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Abstract
The goal of this thesis is to perform cross-lingual classification and automatic topic discovery
of news articles using pre-trained multilingual language models. For this task, no large
multilingual dataset is available, so the first contribution of this thesis is to create one.
The other aim of this thesis is to benchmark multilingual embedding models LaBSE and
LASER2 in a classification task. This is done through various experiments, such as training
on a limited number of articles and naturally zero-shot learning. Then, a topic discovery is
performed so that an article can be represented not only by categories but also by the most
representative words. Lastly, the results of classification and topic discovery are visualized
in a simple web application.

Abstrakt
Cílem této diplomové práce je provést mezijazykovou klasifikaci a automatickou detekci
témat novinových článků s využitím předtrénovaných multijazykových modelů. Jelikož
pro tento úkol nebyla k dispozici žádná vhodná datová sada, prvním přínosem této práce
je vůbec takovou sadu vytvořit. Dalším krokem práce je porovnat multijazykové modely
LaBSE a LASER2 v úloze klasifikace. K tomu je využita řada experiment zaměřených
na trénování na omezeném počtu článků a samozřejmě testování na jazycích, které nebyly
použity při tréninku. Poté je provedena automatická detekce témat, takže článek může
být reprezentován nejen kategoriemi, ale také odpovídajícími slovy. Na závěr jsou výsledky
popsaného procesu vizualizovány v podobě webové aplikace.
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Rozšířený abstrakt
Cílem této práce je vytvořit vícejazyčnou datovou sadu a použít ji pro srovnání existujících
předtrénovaných vícejazyčných modelů. Žádná podobná datová sada doposud nebyla zveře-
jněna, první úkol tedy spočívá v nalezení vhodných zdrojů novinových článků, které budou
přeložené do mnoha jazyků. Z diskutovaných variant je vybrán web GlobalVoices.org, z nějž
je získána datová sada obsahující téměř 250 000 článků v desítkách jazyků. Využívá se exis-
tující knihovny News-please, ta ale má své chyby, což vede například ke špatnému kódovému
označení jazyků. Navíc neumí extrahovat všechna data, jež jsou v práci potřeba, zbytek je
tedy získáván manuálně.

Celá datová sada je uložena ve složkách podle jazyků, každý článek je dostupný ve
formátu JSON, kde jsou informace strukturované, a také v původní HTML podobě, aby
bylo možné případně dohledat více informací. Meta informace o článcích jsou uloženy
v samostatných souborech, v CSV souboru se nachází zařazení článků do kategorií, v JSON
souboru jsou spárované překlady jednotlivých článků. Získané články jsou dále filtrovány,
některé kategorie jsou sloučeny, což vede ke vzniku výsledných 25 kategorií finální datové
sady. Ta obsahuje 17 jazyků, zvoleny jsou jazyky s více než 2 000 články.

Práce využívá dvou více-jazyčných modelů, LaBSE a LASER. Původním záměrem bylo
otestovat nejnovější LASER3, ale ten pouze přidává podporu nových málo rozšířených
jazyků. Technicky vzato je tedy používán LASER2. Oba dva modely jsou využity pro
vytvoření embeddingů z jednotlivých článků, přičemž jsou adaptovány různé strategie. Jako
nejúspěšnější se ukazuje technika vytvořit embedding z každého odstavce článku a článek
pak reprezentovat jako průměr těchto embeddingů. Cílem více-jazyčných modelů je umožnit
trénink na jazycích, pro které je dostupný dostatek dat, a používat ho pro méně rozšířené
jazyky. S ohledem na tento princip je provedena řada klasifikačních experimentů, kdy jako
klasifikátor jsou využívány MLP, SVM a logistická regrese. Jelikož jeden článek může patřit
do několika kategorií, při klasifikace je využíván přístup One vs Rest. MLP dává mírně lepší
výsledky, a proto je základem všech následujících experimentů. Rozdíl ve výsledcích exper-
imentů používajících embeddingy vytvořené pomocí LaBSE a LASER je zanedbatelný, oba
modely si vedou velmi dobře, a to dokonce i v úkolech, kdy je k tréninku použito omezené
množství dat (2 000 článků). Výrazné rozdíly mezi výsledky pro jednotlivé jazyky nej-
sou, z čehož plyne, že modely jsou schopné velmi dobře zakódovat i méně rozšířené jazyky.
Klasifikační experimenty jsou vyhodnocovány metrikou váženého F1 skóre, které se pohy-
buje zhruba mezi 0,82 a 0,89. Makro F1 skóre ukazuje o něco nižší hodnoty, což napovídá
špatným výsledkům pro některé z 25 kategorií. Vysvětlit to lze tím, že určité kategorie ne-
musí být tak jasně definované, nebo je v nich zařazeno nižší množství článků. Potěšujícím
zjištěním každopádně je, že skóre se neliší mezi jazyky, to znamená, že klasifikátor tréno-
vaný například na řeckých textech, si vede velmi dobře v klasifikaci španělských textů apod.
Tohle chování je od více-jazyčných modelů vytvářejících embeddingy očekávané a tato práce
ho potvrzuje.

Již připravené embeddingy reprezentující jednotlivé články jsou dále využity pro úkol au-
tomatického objevování témat. Prvotním cílem bylo shlukování pomocí K-Means a reprezen-
tace každého shluku deseti slovy získanými pomocí TF-IDF. Každý nový článek by pak byl
zařazen do shluku a představovala by ho slova z daného shluku. Tento přístup se nakonec
neukázal jako vhodný a místo něj se využívá více-jazyčný model, který se z Bag of Words
reprezentace a embeddingů naučí matice embeddingů slov pro všechny jazyky. U nově pří-
chozího článku se získá embedding, který se vynásobí s maticí naučenou modelem a použijí
se slova s nejvyšším skórem.



Pro demonstraci výsledků je nakonec vytvořená jednoduchá webová aplikace pomocí
Gradio hostovaná na Hugging Face Spaces. Aplikace je k nalezení na webu WWW. Umožňuje
uživateli zadat text článku. Tento text je pomocí LaBSE zakódován do embeddingu, klasi-
fikátorem zařazen do kategorií a modelem na objevování témat mu jsou přiřazena nejvíce
reprezentativní slova. Webová aplikace si vede dobře i u článků v jazycích, které nebyly
přítomné v datasetu vytvořeném z Global Voices, například v češtině. To opět ukazuje na
kvalitu embeddingů vytvářených modelem LaBSE.
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Chapter 1

Introduction

There are thousands of languages spoken today in the world. The most talented linguists
can speak tens of them. The current state-of-the-art multilingual models support hundreds
of them. This thesis benchmarks two recent multilingual models on a classification task and
then performs clustering. Until this moment, there is no existing dataset covering a higher
number of languages and wide range of topics that would be suitable for this task. The
motivation of this thesis is therefore to create such a dataset and do an extensive evaluation
of multilingual models.

The first output of the thesis is, therefore, the dataset itself. The initial dataset consists
of 245,821 articles in 51 different languages. It does not contain only information about the
category classification performed in this thesis but also a lot of additional information, so
it can be used for further work. The other contribution of this thesis is the comparison of
embedding models, which was conducted on the created dataset.

Individual news articles are obtained from the multilingual news website GlobalVoices.org.
Chapter 2 describes the choice of a news website, the process of web scraping using existing
libraries, and additional work that had to be done because of missing features in the li-
braries. It also explains how such a complex dataset is stored and how the meta-information
is saved. The obtained data has to be preprocessed. The first task is to take a look at the
data and consider which categories have enough articles, which can be merged, and how
many languages can be preserved. Some languages with insufficient data had to be omitted.
Additionally, this chapter talks about the rules for a good train/test split for this task.

The introduction to embeddings and multilingual sentence embedding models is covered
in Chapter 3. Then, important language models that are used in this thesis are presented.

After that, the techniques for obtaining an embedding representation of a document are
discussed in Chapter 4. Experiments are made with embeddings created by three different
strategies.

Chapter 5 is about cross-lingual category classification using embeddings created by dif-
ferent models. Various classifiers are used and many interesting experiments are performed,
such as training on a low number of articles and zero-shot learning. This chapter compares
the results of the models and proposes explanations for them.

Similarly, Chapter 6 focuses on the second task, topic discovery, and discusses different
approaches. One of them could not be used in the end, and the chapter explains why.

Both the previous tasks were visualized as simple web application, so the result of this
thesis is publicly available.

Finally, the key takeaways are emphasized.
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Chapter 2

Obtaining Dataset

Every machine learning related task starts with the process of finding a suitable dataset.
The modern world is full of data; however, obtaining it in a structured and clean form is not
always an easy task. In addition, finding a dataset for supervised learning is complicated,
especially if the aim is to perform a specific analysis.

News article classification may not seem like a very specific duty, but searching for
a cross-lingual dataset suitable for category classification is a tedious activity with uncertain
results. There are a lot of article datasets without categories, although these are not helpful.
This is why one of the aims of this thesis is to create a cross-lingual dataset of articles
and their categories. No existing multilabel dataset was diverse enough. There exists, for
example, Reuters Corpora [10] but it only has 4 categories and less than 10 languages. Then
there is a Multilingual Open Text corpus [16] containing 44 languages but no categories.

This chapter starts with a comparison of multilingual news websites and scraping the
articles. After webscraping, the dataset is still in raw format, which is not applicable to the
following utilization. The main task consists of determining which languages and categories
should be omitted (in the case of languages) or merged (in the case of categories). This
decision directly affects the results of the following tasks; hence, analysis of counts and
correlations is necessary.

After this step, the dataset is almost ready. The text is, thanks to the News-please
library, almost clean; just some minor improvements have to be made. There are tweets
inside the main text of articles that are not translated; they are in a different language
than the language of the article, so they have to be filtered out manually. The News-please
library is not able to do it. Then, in the end, the dataset is split into train and test parts.

2.1 Multilingual News Websites
For obtaining articles in different languages, choosing a multilingual news website was
needed. Multilingual means not two or three languages but tens of languages. Data ex-
traction from tens of local news websites would be too demanding, not only because of
the need to find those websites but also because of the different HTML structures of each
website. Another Retrieving the information from separate websites like this would be a
lot of inefficient work.

For this purpose, the focus has been on news websites that publish the news in various
languages. This can mean both miscellaneous articles in various languages and the same
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articles translated into more languages. The goal was to choose a website that contains
articles in numerous languages.

Since the aim of this work is to create a dataset that will be available for further usage,
the license needed to be taken into account. A Creative Commons license is desirable for
later use of the dataset.

Given the above criteria, the GlobalVoices.org1 website was selected to obtain the data.
Other considered websites were TheConversation.com, news.mongabay.com, boomlive, ru-
ralindiaonline, and a few more. These were left as option B if Global Voices doesn’t provide
enough data.

Global Voices is more of a community of international writers than a news website. It
publishes not only news but also stories and opinions that are rarely seen in mainstream
media. The stories are available in dozens of languages; therefore, one article can be accessed
in various languages. All content is published under a Creative Commons Attribution-Only
license, which means that anyone can share and adapt the material for any purpose, even
a commercial one. The necessary condition is to give appropriate credit; hence, in the
dataset, all the information, including the authors and URL, is preserved.

GlobalVoices.org has dozens of language mutations. After a brief investigation, it was
discovered that probably all the articles are translated into English. For that reason,
scraping was performed on the English version of the website. Other language mutations
were kept aside for further examination in case the number of scraped articles was not
enough. In any case, the assumption was that all the translations of the articles would be
scraped together with the English versions of the articles.

Every language mutation on GlobalVoices.org is structured into categories. Although
at first sight they seem the same, they are partially inconsistent. Even the number of
categories differs between languages. The English, Czech, Italian, and Spanish versions of
GlobalVoices.org were examined, and small inconsistencies were found. Some languages
have more categories that don’t exist in the English version.

A similar trend can also be observed after opening the particular article. At the bottom
of the page, every article has its own tags. They are divided into two groups: regions and
categories. The first one expresses the local affiliation of the article; the later one says to
which categories the article belongs. It can be seen that one article can belong to many of
the above-mentioned categories. There are sometimes inconsistencies in categories between
language mutations in the article; some are missing and others are extra. For the purpose
of unification, categories and regions in the English version of the article are considered
ground truths.

2.2 Web Scraping Tools
The technique used for extracting data from a webpage is called web scraping. This is
a general term for the practice of gathering data using different procedures rather than
a program that interacts with an API. The term is mostly used for describing a process
when a program queries a web server, requests data, and parses it to extract the requested
information [13].

Web scraping tasks get more difficult if the content of the webpage is protected by login
or some other mechanism limiting access. Fortunately, with Global Voices, this is not the
case. The HTML source code with the text of the article is easily obtainable.

1https://globalvoices.org
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The task of retrieving the dataset and its categories can be divided into two subtasks:

1. Crawling the news website and getting HTML source codes for individual articles.

2. Parsing the source codes, obtaining the texts of articles and their categories.

Various Python libraries can be used for crawling and scraping websites, and for the
purpose of this thesis, two of them were examined. Newspaper3k can only scrape recent
articles, which is not sufficient for building datasets of tens of thousands of samples. News-
please [7] is more powerful; it also contains a crawler and is able to download articles from
the desired period.

News-please library allows to scrape articles from a given webpage in a given time
period. For every webpage, it saves .html and .json files. HTML file is the original source
code of the site, and the JSON file stores JSON object with extracted information. By
default, News-please extracts a lot of information, including title, URL address, authors,
date of publication, and download date. It does not extract categories; therefore, additional
work was required.

2.3 Categories and Regions Extraction
Since the goal was to build a dataset that would be useful not only for the particular task but
also for future projects, there was a need to collect as much information as possible. This
way, the dataset will be general and suitable for different tasks. For this reason, categories
and regions were extracted from the source code thanks to the library BeautifulSoup [21].

The following approach was adapted: The whole English website, Global Voices, is
scraped category by category. Web crawling is done manually, page by page, in each
category. The link to every individual article is tested to see if it is unique in order not to
download some articles twice. Then it is given to the News-please library, which saves the
article in HTML and JSON formats. Both of them are kept for further use, mainly for the
need to get some additional or clarifying information. The manually extracted information
about regions and categories is added to a JSON file. Then all the translations of the article
are downloaded the same way; the only difference is that translation links are not treated
because they were already taken from the English version of the article. After this, the next
URL of the English article is processed. The whole approach is illustrated in Figure 2.1.

During the scrapping process, inconsistencies in languages were detected. The News-
please library, among other things, saves also language codes. For some reason, the language
code extracted by the library is not always true. This inconsistency occurred mainly for
the Yoruba language with the abbreviation “yo”, News-please library tells “up”, and for
Vietnamese (“vi”), News-please tells “sq”. It was solved by replacing the wrong language
code with the right one in meta files and preventing other mistakes of this type by extracting
the language code directly from HTML code, not relying on the News-please library in this.

2.4 Meta Files
Some extra information will be needed for preprocessing and using the dataset. Mainly, it
is crucial to know which articles are translations of other language variants. It would be
possible to store it inside each JSON file representing one article, but this approach has
a huge disadvantage. To read the information, all the JSON files would have to be opened,

6



Figure 2.1: Articles are scraped by category. For each category, a number of pages is found,
and then all links from the page are gathered. Each link is processed by the News-please
library, which downloads .html and .json versions of individual articles. Manually scraped
information is added to .json. Manual scraping is also used to get links to all translations
of the article; these links are then sent to the News-please library to process them.

which is computationally ineffective. For easier processing and to make some statistics,
plots, and decisions based on them, two files with meta information were created.

The first one is a CSV file, mainly with information about categories. It contains
columns name (the name convention is described in the next section), URL address, date
of publication of the article, and main category, which means a category under which
the article was scraped (as mentioned above, the whole website was scraped category by
category). Then there are columns for each category (e.g. Breaking News, Language, War
& Conflict). Each row of this file represents one article, while for categories, there is always
0 or 1, depending on whether the article belongs to a particular category or not. This file
was principally used to make decisions about merging some categories and omitting some
languages. The file was also used to check for duplicity, where each article is identified by
its unique URL address.

There are 45 categories in the English version of Global Voices, a subset is displayed in
Figure 2.2. Some of them are speaking about similar topics; they can be merged into one
larger supercategory. Some, like Breaking News, can be totally deleted since they don’t have
any specific meaning. To make these decisions, the number of articles in given categories
and the correlation of categories have to be taken into account. This can be better observed
from a chart or a correlation matrix.

The first visualization is illustrated in Figure 2.3. It is a small correlation matrix that
shows how many articles are common for each pair of categories. Only nine first categories
are displayed in view of the fact that, for all categories, the matrix is very huge. Numbers
on the diagonal represent the count of articles in a category. It is important to remember
that one article can belong to more categories, and in almost every case it does. It can be
included, for example, in Digital Activism and Censorship, as these two go together, and
Citizen Media at the same time. The Citizen Media category is the most numerous one,
although very correlated with a lot of others categories.
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Figure 2.2: The image shows the number of downloaded articles per category. Only twenty
of the most numerous categories are displayed. The least numerous were Photography with
845 articles, Language with 1324 articles, and Science with 2217 articles.

Other correlations can be better seen in Figure 2.4. It displays just a heatmap without
article counts, where a lighter color means a higher number (stronger correlation). This
symmetrix correlation matrix shows some clusters, groups of categories that often occur
together.

Observations obtained from the above-mentioned charts are obvious. It was predictable
that the same articles would belong, for example, to Freedom of Speech and Human Rights
or to Women & Gender and LGBTQ+. Numbers validated intuition. Consequently, after
studying charts and considering the number of articles in categories, new categories were
created as follows: Science + Technology, Women & Gender + LGBTQ+ + Youth, Litera-
ture + Arts & culture, Freedom of Speech + Human Rights. Breaking News, Good News and
Citizen Media were omitted. They don’t have any specific meaning. Above that, almost
all articles included in Citizen Media belong to other category or categories. Therefore,
by deleting the Citizen Media category, no articles are deleted. Humor, Ideas, Language,
Film, Photography, Refugees, Music, Labor, Indigenous, Elections, Ethnicity & Race and
Food were omitted due to the low number of articles. The other categories remained as
they used to be. To merge the categories, no changes were made in the files or file struc-
ture. Files are organized language-wise. All the changes were written only to the metafile.
Original categories remained in .json and .html files; the dataset itself was not modified.
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Figure 2.3: The correlation matrix shows how much the categories are correlated (how many
articles are present in both categories). This is just a submatrix showing only 9 categories,
where correlation can be seen, for example, between Citizen Media and Digital Activism.

This way, the final 25 categories were created. All of them should be distinguishable,
and they should have a reasonable number of articles. There is one huge category, but even
the smallest ones have more than 5,000 articles, as can be seen in Figure 2.5.

These categories can also be seen as an analysis of the most frequently occurring topics
on Global Voices webpage. Articles are mostly oriented toward human rights, freedom of
speech, and related topics like gender, LGBTQ+, governance, etc.

Some articles were lost, specifically those that belonged just to one of the deleted cat-
egories, but it is not a great number. The total loss is quantified after omitting languages
with too few articles in the next section.

The second meta file is a JSON file, which serves mostly for keeping references to
translations of articles. As explained above, the English version of Global Voices was
scraped, and for each article, all its translations were downloaded as well. It is necessary
to store all the articles together, and this is why in the second meta file, there are objects
representing English articles. Every English article has a property of type dictionary, with
language codes as keys and the names of articles as values. Regions are also stored for each
English article. This way, it is possible to take all the English articles and have a link to all
their translations. For the purpose of scraping additional Polish and Dutch texts, there are
some texts in these languages at the end of the meta file. It is not a problem. To store just
all English articles was chosen in order to avoid duplicates, and Polish and Dutch texts are
not duplicates for sure. The reasoning behind this is described in the following text.
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Figure 2.4: In this blind correlation map correlated categories are clearly visible. Diagonal
was set to 0 in order to not affect the colors of heatmap. The lighter the color, the stronger
the correlation. There are two rows that are highly correlated with almost every other
category. The first one is in the fourth row; it is Citizen Media, and the second one is about
in the middle; it is a category Human Rights.

Just as there were categories with a low number of articles, there were also languages
with a low number of articles. Low numbers would not be sufficient for the desired tasks.
In most of the cases, languages with a few texts were those for which searching for more
articles would be almost impossible. Another problem would be combining the categories
from another website with those from Global Voices. Most probably, it would be needed to
map some categories or even merge some, which would decrease the number of categories.
For this reason, low-article languages were simply omitted.

With respect to the Figure 2.6, languages with more than 2,000 texts were preserved.
Since Dutch and Polish were very close to this limit, an experiment was performed. Al-
though it seemed that all the articles were translated to English, after scraping specifically
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Figure 2.5: The final 25 categories after merging and deleting some of them.

the Dutch and Polish versions of Global Voices, some extra articles were discovered. The
reasons behind this are two. Some of the articles weren’t translated to English; the others
were new, published during the period between scraping English version and the Dutch/Pol-
ish one. This way, also Polish and Dutch have moved into the category with more than
2,000 texts. Polish increased from 1,877 to 1,940 and Dutch from 1,863 to 1,915 articles.
Languages with numbers of articles in the final dataset can be seen in Figure 2.7.

English significantly exceeds other languages in the number of articles, with almost
100,000 samples. This is caused by the fact that almost every article (with a few exceptions
for Polish and Dutch) is translated into English. The matrix of translations can be seen
in Figure 2.8. By deleting particular languages, some articles were lost. From the initial
245,821 downloaded articles, the number decreased to 232,318. It means 13,503 lost articles,
which is about 5 %. This loss comprises articles lost due to category removal and also due
to omitting languages.

Although for the purpose of this thesis some categories and languages were omitted, the
original intention was to create a dataset useful for other tasks. For this reason, a complete
chart with all the languages is available in the appendices.
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Figure 2.6: The plot shows the number of downloaded articles per language. Only twenty
of the most numerous languages are displayed. English is the main language, with almost
100 000 articles out of 245 821 overall. The least numerous languages were Kurdish (ku)
with 4 articles, Tetum (tet) with 8 articles, and Kazakh (kk) with 10 articles.

2.5 Dataset Structure
The whole dataset is structured as illustrated in Figure 2.9. Articles are stored language-
wise. The names of the articles are taken from the URL address, specifically the last part
of the URL address. For newer articles, the last part usually contains its name; for older
ones, it is a number. It is not true for all languages; some language mutations have just
numbers in the URL address. Regarding the structure of the Global Voices website, the
number should be unique for individual languages; therefore, it is considered appropriate.
Every article is saved as JSON and HTML with the same name. Meta files described above
are stored separately.

2.6 Text Cleaning
The obtained dataset contains a lot of information for each article, like date of publication,
date of downloading, title, description, language, URL, image URL, and others. For the
purpose of this thesis, language, category, and main text are the most important. The main
text is formatted as one long text sequence, where paragraphs are separated by a newline
character. This format is convenient for further processing; there is just one complication.

The performance of multilingual models will be compared, so it is important that the
text of the article is written in the expected language. Inconsistencies between the language
and the language code given by the News-please library were corrected, as mentioned before.
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Figure 2.7: For the final dataset, 16 languages, which have more than 2,000 articles, were
chosen.

Unfortunately, the language of the main text is not monolithic. The article is written in
a particular language, but sometimes tweets in other languages (mainly English) occur in
the main text. This would influence the results in cross-lingual experiments. If a language-
specific encoder (for example, LASER3) was used to obtain embeddings, one English tweet
would change the resulting embedding of the article; consequently, the tweets must be
removed.

One possible solution would be to recognize the language and keep just the text written
in the language of the article, although given the number and variety of languages, it might
be challenging to find a library that is able to do it. Langdetect library [22] does not
support Malagasy included in the dataset. Therefore, an easier and deterministic solution
is introduced. In situations like this, .html versions of articles are useful. From the HTML
source code, it is possible to extract additional information, including details about tweets.

One can take advantage of the fact that tweets are enclosed in HTML tags with the
specific class twitter-tweet. The content of this tag can be taken and removed from the
main text in .json file. As it is better to keep initially downloaded files in their original
form, new .txt files containing just plain text without tweets were created.

2.7 Train/test split
While splitting data into train and test datasets, there is one rule that must be taken into
account: the date of publication of the article. The year of publication is therefore the only
criterion according to which the dataset can be split. This way, the same articles translated
into different languages will be either in the train dataset or in the test dataset. Having
the same article in both training and test data (just in a different language) is something
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Figure 2.8: For most of the languages, almost all texts are translated into English. There
are also a lot of texts translated into Spanish and/or French. On the diagonal, the total
number of articles per language can be seen. This matrix shows just a subset of languages
in the final dataset for better insight.

to avoid. Of course, there are marginal cases. Some articles were published at the end of
the year and translated into other languages a few days later, in the following year. These
cases were neglected because there were not many of them. There are over 8,000 articles
in the entire dataset that were published and translated at the turn of the year, but only
300 texts in 2015/2016, the cut-off point for the distribution. This number was counted
from the initial dataset with all the languages, including those that were not used in the
end because of a lack of articles.

The main task, therefore, was to choose the cut-off point. In the dataset, there are
articles from 2004 to 2022. As GlobalVoices was developing, in the beginning there were
not all the currently present languages. It means that for some languages, there are no
articles or a very low number of articles in the initial years. The distribution of articles
through the years is different for every language; for some, the most articles were published
in the last few years; for others, it is the opposite. An example of three languages is
displayed in Figure 2.10. This affects the proportion of train and test articles. For this
reason, it was not possible to follow the generally recommended ratio of train:test split
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Figure 2.9: Folder globalvoices contains a folder for every language. In the language folder,
the articles are stored in both HTML and JSON formats. Both formats have the same
name, which corresponds to the last part of the URL address of the given article. Two
metafiles, one with categories and one with translations, are stored separately.

Figure 2.10: Example of three languages: Since the distribution of articles through the
years differs for different languages, it is impossible to choose a perfect cut-off point.

80:20 or similar values. Sometimes it is rather 50:50, as illustrated in Figure 2.11. It was
simply more important that all the languages are split in the same year.

The initial idea was to split the dataset into training, test and validation parts. It was
very complicated to find two boundaries such that there are a reasonable number of articles
for all the languages in the train, test and validation subsets. Moreover, while considering
classifiers from the Scikit library, it turns out that some of them have the validation_split
parameter directly, so it is not necessarily needed to split the dataset into three parts. For
this reason, only the train:test split was performed in the end.

The initial estimation was that training data could be from 2004 to 2016, whereas test
data could be from 2017 to 2022. This led to insufficient test data for some languages, so
the final decision is training data until 2015 (including) and test data from 2016. The final
train/test data ratio can be seen in Figure 2.11.

Languages probably have not changed that much over the years, but it is highly probable
that some topics exist just in test data and not in training data. A good example is COVID-
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Figure 2.11: The ratio between tran and test set is not ideal for some languages, and with
the given data, it was impossible to find it.

19, which is certainly not present in the training dataset. This particular problem was taken
into account while gathering the dataset and its categories. GlobalVoices has a specific
category named COVID; it is not used for this work precisely because there would be no
training data for it, but the articles about COVID-19 would fall into other categories that
were considered.
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Chapter 3

Language Embedding Models

Natural language processing (NLP) techniques have made impressive progress in recent
years. These methods require a huge amount of data, which limits the situations in which
they can be used. For this reason, an approach consisting of learning general language
representations on unlabeled data is popular. The first great success with this method is
credited to word embeddings in Word2vec [12], followed by others, e.g., BERT [4]. This
work was, however, surmounted by representations on the level of sentences. An early
example is Sentence-BERT [20]. A model like this is able to encode sentences into a format
that is then integrated into downstream systems specific to a given task.

Nevertheless, these approaches have one noticeable disadvantage. Models are language-
specific; it is necessary to train a model for every language separately. This means not
only a lot of tedious work but also low performance for low-resource languages [2]. For this
reason, language-agnostic sentence embeddings were presented. These vector representa-
tions assure that sentences in different languages, which are semantically similar, are close
to each other in embedding space. It brings the possibility of dealing with low-resource
languages and cross-lingual transfer appplications; the model works well with them, even
though it has not seen many samples during training. According to the authors of some
language-agnostic models [8], the model is even able to work with languages that did not
occur during the training phase but belong to a language family that is known to the model.

This thesis is comparing two popular language-agnostic models, LaBSE [5] and LASER [2],
which are, at the time of writing this report, available in a version referred to as LASER3.

3.1 Transformers
Transformers are a type of deep learning model used in natural language processing (NLP)
tasks such as language translation, sentiment analysis, and question-answering. They are
made to overcome the drawbacks of earlier models like recurrent neural networks (RNNs)
and convolutional neural networks (CNNs), which have trouble capturing long-range de-
pendencies due to the vanishing gradient problem. Transformers recognize the contextual
relationships between words in a sentence via self-attention techniques [23]. With the help
of self-attention, the model is able to focus on various elements of the input sequence and
determine the relative weights of the words in the sentence. As a result, transformers are
able to represent long-range dependencies and the semantic connections among words in
a sentence.
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The input text is first tokenized into a sequence of individual tokens (e.g., words or
subwords). These tokens are then passed through an embedding layer, which maps each to-
ken to a high-dimensional vector representation. Next comes the self-attention layer, which
allows the model to access different parts of the input sequence and learn the importance of
each token in the context of the sentence. Self-attention is achieved by computing attention
weights between every pair of tokens in the input sequence. These weights are then used to
compute a weighted sum of the token embeddings. The output of the self-attention layer
is passed through a feedforward neural network that applies a non-linear transformation.
This is followed by another self-attention layer, which further improves. The final output
layer just maps vector representation of the input sentence to the desired output format
(e.g., words, classification label). The most famous transformer-based language model is
Bidirectional Encoder Representations from Transformers (BERT), which was introduced
by Devlin et al., 2018 [4] and has achieved state-of-the-art performance on a wide range of
NLP tasks. Since then, many other transformer-based models have been developed, such
as GPT-3, RoBERTa or LaBSE.

3.2 LaBSE - Language-Agnostic BERT Sentence Embedding
LaBSE is a multilingual BERT embedding model that can produce sentence embeddings
for 109 languages. The limit of input sentence is 512 tokens, and the resulting embedding
dimension is 768. This is crucial for embedding extraction described in Chapter 4.

LaBSE uses a dual encoder architecture, so source and target texts (that are trans-
lations) are encoded individually using a shared transformer embedding network, which
is initialized with an initial multilingual BERT checkpoint. The translation ranking task
is then used to force similar representations for texts that paraphrase one another, while
additive margin softmax helps to separate translations and nearby non-translations.

Figure 3.1: Labse uses pre-trained BERT to initialize dual encoder architecture, which
share parameters. They encode source text and target text individually, then rank the
translation with the help of additive margins for better separation of translations and
nearby non-translations.
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LaBSE is trained on monolingual sentences and bilingual sentence pairs while using
masked language modeling (MLM) [4] and translation language modeling (TLM) [9]. In
MLM, the model has a [MASK] token surrounded by context words and tries to predict
what the [MASK] word is. With the TLM approach added, concatenated translation pairs
are included.

The authors evaluated LaBSE mainly on bitext retrieval tasks [5]. They also performed
a classification task on the SentEval benchmark, which, however, is in English only. The
results showed that LaBSE, despite its massive language coverage, achieves competitive
performance in comparison with monolingual embedding models. The authors have not
tested performance in cross-lingual topic classification, and this is one of the goals of this
thesis.

All the languages from the created GlobalVoices dataset are supported by LaBSE [5].
All of them were present in the training set of LaBSE, with English being the most numerous
language (2 billion monolingual sentences). From the Figure 3.2 showing the quantity of
training data in various languages, it can be seen that most languages of the Global Voices
dataset are at the head of the plot, so there were many training samples. On the other
hand, mg (malagasy) is rather in the tail, mk (macedonian), and bn (bengali) in the body
of the plot; therefore, there were not so many training data samples. Despite this fact,
the results of classification for these languages are not worse than for the most numerous
languages.
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Figure 3.2: This plot shows quantity of monolingual sentences and bilingual sentence-pairs
in the LaBSE training set [5]. According to the authors, there are 2 billion English sentences.

3.3 LASER (Language-Agnostic SEntence Representations)
On the contrary, the original LASER is not based on transformers. It was introduced to
be able to solve tasks for languages with limited resources and to allow zero-shot transfer
of a model from one language to another. It uses a sequence-to-sequence encoder-decoder
architecture, where the BiLSTM encoder encodes the source sequence (with the use of
byte-pair encoding (BPE) vocabulary) to a vector representation of fixed length, and the
decoder creates a target sequence from this vector representation. In the end, the decoder
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is discarded, and the encoder can be used to encode sentences. There is only one encoder,
common for all languages [2].

Training was performed on corpora compiled from several sources. It minimizes the
cross-entropy loss while iterating over all combinations of the involved languages. The
authors decided not to use this approach when a sentence is translated into all other lan-
guages but to choose only two target languages. One of the reasons was the quadratic cost
of combining all the languages; the second was the missing N-way parallel corpus. It is pre-
cisely this problem of searching multilingual datasets that LASER aims to solve. LASER
can generalize to languages that were not encountered during training but are members of
a family that includes covered languages.

Figure 3.3: LASER uses an encoder-decoder architecture. Sentence embeddings are yielded
by the final representation or a pooling mechanism. The decoder LSTM is initialized with
these embeddings through a linear transformation.

The LASER model encodes sentences in a text as a list of vectors of length 1024. The
hidden dimension is 512, and concatenating the hidden dimension representations from
both directions gives 1024. Unlike LaBSE, LASER can process arbitrarily long inputs. It
supports 93 languages. LASER2 changed the tokenization from BPE to unigram based
subwords, and for the project No Language Left Behind [15], the authors developed new
encoders, referred to as LASER3. LASER3 is based on transformers architecture, and
trained using knowledge distillation. LASER3 works with more than 200 languages. It
makes use of a common space to incorporate sentences in any language. According to
its authors, it supports code-switching (words from multiple languages can appear in the
same sentence). For LASER3, however, it is important to specify the input language. If
the language is not specified, an older version of LASER is used. Since languages added in
version 3 are not covered in the obtained dataset, this work is technically not using LASER3
but LASER2. In any case, LASER3 does not mean anything new in the architecture, just
newly supported languages (mainly African and other less common languages).

To summarize, LaBSE is a transformed-based model trained on a huge amount of data.
LASER is not transformed-based; it consists of an encoder and a decoder, and it was
pre-trained on parallel data from multiple languages.

20



Chapter 4

Embedding Extraction from
Documents

After finalizing the dataset, the main text of the articles still has to be transformed into
embeddings, into numerical representation. For this, two different models discussed in
Chapter 3 (LaBSE and LASER) are used. The extracted features are afterwards used as
input to a logistic regression and other classifiers described in Chapter 5.

The embedding extraction is done for every article using both the models, embeddings
are stored in separate files and used for training with different classifiers and then also for
topic discovery task.

Articles from the created dataset can have several long paragraphs, whereas LaBSE can
handle inputs of length at most 512 tokens. There are several possibilities for dealing with
this length problem. For the classification task, the usual solution is to divide long text
into several smaller paragraphs, and then every paragraph is transformed into embeddings.
Finally, an average of these embeddings is taken for each document.

4.1 LaBSE and LASER embeddings
Pre-trained transformers such as BERT or LaBSE are used in a wide range of NLP tasks,
including text classification. The contextual word embeddings generated by these pre-
trained transformers are advantageous when handling words with multiple meanings and
other NLP challenges. Similar things can be said about LASER.

The goal of this thesis is to benchmark the performance of these models on the newly
created dataset. Therefore, embeddings for articles are created using both of them. Both
variants are then used for classification and the following tasks.

At first, LaBSE embedding for each article was stored in a separate file. Loading tens
of thousands of articles while training was computationally demanding; therefore, for the
following work, a better strategy is proposed. All embeddings should be stored in two files:
one for training embeddings and one for testing embeddings for every language.

LaBSE embeddings can be obtained straightforwardly thanks to the Python framework
SentenceTransformers. This way, it is fairly effortless to load information directly from the
json file or from the cleaned txt file mentioned in Chapter 2. The resulting embeddings
have 768 dimensions.

The LASER model is not ported into any easy-to-use Python package, yet it is avail-
able on GitHub, and the authors prepared a script for encoding texts into embeddings. The
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script expects text in the input file, which is then tokenized. Language can be specified
while running the script, but language-specific encoders are available just for LASER3. If
the language is not specified, the script defaults to LASER2. Since the gathered dataset
does not contain any of the languages added in LASER3, the original LASER2 encoder
supporting 93 languages is used. For this model, the resulting embedding has 1024 dimen-
sions.

One of the primary challenges in text classification using the above-mentioned models
is the length of the documents. Due to the maximum input size limitation of 512 tokens
for BERT transformers, it is unlikely that the entire document can be processed at once.
To address this issue, various approaches are available.

In some fields, it has been discovered that achieving high classification accuracy does
not necessarily require using the entire text. The solution is to choose only a specific portion
of the text (e.g., the beginning or end, or both, or the title) that can fit into the model’s
input layer. Taking into account the available data and their nature, it is possible to use
the title and text of the article. Three different approaches were adopted.

4.2 Titles
The first strategy consists of embeddings extraction based on the title of the article. It is
a short text; on the other hand, it should briefly but succinctly describe the main topic of
the article. The title is always present; each article has its own title. That is why there
are some inconsistencies in the number of training and testing examples between titles,
averages, and truncations of the main text. Some old articles obtained from GlobalVoices
have just the title and no content. The difference between the number of articles is not
very significant; usually it is just dozens of articles. Another advantage of using titles is
that models are able to handle the whole title. The title is never longer than 512 tokens,
unlike the body of text, which is the problem addressed in the next part.

4.3 Truncation of main text
The second strategy uses the main text of the article. Models are not able to handle a whole
long text; the maximum input size for LaBSE models is 512 tokens; therefore, text passed
to a model is truncated. 512 tokens may not be enough to express the topic of the article;
sometimes the perex (first paragraph) is just an introduction and does not carry a lot of
useful information.

4.4 Average of paragraphs
Taking information from the whole text of the article appears to be more promising. One
of the proposed strategies consists of computing the average embedding for the whole text
of the article. Every paragraph is treated individually, and embedding for this paragraph
is created. This means that if there are some very long paragraphs, they are truncated,
similarly to what happens in the above-mentioned strategy of using the beginning of the
main text. In the end, the average value of all these embeddings is stored.

This approach may seem like the most promising technique. It can include all the topics
mentioned in the text, which is not the case when taking just the beginning of the article.
For example, in the article about women who launched a fashion business from prison, you
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can speak about prisons in general and women in prisons in the first paragraph but then
talk more about business strategies. The first paragraph means that this article belongs to
the category Women & Gender, the second one falls rather under Economics & Business.
If only the beginning of the article is used, the information about business is lost.

On the other hand, there are still some drawbacks, mainly that there may be many
subtopics mentioned in different paragraphs, and these butopics may not even belong to any
of the classes (categories). Averaging the embeddings might result in a loss of fine-grained
semantics. However, we believe such information would not be significant for coarse-level
topic identification.
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Chapter 5

Cross-lingual category
classification

Classification is a supervised learning task to identify the category of new observations.
Along with the clustering described in Chapter 6, these are examples of the general problem
of pattern recognition. How well this problem can be solved depends both on the quality of
sorting articles into categories and the quality of their representation (embeddings). One
of the aims of this thesis is to compare LaBSE and LASER models, whereby classification
gives some insight into how the models perform and how well they are able to encode texts.

This chapter describes the classification task performed on the obtained dataset. At
first, it discusses difficulties, which are determined by the nature of the data, and suggests
techniques that must be used due to this. Then it considers different downstream classifiers
typically used for such tasks. A great part of this chapter is dedicated to presenting the
results and comparing them not just between various classifiers but also between embedding
models. Both models are performing well on all languages presented in the dataset.

5.1 Multiclass and multilabel classification
The dataset of articles from the GlobalVoices website brings two main challenges that must
be taken into account:

1. Multi-class classification: There are not only two classes; there are many categories,
in particular 25 categories. Although this may seem like a big number, it has to be
mentioned that the initial number of categories was even higher. Some categories were
merged, as described in Chapter 2. The decisions about what classes to merge were
made in such a way that there are no different categories that are similar since the
similar categories were merged. In any case, there might still be some relationships
between categories that make it difficult to distinguish between them. After all, these
relations are expressed by classifying the article into multiple categories, which is
complication number two.

2. Multi-label classification: Single-label classification is the case when every sample
belongs to just one class. This is not the case with Global Voices articles. It may
happen that an article is only assigned to one category, but in general, this does not
hold true. Data samples are not mutually exclusive.
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Characteristics of these types of problems are displayed in a Venn diagram in Figure 2.1.
In most cases, multi-labels are also multi-class classifiers.

Figure 5.1: The problem of article category classification is multi-class and multi-label. It
means that there are more than two categories (classes) in the problem and that every
article can be assigned to more than one category (class).

Not all the classification algorithms natively support multi-class cases, yet there are
several solutions to adapt the problem. One approach is to split multi-class classification
into several binary classifications and fit a binary classification model on each of them [19].
This can be implemented as One-vs-Rest or One-vs-One.

• One-vs-Rest strategy (sometimes calles as One-vs-All) consists of splitting the dataset
into multiple binary classification problems. In the case of the GlobalVoices dataset
used for this thesis, it means training 25 separate classifiers (one for each category).
Each classifier is able to decide if an article belongs to the category or not. In other
words, C binary classifiers are trained, where the data from class C is treated as
positive and all the other data is treated as negative [14] Because of that, the dataset
is unbalanced.

• One-vs-One also splits the dataset into binary classification problems; this time it
creates one binary classifier for each pair of classes. It results in creating K*(K-1)/2
classifiers, where K is the number of classes. For the GlobalVoices dataset, it would be
25*24/2 = 300 classifiers. This is also one of the reasons why One-vs-Rest approach
is used in the experiments described below.

This way, it is possible to use algorithms designed for binary classification like Lo-
gistic Regression, Multilayer Perceptron or Support Vector Machines. The examples of
multi-label classifiers that do not require problem transformation are neural networks with
Backpropagation for Multilabel Learning[25] or decision trees.
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5.2 Classifiers
Due to the above-mentioned One-vs-Rest strategy, it is possible to use a simple binary
downstream classifier. This work is focused mainly on Multilayer Perceptron (hereafter
referred to as MLP), Support Vector Machines (SVM) and some experiments were also
performed with Logistic Regression (LR). All of them are implemented in the Scikit-learn
library [18], the MLP version created with the PyTorch framework [17] was tested as well.

An artificial neural network (ANN) called a multilayer perceptron (MLP) is made up of
numerous layers of interconnected nodes, or neurons. As a feedforward neural network, it
transmits information from the input layer via one or more hidden layers and then to the
output layer. The data is received by the input layer, calculations are done by the hidden
layers, and the prediction made by the network is created by the output layer.

One disadvantage of MLPs is that they can be prone to overfitting, especially when
the number of hidden layers and neurons is large. In this case, regularization techniques,
such as weight decay and dropout, can be used to prevent overfitting. Since the MLP
classifier implemented in Scikit-Learn does not support setting dropout, another version
was implemented using the PyTorch framework.

Fortunately, it turns out that the inability to set a dropout does not degrade the results;
the numbers are similar for both versions of MLP classifiers, as can be seen below.

The MLP classifier implemented in PyTorch makes it necessary to implement the One-
vs-Rest approach manually. This means training 25 separate classifiers (one for each cat-
egory) fed with modified data. Instead of taking existing labels, it was needed to relabel
data in such a way that a vector of labels becomes one single value, 1 or 0, depending on
whether the article belongs to the currently trained category or not. Training 25 classifiers
for each of the 16 languages means a total of 25*16 = 400 classifiers. That is challenging to
manage; therefore, using Scikit implementations with the existing OVR approach is a lot
more convenient.

SVM is another classifier used for category classification [6]. SVM works by construct-
ing a hyperplane that separates the data into different classes. The hyperplane is chosen so
that it maximizes the margin between the two classes, which is the distance between the
hyperplane and the closest points from each class. SVM uses a kernel function to map the
input data into a higher-dimensional feature space, where it is more likely to be linearly
separable. This allows the SVM to find a hyperplane that separates the data even when
it is not linearly separable in the original input space. Because it can successfully handle
high-dimensional data, it is particularly helpful in jobs where the number of features is
high relative to the number of samples. Moreover, SVMs are not very sensitive to the
existence of outliers in the data. SVMs have the drawback of being sensitive to the regular-
ization parameter and kernel function selection, which can degrade method performance.
Nevertheless, this was not observed.

Logistic regression is a statistical model that is commonly used for binary classification
tasks, which is the case with the OVR approach in this work. The output of this model
is a logistic function of a linear combination of the input features. The logistic function,
also referred to as the sigmoid function, maps any input to a value in a range from 0 to
1, which represents the probability of the binary outcome. The logistic regression model
is trained using a maximum likelihood estimation approach, which involves optimizing the
model parameters to maximize the likelihood of the observed data.
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As both MLP and SVM were giving fairly good and comparable results, linear regression
was only used as a test. Results were significantly worse, so testing was not pursued in this
direction, leaving the previous two classifiers.

5.3 Metrics
In order to assess how well a categorization model is performing, there are several commonly
used metrics. These metrics offer several viewpoints on a classification model’s effectiveness
and can be used to evaluate different aspects of the model’s behavior. It’s crucial to select
the right metric(s) based on the requirements for a specific problem. Some of the most
popular measures are listed below:

• Accuracy: Accuracy measures how many of the model’s predictions were correct.
The number of correct predictions divided by the total number of predictions is the
simplest and most intuitive classification metric.

• Precision: Precision measures the proportion of true positives (correctly assigned
positive predictions) out of the total predicted positives. It is defined as the number
of true positives divided by the sum of true positives and false positives. Recall:
Recall measures the proportion of true positives out of the total actual positives. It
is defined as the number of true positives divided by the sum of true positives and
false negatives.

• F1 score: The harmonic mean of precision and recall, which balances both measures,
is the F1 score. It is specified as 2*(precision*recall)/(precision+recall).

• Area under the ROC Curve (AUC): The ROC (receiver operating characteristic)
curve shows the true positive rate (recall) against the false positive rate (1-specificity).
AUC provides a single scalar value to assess the overall performance of the model and
measures the area under the ROC curve.

Accuracy is the simplest method, but it ignores class imbalance. It is misleading for
imbalanced classes, and since the OVR approach is used, labels are positive for one category
and negative for 24 other categories. This means the dataset is highly imbalanced. Also, it
does not reflect the cost of different types of errors, even though article classification is not
the case where false negatives are more harmful than false positives, as it is, for example,
in medical diagnosis. In any case, accuracy was rejected. Among the other metrics, the F1
score was chosen as it reflects both precision and recall.

Considering the class imbalance, weighted F1 is used, as it takes a weighted average
based on the number of samples for each class. More weight is given to classes with more
samples; each class contributes to the final score proportionally. Someone could suggest
that for cases with classes equally important, the macro F1 score is a better choice. This
can be discussed. Some categories are occurring more often, and they will be occurring
more often even in the real data when the model is in production, so it may be good to
give importance to class imbalance.

5.4 Zero-shot learning
Zero-shot learning (for the first time introduced as dataless classification [3]), in general,
is a principle when a model is used to perform something it was not explicitly trained for.
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In other words, it allows a machine learning model to generalize its understanding of the
world to new and unseen objects without the need for any additional training data. An
example can be a classifier trained on images of animals, which is able to recognize unseen
animals thanks to learned knowledge, or a machine translation system, which can also be
used to translate to and from languages that it has never seen before.

Zero-shot learning has the potential to enable machine learning models to recognize and
understand the world in a more flexible and generalizable way, without the need for large
amounts of training data. In the context of natural language processing, it also means that
there is no need for training data for some low-resource languages. A model can be trained,
for example, on English texts, which are easily available and used for other languages in
production.

Zero-shot learning was used in the below-mentioned experiments. A classifier was
trained on only one language and tested on all the languages present in the dataset. In
this case, zero-shot learning is performing very well. The model is able to generalize, and
the classification works great even for languages that are not present in the dataset at all.
This is not part of the experiments, but it can be seen in the web application. It classifies
accurately even articles in the Czech language and others, on which the LaBSE model was
trained.

5.5 Experiments and results
During the experimenting phase, all the above-mentioned classifiers were trained along with
various types of embeddings (titles, truncation of maintext, and average of paragraphs).
For each combination of classifier and embedding type, 16 models were trained (one model
per language). These models were tested on all languages. This means 16*16 = 256
tests. Due to the huge number of results, only selected results are presented below. Every
experiment is evaluated separately for diagonals and non-diagonals. The numbers on the
diagonal mean that the model was trained and tested on the same language; therefore,
it does not make sense to mix them with numbers representing training and testing on
different languages. All the below-reported numbers are weighted F1 scores, as explained
above, with the exception of Table 5.3, which talks about macro F1 scores.

Table 5.1 shows the overall results for all experiments. Weighted F1 is computed sepa-
rately for every pair of languages; therefore, there are 256 numbers. Then an average over
diagonal and non-diagonal is taken. The diagonal represents cases when the model was
trained and tested on the same language, so it is interesting to separate it from the rest.
Anyway, the numbers for diagonal and non-diagonal (zero-shot) are very similar, which is
good news because it proves that multilingual embeddings are well created.

All the experiments were performed initially on LaBSE embeddings. At first, it was
necessary to choose the best classifier. MLP with two layers of 768 neurons (the size of
LaBSE embedding) gives the best number. Due to the inability to set the dropout parameter
for the Sklearn implementation of MLP, MLP written in PyTorch was also tested; it gave
more or less similar results, not better ones. SVM is performing slightly worse, but the
differences are vastly small. The only classifier giving significantly worse results was LR,
which is why it is not included in this table. Weighted F1 was about 0.6, so this experiment
was not pursued.

Since MLP gave the best results for LASER embeddings, MLP with two layers of 1024
neurons (the size of LASER embeddings) was tested at first. Results are almost the same as
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Weighted F1
Title

Embedding
Truncation
Embedding

Average
of Paragraphs

Embedding

Diag. Zero-shot. Diag. Zero-shot. Diag. Zero-shot.

LaBSE
OVR MLP
(512, 256)

Avg 0.8436 0.8406 0.8264 0.8253 0.8569 0.8522

Std Dev 0.0101 0.0131 0.0286 0.0217 0.0158 0.0169
LaBSE
MLP

(768, 768)

Avg 0.8669 0.8644 0.8446 0.8420 0.8753 0.8728

Std Dev 0.0068 0.0113 0.0084 0.0115 0.0182 0.0191

LaBSE
SVM

Avg 0.8204 0.8134 0.8328 0.8342 0.8559 0.8475

Std Dev 0.0133 0.0142 0.0356 0.0287 0.0090 0.0152
LASER

MLP
(1024, 1024)

Avg 0.8677 0.8651

Std Dev 0.0071 0.0113

Table 5.1: The table shows the weighted F1 score and standard deviation for different
experiments with various classifiers and both embedding models. The numbers prove that
not only the classifiers are giving very similar numbers, but also embeddings created with
LaBSE and LASER models work comparably well. A green background represents the best
numbers. Bold text represents the numbers to be compared.

for LaBSE embeddings; therefore, it can be concluded that both embeddings are performing
equally.

Considering various strategies for creating embeddings, the average of paragraphs gives
the best results, even though there is just a diminutive difference.

Table 5.2 shows detailed information for the MLP classifier with two layers and LaBSE
embeddings created with the average of the paragraphs approach. It is just a subset of the
whole table, which can be seen in the appendices. The most important thing is that the
standard deviation is not high, so the F1 scores are quasi-equal for all the languages.

For comparison, there is a Table 5.3 showing macro F1 scores for the same experiment
(LaBSE average embeddings, 2 layers MLP classifier). The numbers are significantly lower
(the difference is approximately 10 %). This shows that the model is performing poorly on
some of the classes, which have fewer samples. Macro F1, unlike weighted F1, does not put
more emphasis on the classes with a larger number of samples. Thus, a poor performance
in the smaller classes brings the macro F1 score down.

The Figure 2.5 displays the number of articles in various categories. From this plot, it
could be predicted that, for example, International Relations, Migration & Immigration,
and Religion categories could be the cause of poor macro F1 scores. For confirmation of this
theory, F1 scores for individual categories are displayed in Table 5.4. It turned out that the
number of articles in the category may not play a great role. For example, Politics category
shows a worse F1 score than Health. There are 30, 705+13, 892+6, 910+798+667+594 =
53, 566 articles in the Politics category (with respect to en, es, fr, mk, nl languages) and
3, 970 + 1, 904 + 1, 119 + 157 + 136 + 133 = 7, 419 articles in the Health category.
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Weighted

F1

TESTED ON

en es fr mg it el zht zhs ... mk pl nl AVG
T

R
A

IN
E

D
O

N

en 0.884 0.883 0.881 0.893 0.882 0.885 0.895 0.908 ... 0.898 0.882 0.885 0.886

es 0.881 0.886 0.885 0.886 0.885 0.887 0.888 0.898 ... 0.901 0.887 0.889 0.887

fr 0.874 0.883 0.884 0.884 0.882 0.884 0.885 0.900 ... 0.893 0.890 0.892 0.884

mg 0.884 0.885 0.884 0.882 0.884 0.886 0.893 0.906 ... 0.899 0.883 0.888 0.887

it 0.874 0.881 0.881 0.879 0.880 0.882 0.882 0.890 ... 0.892 0.877 0.884 0.880

el 0.826 0.839 0.835 0.841 0.837 0.833 0.849 0.859 ... 0.852 0.841 0.844 0.841

zht 0.880 0.881 0.878 0.879 0.880 0.880 0.894 0.933 ... 0.883 0.870 0.882 0.882

zhs 0.873 0.874 0.872 0.875 0.873 0.873 0.898 0.893 ... 0.883 0.869 0.879 0.875

bn 0.865 0.873 0.872 0.868 0.870 0.873 0.878 0.886 ... 0.880 0.876 0.879 0.874

ru 0.868 0.886 0.889 0.872 0.884 0.887 0.881 0.887 ... 0.907 0.893 0.894 0.886

pt 0.869 0.880 0.880 0.879 0.878 0.880 0.881 0.888 ... 0.885 0.877 0.886 0.879

ar 0.883 0.886 0.887 0.878 0.886 0.886 0.896 0.912 ... 0.887 0.880 0.892 0.886

de 0.868 0.879 0.880 0.872 0.878 0.881 0.884 0.888 ... 0.889 0.878 0.888 0.879

jp 0.863 0.867 0.867 0.861 0.868 0.869 0.869 0.880 ... 0.883 0.871 0.877 0.870

mk 0.826 0.841 0.839 0.839 0.839 0.836 0.852 0.858 ... 0.854 0.840 0.849 0.844

pl 0.855 0.863 0.861 0.848 0.861 0.857 0.865 0.869 ... 0.871 0.864 0.869 0.862

nl 0.822 0.833 0.834 0.834 0.832 0.830 0.853 0.862 ... 0.843 0.839 0.839 0.838

Table 5.2: This table displays the weighted F1 score for the best experiment (even though
the differences are really small), LaBSE embeddings (average of paragraphs), in combination
with the MLP classifier (two layers of 768 neurons). The standard deviation of numbers
is very small (as illustrated in the previous table), and the worst classifier here is the one
tested on NL articles. Low performance can be explained by the small number of articles in
this language. In this experiment, the best classifiers are the ones with a greater number of
articles (es, mg). The green background represents the best F1 for each column; therefore,
for example, en was classified the best with a classifier trained on the en and mg datasets.

.

Table displays category-wise F1 score for 3 most numerous languages and 3 least nu-
merous ones. These results belong to two layers MLP implemented with PyTorch, which
did not seem to work better than MLP from Scikit-learn, but it performs better when fo-
cusing on macro F1. For some categories it is rather obvious why the F1 score is high. For
example Sports or Health category can be distinguished from the others, on the other hand
Politics may be easily missclassified. This should be consistent with results of clustering.
The aforementioned Sport could be further from other categories.

One extra experiment was performed on a lower number of articles. Since for the
least numerous languages, the dataset contains about 2000 articles, this count was chosen.
Table 5.5 displays weighted F1 scores for the same classifier and parameters as Table 5.2.
The only difference is that for training, only 2000 samples were used. Test samples were
preserved, which means that for some languages there were a lot more test samples than
train samples (e.g., for English, there were 8800 test samples and 2000 train samples). The
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Macro

F1

TESTED ON

en es fr mg it el zht zhs ... mk pl nl AVG

T
R

A
IN

E
D

O
N

en 0.748 0.747 0.743 0.756 0.744 0.743 0.734 0.761 ... 0.741 0.732 0.732 0.739

es 0.734 0.748 0.746 0.731 0.748 0.741 0.713 0.748 ... 0.745 0.749 0.741 0.738

fr 0.722 0.747 0.748 0.725 0.746 0.740 0.704 0.732 ... 0.745 0.760 0.751 0.737

mg 0.746 0.759 0.757 0.727 0.755 0.752 0.725 0.751 ... 0.758 0.726 0.748 0.745

it 0.714 0.741 0.744 0.705 0.740 0.733 0.693 0.707 ... 0.730 0.724 0.734 0.724

el 0.757 0.780 0.786 0.723 0.780 0.756 0.728 0.740 ... 0.788 0.794 0.789 0.770

zht 0.744 0.733 0.730 0.712 0.734 0.724 0.740 0.834 ... 0.684 0.681 0.721 0.721

zhs 0.723 0.722 0.718 0.704 0.718 0.711 0.744 0.722 ... 0.707 0.689 0.714 0.710

bn 0.690 0.714 0.715 0.686 0.708 0.707 0.688 0.690 ... 0.713 0.716 0.715 0.707

ru 0.710 0.746 0.755 0.685 0.746 0.742 0.695 0.694 ... 0.774 0.759 0.751 0.735

pt 0.689 0.732 0.731 0.699 0.729 0.723 0.672 0.670 ... 0.735 0.720 0.734 0.715

ar 0.750 0.751 0.755 0.720 0.754 0.747 0.734 0.761 ... 0.726 0.721 0.750 0.740

de 0.686 0.731 0.736 0.687 0.730 0.731 0.689 0.687 ... 0.730 0.722 0.738 0.718

jp 0.710 0.719 0.715 0.686 0.719 0.710 0.702 0.711 ... 0.715 0.698 0.718 0.709

mk 0.672 0.729 0.733 0.689 0.725 0.721 0.679 0.706 ... 0.740 0.731 0.739 0.718

pl 0.642 0.700 0.712 0.649 0.707 0.702 0.658 0.649 ... 0.712 0.719 0.716 0.692

nl 0.687 0.724 0.726 0.683 0.722 0.715 0.690 0.706 ... 0.730 0.713 0.734 0.712

Table 5.3: Macro F1 for the same experiment as above (LaBSE embeddings average of
paragraphs and MLP classifier) gives lower numbers in comparison with weighted F1. This
shows that there is poor performance in some categories, especially those with a smaller
number of articles. The green background shows the best results for each column (each
language) and also the best classifier. The trend is the same through almost all experiments:
the el classifier is performing very well on other languages, and zht and zhs are very close
to each other.
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en es fr mk pl nl
Censorship 0.859 0.881 0.853 0.862 0.855 0.801
Development 0.869 0.881 0.879 0.881 0.883 0.881
Digital Activism 0.778 0.811 0.804 0.798 0.795 0.826
Disaster 0.936 0.935 0.937 0.906 0.935 0.924
Economics & Business 0.896 0.897 0.897 0.887 0.905 0.896
Education 0.915 0.915 0.914 0.916 0.928 0.919
Environment 0.914 0.926 0.924 0.904 0.923 0.934
Governance 0.762 0.781 0.788 0.788 0.786 0.821
Health 0.906 0.918 0.898 0.861 0.907 0.905
History 0.889 0.905 0.915 0.874 0.893 0.886
Humanitarian Response 0.918 0.919 0.932 0.898 0.919 0.923
International Relations 0.851 0.867 0.864 0.829 0.853 0.860
Law 0.842 0.835 0.854 0.858 0.851 0.846
Media & Journalism 0.844 0.864 0.845 0.822 0.854 0.837
Migration & Immigration 0.843 0.902 0.884 0.885 0.889 0.889
Politics 0.740 0.744 0.719 0.676 0.746 0.756
Protest 0.816 0.845 0.821 0.812 0.840 0.824
Religion 0.959 0.956 0.959 0.939 0.945 0.955
Sport 0.985 0.987 0.978 0.979 0.985 0.986
Travel 0.912 0.907 0.923 0.914 0.911 0.909
War & Conflict 0.855 0.881 0.832 0.819 0.883 0.890
Technology_Science 0.887 0.899 0.895 0.857 0.886 0.899
WomenGender_LGBTQ+_Youth 0.803 0.836 0.824 0.750 0.829 0.833
Freedom_of_Speech_Human_Rights 0.774 0.760 0.748 0.673 0.746 0.739
Literature_ArtsCulture 0.828 0.859 0.829 0.797 0.850 0.849

Table 5.4: Category-wise F1 for selected languages (the three most numerous and three
least numerous languages). This table shows that poor F1 for some categories is not caused
by insufficient number of articles for this category. For example Politics category shows
worse results than Health, even though there are more articles in Health category.
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Weighted

F1

TESTED ON

en es fr mg it el zht zhs ... mk pl nl AVG
T

R
A

IN
E

D
O

N

en 0.875 0.875 0.874 0.874 0.872 0.874 0.883 0.892 ... 0.880 0.872 0.876 0.875

es 0.875 0.881 0.879 0.874 0.878 0.880 0.883 0.890 ... 0.894 0.882 0.883 0.880

fr 0.873 0.880 0.880 0.874 0.877 0.879 0.888 0.888 ... 0.891 0.879 0.885 0.880

mg 0.879 0.882 0.882 0.880 0.882 0.883 0.892 0.900 ... 0.891 0.881 0.889 0.884

it 8.874 0.878 0.877 0.874 0.877 0.877 0.886 0.888 ... 0.884 0.876 0.885 0.878

el 0.875 0.883 0.884 0.875 0.883 0.883 0.885 0.893 ... 0.889 0.887 0.888 0.884

zht 0.880 0.882 0.879 0.879 0.881 0.880 0.893 0.935 ... 0.882 0.870 0.884 0.882

zhs 0.873 0.874 0.872 0.874 0.872 0.873 0.897 0.891 ... 0.883 0.868 0.879 0.875

bn 0.864 0.873 0.872 0.868 0.870 0.872 0.878 0.886 ... 0.882 0.877 0.879 0.874

ru 0.868 0.881 0.883 0.870 0.879 0.882 0.882 0.890 ... 0.893 0.886 0.889 0.881

pt 0.862 0.874 0.874 0.872 0.872 0.873 0.881 0.890 ... 0.881 0.877 0.882 0.875

ar 0.875 0.878 0.878 0.871 0.878 0.878 0.890 0.900 ... 0.881 0.870 0.885 0.878

de 0.865 0.877 0.877 0.870 0.877 0.877 0.882 0.887 ... 0.888 0.877 0.885 0.877

jp 0.863 0.867 0.867 0.861 0.867 0.869 0.870 0.878 ... 0.884 0.871 0.877 0.870

mk 0.864 0.876 0.876 0.872 0.873 0.875 0.881 0.894 ... 0.887 0.876 0.884 0.877

pl 0.852 0.870 0.872 0.861 0.870 0.872 0.872 0.876 ... 0.881 0.877 0.879 0.870

nl 0.865 0.875 0.874 0.870 0.872 0.874 0.880 0.892 ... 0.888 0.874 0.883 0.875

Table 5.5: This table shows a subset of the results of the experiment when classifiers were
only trained on 2000 articles. The results are not significantly worse, which is proof of the
high quality of embeddings made with LaBSE.

score in Table X is an average of the results of 10 classifiers. Ten classifiers were trained
separately, each of them on a different subset of 2000 articles from the original train/test
split.

The conclusion from all the classification experiments is as follows: Most of all, LaBSE
and LASER embeddings seem to be of equal quality. They work very well across languages.
The best pairs (trained on and tested on) consist of different languages. A simple MLP
classifier with two layers is performing well. There are some categories that are classified
excellently (F1 > 0.95); on the other hand, some are more difficult to distinguish. In the
pre-processing phase, categories of similar topics were merged, but there are still some left
that are close in theme.
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Chapter 6

Multilingual Topic Discovery

Given embeddings can be used for more NLP tasks, not just classification. One of them is
certainly topic discovery. The name of a category can give some information, but it does
not tell what the article is about. For this reason, topic discovery, identifying the main
themes or subjects discussed in a text corpus, is needed.

This chapter describes different techniques used for the topic discovery task. At first,
K-Means clustering is used to form groups of articles. Then the TF-IDF approach was
used. It worked well, but it turned out it was not suitable for the web application. It is
able to define the most representative words for each cluster, but only for the languages
present in the cluster. Unfortunately, not all the languages showed up in all the clusters.

For this reason, another approach was needed. A Bag of Words representation was
created for all the languages, and a multilingual document model was trained using the BoW
statistics and embeddings. The most representative words for each cluster are computed
not by TF-IDF but using the pretrained model and embedding of the cluster. This way,
the most representative word for an article can be obtained just from the pretrained model
and article embedding, and there is no language limitation.

6.1 K-Means clustering
K-means clustering is a widely used unsupervised machine learning algorithm that divides
a dataset into k clusters based on the similarity of the samples. It is a simple and efficient
algorithm commonly used in machine learning that divides a dataset into k clusters based
on the similarity of the samples. It is a simple and efficient algorithm commonly used. It
starts by randomly assigning each observation to a cluster, and then it iteratively improves
the assignment by calculating the mean of each cluster and re-assigning observations to the
nearest cluster mean. This process continues until the cluster assignments no longer change
or a maximum number of iterations is reached.

The K-means algorithm is based on the principle of minimizing the sum of squared
distances between the data points and their respective cluster centers. This objective func-
tion is called the within-cluster sum of squares (WCSS), and it measures the quality of the
clustering solution. The K-means algorithm tries to find the cluster centers that minimize
the WCSS.

𝑊𝐶𝑆𝑆 =

𝐶𝑛∑︁
𝐶𝑘

𝑑𝑚∑︁
𝑑𝑖𝑖𝑛𝐶𝑖

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑖, 𝐶𝑘)
2,
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where 𝐶 is a cluster, 𝑑 is a data point.
One of the main advantages of the K-means algorithm is its simplicity and efficiency.

It is relatively easy to implement and can be applied to datasets of any size. Scikit-learn
also features MiniBatchKMeans which is faster and reduces the computational cost thanks
to not using all the dataset in each iteration.

Usually, the K-means algorithm also provides a straightforward way to interpret the
results, as the clusters can be visualized and analyzed. In the case of 768-dimensional
embeddings, the visualization is a bit more complicated. It is not always possible to visualize
high-dimensional data in 2D space. The t-SNE technique [11] was used to visualize data
in a two- or three-dimensional map, however, without success. Clusters are not visually
well separated, which is understandable due to the nature of the data. Articles belong to
multiple categories that overlap with each other. Clusters can, however, be represented by
the most representative words in different languages.

6.2 Topic discovery using TF-IDF
Clusters obtained thanks to MiniBatchKMeans are represented by the center of this cluster,
which is again a vector of 768 dimensions. This is impossible to interpret and therefore
needs to be done differently. For clusters of articles, the most logical solution is to do
a topic discovery, thus discovering the most frequently occurring words in each sequence.
Considering a multi-language dataset, it is necessary to take the most frequently occurring
words for every language in the given cluster.

The easiest way to do it is to use TF-IDF (Term Frequency-Inverse Document Fre-
quency). It is a numerical statistic that is used to evaluate the importance of a term in
a document or a collection of documents. It is commonly used in text mining, information
retrieval, and other NLP tasks. The TF-IDF score is calculated based on two factors:

1. The term frequency (TF) measures the number of times a word or a phrase appears
in a document and gives an indication of the importance of the term within the
document.

2. The inverse document frequency (IDF) measures how common a word or a phrase is
across all documents in a corpus, and it helps to identify the words or phrases that
are more unique or specific to a particular document. It helps to get rid of stop words
(words that do not carry any sense, e.g., articles, prepositions).

The formula for calculating the TF-IDF score for a term in a document (for each word
w in a cluster c) is:

𝑡𝑓𝑖𝑑𝑓(𝑤, 𝑐) = 𝑡𝑓(𝑤𝑖, 𝑐) * 𝑖𝑑𝑓(𝑤𝑖)

Particularly when working with clusters:

𝑡𝑓(𝑤, 𝑐) =
𝑛(𝑤𝑖, 𝑐𝑘)∑︀𝑊
𝑗=1 𝑛(𝑤𝑗 , 𝑐𝑘)

,

where 𝑤 = word, 𝑐 = cluster, 𝑛 = number, 𝑊 = size of dictionary (number of words in
total), 𝐶 = number of clusters.

𝑖𝑑𝑓(𝑤𝑖) = log
𝐷𝑘 + 0.01

𝑑𝑘(𝑤𝑖) + 0.001
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Language 10 most representative words

en the, is, in, government, of, police, president, law, on, was

es el, la, de, gobierno, ley, contra, policía, presidente, elecciones, derechos

fr le, la, gouvernement, été, loi, président, contre, police, ont, droits

mg lalàna, mpanao, governemanta, polisy, fifidianana, gazety, politika, filoha, tamin, fitsarana

it governo, ha, di, polizia, legge, stato, contro, del, presidente, diritti

el την, της, ότι, στις, και, για, κυβέρνηση, τον, κατά, οι

ru за, против, по, года, власти, интернет, закон, правительство, facebook, после

pt de, da, governo, lei, contra, presidente, foi, polícia, direitos, no

de der, gegen, wurde, des, regierung, die, am, dass, polizei, gesetz

pl za, że, praw, przeciwko, prezydenta, prawa, człowieka, został, rządu, rząd

nl de, van, op, tegen, werd, regering, door, hij, dat, politie

Table 6.1: This table shows the most representative words for a particular article.

where 𝐷𝑘 = total number of documents in the cluster, 𝑑𝑘(𝑤𝑖) = number of documents,
in which the word occurs.

CountVectorizer from Scikit-learn is able to create a sparse matrix for calculating TF.
IDF can be computed straightforwardly according to the Formula 6.2. Then, the 10 most
frequently occurring words can be taken as a description of the cluster. Since there are 16
languages, this calculation has to be made for every language present in the cluster. Thus,
each cluster is represented by 𝐿 * 10 words, where 𝐿 is the number of languages in the
cluster.

This approach was giving good results, but due to the inability to integrate into the
web application described in the introduction of this chapter, it was not used in the end.
Instead, a multilingual BoW model was trained.

6.3 Multilingual bag-of-words model for topic discovery
Another possible approach makes use of both prepared embeddings and the texts of the
articles. At first, a bag of words (BoW) representation is created from articles, language-
wise. Therefore, each document is represented as a vector of word frequencies, ignoring the
order and structure of words in the sentences. BoW vectors of all the articles of a given
language are stored in one file, which is used by the multilingual BoW model. At first,
the vocabulary size was limited to 25 000, but this number turned out to be insufficient;
increasing it to 100 000 led to better results, even though none of the present languages
reached a vocabulary of this size. Spanish articles have the widest vocabulary with 71,448
words, despite the fact that there are more English articles than Spanish ones.

The model uses BoW representation and document embeddings to learn to represent
words from different languages in a shared embedding space. The model therefore learns
a word embedding matrix for each language. In the beginning, the bias vector is initialized
with the log of the unigram distribution over vocabulary. The model is trained to maximize
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the log-likelihood obtained from the known unigram distribution over the documents and
the distribution computed using learned parameters. The model is displayed in Figure 6.1.

This way, it is possible to generate the most representative words in all the languages
for every article inserted into a web application. There is no K-Means model needed, only
the embedding of the document and the pretrained model. The model provides a word
embedding matrix, which is multiplied by the embedding of the article, and the top 10
words with the highest score (logits) are chosen as the most representative ones. The
example is displayed in Table 6.1.

Figure 6.1: From unigram distribution in documents and document embeddings, the model
learns the word embedding matrix for each language. Then, in production, it only needs
the article embedding to produce the most representative words in all the languages.

37



Chapter 7

Web application

The classification scores show that both models are providing embeddings of comparable
quality, and topic discovery works well. To demonstrate the results achieved, a simple web
demo was developed.

Deploying an ML model to a web application is, in general, crucial to making it useful
and accessible to a wider audience. A typical ML model requires specialized software and
hardware, which makes it challenging for end users and non-technical collaborators to gain
trust in ML and provide feedback on model development [1]. If a model is deployed as a web
application, it can be accessed from anywhere with an internet connection. Users can easily
access it from their desktop or mobile device without having to install any software, in this
case, mainly the right version of Python packages. In addition, a web application provides
a user interface, which makes it easy for users to interact with the model.

Since the motivation of this thesis is to test multilingual models on a dataset consisting
of a wider number of languages than existed before, the web application is not a priority.
The goal is not to create a perfect end solution; the web application is intended more as
a demo, providing predictions in real-time. For this reason, Gradio, in combination with
Hugging Face Spaces for hosting, was used as one of the fastest ways to deploy ML models
to a friendly web interface.

7.1 Gradio
Gradio is an open-source Python library that allows developers to quickly create customiz-
able user interfaces for their machine learning models [1]. With Gradio, it is possible to
create interactive web-based applications that allow users to interact with the ML model
in real-time.

The authors of Gradio were informed by interviews with machine learning researchers,
and based on this information, they published the first version of the open-source package
Gradio in 2019. The package supports audio, image, and text-based models and includes
various user interface components.

The basis of the web application is an interface object. Through the parameters of this
object, theme, title, and other properties of the application can be set. It is also used to
define the input and output of the application, or more specifically, the components that
allow it to receive input and display output.
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For the web application created for the purpose of this thesis, input is a textbox where
the user can insert text from the article. After submitting it, pretrained models are invoked,
as follows:

1. At first, an embedding is created. For this, the LaBSE model is used. It was chosen
because both LASER and LaBSE models gave similar results, and LaBSE is easy to
import from Hugging Face. The strategy of creating an average embedding from the
whole is applied since it gives the best results for classification. An alternative would
be to create an embedding just from the title of the article, but this is not suitable for
a topic discovery task. The title is too short and does not contain much information
(in many words). The embedding is used just for backend computations; it is not
displayed to the end user.

2. The second task is classification. The embedding is forwarded to a pre-trained classi-
fier trained on an English corpus. This is, however, just a matter of preference because
all the classifiers give similar scores, no matter the language of the training corpus. In
any case, the output of this model is a list of probabilities for all the possible classes.
This output is displayed to the user. It is shown in the form of the names of categories
and a bar chart. Categories names are written in English, regardless of the language
of the article; this convention was adopted from the beginning because GlobalVoices
categories are not perfectly unified through languages. A bar chart visualizes the
probability of categories; therefore, it allows one to see if the model was sure of its
decision or if there are some other minority categories. The threshold is set to 0.5.

3. Then, the embedding obtained in step 1 is used for the topic discovery task. A mul-
tilingual document model and files with bag of words stats for each language are
needed. The top 10 words describing the article are obtained by multiplying the word
embedding matrix with the article embedding. Then those scores are ordered, and
words with the highest scores are chosen from the bag of words files.

As written above, the Gradio application has one input and three outputs. The first is the
list of categories; the second is the bar chart; and the third is the list of most representative
words. The interface is divided into two tabs, with classification in the first one and topic
discovery in the other.

The web application architecture is demonstrated in Figure 7.1, whereas the interface
can be seen in Figure 7.2.

7.2 Hugging Face
Hugging Face is a technology company that specializes in natural language processing
(NLP) and develops software tools to help people work with language data. It was es-
tablished in 2016 by French entrepreneurs, and it immediately gained popularity mainly
for its open-source software library, Transformers, which has become a standard tool in the
NLP industry.

Transformers is a Python library that provides pre-trained models for various NLP
tasks, such as sentiment analysis, language generation, and machine translation [24]. The
library uses a transformer architecture, which is described in Chapter 3. Transformers make
it easy to use and fine-tune pre-trained models, which are suitable for various applications
like chatbots, language understanding systems, or machine translations. After all, even this
work uses the LaBSE model from the Transformers library.
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Figure 7.1: The diagram shows the web application architecture. The user inserts the
text of the article, and after background computations, classification results and the most
representative words are displayed to the user.

Besides this, Hugging Face has developed other tools and products, such as Tokenizers,
a library for efficient text tokenization, and Datasets, a collection of datasets for NLP tasks.
For this thesis, the most relevant tool from Hugging Face is, apart from the Transformers
library, a platform called Hugging Face Hub. This platform brings together the NLP
community and allows them to discover and share NLP models, datasets, and scripts. The
platform also includes Spaces.

Hugging Face Hub provides a central repository where users can upload and download
NLP resources, and it is integrated with Spaces. With Spaces, it is possible to create
a workspace and customize it. Different templates for common NLP tasks like question
answering or text classification are prepared. The workspace can then be shared with col-
laborators. Code is run here in a cloud-based environment in a containerized environment
with pre-installed dependencies, and users can choose from a variety of hardware configu-
rations. Above all this, Spaces can be paired with Gradio.

While creating a brand new Space, Gradio can be chosen as the SDK. Then Space will
automatically initialize itself with the latest version of Gradio, and the user can continue
with work. Hugging Face Spaces are Git repositories; therefore, files are uploaded by
pushing commits. Hardware properties are set in settings, and Python libraries are specified
in requirements.txt. The dependencies are installed automatically after pushing the files.
There is also a web interface for uploading or even creating files. In any case, working locally,
where Gradio can run on a localhost, and then pushing files is much more convenient. Each
Space environment provides 16 GB of RAM, 2 CPU cores, and 50GB of disk space in the
free version. Although the web application is running a bit slower, the free setup is sufficient
for demo purposes.
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Figure 7.2: A user inserted into the web application an article about Pakistan banning
Wikipedia. It is correctly classified into Censorship, Governance, Technology + Science
and Freedom of Speech + Human Rights categories.

The web app runs on https://huggingface.co/spaces/andufkova/articles.
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Chapter 8

Conclusion

The goal of this thesis was to create a multilingual dataset and benchmark existing pre-
trained language models using this dataset. There were no previously existing datasets di-
verse enough to be suitable for multilingual and multilabel article classification. A dataset
of almost 250,000 articles in dozens of languages was created. For this task, different scrap-
ing libraries and various news sites were considered. In the end, the dataset is based on the
GlobalVoices.org website, which provides news articles translated into different languages.
Some information was scraped with the News-please library; some of it was scraped manu-
ally. Minor errors were discovered in the functionality of the library mentioned before, like
mistakes in language codes.

A dataset of this size needs to be well organized. The way it is done has changed several
times as new knowledge has come to light. The articles are stored in folders language-wise;
for each one, both structured JSON and original HTML versions are stored, since from
HTML code it is possible to extract further information, which may be useful in following
up on this work. Information about categories is stored separately in metafiles. A CSV file
stores categories for each article, and JSON file stores information about which translations
of articles belong together.

The original dataset was filtered. Some categories were merged, which led to 25 cate-
gories for the final dataset. Only 17 languages with more than 2000 articles were preserved,
and the concerned articles were encoded as document embeddings. Two models were cho-
sen for this task: LaBSE and LASER. The original intention was to use LASER3, but it
turned out that version 3 just added new languages, mainly low-resource languages not
presented in the created dataset; therefore, LASER2 is used. As LaBSE is implemented
in the HuggingFace library, it was more straight-forward to obtain document embeddings,
and for this reason, initial experiments started with this model. Different strategies for
embedding creation were adopted.

The purpose of multilingual models is to allow training on high-resource languages
and predicting on low-resource languages, so the aim of this thesis was to train on one
language and test on others. The dataset was strictly split into train and test sets by year,
even though it was not ideal for some languages. It was important that the article in one
language not appear in the train set and its translation not appear in the test set. This
way, zero-shot learning could be performed.

For the classification task, the initial experiments were performed with MLP, SVM, and
Logistic Regression. MLP gave slightly better results, so the following experiments were
conducted with this classifier. The best results were obtained with embeddings obtained
as an average embedding of all the paragraphs. Both LaBSE and LASER2 produced com-
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parable results, with weighted F1 varying from approximately 0.82 to 0.89. Comparison
with macro F1 showed that there is poor performance in some categories, the ones with
a smaller number of articles or the ones that are not so strictly separable. The best news
is that F1 scores were similar no matter which language the model was trained and tested
on; therefore, the results of zero-shot learning were as good as the results of training and
testing on the same language. An experiment with 2,000 training articles per language was
performed, and the results were still the same. All of this shows the quality of multilingual
embeddings.

With the created embeddings, a topic discovery task was performed. The first idea
was to do K-Means clustering and, with TF-IDF, get the most representative words for
every cluster. Then a new article would have been assigned to a cluster and represented
by significant words for that cluster. This approach was implemented and worked well, but
it turned out to not be very suitable for the final web application. In addition, the words
representing the whole cluster were often too general. Due to this, a multilingual bag-
of-words model was trained. From document embeddings and unigram distribution over
vocabulary, the model learned a word embedding matrix for every language. To obtain the
most representative words, only article embedding is needed. It is multiplied by the word
embedding matrix, and words with the highest score are taken for every language.

Finally, both tasks, classification and topic discovery, are demonstrated in a simple
web application created with Gradio and hosted on Hugging Face Spaces. It is available
on https://huggingface.co/spaces/andufkova/articles. The user can insert the text
of the article, document embedding is created in the backend, and it is proceeded to the
classifier and multilingual model for topic discovery. The predicted categories and the most
representative words are then displayed to the user.

To summarize, multilingual models showed good performance. Both tested models gave
comparable results, even with a low number of training examples. For future work, it would
be interesting to try more low-resource languages and merge the GlobalVoices dataset with
other data (even the existing ones). This would require mapping the topic labels and further
modifications, yet it would allow for a more general dataset.
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Appendix A

Languages included in dataset
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Appendix B

MLP classifier + LaBSE results
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