violat ing realisation of the family and the corresponding counterexample. 

parameter ko- Even wi th different values of k\, ra would s t i l l violate (p. Consequently, a 
generalisation ra^Kc contains |Vfc1| = 3 realisations, a l l of which can be rejected. 

However, for realisations w i th ko set to s\, it is not possible to construct a counterexam­
ple covering only one parameter. Therefore, each potential conflict would contain both ko 
and ki, resulting i n generalisations having only one realisation each. In that case, compared 
to the one-by-one method, C E G I S would operate even slower because of the addi t ional time 
required for searching for C E s . 

• 
This framework also can be generalised to handle multiple-property specifications. It 

can be achieved by constructing separate conflicts for each violated property. A n advanced 
oracle for computing the set of v iola t ing realisations V is presented i n [4]. Its main features 
are taking into account the posit ion of the parameters and using the model-checking results 
from an abstraction of the family. 

3.2.3 Abstraction-Refinement Framework for Inductive Synthesis 

This framework, in comparison to the one-by-one and C E G I S methods, introduces an 
orthogonal all-in-one approach. Instead of considering members of a family of F S C s 
( MCs) separately, the teacher operates w i th its abstraction, represented by a single quotient 
MDP [5]. 

Definition 21 (Quotient M D P ) . [2] Let D = (S, s0, K,*$) be a family of M C s . A quotient 
MDP of D is an M D P Mv = (S,8o,Hv,P), where P(-,r)| = «P(r) . 
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Figure 3.7: The principle of Abstraction-Refinement framework for inductive synthesis. 

Considering that a P O M D P and a family of its F S C s induce a family of M C s , another 

way to define a quotient M D P is viable [3]. For a P O M D P V and a family of fc-FSCs J-T = 

{J7!,..., Tm} a quotient M D P is an M D P M(F%) = (SxN, (s0,n0), {!,..., m}, PT*) w i th 

where P^i is the transi t ion probabil i ty matr ix of the M C induced by V and J~i, as introduced 
in Defini t ion 9. Note that actions i n quotient M D P preserve the behaviour of ind iv idua l 
realisations (FSCs ) . Therefore, it allows to switch realisations and simulate the behaviour 
of an induced M C , which is not originally presented in the family 2). Moreover, multiple 
realisations may share the same choice of action i n some states. In such cases, the act ion is 
not duplicated i n the quotient M D P and represents several realisations at the same time. A 
scheduler, which always selects the same realisation, is called consistent. Such a scheduler 
yields a val id member of the family. 

Definition 22 (Consistent scheduler). Let 2) = (S,so,K,*$) be a family of M C s and 
= (S, so,VP,P) be a quotient M D P of 2). A (memoryless) scheduler ar for r G 7 2 s 

is called r-consistent iff ar(s) = r for a l l s G S. A scheduler is called consistent iff it is 
r-consistent for some r G VP. 

Example 8. Quotient MDP and inconsistent schedulers. 
Consider the family of M C s 2) from Example 7. Note that Figure 3.5 already represents a 

quotient M D P Ai® for 2). The number of a l l possible realisations is |T4 0 | • |VfcJ = 6, but 
remains compact due to the reduction of duplicate actions, as e.g. in so each action 

is shared by 3 realisations at once. A n example of inconsistent scheduler may be generated 
by selecting ko = s2 in SQ, ko = s i in s2 and any value of k\. 

Consider a quotient M D P . M for a family of M C s T>. A l though . M overapproximates 
the behaviour of 2), model checking of s t i l l provides useful information for the further 
analysis of 2) [2, 13 ] . Let ip = P < A ( 0 { G } ) , G C S be a specification for the feasibility synthe­
sis problem. M o d e l checking of computes maximis ing and minimis ing schedulers amax 
and a m i n , which may not necessarily be consistent. These schedulers yie ld vectors pmax 

P - ^ ( ( s ,n ) , i ) = P 

• 
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A l g o r i t h m 1 Feasibil i ty synthesis for the Abstraction-Refinement framework 

Input: A family of M C s 2) = (S, SQ, K, *}3) w i th the set of realisations U?, a specification 
^ = P < A ( 0 { G } ) , G a 

Output: Real isat ion r G 'RP : T>r \= ip, or U N S A T if no such realisation exists 
X <— {RP} t> Set of subfamilies awaiting model checking 
M® <- b u i l d Q u o t i e n t M D P ( D ) > A p p l y i n g Def. 21 
while X / 0 do 

X <— any(X) 
X<-X\{X} 
M®[X] <- restrict ( .M®, A") > A p p l y i n g Def. 24 
(Pmin,^in ,Pmoi , f fm<ii ) <- modelCheck(A4 ; D[-%"], ip) 
if Pmaz(so) < A then 

return any(X) 
end if 
if Pmin(so) > A then 

continue 
end if 
if o-min is r-consistent for some r G X then 

return r 
end if 
(XT, X±) <- split(Af) > A p p l y i n g Def. 23 

end while 
return U N S A T 

and Pmin, containing upper and lower bounds of the reachability probabi l i ty for a l l states 
of the quotient M D P . One of the three possible scenarios from Figure 3.7a may occur. If 
Pmin(so) > A, there is no solution for the feasibility problem - T>r Y= ip for each realisation 
r G VP. O n the other hand, i f pmax(so) < A, a l l members of the family satisfy ip. If A 
lies between the bounds and amin is consistent, then amin is a solution. Otherwise, if amin 
is not consistent, nothing can be concluded yet due to the too coarse abstraction. In that 
case, is refined by splitting V? into two subfamilies and each of them is analysed sep­
arately using the procedure described above. The refinement loop continues un t i l either a 
feasible solution is found, or a l l realisations are rejected. The terminat ion of the procedure 
is guaranteed due to the finite number of family members. Th is approach is summarised 
in A l g o r i t h m 1. It can also be modified to solve threshold or m a x / m i n synthesis problems. 

A n intuit ive visualisation of A R for a family of 16 realisations is presented in Figure 3.7b. 
If the corresponding quotient M D P is too coarse, a set of realisations is marked in yellow. 
R e d indicates realisations certainly violat ing the specification. Once the bounds obtained 
from model checking allow for accepting the subfamily (marked in green), A R returns the 
result. 

Definition 23 (Spl i t t ing) . Let D = (5, s0, K,*$) be a family of M C s and X C VP a set of 
realisations. For k G K and predicate over S, splitting parti t ions X into 

XT = {r G X | Ak(r(k))} and X± = {r G X | ^Ak(r{k))}. 
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To avoid rebuilding the quotient M D P in each iteration, spl i t t ing is performed on the 
set of realisations, not on states of the quotient M D P . Restricting the actions of the quotient 
M D P to the part icular subfamily is crucial for the A R performance. 

Definition 24 (Restr ict ing). Let = (S, SQ,VP,P) be a quotient M D P and X C V? a 
set of realisations. A restriction of MP wrt . X is an M D P M°[X] = (S,s0,VP[X],P), 
where 11® [X] = {r \ r G X}. 

A good spl i t t ing strategy involves choosing a parameter k G K and a predicate A^, 
which would reduce the number of model checkings required to classify a l l r G X. The 
two key aspects of a good k are variance and consistency. These characteristics show how 
the spl i t t ing may narrow the difference between pm%n and pmax and how it may reduce the 
inconsistency of amin and a m a x . A n efficient strategy, proposed i n [13], selects k based on a 
light-weighted analysis of the model-checking results for jM^fAf] . 

Since the A R approach is diametr ical ly opposite to C E G I S , these methods behave differ­
ently for various models and specifications. Depending on the topology of the state space, 
C E G I S may either manage to identify smal l conflicts and analyse only a few realisations, 
or be unable to prune the state space and analyse each realisation individual ly . A s for A R , 
quotient M D P may yie ld tight bounds, so the synthesis takes only a couple of refinements, 
or on the contrary, the abstraction could be too coarse and require refining subfamilies up 
to the level of ind iv idua l M C s . 

3.3 Tools for Inductive Synthesis of Probabilistic Programs 

P A Y N T 1 (Probabil is t ic p r o g r A m sYNThes ize r [6]) is a tool for automatic synthesis of proba­
bilist ic programs, support ing the synthesis of F S C s for P O M D P s . It takes a program sketch, 
describing a finite family of finite M C s , a specification, and finds a fi t t ing realisation. A 
sketch is a probabil ist ic program w i t h holes i n the P R I S M (or J A N I ) language, and a real­
isation of the sketch is a function that maps every hole to one of its options [12]. P A Y N T 
implements an oracle-guided synthesis approach, support ing both C E G I S and A R methods 
and their hybr id combination [3]. 

The implementat ion of P A Y N T utilises the probabil ist ic model checker S torm [16], which 
is able to analyse M D P s . S torm also provides a P y t h o n A P I , which P A Y N T flexibly uses to 
construct the overall synthesis loop. W h e n analysing discrete-time models, S to rm focuses 
on P C T L logic. For S M T - s o l v i n g , P A Y N T uses Z3. 

1Available at: https://github.com/randriu/synthesis 
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Chapter 4 

Acceleration of 
Abstraction-Refinement 
Framework 

The Abstraction-Refinement framework for P O M D P s stands out among other F S C syn­
thesis methods due to its all-in-one approach. A common abstraction for the entire family 
of F S C s - quotient M D P - allows preserving the behaviour of a l l realisations wi th in a 
single M D P . Spl i t t ing of a (sub) family gradually decreases the number of compatible ac­
tions {choices) and is performed by restriction of the quotient M D P . Rest r ic t ing essentially 
applies a mask of selected choices on the quotient M D P . A t the heart of the refinement 
loop lies model checking, which is crucial for defining the upper and lower bounds of the 
abstraction. 

M o d e l checking, as a powerful tool , can offer even more useful information for the 
analysis of the family. Vectors pmax and pmin, derived from a m a x and a m i n , respectively, 
provide bounds for a l l states of the quotient M D P . However, only pmax{so) and Pmin(so) 
impact the synthesis scenario. In a feasibility synthesis problem ip = P < A ( 0 { G } ) , G C S, 
o~min serves as a memoryless and potential ly inconsistent scheduler, providing the opt imal 
action for each quotient M D P ' s state. G i v e n that masks of families applied to the quotient 
M D P may share common choices, can a m i n be reused for the analysis of other families as 
well? Is it feasible to avoid recalculating model checking mult iple times for ind iv idua l parts 
of the quotient M D P ? In this chapter, we propose improvements to the A R method that 
accelerate the synthesis of F S C s using inheritance dependencies (WAR). We also introduce 
an extended version of this a lgori thm {EIDAR) and a final product of this thesis, smart 
version of E I D A R - SEIDAR. Figures 4.1 and 4.5 provide a schematic overview of these 
algorithms, which are described in more detai l i n the following sections. 

4.1 Inheritance Dependencies within Families of FSCs 

The m a i n objective of this approach is to reduce the size of the mask for each family so 
that the op t imum obtained from model checking does not change i n comparison wi th A R . 
Model-checking results of a family [parent) can be also useful for the analysis of its direct 
subfamilies {children). Each chi ld is obtained by replacing a parent's hole w i t h one of its 
options or their interval. Therefore, the number of children in a family may be 2 or greater. 
In this section, we consider the first scenario. 
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Figure 4.1: The principle of I D A R . W h e n the op t imal choice for some state is omit ted, it 
and its predecessors are marked as vague. 

Definition 25 (Vague state). Let M® = (S,SQ,TZV,P) be a quotient M D P , X C D a 
subfamily of M C s , Cx a set of compatible choices for X and a opt the op t imal memory less 
scheduler for the parent of X. A state s G S is vague i f at least one of the following 
conditions is met: 

1. The opt imal choice for s is omit ted i n Cx'-

aopt{s) £ Cx, 

2. A t least one of the direct successors of s is vague: 

3s' G S : s' G supp(P(s, •)) A vague(s'). 

According to A l g o r i t h m 1, A R in i t ia l ly analyses the entire family HP. Therefore, this 
family is the only one that does not have a parent. Model-checking results provide the 
opt imal memoryless scheduler aopt, which allows for accessing the op t imal choice for each 
state of MP. Assume that init ial ly, the abstraction is too coarse and A R splits the family, 
for convenience, into 2 subfamilies X and y according to a hole T~L. Sets of compatible 
choices C (for the superfamily) and Cx are equal, except for the choices connected wi th % 
and left i n Cy. 

Initially, a l l states of are considered non-vague. Our approach involves two stages 
of classifying states from non-vague to vague. In the first stage, we examine states where 
the number of actions decreased after spl i t t ing. Such a state remains non-vague for a child 
inheri t ing the op t imal parent choice. Otherwise, i f the opt imal choice is omitted, the state 
becomes vague (the first condit ion from Defini t ion 25). In the second stage, we iterate 
through a l l vague states obtained i n the first stage and mark their predecessors as vague 
(the second condit ion). W h e n we are no longer certain about the op t imal choice i n a 
state s, the uncertainty propagates to a l l states, where s is reachable. Figure 4.1 illustrates 
the described principle of marking states as vague. 

Once the set of vague states V is identified, we need to use this information to create a 
mask based on the child's set of compatible choices. For vague states, a l l available choices 
are kept. For non-vague states, retaining a l l available choices is unnecessary when the 
opt imal one is known for certain. In such cases, only the op t imal choice is preserved. 
After spl i t t ing, each chi ld becomes a parent, and the a lgori thm repeats the process. It is 
important to note that spl i t t ing of the subfamily has to be performed based on the full set 
of its compatible choices, not on the mask. Otherwise, there is a risk of overlooking some 
realisations. 
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Figure 4.2: A n example of quotient M D P wi th holes. 

A l g o r i t h m 2 Us ing inheritance dependencies wi th in families of F S C s for A R 

Input: A family of M C s X, a set of compatible choices Cx 
Output: A mask 9Jt, or Cx for the first i teration 

1: if parent(A') is None then 
2: return Cx > The mask for the superfamily is not changed 
3: end if 
4: Copt <— parent Scheduler (A') 
5: V <— f m d V a g u e S t a t e s ^ , Cx, cropt) > A set of vague states 
6: V <— findVagueReachable(V) > Works w i t h predecessors of each state 
7: SDt ̂ — vagueToChoices(V, X, Cx, c r o p t ) 
8: return 9Jt 

A l g o r i t h m 2 can be considered an extension of the restrict procedure from A l g o r i t h m 1 
(row 6). It summarizes the described method and presents procedures resembling its pos­
sible implementation. A s input, the a lgori thm takes a (sub)family X and a set of com­
patible choices Cx- If X is the superfamily, the mask is Cx- Otherwise, parentscheduler 
retrieves the parent's op t imal scheduler. Procedures findVagueStates and findVagueReach-
able correspond to the two stages of classifying states from non-vague to vague. F ina l ly , 
vagueToChoices reduces Cx, and the result is returned as a mask 971. 

This improvement reduces the size of the mask compared to the set of compatible choices 
and accelerates model checking for children. In general, the fewer vague states there are, 
the smaller the mask size is. For the M D P model checking wi th the P C T L syntax, the 
algori thmic complexity is po lynomia l in the size of M D P [28]. Therefore, each non-vague 
state of the quotient M D P significantly accelerates its model checking by el iminat ing the 
nondeterminism. The consistency of I D A R and A R follows directly from Theorem 1, proved 
in the following section. 

Example 9. Applying IDAR on a quotient MDP. 
Consider a hypothet ical quotient M D P from Figure 4.2 wi th two holes %$, H\ w i th 

domains V%0 = {0,1}, = {2, 3} and a feasibility synthesis problem ip = IP<o.3(0{/})-
For states 1 and 5, T~LQ = 1 is a self-loop. In the first i teration of I D A R , a mask is the set 
of compatible choices C. M o d e l checking of MP for C returns minimis ing and maximis ing 
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Figure 4.3: M C s induced by amin and a m a x for the quotient M D P from Figure 4.2. 

Figure 4.4: Classification of quotient M D P ' s states into vague/non-vague ( I D A R , left) or 
affected/non-affected ( E I D A R , right) and the resulting masks. 

schedulers a m i n and a m a x . Figure 4.3 shows induced M C s M a m i n (left) and M a m a x (right). 
For state 3 in a m i n , bo th values of Hi are opt imal , so the choice is selected randomly. The 
resulting bounds are pmin(0) = 0, pma,x(fy = 0.55, and a m i n is not consistent, therefore, the 
abstraction is too coarse. Let M® be split i n Hi into X and y , where Cx = C\{3 : Hi = 2} 
and Cy = C \ { 3 :Hi = 3 } . 

For the chi ld X, the opt imal choice was omit ted only i n state 3. Thus, i n the first 
stage of I D A R , only state 3 is marked as vague. State 0 is its only predecessor, so after 
both stages of classification, there are two vague states, as shown i n Figure 4.4 (left). For 
non-vague states, only choices from a m i n are preserved i n DJlx- Note that the new upper 
bound p m ax(0) = 0.4 is less than the previous one. 

Consider that A R is a D F S algori thm (as implemented i n P A Y N T ) and children of X 
are analysed earlier than y . Let X be split i n Ho into X' (preserves Ho = 0 i n each state) 
and X" (Ho = 1). A H holes i n X' are substi tuted by some value and 9Jlx' = Cx'- M o d e l 
checking for X' provides P ( 0 { / } ) = 0.2, satisfying ip. The resulting realisation is obtained 
by substitutions Ho = 0 and Hi = 3. 

• 
I D A R accelerates model checking by reducing the number of compatible choices. Be­

cause of that, sometimes I D A R can narrow the model-checking bounds. If the upper bound 
passes down the border A after applying the mask, the number of A R iterations can also 
decrease. However, narrower bounds do not guarantee that a l l realisations of the subfamily 
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Figure 4.5: The principle of E I D A R . W h e n is some state the op t imal choice is omit ted or 
leads to an affected state, it is marked as affected. 

meet the specification. For the feasibility synthesis problem, a consistent amin is certainly a 
solution. Otherwise, we cannot accept the entire subfamily based on the bounds, provided 
by the mask. Each solution for the threshold or m a x / m i n synthesis problems should be 
double-checked. 

4.2 Extended I D A R 

In the second stage of classic I D A R , a state is considered vague i f some of its successors 
lose the parent's op t imal choice. In this section, we propose an extended version of I D A R 
(EIDAR). It takes into account the locat ion of op t imal choices not only for states that lost 
their op t imal choices but also for their predecessors. 

Definition 26 (Affected state and affected choice). Let = (S, so, TZ®, P) be a quotient 
M D P , W C D a subfamily of M C s , X C W a chi ld of W, Cyy and Cx the corresponding 
sets of compatible choices and aopt the op t imal memoryless scheduler for W. A state s G S 
is affected i f its op t imal choice for the parent aopt(s) is affected. A choice q G Cyy is affected 
if 3s G S : cropt(s) = q and at least one of the following conditions is met: 

1. q is omit ted i n Cx'-

q i C x , 

2. q leads to an affected state: 

3s G S : s G supp(P(s0, q)) A af f ected(s), 

where sQ is the origin state of q. 

Initially, a l l choices and states are considered non-affected. The E I D A R approach also 
consists of two stages. Let Q be a set of affected choices, in i t ia l ly empty. In the first stage, 
al l opt imal and omit ted choices are added to Q (the first condit ion from Defini t ion 26). In 
the second stage, E I D A R takes a choice q from Q and marks its origin state sQ as affected. 
Then , a l l unique op t imal choices leading to sQ are added to Q (the second condition). 
W h e n Q becomes empty, we obtain a set A of a l l affected states. Figure 4.5 illustrates the 
described principle of mark ing states as vague. The mask of result choices STJt is created 
in the same way as in A l g o r i t h m 2. Unl ike I D A R , its extended version creates the set of 
affected states by going directly through opt imal choices to their origin states. E I D A R 
significantly reduces the number of affected states compared to the vague ones. Therefore, 
the resulting mask for E I D A R is smaller, contr ibut ing to a more accelerated model checking. 
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A l g o r i t h m 3 Extended I D A R 

Input: A family of M C s X, a set of compatible choices Cx 
Output: A mask or Cx for the first i teration 

1 if parent(X) is None then 
2 return Cx > The mask for the superfamily is not changed 
3 end if 
4 > A set of affected states 
5 o opt parent Scheduler (X) 
6 Q <— optOmit tedChoices(A' , Cx, o-opt) > A set of affected choices 
7 while Q / 0 do 
8 q <- any(Q) 
9 Q<-Q\{q} 

10 s0 <— stateOrigin(q) 
11 A <- Au {s0} 
12 C <— optLeadingChoices(s 0 ) > A set of a l l opt imal choices leading to s0 

13 while C / 0 do 
14 I <— a n y ( £ ) 
15 £ ^ £ \ { l } 
16 if not wasInQ(Z) then 
17 Q u { / } 
18 end if 
19 end while 
20 end while 
21 9Jt <— affectedToChoices(^4, -Y, C ^ , <xopt ) > Similar to vagueToChoices from I D A R 
22 return 9Jt 

A l g o r i t h m 3 summarises the described changes. The input and output remain the same 
as i n A l g o r i t h m 2. Procedure optOmittedChoices corresponds to the first stage of E I D A R . 
The set of a l l op t imal choices leading to the state s0 is obtained using optLeadingChoices. 
The resulting mask is computed using affectedToChoices that is identical to vagueToChoices 
from I D A R . It is important to note that each choice can only enter Q once; otherwise, the 
algori thm might get into an endless loop. 

Observation 1. After applying E I D A R for a subfamily of M C s , the M C induced by its 
opt imal scheduler cannot have a transi t ion from a non-affected state to an affected state. 
Each non-affected state has a single choice i n the mask - the op t imal one from the parent's 
scheduler. Accord ing to A l g o r i t h m 3, the origin state of such choice should have become 
affected earlier. 

Theorem 1. Model checking of a quotient MDP for a given subfamily of MCs finds the 
same optimal result (probability or reward) for classic AR and EIDAR. 

Proof Let = (S, s0, VP,P) be a quotient M D P , W C T> a subfamily of M C s , X C W 
a chi ld of W, dyy the op t imal scheduler for W . Denote and o x the op t imal schedulers 
for X obtained by A R and E I D A R , respectively. Accord ing to Observation 1 there are two 
possible scenarios for E I D A R : 

I. O n l y non-affected states are reachable i n the M C MaE induced by o~x (Figure 4.6, 

left). It means, that a x and cryy are identical and the op t imum does not change. 
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Figure 4.6: Different scenarios of the affected states' locat ion for the M C induced by the 
opt imal scheduler using E I D A R . 

Since a l l choices of the resulting mask for E I D A R are also available in the A R ' s mask, 
both these methods provide the same opt imum. 

II. The in i t i a l state SQ is affected, and there is an unl imi ted number of „non-affected 
zones" in A4aE (Figure 4.6, right). E a c h zone contains only non-affected states. 
Similar to scenario I., bounds pmax and pmin for states i n these zones are preserved 
from ayy. It means, that each non-affected state for E I D A R and A R contains the same 
opt imal results. Since a l l compatible choices are preserved i n each affected state, the 
final op t imum for SQ is the same for E I D A R and A R . Note that al though the opt imal 
results are equal, the provided F S C s are not necessarily equal. A R could find an F S C 
w i t h the same value, but different selected choices - transitions from non-affected 
states to the affected ones are not blocked for A R . 

Thus, E I D A R is consistent w i th A R . Since the mask for E I D A R is a subset of the 
I D A R ' s mask, I D A R is also consistent w i th A R . • 

Example 10. Applying EIDAR on a quotient MDP. 
Consider the quotient M D P M® and the feasibility synthesis problem ip = IP<o.3(0{/}) 

from Example 9. The first i teration of E I D A R is similar to I D A R and A R . It produces 
the same schedulers amin, a m a x and the same subfamilies X and y. The only op t imal and 
not compatible choice for X is 3 : 7i\ = 2. Therefore, after the first stage of E I D A R , A 
contains only state 3. G iven that amin from Figure 4.3 (left) is the op t imal scheduler and 
it does not include the choice 0 : Ho = 1, there are no states marked as affected during the 
second stage. A s a result, A = {3} (Figure 4.4, right) and the choice 0 : Ho = 1 is omitted 
from the mask 911 x • 

The result of applying 9Jtx on is an M C , yielding P ( 0 { / } ) = 0, thus satisfying ip. 
However, as mentioned i n the previous section, this does not guarantee that a l l realisations 
of X meet (p. There are two possible realisations in X: r i ( ' H i ) = r2(H\) = 3, r\(Ho) = 0 
and T2{Ho) = 1- Model-checking results for r\ and r2 are 0.2 and 0, respectively. They both 
meet given ip and can be accepted as possible solutions. If the value of A was 0.1 instead 
of 0.3, accepting both n and r2 would be inappropriate. Compared to I D A R , E I D A R 
found a suitable realisation after just one spl i t t ing. 

• 

36 



Extended I D A R better minimises the mask's size than I D A R . A s w i l l be shown in more 
detail in Chapter 5, in some models the number of affected states is 37 times less than 
the number of vague states. Further i n this work, the phrase „ ( E ) I D A R " serves to avoid 
referring to a specific version of the inheritance dependencies algori thm. 

4.3 Smart E I D A R 

The experiments described in Chapter 5 show that ( E ) I D A R does not always accelerate 
the inductive synthesis. Sometimes, due to the different topology of P O M D P models, the 
number of vague/affected states of its quotient M D P is so large (around 95%) that the 
classic A R terminates faster. The t ime spent on classifying states is often longer than 
the t ime saved by ( E ) I D A R compared to A R . A n d yet, models w i th a smal l percentage of 
vague/affected states and a large average number of choices per vague/affected state showed 
positive results for ( E ) I D A R . A n extension called Smart E I D A R (SEIDAR) is designed to 
save the user from manual ly choosing between A R , I D A R and E I D A R when working wi th 
any P O M D P model. 

I D A R and E I D A R complement the restrict procedure from A l g o r i t h m 1. Since a l l 
three described methods produce equally val id masks, although, w i th different sizes, the 
inductive synthesis can switch the method in different iterations during its runtime. The 
main parameters for making this decision are: 

1. The size of the superfamily. For smaller families of F S C s , using ( E ) I D A R is not 
profitable, since their model checking t ime is already short, compared to the overall 
synthesis t ime. 

2. Percentage of vague/affected states. The lower the percentage - the smaller the mask. 

3. The number of selected choices per vague/affected state. Effectively combines the first 
two parameters. The larger this number, the larger the quotient M D P size and the 
smaller the number of marked states. 

I D A R and E I D A R require auxi l iary structures for their run, so switching between these 
methods would take some time to ini t ial ize the structures. The synthesis also cannot 
be ini t ial ised wi th classic A R , as it is impossible to determine the above parameters in 
A R . Switching from E I D A R to A R showed the best results among a l l available options. 
Implementation of S E I D A R in P A Y N T first analyses 20% of family members (or runs a 
max imum of 100 iterations) on E I D A R . Collected statistics of the parameters are used to 
decide i f P A Y N T should switch to A R or remain in E I D A R . For convenience, switching 
takes place only once. The values of the parameters for P A Y N T were determined based on 
the conducted experiments. In this paper, S E I D A R from Section 5.5 is assumed, but there 
is an unl imi ted number of possible variations for its realisation. 
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Chapter 5 

Experimental Evaluation 

This chapter provides the experimental evaluation of the A R improvements described in 
Chapter 4. F i rs t , the main aspects of implementat ion and the P O M D P models, used for the 
testing, are described. Then follows a series of experiments comparing A R , I D A R , E I D A R 
and S E I D A R . A s a result, the following research questions are answered: 

Q l : D o conducted experiments confirm the consistency of ( E ) I D A R and A R ? 
Before s tudying how our methods accelerate the synthesis of F S C , it is necessary to 
perform the test of correctness for our implementation. Our methods must yield F S C s 
wi th equivalent op t imal probabili t ies/rewards compared to A R . 

Q2: W h a t impact do our methods have on the synthesis? A s shown in E x a m ­
ples 9 and 10, ( E ) I D A R affects the inductive synthesis i n a specific way. How do the 
narrowed bounds provided by model checking of a quotient M D P affect the number 
of iterations of the selected algorithm? 

Q3: Does E I D A R perform better compared to I D A R ? A l though in theory, E I D A R 
outperforms I D A R , this is not always the case i n practice. Computat ional ly , E I D A R 
is more complex and i n some cases, it affects its efficiency. The overall speedup, along 
w i t h the speedup of model bui ld ing and model checking, was measured on an existing 
benchmark containing several models. The answer to this question also affects which 
method should form the basis of S E I D A R . 

Q4: Does S E I D A R outperform A R ? S E I D A R saves the user from choosing which 
method to use for a part icular model. Therefore, the main contr ibution of this work 
is S E I D A R . Is it reasonable to always prefer S E I D A R over A R ? 

5.1 Implementation 

A l l described improvements are implemented i n P A Y N T (see Section 3.3) using P y t h o n 
wi th C + + bindings for efficiency. The mask of selected choices 9JI must be a C + + bit 
vector due to the existing implementat ion of P A Y N T . Therefore, when the program needs 
to manipulate a bit vector directly, cal l ing the appropriate function from C + + is more 
profitable. Also , as practice shows, frequent access to the transi t ion matr ix of the quotient 
M D P is t ime-consuming, since it is necessary to iterate through each state, each row (choice 
of the state) and each column of the matr ix (destination states). Hence, the transi t ion 
matr ix is also accessed mostly i n C + + code. 
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M o d e l \S\ \A\ \Z\ Spec. M o d e l \s\ \A\ \Z\ Spec. 

web-mall 8 20 5 Rmax drone-4-1 1226 2954 384 p 
1 max 

grid-avoid-4-0 17 59 4 Pvaax hallway2 1500 7492 20 Rmax 
4x3-95 22 82 9 Rmax rocks-12 6553 32k 1645 Rmin 

mini-hall2 27 77 12 Rmax refuel-20 6834 25k 174 Rmax 
query-s2 36 70 6 Rmax rocks-16 I l k 54k 2761 Rmin 
refuel-06 208 565 50 P 

1 max 
L R V 18k 105k 2242 Rmin 

network-prio 19k 34k 4909 Rmax 

Table 5.1: Summary about the selected benchmark of P O M D P s . 

To make our algorithms work, it is necessary to initialise auxi l iary structures. For 
I D A R , this is a vector storing sets of direct predecessors for each quotient M D P ' s state. 
For E I D A R , this is a mapping from choices to their corresponding state. In classic P A Y N T , 
a l l available choices are numbered from zero and only a mapping from states to choices is 
available. Since accessing the transi t ion mat r ix is necessary to create both structures, the 
corresponding functions are called from the C + + binding. 

The second stage of I D A R , which includes i terating through a l l vague states and marking 
their predecessors as vague, is implemented as a D F S procedure. A s for E I D A R , the set 
of affected choices Q from A l g o r i t h m 3 is represented by a queue. A n auxi l iary bit vector 
stores the information about choices that already visi ted Q to ensure the uniqueness of the 
choices i n the queue. 

The key procedure of ( E ) I D A R is affectedToChoices (vagueTo Choices). Initially, the 
mask 9JI is created as a bit vector of ones. For non-affected (non-vague) states, the value 
of a l l non-optimal choices in the mask is reset to zero. Since of a l l the choices, only those 
compatible w i th the family are needed, a bitwise A N D operation is performed between 
the mask and the vector of compatible choices. The resulting mask is used later for model 
bui lding and model checking of the family. A detailed manual on running P A Y N T , including 
new flags for implemented improvements, is provided i n Append ix B . 

5.2 Selected Benchmark 

The benchmark was run on a single core on Intel i5-10300H @2.5GHz C P U and 1 6 G B 
of R A M . It includes models of varying complexity and size (one model can have multiple 
instances) to check whether S E I D A R can handle any problem no worse than A R . A l l selected 
P O M D P models, except for the LRV, were taken from [9, 11]. Table 5.1 summarises 
the number of states the to ta l number of actions \A\ := Yls \Act(s)\, the number of 
observations \Z\ and the specification for each included P O M D P model . Unless mentioned 
otherwise, we consider either m a x / m i n reachability probabi l i ty P or m a x / m i n expected 
to ta l reward R (in the P R I S M notation). In this and the following tables, a l l measurements 
are rounded to a m a x i m u m of three decimal places for convenience. 

The synthesis problem is given by the model instance, which is formed by the topology 
of the P O M D P model, the selected specification and the amount of memory k. A l l model 
instances included i n the benchmark can be divided into 2 groups - those where we can find 
the best F S C for a given memory in a reasonable t ime (wi th in a few minutes) and those 
where we cannot do so (the synthesis lasts up to several years or more). For experimental 
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M o d e l Memory 
O p t i m u m P/R 

M o d e l Memory 
A R I D A R E I D A R S E I D A R 

web-mall 3 6.685 6.685 6.685 6.685 
grid-avoid-4-0 5 0.929 0.929 0.929 0.929 

4x3-95 2 1.468 1.468 1.468 1.468 
mini-hall2 2 2.687 2.687 2.687 2.687 
query-s2 2 486.694 486.694 486.694 486.694 

Table 5.2: Compar ison between opt imal values for model instances, whose synthesis takes 
a short t ime (without expl ici t ly specifying the number of iterations). 

purposes, handling the second group of instances requires manual ly l imi t ing the number of 
iterations. 

A s w i l l be seen from the results of the experiments, our methods consistently accelerate 
models w i th a large design space. To better reveal the potential of S E I D A R , an LRV 
model was created, inspired by Example 4. The to ta l number of actions i n LRV is 3 times 
greater than i n network-prio-2-8-20, which leads to better performance of S E I D A R . In this 
interpretation of the L u n a r Rov ing Vehicle, there are no walls and boundaries, but minerals 
have to be collected. There are 3 minerals in a 9 x 9 field, each of which is „good" wi th a 
probabil i ty of 0.6. The robot has a sensor that allows scanning of each mineral , and the 
closer they are to each other, the more accurate the measurements. The main task of the 
L R V is to collect at least two good minerals, otherwise, it gets a penalty (reward). It is 
also penalised for every collected „bad" mineral . Accord ing to the specification, the robot 
has to reach the final cell w i th min ima l penalty. 

5.3 Consistency to A R and Impact on the Synthesis 

Since the number of iterations needed to terminate ( E ) I D A R and A R is not always the same, 
its explicit restriction may lead to different resulting F S C s . Therefore, the consistency check 
of ( E ) I D A R can only be carried out on the first group of model instances. Table 5.2 lists 
the results obtained for a l l four compared approaches (parameters for S E I D A R w i l l be 
described in Section 5.5). Different values of k were tested for each included model, and 
only one is shown in the table. 

Q l : A l l new approaches proved to be consistent w i th classic A R , thereby confirming 
Theorem 1. The opt imal result does not depend on the chosen method - the implementat ion 
can be considered correct. 

The impact of inheritance dependencies on the synthesis can be explored in two ways: 
i) how the number of iterations changed for model instances from the first group, and ii) 
how the op t imal result changed on model instances wi th a l imi ted number of iterations 
(second group). Table 5.3 answers the first question. For each smal l model instance, 
there is a change i n the number of necessary iterations. Values obtained by E I D A R are 
always different from the A R ' s values. S E I D A R , since it switches to A R in these instances, 
preserved its behaviour. The biggest change is observed i n the grid-avoid-4-0 model: the 
number of iterations for E I D A R is reduced by 30%. 

Even though model checking for ( E ) I D A R can provide narrower bounds, on some models 
(4x3-95, mini-hall2, query-s2) the number of iterations increased. The reason for this lies 
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M o d e l Memory 
Iterations 

M o d e l Memory 
A R I D A R E I D A R S E I D A R 

web-mall 3 43747 35029 35029 43747 
grid-avoid-4-0 5 107202 107202 75452 107202 

4x3-95 2 911 913 913 911 
mini-hall2 2 54403 55111 55111 54403 
query-s2 2 665 675 667 665 

Table 5.3: Compar ison between the number of iterations for model instances, whose syn­
thesis takes a short t ime. 

M o d e l Spec. Memory Iterations 
O p t i m u m P/R 

M o d e l Spec. Memory Iterations 
A R I D A R E I D A R S E I D A R 

refuel-06 p 
1 max 

3 20000 0.051 0.051 0.032 0.032 

hallway2 P-max 1 
200 

2000 
0.002 
0.025 

0.023 
0.026 

0.023 
0.026 

0.002 
0.025 

refuel-20 Pvaax 1 
1000 

10000 
0.001 
0.001 

0.001 
0.001 

0.019 
0.019 

0.002 
0.002 

rocks-16 Pmin 3 100 46 no no no 

Table 5.4: Compar ison between opt imal values for model instances, whose number of iter­
ations is expl ic i t ly l imi ted . Experiments , where no P/R value satisfying the specification 
was found wi th in the specified number of iterations, are marked wi th „no". 

in the specifics of S torm and is part ia l ly described in Theorem 1. If, as a result of model 
checking, several F S C s are opt imal at once, S to rm takes any of them. The change in 
the A R algori thm at a deep level influenced this choice. A t some point, S to rm chooses a 
different F S C , which changes the further spl i t t ing of the family and the entire outcome of 
the synthesis. Therefore, we cannot be sure how the number of iterations would change 
without running the experiment. 

Table 5.4 demonstrates the impact of l imi t ing the number of iterations on the obtained 
opt imum for larger instances. In refuel-20, E I D A R finds an F S C that is 19 times better 
than the one found by A R . However, ( E ) I D A R does not always find a more op t imal F S C 
compared to A R . For rocks-16, it d idn ' t manage to find any suitable F S C . In other ex­
periments not listed i n this table (e.g. rocks-12, LRV), the op t imal result is equal for a l l 
methods. Hence, we also cannot be sure that each method would return the same opt imal 
F S C wi th in the same number of iterations. 

Q2: Experiments show that the impact of inheritance dependencies on the synthesis is 
ambiguous. We cannot c la im that each approach would produce the same op t imum for the 
same number of iterations and vice versa. 

5.4 Evaluation of the Synthesis Time for I D A R and E I D A R 

Initially, the ma in task of this work was to create a method that accelerates model checking 
( M C ) of families of F S C s . However, dur ing the experiments it turned out that the size of 
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M o d e l k Iter. 
A R t ime (s) 

M . 
Speedup 

M o d e l k Iter. 
overall M B M C 

M . 
overall M B M C 

grid-avoid 5 - 39.4 4.94 6.51 
I 

E 
0.68 
1.11 

1.03 
1.49 

1.01 
1.46 

19.13 
9.27 

4x3-95 2 - 0.42 0.05 0.12 
I 

E 
0.98 
0.89 

1.14 
1.09 

1.16 
1.14 

0.05 
0.08 

mini-hall2 2 - 22.09 2.32 4.71 
I 

E 
0.92 
0.86 

1.08 
1.04 

1.09 
1.08 

3.3 
4.67 

refuel-06 3 20k 31.13 5.33 8.7 
I 

E 
0.79 
1.07 

1.19 
1.61 

1.06 
1.57 

11.82 
9.04 

drone-4-1 1 l k 12.75 0.64 5.94 
I 

E 
0.92 
0.95 

1.07 
1.11 

1.04 
1.07 

1.74 
1.47 

hallway2 1 
200 18.01 1.88 12.51 

I 
E 

1.02 
0.89 

1.12 
1.13 

1 
1.02 

0.87 
3.59 

hallway2 1 
2k 120.3 14.61 83.22 

I 
E 

0.77 
0.64 

0.93 
0.93 

0.76 
0.76 

9.07 
37.68 

rocks-12 1 
l k 14.67 2.16 5.97 

I 
E 

1.08 
1.59 

1.61 
3.32 

1.73 
3.73 

3.09 
3.53 

rocks-12 1 
10k 139.64 21.12 59.46 

I 
E 

1.16 
1.7 

1.76 
3.6 

1.82 29.72 
34.78 

refuel-20 1 
l k 22.04 0.9 1.66 

I 
E 

0.78 
0.75 

1.01 
0.75 

1 
0.63 

6.09 
5.62 

refuel-20 1 
10k 191.78 9.2 15.52 

I 
E 

0.81 
0.66 

1.14 
0.75 

1.08 
0.6 

55.12 
57.85 

rocks-16 1 l k 25.22 3.61 9.88 
I 

E 
0.94 
0.95 

1.21 
1.53 

1.22 
1.65 

5.37 
9.78 

L R V 
1 500 38.89 6.37 18.67 

I 
E 

1.5 
1.38 

1.83 
1.82 

1.99 
1.92 

4.51 
8.17 

L R V 
3 40 42.43 5.03 15.1 

I 
E 

1.84 
1.75 

1.99 
2.01 

2.19 
2.14 

1.22 
3.26 

network-prio 
1 100 19.14 1.11 1.27 

I 
E 

1.01 
0.96 

1.17 
1.18 

1.25 
1.28 

1.75 
3.08 

network-prio 
5 40 52.01 7.3 11.14 

I 
E 

1.24 
1.18 

1.48 
1.54 

1.59 
1.62 

4.04 
8.39 

Table 5.5: Eva lua t ion of speedups for I D A R and E I D A R . Hyphen (-) indicates that the 
experiment was completed without a l imi t on iterations. „M." represents a method, ty[ 
refers to the overall t ime spent by the method. Speedups are calculated as the A R time 
divided by the t ime of the corresponding method. A speedup less than 1 implies a slowdown. 
Models web-mall and query-s2 are not listed i n the table, as their result is s imilar to 4^3-95. 

the mask also affects the operation of other parts of the synthesis: model bui ld ing ( M B ) and 
various optimisations i n P A Y N T . Table 5.5 shows the resulting speedups. In most examples, 
t ime £M for E I D A R is longer than for I D A R . However, this does not prevent E I D A R from 
achieving better speedups (rocks-12). The worst overall speedups (slowdowns) are 0.68 
(grid-avoid-4-0) for I D A R and 0.64 (hallway2) for E I D A R . Since the overall synthesis time 
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M o d e l k Iter. 
% affected S C / A S 

M o d e l k Iter. 
I D A R E I D A R I D A R E I D A R 

grid-avoid-4-0 5 - 97 46.62 2.32 3.76 
4x3-95 2 - 32.59 31.26 4.87 4.98 

mini-hall2 2 - 32.3 30.38 4.46 4.51 
refuel-06 3 20k 55.04 40.23 8.45 13.89 
drone-4-1 1 l k 94 86 1.55 1.54 

hallway2 1 
200 43.55 43.55 1.83 1.83 

hallway2 1 
2k 42.81 42.81 1.8 1.8 

rocks-12 1 
l k 35.19 19.99 122.74 604.19 

rocks-12 1 
10k 36.77 19.17 106.97 538.44 

refuel-20 1 
l k 66.93 50.25 2.87 3.56 

refuel-20 1 
10k 65.95 46.31 2.96 3.29 

rocks-16 1 l k 37.98 2.54 180.68 852.84 

L R V 
1 500 27.36 0.74 262.18 1849.88 

L R V 
3 40 9.41 1.15 5899.88 46792.19 

network-prio-2-8-20 
1 100 52.28 52.84 78.33 54.41 

network-prio-2-8-20 
5 40 43.05 39.31 3148.47 7896.19 

Table 5.6: Calcula t ing the percentage of vague/affected states ( „% affected") and the 
number of Selected Choices per vague/Affected State ( „ S C / A S " ) for I D A R and E I D A R . 
Columns „% affected" and „ S C / A S " show the average values for a l l run iterations. 

includes tM, the speedups for M B and M C are generally better than the overall acceleration. 
The best overall speedup (1.84) is observed in LRV. A l though the overall speedup for rocks-
12 is only 1.7, M B and M C terminated 3.6 and 4 times faster, respectively. Increasing 
the number of iterations enhances the effect of the corresponding experiment w i th fewer 
iterations. If there is a slowdown (speedup) at 1000 iterations, the synthesis terminates even 
slower (faster) at 10000 iterations (hallway2, rocks-12, refuel-20). Table 5.6 compares the 
percentage of vague/affected states and the number of selected choices per vague/affected 
state for the same set of model instances. In the absolute majority of results, the number of 
affected states is less than vague ones. For LRV w i th k = 1, „% affected" decreased by 37 
times. B u t i n network-prio-2-8-20, there is a slight increase i n the percentage of affected 
states, since S torm at some point chooses a different F S C . Generally, the value of „ S C / A S " 
for E I D A R is greater than for I D A R , especially i n larger models. 

Q3: B o t h methods accelerate the synthesis. O n average, I D A R speeds up the overall 
t ime by 1.03 times, M B by 1.31 times and M C by 1.33 times. For E I D A R , the average 
speedups are 1.09, 1.59, and 1.65, respectively. However, we cannot c la im that one of the 
methods is better than the other. E v e n though there are model instances on which I D A R 
(or even A R ) copes faster, E I D A R performs better on average. Therefore, it was E I D A R 
that formed the basis of S E I D A R . 

5.5 Selection of Parameters for S E I D A R 

S E I D A R allows P A Y N T to decide whether to switch to A R or remain in E I D A R after 
a few iterations. The more iterations we perform to collect statistics, the more precise 
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M o d e l k Iter. Overa l l sp. Thresh. Fam. size % affected S C / A S 

grid-avoid 5 - 1.11 100 < 52.1 5.5 
4x3-95 2 - 0.89 100 < 28.13 5.2 

mini-hall2 2 - 0.86 100 < 40.34 4.28 
refuel-06 3 20k 1.07 100 > 42.29 13.87 
drone-4-1 1 l k 0.95 100 > 86 1.62 
hallway2 1 2k 0.89 100 < 42.3 1.84 
rocks-12 1 l k 1.59 100 > 8.19 1144.07 
refuel-20 1 l k 0.75 100 > 52.86 4.91 
rocks-16 1 l k 0.95 100 > 2.09 1553.16 

L R V 
1 500 1.38 100 > 0.74 2074.62 

L R V 
3 40 1.75 8 > 1.43 40644.47 

network-prio 
1 100 0.96 20 > 44.11 3.42 

network-prio 
5 40 1.18 8 > 73.71 13.35 

Table 5.7: Calcula t ing the size of the superfamily ( „ F a m . size"), the percentage of affected 
states and the number of Selected Choices per Affected State for E I D A R wi th the number 
of iterations, given by the threshold. A common logari thm of the size of the superfamily 
is compared wi th 15 (< or >). Its full value is not provided due to its enormous ranges 
(up to 21822 after applying the common logari thm for network-prio-2-8-20 w i th k = 5). 
Columns „% affected" and „ S C / A S " show the average values for a l l run iterations. 

the results become. O n the other hand, the fewer iterations we perform before switching, 
the greater the effect it w i l l have on the synthesis. Switching occurs at the threshold of 
100 iterations, or after analysing 20% of family members ( P A Y N T counts this value). In 
the larger model instances where even 100 iterations take a lot of t ime and memory, we 
lowered this threshold. For experimental purposes, where we manual ly l imi t the number 
of iterations, the program also switches after performing 20% of this l imi t . The measured 
parameters are described i n Section 4.3. If the superfamily's size is too small , S E I D A R 
switches to A R right after the first i teration. This prevents wasting extra t ime i n E I D A R 
and allows immediately following the op t imal method. 

Table 5.7 lists the obtained measurements. In an ideal scenario, we want to switch 
to A R in those examples where the overall speedup is less than 1. Otherwise, it is more 
profitable to remain in E I D A R . However, there are slowed-down instances (e.g. rocks-16), 
where a l l the conditions are met to stay in E I D A R : a big superfamily, a smal l percentage 
of affected states and a large value of „ S C / A S " . O n the contrary, there are also accelerated 
instances wi th smal l family sizes (16M for grid-avoid-4-0, which is 100 times smaller than 
that for 4x3-95). For this reason, it is impossible to choose the values of parameters so that 
the best approach is selected for each model . The ma in task of S E I D A R is to preserve the 
advantages of E I D A R (e.g. a big speedup of rocks-12) and eliminate its disadvantages (a 
slowdown of hallway2). 

In refuel-20 and network-prio-2-8-20 (k = 1), a switch to A R is necessary despite their 
large family size. Therefore, we need the th i rd parameter, „ S C / A S " , as its value is relatively 
small in these examples. The percentage of affected states is the highest for drone-4-1, and 
its „ S C / A S " is low. However, there are also other models not presented i n this chapter, 
such as web-mall (k = 40), where a high „% affected" (96) was obtained together w i t h a 
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M o d e l k Iter. 
S E I D A R speedup 

Switched? M o d e l k Iter. 
overall M B M C 

Switched? 

grid-avoid-4-0 5 - 1.01 1.01 1.02 Yes 
4x3-95 2 - 1 1 1.03 Yes 

mini-hall2 2 - 1 1 1 Yes 
refuel-06 3 20k 1.04 1.56 1.53 N o 
drone-4-1 1 l k 0.98 0.99 1 Yes 

hallway2 1 
200 1.03 1.02 1.03 

Yes hallway2 1 
2k 1.03 1.03 1.03 

Yes 

rocks-12 1 
l k 1.6 3.4 3.76 

N o rocks-12 1 
10k 1.72 3.65 4.13 

N o 

refuel-20 1 
l k 1.32 1.06 0.95 

Yes refuel-20 1 
10k 1.39 1.14 0.99 

Yes 

rocks-16 1 l k 0.95 1.54 1.66 N o 

L R V 
1 500 1.39 1.84 1.95 

N o L R V 
3 40 1.65 1.91 2.04 

N o 

network-prio-2-8-20 
1 100 0.96 1 0.99 Yes 

network-prio-2-8-20 
5 40 1.17 1.53 1.57 N o 

Table 5.8: Eva lua t ion of speedups for S E I D A R . The last column shows whether the switch 
to A R occurred. 

high value of „ S C / A S " (36). Hence, including „% affected" as a parameter is also crucial 
for achieving better efficiency. 

A s a result, the following thresholds are selected: 85 for „% affected" and 5.5 for 
„ S C / A S " . The whole a lgori thm for S E I D A R can be described as follows. It starts its 
operation i n E I D A R and i f the value of a common logari thm of the size of the superfamily 
is less than or equal to 15, it immediately switches to A R . Otherwise, after 100 iterations 
or a completed analysis of 20% of family members, the values of other parameters are exam­
ined. If the percentage of affected states is greater than 85 or the number of selected choices 
per affected state is less than 5.5, P A Y N T switches to A R ; i f not, it remains in E I D A R . 
Fol lowing this algori thm, only grid-avoid-4-0 and rocks-16 are not behaving according to 
the ideal scenario. 

Table 5.8 shows the final comparison of S E I D A R and A R . In most experiments, higher 
speedups are observed compared to Table 5.5. The most interesting result is obtained on 
refuel-20. For E I D A R , this model gave one of the worst slowdowns (0.66), but switching to 
A R sped it up to 1.39. Changing the methods yielded a better result than applying them 
separately. So far, it is unclear what led to this result, but the reason again may lie i n the 
algori thm for choosing the op t imal F S C in Storm. 

The worst slowdown, obtained by E I D A R for hallway2 (0.64), was converted into a slight 
speedup in S E I D A R . In LRV, where switching d id not occur, the speedup decreased by 0.1 
compared to E I D A R due to the experiments' accuracy. In experiments where switching 
to A R happened after the first i teration due to the smal l size of the superfamily, the 
acceleration is close to 1. For 4x3-95 and mini-hall2, this helped to eliminate the slowdown, 
but for grid-avoid-4-0 it reduced the speedup instead. Figure 5.1 compares the overall 
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speedups for a l l described approaches. In models w i th several model instances, the value 
obtained for a larger number of iterations (or larger k) is used i n the plot. 

Q4: O n average, S E I D A R speeds up the overall synthesis t ime by 1.2 times, M B by 1.54 
times and M C by 1.61 times. Based on the experiments, it is reasonable for the user to 
always choose S E I D A R over A R . The worst overall slowdown (0.95) is negligible compared 
to the best speedup (1.72). 

5.5.1 Solving Feasibility Synthesis Problem with S E I D A R 

A s Table 5.4 shows, in some model instances wi th a l imi ted number of iterations, our 
method can find an F S C , significantly better than the one found by A R . This led us to the 
idea of conducting addi t ional experiments, where the feasibility synthesis problem would 
replace the m a x / m i n synthesis problem. For hallway2, the corresponding specification 
is R>\, for refuel-20 - P>\. The current implementat ion of S E I D A R so far does not 
support feasibility specifications. Therefore, we made P A Y N T to stop the synthesis when 
the required op t imum was reached. 

Table 5.9 lists the measurements. For hallway2, the specified A was obtained i n I D A R 
and E I D A R wi th in just 80 iterations. Due to this, we managed to achieve record speedups: 
10.78 for the overall synthesis time, 15.23 for the M B and 10.57 for the M C . However, since 
this model has a smal l family size, in S E I D A R there was an instant switch to A R , which 
d id not lead to any speedup. Even though i n refuel-20 S E I D A R also has to switch to A R 
(because of „ S C / A S " ) , its speedup is high (more than 6). Th is happens since E I D A R needs 
only 56 iterations for its termination, which is insufficient for switching. Therefore, in this 
case, the results of E I D A R and S E I D A R are similar. 

5.5.2 Discussion 

Even though S E I D A R accelerates the synthesis of almost every model instance, i n theory we 
expected a better result. Ear l ie r in this paper we stated that for the M D P model checking 
wi th the P C T L syntax, the algori thmic complexity is po lynomia l i n its size. Therefore, each 
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M o d e l k A 
A R time ( 

A R it M . Iter. 
Speedup 

M o d e l k A 
ov. M B M C 

A R it M . Iter. 
ov. M B M C 

I 80 10.78 14.87 10.16 
hal l 1 0.02149 93.33 11.18 64.5 1464 E 

S 
80 

1464 
9.76 
1.02 

15.23 
1.01 

10.57 
1.03 

I 775 0.82 1.09 1.05 
refuel 1 0.00083 18.54 0.73 1.32 775 E 

S 
56 
56 

6.82 
6.68 

6.99 
6.89 

3.47 
3.47 

Table 5.9: Speedups of I D A R , E I D A R and S E I D A R for the feasibility synthesis problem 
wi th a threshold given by A. „AR i t" stands for the number of iterations needed for 
terminat ing A R , while „I ter ." shows the actual number of iterations, run by our methods. 

model instance should be accelerated at least as many times as the number of vague/af­
fected states is less than the to ta l number of states. However, as Tables 5.5 and 5.8 show, 
we could not speed up the overall synthesis t ime even by a factor of 2. The results ob­
tained i n Subsection 5.5.1 for the feasibility synthesis problem can be considered as luck 
rather than our algorithm's efficiency Most likely, in the model instances from Table 5.9 
S T O R M accidentally chose different F S C s and significantly affected the further spl i t t ing of 
subfamilies, so we do not take these results as a reference. 

The most controversial result was obtained on the LRV model . The results from Ta­
ble 5.6 show that we keep a l l compatible choices in only 1% of states. Then , in theory, the 
overall speedup should be large (around 100). However, as Tables 5.5 ( E I D A R ) and 5.8 
( S E I D A R ) show, in reality, the acceleration does not even reach factor 2. The reason for 
this lies in the value of „ S C / A S " , which is 8 times higher for E I D A R than for I D A R . It 
follows that non-affected states are those wi th a smal l number of compatible choices. The 
highest concentration of choices gathered in affected states. Therefore, „% affected" does 
not show the real picture of how much we reduced the size of the mask. In addit ion, the 
t ime £M spent by the selected method takes a considerable part of the to ta l synthesis t ime. 
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Chapter 6 

Final Considerations 

6.1 Conclusion 

The main goal of this work was to accelerate the abstraction-based synthesis of finite-
state controllers for P O M D P s using inheritance dependencies of F S C s ' families. Pr imar i ly , 
we intended to accelerate model checking, a key computat ional component of synthesis. 
O n the one hand, the result exceeded our expectations because model bui ld ing and other 
optimisations i n P A Y N T accelerated i n addi t ion to model checking. O n the other hand, 
this d id not lead to a very significant speedup of the overall synthesis t ime. 

We created the Inheritance Dependencies for the Abstraction-Refinement approach 
( I D A R ) and its extended, more efficient version - E I D A R . One of the goals of the ex­
periments was to find out which of these methods would form the basis of the final product 
of this thesis - Smart E I D A R . A s a result, S E I D A R starts its operation in E I D A R and 
after a few iterations decides whether to switch to A R or remain i n E I D A R . S E I D A R is 
designed to save the user of P A Y N T from choosing which method to use for a part icular 
P O M D P model . 

A l l new approaches proved to be consistent w i th classic A R . The opt imal result, re­
gardless of the amount of memory, does not depend on the chosen method. Experiments 
also show that the impact of inheritance dependencies on the synthesis is ambiguous. We 
cannot c la im that each approach would produce the same op t imum for the same number of 
iterations and vice versa. O n average, S E I D A R speeds up the overall synthesis t ime by 1.2 
times, model bui ld ing by 1.54 times and model checking by 1.61 times. Based on the exper­
iments, it is reasonable for the user to always choose S E I D A R over A R . The worst overall 
slowdown (0.95) is negligible compared to the best speedup (1.72). We also conducted addi­
t ional experiments, where the feasibility synthesis problem replaced the m a x / m i n synthesis 
problem. The record speedups were achieved: 10.78 for the overall synthesis t ime, 15.23 
for the model bui ld ing and 10.57 for the model checking. 

6.2 Future Work 

This thesis opens up a great horizon for possible future work. We applied the idea of 
inheritance dependencies only for the inductive synthesis, i n part icular A R . Probably, a 
similar approach could also be used in C E G I S or even in the belief-based F S C synthesis 
method. A l so , while wr i t ing this paper, we came up wi th the idea to look at inheritance 
dependencies from the other side. W h a t i f we use this approach between siblings (families 
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wi th a common parent)? Unfortunately, it is s t i l l unclear what information from one 
sibling can be used to speed up the synthesis of the other one. Also , in the current version 
of P A Y N T , this is difficult to implement due to the D F S algori thm used in A R . 

In some experiments, we observed a change i n the required number of iterations to com­
plete the synthesis. We explained this phenomenon by the features of the model checking 
in Storm. In the future, conducting a more in-depth analysis of the reasons that caused 
this result would be appropriate. In addi t ion, more experiments could be done and more 
suitable parameters could be selected for switching i n S E I D A R . A n updated version of 
S E I D A R would also support feasibility specifications. 
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Appendix A 

Contents of the included storage 
media 

• docs/ - the text report and its sources: 

— xshevc01-P0MDP.pdf - this text report. 

— xshevcOl-POMDP-print .pdf - the print version of the text report. 

— src/ - the source form of the text report. 

• src/ - the source codes of programs, including P A Y N T , instal lat ion script, P O M D P 
models and C + + binding. 

• README.md - contains instal lat ion instructions and user manual for running P A Y N T . 
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Appendix B 

Manual 

Installation 

Folder src/ contains the extended version of P A Y N T , which also requires S t o r m 1 and 
S to rmpy 2 . If you do not have them installed, use the instal lat ion script i n s t a l l . s h to 
instal l Storm, Stormpy and other required dependencies. Complete compilat ion might take 
up to an hour. The P y t h o n environment w i l l be available i n prerequisistes/venv. 

Running P A Y N T 

main default flags: 
— p r o j e c t PROJECT The path to the benchmark folder [required]. 
—pomdp-memory-size INTEGER Implici t memory size for P O M D P F S C s [default: 1]. 
— p r o f i l i n g R u n profiling. 

new flags: 
—use-inheritance 
—use-inheritance-extended 
—use-smart-inheritance 
— i t e r a t i o n s INTEGER 

Use inheritance dependencies ( I D A R ) . 
Use extended inheritance dependencies ( E I D A R ) . 
Use smart inheritance dependencies ( S E I D A R ) . 
L i m i t the number of iterations for the synthesis of F S C s 
(experimental purposes). 

Running selected model instances 

If you want to run e.g. a 4x3-95 model w i t h k = 2 on A R , use 

python3 paynt.py — p r o j e c t models/archive/cav23-saynt/4x3-95/ 
—pomdp-memory-size 2 — p r o f i l i n g 

To run e.g. LRV w i th a l imi ted number of iterations, write 

python3 paynt.py — p r o j e c t models/archive/cav23-saynt/lrv/ 
—pomdp-memory-size 3 — p r o f i l i n g — i t e r a t i o n s 40 

To use another method, use the corresponding flag. 

1Available at: https://github.com/moves-rwth/storm  
2Available at: https://github.com/moves-rwth/stormpy 
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