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Chapter 1

Goals of the Thesis

This work is devoted to the investigation of generation of entangled photon pairs in

the nonlinear process of spontaneous parametric down-conversion in modern photonic

structures. The thesis is composed of three main parts.

First part of the thesis covers the review of topics of quantum and non-linear op-

tics. In chapter 2, historical and current perspectives on quantum correlations called

entanglement are present. Followed by the sections related to the definition of entan-

gled pure states, measures of entanglement and list of applications of entanglement are

given. The next chapter 3 is dedicated to fundamentals of nonlinear optics. The tran-

sition from classical to quantum descriptions of optical fields is studied by means of the

quantization of electromagnetic field. Using a full quantum model, spontaneous para-

metric down-conversion is described invoking the first order perturbation solution of the

Schrödinger equation. Also some quantities needed for randomly poled crystals in chap-

ters 5 and 6 are introduced here. Methods of characterization of temporal features of

photon pairs, namely by Hong-Ou-Mandel interference and sum-frequency generation,

are described in the last section of this chapter. Chapter 4 is focused on a brief descrip-

tion of techniques of phase-matching of the interacting electromagnetic fields. Natural

phase-matching, quasi-phase-matching and stochastic quasi-phase-matching techniques

are discussed. We also shortly describe the fabrication process of periodic poling.

Second part of the thesis is devoted to the analytical and numerical studies of prop-

erties of photon pairs emitted in randomly poled structures (RPSs). In chapter 5 we

investigate the effect of random disturbances in the position of boundaries of ferroelec-

tric domains in a crystal. The random disturbances are considered to have Gaussian

probability distributions, which allow us to simplify the analytical model and reach

the average values of physical quantities of interest. Photon emission spectra and also
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photon-pair generation rates showing a linear dependence on the number of layers re-

gardless of the level of randomness are examined the first. The spectra of photons

depend strongly on the amount of randomness in such way, that a higher random-

ness leads to broader photon spectra. We also show a close relation between random

structures and linearly chirped periodically poled structures. This similarity is based

on the fact, that both kinds of structures are capable to produce photons with broad

bandwidth. This similarity provides transformation curves between the parameter char-

acterizing randomness and that giving the amount of chirping of the ordered linearly

chirped poled structures. Both structures can be alternatively compared by considering

equal spectral widths or equal numbers of generated photon pairs. Temporal charac-

teristics such as entanglement time for the studied structures decrease with an increase

of randomness. Similar behavior is observed in case of correlation time investigated

by the sum-frequency generation. Spatial distribution of photon pairs and correlation

areas show additional similarities between the random structures and linearly chirped

periodically poled structures. We also pay attention to the dependence of spectra on

temperature and fabrication induced errors.

The third part of the presented thesis contained in chapter 6 is devoted to the

investigation of the higher-multiple orders of the stochastic quasi-phase-matching in

randomly poled structures. The analysis of higher orders is motivated by the difficulties

of usual poling techniques to create alternated domains of lengths comparable to the

needed domains’ length µm required by phase-matching the electromagnetic fields of

short wavelengths. It is shown that photon-pair rates decrease for higher orders and also

for higher amount of randomness. In the spectral domain, the photons exhibit narrower

spectra for the third-order phase matching than for the first-order phase matching.

This is also reflected in the time domain by longer entanglement times accessible by the

Hong-Ou-Mandel interferometry.

The scientific results presented in this thesis are based on the following papers:

• J. Svozilík and J. Peřina Jr., Intense ultra-broadband down-conversion from ran-

domly poled nonlinear crystals, Opt. Express 18, 27130 (2010).

• J. Peřina Jr. and J. Svozilík, Randomly poled crystals as a source of photon pairs,

Phys. Rev. A 83, (2011) 033808.

• J. Svozilík and J. Peřina Jr., Higher-order stochastic quasi-phase-matching in spon-

taneous parametric down-conversion, submitted to Optics Communications.

We note that the author has also published several other papers listed on page 65
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devoted to photon-pair generation in other photonic structures than nonlinear poled

crystals.
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Chapter 2

Quantum Entangled States

2.1 Past and Present of Quantum Entanglement

Since its discovery, quantum mechanics (QM) became one of the most successful physical

theories, despite that Einstein, Podolsky and Rosen (EPR) had published a controversial

paper [1] claiming, that the QM cannot be correct in describing the physical reality.

They came up with a "gedanken experiment", in which they admitted that if one has two

particles which were allowed to interact at the beginning, then there exists a way how to

determine their mutual properties regardless of their mutual spatial separation. Their

explanation is demonstrated on a simple example using an electron spin orientation.

If one observer measures the first particle with the spin up, then the second observer

possessing the second particle measures the spin orientation with the result down and

vice versa. This was called "spooky action at a distance". However, Schrödinger figured

out, that on the contrary, their idea is a very special inherent feature of quantum

mechanics [2]. This phenomenon became later known as entanglement. In the following

years, several questions have arisen regarding the possibilities of determining properties

of entangled particles in terms of local hidden variables. This issue has been resolved

by Bell [3], who has proposed a test of validity of hidden variables theories. Nowadays,

the Bell inequality and its derivatives serve as a fundamental test of the presence of

entanglement between two quantum systems [4, 5].

For experimental demonstration of validity of quantum mechanics, sources of entan-

gled particles needed to be developed. The first sources of entangled particles (photons)

were based on the energy level cascade of Ca atoms, where the radiative transitions per-

mit a direct generation of polarization entangled photon pairs [6,7]. On the same prin-

ciple, quantum dots were also shown to be able to emit entangled photon pairs via the
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biexciton-radiative decay cascade [8, 9] later. On the other hand, the most commonly

used sources of entangled photons are based on the nonlinear optical process of spon-

taneous parametric down-conversion (SPDC) in optical crystals. In this process, the

generated photons can be entangled in many degrees of freedom, such as frequency, mo-

mentum, time, polarization and angular orbital momentum [10,11] [A11]. The emission

of entangled photons has been documented by Bouwmeester et al. [12] considering the

nonlinear anisotropic optical crystal as a source of photon twins entangled in polariza-

tion. Polarization entangled photons were directly harvested in the cross-section point

of two emission cones of each polarization. Since photons were collected in a very small

area, this kind of source has exhibited a low photon flux. Later, an idea of photon flux

enhancement was presented by Kwiat et al. [13] using two mutually-rotated thin non-

linear crystals. Beside that the post-selection based polarization entanglement can also

be created from non-entangled photon twins when they are sent on a beam splitter [14].

Advances in semiconductor technologies have allowed the development of integrated

photon-pair sources based on the Silica [15] and AlGaAs [16, 17] [A6,A8,A15] waveg-

uides. Additionally, modal entanglement in waveguides has been presented in [18, 19].

2.2 Definition of Entangled Quantum States

Let us consider the Hilbert space H12 = H1⊗H2 being composed of two spaces H1 and

H2 corresponding to two quantum particles. The state of each particle is denoted as

|Ψ〉1 (|Ψ〉2). These two particles are entangled, i.e. in an EPR state, when their global

pure state cannot be written in the product form:

|Ψ〉12 6= |Ψ〉1|Ψ〉2. (2.1)

This definition is valid for the discrete or continuous entanglement. Here we deal solely

with the continuous entanglement in frequency, time and space domains. Particularly

for the pure states, factorisability of these states can be analysed using the Schmidt

decomposition [20, 21]. One can consider a general two-photon state in the form:

|Ψ〉12 =

∫

dx

∫

dyA (x, y) |x〉1|y〉2, (2.2)

where the function A(x, y) is the probability amplitude of finding the first photon in

the state x together with the second one in the state y. The Schmidt decomposition of
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this function is expressed as:

A(x, y) =
∑

n

√

λnfn(x)gn(y), (2.3)

where the eigenvalue λn and its corresponding eigenfunctions fn and gn are obtained

as a solution of integral equations:

∫

dx′K1(x, x
′)fn(x

′) = λnfn(x), (2.4)
∫

dy′K2(y, y
′)gn(y

′) = λngn(y). (2.5)

The integral kernels are defined as:

K1(x, x
′) =

∫

dyA(x, y)A∗(x′, y), (2.6)

K2(y, y
′) =

∫

dxA(x, y)A∗(x, y′). (2.7)

We can state after inspecting Eq. (2.3) that the state is entangled when there is more

than one nonzero eigenvalue λn. From the knowledge of the number of eigenvalues we

can calculate the effective amount of contributing modes in the entangled state [21].

This corresponds to the Schmidt number K defined as:

K =
1

∑

n λ
2
n

, (2.8)

where
∑

n λn = 1 is assumed. The state is separable if K = 1. Entropy of entanglement

E [20, 22] can be expressed using the above defined eigenvalues λn as:

E = −
∑

n

λn log2(λn). (2.9)

The state is entangled if E is larger than 0.

2.3 Applications of Entangled States

Quantum dense coding and quantum teleportation are the most representative cases

of the use of EPR particles in the area of quantum information transfer. In the case

of dense coding, two bits of classical information are send via one bit of quantum

information [23]. In this protocol, entangled photon twins are shared between the

transmission and receiving stations. In the transmission station, an appropriate local
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operation (corresponding to the identity or to one of the Pauli operations) is applied on

one particle according to the information being transferred. After, the particle is send

to the receiving station, where both entangled particles are combined and information

about the applied operation is extracted. Quantum teleportation works in the similar

way. This protocol allows to transfer an unknown state of one particle to the second one,

as it has been theoretically predicted by Bennett et al. [24] and later also experimentally

confirmed by Bouwmeester et al. [12]. This protocol uses EPR particles as a mediator

of the information transfer. The particle in initial state, which is going to be teleported,

passes via the Bell-state measurement together with one of the entangled particles. Note

that in this moment the state of the initial particle is completely destroyed. The result of

measurement is then sent via a classical communication channel to the receiving station.

A uniform transformation is applied on the second particle of the EPR pair here. That

way, the teleportation is accomplished. Necessity of a classical communication channel

precludes violation of the special theory of relativity and therefore superluminal transfer

is not possible. Also quantum cryptography can take benefits of using EPR photon pairs,

as it has been presented in [25], where polarization-entangled photons are sent to two

receiving stations. In each station, the measurement of polarization in two orthogonal

basis (which are randomly changed) is performed. These two stations reveal their bases

for each measurement and separate results to two groups. The first group contains

results where the basis were different and these results of measurement are used for

testing of violation of the Bell inequality, i.e. if there is no eavesdropper. The second

group then contains the results in the same bases and so are used as an encryption key

for secured communication.

A large amount of quantum computing algorithms is based on the entanglement

[26, 27]. As it has been shown for the first time by David Deutsch [28] the quantum

entanglement permits to process a specific group of computing tasks much more faster

than the classical computers. Deutsch’s algorithm allows to determine if an unknown

function is constant for all input cases or not. Classically, one has to try all combinations

of the input variables to accomplish this task. Using the quantum entanglement, this

task is done in a single step. Famous Shore’s algorithm for the factorization of large

integral numbers [29] and Grover’s searching algorithm [30] [A10] are both also based

on the principle of initial entangled state.

In quantum meteorology, EPR states generally allow to enhance the precision of a

measurement [31, 32] in comparison with the classical approach of repeated measure-

ments. As an example, the Ramsey spectrometry of ions in the ideal decoherence-free

scenario can be considered. Here the entanglement allows to increase the precision of de-

18



termination of the frequency of atomic transition for n-ions by the factor
√
n [33]. In the

case of quantum optical coherence tomography, the utilization of entangled photon pairs

is capable to double the axial resolution of the interferometric measurement together

with the dispersion cancellation [34, 35]. Moreover, highly entangled N00N-states offer

a way how to increase the resolution bellow the Rayleigh limit in the interferometric

setups for an ultra-precise measurement of distances [36].
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Chapter 3

Nonlinear Optical Processes as

Sources of Entangled Photon Pairs

3.1 Classical Formulation of Nonlinear Optics

Nonlinear interaction of light with atoms of a medium allows to create wavelengths,

which even don’t occur in the incident light. From the classical point of view, a driven

wave-equation:

∆E− 1

c2
∂2E

∂t2
=

1

c2
∂2P

∂t2
(3.1)

derived from the Maxwell equations can be enriched by nonlinear contributions by mean

of generalizing the induced polarization P [37–39]. The induced polarization P can be

expressed as the following series:

P(r, t) = χ(1) : E(r, t) + χ(2) : E(r, t)E(r, t) + χ(3) : E(r, t)E(r, t)E(r, t) + ... (3.2)

χ(1) is the linear optical susceptibility, whereas χ(2) and χ(3) are nonlinear optical sus-

ceptibilities of the second and third order. The symbol : represents the tensor con-

tracting. The second term on the right side of Eq.(3.2) is responsible for second-order

nonlinear effects such as second-harmonic generation, sum- and difference-frequency

generation, and also spontaneous parametric down-conversion. Energy-level diagrams

of these processes are presented in Fig. 3.1. Virtual levels are marked by the dashed

line and Eg stands for the ground energy level of atoms. The third term in Eq. (3.2)

includes processes of third-harmonic generation, dependence of the index of refraction

on light intensity and other four-waves mixing nonlinear processes.

Let us now examine in detail properties of the second order nonlinear susceptibility
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(a) (b) (c)

Figure 3.1: Energy-level diagrams of second-harmonic (a), sum-frequency (b) and
difference-frequency (c) generation. Graph (c) also describes SPDC.

χ(2). In the full vector approach, susceptibility χ(2)
ijk (i,j,k=x,y,z) is the third rank ten-

sor, which consists 27 Cartesian components. Therefore, all 324 complex numbers have

to be determined for its full definition. However, symmetry properties allow to lower

this number. First of all, since the electric-field and induced-polarization in Eq. (3.1)

describe real physical quantities, all components of χ(2)
ijk must obey χ(2)∗

ijk (ω) = χ
(2)
ijk(−ω).

Susceptibility χ(2) has to also satisfy the intrinsic permutation symmetry. In the case

of loss-less crystal, χ(2) has all components real and χ(2) hence shows the full permuta-

tion symmetry. If the frequencies of interacting waves are far from atom or molecular

resonances, dispersion of nonlinear susceptibility can be omitted and the Kleinman sym-

metry is reached. Other reduction of the number of independent coefficients of suscep-

tibility χ(2) is reached, when spatial properties of a crystal are taken into account [40].

For centro-symmetric materials χ(2) vanishes.

3.2 Quantization of Electromagnetic Field

In order to reach the full quantum approach of non-linear phenomena, we utilize quan-

tization of the electromagnetic field [41,42]. The first quantization procedure starts by

introducing the vectorial potential A and the scalar potential φ. Then we can express

the magnetic-field flux and the electric-field amplitude in the form:

B = rotA, (3.3)

E = −∇φ− ∂A

∂t
. (3.4)

The Coulomb gauge requires divA = 0 and φ = 0. From the source-free Maxwell

equations in a dielectric medium, the wave equation for the vectorial potential A is

equal to:

∆A−
(

1 + χ(1)
)

c2
∂2A

∂t2
= 0. (3.5)
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The solution is assumed with the following time dependence Aαk(r, t) = Aαk(r).e
iωkt.

Periodic boundary conditions allow us to express Aαk(r) = Nk.eαk.e
ik.r. The symbol

Nk stands for the normalization constant and eαk is the unit polarization vector of

polarization α = TE,TM. The magnitude of wave-vector k is equal to k2 = ω2
k/v

2
k =

k2x + k2y + k2z .

The final solution can be expressed as the Fourier series:

A (r, t) =
∑

k

∑

α=TE,TM

Nk

(

eαkaαk (t) e
ik.r + e

∗
αka

∗
αk (t) e

−ik.r
)

, (3.6)

where the functions aαk(t) are Fourier coefficients. Substituting Eq. (3.6) to Eq. (3.4)

the electric-field amplitude reaches the form:

E (r, t) =
∑

k

∑

α=TE,TM

Nkiωk

(

eαkaαk (t) e
ik.r − e

∗
αka

∗
αk (t) e

−ik.r
)

. (3.7)

We have assumed the Fourier coefficients of the form aαk(t) = aαk(0).e
−iωkt. In a

similar way, we can express the magnetic-field flux defined in Eq. (3.3) as:

B (r, t) =
∑

k

∑

α=TE,TM

Nki
[

(k× eαk) aαk (t) e
ik.r − (k× e

∗
αk) a

∗
αk (t) e

−ik.r
]

. (3.8)

Hamiltonian of the electromagnetic field in a dielectric medium with negligible dis-

persion is equal to:

H =

∫

V

dr

(

ε0εrE
2 +

1

µ0
B

2

)

=

∫

V

dr

[

ε0εr

(

−∂A
∂t

)2

+
1

µ0
(rotA)2

]

, (3.9)

where the relative permittivity εr = 1 + χ(1), ǫ0 is the vacuum permittivity and V is

the interaction volume. This Hamiltonian can be modified using Eq. (3.6) to:

H = V ε0εr
∑

k

∑

α=TE,TM

N2
kω

2
k [aαk (t) a

∗
αk (t) + a∗αk (t) aαk (t)] . (3.10)

The explicit form of normalization function Nk is obtained by comparing this Hamilto-

nian in Eq. (3.10) with the Hamiltonian for the sum of energies of independent harmonic

oscillators:

H =
∑

k

∑

α=TE,TM

h̄ωk [aαk (t) a
∗
αk (t) + a∗αk (t) aαk (t)] , (3.11)
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where h̄ is the reduced Planck constant. We find that

Nk =

√

h̄

2V ε0εrωk

. (3.12)

Until now we have considered that the Fourier coefficients are complex functions.

The quantization of field is accomplished when we perform the exchange of complex

functions aαk (t) and a∗αk (t) by bosonic operators âαk (t) and â†αk (t). The symbol

† stands for the Hermitian conjugation. These operators are required to satisfy the

bosonic equal-time commutation relations [âαk (t) , â
†
α′k′ (t)] = δαα′δkk′ . In the last

step, we express the electric-field E in the final form:

Ê(r, t) =
∑

k

∑

α

i

√

h̄ωk

2V ε0εr

(

eαkâαk (t) e
ik.r − e

∗
αkâ

†
αk (t) e

−ik.r
)

. (3.13)

3.3 Description of Spontaneous Parametric Downconver-

sion

Spontaneous parametrical downconversion in nonlinear materials is one of the most

fascinating nonlinear optical effects. It has been theoretically predicted by Louisell et

al. in 1961 [43, 44]. In the SPDC process, a strong pump-field non-resonantly interacts

with atoms or molecules of a nonlinear medium and gives rise to an emission of two

photons, called from the historical reason a signal and an idler photon. The emission

of down-converted photon pairs is caused by random vacuum fluctuations and so the

emission time is unknown. Since photons in a pair are created together in a particular

spatial point, they are strongly correlated in time [45]. Their mutual properties are

influenced by the following conditions:

h̄ωp = h̄ωs +h̄ωi, (3.14)

kp = ks +ki. (3.15)

Eq. (3.14) corresponds to the energy-conservation law and Eq. (3.15) is the momen-

tum conservation law. Both equations determine phase-matching conditions. They are

discussed in detail in the next chapter 4.

The SPDC process is conventionally described by the following multi-mode interac-
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tion Hamiltonian Ĥint [46, 47] written in the interaction picture:

Ĥint(t) = ε0

∫

B

dr⊥

∫ 0

−L

dzχ(2)(z) : E(+)
p (r⊥, z, t)Ê

(−)
s (r⊥, z, t)Ê

(−)
i (r⊥, z, t)

+ H.c., (3.16)

where L denotes the crystal length and B means the transverse area of optical fields. The

z-dependent second-order susceptibility tensor χ(2) describes non-linearity in a material.

We would like to stress that the Hamiltonian in Eq. (3.16) is also responsible for the

generation of multi-mode squeezed light [48, 49]. In Eq. (3.16), the positive-frequency

part of classical pump electric-field amplitude is denoted as E
(+)
p . Ê

(−)
s (Ê(−)

i ) stands

for the negative-frequency part of the signal (idler) electric-field amplitude operator

defined in Eq. (3.13).

Equation (3.13) can be simplified as follows. We replace
∑

k
by V/(2π)3

∫

dk and

consider only the collinear propagation. Thus we omit the dependence of electric-fields

on the transversal coordinates r⊥. We also assume only one polarization for the signal

and idler fields. Then the electric-field amplitudes Ê
(−)
a a = s, i take the form:

Ê
(−)
a (z, t) =

1

2π

∫

dωaÊ
(−)
a (ωa) exp(−ikaz + iωat),

a = s, i, (3.17)

where the quantum spectral amplitudes Ê
(−)
a (ωa) can be expressed using the photon

creation operators â†a(ωa):

Ê
(−)
a (ωa) = −i

√

h̄ωa

2ε0cnaB
â†a(ωa)e

∗
aω , (3.18)

the symbol na is the index of refraction and εr,a = n2a.

First-order perturbation solution of the Schrödinger equation:

ih̄
∂|ψ〉
∂t

= Ĥint(t)|ψ〉 (3.19)

with the initial vacuum state |vac〉 in the signal and idler fields and the Hamiltonian of

Eq. (3.19) give the following two-photon quantum state |ψ〉:

|ψ〉 =
∫

dωs

∫

dωiΦ(ωs, ωi)â
†
s(ωs)â

†
i (ωi)|vac〉. (3.20)
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The two-photon spectral amplitude Φ introduced in Eq. (3.20) is given as follows:

Φ(ωs, ωi) = g(ωs, ωi)E
(+)
p (ωs + ωi)F (∆k(ωs, ωi)), (3.21)

where g denotes the coupling constant, g(ωs, ωi) = i
√
ωsωi/[2cπ

√

ns(ωs)ni(ωi)]χ
(2)(0),

and E
(+)
p (ωp) stands for the pump-field amplitude spectrum. Symbol χ(2)(0) means

an effective value of nonlinear susceptibility after tensor contraction. The stochastic

function F introduced in Eq. (3.21) describes phase-matching and attains the form:

F (∆k) =

∫ 0

−L

dz
χ(2)(z)

χ(2)(0)
exp(i∆kz). (3.22)

Symbol ∆k describes the natural phase mismatch for the interacting fields, ∆k = kp −
ks − ki.

Since we are interested in periodically poled crystals (see chapter 4), where neighbor

domains differ in signs of χ(2) nonlinearity, we can the function F defined in Eq. (3.22)

recast into the form:

F (∆k) =

NL
∑

n=1

(−1)n−1

∫ zn

zn−1

dz exp(i∆kz). (3.23)

Symbol NL denotes the number of domains (layers) and n-th domain extends from

z = zn−1 to z = zn.

In randomly poled crystals studied in chapters 5 and 6 the positions zn of domain

boundaries are random and can be expressed as zn = zn−1 + l0 + δln (n = 1, . . . , NL,

z0 = −L) in our model using stochastic Gaussian declinations δln. The basic layer length

l0 is determined such that quasi-phase-matching is reached (for details see chapter 4),

i.e. l0 = π/∆k0, ∆k0 ≡ ∆k(ω0
s , ω

0
i ), and ω0

a means the central frequency of field a. The

random declinations δln are mutually independent and can be described by the joint

Gaussian probability distribution P :

P (δL) =
1

(
√
πσ)NL

exp(−δLT
BδL). (3.24)

Covariance matrix B is assumed to be diagonal and its nonzero elements equal 1/σ2.

Stochastic vector δL is composed of declinations δln; symbol T stands for transposition.
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Characteristic function G of the distribution P in Eq. (3.24) takes the form:

G(δK) ≡ 〈exp(iδK · δL)〉av =

N
∏

j=1

G(δkj). (3.25)

Vector δK of parameters of the characteristic function G is composed of elements δkj .

One-dimensional characteristic function G(δk) in Eq. (3.25) equals exp(−σ2δk2/4).

In order to obtain analytical formulas (namely in section 5.2), we integrate the

expression for function F in Eq. (3.23) domain by domain and modify the contributions

of the first and last domains in such a way that the following simple formula is reached:

F (∆k) =
2i

∆k

NL
∑

n=0

(−1)n exp(i∆kzn). (3.26)

As a typical structure contains hundreds of domains, incorrect inclusion of fields from

the first and the last domains leads to negligible declinations.

Photon-pair generation rate as well as intensity spectra can be easily derived from

mean spectral density of the number of generated photon pairs n(ωs, ωi). The mean

spectral density n corresponding to the quantum state |ψ〉 is defined by the formula:

n(ωs, ωi) = 〈〈ψ|â†s(ωs)âs(ωs)â
†
i (ωi)âi(ωi)|ψ〉〉av , (3.27)

where the symbol 〈〉av means stochastic averaging over an ensemble of geometric config-

urations of a crystal. Assuming the quantum state |ψ〉 written in Eq. (3.20) we arrive

at the formula:

n(ωs, ωi) = |g(ωs, ωi)|2|E(+)
p (ωs + ωi)|2〈|F (∆k(ωs, ωi))|2〉av. (3.28)

Spectrum Ss of, e.g., the signal field and photon-pair generation rate N can then be

derived using the expressions:

Ss = h̄ωs

∫

dωin(ωs, ωi), (3.29)

N =

∫

dωs

∫

dωin(ωs, ωi) (3.30)
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Figure 3.2: Scheme of a Hong-Ou-Mandel interferometer, where BS stands for the beam
splitter and C stands for the coincidence-count measurement device.

3.4 Hong-Ou-Mandel Interference and Correlation Time

As it has been mentioned above, signal and idler photons are strongly correlated because

both photons are generated inside the nonlinear medium at one instant. A finite distance

between the detection times of both photons is a consequence of dispersion properties

of the nonlinear medium through which both photons at different frequencies propagate

before they leave the crystal. Temporal correlations of the signal and idler photons can

be conveniently described using a two-photon temporal amplitude A defined as:

A(ts, ti) = 〈vac|Ê(+)
s (ts)Ê

(+)
i (ti)|ψ〉. (3.31)

This amplitude A(ts, ti) gives the probability amplitude of detecting a signal photon at

time ts and an idler photon at time ti.

The simplest experimental method for the determination of a typical constant char-

acterizing temporal width of the two-photon detection window (entanglement time)

uses a Hong-Ou-Mandel interferometer [50]. In this interferometer, the signal and idler

fields mutually interfere on a beam-splitter and photons leaving the beam-splitter at

different output ports are subsequently detected in a coincidence-count measurement.

The coincidence-count rate Rn depends on a mutual time delay τ introduced between

the signal and idler photons. The time delay can be introduced to the signal path as

presented in Fig. 3.2. It can be shown that temporal extension of the interference part

in the coincidence-count rate Rn is proportional to entanglement time under certain

conditions. The coincidence-count rate Rn as a function of relative time delay τ is

described by the following formula:

Rn(τ) = 1− ̺(τ), (3.32)
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where:

ρ(τ) =
1

2R0

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2Re [〈A(t1, t2 − τ)A∗(t2, t1 − τ)〉av] , (3.33)

R0 =
1

2

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2〈|A(t1, t2)|2〉av. (3.34)

Inserting Eqs. (3.20) and (3.21) for the quantum state |ψ〉 and two-photon temporal

amplitude A into Eqs. (3.33) and (3.34) we arrive at the expressions:

ρ(τ) =
πh̄2

4ǫ20c
2B2

1

R0
Re

[

∫ ∞

0
dωs

∫ ∞

0
dωi ωsωi〈Φ(ωs, ωi)Φ

∗(ωi, ωs)〉av (3.35)

× exp(iωiτ) exp(−iωsτ)

]

,

R0 =
πh̄2

4ǫ20c
2B2

∫ ∞

0
dωs

∫ ∞

0
dωi ωsωi〈|Φ(ωs, ωi)|2〉av. (3.36)

Characteristics of temporal correlations (correlation time) between the signal and

idler fields can also be obtained from the measurement of sum-frequency intensity in

a nonlinear medium combining the signal and idler photons and having a sufficiently

high value of χ(2)sum nonlinearity. This process allows us to determine the temporal

correlation function Isum of intensities of the signal and idler fields [51]. Intensity Isum

of the sum-frequency field is given along the formula:

Isum(τ) = ηsum
∫ ∞

−∞

dt
∣

∣

∣
〈vac|Ê(+)

s (t)Ê
(+)
i (t− τ)|ψ〉

∣

∣

∣

2
,

(3.37)

where constant ηsum incorporates the value of χ(2)sum nonlinearity and quantum detec-

tion efficiency.
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Chapter 4

Phase-Matching Techniques of the

Interacting Fields

4.1 Phase-Matching

As it has been previously mentioned in chapter 3, the non-linear optical process of

SPDC depends strongly on phase matching (PM) of the interacting fields, which is

characterized via the phase-mismatch function ∆k. Perfect phase-matching occurs only

when ∆k = 0 and the energy of pump field is effectively transferred to two daughter

photons only under this circumstance. Perfect phase matching can be also understood

on the molecular level, since each dipole moment radiates independently, however, when

the phase-matching condition is met, they radiate together in the phase and the same

direction.

Since the most of nonlinear materials used in optics exhibit normal dispersion, phase

matching is usually hard to reach. The easiest ways how to naturally ensure PM are the

utilization of differences between indices of refraction for the ordinary and extraordinary

waves in birefringent crystals [52] and the use of different angles of propagation of the

fields. In the latter case, spatial walk-off may reduce the conversion efficiency. According

to the polarization of fields, the interaction is Type-0 when all fields have the same

polarization, Type-I when the pump field has an orthogonal polarization with respect

to the emitted fields having the same polarization, or Type-II when the emitted fields

have mutually orthogonal polarizations. In waveguides, PM can be reached between

different guided spatial modes. Semiconductor Bragg reflection waveguides are typical

examples, where PM is reached for a pump field propagating as the Bragg mode and

down-converted fields as totally internally reflected modes [17, 53, 54]. The scheme of
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Figure 4.1: Example of modal phase matching of different guided modes in a Bragg
reflection waveguide with SPDC process [A5,A6,A15].

SPDC in Bragg reflection waveguides is presented in Fig. 4.1. Alternatively, PM can be

also achieved via an artificial birefringence in a layered slab (waveguides) as has been

shown in [55].

Dispersion properties of the fields in both bulk and waveguide geometries determine

spatio-temporal characteristics of generated fields. It is convenient to express the phase-

mismatch function ∆k using the Taylor series expansion in all fields:

∆k = kp − ks − ki = (kp0 − ks0 − ki0) +

+
∂kp
∂ωp

∣

∣

∣

∣

ωp0

dωp −
∂ks
∂ωs

∣

∣

∣

∣

ωs0

dωs −
∂ki
∂ωi

∣

∣

∣

∣

ωi0

dωi +

+
∂2kp
∂ω2

p

∣

∣

∣

∣

ωp0

dω2
p −

∂2ks
∂ω2

s

∣

∣

∣

∣

ωs0

dω2
s −

∂2ki
∂ω2

i

∣

∣

∣

∣

ωi0

dω2
i + ... (4.1)

The first term on the right-hand side of Eq. (4.1) represents the phase difference for

the central frequencies of all fields. The terms located on the second line correspond to

the phase acquired via the difference of inverted values of group velocities ∂ka
∂ωa

∣

∣

∣

ωa0

for

a = p, s, i. These terms are dominant for Type-II interaction. Terms on the third line

correspond to the phase obtained due to the different dispersion of group velocities of

fields ∂2ka
∂ω2

a

∣

∣

∣

ωa0

for a = p, s, i. On the other hand, these terms are dominant for Type-0

and Type-I interactions.

4.2 Quasi-Phase-Matching

Unfortunately, a large amount of materials suitable for light-conversion applications

is incapable to achieve PM of SPDC in a natural way. In 1962 Armstrong has come

with an idea of periodical modulation of nonlinear susceptibility in other to compensate
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natural phase mismatch [56]. This approach is known as quasi-phase-matching (QPM)

at present. This periodic modulation of χ(2) induces an additional wave-vector kQPM

to PM conditions, which allows to preclude the back-conversion. This wave vector

originates from the condition kQPM = ∆k. The purpose of periodic modulation is to

ensure that the direction of flow of energy from the pump field is recovered after the

coherence length Lc = π/∆k. The phase-matching equation for QPM has the form:

kp0 − ks0 − ki0 −
2πm

λQPM
= 0, (4.2)

where λQPM = 2π/kQPM is a spatial period of the modulation and m is the order

of QPM [57]. The Fourier transformation of the rectangular profile of modulation of

χ(2)(z), which is typical for periodically poled structures, allows to express an influence

of modulation by means of reduced value of nonlinear susceptibility:

χ
(2)
QPM = χ(2) 2

πm
sin (mπD) . (4.3)

Symbol D stands for a duty cycle. As it is possible to observe, nonlinear process

using QPM will be always less effective than the naturally phase-matched one. On the

other hand, the QPM technique allows to utilize the highest components of nonlinear

susceptibility χ(2), which cannot be reached via natural PM. QPM can be achieved

by different techniques as a stack of layers with alternating orientation of the crystal

axis, periodic poling (see section 4.4) or using alternated domain grow in semiconductor

materials [58–60].

4.3 Stochastic Quasi-Phase-Matching

In addition to the previously discussed phase-matching techniques, a random profile

of susceptibility χ(2) results in continuous erasing of the mutual-phase-information be-

tween the fields. Thus the unwanted back-conversion effect is negligible [61]. This

technique is called stochastic quasi-phase-matching (SQPM). Despite the fact, that the

efficiency of random structures has been found to be worse compared to the ordered

ones, they usually put smaller requirements to polarization properties of the interact-

ing optical fields as well as to the orientation of the nonlinear medium [A4]. Whereas

QPM necessaryly involves additional fabrication techniques, SQPM can naturally oc-

curs in materials like Sr0.6Ba0.4Nb2O6 (SBN) [62, 63]. Moreover, artificial randomly

poled structures are easier to fabricate because of lower precision requirements.

33



V

Electrodes

Photoresist

Figure 4.2: Sketch of the poling technique. A non-linear material is placed between
electrodes. Arrows denote the orientation of ferroelectric domains.

The effect of SQPM in one dimension has already been addressed for the process of

second-harmonic generation [64–68] and the process of difference-frequency generation

[69]. Moreover full domain random structures allowing SQPM for transversal second-

harmonic generation have been studied in [70]. An ultra-narrow spectral emission in

SPDC in random layered media has been presented in [71].

4.4 Poling Technique

Periodic poling (PP) technique is the most common fabrication method for achieving

QPM or SQPM in ferroelectric materials as LiNbO3 [72], LiTaO3 [73], KTA, and KTP

[74]. The principle of poling process is presented in Fig. 4.2. The poling process starts

with applying a photo-resist via the lithographic method according to the required

poling pattern (reflecting the poling period) on the material in areas, which are not

going to be inverted. Then electrodes are added on the material and a strong static

electric field of intensity about tens of kilovolts is applied. This result in a permanent

rotation of the orientation of ferroelectric domains in the areas of the present electric

field. Therefore, the adjacent domains differ in their signs of non-linear susceptibility

χ(2), as it is required in the QPM technique.

Application of this method is limited to substrates with a thickness about few mil-

limeters because of non-homogeneity of the applied electric field inside a sample. The

PP method can be used to prepare different shapes of poling patterns of various poling

periods, linearly chirped patterns [75, 76] and even randomly ordered patterns.
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Chapter 5

Randomly Poled Nonlinear Crystals

5.1 Introduction

In this chapter, we present a numerical study of the generation of photon pairs in

randomly poled 1D nonlinear crystals shown schematically in Fig. 5.1. The basic model

of RPS has been described in section 3.3. As an example, we consider a spectrally

degenerate (nearly) collinear SPDC from periodically-poled LiNbO3 pumped at the

wavelength λ0p = 775 nm by a cw laser beam. The signal and idler photons thus occur

at the fiber-optics communication wavelength λs = λi = 1.55 µm. The crystal optical

axis is perpendicular to the fields’ propagation direction and is parallel to the vertical

direction. All fields are vertically polarized and so the largest element χ(2)
zzz = 54pm/V

of the susceptibility tensor is used. The natural phase mismatch for this configuration is

compensated by the basic domain length l0 equal to 9.51535 µm. A structure composed

of NL = 700 layers is roughly 6.5 mm long.

Z

X

Y

L w

w

w

k

ks

i

optical axis

s

i

pk

p

Figure 5.1: Geometry of SPDC in one dimensional RPS.
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5.2 Analytical Expressions for Randomly Poled Crystals

Analytical expressions in this section are obtained using the results of section 3.3. The

averaged squared modulus of the phase-matching function F as determined by the

formula in Eq. (3.26) can be written in the form:

〈|F (∆k)|2〉av =
4

∆k2

(

(NL + 1)
1 − |H(δk)|2
|1 −H(δk)|2 −

[

H(δk)[1 −H(δk)NL+1]

[1−H(δk)]2
+ c.c.

])

,

(5.1)

δk(ωs, ωi) = ∆k(ωs, ωi) − ∆k0. Symbol c.c. replaces the complex-conjugated term.

Function H(δk) occurring in Eq. (5.1) is defined as:

H(δk) = exp[iδkl0]G(∆k0 + δk), (5.2)

G(∆k) = exp

(

−σ
2∆k2

4

)

. (5.3)

The averaged squared modulus 〈|F (∆k)|2〉av of phase-matching function given in

Eq. (5.1) determines the averaged spectral density n and behaves as follows. It holds

that |H| ≤ 1 and |H| = 1 for a fully ordered structure. If δk = 0 in a fully ordered struc-

ture, H is real (H = 1) and the averaged squared phase-matching function 〈|F (∆k)|2〉av
reaches its maximum value 4(NL + 1)2. Nonzero phase mismatch δk shifts H into the

complex plane which results in lower values of the mean value 〈|F (∆k)|2〉av. The larger

the δk, the smaller the mean value 〈|F (∆k)|2〉av. Inspection of the formula for H in

Eq. (5.3) also shows that the larger the value of the basic layer length l0 the faster the

decrease of mean values 〈|F (∆k)|2〉av for given δk. According to the formula in Eq. (5.3)

the larger the standard deviation σ of a random structure the smaller the value of |H|.
The decrease of values of |H| results in an increase of the range of values of the phase

mismatch δk in which the averaged squared modulus 〈|F (∆k)|2〉av of phase-matching

function attains non-negligible values [see the formula in Eq. (5.1)].

The formula for averaged squared modulus 〈|F (∆k)|2〉av of phase-matching function

in Eq. (5.1) can be substantially simplified under the assumption σ2(∆k0)2NL/2≫ 1:

〈|F (∆k)|2〉av =
2NL [1−G(∆k0 + δk)]

(∆k0 + δk)2 [1− 2G(∆k0 + δk) cos(δkl0) +G(∆k0 + δk)2]
. (5.4)

Increasing values of phase mismatch δk lead to greater values of the denominator in

the fraction on the right-hand-side of Eq. (5.4) that result in the decrease of values of

the averaged squared modulus 〈|F (∆k)|2〉av of phase-matching function. On the other
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hand, increasing values of deviation σ weaken this behavior.

For comparison, we consider another type of RPS defined such that zn = −L+nl0+

δln where δln is a random declination of the n-th boundary. These ‘weakly-random’

structures are more ordered compared to those considered earlier because the change

of length of an n-th domain is compensated by the change in length of an (n + 1)-th

domain. The averaged squared modulus 〈|Fw−r(∆k)|2〉av of phase-matching function

can be derived in this case as follows:

〈|Fw−r(∆k)|2〉av =
4

(∆k)2

{

NL + 1 + |G(∆k0 + δk)|2
[

exp(iδkl0)

1− exp(iδkl0)

×
(

NL − exp(iδkl0)
1− exp[iδkl0NL]

1− exp(iδkl0)

)

+ c.c.

]

}

. (5.5)

Disorder of the boundary positions manifests itself as a filter for the averaged squared

modulus 〈|Fw−r(∆k)|2〉av of phase-matching function, as evident from the expression

in Eq. (5.5). This leads to spectral filtering of the spectral density n. This behavior

is qualitatively different from that observed in RPS as described by the formula in

Eq. (5.1) indicating broadening of the spectral density n with increasing values of the

deviation σ.

Spectral broadening is the most interesting feature of ordered chirped periodically

poled structures (CPPS) that we consider here for comparison. Positions of boundaries

in these structures are described by the formula zn = −L+ nl0 + ζ ′(n−NL/2)
2l20, ζ

′ =

ζ/∆k0, and ζ denotes chirping parameter. The phase-matching function F chirp(∆k)

then takes the form [77]:

F chirp(∆k) =
2
√
π

√

i∆k3ζ ′ l0
exp(i∆kNLl0/2)

× exp

(

− iδk2

4∆kζ ′

)

[erf(f(NL/2)) − erf(f(−NL/2))] ,

(5.6)

f(x) =

√
−i
2

[

√

ζ ′(∆k0 + δk)xl0 +
δk

√

ζ ′(∆k0 + δk)

]

. (5.7)

The error function erf is defined as erf(x) = 2/
√
π
∫ x

0 exp(−y2)dy. Detailed inspection

of the formula in Eq. (5.6) reveals that the larger the value of chirping parameter ζ ′ the

broader the phase-matching function F chirp(∆k).
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(a) (b)

Figure 5.2: (a) Photon-pair generation rate N and (b) signal-field spectral width ∆Ss
(FWHM) as functions of the number NL of domains for an ensemble of RPSs with
standard deviation σ equal to 0 m (solid curve), 0.1 ×10−6m (solid curve with ×),
0.5 ×10−6m (solid curve with △), 1 ×10−6m (solid curve with ◦), and 2 ×10−6m (solid
curve with ⋄); a.u. stands for arbitrary units.

5.3 Generation Rate and Spectral Properties

The most striking feature of RPSs is that the photon-pair generation rate N increases

linearly with the number NL of domains, independently of the standard deviation σ of

the random positions of boundaries [see Fig. 5.2(a)]. Standard deviation σ plays the

central role in the determination of spectral widths ∆Ss and ∆Si of the signal and

idler fields. The larger the value of deviation σ the broader the signal- and idler-field

spectra Ss and Si, as documented in Fig. 5.2(b). This behavior is easily understandable

because structures generated with larger values of σ have statistically a broader spatial

spectrum of the χ(2)(z) modulation which gives more freedom for the fulfillment of quasi-

phase-matching conditions. It holds that the broader the signal- and idler-field spectra

Ss and Si the smaller the photon-pair generation rate N [compare Figs. 5.2(a) and

(b)]. It reflects the fact that constructive interference of fields from different domains is

enhanced in the area outside the central frequencies ω0
s and ω0

i whereas this interference

is weaken in the area around the central frequencies.

The photon-pair generation rate N increases roughly linearly with the number NL

of domains also in the case of ‘weakly-random’ structures described by the averaged

squared modulus 〈|Fw−r(∆k)|2〉av of phase-matching function in Eq. (5.5), as shown in

Fig. 5.3. The greater the standard deviation σ the smaller the photon-pair generation

rate N . As for the signal-field spectral width ∆Ss its values do not practically depend

on the variance σ.

The behavior of photon-pair generation as observed in RPSs can also be found in

ordered CPPSs. Also here photon-pair generation rate N is linearly proportional to
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Figure 5.3: Photon-pair generation rate N as it depends on the number NL of domains
for an ensemble of ‘weakly-random’ structures with standard deviation σ equal to 0 m
(solid curve with ∗) and 2 ×10−6m (solid curve).

the number NL of domains and spectral widths ∆Ss and ∆Si increase with increasing

chirping parameter ζ. The main result of our analysis is that this similarity is both

qualitative and quantitative. For any value of the chirping parameter ζ there exists a

value of the standard deviation σ such that spectral widths ∆Ss and ∆Si of the gener-

ated signal and idler fields are the same. Moreover, also photon-pair generation rates

N are comparable. This is illustrated in Fig. 5.4 for a chirped structure with NL = 700

domains. Its signal-field spectrum Ss is extraordinarily broad (larger that 1 µm) for

sufficiently large values of the chirping parameter ζ [see Fig. 5.4(a)]. Signal-field spectra

Ss of the same width can also be generated from RPSs with sufficiently large random-

ness (i.e., having large values of the deviation σ). Values of the standard deviation σ

corresponding to the values of chirping parameter ζ are plotted in Fig. 5.4(b). Photon-

pair generation rates N for RPSs and CPPSs are drawn for comparison in Fig. 5.4(c) in

this case. Whereas CPPSs give better photon-pair generation rates N for larger values

of chirping parameter ζ, RPSs even slightly overcome on average CPPSs for smaller

values of ζ. Moreover, the signal-field spectra Ss of individual realizations may even be

broader which results in sharper temporal features. On the other hand, these spectra

are typically composed of many local peaks (see Fig. 5.5). RPSs thus represent an al-

ternative broadband and efficient source of photon pairs with properties comparable to

CPPSs. We note, that histograms of domain lengths corresponding to RPSs are broader

compared to those characterizing CPPSs.

Alternatively, RPSs and CPPSs can be compared under the requirement of equal

photon-pair generation rates N . Values of the photon-pair generation rate N decrease
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(a) (b)

(c)

Figure 5.4: (a) Signal-field spectral width ∆Ss (FWHM) as a function of chirping
parameter ζ. (b) Transformation curve between the standard deviation σ and chirping
parameter ζ assuming the same spectral widths ∆Ss. (c) Photon-pair generation rate
for chirped (N chirp, solid curve with ∗) and random (N , solid curve) structures and
their ratio rN (rN = N/N chirp, dashed curve) as functions of chirping parameter ζ;
NL = 700.

(a) (b)

Figure 5.5: Signal-field spectrum Ss for (a) one typical realization of RPS (solid curve)

and (b) CPPS (solid curve with ∗) and an ensemble of RPSs (solid curve with ⋄). Spectra

Ss are normalized such that one photon is emitted; σ = 2.1 ×10−6m, ζ = 2.5×106m−2,

NL = 700.
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(a) (b)

Figure 5.6: (a) Transformation curve between the standard deviation σ of RPSs and
chirping parameter ζ assuming the same photon-pair generation rates N . (b) Signal-
field spectral widths (FWHM) for random (∆Ss, solid curve) and chirped (∆Schirp

s , solid
curve with ∗) structures and their ratio rS (rS = Ss/S

chirp
s , dashed curve) as functions

of chirping parameter ζ; NL = 700.

with the increasing values of chirping parameter ζ [see Fig. 5.4(c)]. Transformation curve

between standard deviation σ and chirping parameter ζ stemming from the requirement

of equal generation rates N is monotonous and is plotted in Fig. 5.6(a) in the considered

case. The corresponding signal-field widths ∆Ss plotted in Fig. 5.6(b) reveal that CPPSs

provide broader spectra for the most of values of chirping parameter ζ. However, the

difference in spectral widths in CPPSs and RPSs is not dramatic.

5.4 Temporal Correlations, Entanglement Time

Since we assume cw-pumping with amplitude ξp at frequency ω0
p , i.e. E

(+)
p (ωp) =

ξpδ(ωp−ω0
p), formulas in Eqs. (3.35) and (3.36) can be simplified in this case and recast

into the following form:

ρ(τ) =
h̄2

8ǫ20c
2B2
|ξp|2
R0

Re

[

exp(iω0
pτ)

∫ ∞

0
dωsωs(ω

0
p − ωs)|g(ωs, ω

0
p − ωs)|2

× exp(−2iωsτ)F
(

∆k(ωs, ω
0
p − ωs),∆k(ω

0
p − ωs, ωs)

)

]

, (5.8)

R0 =
h̄2|ξp|2
8ǫ20c

2B2
∫ ∞

0
dωsωs(ω

0
p − ωs)|g(ωs, ω

0
p − ωs)|2

×
∣

∣F
(

∆k(ωs, ω
0
p − ωs),∆k(ωs, ω

0
p − ωs)

)∣

∣

2
; (5.9)
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g0 ≡ g(ω0
s , ω

0
i ). Function F introduced in Eqs. (5.9) and (5.9) incorporates phase-

matching conditions into the description of temporal properties of photon pairs and is

defined according to the formula:

F(∆k,∆k′) = 〈F (∆k)F ∗(∆k′)〉av; (5.10)

phase-matching function F has been introduced in Eq. (3.26).

Considering RPSs with fluctuations of boundaries described by a Gaussian distri-

bution in Eq. (3.24) function F in Eq. (5.10) takes the form:

F(∆k,∆k′) =
4

∆k∆k′
F̃(∆k,∆k′) exp[−i(∆k −∆k′)NLl0], (5.11)

F̃(∆k,∆k′) =
1−H(Dk)NL+1

1−H(Dk)

[

H(∆k)

H(∆k) +H(Dk)

×
(

−H(∆k)
1− [−H(∆k)]NL

1 +H(∆k)
−H(Dk)

1− [H(Dk)]NL

1−H(Dk)

)

+
(

∆k ←→ −∆k′
)

]

; (5.12)

Dk = ∆k − ∆k′. Function H occurring in Eq. (5.12) has been defined in Eq. (5.2).

Symbol (∆k ←→ −∆k′) in Eq. (5.12) replaces the term that is obtained by the indicated

exchange applied to the preceded term inside the brackets.

Considering ‘weakly-random’ structures, the following form of the function F̃ can

be derived:

F̃w−r(∆k,∆k′) = G(Dk)
1 − exp[iDkl0(NL + 1)]

1− exp(iDkl0)

+

[

G(∆k)G(∆k′)

1− exp(−i∆k′l0)

(

1− exp(i∆kNLl0)

1− exp(−i∆kl0)
+

1− exp(−iDkNLl0)

1− exp(−iDkl0)

)

+
(

∆k ←→ −∆k′
)

]

. (5.13)

On the other hand, function F̃chirp attains a simple form in case of CPPSs:

F̃chirp(∆k,∆k′) = F chirp(∆k)F chirp∗(∆k′), (5.14)

where the formula for F chirp is written in Eq. (5.6).

The general formula in Eq. (3.37) can be recast into the following form using the
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expression for function F in Eq. (5.10):

Isum(τ) =
ηsumh̄2

4ε20c
2B2

∫ ∞

0
dωp|E(+)

p (ωp)|2
∫ ∞

0
dωs

√

ωs(ωp − ωs)

∫ ∞

0
dω′

s

√

ω′
s(ωp − ω′

s)

× g(ωs, ωp − ωs)g
∗(ω′

s, ωp − ω′
s) exp[−i(ωs − ω′

s)τ ]

×F
(

∆k(ωs, ωp − ωs),∆k(ω
′
s, ωp − ω′

s)
)

. (5.15)

When deriving (5.15) we have assumed that the nonlinear medium in which sum-

frequency generation occurs is ideally phase matched for frequencies present in the

signal and idler fields.

A detailed analysis of the expression that gives the coincidence-count rate Rn in a

Hong-Ou-Mandel interferometer reveals an important property: the rate Rn does not

depend on phase variations along the signal- and idler-field spectra in cw regime. This

property is frequently referred as nonlocal dispersion cancellation [78, 79]. It follows

that entanglement time ∆τHOM is inversely proportional to spectral widths ∆Ss and

∆Si of the signal and idler fields despite their complex profiles. We note that the

entanglement time ∆τHOM is determined by a temporal extension (FWHM) of the

coincidence-count interference pattern formed by the rate Rn(τ). Entanglement time

∆τHOM thus shortens with increasing values of the standard deviation σ for RPSs. The

dependence of entanglement time ∆τHOM on the deviation σ for an ensemble of RPSs

composed of 700 domains is shown in Fig. 5.7. We can see in Fig. 5.7 that entanglement

times ∆τHOM can be as short as several fs for sufficiently large values of the deviation

σ. This indicates that temporal quantum correlations can be confined into an interval

characterizing one optical cycle provided that spectral phase variations in the signal

and idler fields are compensated. Entanglement times ∆τHOM of CPPSs with the same

signal-field spectral widths ∆Ss are plotted in Fig. 5.7 for comparison that reveals nearly

identical entanglement times of both types of structures.

Typical coincidence-count interference patterns given by Rn for photon pairs gen-

erated in both types of structures are compared in Fig. 5.8. They demonstrate a close

similarity of photon-pair behavior in a Hong-Ou-Mandel interferometer. There occur

typical oscillations at the shoulders of the interference dips. Whereas regular oscillations

characterize CPPSs, irregular oscillations with larger amplitudes occur for individual

realizations of RPSs. However, widths of interference dips remain practically unchanged

for different realizations of RPSs.
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Figure 5.7: Entanglement time ∆τHOM (FWHM) as a function of chirping parameter ζ
for an ensemble of RPSs with standard deviations σ derived from the curve in Fig. 5.4b
(solid curve) and CPPSs (solid curve with ∗); NL = 700.

Figure 5.8: Coincidence-count rate Rn as it depends on relative time delay τ for one
realization of RPS (solid curve), CPPS (solid curve with ∗), and an ensemble of RPSs
(solid curve with ⋄); σ = 2.1 × 10−6m, ζ = 2.5 × 106m−2, NL = 700.

Correlation times ∆τ sum emerging from sum-frequency generation are in general

longer than entanglement times ∆τHOM observed in a Hong-Ou-Mandel interferometer

because of a strong phase modulation along the wide signal- and idler-field spectra Ss
and Si (see Fig. 5.9).

Correlation times ∆τ sum can be even an order of magnitude greater compared to

entanglement times ∆τHOM for structures with ultra-broadband spectra. However,

phase modulation along the spectrum can be compensated to certain extent which gives

shorter correlation times ∆τ sum. CPPSs have more regular spectral phase behavior (as

demonstrated in Fig. 5.9) and quadratic phase compensation is usually sufficient to

provide wave-packets several fs long. As for individual realizations of RPSs, quadratic
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Figure 5.9: Phase ϕ of the two-photon spectral amplitude Φ(ωs, ω
0
p − ωs) as it depends

on normalized signal-field frequency 2ωs/ω
0
p for one realization of RPS (solid curve) and

CPPS (solid curve with ∗); σ = 2.1 × 10−6m, ζ = 2.5 × 106m−2, NL = 700.

(a) (b)

Figure 5.10: Sum-frequency field intensity Isum as a function of relative time delay τ

for one realization of RPS (solid curve), CPPS (solid curve with ∗), and an ensemble of

RPSs (solid curve with ⋄). In (a) quadratic chirp in the signal-field amplitude spectrum

is compensated for one realization of RPS and CPPS; in (b) complete spectral phase

compensation is assumed. The curves are normalized such that
∫∞

−∞
dτIsum(τ) = 1;

σ = 2.1 × 10−6m, ζ = 2.5× 106m−2, NL = 700.

compensation is less efficient because of more irregular phase spectral behavior. De-

spite this values of temporal constants typical for chirped structures can be approached

[see Fig. 5.10(a)]. Provided that an ideal phase compensation is reached, both types of

structures give comparable results [see Fig. 5.10(b)] and are capable to generate photon

pairs with wave-packets extending over the duration of one optical cycle. Experimen-

tally, pulse shapers have been developed for this task and their capabilities in the area

of photon pairs have already been demonstrated [80]. Comparison of the results ob-
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Figure 5.11: Geometric scheme for the description of spatial properties. Direction of
the signal- (idler-) field wave vector ks (ki) is given by radial ϑs (ϑi) and azimuthal ϕs

(ϕi) emission angles.

tained with quadratic and ideal compensations reveals that correlation times ∆τ sum are

approx. two times larger if we restrict ourselves to quadratic compensation. Also the

value of quadratic chirp that needs compensation differs for individual realizations of

RPS. This requires an adaptive phase compensator. On the other hand phase compen-

sation in case of CPPS can be reached in a simpler way, e.g., by inserting a peace of

suitable material of defined length [81, 82]. Despite this RPSs are challenging both for

basic physical experiments as well as metrology applications.

5.5 Correlations in the Transverse Plane

In order to describe spatial properties of the signal and idler beams (in the transverse

plane) a simple generalization of Eq. (3.21) is needed. The inclusion of phase-matching

conditions also in the directions along the x and y axes and assumption of spectrally-

flat transverse pump-beam profile Ep⊥(x, y) result in the following separable form of

a two-photon spectral amplitude Φ that additionally depends on radial (ϑs, ϑi) and

azimuthal (ϕs, ϕi) signal- and idler-field emission angles (see Fig. 5.11):

Φ(ωs, ωi, ϑs, ϕs, ϑi, ϕi) = Φz(ωs, ωi, ϑs, ϕs, ϑi, ϕi)Φxy(ωs, ωi, ϑs, ϕs, ϑi, ϕi),

(5.16)

where function Φz arises from phase-matching conditions in the z direction and function

Φxy originates in phase-matching conditions in the transverse xy plane (see Fig. 5.11).
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Function Φz can be derived in analogy with the formula in Eq. (3.21):

Φz(ωs, ωi, ϑs, ϕs, ϑi, ϕi) = g(ωs, ωi)E
(+)
p (ωs + ωi)F (∆k(ωs, ωi, ϑs, ϕs, ϑi, ϕi)),

(5.17)

where the stochastic function F has been introduced in Eq. (3.22). Phase-matching

conditions in the xy plane give the function Φxy the following form:

Φxy(ωs, ωi, ϑs, ϕs, ϑi, ϕi) =

∫ ∞

−∞

dx

∫ ∞

−∞

dyEp⊥(x, y) exp (i∆kxx+ i∆kyy)

(5.18)

that includes a pump-beam amplitude profile Ep⊥(x, y) in the transverse plane. Assum-

ing normal incidence of the pump beam, the cartesian components of nonlinear phase

mismatch in Eqs. (5.17) and (5.18) can be written as:

∆kx = ks(ωs) sin(ϑs) sin(ϕs) + ki(ωi) sin(ϑi) sin(ϕi)

∆ky = ks(ωs) sin(ϑs) cos(ϕs) + ki(ωi) sin(ϑi) cos(ϕi)

∆kz = kp(ωs + ωi)− ks(ωs) cos(ϑs)− ki(ωi) cos(ϑi). (5.19)

We assume a Gaussian pump-beam transverse profile in numerical calculations:

Ep⊥(x, y) =
1

π∆xp∆yp
exp

(

− x2

∆x2p
− y2

∆y2p

)

, (5.20)

∆xp (∆yp) stands for the pump-beam width along the x (y) direction.

We first pay attention to transverse properties of the signal beam only. Its spectral

density ss defined as

ss(ωs, ϑs, ϕs) = sin(ϑs)

∫

dωi

∫

dϑi sin(ϑi)

∫

dϕi|Φ(ωs, ωi, ϑs, ϕs, ϑi, ϕi)|2

(5.21)

depends on the signal-field radial (ϑs) and azimuthal (ϕs) emission angles. As we study

photon-pair emission near the collinear geometry, the signal beam (as well as the idler

beam) has rotational symmetry along the z axis. The dependence of spectral density

ss on signal-field radial emission angle ϑs is shown in Fig. 5.12. Investigating one

realization of RPS we observe a typical ’strip-like’ behavior depicted in Fig. 5.12(a).

Fixing the value of radial emission angle ϑs spectrum ss(ωs) is composed of many peaks
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(a) (b)

(c)

Figure 5.12: Map of signal-field spectral density ss as it depends on signal-field radial
emission angle ϑs for (a) one realization of RPS, (b) an ensemble of RPSs, and (c)
CPPS; ϕs = 0 deg, σ = 2.1× 10−6m, ζ = 2.5 × 106m−2, NL = 700.

occurring at positions specific for the studied realization [compare also with Fig. 5.5(a)].

Each peak changes continuously its central frequency as the radial emission angle ϑs
moves. We note that this is typical also for layered structures that form band gaps

[83]. Averaging over many realizations of RPSs smoothes this ’strip-like’ behavior [see

Fig. 5.12(b)] and leads to that resembling CPPSs [compare Figs. 5.12(b) and 5.12(c)].

In these cases spectral splitting is observed [84]. This behavior originates in phase-

matching conditions along the z direction.

Integration of spectral densities ss over the signal-field frequency ωs gives us densities

ns of photon-pair numbers that are plotted in Fig. 5.13 for the structures studied in

Fig. 5.12. Whereas the profile of density ns(ϑs) is complex for one realization of RPS,

typical shapes with one maximum around a nonzero value of ϑs characterize the profiles

of density ns(ϑs) for an ensemble of RPSs and CPPS.

Correlated area gi of an (idler) photon in a pair represents spatial analogy to en-

tanglement time and characterizes correlations of photon twins in the transverse plane.
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Figure 5.13: Profile of density ns of signal-field photon numbers as a function of signal-
field radial emission angle ϑs for one realization of RPS (solid curve), CPPS (solid
curve with ∗), and an ensemble of RPSs (solid curve with ⋄); nmax

s = maxϑs
[ns(ϑs)].

Plane-wave pumping is assumed; ns(ϑs, ψs) =
∫

dωsss(ωs, ϑs, ϕs); ϕs = 0 deg, σ =
2.1 ×10−6m, ζ = 2.5 × 106m−2, NL = 700.

By definition, it gives probability of emitting an idler photon into radial emission angle

ϑi and azimuthal emission angle ϕi provided that its signal twin has been emitted in a

fixed radial emission angle ϑs and azimuthal emission angle ϕs, i.e.:

gi(ϑi, ϕi;ϑs, ϕs) = sin(ϑs) sin(ϑi)

∫

dωs

∫

dωi|Φ(ωs, ωi, ϑs, ϕs, ϑi, ϕi)|2. (5.22)

Because we mainly pay attention to beams propagating in the vicinity of the z axis,

we assume that the signal photon is emitted along the z axis (ϑs = ϕs = 0 deg). The

correlated area as described by function gi in Eq. (5.22) then has rotational symmetry

and its profiles along the radial emission angle ϑi for CPPS and an ensemble of RPSs

nearly coincide, as documented in Fig. 5.14(a). On the other hand, broader profiles are

typical for individual realizations of RPSs. These individual realizations form compact

correlated areas without large local peaks (compare with Fig. 5.5 where spectrum Ss

for one realization of RPS is plotted). The width ∆ϑi of the correlated area along the

radial angle ϑi depends in general on phase-matching conditions along the z and ϑi axes.

Thus length of the structure, pump-field (temporal) spectral width as well as width of

the pump-beam waist determine together the width ∆ϑi (for more details, see [84]). For

example, focusing the pump beam, values of the radial width ∆ϑi can be varied nearly

by one order of magnitude [see Fig. 5.14(b)]. This behavior can be easily explained by
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Figure 5.14: (a) Radial profile gi(ϑi) of the correlated area for ∆yp = 1 × 10−5m and
(b) radial width ∆ϑi of the correlated area as it depends on pump-beam width ∆yp for
one realization of RPS (solid curve), CPPS (solid curve with ∗), and an ensemble of
RPSs (solid curve with ⋄); ϑi = ϑ0i + δϑi; gmax

i = maxϑi
[gi(ϑi)]. Radially symmetric

pump beam is assumed, i.e. ∆xp = ∆yp; ϕs = ϑs = 0 deg, ϕi = 180 deg, ϑ0i = 0 deg;
σ = 2.1× 10−6m, ζ = 2.5× 106m−2, NL = 700.

the fact that the more the pump beam is focused, the wider its spatial spectrum in the

transverse plane, and so the weaker the phase-matching conditions in this plane.

5.6 The Role of Temperature

We have seen that an ensemble of randomly poled structures and a chirped period-

ically poled structure have similar properties. This close similarity is preserved also

when studying temperature dependencies [76] that are in general weak. On the other

hand, behavior of individual realizations of RPSs manifests a stronger temperature

dependence. However, influence of temperature varies from realization to realization.

Whereas properties of the realization of RPS studied above do not considerably change

with temperature (see Fig. 5.15 for the signal-field spectral width ∆Ss in the temper-

ature range from 284 to 300 K), other realizations are more prone to the change of

temperature. This can be conveniently used for efficient temperature modifications of

properties of photon pairs. We note that these effects have their origin in temperature

dependence of indexes of refraction [76].
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Figure 5.15: Signal-field spectral width ∆Ss as it depends on temperature T for one
realization of RPS (solid curve), CPPS (solid curve with ∗), and an ensemble of RPSs
(solid curve with ⋄); σ = 2.1× 10−6m, ζ = 2.5× 106m−2, NL = 700.
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Figure 5.16: Signal-field spectral width ∆Ss as a function of variance σer of the fab-

rication error for one realization of RPS (solid curve) and CPPS (solid curve with

∗). Averaging over the fabrication error was done in 1000 randomly chosen positions;

σ = 2.1 × 10−6m, ζ = 2.5× 106m−2, NL = 700.

5.7 The Role of Small Random Fabrication Errors

In the fabrication process, a small random error necessarily occurs [57]. This error is

sometimes called a duty cycle error and, in general, leads to lowering of photon-pair

emission rates [69]. Considering spectral widths, they are resistant against this error in

uniformly periodically-poled crystals [57] [see also Eq. (5.5) valid for ‘weakly-random’
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Figure 5.17: Signal-field spectral width ∆Ss (solid curve with •) and photon-pair gener-
ation rate N (solid curve with △) as functions of segment length d. Averaging over 1000
random positions of segments was used in calculations. ζ = 2.5× 106m−2, NL = 700.

structures]. On the other hand, spectral widths are slightly reduced in CPPSs as docu-

mented in Fig. 5.16. We can see in Fig. 5.16 that a (large) fabrication error with variance

σer = 5× 10−7m results in the reduction of signal-field spectral width ∆Ss only by ap-

prox. 10 %. Individual realizations of RPSs are much more sensitive to the fabrication

error. The observed spectral changes depend on individual realizations. As an exam-

ple, the signal-field spectral width ∆Ss of the sample analyzed above decreases with

the increasing variance σer of the fabrication error. This is natural, because spectrum

of this realization is broader compared to the ensemble mean value. We note that it

holds also here that the narrower the signal-field spectrum, the greater the photon-pair

generation rate N and vice versa.

5.8 The Role of Ordering in Chirped Periodically-Poled

Structures

The benefit of ordering of individual domains by their lengths in a chirped periodically

poled structure can be quantified as follows. We take an ordered structure and divide

it into segments containing d domains. We then randomly position these segments in

a new artificial structure and finally obtain mean values of physical quantities after

averaging over random positions. In the limiting case of d = 1 we have a completely

random structure similar to those studied above. It can be shown that the signal-field

spectral width ∆Ss decreases with the decreasing segment length d (see Fig. 5.17). This
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is accompanied by an increase of photon-pair generation rate N . This behavior reflects

the fact that spectra of the fields coming from individual domains are combined in

a more constructive way in the central spectral area with the increasing randomness

(decreasing value of segment length d).

The graph in Fig. 5.17 also demonstrates that the requirement for the same spectral

widths ∆Ss of RPSs and CPPS inevitably implies that the histogram of domains’ lengths

for RPSs is broader than that obtained for CPPS.
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Chapter 6

Higher-Multiple Orders of

Stochastic Quasi-Phase-Matching of

Randomly Poled Crystals

6.1 Introduction

In this chapter, we extend the previous study to the higher-multiple orders of SQPM.

As we want to include all orders of SPQM, we express random lengths l of domains in

the form l = Zl0 + δl, where Z is a positive real number giving the order of SQPM.

The optimum length l0 of domains is derived from the natural phase mismatch ∆k of

the central wave vectors (l0 = π/∆k). Randomness in domains’ positions is described

by declinations δl with a Gaussian probability distribution as defined in Eq. (3.24) in

section 3.3. For numerical modelling, we consider a 5-mm long LiNbO3 crystal with

an optical axis parallel to the boundaries in Type-0 collinear configuration (all extraor-

dinary photons are vertically polarized). The crystal is pumped by a monochromatic

plane wave at the wavelength λp0 = 400 nm. The signal and idler photons are chosen

to have the same central wavelengths λs0 = λi0 = 800 nm. The optimum length l0 of

domains equals 1.2839 µm in this configuration. The average amount of layers under

these circumstances is equal to 3895.

6.2 Photon-Pair Rates

High numbers N of generated photon pairs occur when Z is an odd integer [see Fig. 6.1(a)],

as expected for a rectangular shape of the nonlinear modulation [57]. In these cases, we
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Figure 6.1: (a) Averaged number N of generated photon pairs and (b) ratio
Nrandom/Nchirp of photon-pair numbers generated from randomly poled and chirped
periodically poled crystals for the same width ∆Ss as functions of Z for σ = 0.1 µm
(solid black curve), 0.2 µm (dotted blue curve) and 0.4 µm (dashed red curve). Averaged
over 100 samples.

observe Z-th-order SQPM. However, appreciable numbers N of generated photon pairs

are found also for values of Z larger than these optimum values. A closer inspection

of spectra shows that the structure allows for QPM at non-degenerate signal and idler

frequencies [see Fig. 6.3(d)] in these areas. If the value of Z is such that no QPM is

possible, the numbers N of generated photon pairs are very low. The numbers N of

photon pairs also decrease with increasing values of deviation σ for values of Z allowing

QPM (Z ≈ 1, 3). On the other hand, the numbers N of photon pairs increase with

increasing values of σ provided that no QPM is reached.

Large numbers N of photon pairs generated in randomly poled crystals are com-

parable to those characterizing chirped periodically-poled crystals [A1] widely used as

sources of spectrally broad-band SPDC. Achievable numbers N of generated photon

pairs make the third-order SQPM viable, even though the number N of generated pho-

ton pairs is approx. 10 times smaller compared to those characterizing first-order SQPM

[see fig. 6.1(b)]. As chirped crystals have domains of different lengths ordered, more

regular interference of light coming from individual domains occurs and leads to more

regular spectral shapes. This favors chirped crystals for interferometric experiments.

6.3 Spectral Properties

Signal- and idler-field spectra are typically composed of many sharp peaks originat-

ing in complex interference of irregular fields’ contributions coming from different do-
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Figure 6.2: (a) Signal-field spectral width δSs (FWHM) and (b) Schmidt number K
as functions of Z for σ = 0.1 µm (solid black curve), 0.2 µm (dotted blue curve) and
0.4 µm (dashed red curve). Averaged over 100 samples.

mains (see Fig. 6.3 below). These peaks are localized in the spectral regions allowing

QPM. If no QPM is possible, peaks are randomly distributed over a wide spectral area

[see Fig. 6.3(b)]. The narrowest spectra are observed for odd integer values of Z [see

Fig. 6.2(a)] and low values of deviation σ. The graph in Fig. 6.2(a) shows that, for

a given value of deviation σ, considerably narrower signal-field spectra Ss are found

for third-order SQPM in comparison with first-order SQPM (∆Ss = 0.129 µm versus

∆Ss = 0.309 µm for σ = 0.1 µm). This can be explained by relatively smaller fluctu-

ations of domains’ lengths for third-order SQPM (the average domains’ length equals

3l0). Whereas the signal-field spectral width ∆Ss increases with increasing values of

deviation σ for values of Z allowing spectrally degenerate QPM, it decreases for val-

ues of Z suitable for spectrally non-degenerate QPM [see Fig. 6.2(a)]. Values of the

signal-field spectral width ∆Ss can be widely changed by controlling randomness. For

example, an increase of ∆Ss from 0.129 µm to 0.462 µm, i.e. more than three times, is

reached by increasing the variance σ from 0.1 µm to 0.4 µm.

Photon pairs generated in random crystals also exhibit large amount of spectral

entanglement due to their wide spectra as it has been revealed via the Schmidt de-

composition defined by Eq. (2.3). The Schmidt number K (Eq. (2.8) gives about 200

independent paired modes in the signal-field spectrum Ss both for first-order and third-

order SQPM [see Fig. 6.2(b)]. This is a consequence of both wide spectra and their

complex structure. This makes the generated paired fields prospective for quantum

information protocols based on complex entangled fields. We note that the number

K of independent modes considerably decreases when spectrally non-degenerate QPM

is reached. In this case, the number K of modes increases with increasing values of
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Figure 6.3: Signal-field spectrum Ss for one typical realization of the random structure
with (a) Z = 1, (b) Z = 2.5, (c) Z = 3, and (d) Z = 3.5; σ = 0.1 µm.

variance σ [ see Fig. 6.2(b)].

6.4 Temporal Properties

Entanglement time ∆τ can be determined from the width of coincidence-count pattern

Rn in a Hong-Ou-Mandel interferometer (see section 3.4) that gives the normalized

number of coincidences as a function of mutual delay τ between the signal and idler

photons. The simplified expression of rate Rn is obtained using Eqs. (3.32), (3.33) and

(3.34) in the form:

Rn(τ) = 1− 1

R0

∫

dωs exp [−iτ(ωp0 − 2ωs)] 〈|F [∆k(ωs, ωp0 − ωs)] |2〉av , (6.1)

where R0 =
∫

dωs〈|F [∆k(ωs, ωp0−ωs)]|2〉av . The graph in Fig. 6.4 confirms that random

crystals generate photon pairs with temporal correlations at fs time scale for all values of

Z. Whereas 8-fs long entanglement time ∆τ is found for first-order SQPM, ∆τ = 12 fs
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Figure 6.4: Entanglement time ∆τ as functions of Z for σ = 0.1 µm (solid black curve),
0.2 µm (dotted blue curve) and 0.4 µm (dashed red curve). Averaged over 100 samples.

arises from third-order SQPM. These values even decrease when stronger randomness

is applied. It holds in general that the wider the signal-field spectrum Ss the shorter

the entanglement time ∆τ [compare Fig. 6.2(a) and Fig. 6.4]. We note that the above

considered entanglement time does not characterize temporal amplitude correlations

that are much wider because of phase modulation along the spectra shown in Fig. 6.3.

Nevertheless, spectral phase modulation can be compensated to some extent and signal

and idler pulses long several tens of fs can be reached.
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Chapter 7

Conclusion

In this thesis a systematic study of important characteristics of photon pairs gener-

ated in the process of spontaneous parametric down-conversion occurring in randomly

poled non-linear crystals has been given. Photon-pair sources based on this process

form nowadays an indispensable part of many experimental implementations of various

entanglement-based quantum measurements, computing and communication methods.

Randomly poled structures have been shown to be an inexpensive source of photon pairs

with properties comparable to those coming from ordered nonlinear structures.

In more detail, we have investigated properties of photon pairs generated in ran-

domly poled LiNbO3 crystals. We have shown that the number of emitted photon pairs

per second depends linearly on the number of layers. Increasing randomness of pol-

ing effectively reduces efficiency of the process considering a preselected finite spectral

interval. Considering structures with the largest possible randomness widths of emit-

ted photon spectra increase with the randomness. If restricted randomness is applied

like in the considered case of weakly-random structures (disorder is applied to ordered

boundaries of domains) only decrease of the production efficiency is observed with the

increasing randomness. The band-width of emitted photons remains unchanged. A

close similarity in properties of photon pairs coming from the randomly poled struc-

tures and linearly chirped poled structures has been revealed. Even certain mapping

curves between parameters of random and chirped structures have been obtained. Tem-

poral correlations between the signal and idler fields including entanglement times can

be as short as a few femtoseconds in highly randomized structures, which allows tem-

poral high-precision measurements. Spatial distributions of emitted photon fields as

well as correlation areas have been shown to be similar for random, chirped and even

individual realizations of random structures. Limitations of temperature tuning of the
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phase-matching conditions have been revealed. The influence of fabrication errors has

been quantified. The role of disorder in otherwise ordered linearly chirped periodically

poled structures has been understood.

Also higher-order stochastic quasi-phase-matching has been investigated. Third-

order stochastic quasi-phase-matching reached in randomly poled nonlinear crystals

has been found useful for the generation of photon pairs. Despite its lower generation

efficiency in comparison with first-order stochastic quasi-phase-matching it provides

sufficient photon-pair generation rates based on three times longer domain lengths.

Longer domain lengths allow to considerably widen the area of materials and condi-

tions in which quasi-phase-matching can be applied. Similarly as first-order stochastic

quasi-phase-matching, third-order stochastic quasi-phase-matching allows to generate

spectrally ultra-wide photon pairs with temporal correlations at femtosecond scale. The

generated photon pairs exhibit strong spectral entanglement arising from typically sev-

eral hundred of independent paired modes present in the spectrum.

We have shown that randomly poled crystals with stochastic quasi-phase-matched

spontaneous parametric down-conversion represent prospective sources of intense en-

tangled photon pairs with low fabrication demands.
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Stručné shrnutí v češtině

Tato práce představuje systematickou studii vlastností fotonových párů generovaných

v procesu spontánní parametrické sestupné frekvenční konverze v náhodně pólovaných

nelineárních krystalech. Fotonové zdroje založené na tomto procesu jsou dnes nepostra-

datelnou součástí mnoha experimentálních realizací kvantových metod měření, výpočtů

a komunikace využívající kvantově provázané částice. Náhodně pólované nelineární

struktury představují mezi těmito strukturami dostupné zdroje fotonových párů s vlast-

nostmi srovnatelnými s uspořádanými nelineárními strukturami.

Vlastnosti fotonových párů v náhodně pólovaných strukturách využívajících stocha-

stického kvazi-fázového sladění jsou podrobně analyzovány na příkladu krystalů tvořených

LiNbO3. Je ukázáno, že počet emitovaných fotonových párů za jednu sekundu roste

lineárně se vzrůstajícím počtem vrstev v krystalu. Počet emitovaných párů naopak

klesá s rostoucí mírou neuspořádanosti vrstev v krystalu. Šířka emitovaných fotonových

spekter roste s mírou náhodnosti struktury pro maximálně neuspořádané struktury.

V případě uvažování neuspořádosti lokálního charakteru ovšem efektivita nelineárního

procesu klesá s rostoucí náhodností struktury. Šířka spektra zůstává v tomto případě

neměnná. Podobnost vlastností náhodně a lineárně čerpovaně uspořádaných pólovaných

struktur je možné dokonce vyjádřit pomocí vztahů mezi parametry charakterizujícími

oba typy struktur. Oba typy struktur generují fotonové páry s časovými korelacemi

v řádech femtosekund. Fázové změny ve spektrech generovaných fotonových párů je

možné zkompenzovat a tím využít tyto ultra-krátké časové korelace i v procesech za-

ložených na interferenci amplitud. Podobnost vlastností fotonových párů generovaných

v náhodně a lineárně čerpovaně uspořádaných pólovaných strukturách byla nalezena i

pro prostorové hustoty počtu fotonů a korelované plochy. Byla také vymezena oblast

použitelnosti teplotní laditelnosti krystalů. Byl kvantifikován vliv výrobních chyb při

pólovacím procesu. V neposlední řadě byl pochopen vliv uspořádání vrstev v lineárně

čerpovaných uspořádaných strukturách.

Byly také uvažovány vyšší řády stochastického kvazi-fázového sladění. Třetí řád
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stochastického kvazi-fázového sladění u krystalu LiNbO3 je možné využít ve zdroji

fotonových párů přes nižší efektivitu nelineárního procesu. Emise široko-spektrálních

fotonových párů s extrémně krátkými časovými korelacemi v řádu femtosekund je po-

zorována i u tohoto třetího řádu stochastického kvazi-fázového sladění. Fotonové páry

jsou typicky generovány do několika set nezávislých časo-prostorových módů, které mo-

hou být využity při paralelním kvantovém zpracování informace těmito páry.

Náhodně pólované materiály tedy představují intenzívní zdroje kvantově-korelovaných

fotonových párů s velkou výrobní tolerancí, které jsou považovány za perspektivní

nástroj pro protokoly kvantového zpracování informace blízké budoucnosti.
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