
T 
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INFORMATION SYSTEMS 
ÚSTAV INFORMAČNÍCH SYSTÉMŮ 

APPLICATION FOR CONTROLLED ACCESS TO RE­
MOTE DOCUMENTS FOR MICROSOFT WINDOWS 
APLIKACE PRO ŘÍZENÝ PŘÍSTUP KE VZDÁLENÝM DOKUMENTŮM PRO MICROSOFT WIN­

DOWS 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR ADAM FERANEC 
AUTOR PRÁCE 

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2021 



Brno University of Technology 
Faculty of Information Technology 

Department of Information Systems (DIFS) Academic year 2020/2021 

Bachelor's Thesis Specification ||||||||||||||||||||||||| 
23591 

Student: Feranec Adam 
Programme: Information Technology 
Title: Application for Controlled Access to Remote Documents for Microsoft 

Windows 
Category: Operating Systems 
Assignment: 

1. Familiarize yourself with the requirements for secure access to documents in the Validated 
Data Storage (VDU) project. Explore the possibilities of virtual file systems and integration of 
applications into the desktop environment in the Microsoft Windows operating system. 

2. Design a client application that will connect to the VDU repository and allow to access its 
content locally with a given one-time access token provided by the VDU system. The content 
will be accessed as a file in a virtual file-system and the client application will implement the 
access and version control. Also design automated tests of the application. 

3. After consulting with the supervisor, implement the proposed application, including the 
automated tests. 

4. Evaluate and discuss the results and publish the resulting software as open-source. 
Recommended literature: 

• An internal documentation of the Validated Data Storage project. 
• VIRIUS, Miroslav. Programování v C++: od základů k profesionálnímu použití. Praha: Grada 

Publishing, 2018. Myslíme v. ISBN 978-80-271-0502-1. 
• WinFsp: Windows File System Proxy. GitHub [online]. 2020 [seen 2020-10-26]. Available at 

[https://github.com/billziss-gh/winfsp] 
• Dokany. GitHub [online]. 2020 [seen 2020-10-26]. Available at 

[https://github.com/dokan-dev/dokany] 
• VFS for Git. GitHub [online]. 2020 [seen 2020-10-26]. Available at 

[https://github.com/MicrosoftA/FSForGit] 
Requirements for the first semester: 

• Items 1, 2 and work started on item 3. 
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ 
Supervisor: Rychlý Marek, RNDr., Ph.D. 
Head of Department: Kolář Dušan, doc. Dr. Ing. 
Beginning of work: November 1, 2020 
Submission deadline: May 12, 2021 
Approval date: April 1, 2021 

Bachelor's Thesis Specification/23591/2020/xferan00 Page 1/1 

http://github.com/billziss-gh/winfsp
http://github.com/dokan-dev/dokany
http://github.com/MicrosoftA/FSForGit
https://www.fit.vut.cz/study/theses/


Abstract 
This thesis aims to design, implement and test a client-side applicat ion for Microsoft W i n ­
dows to ensure controlled access to remote documents for the V D U project. The applicat ion 
is programmed i n the C+-1- language, using the object-oriented l ibrary M F C , the W i n F s p 
interface for v i r tua l file system integration, and the Windows A P I . The applicat ion accesses 
the server v ia R E S T A P I , and it is tested wi th a created simulated server and a custom 
testing script, bo th programmed i n the P y t h o n programming language. 

Abstrakt 
Cieľom tejto p r á c e je nav rhnúť , implementovat a o tes tovať k l ien t skú ap l ikác iu pre M i ­
crosoft Windows, k t o r á bude zabezpečovať p r í s t u p k v z d i a l e n ý m dokumentom pre pro­
jekt V D U . Apl ikác ia je n a p r o g r a m o v a n á v j azyku C + + s p o u ž i t í m objektovo orientovanej 
knižnice M F C , rozhrania W i n F s p pre in teg rác iu v i r t u á l n e h o súbo rového s y s t é m u a rozhra­
nia Windows A P I . Apl ikác ia k serveru pristupuje cez R E S T A P I a je t e s t o v a n á s v y u ž i t í m 
v y t v o r e n é h o s imulovaného serveru a testovacieho skr iptu , n a p í s a n ý c h v programovacom 
jazyku Py thon . 

Keywords 
Windows, application, client, C , C + + , W i n F s p , M F C , file system, remote access, integra­
t ion, Windows A P I , Py thon . 

Kľúčové slová 
Windows, apl ikác ia , klient, C , C + + , W i n F s p , M F C , s ú b o r o v ý sy s t ém, vzd ia lený p r í s t u p , 
integration, Windows A P I , Py thon . 

Reference 
F E R A N E C , A d a m . Application for Controlled Access to Remote Documents for Microsoft 
Windows. Brno , 2021. Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Infor­
mat ion Technology. Supervisor R N D r . Marek Rychlý , P h . D . 



Rozšírený abstrakt 
T á t o p r á c a sa z a o b e r á n á v r h o m a i m p l e m e n t á c i o u apl ikácie , k t o r á sp r í s t upňu je vzdia lené 
dokumenty na serveri Vzdia leného D á t o v é h o Úložiska ( V D U ) . S ú b o r y sú s p r í s t u p n e n é v in ­
tegrovanom l o k á l n o m p r o s t r e d í o p e r a č n é h o s y s t é m u Windows . Apl ikác ia je s c h o p n á sa 
pripojiť na d a n ý server, prihlásiť sa so z a d a n ý m už íva teľským menom, a umožniť p r í s t u p 
k j e d n o t l i v ý m s ú b o r o m na zák l ade j edno rázového reťazca, r ep rezen tu júceho jeden vzdia lený 
súbor . D a n ý s ú b o r je nasledovne p r í s t u p n ý vo v i r t u á l n o m disku, k t o r ý je obsahuje v i r t u á l n y 
s ú b o r o v ý s y s t é m . Tento v i r t u á l n y s ú b o r o v ý s y s t é m na p o z a d í r iadi p r í s t u p k s ú b o r o m a je 
obs luhovaný ap l ikác iu a využ íva rozhranie tretej strany Windows F i l e System Proxy. A p ­
l ikácia je n a p r o g r a m o v a n á v programovacom jazyku C + + s p rvkami j azyku C , k t o r é je 
využ ívané s r o z h r a n í m Windows A P I . Užívateľské prostredie d ia lógu zabezpeču je objek­
tovo o r i en tovaná kn ižn ica Microsoft Class Foundat ion library. 

V prvej kapitole popisuje mot ivác iu pre vytvorenie apl ikácie , jej z á k l a d n ý p r inc íp , a od­
kazuje na s t r á n k u , kde je ap l ikác ia zvere jnená ako voľný softvér. 

D r u h á kapi tola reprezentuje t eo re t i ckú časť p r áce . T á t o kapi tola popisuje p r inc íp 
a s p ô s o b vývo ja apl ikáci í pre o p e r a č n ý s y s t é m Windows, u v á d z a do povedomia Windows 
A P I , k t o r é poskytuje rozhranie pre vývoj apl ikáci í pre s y s t é m Windows a vysvetľuje jeho 
konš t rukc ie . Ďalej vysvetľuje do detailov p r inc íp v i r t uá lnych súbo rových sys t émov , ich 
použ i t i e a p o r o v n á v a t r i rôzne m o ž n o s t i sof tvéru na ich v ý v o j . P o s l e d n á sekcia popisuje 
zvyšné technológie využ i t é v prác i . 

Tret ia kapi tola vysvetľuje zadanie p r á c e a analyzuje špecifikáciu apl ikác ie a serverového 
rozhrania V D U A P I . Zadanie rozde lené do j edno t l i vých pož iadavkov a špecif ikácia je for-
ma l i zovaná do podoby O p e n A P I . T á t o podoba umožňu je efektívnejší vývoj ap l ikác ie pre 
d a n é rozhranie typu R E S T , a pre vývoj s imulovaného serveru obs luhu júceho toto rozhranie 
v neskorš ích kap i to lách . 

Š t v r t á kapi tola predstavuje n á v r h apl ikácie , k t o r ý sa uvažuje ako n á v r h v n ú t o r n ý c h 
komponentov, n á v r h užívateľského rozhrania, a n á v r h a u t o m a t i c k ý c h testov apl ikác ie . Vnú­
t o r n é komponenty p r e d s t a v u j ú š t r u k t ú r u tr ied, z n á z o r n e n ú na v loženom diagrame tried 
a s p ô s o b ukladania d á t . Užívateľské rozhranie je u v e d e n é ako n á v r h d ia lógového okna 
spolu s n á v r h o m spôsobov in tegrác ie so s y s t é m o m Windows a ap l ikác iami v s y s t é m e . A u ­
t o m a t i c k é testy sú n a v r h n u t é spolu s t e s tovac ím m ó d o m a s imu lovaným V D U serverom. 

P i a t a kapi tola do detailov popisuje i m p l e m e n t á c i u a testovanie j edno t l i vých čas t í ap­
likácie, tak, ako bol i n a v r h n u t é v predošle j sekcií. Vysvetľuje rôzne p r o b l é m y k t o r ý m 
proces i m p l e m e n t á c i e čelil, a predstavuje ich k o n k r é t n e r iešenie. Implementuje dialógové 
užívateľské rozhranie, synchron izác iu v lákien , synchron izác iu medzi procesmi, pripojenie 
k serveru H T T P a v i r t u á l n y s ú b o r o v ý sys t ém, k t o r ý integruje to prostredia Windows. 
Ďalej implementuje s imulovaný V D U server, vysvetľuje inš t rukc ie pre testovanie a imple­
mentuje tes tovac í skript . V poslednej sekcií p r e v á d z a vykonanie a u t o m a t i c k ý c h testov na 
k o n k r é t n o m s y s t é m e a popisuje ich výsledky. Nasledovne u v á d z a t r i rôzne verzie oper­
ačného s y s t é m u Windows, k t o r é sú p o d r o b e n é testovaniu apl ikác ie . Toto testovanie je 
v y h o d n o t e n é , a rozdiely medzi s y s t é m a m i sú vysve t lené . 

Šiesta, p o s l e d n á kapi tola reprezentuje záver p r áce . V tomto závere sú z h r n u t é a vy­
h o d n o t e n é d o s i a h n u t é výs ledky p ráce . Tieto výs ledky p r e d s t a v u j ú n a v r h n u t ú a imple­
m e n t o v á n u apl ikác iu , a u t o m a t i c k é testy pre ap l ikác iu , v y t v o r e n ý s imulovaný V D U server, 
v y t v o r e n ý tes tovac í skript a výs ledky testovania. Apl ikác ia je ďalej zvere jnená a odkaz na 
zverejnený zdro jový kód je dos tupný . 



Appl ica t ion for Control led Access to Remote Doc­
uments for Microsoft Windows 

Declaration 
I hereby declare that this Bachelor's thesis was prepared as an original work by the author 
under the supervision of R N D r . Marek Rych lý P h . D . I have listed a l l the l i terary sources, 
publications, and other sources, which were used during the preparation of this thesis. 

A d a m Feranec 
M a y 10, 2021 

Acknowledgements 
I would like to thank my supervisor R N D r . Marek Rychlý, P h . D . for valuable feedback, 
numerous consultations, professional support, and patience. Equal ly , I would like to thank 
my family and my girlfriend for their continuous support. 



Contents 

1 Introduction 2 

2 Theory 3 
2.1 Development for Microsoft Windows 3 
2.2 V i r t u a l file systems 10 
2.3 Add i t i ona l technologies 16 

3 Specification and analysis 18 
3.1 Requirements 18 
3.2 Formal iza t ion 20 

4 Design 22 
4.1 Internal components 22 
4.2 User interface 26 
4.3 Automated tests 31 

5 Implementation and testing 35 
5.1 Internal components 35 
5.2 User interface 44 
5.3 Automated tests 48 

5.4 Testing the applicat ion 50 

6 Conclusion 53 

Bibl iography 54 

A Contents of the included storage media 58 

1 



Chapter 1 

Introduction 

Nowadays, it is essential to have a l l important files, such as documents, photographs, pic­
tures, or just p la in text notes, backed up safely using a cloud storage service. Fi les like 
photos, unless edited, do not change over t ime. Documents, notes, and various other types 
of files can have their contents modified. W h i l e backing up a modified document, the old, 
backed-up version of the document is usually replaced by the new one. The effects of this 
can potential ly be devastating, especially i f a new version of a file is corrupted, empty, or 
misses something the previous version had - there is no way to get it back. A t an enterprise 
scale, a stored, backed-up file can be read and modified by mult iple people. A t this scale, 
it becomes apparent that there is a need to find a way to keep track of who changed a file, 
what the changes were, and the potential to restore older backups. 

This thesis aims to create an applicat ion that would help wi th accessing and modifying 
such files. The applicat ion is targeted towards computers that run Microsoft W i n d o w s 1 . It 
integrates closely wi th the system's environment to provide seamless access, reading, and 
modifying remote files. These remote files are subject to the Val idated D a t a Storage project 
( V D U ) . The applicat ion communicates w i th the server of the V D U and does a l l overhead 
in the background. It provides the remote files as i f they were present on a local disk on 
Windows, which the remote file repository being accessed v i a a very specifically designed 
interface. The disk, integrated into the desktop environment of Windows, is v i r tua l and 
contains a custom v i r tua l file system, which manages the files locally and remotely. The 
application is available as open-source on G i t H u b 2 . 

x h t t p s : //www.microsoft.com/en-us/windows  
2 h t t p s : //github.com/coolguyl24/vduclient 

2 

http://www.microsoft.com/en-us/windows


Chapter 2 

Theory 

This chapter serves as an introduct ion to the required technologies for this thesis. It intends 
to explore the development of applications for Microsoft Windows, files, and various v i r tua l 
file systems, w i t h the possibil i ty of integration w i t h the Windows environment and other 
used technologies. 

2.1 Development for Microsoft Windows 

According to [44], Microsoft Windows is the most used desktop operating system, consis­
tently having more than a 70% market share among operating systems across many years. 
Being i n development for many years and thanks to its excellent backward compatibil i ty, 
Windows provides many ways to create user applications, al lowing developers to select from 
mult iple programming languages. The choice of the C + + programming language, combined 
wi th the usage of C , came from the thesis's a im. It intends to create an applicat ion that 
integrates w i t h the Windows environment and creates a v i r tua l file system. These func­
tionalities require close, direct interaction w i t h the operating system. C and C + + are the 
most pract ical languages for such tasks, as they operate on a low level. 

This section introduces appl icat ion development for Windows using the Windows A P I , 
the Microsoft Foundat ion Class Library , and provides an overview of these technologies. 

2.1.1 D e v e l o p m e n t E n v i r o n m e n t 

This subsection focuses on a l l preliminaries related to the development environment for 
creating applications for the Windows operating system. It briefly introduces and describes 
the required tools and software. 

Microsoft Windows Software Development K i t 

The Microsoft Windows Software Development K i t (Windows S D K ) is a required software 
for developing and bui ld ing applications for Windows . The Windows S D K , according to 
[20], contains a l l libraries, headers, and tools required to design, implement, run, debug, 
and release Windows applications. Install ing the Windows S D K allows the host computer 
to execute applications, which use the debug versions of libraries for easier debugging, at 
the cost of a larger size of the resulting executable. 

3 



Microsoft V i sua l Studio 

The V i s u a l Studio Integrated Development Environment ( I D E ) , as described by [12], is 
a program developed by Microsoft and is ideal for Windows desktop applicat ion devel­
opment. It includes a code editor w i th well-writ ten IntelliSense, debugging tools, theme 
customization, support for third-party add-ons, and even a graphical window editor. V i ­
sual Studio is available i n three different editions: Communi ty , Professional, Enterprise. 
For students, V i s u a l Studio 2019 Communi ty is the best option because, according to [18], 
it is free to use under Individual Licence, al lowing any indiv idual , such as a student, to work 
and develop applications for Windows . In V i s u a l Studio, projects which work together are 
grouped under a Solution. Every project contained i n such a solution can be buil t for dif­
ferent system versions, compiled wi th different compilers, and set up wi th different project 
properties. 

Microsoft V i sua l C + + 

The Microsoft V i s u a l C + + Toolset ( M S V C ) , also referred to as the bu i ld tools, is included 
in V i s u a l Studio and contains the M S V C compiler, linker, s tandard libraries, and headers 
for Windows A P I development, as stated by [25]. It is the default compiler for compil ing 
Windows applications in V i s u a l Studio, and allows compilat ion of appl icat ion for multiple 
architectures and versions of the system. 

2.1.2 W i n d o w s A P I 

The Windows API, also known as the Win32 API, is a massive, complex collection of head­
ers and libraries programmed i n the C programming language, containing many different 
functions, function prototypes, macros, and documentation. It allows applications to inte­
grate wi th the Windows desktop environment. T h i s subsection aims to give a brief overview 
of what is essential to know about the Windows A P I before creating an applicat ion from 
the bo t tom up, assuming previous knowledge of the C programming language. 

Processor modes 

According to [45], i n the Windows operating system, the processor can run code in two 
modes: 

• Kernel mode - The privileged mode 

• User mode - The unprivileged mode 

The processor can switch between these modes depending on what code is being executed. 
Hardware drivers, file system drivers, and the operating system kernel a l l run i n the kernel 
mode. A l l components in the kernel-mode share the same address space, have privileged 
access to the entire system, and even access each other's data. 

In user mode, every process started on Windows has its own v i r tua l address space. The 
v i r tua l address space is private for that process, ensuring no other process can access it -
every applicat ion runs i n isolation. 

C o d i n g conventions 

A s defined by [24], the Windows A P I defines the pointer data types i n the form of "Pointer to 
X " . The practice of this is often seen directly i n code of Windows A P I function prototypes 

4 



as " P " or " L P " prefixes on data types. " P " stands for pointer. " L P " stands for long 
pointer, a historical holdover, which for a l l intents and purposes, it can be considered just 
a regular pointer. Us ing the standard star symbol is s t i l l a val id way to signify a pointer 
type while programming Windows applications. L i s t ing 2.1 shows three different ways to 
declare a pointer variable. 

1 //Each of these l i n e s i s an equal declaration of the same pointer 
2 LPDWORD pdwCount; 
3 PDWORD pdwCount; 
4 DWORD* pdwCount; 

Lis t ing 2.1: A n example of mult iple ways of declaring a pointer to a double-word. 

A Windows Word is a 16-bit unsigned short integer. Its data type is WORD and, for 
historical reasons, w i l l always be guaranteed to be 16 bits long. A Double-Word is twice 
as long, 32-bit unsigned integer, DWORD. To support the 64-bit architecture, a Quad-Word , 
QWORD is available. Addi t ional ly , Windows re-defines standard integers as their capitalized 
versions, such as INT, the size of which is architecture-specific. For precise sizes of integers, 
it is good practice to use a bit-specific version, such as INT32. 

Addi t ional ly , Windows A P I uses the Hungarian Notation1, which adds semantic infor­
mat ion to variable names in the form of prefixes. The information is supposed to let the 
programmer know the variable's intended use, data type, scope, and others, by just know­
ing its name without cross-referencing i t . Th i s practice can be noticed wi th Double-Word 
variables having a "dw" prefix and handles having an " h " prefix. L i s t ing 2.2 shows an 
example of declaring variables using this notation. 

1 PDWORD pdwCount; //Pointer to a double-word variable 
2 LPWSTR IpszName; //Pointer to a zero-terminated s t r i n g 
3 LPVOID lpBuffer; //Pointer to a buffer 
4 LPDWORD lpcblnfo; //Pointer to a count of bytes 
5 HMODULE hModule; //A handle to a module 

Lis t ing 2.2: A n example of declaring variables using the Hungar ian notation. 

Object handles 

According to [35], Windows does not support direct access to system resources like files, 
threads, windows, or graphic images like icons. These system resources are called objects 
and are unrelated to the C + + object-oriented implementat ion of objects. For an applicat ion 
to access an object, it needs to obtain an object handle. 

A handle is an opaque data type used to system resource v ia the related 
Windows A P I functions, which require an object's handle to identify the accessed object. 
The value has no real meaning outside of the operating system. One can imagine it as 
an entry of an internal object table of the operating system. A n applicat ion can obtain a 
handle through various Windows A P I functions, depending on the object the applicat ion 
is t ry ing to access. A l l handles are kept and managed internally. Depending on the object, 
a single object can have either mult iple handles or be l imi ted to a single handle at a time 
wi th exclusive EICC6SS, ctS described by [34]. 

x h t t p s : //web.mst.edu/-cpp/common/hungarian.html 

5 



Registry 

The Windows registry is a hierarchical database containing data cr i t ica l for the correct 
function of the operating system's services and applications that run on it . The registry 
data structure, as described by [28], is essentially in a tree format, where the nodes are 
called keys. A key can contain other keys - subkeys and entires of data.. 

A registry entry has a name, type, and a value. The value data types are standard 
Windows types, such as a double-word or a zero-terminated string. There are several 
predefined keys, and according to [29], each one serves a different purpose for the operating 
system, for services, and applications. The predefined keys are always open and are noted 
by the HKEY_ prefix. Figure 2.1 displays a view of the contents of the Windows registry 
using the Registry Edi to r . 

1j Registry Editor - • X 

File Edit View Favorites Help 

ComputerVHKEY_CURRENT_USER\Environment 

v • Computer 

H KEV_C LAS£ES_RO OT 

v H KEY_C U RRENT_U SER 

App Events 

Console 

Control Panel 

Name Type Data 

^ [ D e f a u l t ] REG_SZ [value not set) 

^ P a t h REG_EXPAND_SZ %USERPROFILE%\AppData\Local\Micr... 

^ T E M P REG_EXPAND_SZ %USERPROFILE%\AppData\Local\Temp 

j ^ T M P REG_EXPAND_SZ %USERPROFILE%\AppData\Local\Temp 

Environment 

> Q EUDC 

Keyboard Layout 

Network 

Printers 

SOFTWARE 

System 

Volatile Environment 

> H KEY_LOC AL_M AC H1N E 

> HKEY_USERS 

> H KEV_CU RRENT_C 0 N Fl G 

Figure 2.1: Browsing the Windows registry using the Registry Edi to r . 

The predefined keys which are important for Windows applications are the following: 

• HKEY_CLASSES_ROOT - Definitions of document types and classes; shell information 

• HKEY_CURRENT_USER - Preferences of the current Windows user 

• HKEY_LOCAL_MACHINE - System configuration data 

• HKEY_USERS - Default user and current user configuration 

• HKEY_CURRENT_CONFIG - Differences between the current and standard configuration of 
the system 

G 



Windows 

A window in terms of Windows A P I , described by [23] is a programming construct which: 

• Occupies some portion of the screen 

• Can change its visibility at any given moment 

• Knows how to draw itself 

• Responds to events from the user or the operating system 

B y this definition, a window i n Windows programming might not always refer to the appli­
cation window. A button, text field, check box, or even a combo box is a window in itself. 
The difference is that the appl icat ion window also referred to as the main window, is not 
part of any other window of the applicat ion. The ma in window also often has a t i t le bar, 
minimize but ton, maximize button, and other standard user interface elements. 

According to [23], a window can have relationships relative to other windows. If another 
window creates a new window, the relationship between them is an owner/owned relation­
ship. If a window resides i n another window, it is called a chi ld window. The relationship 
between them is parent/child. L i s t ing 2.2 displays an example of both relationships. 

A fi le -

File Edit 

Notepad 

Format View Help 

- • X 

< > 

L n l . C o l l 100% Windows CRLF) UTF-8 

Owner / Owned 

Confirm Save As 

A file,bet already exists, 
Do you want to replace it? 

Yes No 

Parent / Ch i ld 

Yes No 

Figure 2.2: Example of owner/owned and parent /chi ld relationships between windows, 
using Windows Notepad. 

Character set 

Functions, which manipulate characters, are i n general, implemented i n the following ver­
sions: 

• A N S I 2 version - signified w i t h the suffix " A " , i.e., InternetOpenA 

• U n i c o d e 3 version - signified wi th the suffix " W " , i.e., InternetOpenW 

• Generic version - adaptive wi th no suffix, i.e., InternetOpen. 

American National Standards Institute codes h t tps : / /www.ansi .org/  
3 h t t p s : / / u n i c o d e . o r g / 

https://www.ansi.org/
https://unicode


The generic version is not implemented per se, rather defined as a macro, referring either to 
the A N S I or Unicode version, depending on the current character set. Some newer functions 
do not support A N S I and only have the Unicode version available, as stated by [1]. 

T h r e a d synchronization 

There are many ways to synchronize threads i n Windows . These include, but are not 
l imi ted to, Events, Semaphores, Mutexes, Interlocked A P I , and S l im reader/writer locks 
( S R W locks), as listed by [31], which are used i n this thesis. 

A n S R W lock is a simplified version of a semaphore, which is, according to [30], described 
as a synchronization object that is useful in controll ing a shared resource between multiple 
threads. A semaphore has a set number of threads that are allowed to access the resource 
simultaneously. W h e n a thread is done using the resource, another thread is allowed to use 
it. A s specified by [26], an S R W lock takes the thread's intent w i th the shared resource into 
account and is opt imized for speed and performance. If a thread wants to read a resource, 
it can acquire the resource's lock i n a shared mode. If a thread wants to write to a resource, 
it can acquire the resource's lock i n the exclusive mode. If a resource lock is not acquired, 
it can be acquired in either mode. 

The exclusive mode works just like a semaphore w i t h a single allowed thread. The access 
is always exclusive as no other threads can simultaneously access the resource, even i f some 
threads only want to read the resource. The shared mode allows for read-only access to the 
resource by mult iple threads i f the lock is not acquired i n the exclusive mode. 

Neither mode has a pr ior i ty of acquiring the lock, there is no order or a queue of access, 
so i f two threads want to acquire an S R W lock, it is not predictable which thread w i l l 
acquire the lock i n different modes. The lock is the size of a pointer, which means faster 
access but a rather l imi ted amount of information stored about the state of the lock. Whi l e 
being simple, it is sufficient to solve many thread synchronization problems, such as "The 
Readers-Writers Problem"1. 

Interprocess communication 

There are mult iple different methods of performing interprocess communicat ion i n W i n ­
dows, such as named pipes, Windows sockets, mailslots, and others. Th is thesis makes 
explicit use of mailslots. 

According to [32], a mailslot is a temporary pseudo-file, only present i n the system's 
memory. A mailslot can be created by a single process, which becomes the mailslot server, 
and only that process can read from the mailslot. Other processes can become mailslot 
clients by opening and wr i t ing into the mailslot file. Th is creates a dynamic where the 
process can check whether it is a server or a client by s imply at tempting to create a mailslot 
and possibly having a different behavior depending on the result. Mai ls lo t clients can write 
messages into the mailslot, which can be received by the mailslot server, enabling the 
interprocess communicat ion i n the form of many-to-one. 

2.1.3 M i c r o s o f t F o u n d a t i o n Class L i b r a r y 

The Microsoft Foundat ion Class L i b r a r y ( M F C ) is an object-oriented C + + library, which 
abstracts and wraps the non-object-oriented Windows A P I . It helps design and create user 

4 h t t p s : //www.u-aizu.ac.jp/-yliu/teaching/os/lec07. html 

8 

http://www.u-aizu.ac.jp/-yliu/teaching/os/lec07


interfaces for both simple and complex applications. It supports creating dialog boxes, 
windows, network services, implementing network communication, threading, and more, as 
described by [47]. 

Abstractions 

Lis t ing 2.3 shows a comparison of showing the main window using the methods of both 
A P I s , w i th the M F C object abstracting the window handle away i n favor of using a window 
C + + object. Ca l l i ng the ShowWindow'' function directly from a window object is a lot more 
straightforward and convenient than handles. Internally, M F C s t i l l uses the Windows A P I . 
Suppose there is a need for a Windows A P I object handle of an M F C object. In that 
case, there are supportive functions such as GetSaf eHwnd , which return the internal object 
handle. 

//Windows API - Using C 
HWND hMainWnd = CreateWindowW(...); 
ShowWindow(hMainWnd, SW_SH0WN0RMAL); 

//MFC - Using C++ 
AfxGetMainWnd()->ShowWindow(SW_SH0WN0RMAL); 

Lis t ing 2.3: A comparsion of showing a window using Windows A P I and M F C 

Strings 

The usage of strings ties closely to the character set. A s described by [46], a developer 
can take advantage of the portable run-time functions and prototypes to make the Unicode 
character set when possible and otherwise fall back to A N S I . 

Portable run-time prototypes, functions and macros provide the developer w i th a way 
to work wi th strings and adapt to the preferred character set automatically. Those are 
recognizable by the " _ T " , " _ T E X T " , or "_ tc s" prefixes. For example, the _tcs family of 
functions substitutes one-to-one wi th wcs and s t r family of functions. M F C provides string 
classes CString' and CStringA, which allow to create dynamic string objects. L i s t i ng 2.4 
presents and example a comparison of C-style static strings and M F C string objects. 

//C-style s t a t i c strings 
char* szTestC = "C/ANSI s t a t i c s t r i n g " ; 
WCHAR* szTestW = L"Wide/Unicode s t r i n g " ; 
TCHAR* szTest = _T("Portable s t r i n g " ) ; 

//C++ s t r i n g objects using MFC, i n i t i a l i z e d s t a t i c a l l y 
//The object's s t r i n g value can be modified 
CStringA strTestA = "C/ANSI str i n g " ; 
CStringW strTestW = L"Wide/Unicode s t r i n g " ; 
CString strTest = _T("Portable s t r i n g " ) ; 

Lis t ing 2.4: A n example of defining static strings when developing wi th Windows A P I and 
dynamic strings wi th M F C string classes. 

5https://docs.microsoft, com/en-us/windows/win32/api/winuser/nf-winuser-showwindow 
6https://docs, microsoft, com/en-us/cpp/mfc/reference/cwnd-class?#getsafehwnd 
7 h t t p s : //docs.microsoft.com/en-us/cpp/atl-mfc-shared/using-cstring 

9 

https://docs.microsoft
https://docs
http://microsoft.com/en-us/cpp/atl-mfc-shared/using-


2.2 Vi r tua l file systems 

This section introduces v i r tua l file systems i n Windows . It serves as an overview of avail­
able v i r tua l file system technologies that would allow for direct integration wi th the W i n ­
dows desktop environment. The following subsections contain an introduct ion to files, file 
systems, v i r tua l file systems, and an overview of available third-party v i r tua l file system 
software. 

2.2.1 I n t r o d u c t i o n to file systems 

This subsection focuses on providing details about files and file systems. It covers what 
a file is, how it corresponds to a file system, and how these constructs tie to v i r tua l file 
systems and the Windows operating system. 

File 

According to [10], i n Windows, a file is a unit of data. It is stored on a storage device, such 
as a hard drive, and consists of one or mult iple streams of bytes, which hold related data, 
and a set of attributes that describe the file and its data. A file system manages i t , and 
any applicat ion that wants to access, read, write, or execute a file or its attributes has to 
interact w i th its respectable file system to do so. A file must follow the file systems' rules, 
i.e., a file must have a unique name i n its directory in N T F S 8 . 

Files i n Windows are never accessed directly. Instead, applications can access it v ia 
a file handle. W h e n a file is opened, a handle is associated w i t h it un t i l the requesting 
process terminates or the handle is closed. A s specified by [40], each handle is unique to 
the process that opens a file, and depending on which type of access to the file is requested, 
if one process holds a handle to a file, a second process t ry ing to open a handle to the same 
file might fail. 

File system 

A file system is a program that describes how files are stored on a storage device. It 
allows applications running on the system to access, read, and store files. A l l file systems 
supported by Windows, as described by [16], have the following storage components: 

• Volumes 

• Directories 

• Files 

A s defined by [42], a volume is the highest level of its organization, where the file system 
resides. It has at least one par t i t ion - a physical disk's logical divis ion. A volume can be 
referred to as a drive or a disk i f it is recognizable and accessible by its assigned drive 
letter. A drive letter is a single capital ized letter of the alphabet ranging from A to Z , 
meaning that Windows only supports a m a x i m u m of 26 volumes wi th drive letters at the 
same t ime. For simplicity, the process of assigning a volume to a drive letter while making 
it accessible i n the system w i l l be referred to as mounting the volume since the system can 
mount volumes to directories as well. 

8 N e w Technology File System 

10 



A s specified by [41], a directory is a hierarchical collection of files, which can itself be 
organized into a directory, and has no l imitat ions on the number or capacity of files that 
it contains. L imi ta t ions of directories are defined by the file system itself and the capacity 
of the storage device. A file, as specified previously, is the related data, and it can be 
organized into a directory or reside directly i n the root of a volume. 

Windows file systems 

Fi le systems in Windows, as described by [8], are implemented as file system drivers that 
work above the storage system. Such a file system driver has to be certified. The standard 
supported file systems are, most importantly, N T F S , E x F A T , U D F , and F A T 3 2 , w i th N T F S 
being the default opt ion used for the main local drive of the system. 

Creat ing a new file system 

O n L i n u x 9 , it is possible to create a file system for which, according to [13], the data is 
provided by a normal user-mode process or an applicat ion. This type of file system is 
referred to as a file system i n userspace 1 0 ( F U S E ) , and it does not exist on Windows. 
Creat ing a custom file system driver is not the point of this thesis. For this reason, and 
due to my supervisor's recommendations of technologies, the following subsection considers 
third-party v i r tua l file system software options as the possibilities. 

2.2.2 V i r t u a l file sys tem 

A v i r tua l file system is an abstraction of a regular file system, and as noted by [38], any 
information and data can be organized and presented as a file system. It does not require 
a storage device to reside on, as it can use one of the existing ones and reside or extend 
upon it . A v i r tua l file system's power comes from integrating closely wi th the operating 
system - hooking into the system's internal file operating functions and handling them in 
its own way. Tha t way, it can enforce any arbi t rary rules on volume, directory, and file 
management. 

V i r t u a l file system software 

The v i r tua l file system software allows a developer of a user-mode applicat ion to create 
a v i r tua l file system and integrate it w i th the desktop environment of Windows . This thesis 
uses third-party v i r tua l file system software to create a v i r tua l file system without creating 
a kernel-mode driver. The software typical ly includes its custom-created kernel-mode file 
system driver, which is expected to be working correctly, being well tested and certified. 
The driver typica l ly communicates w i th a user-mode library, which provides a v i r tua l file 
system A P I . This is the A P I an applicat ion can use to create a custom v i r tua l file system. 
A s [37] describes, there are two ways in which a modern v i r tua l file system software usually 
provides a v i r tua l file system A P I in the user mode: 

. Nat ive A P I 

. F U S E Compat ib le A P I 

9 h t t p s : //www.linux.org/ 
1 0 h t t p s : //www.kernel.org/doc/html/latest/filesystems/fuse.html 

11 

http://www.linux.org/
http://www.kernel.org/doc/html/latest/filesystems/fuse.html


A native A P I ties closely to the target operating system and focuses on working w i t h the 
intended system as seamlessly as possible. 

• Positives: 

— G o o d opt imizat ion 

— Programming constructs are s imilar to the constructs of the target system 

— A l l features of the targeted system are available 

• Negatives: 

— N o cross-platform compat ibi l i ty 

— Lower-level A P I requires deeper knowledge of the target system 

A F U S E compatible A P I allows for cross-platform compat ibi l i ty w i th file systems in 
the user space created for L inux , w i th l i t t le to no changes to their implementation. For 
Windows, the implementat ion of file systems is vastly different from L i n u x . Us ing a F U S E 
compatible A P I comes wi th compromises since some features are only present i n Windows, 
i.e., volume labels, as described by [37]. 

• Positives: 

— Cross-platform compat ibi l i ty 

— Easier development w i th a higher-level abstraction of an A P I 

— F U S E is well documented 

• Negatives 

— Lack of Windows-specific features 

— Restr icted by P O S I X 1 1 standards 

For this thesis, it is much preferable to choose a v i r tua l file system software that includes 
a native A P I , as cross-platform compat ibi l i ty is not a requirement. This would also mean 
using Windows-specific file system-related features and would be a step towards a better 
user experience. 

2.2.3 T h i r d - p a r t y v i r t u a l file sys tem software 

This subsection provides an overview of the recommended and considered third-party v i r tua l 
file system software for this thesis. 

Dokany 

Dokany was created by Hiroki Asakawa, and as described by [6], it is one of the oldest yet 
s t i l l fully functional pieces of v i r tua l file system software for Windows . It was created in 
2007, and while undergoing a switch of its developers, it is s t i l l being developed today. 

• Provided APIs: Nat ive, F U S E wrapper 

• Supported languages: C (default), Java, De lph i , DotNet , Ruby 

"Por table Operating System Interface 

12 



• Supported architectures: 32-bit, 64-bit 

• Supported desktop operating systems: Windows 7 SP1 / 8 / 8.1 / 10 

• Open-source: Yes 

• Can integrate with Windows: Yes 

Dokany is a well-supported, stable piece of software, nearly an ideal choice for projects that 
pay excessive attention to software stabil i ty and compatibi l i ty. It provides tools for creating 
a v i r tua l file system in various, even higher-level programming languages, rather than just 
low-level C , as described by [3]. 

V i r t u a l File System for G i t 

V i r t u a l F i l e System for G i t ( V F S f o r G i t ) was created by Microsoft. A s described by [7], 
it is a software developed by Microsoft to enable G i t 1 2 at an enterprise scale. V F S F o r G i t 
virtualizes a G i t repository into a v i r tua l file system. This causes files to be present in 
such a file system visual ly and only be downloaded on demand. The user can download the 
contents of the files on request v ia an application's user interface. 

. Provided APIs: Nat ive G V F S P r o t o c o l 1 3 

• Supported languages: None - uses G i t commands 

• Supported architectures: 64-bit 

• Supported desktop operating systems: Windows 10, version 1607 or newer 

• Open-source: Yes 

• Can integrate with Windows: Yes 

V F S F o r G i t is a v i r tua l file system software aimed towards usage wi th G i t repositories, 
especially at larger scales. It does not provide many languages or options for architectures 
and only supports newer versions of Windows 10. W i t h those restrictions i n mind , it is 
s t i l l being supported and is a helpful tool for accessing G i t repositories i n the Windows 
environment, as specified by [19]. 

Windows File System Proxy 

Windows F i l e System P r o x y (WinFsp) was created by Bill Zissimopoulos. A s described by 
[5], it is a performant and stable piece of software, which allows to implement a v i r tua l file 
system using either of its supported v i r tua l file system A P I layers. The focus of W i n F s p 
is on high performance and compat ibi l i ty w i t h N T F S , the default file system of modern 
Windows . This allows for smooth integration wi th the Windows environment and v i r tua l 
file systems, which use or extend N T F S . 

• Provided APIs: Nat ive, mult iple F U S E compat ibi l i ty layers 

• Supported languages: C , C + + , DotNet 

1 2 h t t p s : //git-scm.com/ 
1 3 h t t p s : //github.com/microsof t/VFSForGit/blob/master/Protocol.md 

13 



• Supported architectures: 32-bit, 64-bit 

• Supported desktop operating systems: Windows 7 and above 

• Open-source: Yes 

• Can integrate with Windows: Yes 

W i n F s p is a great option for any v i r tua l file system implementat ion that intends only to be 
running on Windows . Whether it is one of the older versions of the operating system, or 
the newer one, W i n F s p provides continuous support and compat ibi l i ty w i th those systems 
while keeping the officially supported languages of its A P I layers both lower and higher 
level, thanks to the inclusion of C + + and DotNe t language support. It is a great choice 
for any project starting from scratch. 

2.2.4 C o n c l u s i o n a n d c o m p a r s i o n 

The third-party v i r tua l file system software of choice for the V D U Client applicat ion is W i n ­
Fsp. This subsection compares the previously presented options of software for integration 
wi th Windows and v i r tua l file system development. It provides the reasoning behind the 
conclusion of which one is the best for the purpose of this thesis. 

V F S f o r G i t 

V F S f o r G i t , while being a stable option supported by Microsoft , can not be used because 
of its l imitat ions on the compat ibi l i ty w i th older operating systems and their architectures. 
Addi t ional ly , it would not be useful for integrating wi th the Windows environment or 
for creating a v i r tua l file system because it focuses only on G i t repositories, which are 
incompatible w i th the V D U project. 

Dokany 

Dokany is an excellent and stable option. It is well supported and tested over the many 
years of its existence. It provides mult iple A P I compat ibi l i ty layers, including both native 
and F U S E compatible A P I s , which could be helpful i n v i r tua l file system development. 
However, it does not provide an A P I that could allow the development of a v i r tua l file 
system and integration into the Windows desktop environment using C + + . 

W i n F s p 

W i n F s p provides a native A P I , which is even available for C + + , allows for cleaner and easier 
to understand code, and offers much better performance and opt imizat ion than Dokany. 
This is proven by various file system operation tests that compare versions of W i n F s p 
wi th Dokany and N T F S . The performance comparison charts of these tests are displayed 
in Figure 2.3 and 2.4. Accord ing to these charts, it is safe to state that W i n F s p does 
outperform Dokany. I opted to use W i n F s p , al lowing me to integrate the appl icat ion and 
create a custom v i r tua l file system for the applicat ion w i t h the best performance available. 

14 



File Tests 

(Shorter bars are better) 

1 1.5 

file create test 

file_open_test 

file overwrite test 

file list test 

file delete test 

•ntfs 

winfsp-tO 

• winfsp-t l 

• winfsp-tinf 

•dokany 

Figure 2.3: Performance comparsion of file tests of W i n F s p , Dokany and N T F S . Source:[48] 

Read/Write Tests 
(Shorter bars are better) 

0 5 10 15 20 25 30 35 40 

rdwr_cc_read_page_test 

rdwr_cc_write_page_test 

rdwr_nc_read_page_test 

rdwr_nc_write_page_test 

mmap_read_test 

mmap_write_test 

9 
•ntfs 

winfsp-tO 

• winfsp-t l 

• winfsp-tinf 

•dokany 

Figure 2.4: Performance comparsion of read/wri te tests of W i n F s p , Dokany and N T F S . 
Source: [48] 

15 



2.3 Addit ional technologies 

This section provides an overview of addi t ional technologies for this thesis. Those technolo­
gies w i l l be used i n the following chapters to analyze, design, and implement the applicat ion. 

2.3.1 H y p e r t e x t Transfer P r o t o c o l 

A s described by [21], the Hypertext Transfer P ro toco l is a stateless communicat ion protocol 
used for fetching resources. A resource can be anything that can be named, ranging from 
images, documents to generic files. H T T P is designed as a client-server type of protocol, 
in which a client and a server exchange information using H T T P messages. A n H T T P 
message can be one of two types: 

• HTTP Request - F r o m client to server 

• HTTP Response - F r o m server to client 

H T T P request 

A n H T T P request consists of the following elements: 

1. Method - Defines the requested operation wi th the resource 

2. Path - Loca t ion of the resource 

3. Protocol version - Version of H T T P 

4. Request headers - A d d i t i o n a l information about the resource 

5. Content - Contains the content of the resource sent to the server 

H T T P response 

A n H T T P response consists of the following elements: 

1. Protocol version - Version of H T T P 

2. Status code - Defines the requested operation wi th the resource 

3. Status message - Loca t ion of the resource 

4. Protocol version - Version of H T T P 

5. Response headers - A d d i t i o n a l information about the resource 

6. Content - Contains the content of the resource sent to the client 

2.3.2 R e p r e s e n t a t i o n a l State Trans fer 

According to [4], The Representational State Transfer represents an architectural style 
of developing R E S T f u l web services, which allows the developer to take advantage of an 
existing protocol. In the case of web services, this protocol is H T T P . R E S T conforms at 
the very least to the most basic R E S T constraints, as defined by its creator Roy Thomas 
Fielding: 

16 



• Client-Server - Separates the client's side and the server's side 

• Stateless - Each request must contain a l l necessary information necessary to under­
stand the request 

• Cache - Requests must be labeled as cacheable or non-cacheable. Improves network 
efficiency i f it is available 

2.3.3 O p e n A P I 

The O p e n A P I Specification is a description format for R E S T A P I s . Th is format is handy 
for creating more formal descriptions of the entire A P I , which can be described w i t h a single 
file wri t ten in the O p e n A P I format, supporting file formats of either Y A M L 1 ' 1 or J S O N 1 5 . 
Accord ing to [43], the O p e n A P I format is capable of describing: 

• Available endpoints and operations of each endpoint 

• Operat ion parameters and input /ou tput for each operation 

• Authent ica t ion methods 

• Contact information, terms of use, other information 

A s L i s t i ng 2.5 shows, the O p e n A P I format is easily readable and understandable for 
both machines and humans. Addi t ional ly , many th i rd or first-party services provide a way 
to visualize the A P I i n a graphical, user-friendly format, i.e., the Swagger E d i t o r 1 6 . A n 
example of a rendered graphical representation of the V D U server's R E S T A P I is displayed 
in Figure 3.1. 

#A simple documentation of a /ping endpoint 
openapi: 3.0.0 
info: 

version: '1.0' 
t i t l e : An amazing API 
description: Formal description 

servers: #Server URL for testing 
- u r l : 'https://localhost:4443' 

paths: #Endpoint descriptions 
/ping: #Endpoint path 

get: #Method 
parameters: [] #Call parameters 
description: To test a connection, 
responses: #Possible responses 

'204': 
description: Ping success! 

Lis t ing 2.5: A n example of an O p e n A P I specification, displayed as the content of a file in 
the Y A M L format. 

A recursive acronym for " Y A M L Ain ' t Markup Language" 
'JavaScript Object Notation 
'https: //editor.swagger.io/ 

17 

https://localhost:4443'


Chapter 3 

Specification and analysis 

This chapter w i l l cover the first step of creating an applicat ion - the analysis of the provided 
specification and formalization of the provided documentat ion of the V D U server, w i th an 
overview of the required technologies. 

3.1 Requirements 

This thesis aims to design, implement, and test a client-side applicat ion for Windows op­
erating system, which integrates w i th the Windows desktop environment. Th is applicat ion 
should connect to the V D U server and secure access to remote files present on the server 
as the user is accessing them. Mul t ip l e sources provided the specification: 

• Thesis specification - P rovided the exact steps this thesis should be taking 

• Internal VDU API documentation - A description of the V D U server's A P I 

• Consultations with supervisor - P rovided more details, helping to narrow down design 
choices and to test ideas 

The internal V D U A P I documentation was provided as a document w i th a detailed de­
scription of every available endpoint of the A P I wi th addi t ional information about how an 
application is supposed to connect to the server. 

3.1.1 E n d p o i n t s 

This subsection lists a l l available V D U A P I endpoints and provides an overview of their 
usages. Some endpoints require authentication of the user for successful access. 

Ping 

Used to test a connection to the server. 

• GET /ping - Test connection to the server 

Authentication 

Used for authentication purposes. 

• POST /auth/key - Authenticates a user by name or email . The client secret can be 
included i n the content i f necessary. Returns A P I key i f it succeeds. 

18 



• GET /auth/key - Returns a new A P I key wi th a new expirat ion time, refreshes session 

. DELETE /auth/key - Invalidates A P I key 

File system 

Used for remote file management. Where the file-access-token is a variable representing 
a file token obtained from the V D U web interface. 

• GET /file/'{file-access-token} - Returns file contents, addi t ional file information is in 
the response headers 

• POST /file/{file-access-token} - Uploads file contents, addi t ional file information has 
to be i n the request headers 

• DELETE /file/{file-access-token} - Invalidates a file token, does not delete the file 
from the server 

Access 

The client and server must use a secure T L S 1 channel to access the V D U A P I , while the 
server must have a val id server-side T L S certificate. Th is implies the usage of H T T P S 2 

protocol to access the A P I . The client-side certificate is opt ional and allows the user to 
omit the client secret from the authentication endpoint. 

The authentication is done using a key obtained from the POST /auth/key endpoint. 
Each key has its expirat ion date, which a client must respect, and the key has to be refreshed 
using the GET /auth/key endpoint i f it is about to expire. The client can prematurely 
invalidate the key wi th the DELETE /auth/key endpoint. 

F i le tokens, seen as the path parameter {file-access-token} i n the / f i l e / endpoint, are 
generated from the proprietary V D U web user interface. E a c h token represents one file, has 
an expirat ion date, and can be prematurely invalidated using the DELETE / f i l e / endpoint. 
Th is file can be modified using the POST / f i l e / endpoint, which includes modifying its 
content and file name. A file can be read-only, meaning that the server w i l l deny any 
modification request. 

Version control 

The V D U server handles the file version control system. The client applicat ion does not 
manage or control the version of a file. Th is version is noted as an ETag header, which can 
be any string. The server can change this header upon successful file upload on the server's 
side, which could lead to invalidat ion of the user's file token directly after the upload. The 
client has to adapt to the server-side version, which it receives v ia a response from the 
/ f i l e / endpoint, and must not propose its own. 

Communicat ion 

The communicat ion between the client and the server uses the Hyper text Transfer Pro tocol , 
which goes over a secure T L S / H T T P S channel. The client initiates the communicat ion wi th 
a request message to the target endpoint of the action that it is t ry ing to perform. The 

1 Transport Layer Security 
2 Hypertext Transfer Protocol Secure 

19 



server accepts this message, validates the authentication data for the required endpoints, 
and responds to the message wi th a response message to the client. A n example of this 
communicat ion is shown i n Figure 3.1 and 3.2, where the client requests a file w i th the 
token a from the / f i l e / endpoint using the GET method. The server accepts this request, 
imply ing that the authentication data in the client's request header is correct and responds 
wi th a response message containing a l l information about the requested file, including its 
name, length, type, content, etc. 

GET https://127.0.0.1:4443/file/a HTTP/1.1 
X-Api-Key: C57v7n34evuqjlyfmmo0miw3kkr5y4d8ndl58hylsx6i7go2gpdi9gel7hlulylq 
User-Agent: VDUClient 1.0, Windows 
Host: 127.0.0.1:4443 
Cache-Control: no-cache 

Lis t ing 3.1: A n example of the contents of an H T T P request sent from a V D U client to a 
V D U server. 

HTTP/1.0 200 OK 
Allow: GET POST 
Content-Location: p l a i n . t x t 
Content-Length: 60 
Content-MD5: 16EU4Wni3wdB4d7x370Ung== 
Content-Type: t e x t / p l a i n 
Date: Thu, 29 Apr 2021 19:29:00 GMT 
Last-Modified: Thu, 29 Apr 2021 19:28:12 GMT 
Expires: Thu, 29 Apr 2021 19:31:00 GMT 
ETag: 4 

This i s the f i l e contents, t h i s i s a simple p l a i n text f i l e . 

Lis t ing 3.2: A n example of the contents of an H T T P response sent from a V D U server to 
a V D U client. 

3.2 Formalization 

Considering the provided documentation, formalization means creating an O p e n A P I speci­
fication based on the documentation's p la in text version. A formalized specification allows 
for better readability, understanding, development, and testing on the developer's side. 

3.2.1 O p e n A P I specif icat ion 

Formal iz ing the provided documentation consists of reading and understanding a l l A P I 
endpoints, their access, usage restrictions, and manually creating an entry for each endpoint 
in a file of the O p e n A P I format. E a c h entry has its own list of status codes, headers, 
and content, which the endpoint could potential ly return. For the V D U server's A P I 
documentation, I used the Swagger Edi to r , which allowed me to document it as a R E S T 
A P I more comfortably. A n advantage of the online editor is that it can render the O p e n A P I 
specification file i n the H T M L 3 5 format, making the A P I easy to read and understand. 

3 Hyper-Text Markup Language 

20 

https://127.0.0.1:4443/file/a


Conclusion 

The result was a file of the O p e n A P I format openapi .yaml, which contains the formal 
descriptions of the V D U A P I endpoints. I discussed this information further w i th my 
supervisor, which allowed me to understand better how the A P I works and how it should 
interact. Figure 3.1 displays the summary of a rendered version of the formalized V D U 
server's A P I . 

Ping v 

/ping Ping 

Authorization ^ 

I /auth/key Renew key ^ 

/auth/key Generate Key 

I /auth/key Invalidate key ^ 

FileSystem ^ 

/ f i l e / { f i l e - a c c e s s - t o k e n } Get file £ 

I / f i l e / { f i l e - a c c e s s - t o k e n } Upload file % 

I / f i l e / { f i l e - a c c e s s - t o k e n } Invalidate file token ^ 

Figure 3.1: V D U R E S T O p e n A P I 3.0 summary, rendered using the Swagger Edi to r , au­
thentication requirement is signified by the lock icon. 

21 



Chapter 4 

Design 

This chapter aims to design the applicat ion based on knowledge from the specification and 
analysis of the requirements. The design of the applicat ion consists of designing the internal 
components and the user interface. 

4.1 Internal components 

Choosing the right design for the application's internal components is the key to creat­
ing a performant, reliable, and scalable program. K n o w i n g that the applicat ion is to be 
implemented in C + + , I designed the class structure. 

4.1.1 C lass s t ruc ture 

The concrete class structure and design's inspirat ion was the Single Responsibility Principle 
( S R P ) . A s the creator of the principle, Robert C. Martin states i n [14], S R P is a design 
principle for designing object-oriented classes or modules. The key inspirat ion of S R P for 
the class design was that a single class should only have a single reason to change. Th is 
approach allows each class to be developed independently from others and has led me to 
design the following classes as the application's internal structure. 

M a i n class 

The main class of the applicat ion, VDUClient, contains a l l important data about the applica­
tion's state and provides functions to check them - IsTestModeO, IsInsecureQ. Add i t i on ­
ally, it contains functions that provide access to internally created objects - GetSessionO, 
GetFileSystemServiceO. It instantiates other parts of the application, like the dialog win­
dow, the file system service, and static worker threads. 

Dialog class 

The CVDUClientDlg class is responsible for the dialog window, and every user interface 
element related to i t . It provides methods to guide the user interface, such as updat ing the 
visual status text v ia UpdateStatus () , triggering notifications v ia the TrayNotif y 0 function, 
or spawning a non-blocking message box v ia the MessageBoxNBO function. Internally, it 
contains the dialog input data - m_server, m_username, etc. 

22 



Connect ion class 

The connection handling class, CVDUConnection, serves as a wrapper for communicat ion 
wi th the server. W h e n instantiated, it contains the details about a connection i n its internal 
variables - m_serverURL, m_parameter, m_callback, etc. It can be instantiated by any other 
object. The expected behavior is for the connection object to be handled by the static 
procedure ThreadProc, in a worker thread. 

Session class 

The session class, CVDUSession, contains data about the current user and the state of au­
thorizat ion wi th the server. A l l internal data is expected to be accessed exclusively by 
first acquiring the S R W lock m_lock and then reading or modifying the session data. The 
class most impor tant ly provides the current authorizat ion token v i a GetAuthToken () and 
its expirat ion t ime v i a GetAuthTokenExpiresQ. It also provides functions to perform user 
actions directly - LoginO, Logout(), AccessFileQ. Addi t ional ly , the class contains static 
functions for a l l types of A P I callbacks. 

File class 

The CVDUFile represents a file downloaded from the V D U server, w i th a l l received metadata. 
The data itself is not contained in this class. It provides comparison operators w i th other 
V D U files and a static I n v a l i d F i l e instance, representing a file that does not exist. 

File system class 

The CVDUFileSystem class implements the concrete functions of a v i r tua l file system, which 
w i l l be called by the operating system when an operation wi th files is required. These 
include functions such as OpenO, Create(), Close(), etc. It also contains the path to the 
internal work directory, where V D U files are located. 

File system service class 

The file system service class, CVDUFileSystemService, instantiates the file system and pro­
vides an interface to interact w i t h i t . Internally, it keeps track of V D U files in the vector 
m_files, which is assured to be accessed exclusively by the S R W lock m_filesLock and 
stores the current drive letter used by the v i r tua l drive in m_driveLetter. It provides func­
tions to interact w i th the files and the file system - GetVDUFileByNameO, CreateVDUFileO, 
UpdateFilelnternalO, etc. Figure 4.1 shows the class diagram of the applicat ion using the 
Unified Mode l ing Language ( U M L ) . Th is class diagram was created using V i s u a l P a r a d i g m 1 . 

x h t t p s : //www.visual-paradigm.com/ 

23 

http://www.visual-paradigm.com/


« e n u r n e r a t i o n » 
VDUAPIType 

G E T P I N G 
G E T A U T H K E Y 
P O S T A U T H K E Y 
D E L E T E A U T H K E Y 
G E T F I L E 
POST_FILE 
DELETE FILE 

< 
#m_type 

CVDUCIientDIg 

#m_server: CString 
#m_username : CString 
#m_statusText: CString 
#m_certPath : CString 
#m_h lcon : HICON 
#m_trayMenu : CMenu* 
#m_trayData : NOTIFYICONDATA 

+CVDUCIientDlg() 
+TrayNotify() 
+SetTrayTip() 
+GetProgressBar() 
+TryPing() 
+lsLoginUsingCertificate() 
+UpdateStatus() 
+MessageBoxNB() 
+OnTrayExitCommand() 
+OnEnChangeServerAddress() 
+OnBnClickedButtonLogin() 
+OnEnChangeUsername() 
+OnBnClickedCheckCertificate() 
+OnCbnSelchangeComboDriveletter() 
+OnBnClickedPing() 
+OnBnClickedButtonCertselect() 
+OnBnClickedAccessFile{) 
+OnEnSetfocusFileToken() 
#DoDataExchange() 
#OnlnitDialog() 
#OnCommand() 
#OnCancel() 
#OnOK() 
#PostNcDestroy() 
#OnSysCommand() 
#OnPaint() 
#OnQueryEndSession() 
#OnQueryDraglcon() 
#OnClose() 
#OnTrayEvent() 
#OnAutorunToggleCommand() 
#OnOpenDriveCommand() 
#OnAutologinToggleCommand() 

CVDUConnect ion 

# m j y p e : VDUAPIType 
#m_serverURL: CString 
#m_parameter: CString 
#m_requestHeaders : CString 
#m_contentFile : CString 
#m_callback : VDU_CONNECTION_CALLBACK 

LastError: TCHAR [0x4001 

+CVDUConnection() 
+Process() 
+ThreadProcO 

^ / #m_callback 

« T y p e d e f » 
VDU CONNECTION CALLBACK 

CVDUFileSystem 

-_Path : PWSTR 

+CVDUFileSystem() 
+~CVDUFileSystem() 
+SetPath() 
#GetFilelnfolnternal() 
#lnit() 
#GetVolumelnfo() 
#GetSecurityByName() 
#Create() 
#Open() 
#Overwrite() 
#Cleanup() 
#Close() 
#Read() 
#Write() 
#Flush() 
#GetFilelnfo() 
#SetBasiclnfo() 
#SetFileSize() 
#CanDelete() 
#Rename() 
#GetSecurity() 
#SetSecurity() 
#ReadDirectory() 
#ReadDirectoryEntry() 

CVDUFileSystemService 
- m j s : CVDUFileSystem 
- m h o s t : FileSystemHost 
-m_driveLetter: TCHAR[128] 
-mworkD i rPa th : CString 
-mJi lesLock : SRWLOCK 
- m f i l e s : vector<CVDUFile> 

<-

#OnStart() 
#OnStop() 
+CVDUFileSystemService() 
+GetHost() 
+GetDrivePath() 
+GetWorkDirPath() 
+GetVDUFileByName() 
+GetVDUFileByToken() 
+GetVDUFileCount() 
+DeleteFilelnternal() 
+UpdateFilelnternal() 
+CalcFileMD5Base64() 
+Remount() 
+CreateVDUFile() 
+UpdateVDUFile() 
+DeleteVDUFile() 

v 
CVDUFile 

+m_token: CString 
+m_canRead : boolean 
+m_canWrite : boolean 
+m_length : UINT32 
+m_encoding : CString 
+m_name : CString 
+m_type : CString 
+m_lastModified : SYSTEMTIME 
+m_expires : SYSTEMTIME 
+m_md5base64 : CString 
+m_etag : CString 
-rlnvalidFile : CVDUFile 

+CVDUFile() 
+CVDUFile() 
+~CVDUFile() 

+=() 
+==() 
+!=() 
+lsValid() 

VDUCIient 
- m s e s s i o n : CVDUSession* 
-msre fThread : CWinThread* 
-msvcThread : CWinThread* 
- m s v c : CVDUFileSystemService* 
-mtes tMode : boolean 
-m insecure : boolean 

+VDUCIient() 
+~VDUCIient() 
+GetSession() 
+GetSessionRefreshingThread() 
+GetFileSystemServiceThread() 
+lsTestMode() 
+lslnsecure() 
+GetFileSystemService() 
+HandleCommands() 
+lnitlnstance() 
+Exitlnstance() 
+ThreadProcFilesystemServiceO 
+ThreadProcLoqinRefresri() 
+ThreadProcMailslotO 

Y 
CVDUSession 

+m_lock: SRWLOCK 
- m s e r v e r U R L : CString 
- m u s e r : CString 
-mauthToken : CString 
-mauthTokenExp i res : CTime 

+CVDUSession() 
+~CVDUSession() 
+Reset() 
+GetServerURL() 
+GetUser() 
+GetAuthToken() 
+GetAuthTokenExpires() 
+SetUser() 
+SetAuthData() 
+lsLoggedln() 
+Login() 
+Logout() 
+AccessFile() 
+CallbackPina() 
+CallbackLoqin() 
+CallbackLoqinRefresri() 
-CallbackLoqoutO 
-CallbackDownloadFileO 
-CallbackUpload Filed 

+CallbacklnvalidateFileToken() 

Figure 4.1: U M L class diagram of the V D U Client applicat ion. 

24 



4.1.2 D a t a storage 

There are many methods to store data for an applicat ion. For the V D U Client , there are 
two types of data, which need to be stored: 

• Files - The actual downloaded files from the V D U server, stored i n the host file system 

• Settings - The configuration of the application; the persistent state of the applicat ion, 
stored i n the Windows registry 

Motivat ion 

Creat ing a v i r tua l file system gives the freedom to portray any data as files. Th is has led 
me to attempt to store the files using just the system's Random-Access Memory ( R A M ) 
provided to the applicat ion. W h i l e the speed and accessibility of R A M make this idea seem 
plausible, i n practice, it d id not work well for the following reasons: 

• Space limitations - Large files might not have enough space 

• Inactive RAM usage - Files not actively i n use might prevent other applications from 
using that space 

• No file recovery - If the system crashes, there is no way to recover unsaved work 

Files 

For files, it is highly advantageous to store them i n the host file system over a l l other 
options available. The V D U Client stores the downloaded files i n a temporary folder on 
the ma in drive, using the host file system. This folder exists per user, meaning each local 
user of Windows has their temporary folder t ied to their Windows account. Th is prevents 
unintended file sharing i f mult iple users are using the applicat ion on the same system. This 
folder is emptied each t ime the applicat ion starts and has a randomly generated name upon 
each creation. A l l unsaved files w i l l stay i n this folder i f the system crashes, available for 
potential data recovery. 

Settings 

The application's configuration does not require much space, and as such, the idea of 
using a custom database or storing it as a file on the host file system is not opt imal . The 
application's configuration settings can be simplified into a simple pair of a key and a value. 
In this pair, the key is a unique identifier of data type string, and value can be any supported 
data type on the system. The Windows registry allows applications to store information 
in this exact format, making it an ideal choice of data storage for the persistent state of 
the applicat ion. Table 4.1 lists out the concrete settings stored inside the registry by the 
applicat ion. These values are stored under the HKEY_CURRENT_USER key. This guarantees 
that different Windows users on the same machine w i l l have their own configurations of the 
application. 

25 



Name D a t a type Description 
A u t o L o g i n Double-Word A u t o L o g i n feature state 
C l i en tCe r tPa th Str ing P a t h to client secret file 
LastServerAddress Str ing Last entered server address 
Las tUserName Str ing Last entered user name 
PreferredDriveLetter Str ing Selected preferred drive letter 
UseCer tToLogin Double-Word Whether or not to use client secret 
W o r k D i r Str ing Current directory used to store V D U files 

Table 4.1: The concrete settings stored by the applicat ion i n the Windows registry. 

4.2 User interface 

The user interface includes every visual element of the applicat ion and a l l other elements 
a user can interact w i th while using the applicat ion. Based on the V D U A P I documentation 
and the analysis of requirements, I l isted a l l essential actions and ways users could interact 
w i th the V D U Client . These key functionalities can be referred to as user actions or use 
cases. Figure 4.2 displays a l l use cases of the user interface. The following subsections 
explain how the application's user interface was thought out, designed, and the reasoning 
behind those decisions. 

Windows environment 

VDU Client 

Figure 4.2: The use case diagram of the application's user interface from the viewpoint of 
a userm, wi th its relations to the Windows environment. 

4.2.1 Integrat ion into the W i n d o w s env i ronment 

Not a l l user actions have to be included i n the application's user interface. For example, the 
user can read and modify files v ia some other appl icat ion present on the system, unrelated 

26 



to the V D U Client applicat ion. Addi t ional ly , the Windows environment provides many 
instances of useful functions, which can improve the quali ty of the user experience. 

Windows File Explorer 

The Windows F i l e Explorer (Explorer) is a bui l t - in tool for browsing files in Windows . It 
has its own user interface that can display files provided by a file system - such as a v i r tua l 
file system of the V D U client, as displayed i n Figure 4.3. 

VDU Virtual Diskfvi} 

35.1 MB free of 127 MB 

Figure 4.3: The V D U V i r t u a l D i sk as shown i n the Windows F i l e Explorer , w i th the v i r tua l 
drive letter being " V " and a custom icon. 

Using the Explorer to provide the functionality of actions related to file access is an 
intuit ive way of integrating wi th the Windows desktop environment. B y opening the v i r tua l 
disk, a user can view the accessed V D U files. Figure 4.4 shows an example for browsing 
V D U files using the Explorer . 

Manage VDU Virtual Diskfl/:) 

Share View Drive Tools 

VDU Virtual Diskfl/:) 

> This PC > VDU Virtual Disk tV:) > 

Name • ate modif ied TyP e Size 

i compressed 4/18/2021 10:10AM Compressed (zipp... 3 KB 

J hugefile.bin 4/1/2021 4:52 A M BIN File 43,572 KB 

Figure 4.4: Browsing files i n the V D U V i r t u a l Disk using the Windows F i l e Explorer . 

The V D U A P I provides an endpoint for file token invalidation, which has led me to make 
a design choice to use the delete feature of the file system as a trigger for invalidation. The 
point is re-purposing the file deletion feature to invalidate the file's token and only delete 
the local file i f the server allows so. Thanks to this approach, the number of actions that 
the V D U Client applicat ion has to contain i n its own user interface is reduced further. In 
conclusion, by using bu i l t - in features of existing applications in the Windows environment, 
specifically the Explorer , I was able to simplify the V D U client's user interface while keeping 
its core functionality unchanged. 

Single instance 

To make the user experience better, the applicat ion w i l l only run under a single instance. 
A n y addi t ional instances of the applicat ion w i l l exit immediately, leaving only one process 
of the appl icat ion running i n the system - the main process. A n y addi t ional instances w i l l , 
before exit ing, pass their command lines to the main process to improve the application's 
usability. T h i s design choice gives the freedom to control the running applicat ion v i a the 
command line. 

27 



Protocol association 

For easier access to V D U files, the appl icat ion creates a new U R L 2 protocol. Other applica­
tions, such as an internet browser, can command the running applicat ion to file by 
the token provided in the U R L path. The protocol has the U R L format of vdu: //{token}, 
where the token represents the file access token of the file, which the applicat ion should ac­
cess. This allows many applications, and most importantly, websites, to include hyperlinks 
that use the V D U U R L protocol to access files, as displayed i n L i s t i ng 4.5. 

Figure 4.5: A n example of a V D U U R L protocol hyperlink, displayed on a website using 
an internet browser, which can be clicked to access a file w i th the token "f" 

4.2.2 D i a l o g design 

After narrowing down a l l user actions, as shown i n the previous subsection, the next step 
is to design the actual V D U client interface. Considering the smal l amount of functionality 
required, I decided to design a simple Extended Dialog Window (dialog). Figure 4.6 displays 
the dialog interface, which is separated into three sections: 

• Connection - Client-Server functionality 

• File System - L o c a l v i r tua l file system functionality 

• Status - Information about the state of the applicat ion 

The idea behind the division was to improve visual clari ty while keeping the interface 
compact and easy to navigate. 

Connect ion section 

This section contains information about the server address, user name, and i f required, 
a path to a client certificate (client secret) to include along w i t h the login information. 
Connection to the server can be tested using the Ping but ton. The Login but ton allows the 
user to authenticate himself to the server and changes to a Logout but ton upon successfully 
logging in . Logging i n enables a l l authentication restricted functionality i n the following 
sections and the entire application. 

File system section 

The Access file but ton attempts to download and launch a file from the V D U server, given 
a token from the input field. The user is also given an opt ion to choose a preferred drive 
letter for the v i r tua l drive, which the V D U v i r tua l file system w i l l control. 

Status section 

Conta in ing only a progress bar and a status text, this section informs the user about the 
application's state. This information includes download progress - visible on the progress 
bar, connection status, number of accessed files, and the currently logged-in user. 

2 Uniform Resource Locator 

document, do cx 

28 



MT VDU Cl ient 

Connection 

Server address 

127.0.0.1:4443 

User 

John 

File System 

Preferred drive letter 

Input file token 

abcdef 

• X 

Ping 

Logout 

O Use dient certificate 

Access file 

User: John | Files: 0 

Figure 4.6: The user interface of the V D U Client application, as shown when the applicat ion 
is launched under Windows 10. 

4.2.3 D i a l o g t r a y 

W h e n the applicat ion is running, impl ic i t ly , so is the dialog window. This is true even i f 
a user is not using the dialog window actively. In a simple use case scenario, the dialog 
window is only required to log i n and file. Afterward, it theoretically does not have 
to be clut ter ing so much space on the screen and the taskbar. 

This inspired me to design a beneficial addi t ion to the dialog - a t ray icon. This icon 
resides i n the tray area of the Windows user interface. U p o n closing or min imiz ing the 
dialog, the applicat ion stays running in the background, signified by the icon. The user can 
restore the dialog window by s imply cl icking on the V D U Client icon, provided by Icons8 3 , 
displayed i n Figure 4.7, in the tray 

Figure 4.7: C l o u d Storage Icon, used as the main icon for V D U client applicat ion. 
Source: [9]. 

3 h t t p s : //icons8.com/ 

29 



Furthermore, removing the abi l i ty to close and exit the applicat ion from the dialog 
window has moved this responsibility to the tray icon. I designed a simple tray menu to 
fix this problem, depicted i n Figure 4.8, which becomes active after r ight-cl icking the icon. 
The Exit opt ion i n this menu, shown i n the l is t ing, is how the user is supposed to quit using 
the applicat ion. 

Run on startup 

Auto Login 

Browse files 

Exit 

Figure 4.8: Tray menu of the V D U Client application, as displayed upon right cl icking the 
tray icon. 

Windows allows applications that put icons in the tray area to display a smal l text 
message while hovering the icon - a tray tip. I u t i l ized this tray t ip to display a compact 
text version of the data from the status section of the dialog, as displayed in Figure 4.9. 

VDU Client 
Logged in asjohn 
2 files 

Figure 4.9: Example of a tray t ip, shown above the icon when hovered, displaying the 
current state of the applicat ion. 

4.2.4 Responsiveness a n d notif ications 

A good applicat ion needs to be responsive and notify the user about important events. E v ­
ery action direct ly taken by the user should have a visual response. G i v e n the specifications, 
the appl icat ion communicates w i th a server over a network connection. Whether the server 
resides i n a local network or on the internet, it is safe to assume that the applicat ion w i l l 
not finish an action instantaneously. This means a responsive applicat ion needs to notify 
the user v ia the user interface using two types of responses: 

• Instant - Direct visual response to an action, proving to the user that the applicat ion 
is working on the user's request 

• Delayed - A second, more detailed response, once enough information is gathered 
from the server 

The applicat ion must keep being responsive while handling a l l actions. For the dialog 
window, an instant response consists of enabling or disabling the related chi ld windows. 
For example, an instant response to cl icking the Ping but ton, as displayed on the user 
interface i n Figure 4.6, would disable the but ton, making it non-clickable. Th is but ton 
would be then enabled once again along wi th the follow-up - delayed response. The delayed 
response consists of either creating a message box or displaying a Windows notification. 

30 



Message box 

A message box is a simple window, often created as an owned window relative to the main 
dialog window. It is used as either an instant or a delayed response to necessary actions 
caused direct ly by the user, i.e., t ry ing to test a connection to an inval id server w i l l result 
in a message box being shown, as depicted i n Figure 4.10. 

VDU Cl ient X 

A connec t ion w i t h the server cou ld not be establ ished 

OK 

Figure 4.10: A n example message box dialog, as displayed after the applicat ion fails to 
connect to a server. 

Windows notification 

For less cr i t ica l and rather informative actions, a Windows notification shows up as a 
response. A s displayed in Figure 4.11, such notification appears, for example, after a suc­
cessful download of a newly accessed file, along wi th an automatic startup of the assigned 
application to the file type. It lets the user know it was the V D U Client applicat ion that 
caused a different applicat ion to open. 

V D U Client 

plain.txt 
File successfully accessed! 

Figure 4.11: A n example of Windows notification, as displayed i n the bo t tom right corner 
of the screen after successfully obtaining access to a file. 

4.3 Automated tests 

B y default, the applicat ion can only be controlled by the user using the user interface of 
the dialog window. This makes it difficult to test the applicat ion automatically, as issuing 
commands to the user interface is not practical . A much better solution for this problem 
is to create a special mode in which the applicat ion can be launched - the test mode. 
Furthermore, this section designs a simulated V D U server, since the automated tests of the 
application should ideally be performed without the presence of a product ion V D U server 
and a testing script to launch and contain the automated tests. 

31 



4.3.1 Test m o d e 

The applicat ion can be launched into the test mode w i t h the -testmode launch option. 
W h i l e the test mode is enabled, the dialog window of the applicat ion is not created, and 
the appl icat ion starts executing test instructions in the background. 

Instructions 

A test instruction is an addit ional , repeatable launch option, which simulates a user action 
wi th the applicat ion. Each instruct ion represents a single unit of functionality that can be 
tested. The list of available test instructions is the following: 

• -server [address] - Set the server address 

• -user [name] - L o g i n as user 'name' 

• -logout - Invalidate authentication token 

• -accessf i l e [token] - Access a file by token 

• -accessnetf i l e [url] - Access a file by token inside the V D U U R L protocol 

• -deletef i l e [token] - Invalidate a file by token 

• -rename [token] [name] - Rename an accessed file, recognized by a token, to a new 
filename 

• -write [token] [text] - Wri te a Unicode string at the beginning of the accessed file, 
recognized by a token, and upload it to the server 

• -read [token] [cmpText] - Read a Unicode str ing of the length of the input text from 
the beginning of the accessed file recognized by token, and compare it to the input 
text 

Instructions do not modify the persistent state of the applicat ion outside of the test mode. 
A l l user settings w i l l remain intact after using the applicat ion i n test mode. Addi t ional ly , 
a l l instructions can be issued even without the test mode being enabled. 

Creat ing a test 

The test instructions have to be input as the application's launch options i n the command 
line to create a test. Logica l ly combining instructions allows anyone to create an unl imited 
number of different specific tests, which assert a certain functionality. 

1 VDUClient.exe -insecure -testmode -server localhost:4443 -user John - a c c e s s f i l e 
abcl23 -write abcl23 Apple -read abcl23 Apple - d e l e t e f i l e abcl23 -logout 

Lis t ing 4.1: A n example of a simple file modification test for the V D U Client applicat ion 
in the form of a command line, created by combining test instructions and other launch 
options. 

A n example of a test for the applicat ion, shown i n L i s t ing 4.1, is a simple file modification 
test. T h i s test first sets the applicat ion into the testing mode wi th certificate verification 
disabled. Next , the execution of the input instructions would be the following: 

32 



1. Set the server address to localhost w i th port 4443. 

2. Log in as user John. 

3. Access a file by token abcl23. 

4. Wr i te the text Apple into a file, recognized by token abcl23. If the content has 
changed, confirm that the file was uploaded successfully. 

5. Compare whether the text at the beginning of a file, recognized by token abcl23, is 
equal to Apple. 

6. Invalidate the current user's authorizat ion token. 

7. E x i t successfully. 

If the applicat ion exits w i th a code signifying a success, the test was successful, and the 
application can perform a simple file modification. Otherwise, the test has failed. A d d i ­
tionally, tests can be created to deliberately confirm that the applicat ion fails at executing 
specific instructions, such as wr i t ing to nonexisting files. 

4.3.2 S i m u l a t e d server 

Due to the network connectivity requirements of the client-server type of applications, it is 
not easy to provably test the functionality and properties of the client without the presence 
of the server. Addi t ional ly , the risk of flooding the product ion server due to automated 
testing might lower the quali ty of service for real users. Th is is the motivat ion behind 
creating a simulated VDU server, which would only be present local ly and respond to the 
client's requests. Th is approach comes wi th several advantages over the product ion server: 

• Independence - E v e n i f the V D U server stops working, testing can continue 

• Interface stability - A sudden change i n the interface of the V D U server w i l l not affect 
the applicat ion 

• Flexibility - App l i ca t i on can be modified and properly tested over t ime to comply 
wi th any changes on the server 

• Transfer speed - Transferring of files is l imi ted by the speed of the local network 

Structure 

Considering the simplist ic nature of the server's requirements, I designed the simulated 
server as a simple script using P y t h o n 1 . The server consists of a single file, which starts an 
H T T P S server, accepts connections over a secure channel w i th a l l endpoints available to 
respond to requests upon execution. 

Simulating endpoints 

The specification of the V D U server A P I provides an overview of the design of a l l available 
endpoints. The simulated server attempts to replicate the expected functionality of those 
endpoints to represent a product ion server to a reasonable extent, the val idi ty of which can 
be confirmed by automated tests, along wi th the application's validity. 

4 h t t p s : //www.python.org/ 

33 

http://www.python.org/


4.3.3 T e s t i n g script 

In addi t ion to the simulated server, and as a requirement of the specification, I designed 
a P y t h o n testing script. Th is script consists of a single file, test.py, which uses bo th the 
application executable and the simulated server script. U p o n execution, the script w i l l 
perform a l l included tests and show the results of each test. 

Designed tests 

Table 4.2 lists the tests designed for the testing script. These tests assure the correct 
functioning of the appl icat ion features, designed i n the previous sections, which real users 
in real scenarios w i l l use. A misfunction of such features cr i t ical ly impacts the application's 
usability. For this purpose, I designed this set to cover the features w i th added redundancy 
between some tests to gain addi t ional assurance. 

Test name Description Expected code 
server_bad Invalid server input E X I T F A I L U R E 
login ok V a l i d user login E X I T _ S U C C E S S 
login bad Invalid user login E X I T F A I L U R E 
logout_ok V a l i d user logout E X I T _ S U C C E S S 
logout_bad Logout before login E X I T F A I L U R E 
nologin E m p t y login input E X I T F A I L U R E 
del_ne Delete nonexisting file E X I T F A I L U R E 
file Access an existing file E X I T _ S U C C E S S 
nofile Access a nonexisting file E X I T F A I L U R E 
thetwotime Access and delete two files E X I T _ S U C C E S S 
tworeqs Access an file two times E X I T F A I L U R E 
allfiles Access a l l predefined files E X I T _ S U C C E S S 
rename_bf Rename a file, back and forth E X I T _ S U C C E S S 
rename_ne Rename a nonexisting file E X I T F A I L U R E 
wr i t e_ok Wri te to an accessed file E X I T _ S U C C E S S 
wr i te_ne Wri te to a nonexisting file E X I T F A I L U R E 
w r i t e _ m u l t i Wri te to a file mult iple times E X I T _ S U C C E S S 
read_ok Read correct text from a file E X I T _ S U C C E S S 
read_bad Read incorrect text from a file E X I T F A I L U R E 
read_two Combine wr i t ing and reading E X I T _ S U C C E S S 

Table 4.2: The designed set of tests, w i th their respectable descriptions and expected exit 
codes, included as a part of the automated testing script. 

34 



Chapter 5 

Implementation and testing 

T T h i s chapter covers the exact internal implementat ion of both the internal elements and 
the user interface of the V D U Client . After consulting wi th my supervisor, the applicat ion 
was implemented using V i s u a l Studio Communi ty 2019 1 . The automated tests, designed 
in the previous chapter, are implemented in this chapter using V i s u a l Studio C o d e 2 . After 
implementation, the automated tests are performed on a set of testing operating systems 
to prove the correct functionality of the applicat ion. List ings in the following sections make 
impl ic i t use of the following macros: 

• WND - The main window object (CVDUClientDlg) 

• APP - The applicat ion object (VDUClient) 

5.1 Internal components 

The back-end implementat ion of the application's internal components corresponds to the 
class structure designed in Chapter 4. Th i s section covers the details of important parts of 
the implementat ion related to the application's functionality. 

5.1.1 C o n n e c t i o n s a n d session 

The V D U connection is an extended wrapper of a regular H T T P connection to a V D U 
server, which handles the overhead required to easily communicate w i th a V D U server 
using H T T P messages by sending a request and receiving a response. The V D U session 
is an abstraction of communicat ion between the V D U Client applicat ion and the V D U 
server related to the current user. The session data most impor tant ly consists of the user's 
authorization token and its expiration date. 

Wrapping connections 

Due to the stateless nature of H T T P , the client must send each request separately from 
one another. Implementing requests as inline code creates too much redundant code if the 
application needs to handle the received response. 

M y goal for creating a connection wrapper was to shift the generic and redundant H T T P 
connection-related overhead into a single CVDUConnection class. Addi t ional ly , I recognized 

x h t t p s : //visualstudio.microsoft.com/vs/  
2 h t t p s : //code.visualstudio.com/ 

35 

http://microsoft.com/vs/


only a few variables that can change from one connection to another and made the class 
usable for communicat ing wi th every V D U A P I endpoint. Thanks to this approach, a re­
quest to the V D U server can be simplified into creating a connection object, as shown in 
L i s t ing 5.1. 

CVDUConnection conLogin( 
_T("127.0.0.1:4443"), //Server address 
VDUAPIType::P0ST_AUTH_KEY, //VDU API endpoint 
CVDUSession::CallbackLogin, //Callback function 
_T("From: John\r\n"), //Request headers 
_T(""), //Path parameter 
_T ( " C : \ C l i e n t . c r t " ) ) ; //Path to content f i l e 

Lis t ing 5.1: Example of instantiat ing a V D U connection wrapper class. 

Refreshing authorization token 

The V D U A P I states that an authorizat ion token has an expirat ion time, after which the 
token is no longer val id . It is not mentioned what the expirat ion period is. It could 
potentially be constant, or it could be relative - it depends on the server. 

I solved this issue by creating a permanent worker thread on the application's startup, 
which checks for the expirat ion t ime every second, and sends a request to refresh the session 
once the expirat ion period delta gets low enough. Instead of calculat ing the exact t ime a 
thread should sleep, the reasoning behind the one-second interval is that there is no standard 
way to wake a thread up from sleep earlier i f the user does an unexpected action, such as 
suddenly logging out. 

Threading connections 

The applicat ion has, by default, only a single thread available, the thread which handles 
the user interface - the main thread. Processing connections on this thread would block the 
user interface from responding when wait ing for the server's response. 

I solved this problem by processing connections in separate worker threads. Whenever 
the appl icat ion needs to send a request to the server, it instantiates a new CVDUConnection 
object. It passes it as a parameter to a new thread - a connection thread. A connection 
thread starts its execution at the beginning of a static function, representing the thread 
procedure, CVDUConnection: :ThreadProc(), which processes the connection by cal l ing the 
Process() method and deletes the object from memory afterward. Creat ing a thread using 
AfxBeginThread 3 , as shown i n L i s t i ng 5.2, is a non-blocking operation, ensuring that the 
main thread's execution flow w i l l not be disrupted by issuing requests to the server. 

LPVOID pCon = (LPVOID) new CVDUConnection(GetServerURLO, 
VDUAPIType::P0ST_AUTH_KEY, CVDUSession::CallbackLogin, headers, _T(""), 
certPath); 

AfxBeginThread(CVDUConnection::ThreadProc, pCon); 

Lis t ing 5.2: Creat ing a new thread to process a connection which sends a login request to 
the server. 

3 h t t p s : //docs.microsoft, com/en-us/cpp/mf c/r eference/applicat ion-information-and-
management?#afxbeginthread 

36 

file://C:/Client.crt


T h r e a d synchronization 

In a scenario where one or more worker threads are processing connections simultaneously, 
a l l threads of the program are subject to a data race. The data race occurs due to the 
shared access of the session data and is capable of causing seemingly unreasonable errors, 
i.e., updat ing the authorizat ion token right after a worker thread reads it from memory, 
resulting i n the worker thread using an inval id authorizat ion token for its operation. 

To solve this issue, I modified essential parts of the code into critical sections using 
an S R W lock. W h e n a thread enters a cr i t ical section, no other worker thread can read 
or write into the session data without acquiring the lock in the exclusive access mode, as 
indicated in L i s t i ng 5.3. The main thread is excluded from this restriction, as it must not 
be blocked, and the worst-case scenario is only potential ly outdated visual information. 

CVDUSession* pSession = APP->GetSession(); 

//Blocking i f already acquired, u n t i l released 
AcquireSRWLockExclusive(&pSession->m_lock); 
//Entered a c r i t i c a l section 

//Code which uses the session data exclusively 
CString token = pSession->GetAuthToken(); 

//Leaving c r i t i c a l section 
ReleaseSRWLockExclusive(&pSession->m_lock); 

Lis t ing 5.3: Example of a cr i t ica l section implementat ion using an S R W lock. 

Callback functions 

To handle the example login request results demonstrated i n L i s t i ng 5.2, the caller can 
specify a callback function. Every callback function has the following guarantees: 

• Executed asynchronously - Executes in a worker thread 

• The parameter is the response - The H T T P response can be NULL on failure 

• Exclusive access to session data - To prevent data racing 

• The return value is thread exit code - For synchronous operations 

A callback function must follow the prototype, declared in L i s t ing 5.4. The parameter is 
the received response from the server in the form of a CHttpFile object. The return value, 
as specified above, w i l l be used as a return code for the running thread. This assures that 
another synchronization object can check the results of this callback operation after the 
running thread terminates. 

typedef INT (*VDU_CONNECTION_CALLBACK)(CHttpFile* httpResponse); 

Lis t ing 5.4: The prototype of a V D U callback function. 

37 



5.1.2 V i r t u a l file sys tem 

The V D U v i r tua l file system is originally based on the passthrough-cpp1 example file system 
made by Bill Zissimopoulos. The original example file system, available at [5], implemented 
the functionality of accessing a given directory path v i a the v i r tua l drive directly, a pass-
through file system. This was a perfect fit for this applicat ion, considering the V D U Client 
file storage design uses a folder i n a very similar sense. Bas ing the V D U v i r tua l file system 
on that system allowed me to spend more t ime perfecting the final system, as the example 
system covered a good chunk of the unrelated implementat ion overhead. 

The v i r tua l file system is implemented i n the CVDUFileSystem class. The implementat ion 
consists of overriding v i r tua l functions of the base Fsp: :FileSystemBase class. The list of 
implemented v i r tua l functions, along w i t h a simple description according to [39], is the 
following: 

• GetVolumelnfo - Volume information 

• GetSecurityByName - F i l e metadata and security descriptors 

• Create - Creat ing a file 

• Open - Opening a file 

• Overwrite - Overwri t ing an existing file 

• Cleanup - Si tuat ional file operations 

• Close - Clos ing a file handle 

• Read - Read bytes from file 

• Wite - Wr i te bytes to file 

• Flush - F l u s h on disk 

• GetFilelnfo - Query file metadata 

• SetBasicInfo - Set file attributes, file times 

• SetFileSize - Change file size 

• CanDelete - Whether or not can file be deleted 

• Rename - Renaming a file 

• GetSecurity - F i le ' s security descriptor 

• SetSecurity - F i le ' s security descriptor 

• ReadDirectory - Reading directory data 

• ReadDirectory Entry - L i s t ing through directory contents 

4 h t t p s : //github.com/billziss-gh/winf sp/blob/master/tst/passthrough-cpp/ 

38 



The V D U file system service manages this file system. The service is implemented i n the 
CVDUFileSystemService class and holds a l l information about V D U files, file system status, 
the v i r tua l file system drive, etc. Most importantly, it implements the functionality of 
transferring files between the client and the server and provides it to other parts of the 
application, including the file system itself. A n instance of this service runs i n a permanent 
thread, created on the application's startup. 

Read-only files 

V D U files can have a property, which disallows them to be uploaded to the server, and 
thus, any modification - they are read-only. W h i l e a file i n Windows can have a read-only 
attr ibute set, many programs s imply clear the at tr ibute or ignore it completely. Modi fy ing 
read-only files, whether by mistake or intention, could lead to confusion and waste of 
bandwidth v i a requests, which the server w i l l deny. 

M y approach to this issue is to disallow programs from acquiring a file's handle i f the 
handle would have access to write to the file. The process of acquiring a handle to an 
existing file is handled in the OpenO function of the file system implementat ion and in 
the Create() function to prevent modifying the file by replacing it . L i s t ing 5.5 shows the 
implementation of the access right check for the first function. 

NTSTATUS CVDUFileSystem::Open(PWSTR FileName, UINT32 CreateOptions, UINT32 
GrantedAccess, PVOID* PFileNode, PVOID* PFileDesc, OpenFilelnfo* OpenFilelnfo) 

{ 

//Find requested f i l e v i a the service 
CVDUFile vdufile = 

APP->GetFileSystemService()->GetVDUFileByName(PathFindFileName(FileName)); 

//I f the f i l e i s a v a l i d VDU f i l e 
i f ( vdufile. I s V a l i d O ) 
{ 

/ / I f the f i l e i s read-only, check write rights 
i f (!vdufile.m_canWrite && 

(GrantedAccess & GENERIC_WRITE I I 
GrantedAccess & FILE_APPEND_DATA || 
GrantedAccess & FILE_WRITE_DATA)) 

{ 

//Return a descriptive status, do not open a handle 
return STATUS_MARKED_TO_DISALLOW_WRITES; 

} 

} 

} 

Lis t ing 5.5: The implementat ion of the read-only check for files, to disallow opening a handle 
wi th write access to a V D U file, i f it is read-only. 

C u s t o m drive icon and label 

For better visual clari ty and easy recognition of the difference between a physical drive 
and a v i r tua l one, created by the applicat ion, I implemented a simple solution, which, upon 
mounting a v i r tua l drive to a drive letter, sets the icon to match the V D U Client main icon, 

39 



displayed in Figure 4.7, and include a descriptive drive label to match. To change a drive 
icon, a l l it takes is to create a registry key as a subkey to the Explorer key, which Windows 
Fi le Explorer uses for its various settings. The created key's name has to be equal to the 
drive's letter. Inside this key, the Defaultlcon subkey's default value specifies the custom 
icon, and the DefaultLabel subkey's default value specifies the custom label . Th is is true 
for a l l Windows versions. The problem is, where is the Explorer key located. Accord ing 
to [33], for Windows versions other than Windows 2000, which is this application's case, 
the key is located under the HKEY_LOCAL_MACHINE key. This would change the drive icon for 
every Windows user and requires administrator permissions to change. 

To avoid this, the key used in the Windows 2000 option's case can be used and, with a 
modification, is working as intended. Accord ing to [27], the HKEY_CLASSES_R00T key will be 
replaced with the HKEY_CURRENT_USER\Sof tware\Classes key if the intent is to write only to 
the current Windows user's settings. Tha t is exactly the application's intent, as it requires 
no addi t ional rights. A n example of an implementat ion using a modified registry path to 
enable a custom icon is shown in L i s t i ng 5.6. 

NTSTATUS CVDUFileSystemService::Remount(CString DriveLetter) 
{ 

CRegKey key; 
i f (key.Create(HKEY_CURRENT_USER, 

_T("SOFTWARE\\Classes\\Applications\\Explorer.exe\\Drives\\") + 
CString(m_driveLetter[0]) + _T("\\Defaultlcon")) == ERR0R_SUCCESS) 

{ 

//Acquire the executable path containing the icon 
CString moduleFilePath; 
AfxGetModuleFileName(NULL, moduleFilePath); 
//Select the f i r s t icon, set i t to the default value 
key.SetStringValue(NULL, _T("\"") + moduleFilePath + _T("\",0")); 
key.CloseQ ; 

} 

} 

Lis t ing 5.6: Implementation of applying a custom drive icon to a drive, noted by its drive 
letter, when re-mounting the v i r tua l file system. 

File integrity 

Accessing a remote file v i a its file token triggers a download of the file from the V D U server 
to the local machine. The applicat ion loads a l l response headers and starts downloading 
the file. The file is first downloaded into the current Windows user's temporary directory 
wi th a temporary name prefixed wi th the letters "vdu". After the download is finished, the 
application should verify the file's integrity to confirm it has been downloaded from the 
V D U server successfully, without modification. 

This is achieved by creating an M D 5 hash of the file's contents and encoding the raw 
16 bytes of hash data into the Base64 format. Th is format corresponds to the format used 
in the Content-MD5 header of the server's response. If both hashes match, the file integrity 
has been proved, and the file is registered internally. It is moved into the applications work 
directory, available to be accessed by the user through the v i r tua l file system. The function 
that creates the M D 5 hash of a file is implemented according to [11] using the cryptographic 

40 



functions, using the Windows A P I ' s C r y p t o A P I , which allow performing the computat ion 
of hashes at the application's runtime. 

Invalidating file tokens 

Invalidating a file token when the user no longer needs a file to be accessible was designed to 
be done by repurposing the delete feature of Windows F i le Explorer . However, the v i r tua l 
file system provides no v i r tua l function, called when a file is being deleted. 

After testing, I found out that the delete feature of Windows F i l e Explorer is actually 
implemented as s imply opening the file w i th a specific parameter. To repurpose the delete 
function, I intercept the OpenO v i r tua l function of the v i r tua l file system. If the file is about 
to be deletet, for the parameter CreateOptions, either of the following statements must be 
true: 

• The FILE_DELETE_ON_CLOSE flag is set 

• O n l y the following flags are set: 

- FILE_FLAG_POSIX_SEMANTICS 
- FILE_FLAG_OPEN_REPARSE_POINT 

- FILE_NON_DIRECTORY_FILE 

B y checking for these conditions, intercepting and handling the deletion, I implemented the 
file token invalidat ion feature. 

Detecting file changes 

A V D U file can be changed i n many ways v i a many different applications. E a c h applicat ion 
could use a slightly different method to modify the files. Th is makes it difficult to find 
a reliable way to detect the exact moment when a file has changed without repeatedly 
testing the file for changes on a t imer - a very ineffective approach. It takes more processing 
power, the more files are present i n the v i r tua l file system. 

Detecting changes i n a file is simple - create a new M D 5 hash of the file and compare 
it to the one acquired from the V D U server. The problem is t iming . The best t ime to 
detect a file change is instantly, and the best place for that is directly i n the file system 
implementation. A n applicat ion can change a file in three basic ways: 

• Renaming - Changing the file's name and or extension 

• Replacing - D rag and drop; overwrit ing the file w i th another file 

• Direct modification - Opened and modified by some other applicat ion 

Renaming is easy to detect. If a file is about to be renamed, the v i r tua l function 
Rename () of the v i r tua l file system gets called. Inside this function, I intercept the cal l and 
handle the detection. 

Replacing happens, for example, w i th drag-and-drop operations. The exact process of 
this varies from applicat ion to applicat ion that handles i t . Usually, an applicat ion that 
replaces files creates a temporary file, writes new contents into that temporary file, and 
renames the temporary file to the original file name. It makes use of the renaming func­
tionality. To differentiate user-triggered renaming and renaming caused by some applica­
tion's overhead, I use the ReplacelfExists parameter of the Rename() v i r tua l function of 

41 



the v i r tua l file system. This parameter is False for renaming due to overhead and True 
for user-triggered renaming. W h i l e the overhead renaming on its own could be used as a 
detection vector for file changes, I use a more efficient approach. 

Detecting direct modification of a file stems from an object, which is being used while 
modifying a file - a handle. N o applicat ion wants to keep a handle to a file for too long, 
as it would potential ly prevent other applications from accessing this file. Tha t is why 
intercepting the end of the modification process when an applicat ion is closing a handle 
to a file is the best spot for detection. The v i r tua l function Close () provides the handle, 
which is about to be closed v ia the FileDescO parameter. To determine whether this file 
is one of the V D U files, the GetFinalPathNameByHandle 0 function provides the file name of 
the file this handle belongs to. The applicat ion can compare it against the internal vector 
of V D U files. However, this approach detects every handle that belongs to a V D U file. If 
an applicat ion intends only to read and opens a read-only handle to a file and then closes 
it, it essentially creates a false positive, as handles without explicit wr i t ing rights can not 
modify a file. 

The file system needs to figure out whether a handle has write access to the file it 
belongs to solve this. The internal Windows A P I function NtQueryObjectO allows querying 
the GrantedAccess of a handle object, as specified by [17]. Unl ike other Windows A P I 
functions, it is only accessible v i a a dynamic l ink. The implementat ion of acquiring the l ink 
to NtQueryObjectO and using it to identify handles wi th write access is shown i n L i s t ing 
5.7. Thanks to this approach, the identifying process is more effective, as only handles wi th 
write access are considered for a file modification check. 

Uploading files 

Normally , local V D U files must be manually uploaded to the V D U server every t ime a sig­
nificant change is made to justify this effort. Th is makes it very difficult and annoying for 
the user to keep up wi th the changes and do repetitive tasks. 

To automate this process, the appl icat ion w i l l only upload the local V D U files present 
in the v i r tua l file system to the server i f a change to the file's contents is detected. If 
a change is detected, the file system service w i l l upload the file i n the background without 
the need for interaction of the user. A n upload request can potential ly result i n the file 
token being invalidated by the server. The applicat ion responds by removing the file locally 
and notifying the user about this occurrence. 

Version control 

Each V D U file that is accessed has its version controlled by the V D U server. The version 
string is accessible i n the response header as the ETag header. The exact content of the 
version str ing is not specified. 

Due to this fact, I implemented the application's version control as s imply following the 
orders of the server, given that the client applicat ion has no control over the file version 
- it can only respect i t . W h e n a file is modified, the file is uploaded to the V D U server. 
If the server accepts the updated file, it w i l l return a new version in the ETag header of 
the response. This is updated internally so that any further changes w i l l be done wi th 
respect to the current version of the file. Cont ra ry to how the thesis specification purports 

5https://docs, microsoft. com/en-us/windows/win32/api/fileapi/nf-fileapi-
getfinalpathnamebyhandlew 

42 

https://docs


the applicat ion version control, the appl icat ion can at its best follow the server's decisions 

about the version of a file. 

VOID CVDUFileSystem::Close(PVOID FileNode, PVOID FileDescO) 
{ 

VdufsFileDesc* FileDesc = (VdufsFileDesc*)FileDescO; 

//Prototype from documentation 
typedef NTSTATUS (NTAPI* NtQueryObjectFn)(HANDLE Handle, 

OBJECT_INFORMATION_CLASS ObjectlnformationClass, PVOID Objectlnformation, 
ULONG ObjectlnformationLength, PULONG ReturnLength); 

//Get the function dynamically from n t d l l 
s t a t i c NtQueryObjectFn NtQueryObject = NULL; 
i f (!NtQueryObject) 
{ 

i f (HMODULE n t d l l = LoadLibrary(_T("ntdll.dll"))) 
NtQueryObject = (NtQueryObjectFn) GetProcAddress(ntdll, 

"NtQueryObject"); 
} 

//Assume the handle has writing rights 
BOOL handleHasWriteRights = TRUE; 
PUBLIC_OBJECT_BASIC_INFORMATION pobi; 

//Query the handle object's basic information 
i f (NtQueryObject != NULL && NT_SUCCESS( 

NtQueryObject(FileDesc->Handle, ObjectBasicInformation, fepobi, 
sizeof(pobi), 0))) 

{ 
ACCESS_MASK GrantedAccess = pobi.GrantedAccess; 

//Queried successfully, assume no write rights 
handleHasWriteRights = FALSE; 

//Check handle's access for write flags 
i f (GrantedAccess & GENERIC_WRITE || 

GrantedAccess & FILE_APPEND_DATA || 
GrantedAccess & FILE_WRITE_DATA) 

{ 
handleHasWriteRights = TRUE; 

} 

} 

Lis t ing 5.7: Implementation of accessing the NtQueryObjec t function of n td l l .d l l and using 

it to identify wheter a handle, that is about to be closed, has access to wr i t ing to the file it 

belongs to. 

43 



5.2 User interface 

The front end of the applicat ion is the user interface, as it was designed in Chapter 4, and 
it is d ivided into the application's dialog window and the Windows environment part. The 
implementation of the application's interface is explained i n the following subsections. 

5.2.1 D i a l o g w i n d o w 

The dialog window was implemented using M F C i n V i s u a l Studio, which allows creating 
dialog interfaces i n a schematic-like format, as displayed i n Figure 5.1. Each designed 
window serves as a template for programmatical ly created windows of the same type and 
has a unique name. W h e n creating a window, the developer can specify a template to guide 
the design of this window. A s shown i n L i s t i ng 5.8, the Create() function of CDialogEx is 
using the designed window template specified as the first parameter. 

i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i 

F | VDU Cl ient 

Connection 

Server address 

I I Use dient certificate 

File System 

Preferred drive letter 

Input file token 

Sample edit box 

m £3 

Sample edit box Ping 

User 

Sample edit box Login 

Select certif icate.. 

Not connected to server 

Figure 5.1: The V D U Client dialog window user interface; created i n the V i s u a l Studio 
Dia log Edi to r . 

1 CVDUClientDlg* pDlg = new CVDUClientDlgO; 
2 pDlg->Create(IDD_VDUCLIENT_DIALOG, AfxGetMainWndO); 

Lis t ing 5.8: Creat ing the extended dialog window of V D U Client 

44 



Event handlers 

In Windows, whenever a window is interacted wi th , it receives a message, which can be 
handled and responded to. M F C provides a way to implement a function called when 
a specific message is received - an event handler. For each chi ld window of the dialog, 
including itself, I implement one or more event handlers to assure functionality of the 
interface. A n example of an event handler and its mapping to a message and implementat ion 
is displayed i n L i s t i ng 5.9. 

//Message mapping for dialog 
BEGIN_MESSAGE_MAP(CVDUClientDlg, CDialogEx) 

ON_BN_CLICKED(IDC_BUTTON_PING, feCVDUClientDlg::OnBnClickedPing) 
END_MESSAGE_MAP() 

//The message handler function 
void CVDUClientDlg::OnBnClickedPingO 
{ 

TryPingO ; 
> 

Lis t ing 5.9: Example of implemented and mapped click event handler 

Tray 

The core of interacting wi th the Windows tray area and creating a tray icon is the W i n ­
dows A P I function Shell_Notifylcon 6. The information about the tray icon is stored in 
m_trayData inside CVDUClientDlg. This data is modified and passed to the function whenever 
an operation w i t h the tray icon is required. 

To make it seem like the window gets hidden to the tray, I override the system command 
SC_CL0SE' to minimize and hide the main window, as shown i n L i s t i ng 5.10. 

//Overriding the OnSysCommand v i r t u a l function 
void CVDUClientDlg::OnSysCommand(UINT nID, LPARAM lParam) 
{ 

i f ((nID & OxFFFO) == SC_CL0SE) 
{ 

//Hide to tray 
ShowWindow(SW_MINIMIZE); 
ShowWindow(SW_HIDE); 
return; 

} 

/ / C a l l parent's default implementation 
CDialogEx::OnSysCommand(nID, lParam); 

> 

Lis t ing 5.10: Overr id ing system close command to hide the dialog window 

https: //docs, microsoft. com/en-us/windows/win32/api/shellapi/nf - s h e l l a p i -
shell_not i f y i conw 

7https://docs.microsoft.com/en-us/windows/win32/menurc/wm-syscommand 

45 

https://docs.microsoft.com/en-us/windows/win32/menurc/wm-syscommand


Message box 

W h e n a message box is active, its presence blocks the thread which creates i t . Th is ties 
closely to the thread synchronization mentioned in the previous section and could lead to 
synchronization delays. It could even cause a deadlock i f a thread does not release the 
synchronization lock. 

To prevent this while s t i l l using message boxes, each message box is created in a separate 
new worker thread. The cal l ing thread creates a structure consisting of the parameters of 
the message box and passes it to the new thread. This approach avoids any potential delays 
in thread synchronization. 

5.2.2 W i n d o w s env i ro nm ent 

This subsection covers features that tie closely to the interface of the Windows environment. 
The specification does not expl ici t ly require their presence. Instead, they serve as quali ty 
of life improvements of the user experience. 

Browsing and opening files 

After successfully accessing a V D U file by its token, the file is created local ly and available 
on the v i r tua l file system's v i r tua l drive. It might not be clear how to access this place or 
run the newly accessed file s imply for some users. 

After a file is accessed, the applicat ion automatical ly starts the program associated 
wi th this file's type. This is done by using the ShellExecute 8 function to open the file at 
its location. I also used this function to open the Windows F i l e Explorer at the path of the 
v i r tua l drive, which is accessible through the tray popup menu entry - Browse files. The 
usage of ShellExecute i n the implementation of these features is shown i n L i s t i ng 5.11. 

//Browse f i l e s inside the v i r t u a l drive path 
ShellExecute(WND->GetSafeHwndO, _T("explore"), 

APP->GetFileSystemService()->GetDrivePath(), NULL, NULL, SW_SH0WN0RMAL); 

//Open VDU f i l e 'plain.txt' with the assigned program 
ShellExecute(WND->GetSafeHwndO, _T("open"), 

APP->GetFileSystemService()->GetDrivePath() + _ T C p l a i n . t x t " ) , NULL, NULL, 
SW_SH0WN0RMAL); 

Lis t ing 5.11: Examples of using ShellExecute to open and browse files 

Running on startup 

To make Windows automatical ly run programs after the current Windows user logs in , 
as [36] describes, the path to the appl icat ion executable is set as a string value inside 
CurrentVersion\Run subkey of the HKEY_CURRENT_USER key. W i t h this registry value set 
up, the applicat ion w i l l be launched each t ime the Windows user logs in . However, the user 
might want this feature enabled at a l l times. 

To solve this issue, I wanted to replicate how the Windows Task Manager disabled 
and enabled the startup applications and use this feature i n the applicat ion. A s there is no 
official documentation for the Task Manager, I took inspirat ion from the notes of René Nyf-
fenegger, available at [22], where he describes the registry subkey StartupApproved\Run. 

8https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutew 

46 

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutew


The values in this subkey describe whether an applicat ion is enabled or disabled from start­
ing up - it overrides the settings of the default startup registry path. However, the notes 
contain incomplete information about the startup entry structure. 

According to my testing, from the first 4 bytes of the binary value, only the first bit is 
used to determine whether the entry is disabled. The second bit always gets set when the 
Startup tab of the Task Manager is first displayed. This bit does not get set again unt i l the 
Task Manager is restarted - it could have been an oversight, as it does not serve a purpose 
related to appl icat ion startup. 

I created a simple structure, as shown i n L i s t ing 5.12. which represents the 12 bytes 
saved in the registry. The V D U Client reads and writes this structure to the registry. 

typedef struct StartupApprovedEntry_t 
{ 

enum FlagBits 
{ 

DISABLED = (1 « 0), //The application w i l l not start 
TASKMGR_VIEWED = (1 « 1), //The entry was viewed i n the Task Manager 

}; 

DWORD flag s ; //Contains f l a g b i t s 
FILETIME disabledTime; //Time when the entry was disabled 

} StartupApprovedEntry; 

Lis t ing 5.12: The internally implemented structure of an entry of a startup-approved 
application of modern Windows. 

Single instance 

B y default, upon start ing another instance of the applicat ion, it w i l l create a new dialog 
window and attempt to create the v i r tua l file system drive. Th is could lead to issues, as 
the previously created instance has already created the drive, or confusion related to the 
number of dialog windows and tray icons. 

To achieve this, I used a mailslot. The first, ma in instance of the appl icat ion creates 
a mailslot w i th a predefined name and keeps its handle un t i l it exits. If another instance of 
the appl icat ion attempts to create the same mailslot, the creation w i l l fail - the applicat ion 
process can recognize whether it is the ma in process or not. 

The main applicat ion process w i l l create a worker thread to make better use of the 
mailslot, which continuously attempts to read new messages from the mailslot. Every read 
message w i l l be passed synchronously to the VDUClient: :HandleCommands() function, which 
parses and handles and executes the command line. To achieve this, the applicat ion process, 
which is not the main one, opens the mailslot and writes its own command line as a message 
before exit ing. This allows for many processes of the appl icat ion to control a single instance 
instead of instantiat ing themselves. 

Protocol association 

According to [15], to associate the appl icat ion wi th the V D U U R L protocol, the applicat ion 
should register this protocol as one of the root classes. To register the protocol only for the 
current Windows user, the registry key used is under the HKEY_CURRENT_USER key, instead 
of the HKEY_CLASSES_R00T key, as mentioned i n previous sections. W h e n the protocol is 

47 



triggered, a new instance of the applicat ion is launched wi th the command to access the 
requested file by the token in the U R L path. 

The implementat ion of this ties to the single instance feature of the applicat ion. The 
newly created instance, triggered by launching the V D U U R L protocol, w i l l write the 
-accessnetf i l e command wi th its parameter being the file token, into the mailslot. Th is 
w i l l cause the main process to read the new message and execute the command, leading to 
seamless access to the requested file v i a the currently running application. 

5.3 Automated tests 

This section intends to implement the automated tests designed in the previous chapter. 
A l l automated tests are implemented using the P y t h o n programming language wi th a single 
script. The tests are run on the applicat ion in the test mode, which causes the applicat ion 
to validate the results of each instruct ion and exit w i t h the respective exit code. A l l tests 
assume the persistent state of the simulated V D U server. 

5.3.1 Test m o d e 

The test mode of the applicat ion is implemented as a simple variable, indirect ly checked in 
different parts of the applicat ion. In the test mode, the applicat ion executes the instructions 
in its own command line. W h i l e it does create a mailslot to prevent creating more instances 
of the applicat ion, it does not read from it to prevent it from tampering wi th the currently 
running test. 

Execut ing instructions 

Instructions of the applicat ion are contained i n the application's command line. The func­
t ion VDUClient: :HandleCommands() parses and executes every instruction that is matched 
wi th the instruct ion set and ignores others. W h i l e the applicat ion runs i n the test mode, 
the instructions are always executed synchronously in the main thread. Th i s is possible 
thanks to the dialog window not being active, and it is different from the regular mode, 
where the instructions are s t i l l run synchronously but i n a worker thread. 

E r r o r handling 

If an instruction communicates w i th the server during its execution, it awaits the response 
from the server i n the same thread - it is blocking. After evaluating the response, the 
application immediately exits w i th the respective exit code if the action was not successful. 
Otherwise, the appl icat ion exits after the last instruct ion is executed wi th the exit code 
EXIT_SUCCESS. 

5.3.2 S i m u l a t e d server 

The simulated V D U server is implemented as a single P y t h o n script. Th is script creates 
an H T T P server, to which it assigns a custom VDUHTTPRequestHandler object, which is an 
instance of the extended version of BaseHTTPRequestHandler 9 class. Th is class implements 
al l endpoints of the V D U server A P I . The server is bound to listen on a l l interfaces and 
uses the port 4443 by default. 

9 h t t p s : //docs.python.org/3/library/http.server.html 

18 

http://http.server.html


Support for H T T P S 

The support for the H T T P S protocol was added according to [2] by generating a server 
certificate using O p e n S S L 1 0 . Th is certificate is then used to wrap the H T T P server's socket, 
creating an H T T P server w i th H T T P S support. The certificate is not a val id certificate 
signed by an authori ty and should only be used for testing. 

Predefined data 

The server includes predefined simulated data for testing. Th is data includes a few example 
users and examples of always active file tokens for accessible V D U files. Th is helps create 
a good environment for testing, as tests can be created to assume the persistent state of 
the simulated server, where known users and file tokens are available. 

Endpoint simulation 

The simulated server attempts to replicate the functionality of the endpoints of the pro­
duction server using the programming constructs of P y t h o n and its default libraries. A u ­
thentication related endpoints are simulated using a dict ionary to manage the generated 
authentication tokens. The file-related endpoints use the operating system l i b r a r y 1 1 to gain 
information about the V D U files, such as their size, access rights, file name, etc. 

The point is not to accurately simulate how a product ion server would handle the request 
internally but rather simulate accurate responses to client requests. For this reason, some 
endpoints have simplified internal functionality. For example, the simulated DELETE / f i l e / 
endpoint does not actually invalidate file tokens on success, since they are persistent for 
testing. 

Version control 

A l l predefined files have a certain start ing version as an integer. This version is incremented 
each t ime a file is successfully uploaded to the server. Th is creates a s imulat ion of how 
a simple version control system would work - the previous versions are not backed up 
anywhere, while they probably would be on a real product ion server. 

Failures 

The specification of the V D U A P I includes, for some endpoints, status codes for internal 
failures such as read timeouts. To simulate internal read timeouts, I added a probabil i ty 
of failure setting, which affects file-related endpoints. Th is setting should remain "0" while 
using the server to perform tests. 

5.3.3 T e s t i n g script 

The automated testing script is implemented as a single P y t h o n script. It contains the 
definitions of automated tests to be run on the applicat ion. They predefined direct ly i n the 
code, inside a dictionary. The dict ionary can be extended by creating new tests, which w i l l 
be run along wi th the predefined ones. Every test in the dict ionary of tests is implemented 

1 0 h t t p s : //www.openssl.org/ 
n h t t p s : //docs.python.org/3/library/os.html 

49 

http://www.openssl.org/


as an array, containing the test's name, a string of test instructions, and the expected exit 
code. 

Performing tests 

The tests are performed using the subprocess 1 2 P y t h o n library. Th is l ibrary allows the 
script to create a new process based on the input command line. To run a single test, the 
script performs the following steps: 

1. Start the simulated VDU server 

2. Start the VDU Client in the test mode with test instructions 

3. Wait for the VDU Client to terminate 

4. Terminate the simulated VDU server 

5. Compare the exit code of the VDU Client to the expected code 

These steps are done for every test i n the dict ionary of tests. Afterward, the script prints 
the testing results to the standard output to notify about the results. 

5.4 Testing the application 

The automated tests for the applicat ion can be performed by executing the testing script. 
The results of these tests w i l l then signify whether the applicat ion succeeds i n conforming 
to the specified requirements, whether the applicat ion functions correctly, and whether the 
simulated server's behavior matches the expected behavior of the product ion server. 

5.4.1 P e r f o r m i n g tests 

The testing script comes wi th a set of predefined tests, implemented in the previous sec­
tions. I created those tests to prove the correct functionality of a l l important parts of the 
application, focusing on user experience and specification requirements. 

Testing script output 

Lis t ing 5.13 displays the text output of the testing script performed on a machine running 
the Windows 10 operating system. The output of the testing script shows that a l l tests 
have been performed successfully, and as such, the tested functionality is working correctly, 
and the applicat ion was tested successfully. 

5.4.2 C o m p a t i b i l i t y tes t ing 

W h i l e not expl ici t ly required by the specification, I created the applicat ion wi th the possibil­
i ty of support ing a range of operating systems in mind , which could dramatical ly improve 
its robustness and usability. T h i s section discusses how the testing was performed, key 
differences between how the applicat ion runs on these systems, and the summary of test­
ing results. The testing was done on three versions of the Windows operating system -
Windows 10, Windows 8.1, and Windows 7. 

1 2 h t t p s : //docs.python.org/3/library/subprocess.html 

50 



[02 01 52] [Test] OK [server_bad] 1 
[02 01 53] [Test] OK [login_ok] 0 
[02 01 53] [Test] OK [login_bad] 1 
[02 01 54] [Test] OK [logout_ok] 0 
[02 01 54] [Test] OK [logout_bad] 1 
[02 01 55] [Test] OK [nologin] 1 
[02 01 56] [Test] OK [del_ne] 1 
[02 01 57] [Test] OK [ f i l e ] 0 
[02 01 57] [Test] OK [nofile] 1 
[02 01 59] [Test] OK [thetwotime] 0 
[02 02 00] [Test] OK [tworeqs] 1 
[02 02 01] [Test] OK [ a l l f i l e s ] 0 
[02 02 02] [Test] OK [rename_bf] 0 
[02 02 03] [Test] OK [rename_ne] 1 
[02 02 04] [Test] OK [write_ok] 0 
[02 02 05] [Test] OK [write_ne] 1 
[02 02 05] [Test] OK [write_multi] 0 
[02 02 06] [Test] OK [read_ok] 0 
[02 02 07] [Test] OK [read_bad] 1 
[02 02 08] [Test] OK [read_two] 0 
[02 02 08] [02 02 08] 
[02 02 08] [Test] Passed 20/20 tests 

Lis t i ng 5.13: Output of the testing script, after successfully performing al l 20 predefined 
tests. 

Windows 10 

Windows 10 is the target operating system of the applicat ion. A l l features were designed 
and implemented wi th this version as the reference point. A l l tests can be performed suc­
cessfully on this system. Addi t ional ly , a l l features of the applicat ion are working correctly 
as intended. 

Windows 8.1 

For the Windows 8 operating system, the appl icat ion is fully compatible. There are no large 
differences in applicat ion functionality, w i th the only smaller difference being the change of 
notification style from the box style to a popup bubble, as shown in Figure 5.2. 

Figure 5.2: A n example of the popup bubble layout of a notification of the applicat ion, 
shown i n Windows 8.1. 

Windows 7 

The oldest tested operating system, Windows 7, while working mostly like the previously 
mentioned operating systems, does not support the selective automatic startup opt ion of 

/[ 

# Wed, 05 May 2021 01:19:26 GMT * x 

Ping OK. 

51 



the applicat ion. This is due to the lack of implementat ion of startup-approved applicat ion 
entries, which are not being considered. The applicat ion defaults to not force itself to 
be run on startup on this system. Addi t ional ly , it uses the same popup bubble style of 
notifications, s imilar to Windows 8.1, instead of the box style. 

Testing results 

Table 5.1 shows the results of the testing script on each operating system. Accord ing to 
the results, a l l key functionalities outl ined by the specification and test design are working 
correctly. W h i l e the user experience wi th each system is slightly different, mainly due to 
the graphical layout differences, the applicat ion has been tested successfully and is provably 
usable and compatible. 

Test name Windows 10 Windows 8.1 Windows 7 
server_bad O K O K O K 
login ok O K O K O K 
log in_bad O K O K O K 
logout_ok O K O K O K 
logout_bad O K O K O K 
nologin O K O K O K 
del_ne O K O K O K 
file O K O K O K 
nofile O K O K O K 
thetwotime O K O K O K 
tworeqs O K O K O K 
allfiles O K O K O K 
rename_bf O K O K O K 
rename_ne O K O K O K 
wr i t e_ok O K O K O K 
wr i te_ne O K O K O K 
w r i t e _ m u l t i O K O K O K 
read_ok O K O K O K 
read_bad O K O K O K 
read_two O K O K O K 

Table 5.1: The final results of the testing using the testing script. A l l tests have been 
performed successfully on a l l three operating systems. 

52 



Chapter 6 

Conclusion 

This thesis aimed to create a client-side applicat ion for Microsoft Windows, which would 
provide access to remote files on the V D U server, based on the specification and require­
ments at which it succeeded. It introduced the development of applications for Microsoft 
Windows and overviewed important technologies, libraries, and software to achieve this 
goal. It presented and explained files, file systems, and v i r tua l file systems. It l isted and 
reviewed mult iple options of the third-party file system software, from which it picked the 
best one and buil t the applicat ion upon. The requirements were analyzed, formalized, and 
the applicat ion, w i th both its internal components and user interface, was designed i n de­
ta i l . The applicat ion testing mode was introduced, the automated tests were designed as 
a script, and a simulated V D U server to test them on was designed. The application, the 
simulated server, and automated tests were then implemented, w i th the steps and thoughts 
behind each implementat ion being explained in detai l successfully. The applicat ion was 
then subjected to testing, at which it succeeded w i t h a l l created automated tests. The 
compat ibi l i ty support w i th mult iple operating systems was tested and compared to assure 
that the applicat ion is versatile and stable on these systems. 

A s required by the specification, the resulting software is published as open-source on 
G i t H u b 1 , available to be extended upon and developed further. In the future, it could be 
improved by adding more applicat ion settings for the user to customize, extending the user 
interface to include themes and options based on user feedback, or by storing and displaying 
statistics about the user's work wi th each accessed file. 

x h t t p s : //github.com/coolguy!24/vduclient 

53 



Bibliography 

[1] B R I D G E , K . , S H A R K E Y , K . and S A T R A N , M . Unicode in the Windows API - Win32 

apps J Microsoft Docs [online]. 2018 [cit. 2021-03-11]. Available at: https: 
//docs.microsoft.com/en-us/windows/win32/intl/unicode-in- the-windows-api. 

[2] D E R G A C H E V , A . Simple-https-server.py [online]. 2021 [cit. 2021-04-27]. Available at: 
https: / / gist.github.com/dergachev/7028596. 

[3] Dokan - User mode file system library for windows with FUSE Wrapper [online]. 
Dokany, 2021 [cit. 2021-03-31]. Available at: https://dokan-dev.github.io/. 

[4] F I E L D I N G , R . T . Fielding Dissertation: CHAPTER 5: Representational State 
Transfer (REST) [online]. 2000 [cit. 2021-03-26]. Available at: 
https: //www. ics.uci.edu/~f ielding/pubs/dissertation/rest_ar ch_style.htm. 

[5] Billziss-gh/winfsp: Windows File System Proxy - FUSE for Windows [online]. 
G i t H u b , 2021 [cit. 2021-04-20]. Available at: https://github.com/billziss-gh/winfsp. 

[6] Dokan-dev/dokany: User mode file system library for windows with FUSE Wrapper 
[online]. G i t H u b , 2021 [cit. 2021-03-20]. Available at: 
https: / / github. com/dokan-dev/dokany. 

[7] Microsoft/VFSForGit: Virtual File System for Git: Enable Git at Enterprise Scale 
[online]. G i t H u b , 2021 [cit. 2021-03-20]. Available at: 
https: //github.com/Microsof t/VFSForGit. 

[8] H O L L A S C H , L . W . , C O U L T E R , D . , K I M , A . et a l . File systems driver design guide -
Windows drivers / Microsoft Docs [online]. 2020 [cit. 2021-03-09]. Available at: 
https: //docs.microsof t.com/en-us/windows-hardware/drivers/if s/. 

[9] Cloud Storage Icon - Free Download, PNG and Vector [online]. Icons8, 2021 [cit. 
2021-04-20]. Available at: https://icons8.com/icon/r8kHwiV6nVEd/cloud-storage. 

[10] J A C O B S , M . , S H A R K E Y , K . , C O U L T E R , D . et a l . Files and Clusters - Win32 apps j 

Microsoft Docs [online]. 2018 [cit. 2021-03-10]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/f i l e i o / f iles-and- clusters. 

[11] L A S T N A M E H O L I U , S H A R K E Y , K . , C O U L T E R , D . et a l . Example C Program: Creating 

an MD5 Hash from File Content - Win32 apps / Microsoft Docs [online]. 2018 [cit. 
2021-04-25]. Available at: https://docs.microsoft.com/en-us/windows/win32/ 
seccrypto/example-c-program--creating-an-md-5-hash-from-file-content. 

54 

http://microsoft.com/en-us/windows/win32/
http://gist.github.com/
https://dokan-dev.github.io/
http://ics.uci.edu/~f
https://github.com/billziss-gh/winfsp
https://icons8.com/icon/r8kHwiV6nVEd/cloud-storage
https://docs.microsoft.com/en-us/windows/win32/


[12] L E E , T . G . , H O G E N S O N , G . , P A R E N T E , J . et a l . Overview of Visual Studio / 

Microsoft Docs [online]. 2019 [cit. 2021-04-09]. Available at: 
https: //docs.microsoft. com/en-us/visualstudio/get-started/visual-studio-ide. 

[13] FUSE — The Linux Kernel documentation [online]. L i n u x Kerne l Organizat ion, 2021 
[cit. 2021-03-09]. Available at: 
https: //www.kernel.org/doc/html/latest/filesystems/fuse.html. 

[14] M A R T I N , R . C . Clean Code: A Handbook of Agile Software Craftsmanship. 1st ed. 
Upper Saddle River , N J : Prentice H a l l , 2009. 138-140 p. I S B N 0-13-235088-2. 

[15] Registering an Application to a URI Scheme (Windows) / Microsoft Docs [online]. 
Microsoft , 2016 [cit. 2021-05-04]. Available at: 
https://docs.microsoft. com/en-us/previous-versions/windows/internet-explorer/ 
ie-developer/platform-apis/aa767914(v=vs.85). 

[16] Local File Systems (Windows) / Microsoft Docs [online]. Microsoft, 2018 [cit. 
2021-03-10]. Available at: https://docs.microsoft.com/en-us/previous-versions/ 
windows/desktop/legacy/aa364407(v=vs.85) . 

[17] NtQueryObject function (winternl.h) - Win32 apps / Microsoft Docs [online]. 
Microsoft , 2018 [cit. 2021-04-19]. Available at: https://docs.microsoft.com/en-us/ 
windows/win32/api/winternl/nf-winternl-ntqueryobject. 

[18] MLCROSOFT SOFTWARE LLCENSE TERMS [online]. Microsoft , 2019 [cit. 
2021-03-10]. Available at: 
https: //visualstudio.microsoft.com/license-terms/mlt031819/. 

[19] VFS for Git: Git at Enterprise Scale [online]. Microsoft , 2021 [cit. 2021-03-31]. 
Available at: https://vfsforgit.org/. 

[20] Windows 10 SDK - Windows app development [online]. Microsoft, 2021 [cit. 
2021-03-09]. Available at: 
https: //developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/. 

[21] An overview of HTTP - HTTP j MDN [online]. M o z i l l a , 2021 [cit. 2021-03-26]. 
Available at: https: //developer.mozilla.org/en-US/docs/Web/HTTP/Overview. 

[22] N Y F F E N E G G E R , R . Registry: HKEY_CURRENT_USER\Software\Microsoft] 

Windows\CurrentVersion\Explorer\StartupApproved\Run [online]. 2021 [cit. 
2021-04-20]. Available at: 
https://renenyffenegger.ch/notes/Windows/registry/tree/HKEY_CURRENT_USER/ 
Software/Microsoft/Windows/CurrentVersion/Explorer/StartupApproved/Run/index. 

[23] R A D I C H , Q. , C O U L T E R , D . , J A C O B S , M . and S A T R A N , M . What Ls a Window -

Win32 apps / Microsoft Docs [online]. 2018 [cit. 2021-03-15]. Available at: 
https: //docs.microsoft. com/en-us/windows/win32/learnwin32/what-is-a-window-. 

[24] R A D I C H , Q. , C O U L T E R , D . , J A C O B S , M . and S A T R A N , M . Windows Coding 

Conventions - Win32 apps / Microsoft Docs [online]. 2018 [cit. 2021-03-11]. Available 
at: https: 
//docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-convent ions. 

55 

http://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://docs.microsoft
https://docs.microsoft.com/en-us/previous-versions/
https://docs.microsoft.com/en-us/
http://microsoft.com/license-terms/mlt031819/
https://vfsforgit.org/
http://microsoft.com/en-us/windows/downloads/windows-10-sdk/
http://mozilla.org/en-US/docs/Web/HTTP/Overview
https://renenyffenegger.ch/notes/Windows/registry/tree/HKEY_CURRENT_USER/
http://microsoft.com/en-us/windows/win32/learnwin32/windows-


[25] R O B E R T S O N , C , S C H O N N I N G , N . , T A H A N , M . A . et a l . C/C++ projects and build 

systems in Visual Studio [online]. 2019 [cit. 2021-03-09]. Available at: 
https: //docs.microsof t.com/en-us/cpp/build/pro jects-and-build-systems-cpp. 

[26] S C H O F I E L D , M . , H I L L B E R G , M . , G U Z A K , C . et a l . Slim Reader/Writer (SRW) Locks -

Win32 apps j Microsoft Docs [online]. 2018 [cit. 2021-03-18]. Available at: https: 
//docs.microsof t.com/en-us/windows/win32/sync/slim-reader-writer--srw--locks. 

[27] S C H O F I E L D , M . , S H A R K E Y , K . and C O U L T E R , D . HKEY_CLASSES_ROOT Key -

Win32 apps / Microsoft Docs [online]. 2018 [cit. 2021-04-19]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/sysinf o/hkey- classes-root-key. 

[28] S C H O F I E L D , M . , S H A R K E Y , K . and C O U L T E R , D . Structure of the Registry - Win32 

apps / Microsoft Docs [online]. 2018 [cit. 2021-03-16]. Available at: https: 
//docs.microsof t.com/en-us/windows/win32/sysinf o/structure-of-the-registry. 

[29] S C H O F I E L D , M . , S H A R K E Y , K . , C O U L T E R , D . et a l . Predefined Keys - Win32 apps j 

Microsoft Docs [online]. 2018 [cit. 2021-04-22]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/sysinf o/predef ined-keys. 

[30] S C H O F I E L D , M . , S H A R K E Y , K . , C O U L T E R , D . et a l . Semaphore Objects - Win32 apps 

j Microsoft Docs [online]. 2018 [cit. 2021-03-18]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/sync/semaphore-objects. 

[31] S C H O F I E L D , M . , S H A R K E Y , K . , C O U L T E R , D . et a l . Synchronization Functions -

Win32 apps / Microsoft Docs [online]. 2018 [cit. 2021-03-18]. Available at: 
https://docs.microsof t.com/en-us/windows/win32/sync/synchronization-functions. 

[32] S C H O F I E L D , M . , S H A R K E Y , K . , C O U L T E R , D . et a l . About Mailslots - Win32 apps j 

Microsoft Docs [online]. 2021 [cit. 2021-04-29]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/ipc/about-mailslots. 

[33] S C H O F I E L D , M . , S H A R K E Y , K . and S A T R A N , M . Assign a Custom Icon and Label to a 

Drive Letter - Win32 apps j Microsoft Docs [online]. 2018 [cit. 2021-04-19]. Available 
at: https : //docs.microsof t.com/en-us/windows/win32/shell/how-to-assign-a-
custom-icon-and-label-to-a-drive-letter. 

[34] S C H O F I E L D , M . , S H A R K E Y , K . and S A T R A N , M . Handle Limitations - Win32 apps j 

Microsoft Docs [online]. 2018 [cit. 2021-03-11]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/sysinf o/handle-limitations. 

[35] S C H O F I E L D , M . , S H A R K E Y , K . and S A T R A N , M . Handles and Objects - Win32 apps j 

Microsoft Docs [online]. 2018 [cit. 2021-03-10]. Available at: 
https://docs.microsof t.com/en-us/windows/win32/sysinfo/handles-and-objects. 

[36] S C H O F I E L D , M . , S H A R K E Y , K . and S A T R A N , M . Run and RunOnce Registry Keys -

Win32 apps / Microsoft Docs [online]. 2018 [cit. 2021-04-20]. Available at: https:// 
docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys. 

[37] Native API vs FUSE • WinFsp [online], sects, 2021 [cit. 2021-04-20]. Available at: 
http://www. secfs.net/winfsp/doc/Native-API-vs-FUSE/. 

56 

https://docs.microsof
https://docs.microsof
http://docs.microsoft.com/en-us/windows/win32/
http://www
http://secfs.net/winf


[38] WinFsp [online], secfs, 2021 [cit. 2021-04-20]. Available at: 
http://www. secfs.net/winf sp/. 

[39] WinFsp Tutorial • WinFsp [online], secfs, 2021 [cit. 2021-04-20]. Available at: 
http://www. secf s.net/winf sp/doc/WinFsp-Tutorial/. 

[40] S H A R K E Y , K . , C O U L T E R , D . , J A C O B S , M . et a l . File Handles - Win32 apps / 

Microsoft Docs [online]. 2018 [cit. 2021-03-10]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/f i l e i o / f ile-handles. 

[41] S H A R K E Y , K . , S A T R A N , M . et a l . Directory Management - Win32 apps j Microsoft 
Docs [online]. 2018 [cit. 2021-03-20]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/f ileio/directory-management. 

[42] S H A R K E Y , K . , S A T R A N , M . et a l . Volume Management - Win32 apps j Microsoft 
Docs [online]. 2018 [cit. 2021-03-20]. Available at: 
https: //docs.microsof t.com/en-us/windows/win32/f ileio/volume-management. 

[43] About Swagger Specification / Documentation / Swagger [online]. SmartBear Software, 
2021 [cit. 2021-03-26]. Available at: https://swagger.io/docs/specification/about/. 

[44] Desktop Operating System Market Share Worldwide / StatCounter Global Stats 
[online]. Statcounter GlobalStats , 2021 [cit. 2021-05-09]. Available at: 
https: //gs. stat counter.com/os-market-share/desktop/worldwide. 

[45] V I V I A N O , A . and B A Z A N , N . User mode and kernel mode - Windows drivers j 
Microsoft Docs [online]. 2017 [cit. 2021-04-22]. Available at: 
https: //docs.microsof t. com/en-us/windows-hardware/dr ivers/gett ingstarted/user-
mode-and-kernel-mode. 

[46] W H I T N E Y , T . , S H A R K E Y , K . , C O U L T E R , D . et a l . Unicode Programming Summary j 

Microsoft Docs [online]. 2016 [cit. 2021-03-12]. Available at: 
https: //docs.microsof t.com/en-us/cpp/text/unicode-programming-summary. 

[47] W H I T N E Y , T . , S H A R K E Y , K . , S C H O N N I N G , N . et a l . MFC Desktop Applications 

[online]. 2021 [cit. 2021-03-09]. Available at: 
https: //docs.microsof t.com/en-us/cpp/mf c/mf c-desktop-applications. 

[48] Z I S S I M O P O U L O S , B . Winfsp/WinFsp-Performance-Testing.asciidoc at master • 

billziss-gh/winfsp [online]. 2016 [cit. 2021-05-08]. Available at: https://github.com/ 
billziss-gh/winfsp/blob/master/doc/WinFsp-Performance-Testing.asciidoc. 

57 

http://www
http://secfs.net/winf
http://www
https://swagger.io/docs/specification/about/
http://counter.com/os-market-share/desktop/worldwide
https://github.com/


Appendix A 

Contents of the included storage 
media 

root 
I n s t a l l Libraries and installators of the required software 
Thesis Thesis source code 
Source App l i ca t i on files 

Release 
.x64 
L_ "VDUClient.exe" The 32-bit executable 
.Win32 
L_ "VDUClient.exe" The 64-bit executable 

TestFiles Predefined files for testing 
VDUClient App l i ca t ion source code 
"openapi .yaml" O p e n A P I specification 
server_.pem" Certificate file for the simulated server 

_ "VDUClient. sin" Solution file for V i s u a l Studio 
"test .py" Testing script 
"vdusrv.py" Simulated server script 
"README.md" Instruction manual 

"xferanOO-vdu-windows.pdf" Thesis 

58 


