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ANNOTATION 

A draft genome was assembled from newly sequenced Arthrobacter species isolated from 

arctic soil. The raw sequences were analyzed and their statistics discussed in great depth. 

Several assemblers were tested and compared for results. The best assembly (the final draft 

genome) was then uploaded to RAST server and annotated. 
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1. Introduction 

In this work, the draft genome of Arthrobacter species that was isolated in arctic 

permafrost soil was assembled and annotated. The provided data consisted of forward and 

reverse reads sequenced with Illumina sequencer. The reads were inspected and analyzed with 

FastQC and low quality reads were trimmed. For the assembly, the MyPro and A5-miseq 

pipelines that are designed for de novo prokaryotic assembly were used. A5-miseq has its own 

assembler, automatic pre-processing of the reads and can work with paired-end data. In 

contrast to A5-miseq, MyPro is a virtual machine with Bio-Linux in which following 

assemblers are installed: SOAPdenovo, Abyss, SPAdes, Velvet, and Edena. When running the 

Autorun.py in MyPro, it performs quality trimming of the reads, runs the assemblers, 

integrates the resulting assemblies, makes a post-processing on the resulted integrated 

assembly (filling in gaps in the assembly) and finally, performs annotation. In this study only 

the best resulting assembly (456 contigs, N50: 48,680) was annotated and the annotation was 

done on RAST server.  

This work also offers a brief overview of the process of assembly. My motivation to 

learn about this subject stems from the fact that the data produced in biology nowadays greatly 

exceeds our capacity for analyzing them. The number of sequenced genomes grows rapidly 

each year as the sequencers become more time and cost efficient. Though there are efforts to 

create fully automated pipelines that are simple to use without any knowledge of 

bioinformatics, as I learned during this work a lot of obstacles can arise, overcoming of which 

requires some skills, experience, and knowledge of the process.  

The Arctic offers possibilities for many new discoveries and its crude environment 

hides ingenious ways of survival. One way we can learn about a microbe’s life is through its 

genetic information, through understanding its metabolic pathways, proteins and RNAs with 

special functions whose blueprint is encoded in DNA. By reconstructing the genome of the 

Arthrobacter species I hope to give biologists the basis for better understanding of its biology 

and perhaps even contributing to building a better picture about the ecology of the Arctic.  
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2. Literary Review  

 Introduction to whole genome sequencing and assembly 

The elementary problem of sequencing a whole genome is that today’s technologies 

are not capable of sequencing it in one piece. One of the defining properties of different 

sequencers is their read length, i.e. the number of consecutive bases that it can sequence. This 

read length of commercial second-generation technologies is much shorter, than is the length 

of even the smallest genome (Miller, Koren, & Sutton, 2010). This problem is solved by 

splitting the genome into many smaller fragments that can be then sequenced. To reconstruct 

the information about the genome’s sequence, these sequenced parts need to be put back 

together in the correct order by a process called assembly. On a very basic level, assembly can 

be thought of as putting together a large jigsaw puzzle with the help of complex computer 

algorithms.   

The method most used for sequencing of genomes is whole genome shotgun 

sequencing. This method results in creation of many fragments with randomly selected 

positions on the chromosome. To make the assembly possible, two key conditions must be 

met. Firstly, the fragments must be overlapping and secondly, there must be a high coverage 

(Miller, Koren, & Sutton, 2010). High coverage means that each position on the chromosome 

must be present in more reads. Formally, coverage is defined as follows: 

𝑐 =  
𝑁 ∙ 𝑟

𝐺
 

Where c = Coverage, N = Number of reads, r = Mean read length, and G = Haploid genome 

length ("Estimating Sequencing Coverage", 2017). During the assembly, reads are aligned to 

find overlaps between them so that they can be connected into longer contiguous sequences 

(contigs). 

Which sequencer is used to acquire the reads is an important information for genomic 

assembly. Different sequencers correspond to different read lengths and different sequencing 

errors that assemblers need to work with. Ideally, a sequencing project should choose the 

sequencer that best fits its needs. By the method that sequencers rely on, the sequencers can 

be divided into following groups: First generation, second generation, and third generation.  

The first-generation sequencing uses Sanger chemistry, or the “chain termination 

method”. Radioactively labeled dideoxy ribonucleotide triphosphates (ddNTPs) are used to 
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terminate the DNA strand synthesis at random moments producing copies of the original 

strand of different lengths, each ending with one labeled ddNTP. The DNA sequence is then 

inferred from electrophoresis of the differently long strands (Sanger, Nicklen, & Coulson, 

1977). Reads produced by Sanger sequencing are up to 1000 bp long and the accuracy is very 

high.  Modern Sanger machines are fully automated with capillary electrophoresis and use 

fluorescent labeling (Heather, & Chain, 2016). Although they can be used to sequence whole 

genome, they are more commonly used for smaller sequencing projects for their high per-base 

cost. They are often used for sequencing of single genes and genotyping. Sanger machines 

also find their use when the sequencing accuracy is crucial, for example when studying 

microsatellites, single nucleotide polymorphisms or generally to verify data produced by 

second generation sequencing. 

Second-generation sequencers no longer rely on Sanger chemistry and are massively 

parallel. More methods of sequencing belong to second-generation, most notably 

pyrosequencing (454 Roche) and Solexa (Illumina).  Another technology that exist is by the 

SOLiD platform (sequencing by ligation).   

Pyrosequencing takes advantage of the fact that a pyrophosphate is released when a 

new base is incorporated. Pyrophosphate enters cascade of enzymatic reactions which result 

in emission of light whose intensity is proportional to the amount of pyrophosphate (Ronaghi, 

2001). The principle of pyrosequencing in 454 is that fragments of the genome are fixed onto 

beads via universal adaptor sequences, then amplified by emulsion PCR to create polonies of 

~107 identical amplicons. These polonies are then sequenced by attaching primers that are 

elongated in step-by-step synthesis by washing it in cycles with deoxyribonucleotide 

triphosphates (dNTPs) where each cycle contains one kind of dNTP. After each cycle, signal 

is detected in the polonies where a certain dNTP was incorporated. This method struggles with 

correct identification of the number of same consecutive bases in homopolymer, where its 

length should be proportional to the emitted light but noise can introduce an error when the 

homopolymer is longer than around 4 or 5 bases (Ronaghi, Uhlén, & Nyrén, 1998). 

 In Solexa, fragments are attached to flowing cells, amplified by bridge PCR to again 

create polonies of distinct fragments. During the sequencing, each cycle offers all 4 dNTPs 

with different color codes. However, every synthetized strand is elongated just by one 

nucleotide in each cycle as the 3’ OH group of each dNTP contains a blocking group that is 

removed at the end of the cycle, after the current position of the polonies had been interrogated 

for its nucleotide (Heather, & Chain, 2016). 
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The main advantage of second-generation sequencing is that it is a real-time 

sequencing that gets rid of the lengthy process of electrophoresis, is cheaper than sanger 

method and has high throughput. It is now most widely used for genome sequencing and most 

assemblers that exist are designed to handle reads produced by these methods. Downside of it 

is that except for 454 they produce much shorter reads1 and to create assembly from shorter 

reads, bigger coverage is required which increases complexity of the computation of assembly 

(Miller, Koren, & Sutton, 2010).  

Third-generation sequencing is still quite new but very promising for the future as it 

no longer requires amplification like previous generations but rather sequences single DNA 

molecule in real time. In comparison to second generation, most platforms also have following 

properties: (i) Interrogation of bases proceeds at the full speed of DNA polymerase, (ii) fewer 

reactions and material is required, (iii) simpler or no labeling of nucleotides is used (Munroe, 

& Harris, 2010). Following technologies are commercially available today: Single Molecule 

Real Time (SMRT) sequencing (PacBio platform), nanopore sequencing (Oxford Nanopore), 

and Illumina Tru-seq Synthetic Long-Read technology (Lee et al., 2016). These long-range 

sequencing platforms have size of reads in order of tens of thousands. From the point of view 

of assembly, the longer the read the better, not only because it decreases the complexity of 

computation, but also because of the biggest obstacle of genomic assembly – long repetitive 

areas of DNA that second-generation sequencers cannot reconstruct if the length of repetitive 

sequence is bigger than their read length. 

 Analysis of raw reads 

 The standard format in which reads are stored is the FASTQ file. FASTQ file always 

contains 4 lines per entry and its format is strictly defined so that it can be always correctly 

parsed by any software that needs to work with the reads (Figure 1). The file contains the 

sequences and quality score. The quality score (Q score, or Phred score) is an integer value 

and it is logarithmically related to the probability of an error in base call.  Formally, quality 

score is defined as follows: 

Q = –10 log10(P) 

                                                 

1 As an example, SOLiD 5500 W Series Genetic Analyzer V2.0 offers 50 and 75 nucleotides-long reads ("v2.0 

Specification Sheet", 2017). Illumina Miseq Reagent Kit v2 offers lengths 36, 25, 150, and 250 ("MiSeq 

Specifications | Key performance parameters", 2017). 
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Where Q = quality score, P = probability of an error ("FASTQ files", 2017). The quality 

scores in the FASTQ are encoded in ASCII, the encoding is not standardized and depending 

on the machine it can belong to two groups: ASCII_BASE 33 and ASCII_BASE 64, they 

can further differ by the value range (see Appendix C for Q scores to ASCII translation).  

FASTQ is the standard output of Illumina, but other formats exist, for instance Standard 

Flowgram Format (SFF) used by 454 and Ion-Torrent, FAST5 used by Oxford Nanopore, or 

Hierarchical Data Format HDF5 used by PacBio (Deanna Church, 2017; "PoreCamp2016: 

Understanding your MinION data", 2017; "HDF5 Data Format for PacBio Sequences", 2017). 

 

 

Figure 1: Structure of FASTQ format. One entry is shown, i.e. one sequence (read) with its label and quality 

score. Source: "FASTQ files", 2017. 

 

The first step before the assembly is to create basic statistics of the reads and analyze 

their quality. The data received from sequencing lab can sometimes be poor in quality so 

checking and running an analysis can avoid future problems in assembly, or even reveal that 

it is completely unusable (Ekblom, & Wolf, 2014). The most widely used tool for this analysis 

is FastQC, a quality control tool for high throughput sequence data. FastaQC runs several tests 

on the data which report the basic statistics – number of sequences, sequence length, GC 

content etc., and then performs more complex statistics that can reveal or suggest there is a 

problem with adapter contamination, plasmid contamination, unbalanced coverage, etc. (more 

information in FastQC documentation; "Index of /projects/fastqc/Help", 2017). Most of the 
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tests are based on the idea that there should be no structure, or bias in the data, given that it 

consists of randomly fragmented genome. If there is some bias, it is possible that there is some 

contamination in the data. 

Depending on the errors reported by FastQC, additional step before assembly called 

pre-processing can be carried out.  The most obvious reason for pre-processing is when the 

reads contain adapter sequences that were used during the sequencing. In such case the reads 

need to be rid of the adapters. Another correction depends on the sequencer. For example, in 

Illumina the quality of bases is often declining towards the 3’ end. An example of bad Illumina 

data (Figure 2) shows such case. Example of commonly used pre-processing software that can 

trim sequences based on the quality of bases and treat adapter contaminations is Erne-filter 

(Del Fabbro, Scalabrin, Morgante, & Giorgi, 2013) and Trimmomatic (Bolger, Lohse, & 

Usadel, 2014). The problem with trimming is that too much of it will come at the cost of losing 

a lot of data, so it should be done in a way that is a reasonable trade-off between reads’ quality 

and amount of data left. Quality and contamination need not be the only reasons for pre-

processing. Short repetitive sequences that are part of a genome are problematic for assemblers 

and it can be useful to remove them e.g. with RepeatMasker. In some cases, assemblers or 

assembly pipelines have their own requirements for read quality and include their own pre-

processing. 
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Figure 2: Example of Per base sequence quality of bad Illumina data (green area means good quality, orange 

area slightly bad, red area bad quality). Source: "Babraham Bioinformatics - FastQC A Quality Control tool for 

High Throughput Sequence Data", 2017. 

 De novo genome assembly 

The paradigm of assembly is cleaning up reads, assembling them into contigs, putting 

the contigs in context by creating scaffolds and finishing it by filling in the gaps. Reads are 

assembled into longer sequences (contigs) by assemblers which work with the overlaps the 

reads have. The product of assembly usually comprises several contigs for which the direction 

and position on the genome is unknown. In the case where a genome of previously sequenced 

organism is assembled, the scaffolding step is easy. The already finished genome serves as a 

reference sequence to which the contigs are mapped to figure out their orientation and order. 

In the case of de novo assembly of a new organism, additional information is required, such 

as that obtained from paired-end and mate-pair reads.  

Depending on the way the library of fragments for sequencing was prepared, fragments 

can either contain single read, paired-end reads or mate-pair reads. In case of paired-end reads, 

the fragment is sequenced from both ends to create forward and reverse read separated by an 

insert whose length can be estimated from fragment length distribution. Forward and reverse 

reads can also overlap. Mate-pairs span a longer region than paired-end reads (~2–20 kb long 

inserts) and they usually face outwards (Ekblom, & Wolf, 2014).  Paired-end reads and mate-

pair reads can be used during scaffolding to bridge over gaps and connect contigs if one read 
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is present in one contig and the second read is present in the other contig. They can also be 

used to resolve repetitive sequences if two sets of paired-end reads are available: (i) pairs 

where one read is in the repetitive sequence, the other in an area that flanks this sequence and 

(ii) pairs where both reads surround the repetitive sequence (Miller, Koren, & Sutton, 2010).   

The finishing step is carried out if the goal of the assembly is to produce a final genome. 

Filling in the remaining gaps can include a lot of additional work in lab resequencing parts of 

the genome, expertise, and money and thus many genomes are published as drafts since that 

is already enough for many analyses. This issue was explored in a study (Nagarajan et al., 

2010) which elaborates on how often genomes are left unfinished, but also shows that a 

prokaryotic genome can still be finished with limited resources in small labs and it points out 

that finished genomes could get more common place in the future with the rise of technologies 

with longer reads. 

2.3.1. Algorithms 

Assembly algorithms are based on graphs and employ one of the following methods: 

Overlap-Layout-Consensus (OLC) which is based on overlap graph, de Bruijn Graph method 

which is based on a k-mer graph, and greedy assembly. A graph is a data structure with a set 

of points (vertices) that are connected by lines (edges). The important property of a graph is 

the connectivity between vertices (Jones, & Pevzner, 2004). In bioinformatics, the most used 

graphs are directed graphs where each edge connects the source node with sink node.  The 

composition of graph differs depending on the algorithm. But universally, creating an 

assembly is a problem of finding the best path through the graph that represents the reads and 

the overlaps.  

The OLC approach consists of 3 steps: (i) Creating overlap graph, (ii) finding path 

through the graph which represents the sequence of reads connected by overlaps i.e. the layout, 

and (iii) creating the final consensus sequence. First, the assembler finds all overlaps in the set 

of reads. Overlaps are computed by pair-wise comparison between all reads using a Blast-like 

seed and extend algorithm (Miller, Koren, & Sutton, 2010).  This information is then organized 

into overlap graph, where vertices represent the reads and edges represent the suffix-to-prefix 

overlaps between the reads (example of overlap graph shown is in Figure 3; El-Metwally, 

Hamza, Zakaria, & Helmy, 2013). Each vertex can be connected to multiple other vertices 

with edges of different overlaps. In the layout step, a path through the graph is found in such 

way that every vertex is visited exactly once (every read is used) while some edges are left 
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out. Such path is called the Hamiltonian path and is NP-complete2. In the final step, the 

consensus is created from the overlaps to construct the final sequence. The OLC method is 

typically used for Sanger data and 454 data and is considered computationally too intensive 

for data from sequencers with short read length and huge depth of coverage like Illumina and 

SOLiD. However, there are short-read assemblers like Edena and Shorty that also implement 

this method (Ekblom, & Wolf, 2014). Another assemblers that use this method include the 

famous Celera assembler, Newbler, and CABOG. 

 

 

Figure 3: An example of overlap graph created from few short reads. Source: El-Metwally, Hamza, Zakaria, & 

Helmy, 2013. 

  

                                                 

2 NP-complete problems lie with their complexity between exponential and polynomial problems and are difficult 

to solve (Jones, & Pevzner, 2004). Assemblers have to use heuristic and approximation algorithms to overall 

simplify the graph in order to increase efficiency of finding a solution (Miller, Koren, & Sutton, 2010). 
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A variation of OLC is the string graph approach (Myers, 2005) which focuses on the 

graph reduction. Large number of reads (typically 40%) is contained in a path spelling a 

sequence of reads. Removing these redundant reads and their overlaps reduces the memory 

requirements. This approach is used in next-generation whole genome assembler BOA 

(Berkeley Open Assembler). 

Good approximation of the DNA sequence can be obtained by finding the shortest 

superstring that explains all reads. A superstring of the reads could be easily constructed by 

concatenating the reads. That would however be a useless assembly.  Instead, we are interested 

in finding a superstring which is the shortest common string that contains all the reads (Jones, 

& Pevzner, 2004).  The greedy assembly is the way to solve this problem. This method merges 

the reads whose overlap scored the highest (scoring can be based on length of overlap and 

number of mismatches). Solution is found in the overlap graph by finding such path that visits 

each node exactly once and maximizes the score. Finding this path is known as the Travelling 

Salesman Problem and is NP-hard. The major drawback of this method is that it tends to get 

stuck at local maxima. Greedy approach is more suitable for small genome assembly and is 

used in short-read assemblers such as SSAKE, SHARCGS, and VCAKE (El-Metwally, 

Hamza, Zakaria, & Helmy, 2013). 

De Bruijn graph method is the most used approach for assembly of short-read Illumina 

and SOLiD data. Unlike in the previous methods, it does not rely on overlap graph but on a k-

mer graph. That means that the time-consuming step of matching all-against-all to find 

overlaps is entirely skipped and instead, the k-mer spectrum of the reads is created. The 

graph’s vertices represent the k-mers and the edges are the k-1 long overlaps between the 

vertices (example of overlap graph shown in Figure 4; El-Metwally, Hamza, Zakaria, & 

Helmy, 2013). With ideal data where the k-mers are error-free, provide full coverage, and span 

every repeat, solving of the problem is a matter of finding the Eulerian path, i.e. a path that 

traverses the graph in a way that every edge is visited exactly once. In contrast to the 

Hamiltonian path this is a simpler problem (Miller, Koren, & Sutton, 2010). Real life data is 

usually not that perfect and repeats and errors are problematic in the graph as they cause 

“tangles”, or “bubbles”. Assemblers use reads, paired information and different trimming 

strategies to resolve these problems. Another disadvantage is that the assembler is sensitive to 

the selection of parameter k and it mostly needs to be simply tested which k will perform the 

best. Selection of k is a trade-off between sensitivity (small enough to consider true overlaps) 

and specificity (large enough to avoid false overlaps). K cannot logically be larger than the 
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read length as that would create no k-mer spectrum. Velvet assembler also only accepts odd k 

because odd k-mer of palindrome cannot match its reverse complement and create loop in the 

graph. The software that implements de Bruijn graphs includes Euler, Velvet, ABySS, and 

SOAPdenovo. 

 

Figure 4: Example of k-mer graph, created from few short reads. Source: El-Metwally, Hamza, Zakaria, & 

Helmy, 2013. 

 

 Microbial life in arctic soil  

The arctic permafrost that exists in extreme conditions that can seemingly only hardly sustain 

life shelters variety of well adapted microorganisms. Microorganism in permafrost need to 

battle with very low temperatures, dehydration, thawing and freezing of soil or extremes in 

pH and salinity. To survive they can produce pigments, protective layers, have different 

structure of cytoplasmic membrane to ensure it remains fluid (Tehei, & Zaccai, 2005) and their 

enzymatic proteins can catalyze reactions even in lower temperatures (Stibor & Králová, 

2000). 

Example of a commonly occurring resilient bacterium is Arthrobacter. Arthrobacter 

belongs to the phylum Actinobacteria whose common trait is gram positivity and GC content 

of 57 – 75% (Lo et al. 2002). It has a simple life cycle and can be found in different types of 
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soil in all kinds of climates and can survive in extreme condition such as arctic ice and 

chemically or radioactively contaminated areas. For instance, a study on Arthrobacter 

aurescens strain TC1 (Mongodin et al., 2006), a bacterium that can degrade herbicide atrazine, 

found that it contains two large plasmids that encode for great number of proteins involved in 

stress response of the cell. The study attributed its resilience to its metabolic versatility caused 

by duplication of catabolic genes and to its ability to incorporate plasmid-derived 

intermediates into chromosome-encoded pathways. Metabolic versatility is a key ability for 

survival in arctic areas where the sources of nourishment are scarce. 

The arctic permafrost stores big reserves of carbon (C) and can potentially greatly 

influence the Earth’s global C cycle with the warming up of polar areas and the release of CO2 

and CH4 into the atmosphere (McGuire et al., 2009). With thawing of permafrost, rising 

activity of microbial activity is expected. Microbes decompose the organic soil matter and 

convert it to the greenhouse gases which will further contribute to the global warming and 

thawing of permafrost, i.e. create the so-called permafrost carbon feedback (Schaefer, Zhang, 

Bruhwiler & Barrett, 2011). Better understanding of the microbial composition of permafrost 

and their metabolizing capabilities which can also be inferred from annotated genomes of the 

microbes is part of understanding the global issues that the arctic areas are part of. 
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3. Materials and Methods 

All work and analyses were done in silico, on the Bio-Linux 8 platform which is based 

on Ubuntu Linux 14.04 LTS to which bioinformatics packages were added (Field et al., 2006). 

In the whole process of getting the final assembly, bioinformatics software, pipelines, and 

scripts were used, which are all mentioned at each step for which they were employed.  

The data provided by my supervisor consists of two FASTQ files with reads from 

whole genome sequencing project (see “1189_TTAGGC_L001_R1_001.fastq” and 

“1189_TTAGGC_L001_R1_001.fastq” in Appendix A). The sequencing was done by 

Illumina machine from libraries of approximate size 180 bp. Paired-end sequencing was used, 

so the two files are complementary, where one contains the forward reads and the other reverse 

reads. Prior to this work the 16S ribosomal RNA of the specimen was isolated and from its 

sequence it was inferred that the bacterium is of genus Arthrobacter. 

 Analysis of raw reads 

To get first familiar with the data set, simple bash script (see Appendix B) was written 

to check the FASTQ file format and find out basic information about the reads. The script 

reported the format to be invalid (number of lines was not divisible by 4). After inspection of 

the file, redundant empty line at the end was discovered. The last line was erased and the script 

was run anew, this time reporting no error in formatting. To investigate the quality of reads 

both FASTQ files were analyzed with FastQC (version 0.11.5).  

 Genome assembly 

Pre-processing and assembly of reads was carried out by two pipelines that specialize 

on prokaryotic assembly. The first, A5-miseq (version for Linux from 25. 08. 2016), is 

specifically designed for de-novo prokaryotic assembly of Illumina paired-end data (Coil, 

Jospin, & Darling, 2014). It is simply downloaded as an archive that comprises several pearl 

scripts. It doesn’t require any installation and can be run either in Linux or Mac OS. It was run 

with raw paired reads on which it performed pre-processing with Trimmomatic and then 

created the assembly. The second pipeline, MyPro (Liao, Lin, Sabharwal, Haase, & 

Scannapieco, 2015), is a Bio-Linux virtual machine for VirtualBox that can be downloaded in 

OVA file. MyPro is not an assembler on its own, it consists of scripts that automate the entire 

process of assembly using already made software. MyPro has following assemblers installed: 
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SOAPdenovo, Abyss, SPAdes, Velvet, and Edena. In those assemblers where k-mer graph is 

used, it automatically runs assemblies with several different values of k and then keeps the 

best one. MyPro’s scripts for each step in the genome assembly are:  Preprocesss.py, 

Assemble.py, Integrate.py, Postassemble.py, and Annotate.py. It also includes the script 

Autorun.py, which runs all these scripts in sequence.  

MyPro was used on a computer with Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz, 

4 physical cores, with 8 GB DDR3 RAM and Windows 10. The OVA file was imported to 

Virtual Box (Version 5.1.2) and Preprocess.py and the pipeline Autorun.py in the virtual 

machine was run. Virtual machine specifications in VirtualBox for successful run: 6GB RAM, 

2 cores. 

Virtual disk in format VMDK was exported to virtual disk format VHD and MyPro 

was run on Hyper-V on a windows server 2016 (Intel(R) Core(TM) i7-6700HQ CPU @ 

2.60GHZ, 4 physical cores, 16 GB DDR4 RAM). Virtual machine specifications in Hyper-V: 

Dynamic RAM 2048 MB – 12 GB, 8 virtual cores, virtual disk was connected through 

controller SCSI. Both read files were trimmed with Preprocess.py with two different values 

for parameters -l (quality cutoff value) and -min (minimal length of read) to produce quality 

trimmed reads. For the first pre-processing task, default value for quality cutoff was chosen 

(0.01) together with minimum length 40 bp. For the second pre-processing task, reads were 

trimmed using quality cutoff value of 0.05 with minimum length 55 bp. Trimmed reads were 

analyzed with FastQC and the ones trimmed with -l = 0.05 were chosen for assembly because 

the first trimming caused a bigger loss of information. Another FASTQ file was created from 

the two trimmed FASTQ files by combining them with Flash (version 1.2.11.; Magoc, & 

Salzberg, 2011) that quality trimmed the sequences and merged the corresponding forward 

and reverse reads together, where they overlapped. Assemble.py was run with (i) raw reads, 

(ii) trimmed reads, (iii) extended reads. 

The partial results of assembly allowed to run script Integrate.py that uses CISA contig 

integrator (version 1.3) only on assemblies from raw reads and extended reads. 

Postassembly.py was used to further join contigs that were overlapping in the integrated 

assembly of extended reads. 
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 Genome annotation 

The result of extended reads’ post-assembly (“Bridged.ctg.fa” in Appendix A) was 

uploaded to the RAST server (Aziz et al., 2008) for annotation. In “genome information” on 

RAST, Arthrobacter was specified as the genus of the organism and the genetic code was 

automatically selected accordingly. In the options, Classic RAST annotation was selected as 

the annotation scheme, RAST as the gene caller, Release70 of FIGfam was chosen and the 

option for automatic fixing of errors that automatically resolves problems it encounters during 

annotation was checked.  

  



16 

 

4. Results 

 FastQC analysis of raw reads 

 forward reads reverse reads 

Basic Statistics PASS PASS 

Per base sequence quality PASS PASS 

Per tile sequence quality WARN WARN 

Per sequence quality scores PASS PASS 

Per base sequence content WARN WARN 

Per sequence GC content FAIL WARN 

Per base N content PASS PASS 

Sequence Length Distribution PASS PASS 

Sequence Duplication Levels PASS PASS 

Overrepresented sequences WARN WARN 

Adapter Content PASS PASS 

K-mer Content FAIL FAIL 

Table 1: FastQC summary of statistics. (See full FastQC reports in Appendix A) 

Forward and reverse reads performed similarly in the FastQC analysis (Table 1). The 

basic statistics showed that both files have the same number of reads (1,072,349) which they 

should have because they contain paired-end reads (one file has forwards reads, the second 

reverse reads). No reads were flagged for bad quality and they had uniform length (151 bp) in 

both files. Since the libraries had about 180 bp it means that the paired-end reads were 

overlapping. The GC content was 62% which corresponds to the higher GC content of 

Actinobacteria. 

Both FASTQ files had overall good per base quality of reads with declining quality 

towards the end (especially in the case of reverse reads). The comparison of FastQC analysis 

of per base quality of reads before and after the second trimming (with cutoff value 0.05) is 

showed in figure 3 and 4. Some of the reads lost a lot of bases during trimming and were 

discarded for having length smaller than 55 bp. The number of reads left after trimming was 

1,071,417 for forward reads and 1,065,860 for reverse reads, meaning 932 and 6,489 reads 

were lost, respectively.  
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Figure 5: Per base sequence quality of forward reads before trimming and after (trimming with cutoff =0.05). 

Figure 6: Per base sequence quality of reverse reads before trimming and after (trimming with cutoff =0.05). 

 

 MyPro pipeline assembly 

With default settings of VirtualBox, the first trials ended up unsuccessful. After starting 

Assemble.py script, deadlock occurred and was followed by Windows being stopped with 

power error ID 41. After trials with different settings in Virtual box, some results were 

achieved when 4GB of RAM and two cores were allocated to MyPro.  

The results of the Assemble.py were partial in all runs with different reads and allowed 

to run Integrate.py only in the case of raw reads’ and extended reads’ assembly. I decided to 

run the same assemblies on the Windows server with more RAM available in case the problem 

was in insufficient amount of memory but the results were the same (see the results in 

supplementary material). Table 2 summarizes the assembly statistics for all runs on the 

Windows server. 
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N50 Number of contigs Longest contig Whole genome 

Raw paired 

SOAPdenovo NA NA NA NA 

Abyss 5,134 1,898 37,654 6,530,368 

SPAdes NA NA NA NA 

Velvet 2,459 2,780 15,393 5,772,789 

Edena 4,236 2,135 24,934 6,679,958 

Integrate (CISA) 8,019 1,130 108,065 6,292,931  
    

Trimmed paired 

SOAPdenovo NA NA NA NA 

Abyss 6,302 5,377 75,206 9,865,384 

SPAdes NA NA NA NA 

Velvet NA NA NA NA 

Edena NA NA NA NA 

Integrate (CISA) NA NA NA NA 

     

Extended reads 
SOAPdenovo NA NA NA NA 

Abyss 4,918 1,455 51,220 5,748,845 

SPAdes 33,729 655 158,947 9,084,313 

Velvet 4,459 1,552 29,013 5,801,602 

Edena NA NA NA NA 

Integrate (CISA) 38,220 525 152,725 7,796,365 

Post-assembly 48,680 456 159,598 7,787,369 

Table 2: Assembly statistics of all genomes assembled in MyPro 

The worst assembly came out of reads that were pre-processed with the Pre-process.py 

script in MyPro (Trimmed paired). The only assembler that produced any results was Abyss 

and since the minimal requirement for integration is having results from at least 3 assemblers, 

no other work was done with that data.  

Both raw reads and extended reads assembly was successful with three assemblers and 

the results could be used for integration. The integrated assembly of extended reads was 

superior to that of raw reads with higher N50 value (38,220) and fewer contigs (525). The 

following post-assembly further improved the assembly with N50 value being 48,680 and 

number of contigs 456 (assembly stored as “Bridge.ctg.fa” in Appendix A). 
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 A5-Miseq pipeline assembly 

The resulting assembly is in the file “Final.scaffolds.fastq” in Appendix A and the 

assembly statistics are summarized in Table 3. A5-miseq created a lot of contigs but from all 

assemblies, it created the longest contig (177,031) and the N50 statistics also belongs to the 

higher ones (25,977) especially given the fact that it has the longest genome length (~ 10 Mbp). 
 

N50 Number of contigs Longest contig Whole genome 

A5-miseq 25,977 2,367 177,031 10,491,617 

Table 3: Assembly statistics of genome assembled with A5-miseq 

 Genome annotation 

The annotation ran successfully on the RAST server (summary of run in Table 4) and 

the annotation result in Genbank format is available in Appendix A (file “1663.48.gbk”). In 

addition to already known N50, SEED also computed a similar statistic, L50, which was 46 

(Table 5). This value represents the smallest number of contigs whose combined length is 50% 

of the total contigs’ length, or the assembly size (Bradnam, 2017). From this follows that the 

smaller the value, the better as that would mean the assembly consists of very large contigs. 

For our assembly that comprises 456 contigs it means that 50% of the assembled genome is 

represented by 46 contigs and the other 50% is represented by 410 contigs of smaller size.  

 

Number of features 7279 

Number of warnings 1 

Number of fatal problems 0 

Possibly missing genes 123 

Same strand overlaps 1 Warning 

Table 4: Summary of the annotation run on RAST server. 
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L50 46 

Number of contigs with protein encoding genes (PEGs) 456 

Number of subsystems 430 

Number of coding sequences 7196 

Number of RNAs 83 

Table 5: Selected information from SEED-Viewer’s organism overview 

 

 

Figure 7: Subsystem statistics of Arthrobacter's genome. Statistics and the chart were created by SEED-Viewer. 

 

Subsystem coverage in Figure 7 shows that 59% of the coding sequences are not in 

subsystems (of which 50% is hypothetical function assignment) and 41% of sequences are in 

subsystems (of which mere 4% are hypothetical). The pie chart shows the distribution of 

subsystem categories in the genome. The most prominent categories are Carbohydrates (1098 

sequences), Amino Acids and Derivatives (747 sequences), and Cofactors, Vitamins, 

Prosthetic Groups, Pigments (480 sequences). As a bacterium that must survive in Arctic, 

unsurprisingly significant portion of coding sequences are in the category Stress Response 

(152 sequences) and 4 sequences were also identified in the Dormancy and Sporulation 

category. 
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5. Discussion 

 Quality of reads 

The uniformity of length and good per base quality of reads indicates that some initial 

preprocessing was already done by the sequencing lab. However, the FastQC reported several 

warnings and errors. To continue with the assembly, the possible sources of these results and 

their implications for assembly had to be first considered. In the following paragraphs, I will 

discuss the results of the first file (forward reads) only, because the second one had very similar 

results. 

The first warning was reported for per tile sequence quality. The headers of FASTQ 

files of each sequence contain information about the flow tile the read came from. The graph 

shows the deviation from the average quality score for each tile at every base. Cold colors 

mean average or better quality and hotter colors worse than average. Therefore, from the 

patterns we can see whether some 

tile was associated with bad quality 

(we would see a horizontal line with 

hot color) and is responsible for bad 

quality in the data. In graph for 

forward reads (Figure 8) we can see 

that the tiles 2114 and 2113 had a 

quality of the 6th base worse than 

the 6th base at other tiles. The 

quality of other bases in these tiles 

were otherwise average or better, 

indicating that there was not a major 

problem with the tiles so there is no 

need for any correction. 

Figure 8: Per tile sequence quality for forward reads 
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Error in per sequence 

GC content is most likely 

the result of plasmid 

presence in the data. The 

theoretical distribution is 

built from the data provided. 

Unfortunately, FastQC 

documentation doesn’t 

provide details on how this 

is achieved. The red line in 

the graph (Figure 9) shows 

the actual distribution of GC 

count per read. Generally, 

a peak indicates some contamination. Since plasmids often have different GC content than the 

chromosome of the bacterium, I concluded that the likely source of this deviation from 

theoretical distribution is caused by plasmids being included in the whole genome sequencing 

project. 

The interpretation of other warnings is a little bit more complicated. If we look at them 

separately, they could mean several things. Error in k-mer content could be a result of adapter 

contamination. However, as seen in the summary (Table 1), both files passed the adapter 

content test. Moreover, we would expect adaptor contamination at the end of the sequence as 

the result of read-through adapter contamination (when the read is shorter than read length, 

the sequencer starts to sequence the adapter), not the start of the sequence as in this case 

(Figure 10a). Another warning was issued for overrepresented sequences which can either 

indicate that the library was contaminated or that the sequences are highly biologically 

significant. Per base sequence content also shows a bias at the beginning of reads just like the 

k-mer content.  

Figure 9: GC distribution over all forward reads. 
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When I looked at possible connection between the warnings and errors, I found that 

they most probably stem from one source – overrepresented sequences. The obvious 

connection is, as mentioned before, 

between k-mer content and per base 

sequence content (Figure 10b). If per 

base sequence content was unbiased 

the plot would show 4 straight 

horizontal lines (each line for one 

base) meaning that the base content 

has the same ratios across all 

positions in reads. Although the 

lines oscillate across all positions, 

the biggest peaks are in the 

beginning. It is logical that 

overrepresented k-mers in the 

beginning of the sequences will 

create this unbalance, hence both 

statistics reflect the same problem. 

Finally, I compared the lists of most 

frequent k-mers with most 

overrepresented sequences and 

found that the most common k-mers 

are present in those sequences. FastQC didn’t list any source of common contamination (by 

finding matches in its database) so it can either be some less common contamination or the 

sequences are biologically significant. I tried blasting 3 full sequences from the file that start 

with the 50 nucleotides that FastQC reported as overrepresented and all three of them found 

best match with bacterial rRNAs. Though only three sequences are not representative enough 

to be certain that all overrepresented sequences are not some less common contamination, I 

find the possibility that they all come from the sequenced genome more likely and decided to 

move on to assembly.  

 

Figure 10: Distribution of  6 most represented 7-mers in forward 

reads (a) and per base sequence content of forward reads. (b) 
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 Genome assembly 

MyPro turned out to be a bit more complicated for use than the “Seamless pipeline for 

automated assembly” part of the name of its published article would indicate. First problems 

were already encountered with settings of VirtualBox where the user must have some basic 

knowledge on how to optimally allocate resources such that the scripts do not take too long 

and also enough memory and processing power is left for the host system in which the virtual 

machine is running. It would also be better if MyPro was available for download in VHD 

format which can be imported in VirtualBox and also in Hyper-V which is better integrated 

with the operating system, in the case user has Windows (for instance Hyper-V makes sure 

that the virtual computer always lefts enough resourced for the host system and therefore any 

deadlock in the system should not occur). While the intention of authors for MyPro to be used 

in VirtualBox is understandable as VirtualBox is cross-platform software, the very idea of 

creating a whole Linux-based virtual machine just for assembly suggests that the intended 

users of MyPro are biologists with no bioinformatics background who mainly work with 

Windows or Mac OS. Therefore, providing MyPro in OVA format seems illogical to me.  

The most troubling part of the results is that in all instances of assembly runs, several 

assemblers did not produce any assemblies. Ironically, when Pre-process.py which is part of 

the MyPro pipeline was used, the trimmed sequences apparently posed some difficulties to the 

assemblers of which only Abyss produced results. In contrast to that, even when no pre-

processing was used (in the “Raw paired” run) the assembly was successful in case of Abyss, 

Velvet and Edena. SOAPdenovo and Velvet did not produce any log so I could not search for 

possible errors, but in the case of SPAdes and Edena, the logs included error message that was 

responsible for the failure. In all cases where SPAdes failed, the error message was: Error in 

malloc(): out of memory. In cases where Edena failed the error was: all reads within a file 

must be of the same length. Since quality trimming in “Trimmed paired” and “Extended reads” 

trims low quality bases on the ends of sequences resulting in non-uniform lengths of reads, it 

is understandable why Edena failed in these two cases. As for SPAdes, running out of memory 

is a problem of limited RAM of the hardware, part of which is in addition unavailable to the 

virtual computer as it has to share it with the host system. The authors of MyPro provide a 

short guide where they demonstrate usage of their software on examples that were run in a 

VirtualBox with 16GB RAM @ Dell Precisions Workstations T1600 Computer Workstation 

(Quad Core Xeon E3-1245, 3.30 GHz with 32GB RAM). 32GB RAM is a very decent memory 



25 

 

which is quadruple of what I have on my laptop and double of what I had available on the 

Windows server. It is therefore possible that the rest of assemblers also failed due to 

insufficient memory. 

Quality of assembly was evaluated with assembly statistics, based on which the best 

assembly after integration of individual assemblies was achieved with extended reads. The 

most important statistics that was reported both by MyPro and A5-miseq is number of contigs 

and N50. The goal of assembly is to get the smallest number of contigs possible to be close to 

having one contiguous sequence as a result. The N50 statistics is the length of the contig which 

is at the point of half of the mass of the length distribution which means by its computation it 

is dependent on the combined length of all contigs3 (reported as genome length). Therefore, it 

is not a statistic that can be really compared between different assemblies unless the genome 

sizes are the same, but still is an important parameter of assembly quality. In both regards, by 

far the best assembly was produced in the “Extended reads” run by SPAdes (655 contigs, N50: 

33,729). 

The result of A5-miseq assembly was disappointing in regard to number of contigs but 

otherwise created a good assembly. An advantage to A5-miseq is that it can use paired-end 

reads to create scaffolds from contigs. However, in this case our “paired-end reads” overlap, 

therefore do not provide any additional help by spanning longer distances. I would opt for this 

assembler again in the future if I would have paired-end reads with some longer insert. 

Since paired-end reads overlapped, the reads in MyPro assembly were rather merged 

and that also turned out to be a smart step. Some assemblers may even have problems with 

overlapping paired sequences and it also simplifies and speeds up the process of assembly 

(Seemann, 2017). 

  

                                                 

3 N50 statistics is computed in following way: The contigs are ordered from longest to shortest and then, 

starting with the longest, the lengths of contigs are summed until the sum equals 50% of combined contig length 

(length of assembled genome). The smallest length of the sequence which was still added to the summation is 

the resulting N50 value (Yandell, & Ence, 2012).  
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 Annotation of the draft genome 

The annotation run on RAST server issued one warning for “Same-strand overlaps”. 

From the SEED documentation for the RAST report ("RAST Quality Report - TheSeed", 

2017), same-strand overlap is a pair of same-stranded PEGs oriented in the same direction, 

whose overlap is more than the threshold of 120 bp. Since the documentation does not state 

otherwise, I suppose the overlap is meant as a perfect overlap with zero mismatches. 

Occurrence of two sequences in the genome with identical 120 bases just by chance is a very 

unlikely scenario. In my opinion there are two possible sources of this: (i) it is not an error in 

assembly, but a gene duplication, (ii) it is an assembly error. The second option would be 

interesting - if we found the locations in assembly where these overlapping sequences occur, 

it could possibly reveal a problematic place for the assembly and allow us to make precautions 

in possible future assemblies. 

The SEED estimated the number of missing genes (PEGs possibly present in gaps) to 

be 123. The estimation is very rough but also very conservative, so it is possible the number 

of actual missing genes is smaller. Given that the drat genome consists of many contigs, it is 

no surprise that some genes might not be present in the assembly. 
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6. Conclusion and future prospects 

From inspection of the reads from Illumina sequencer, it was clear they had already 

undergone the basic pre-processing that trimmed the adapter sequences and discarded any low-

quality reads. However, I think that playing more with the pre-processing step could greatly 

influence the assembly (just like the merging of the reads did). The data had a lot of 

overrepresented sequences. While those sequences are most likely not a product of 

contamination, their source should be more investigated and improving their representation in 

the data (deleting some portion of identical sequences) could potentially improve assembly.  

The resulting assembly is broken up into many contigs and is far from being a finished 

genome. However, given the data the assembly will always be incomplete, even though it 

could still be improved. The constructed draft genome was good enough to make an 

informative genome annotation.  

In the study, I got to test MyPro and A5-miseq pipelines which provided valuable 

lessons for the future. Overall, given that MyPro produced better results than the A5-miseq 

pipeline, I would say it is a very useful software which is unfortunately horribly degraded by 

not providing complete documentation which makes use of this software very difficult 

especially in terms of interpreting the results. One way to improve the assembly would be by 

running MyPro again on a computer with larger memory to gain complete results. The A5-

miseq pipeline as an individual assembler also produced good results, but MyPro has the 

advantage that it integrates multiple assemblies. 

The results of individual assemblers in MyPro provide information on which 

assemblers are best for this kind of data. I think the most promising way of making the 

assembly better would be by running the best performing assembler (SPAdes) and those that 

did not produce any assembly individually outside of MyPro to avoid the problem with 

insufficient memory. Then, CISA could be used for integrating the best assemblies, perhaps 

also with the A5-miseq assembly. 

The future intentions are to resequence the genome using MinION from Oxford 

Nanopore Technologies with read length in order of kbp. MinION has a completely different 

error profile than second-generation sequencers and so completely different assemblers would 

need to be tested. Combination of MinION reads or their assembly could potentially be enough 

information to make a finished genome.  
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Appendix B: Script for FASTQ file validation and basic 

statistics of reads. 

 

File name: fastaCheck.sh 

Language: zsh 

Description: The script check for validity of the FASTQ format in terms of number of lines, 

then it assesses the number of reads and gets the number of occurrences of different lengths 

of reads. 

Input file: FASTQ file 

Output file: Text file with results. 
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Appendix C: Translation table between ASCII code, error 

probability in base call, and Q score 

Source: "Quality (Phred) scores", 2017 

 


