
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

APPLICATION FOR PERFORMING MAN-IN-THE-MIDDLE
IPV6 ATTACKS
APLIKACE PRO PROVEDENÍ MAN-IN-THE-MIDDLE IPVB ÚTOKŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Branislav Kadlec
AUTOR PRÁCE

SUPERVISOR Ing. Viet Anh Phan
VEDOUCÍ PRÁCE

BRNO 2024

T
B R N O F A C U L T Y OF E L E C T R I C A L

U N I V E R S I T Y E N G I N E E R I N G

OF T E C H N O L O G Y A N D C O M M U N I C A T I O N

Bachelor's Thesis
Bachelor's study program Information Secur i ty

Department of Telecommunications

Student: Branislav Kadlec

Year of
3

study:

ID: 241045

Academic year: 2023/24

TITLE O F THESIS :

Application for performing man-in-the-middle IPv6 attacks

INSTRUCTION:

Study from the literature the issue of development in the python programming language and the functioning of

selected communication protocols: especially IPv6, ICMPv6, DHCPv6 . Also familiarize yourself with the well-

known security problems of these protocols and the issue of man-in-the-middle attack tools. As part of the

bachelor's thesis, create a lab scenario and application in Python that will enable man-in-the-middle IPv6 attacks

to be carried out within the virtual network environment. Based on the results, analyze the performance and

advantages of this application compared to current applications. The solution will also include a description of the

test, ways to perform it, and the possible threats on the given system.

R E C O M M E N D E D L I T E R A T U R E :

[1] W. Liu, P. Ren, Y . Zhao, D. Sun and K. Liu, "Study on attacking and defending techniques in IPv6 networks,"

2015 IEEE International Conference on Digital Signal Processing (DSP), Singapore, 2015, pp. 48-53, doi:

10.1109/ICDSP.2015.7251328.

[2] JEŘÁBEK, J . Pokročilé komunikační techniky. Skriptum F E K T Vysoké učení technické v Brně, 2020. s. 1-180.

Date of project

specification:
5.2.2024

Deadline for

submission:
28.5.2024

Supervisor: Ing. Viet Anh Phan

doc . Ing. J a n Hajný, Ph .D.

Chair of study program board

WARNING:
The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10/616 00 / Brno

ABSTRACT
This thesis presents the development of a Python application designed to execute Man-in-
the-Middle (MITM) attacks within a virtual IPv6 network. Motivated by a deep interest
in information security, networking, and programming, this research aims to create a
versatile tool that integrates various attack methods into a single, cohesive solution.
The objectives include the development of Python code utilizing the Scapy library, a
thorough understanding of IPv6, ICMPv6, and DHCPv6 protocols, and the creation
of an application that focuses on three primary attack vectors: a fake DNS server, a
fake D H C P server, and a fake default gateway. The evaluation criteria will assess the
performance and advantages of the application compared to existing specialized tools.
Methodologically, the Scapy library is employed, and a virtual network environment is
meticulously designed for comprehensive testing. Ethical considerations emphasize user
responsibility in the utilization of such tools, drawing analogies with dual-purpose tools
like knives.
The scope of the thesis encompasses theoretical foundations, application design, virtual
network setup, testing methodologies, and result analysis. The aim is to contribute
valuable insights into MITM attacks while providing a versatile tool for security prac­
titioners. The research explores the intersection of Python programming, networking
protocols, and cybersecurity, offering a thorough investigation into the dynamic field of
Man-in-the-Middle attacks.

KEYWORDS
Man-in-the-middle, IPv6, ICMPv6, DHCPv6, DNS, Python, Scapy, default gateway,
DHCPv6 server, DNS server

Typeset by the thesis package, version 4.09; h t tps : / / l a tex . fek t .vu t .cz /

https://latex.fekt.vut.cz/

Author's Declaration

Author: Branislav Kadlec

Author's ID: 241045

Paper type: Semestral Project

Academic year: 2023/24

Topic: Applications for man-in-the-middle IPv6

attacks

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and/or ownership rights.

In this context, I am fully aware of the consequences of breaking Regulation § 11 of the

Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.

of the Czech Republic, Section 2, Head VI, Part 4.

Brno

author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to express my sincere gratitude to those who have contributed to the com­

pletion of this bachelor's thesis. This journey would not have been possible without the

support, guidance, and encouragement from various individuals.

First and foremost, I am deeply thankful to my thesis advisor, Ing. Phan Viet Anh, for

their unwavering support and valuable insights throughout the research process. Their

expertise and constructive feedback were instrumental in shaping the direction of this

study.

I extend my heartfelt appreciation to the faculty members of the Department of Telecom­

munications for their academic guidance and for providing an environment conducive to

intellectual growth. The discussions and interactions with them have been enriching and

have significantly contributed to the depth of my understanding.

I am indebted to my family for their constant encouragement and belief in my abilities.

Their understanding and patience during the demanding periods of this thesis were

invaluable.

I would like to express my gratitude to my friends and peers who provided moral sup­

port and shared their perspectives, creating a collaborative and stimulating academic

atmosphere.

Lastly, I acknowledge the resources and facilities provided by Brno University of Tech­

nology that have been crucial in conducting this research.

This thesis stands as a testament to the collective efforts of those who have been part

of this academic journey. Thank you all for your invaluable contributions.

Contents

Introduction 15

Aim of the thesis 17

1 Theory 19

1.1 Internet Protocol version 6 19
1.1.1 IPv6 address structure 19
1.1.2 Domain Name System 21

1.2 Internet Control Message Protocol version 6 22
1.2.1 Neighbour Discovery Protocol 23

1.3 Dynamic Host Configuration Protocol for IPv6 24
1.4 Man-in-the-middle Attack 25

2 Thesis Results 29
2.1 Development tools 29

2.1.1 Python 29
2.1.2 Scapy 29
2.1.3 E V E - N G 29

2.2 Scenario 30
2.2.1 Device Set-up 33

2.3 Application 34
2.3.1 Gateway impersonation mode 34
2.3.2 Rogue DHCPv6 server 37
2.3.3 Rogue DNS server 38

2.4 Virtual testing 40
2.4.1 Default gateway testing 40
2.4.2 D H C P server testing 42
2.4.3 DNS server testing 43

2.5 Testing on physical devices 45
2.5.1 Gateway impersonation mode 46
2.5.2 D H C P server mode 48
2.5.3 DNS server mode 51

2.6 Future Plans 53

Conclusion 55

Bibliography 57

Symbols and abbreviations

List of appendices

A MITM-tools Application

List of Figures
2.1 Simulated Topology 31
2.2 Parameters for the gateway impersonation mode 34
2.3 Development diagram of the gateway impersonation mode 36
2.4 Parameters for the rogue D H C P mode 37
2.5 Parameters for the rogue DNS mode 38
2.6 Development diagram of the DNS mode 40
2.7 Flow of a packet in the network 41
2.8 The flow of a packet through a spoofed 42
2.9 A rogue DHCPv6 server connected to the topology 42
2.10 A victim sending a DNS query 44
2.11 A victim sending a DNS query after it has been manipulated 44
2.12 Topology of the physical network 45
2.13 The Victims' device communicating with a virtual device 46
2.14 Sent Router Advertisement packets, with manipulated Router lifetimes 47
2.15 The Victim's configuration before and after and attack 47
2.16 Captured packet on the Attackers machine 48
2.17 A screen capture of the application in use 49
2.18 Captured D H C P communication on the Attackers machine 49
2.19 Configured address on Victims machine 50
2.20 A screen capture of the application providing a DNS response 51
2.21 DNS query from the victim on the attackers device for the domain

vut.cz 52

http://vut.cz

Introduction
This thesis is devoted to the development of a Python application for executing Man-
in-the-Middle (MITM) attacks within a virtual IPv6 network. Driven by a passion
for informational security, networking, and programming, the author seeks to create
a versatile tool that combines various attack methods into a unified solution.

The core objectives include exploring Python development using the Scapy l i ­
brary, understanding IPv6, ICMPv6, and DHCPv6 protocols, and creating an ap­
plication focusing on three key attack vectors: a fake DNS server, a fake DHCPv6
server, and a fake default gateway. The research extends to evaluating the applica­
tion's performance compared to existing specialized tools.

Utilizing the Scapy library, the application is designed for a virtual network en­
vironment, featuring inside and outside networks for comprehensive testing. Ethical
considerations emphasize user responsibility, drawing parallels with tools that have
dual purposes, such as knives.

Chapters will delve into theoretical foundations, application design, virtual net­
work setup, testing methodologies, and result analysis. The aim is to contribute
insights into M I T M attacks, offering a versatile tool for security practitioners.

15

Aim of the thesis
The main goal of this work is to create a python application that allows man-in-the-
middle IPv6 attacks within a virtual network environment. This application should
be versatile and adaptive to many different situations, types of networks and devices,
but also easy to use and customize for professional users and beginners alike. We
want to emphasise the automation and efficiency of this tool for a truly seamless
experience with the combination of good readability and comprehensiveness of the
output data. These standards should allow any user to choose our tool over, or in
combination with already available tools, which will be compared with our result in
the thesis. With the combination of good documentation, this tool should be at the
same level with currently used tools and could have the potential to be used widely
around the world.

17

1 Theory

1.1 Internet Protocol version 6

The Internet Protocol version 6 (IPv6) enables devices within digital networks to
route packets of information to their correct destinations. This forms the foundation
for connecting the entire world to the World Wide Web. The IPv6 protocol is the
latest iteration of the Internet Protocol, designed to replace its predecessor, IPv4,
due to its vastly superior address space among other enhancements [1]. This version
was created to address the challenge of the internet's expansion beyond IPv4's capa­
bilities. IPv4 allows for packets to be split into multiple fragments, accommodating
the limited transmission sizes of network segments. However, with modern transmis­
sion line capacities, packet fragmentation was replaced with a system of extension
headers. This system permits the stacking of headers one after another, poten­
tially increasing a packet's size up to 4 G B , known as Jumbo Packets. The header
length is also fixed by eliminating IPv4's variable-length options field, resulting in
a 40-byte header. This is twice the size of the IPv4 header, which is a significant
improvement given the considerably longer addresses. The address length has been
quadrupled, allowing many more devices to connect to the internet. IPv6 addresses
can be categorized into two main groups and further divided into numerous types[2].

1.1.1 IPv6 address structure

Every IPv6 address is 128 bits in length. This results in 2 1 2 8 possible combinations,
or approximately 3 • 10 3 8. This vast number allows each existing device to have a
unique address. To maintain the organization of the address space, addresses consist
of two complementary parts. The initial bits of any address identify the specific
network. Each network can also contain smaller sub-networks, which inherit the
network portion of the address from the parent network. The remaining part of the
address is used to identify individual devices within the network. The maximum size
of any network is determined by the length of this part. This also implies that the
lengths of these two parts are variable. To track this, a number is always appended
to any address called the **prefix**. A prefix simply represents the number of bits
from the beginning of the address that define the network. Devices with identical
prefix bits belong to the same network.

Unicast Addresses

Unicast addresses are addresses that identify a single network interface on a node.
They serve as a unique identifier for communication with a specific device. The most

19

common types of unicast addresses include the Global Unicast address, which
functions similarly to a postal address. This unique address refers to a single network
interface of a node on the global network. A l l global IPv6 addresses begin with a
48 b global prefix and are then subnetted using a 16-bit Subnet ID. This structure
helps reduce the size of the global IPv6 routing table. Link-local addresses are
another type of unicast address used by devices for direct communication. Every
device automatically configures a link-local address, which always starts with the
prefix FE80::/10 and is completed with the M A C address of the interface. This
address allows a device to request a global address, inform connected devices of its
presence, or communicate without a router. Routers do not forward packets with
link-local source or destination addresses to other links.

Multicast Addresses

A Multicast address allows a device to send a packet to a group of recipients. In
IPv6, a multicast address is identified by the first 8 bits being set to 1. Conse­
quently, every IPv6 multicast address begins with ff. The IPv6 protocol does not
include a broadcast address, so to send a packet to all nodes, we use the All-Nodes
Address. If this address is used as the destination, it indicates that the packet is
meant to be received by all nodes, prompting each node that receives it to reply.
Additionally, the All-Routers Address enables a device to send a packet to all
routers on the network. It is used as the destination address for Router Solicitation
and is typically defined as ff02::2.

Given the vast size of the internet today, it is often necessary to connect to an­
other network. To communicate outside its network, one router within the network
must be connected to the internet and serve as the default gateway. A gateway
functions as a point of entry into another network, often leading to a change in
addressing and the use of different networking technologies. Essentially, a router di­
rects data packets between networks with distinct network prefixes. Each computer's
networking software maintains a routing table that determines which interface to
use for transmission and which router within the network should forward specific
sets of addresses. When none of these forwarding rules match a particular desti­
nation address, the default gateway is selected as the fallback router. The default
gateway can be configured using the route command to set the node's routing table
and default route.

Enterprise network systems often consist of multiple internal network segments.
When a device wants to communicate with a host on the public internet, it sends
the data packet to the default gateway of its network segment. This router also

20

has a default route configured to a device on an adjacent network, moving one step
closer to the public network.

There are three different ways a device can be assigned an address: stateless
address assignment, stateful address assignment, and manual assignment.

Stateless auto configuration

Stateless Address Auto-configuration (SLAAC) means that no internal state is re­
quired in the device or any other device in the network. The significant bits are
taken from the network address, and the rest is generated either randomly—where
there is a minimal risk of duplication due to the vast IPv6 address space—or using
the EUI-64 identifier, where a M A C address is used as the basis. This process is
deterministic, meaning it produces the same address if the same M A C address is
provided. This fact can enable tracking a specific device throughout the internet.

Statefull assignment

Stateful assignment relies on the internal state of a device, typically a server in the
network using the DHCPv6 protocol. The server keeps track of the addresses in use
by devices in the network. This method ensures a unique address for each device,
although it incurs a small amount of network traffic.

Manual assignment

The most reliable but also the most time-consuming method is manual assignment.
It requires the system administrator to designate and assign an address to every
connected device. This method demands significantly more effort compared to the
other two, and for that reason, it is rarely used aside from small and controlled
networks.

1.1.2 Domain Name System

The Domain Name System, commonly referred to as DNS, is a crucial and funda­
mental component of internet infrastructure. It functions as a distributed and hierar­
chical system for translating human-readable domain names, such as "www.vut.cz,"
into the numerical IP addresses used by network devices to locate and communicate
with each other. This translation process is essential because computers operate us­
ing IP addresses, while users prefer the convenience of domain names for accessing
websites, email services, and other online resources [3].

21

http://www.vut.cz

DNS operates as a global network of interconnected servers, organized into a
hierarchical structure. The system includes various types of DNS servers, with root
servers at the top of the hierarchy, followed by top-level domain (TLD) servers, and
authoritative name servers for individual domains. When a user enters a domain
name into a web browser or another networked application, their device sends a
DNS query to a DNS resolver. This resolver, often provided by the internet service
provider (ISP) or configured on the user's device, is responsible for locating the
appropriate DNS server to resolve the requested domain.

Once the resolver identifies the necessary DNS server, it sends a request for the
corresponding IP address. The DNS server processes the request, either by providing
the IP address directly or referring the resolver to another DNS server if necessary.
The resolver then caches the response for future use, reducing the need to repeatedly
contact DNS servers for frequently accessed domains.

DNS serves as a fundamental enabler of internet navigation, ensuring that users
can access websites and services without the need to remember long IP addresses.
It plays a pivotal role in internet security by authenticating and validating domain
name ownership through DNSSEC (Domain Name System Security Extensions) and
helping to detect and mitigate malicious activities, such as DNS spoofing or cache
poisoning. Overall, DNS is an integral part of the digital ecosystem, making it
possible for individuals and organizations to access and interact with the vast array
of resources available on the internet.

Multicast DNS

Multicast DNS (mDNS) is a networking protocol designed to facilitate the automatic
discovery of devices and services on a local network without needing a centralized
Domain Name System (DNS) server. Developed as part of the Zero Configuration
Networking (Zeroconf) initiative, mDNS enables devices to announce their pres­
ence and respond to queries within a local network using multicast IP addresses.
This protocol simplifies the process of identifying and connecting to devices such as
printers, cameras, and other networked services without requiring manual configu­
ration or traditional DNS servers. mDNS is particularly useful in scenarios lacking
dedicated DNS infrastructure, promoting seamless and hassle-free communication
between devices in a local network environment.

1.2 Internet Control Message Protocol version 6

The Internet Control Message Protocol version 6 (ICMPv6) is a supporting proto­
col for the internet protocol. It is used to transfer control messages such as errors,

22

success notifications, and pings. ICMPv6 helps in discovering devices, establishing
initial connections, and alerting nodes about redirections in case of network failures.
Similar to the Internet Protocol, ICMPv6 was adapted into its version 6 to work
alongside IPv6, ensuring stable communication at the network layer. ICMPv6 mes­
sages are divided into two categories: informational messages and error messages.
For this thesis, we will focus solely on the former. The most basic type of informa­
tional message is the Echo message. Echo messages, often known as pings, are used
to verify connectivity between two devices. A ping consists of two separate mes­
sages: an echo request and an echo reply. The request is sent to a device to check
connectivity, and the reply is sent back to the original sender to confirm successful
communication.

1.2.1 Neighbour Discovery Protocol

ICMPv6 also uses a Neighbour Discovery Protocol to discover nodes on it's
own network.

Router Solicitation

To establish a connection of a device with the router in the network. Firstly, when a
device connects to a IPv6 network, it sends out a Router Solicitation packet. This
means it does not have a router to send its traffic to and is requesting configuration
information.

Router Advertisement

Any available router responds with a Router Advertisement packet to provide a
default gateway, a default hop limit and other configuration details. Routers can also
send out Router Advertisements automatically after a configured amount of time. A
Router Advertisement packet is also used to discover nodes that are directly linked
to our device.

Neighbor Solicitation

A Neighbor Solicitation packet is used to ask neighbouring devices for their
physical and link layer addresses.

Neighbor Advertisement

If a node receives such a message, it replies with a so called Neighbor Adver­
tisement message to provide its information and the requesting node can note its
information into its memory.

23

Redirect Message

Lastly, we will need to look at the Redirect Message. Such a message is sent by a
router to notify devices that it is no longer available for routing traffic. It also needs
to provide an address to a replacement router so devices can have an alternative to
sucessfully route their traffic.

1.3 Dynamic Host Configuration Protocol for IPv6

Dynamic Host Configuration Protocol for IPv6 (DHCPv6) is a widely used network
protocol designed to automate the process of assigning IPv6 addresses and network
configuration parameters to devices connected to the same IPv6 network. DHCPv6
plays a crucial role in efficiently managing and distributing IPv6 addresses within a
network, ensuring that devices can easily and accurately communicate in the IPv6
environment.

DHCPv6 closely resembles the operation of D H C P for IPv4 but has been cus­
tomized to meet the specific requirements of the IPv6 protocol. When a device,
referred to as a DHCPv6 client, connects to an IPv6 network, it typically requires
an IPv6 address and other essential network configuration parameters. These pa­
rameters include subnet prefixes, DNS server information, default gateway details,
and additional network settings. A DHCPv6 server in the network provides these
parameters. DHCPv6 servers are responsible for managing and distributing these
parameters to the devices that request them.

The DHCPv6 process as described in [4] begins when a DHCPv6 client sends
a DHCPv6 SOLICIT message to the network in search of a DHCPv6 server. The
message also contains fields called options which represent different network param­
eters the client is requesting. In response a DHCPv6 server within the network
responds with an ADVERTISE message where it provides the client with an IPv6
address and any other necessary configuration data in the same options fields. A l ­
ternatively, it can provide the client with an error message, for example when all
addresses are depleted. The client sends a REQ UEST message where it can ask for
more options or changes to the assigned configuration. The server then responds
with a CONFIRM message which signals to the client that the configuration was
successfully completed and the process is over. It's important to note that DHCPv6
can operate in different modes, offering flexibility to network administrators. These
modes include stateful and stateless modes as mentioned above.

One of the main advantages of DHCPv6 is its role in simplifying network admin­
istration and management. It significantly reduces the need for manual configuration
of individual devices and ensures the efficient allocation of IPv6 addresses, which is

24

essential for addressing the growing number of internet-connected devices and the
transition to IPv6. It helps to ensure that devices across IPv6 networks can effort­
lessly and dynamically obtain the resources they need to participate in the exchange
of data and services.

1.4 Man-in-the-middle Attack

A man-in-the-middle (MITM) attack 1 is a cybersecurity threat where an attacker
secretly intercepts and possibly alters the communication between two parties, typ­
ically without their knowledge or consent. In this type of attack, the attacker
positions themselves between the two legitimate parties, effectively becoming a mid­
dleman who can eavesdrop on the data being exchanged. This can occur in various
forms of communication, including internet traffic, emails, or wireless connections
[5].

The attacker can then either passively monitor the communication or actively
manipulate it, potentially stealing sensitive information, injecting malicious content,
or causing disruptions. To carry out a man-in-the-middle attack, the attacker often
exploits vulnerabilities in the communication channel or uses techniques like Address
Resolution Protocol (ARP) spoofing in IPv4, DNS poisoning, or SSL/TLS (Secure
Sockets Layer/Transport Layer Security) interception.

Default gateway spoofing

Default gateway spoofing is a technique used in man-in-the-middle (MITM) attacks
within IPv6 networks. In IPv6, the default gateway is a crucial component respon­
sible for routing traffic between devices on the local network and external networks,
including the internet. When an attacker impersonates the default gateway in an
IPv6 network, they gain control over the network traffic that passes through this
gateway, effectively becoming the central point through which all data flows.

By spoofing the IPv6 default gateway, the attacker can intercept or manipulate
all communication between devices on the local network and external destinations.
This becomes particularly effective for executing M I T M attacks within the IPv6
local network.

Default gateway spoofing in IPv6 often involves techniques like Neighbor Discov­
ery Protocol (NDP) spoofing. In this scenario, the attacker sends deceptive NDP
messages to network devices, rerouting their traffic through the attacker-controlled

1Also known as a monster-in-the-middle, machine-in-the-middle, meddler-in-the-middle,
manipulator-in-the-middle, person-in-the-middle (PITM), or adversary-in-the-middle (AITM) at­
tack.

25

gateway. This enables the attacker to intercept all unencrypted data and potentially
inject malicious content into web pages or software updates.

To mitigate the risks associated with default gateway spoofing in IPv6 networks,
network administrators can implement several security measures. These include
monitoring NDP caches, configuring network devices to use static NDP entries, or
deploying intrusion detection systems to detect and prevent such attacks. Addition­
ally, the use of encryption for network traffic, particularly through protocols like
VPNs, or establishing secure communication channels, adds an extra layer of pro­
tection against M I T M attacks, including those involving default gateway spoofing
in IPv6 environments.

Despite these measures, a significant number of networks are not properly con­
figured or do not use any of these techniques, leaving them vulnerable to such
attacks [6].

Impersonating a DHCPv6 server

Another method used in conjunction with default gateway spoofing is the spoofing
of a DHCPv6 server. DHCPv6 is responsible for assigning network configuration
information, such as IP addresses, subnet prefixes, and DNS server details, to devices
within the network. When an attacker successfully spoofs a DHCPv6 server, they
can distribute false or malicious configuration parameters to unsuspecting devices.

By impersonating a DHCPv6 server, the attacker can manipulate the IPv6 ad­
dressing scheme and provide rogue DNS server information. This allows them to
direct network traffic through their own malicious infrastructure, leading to the in­
terception of sensitive data, DNS manipulation, and further facilitation of future
attacks.

To safeguard against DHCPv6 server spoofing, network administrators should
implement security measures like DHCPv6 snooping, which validates the legitimacy
of DHCPv6 servers, and utilize technologies such as Router Advertisement Guard
(RA-Guard) to prevent unauthorized Neighbor Discovery (ND) and DHCPv6 server
announcements. Regular monitoring of DHCPv6 server activities and the use of
secure communication practices help protect against potential M I T M attacks, in­
cluding those involving DHCPv6 server spoofing[7].

This method of attack is harder to detect, making it an effective way to compro­
mise a network.

Rogue DNS server

Impersonating a Domain Name System (DNS) server is a prevalent and concern­
ing tactic utilized in sophisticated man-in-the-middle (MITM) attacks, particularly

26

within IPv6 networks. DNS is an essential component of the internet that translates
human-readable domain names into IP addresses, facilitating web browsing and com­
munication between devices. When an attacker impersonates a DNS server, they
manipulate the DNS resolution process, intercepting and altering DNS queries and
responses or simply creating their own. This enables them to redirect legitimate
domain requests to malicious IP addresses, potentially leading to a wide range of
malicious activities.

In a DNS server impersonation attack, the attacker typically establishes a rogue
DNS server or modifies the DNS queries and responses flowing through the network.
One common method is DNS cache poisoning, where the attacker injects forged DNS
data into the cache of a DNS resolver. As a result, the compromised DNS resolver
may return malicious IP addresses when queried for a particular domain, causing
users to unknowingly connect to malicious websites or servers.

Another technique that attackers employ is DNS tunneling, which allows them to
divert DNS traffic through their controlled DNS server. In such cases, the attacker
can use covert channels within DNS requests and responses to exfiltrate data, bypass
network security measures, or maintain persistent access to a compromised network.

Mitigating DNS server impersonation attacks is critical for maintaining the in­
tegrity and security of network communication. Network administrators can im­
plement a variety of DNS security measures to counteract these threats. DNSSEC
(Domain Name System Security Extensions) is a critical tool that provides cryp­
tographic authentication of DNS data, ensuring the authenticity and integrity of
DNS responses. Additionally, using trusted and reputable DNS servers with strong
security practices can help reduce the risk of DNS server impersonation. Employ­
ing anomaly detection and monitoring tools for DNS traffic can provide real-time
insights into unusual activities and promptly identify and respond to potential at­
tacks.

DNS server impersonation in M I T M attacks poses a significant threat to the
security and privacy of network communications. Implementing robust security
practices, including DNSSEC, careful DNS server selection, and active monitoring, is
crucial to safeguard against such attacks and ensure the reliability of DNS resolution
in the face of potential manipulation. [8].

27

2 Thesis Results

2.1 Development tools

For our application we will be using a number of available tools to speed up and
ease up development.

2.1.1 Python

Python is a flexible and high-level coding language renowned for its straightfor­
wardness and clarity. It is extensively utilized for numerous purposes such as web
development, data analytics, machine learning, and many others. Python's vast
array of libraries and strong community backing make it a favored option for both
novices and seasoned programmers. Its neat and succinct syntax, coupled with
its cross-platform interoperability, renders it an effective instrument for a broad
spectrum of programming endeavors. Its adaptability is the primary factor for our
selection, given the multitude of open-source networking tools built on Python. [9].

2.1.2 Scapy

Scapy is a robust Python library employed for network packet manipulation and
analysis. It enables us to generate, transmit, intercept, and examine network pack­
ets at a granular level, rendering it an indispensable tool for network engineers, se­
curity experts, and researchers. Scapy offers the capability to design custom packets
and carry out various network-related activities, such as network scanning, protocol
testing, and packet inspection. Its adaptability and extensibility make it a widely
utilized tool for handling network protocols and packet-level operations in Python.

2.1.3 EVE-NG

Emulated Virtual Environment Next Generation (EVE-NG) is a robust network
emulation platform tailored for IT professionals, network engineers, and students to
simulate intricate networking scenarios. It offers a virtualized environment where
users can create and link virtual routers, switches, firewalls, and other network
devices to mirror real-world network setups. E V E - N G supports a broad spectrum
of virtualization technologies, including Cisco, Juniper, and other vendor equipment,
enabling users to test and validate network designs, troubleshoot issues, and gain
practical experience without the necessity for physical hardware. This adaptable
platform is renowned for its user-friendliness, flexibility, and capability to operate

29

on standard hardware, making it an invaluable resource for learning, testing, and
honing networking skills.

To implement these complex scenarios, we utilize VMware Workstation Player
13, a robust and widely accessible virtualization software package. VMware Work­
station Player 13 is renowned for its ability to efficiently simulate entire computer
operating systems. In our setup, we use this software to create and manage virtual
machines representing different roles within the network.

Specifically, we simulate a Windows 10 virtual machine as the victim device.
Windows 10 was chosen due to its widespread use and relevance in real-world scenar­
ios, which provides a realistic environment for testing the application's effectiveness.
The victim machine runs standard user applications and network services, making
it an ideal target for M I T M attacks. By employing a Windows 10 virtual machine,
we can assess the application's performance and stealthiness in intercepting and
manipulating data traffic within a typical user environment.

On the other hand, the attacker is represented by a Manjaro Linux virtual ma­
chine. Manjaro Linux is selected for its extensive toolset and ease of customiza­
tion, which are essential for developing and running the M I T M attack application.
The Manjaro virtual machine is configured with the necessary network tools and l i ­
braries, such as Scapy, to perform sophisticated network attacks. Using Linux as the
attacker's operating system provides a flexible and powerful platform to implement
and test various attack vectors.

2.2 Scenario

The final program should be very universal, meaning it is supposed to operate in
many different situations.Impersonating a Domain Name System (DNS) server is a
prevalent and concerning tactic utilized in sophisticated M I T M attacks, particularly
within IPv6 networks. DNS is an essential component of the internet that translates
human-readable domain names into IP addresses, facilitating web browsing and
communication between devices. When an attacker impersonates a DNS server,
they manipulate the DNS resolution process, intercepting and altering DNS queries
and responses or simply creating their own. This enables them to redirect legitimate
domain requests to malicious IP addresses, potentially leading to a wide range of
malicious activities.

In a DNS server impersonation attack, the attacker typically establishes a rogue
DNS server or modifies the DNS queries and responses flowing through the network.
For instance, DNS cache poisoning is a often used method, where the attacker injects
forged DNS data into the cache of a DNS resolver. As a result, the compromised DNS

30

resolver may return malicious IP addresses when queried for a particular domain,
causing users to unknowingly connect to malicious websites or servers.

Another technique that attackers employ is DNS tunneling, which allows them to
divert DNS traffic through their controlled DNS server. In such cases, the attacker
can use covert channels within DNS requests and responses to exfiltrate data, bypass
network security measures, or maintain persistent access to a compromised network.

Mitigating DNS server impersonation attacks is critical for maintaining the in­
tegrity and security of network communication. Network administrators can imple­
ment a variety of DNS security measures to counteract these threats. DNSSEC is a
critical tool that provides cryptographic authentication of DNS data, ensuring the
authenticity and integrity of DNS responses. Additionally, using trusted and rep­
utable DNS servers with strong security practices can help reduce the risk of DNS
server impersonation. Employing anomaly detection and monitoring tools for DNS
traffic can provide real-time insights into unusual activities and promptly identify
and respond to potential attacks.

DNS server impersonation in M I T M attacks poses a significant threat to the
security and privacy of network communications. Implementing robust security
practices, including DNSSEC, careful DNS server selection, and active monitoring,
is crucial to safeguard against such attacks and ensure the reliability of DNS resolu­
tion in the face of potential manipulation Here is a description of the hypothetical
scenario for the purpose of this thesis.

Fig. 2.1: Simulated Topology

The simulated network topology, meticulously constructed within the E V E - N G
virtual environment, serves as a critical testing ground for our program, primarily
due to the lack of physical devices. While some components of the topology are
realized as physical devices for testing purposes, the primary focus of evaluation
is within the controlled and isolated E V E - N G environment, safeguarded against
external connections.

31

To simplify the replication of simulated scenarios in the real world, stateless
configuration is employed for the victim computers, ensuring that any addresses will
work with the application. This configuration ensures that the victims acquire their
addresses in a manner consistent with real-world network behavior. The routers
within the topology are virtual instances of the Juniper vJunos Evolved router1,
providing a solid foundation for network emulation. Similarly, the switches are
virtual representations of the Juniper vJunos Switch, faithfully reproducing the
functionalities of actual network switches.

This intricately designed test network aims to simulate a diverse array of cyber
threat scenarios and assess the resilience of network infrastructures. At the core of
this network is the main network, comprising a switch (SI) intricately connected to
a router (Rl) . Notably, the attacker's laptop and the first victim (Victim 1) are also
linked to the SI switch, showcasing the adaptability of the simulated environment
in accommodating diverse network configurations.

The design choice to represent victims as singular devices, while aimed at re­
source optimization, incorporates scalability for more intricate testing scenarios.
Router SI extends its connectivity by linking to another switch (S2), which, in turn,
integrates another Victim P C (Victim 2). This expansion adds complexity to the
potential threat landscape, enabling a more thorough evaluation of the program's
efficacy.

R l assumes the pivotal role of a default gateway for the entire network, facilitat­
ing seamless communication and data flow between the various components. The
topology is intelligently divided into two interconnected networks, with routers R l
and R2 establishing a connection between them. To add further complexity to the
setup, another instance of switch S2 is connected to R2, hosting yet another P C
called Remote Host used to check connectivity to any remote host. This multi-
layered network structure mirrors the intricacies of real-world scenarios, allowing
for a more comprehensive evaluation of the program's performance.

Within this elaborate topology, a DNS server has been strategically incorporated
into switch S2, serving as a centralized entity that manages domain name resolu­
tion for both interconnected networks. This addition enhances the realism of the
simulated environment, mirroring the crucial role of DNS servers in actual network
architectures.

In summary, the intricately designed network topology within the E V E - N G sim­
ulated environment emulates a diverse array of cyber threat scenarios. The inter­
connected routers, switches, and victim computers create a dynamic environment
that allows for a thorough evaluation of network resilience and the effectiveness of

1 Additional testing on the Mikrotik Cloud Hosted Router was also successfull

32

security measures. This comprehensive platform provides valuable insights into the
program's capabilities and its ability to mitigate various cybersecurity challenges.

2.2.1 Device Set-up

The victim machines are operating with a standard installation of Windows 10
(22H2) Home edition. This baseline configuration ensures that no special settings,
configurations, or firewall rules are necessary for the M I T M attack to be success­
ful. By utilizing a default installation, we can simulate a typical user environment,
thereby providing a realistic assessment of the application's efficacy in intercepting
and manipulating data traffic.

The attacker machine, on the other hand, is configured with a fresh installa­
tion of Manjaro Linux 23.0 on a x86 architecture and using the Plasma desktop
manager option. Manjaro Linux is selected for its robust performance, flexibility,
and comprehensive toolset, which are essential for conducting sophisticated net­
work attacks. The attacker machine must have Python installed, along with all
required dependencies necessary for the script to run correctly. These dependencies
include network libraries such as Scapy, which facilitate packet manipulation and
network traffic analysis. The application makes use of specifically of the firewall
tool ip6tables and the tee command, without which it can not properly function.
The network infrastructure includes Juniper 2 and Mikrotik 3 routers, which are con­
figured in a hybrid IPv4 and IPv6 mode. However, it is important to note that no
IPv4 traffic is generated on the network, focusing the attack solely on IPv6 traffic.
This configuration is particularly relevant given the increasing adoption of IPv6 and
the unique security challenges it presents. By focusing on IPv6, we can explore
vulnerabilities specific to this protocol and demonstrate the application's capability
to exploit them. Additionally, the DHCPv6 servers on the network are disabled,
resulting in the use of stateless addresses by the machines. By disabling DHCPv6
and relying on S L A A C , we can assess how effectively the application can perform
M I T M attacks in environments that use stateless address configuration and compare
our results with a test performed with a stateful configuration. The use of standard
installations and configurations for both the victim and attacker machines, along
with the hybrid IPv4/IPv6 network setup and the reliance on stateless addresses,
provides a comprehensive and realistic testing environment. This setup ensures that
the M I T M attack application can be evaluated under typical network conditions,
highlighting its practical applicability and effectiveness in real-world scenarios.

2Juniper vJunos Swtich 23.1R1 and vJunosEvolved Router 23.1R1
3 Mikrotik Cloud Hosted Router 7.14.3

33

2.3 Application

The terminal application is built on the Python library called click which makes the
process of developing terminal command applications very easy. We do not need any
complicated functions to parse command options and arguments. Click can handle it
easily and pass the arguments down to the main functions. The application consists
of 3 modes of operation the user chooses when starting the process. The modes are
chosen when starting the application by the first argument right after the name of
the script. A n example command can look like this:

sudo python mitm.py gateway - t f e 8 0 : : 4 -gw fe80 : :1 - i ethO

Additional parameters can be listed by typing —help after any mode command.

2.3.1 Gateway impersonation mode

CrumblyBread > python mitm.py gateway — h e l p
Usage: mitm.py gateway [OPTIONS]

Options:
- i , — i n t e r f a c e TEXT I n t e r f a c e of the network
-T, — T a r g e t s F i l e TEXT F i l e w i t h 11 addresses of t a r g e t s
- t , — t a r g e t TEXT Target IPv6 address
-gw, —ga t e w a y TEXT The d e f a u l t gateway to impersonate
-p, -pcap W r i t e the t r a f f i c i n t o a pcap f i l e
— h e l p Show t h i s message and e x i t .

CrumblyBread > |

Fig. 2.2: Parameters for the gateway impersonation mode

In this mode we can provide a single target by using the parameter -t or multiple
targets by providing a path to a file where link-local addresses are listed on each line
to the - T option. The - i option points to the interface we desire to use for the attack.
The application can not run correctly without this option being specified. Lastly
the -gw option needs to be provided with the address of the real link-local address
of the default gateway as it is not yet able to request it autonomously. Lastly the -p
option starts generates a pcap file with all captured traffic. After these parameters
are provided, the application starts by configuring itself with necessary information
and then automatically starts the attack.

In this operational mode, the application attempts to mimic a default gateway
while concealing router advertisement packets from the legitimate default gateway.
It then redirects any traffic involving a victim to the genuine gateway, ensuring
proper routing. This is achieved by repeatedly sending router advertisement (RA)
packets into the network, using the link-local and M A C addresses of the original

34

default gateway as source addresses in the Ethernet and IPv6 packet layers, respec­
tively. A crucial aspect is the manipulation of the router lifetime parameter within
the Neighbor Discovery (ND) router advertisement layer, setting it to a value of
0. This configuration indicates that any device receiving this packet, in accordance
with R F C 4861 section 4.2, will not designate this address as its gateway. Subse­
quently, a similar packet, featuring the attacker's device address as the source, is
sent, but with the router lifetime adjusted to its maximum value. These packets are
transmitted at regular intervals of five seconds, ensuring the continuous injection of
these deceptive advertisements into the network. A n alternative method involves
monitoring the network for the genuine gateway's advertisement before sending the
deceptive packets. This approach ensures that targeted devices, upon receiving
the manipulated advertisement, direct their traffic to our specified IP address. We
then intercept and forward this traffic to the legitimate gateway. This methodol­
ogy ensures seamless routing while enabling the attacker to manipulate the data
traffic without detection. To achieve comprehensive bidirectional traffic capture, we
generated random virtual M A C and link-local addresses using the EUI-64 process.
This innovative solution allowed us to create multiple virtual interfaces that serve
as virtual Ethernet ports, each configured with unique identifiers. These virtual
interfaces were instrumental in capturing all traffic directed to and from the target
devices, thereby ensuring that no data packets were missed during the interception
process. The deployment of virtual addresses provided a dual advantage. Firstly,
it enabled the circumvention of the inherent limitations associated with incomplete
traffic capture, thereby allowing for the interception of both incoming and outgoing
communications. Secondly, and equally important, it facilitated the differentiation
of traffic originating from various devices within the network. This differentiation
was crucial for accurately monitoring and manipulating the network traffic specific to
each target device, thereby eliminating any potential for confusion or overlap in the
intercepted data. Furthermore, this approach adheres to a systematic methodology
to ensure robustness and reliability. By continuously sending router advertisements
with carefully manipulated parameters and by establishing virtual interfaces with
unique identifiers, the application maintains a high level of control over network
traffic. This sophisticated level of control is essential for the successful execution
of Man-in-the-Middle attacks, as it allows for precise manipulation and redirection
of data flows without alerting the target devices or the legitimate network infras­
tructure. In conclusion, the strategic use of virtual M A C and link-local addresses
significantly enhances the application's capacity to perform detailed traffic analysis
and manipulation. By ensuring that bidirectional traffic capture is comprehensive
and that traffic from different devices can be precisely distinguished, the method­
ology employed not only improves the robustness of the M I T M attacks but also

35

contributes to a more rigorous and systematic approach to network traffic intercep­
tion and analysis. Consequently, the generation and utilization of virtual addresses
stand as a pivotal enhancement, bolstering the effectiveness and precision of our
overall strategy in performing Man-in-the-Middle attacks within a virtual network
environment.

Start

Configure
data about
this device

Every 5
seconds send

advertise
packets to
targets

Configure
data about
the targets •
Conf
data
thee
gate

gure
about
efutt
way

• Generate
response
based on
request

parameters

Fig. 2.3: Development diagram of the gateway impersonation mode

36

As this diagram shows, the application adopts the guise of a default gateway,
steering incoming traffic to the legitimate gateway by sending deceptive packets
with manipulated router lifetime values. The development diagram highlights the
need to refine the packet injection process for efficiency and enhance bidirectional
traffic interception techniques to bolster the overall effectiveness of this deceptive
maneuver.

2.3.2 Rogue DHCPv6 server

CrumblyBread > python mi.tm.py dhcp — h e l p
Usage: mitm.py dhcp [OPTIONS]

Options:
- i , — i n t e r f a c e TEXT I n t e r f a c e you want to connect to
-T, — t a r g e t s F i l e PATH F i l e p a t h t o l i s t of t a r g e t s to g i v e addresses
-n, — n e t w o r k A d d r e s s TEXT Network address of poo l
-p, — p r e f i x TEXT P r e f i x l e n g t h of the poo l
-dns TEXT Address of DNS s e r v e r
— h e l p Show t h i s message and e x i t .

CrumblyBread =• |

Fig. 2.4: Parameters for the rogue D H C P mode

As the Figure 2.4 shows, we need to specify the interface on which we want to listen
for DHCPv6 requests to the - i parameter. The application needs an interface for
proper function. Also a file of link-local addresses of desired targets separated on
each line. The file of targets is passe to the - T parameter. For proper initialization
of the server, an address pool needs to be defined. This is done by providing the
network address of the pool to the -n parameter, and the desired prefix to the -
p parameter. Also, a better way of defining the address space is planned to be
implemented in the future as this method is not ideal. The last thing this mode can
offer is a DNS server in the -dns field, that we would have configured if requested.
By default the server will use the public google DNS server.

The primary function of a DHCPv6 server is to provide DHCPv6 addresses to
newly connected devices. For the server to be discoverable by these devices, it must
be advertised across the network. This is accomplished through the transmission
of modified router advertisement messages. To signal the availability of address
configuration in the network, the Managed address configuration flag is set to 1, in
accordance with R F C 4861 section 4.2 [10]. Additionally, the Other configuration
flag is set, indicating the server's capability to provide other configuration param­
eters. The transmission of these packets is initiated from the legitimate link-local
address, necessitating the configuration of the router lifetime field to 0 to avoid

37

http://mi.tm.py

presenting our device as a default route. This ensures that new devices connecting
to the network dispatch DHCPv6 solicit messages to the All DHCP Relay Agents
and Servers multicast address ff02::l:2, as specified in R F C 8415 section 7.1 [4].
These solicit messages can be responded to with an advertisement message. The
packet manipulation library Scapy is utilized for crafting these responses. Although
Scapy provides an Answering Machine for crafting replies to requests, it currently
lacks the capability to delegate IP addresses in the DHCPv6 process. Consequently,
this functionality needs to be implemented from scratch. The modification of the
original Scapy answering machine is required to facilitate responses to the basic
DHCPv6 process outlined in the Theory section on DHCPv6. The implementation,
while basic, enables the assignment of addresses and processing of any options at­
tached by the client to their packets. However, it currently supports only the most
fundamental interactions, with each address eligible for assignment only once.

2.3.3 Rogue DNS server

CrumblyBread > python mitm.py dns — h e l p
Usage: mitm.py dns [OPTIONS]

Options:
- i , — i n t e r f a c e TEXT I n t e r f a c e you want t o connect t o
-T, — T a r g e t s F i l e PATH F i l e p a t h to l i s t of t a r g e t s to p r o v i d e dns
-dns, — D n s F i l e PATH F i l e p a t h to a dns t r a n s l a t i o n f i l e
- j o k e r R e d i r e c t a l l q u e r i e s t o the f i r s t address i n DNS

F i l e
— h e l p Show t h i s message and e x i t .

CrumblyBread s- |

Fig. 2.5: Parameters for the rogue DNS mode

The parameter that this mode requires to function is a DNS file, where each line is
composed of an IPv4 address, then an IPv6 address separated by a space, then a
domain name to be matched with these addresses separated by yet another space.
This correctly configured file needs to be passed to the -dns argument. A text file
of link-local addresses of targets passed into the - T parameter and an interface to
listen for DNS requests in the - i parameter. Additionally the optional -joker flag
can be attached to the command, which will cause the server to reply to every single
incoming request with the first address in the DNS file.

In the role of a DNS server impersonator, the initiation of communication with
targeted devices requires a systematic approach. The first step involves notifying de­
vices of the impersonator's existence through the strategic dissemination of a Router
Advertisement to all designated targets. This notification process is designed with

38

subtlety in mind, with the router lifetime intentionally set to 0 to avoid promoting
the imposter device as the default route. A critical facet of this communication is
the incorporation of a Recursive DNS Server Option layer, meticulously configured
in strict accordance with R F C 6106 section 5.1 [11]. As a result, nodes traversing the
network will seamlessly designate this server as their IPv6 DNS server, unwittingly
paving the way for subsequent interception and manipulation.Upon successful inte­
gration into the network, all incoming DNS requests are intercepted and subjected
to a meticulous processing mechanism orchestrated by Scapy. The configuration of
this mechanism is highly customizable, involving the specification of user-defined
parameters and the provisioning of a DNS file.This intricate process ensures the
covert interception and manipulation of DNS requests within the network, allow­
ing the Python application to operate seamlessly as a DNS server impersonator.
The nuanced configuration parameters and meticulous adherence to R F C standards
underscore the sophistication and effectiveness of the DNS manipulation aspect of
the application, enhancing its overall capabilities in the realm of Man-in-the-Middle
attacks.The figure 2.6 outlines the key steps involved in the DNS server imperson­
ation process, including the router advertisement, Recursive DNS Server Option
configuration, interception and processing of DNS requests, and the subsequent re­
sponse mechanism. The flow provides a visual representation of the communication
sequence between the targeted devices and the impersonator device during the DNS
manipulation process. The DNS file serves as a comprehensive guide, housing do­
mains earmarked for translation and their corresponding IPv4 addresses. These
addresses are curated meticulously to respond to type A requests. Simultaneously,
the DNS file contains IPv6 addresses, strategically assigned for responding to type
A A A A requests. In instances where a suitable address cannot be determined from
the DNS file, the DNS request seamlessly transitions to the next stage.The next
stage involves the judicious forwarding of DNS requests to a legitimate DNS server,
ensuring a comprehensive approach to address resolution. This intricate process
ensures covert interception and manipulation of DNS requests within the network.
The nuanced configuration parameters and meticulous adherence to R F C standards
underscore the sophistication and effectiveness of the DNS manipulation aspect of
the application, thereby enhancing its overall capabilities in the realm of Man-in-
the-Middle attacks.

39

Start

J _

Configure
data about
this device

I
Configure
data about
the targets

Fig. 2.6: Development diagram of the DNS mode

2.4 Virtual testing

2.4.1 Default gateway testing

Before the attack, a Windows device typically receives its network configuration
via D H C P or manual settings, establishing the IP address, subnet mask, default
gateway, and DNS servers correctly. The device relies on these legitimate settings

40

to communicate effectively within the network. With using normal traffic flow, the
device routes all traffic through the default gateway, and DNS queries are resolved
by trusted DNS servers. Users experience uninterrupted network services, with web
pages and applications functioning as expected. Standard security measures include
active antivirus software like Windows Defender, configured firewalls, and regular
system updates. These measures protect the device against known threats and
ensure overall network security.

• 1
{etlio) < \ j i

• Victim;

N

B l {et-0'O.'i {et-0'O.'i

thfl I i

» tim 1 -. [c
JfKpO

(qe-aiOts] • Switchl
**

• Switchl

am /' J /' J

Fig. 2.7: Flow of a packet in the network

Following a default gateway spoofing attack, the Windows device is tricked into
routing traffic through the attacker's device. This is achieved by the attacker sending
a malicious Router Advertisement packet, spoofing the default gateway and possibly
altering DNS server settings. With the attacker's device now acting as the default
gateway, all traffic is intercepted. DNS queries are redirected to the attacker's DNS
server, which can respond with malicious IP addresses. Despite this interception, the
user's experience might remain seemingly normal initially. The immediate observ­
able change for users may be minimal. Web browsing and other network activities
will appear unaffected due to the attacker's efforts to provide legitimate-looking
responses. However, subtle issues, such as occasional "page not found" errors, can
arise if DNS responses are misconfigured. These errors were particularly evident
during controlled testing when unassigned addresses were used in DNS responses.
The attack poses significant security risks. Sensitive data, including login creden­
tials and personal information, can be captured. Standard antivirus and firewall
protections will not detect the attack, as the traffic itself appears legitimate but is
rerouted through a malicious intermediary.

41

J i J i ethril

• Victim » Switch;
s

•(et­ ile,1; >

* • Victim

chO

—•

fr 0 0 5

[1 • R-1
«-«-

* Switd 1

Im BT
* Switd

IM P ethftl

• Attacke • Attacke

Fig. 2.8: The flow of a packet through a spoofed

2.4.2 DHCP server testing

Under normal conditions, a Windows device obtains its network configuration from
a legitimate D H C P server. This configuration includes the IP address, subnet mask,
default gateway, and DNS server addresses, which are essential for proper network
communication. With correct settings from a legitimate D H C P server, the Windows
device routes its traffic through the authorized gateway and resolves DNS queries
through trusted DNS servers. The network operates smoothly, with web browsing,
email, and other services functioning without issues. Standard security measures on
a Windows device include active antivirus software, configured firewalls, and regular
updates. These measures protect against common threats and ensure the device's
overall security.

a a
g j ? {ethd] -(ae-oro/sj s T

• Vic tim 1 1 • Switch}

et-WOil) 1

* Vi tin 1

tl a

e-010/5

K-OiMC 1 1 R-1
. -

(ge-OMB m Switch 1

[I r a SB* |eth(

• A t t a

|eth(

DHCP sstvsr • A t t a DHCP sstvsr

Fig. 2.9: A rogue DHCPv6 server connected to the topology

42

In a rogue DHCPv6 server attack, the attacker introduces a malicious D H C P
server into the network, responding to DHCPv6 requests faster than the legitimate
server. The Windows device, receiving incorrect settings, reconfigures its network
parameters according to the attacker's instructions. This includes an incorrect de­
fault gateway and potentially malicious DNS servers. Once the network configu­
ration is compromised, all traffic from the Windows device is routed through the
attacker's device. DNS queries are redirected to the attacker's DNS servers, which
can resolve domain names to malicious IP addresses, leading users to phishing sites
or other harmful destinations. The immediate impact on the user might be minimal
and not easily detectable. Network connectivity remains, and applications may con­
tinue to function. However, there are subtle signs, such as occasional connectivity
issues, slower response times, or access to unexpected websites. These symptoms
arise from the interception and manipulation of traffic by the rogue D H C P server.
The attack significantly compromises the device's security. The attacker can capture
sensitive information, including login credentials and personal data. Additionally,
by manipulating DNS responses, the attacker can redirect users to fraudulent web­
sites to collect information or distribute malware. Standard security measures may
not immediately detect this type of attack, as the device operates under seemingly
legitimate network settings provided by the rogue D H C P server.

2.4.3 DNS server testing

Under normal circumstances, a Windows device receives DNS server information
either through a Router Advertisment packet. Alternatively, network administra­
tors or users might manually configure the DNS server settings to point to specific,
trusted DNS servers. These DNS servers are typically part of the network's infras­
tructure or reputable public DNS services, ensuring accurate and reliable resolution
of domain names to IP addresses. With correct DNS settings in place, the Win­
dows device queries legitimate DNS servers to resolve domain names. This seamless
translation is essential for enabling users to access websites, email servers, and other
internet-based services without interruption. Consequently, network operations, in­
cluding web browsing, email communication, software updates, and cloud-based
services, function smoothly and securely, providing a reliable user experience. Ac­
tive antivirus software continuously scans for and neutralizes malware, viruses, and
other malicious software. Configured firewalls monitor and control incoming and
outgoing network traffic based on predetermined security rules, helping to prevent
unauthorized access and data breaches. Regular updates to the operating system
and installed software ensure that the device is protected against the latest secu­
rity vulnerabilities and exploits. These updates often include patches for newly

43

discovered threats and enhancements to existing security features.

Fig. 2.10: A victim sending a DNS query

In a rogue DNS server attack, the attacker either poisons the DNS cache or pro­
vides malicious DNS server settings through D H C P or direct network manipulation.
The Windows device unknowingly configures itself to use the rogue DNS server,
redirecting its DNS queries to the attacker-controlled server. With the DNS server
compromised, all DNS queries from the Windows device are directed to the rogue
server. The attacker can resolve domain names to malicious IP addresses, leading
users to phishing sites, malware distribution points, or other harmful destinations.
The immediate impact on the user might be minimal and not easily detectable.
Network connectivity remains, and applications may continue to function normally.
However, subtle symptoms such as unexpected website redirects, unusual SSL cer­
tificate warnings, or slower response times may occur due to the interception and
manipulation of DNS queries by the rogue server. The attack poses significant
security risks. The attacker can capture sensitive information, including login cre­
dentials and personal data, by redirecting users to fraudulent websites. Additionally,
by providing malicious DNS responses, the attacker can facilitate the distribution
of malware. Standard security measures may not immediately detect this type of
attack, as the DNS traffic itself appears legitimate but is being manipulated by the
rogue server.

Fig. 2.11: A victim sending a DNS query after it has been manipulated

44

2.5 Testing on physical devices

For a short period of time, I was able to gain access to physical devices and was able
to use them to recreate a section of my simulated topology as seen in Fig. 2.1. The
recreated section looked like this:

1 L 1 L

v.
• Victiml

v.
(cje-OMS

fa '-mom \\ ±!^y [et-CJWOj

• vitch 1 • R'
r ^ m

i —6
er

eth 3)T

• Attach er

3)T

• Attach er er er

Fig. 2.12: Topology of the physical network

The addresses were set up according to this addressing table:

Table 2.1: Addressing table for physical testing

Device name link-local address M A C address
R l fe80::l cc:bl:82:82:6b:7a
Attacker fe80::81c7:95db:d212:fbl8 c4:23:60:7c:5f:ec
Victim fe80::b96c:c817:fl60:767d 08:8f:c3:03:71:32

A l l we need to start the program is to download it with the command

git clone https://github.com/CrumblyBread/mitm-tools.git

or downloading the archive from this U R L

https://github.com/CrumblyBread/mitm-tools

and navigating into the new folder with the terminal command

cd mitm-tools

now the script is ready to use. For installation of required dependencies see the file
or get access to it on the aforementioned U R L

45

https://github.com/CrumblyBread/mitm-tools.git
https://github.com/CrumblyBread/mitm-tools

2.5.1 Gateway impersonation mode

Before initiating the attack, the network operates under standard conditions where
any IPv6 traffic generated by the victim device is transmitted directly to the default
gateway. In this typical network configuration, the data packets follow a straightfor­
ward path from the victim to the designated gateway, without any interception or
rerouting. Consequently, the attacker remains unable to access, monitor, or manip­
ulate this traffic, as it bypasses the attacker's device entirely. The gateway imper­
sonation mode was initialised by providing the chosen details from the addressing
table to the application. The command used to start it was

sudo python mitm.py gateway -t fe80::b96c:c817:f160:767d

-gw fe80::l - i enp7s0 -p

2901: dbS: abed : 1: a077 :4275: 9a8b : afl...
f eSB::4638:39ff:fsb4:5fa3

f f 0 2 : : l : f f b 4 : 6 f a 3 ICMPv6
2801: dbS: abed : 1: a077 :4275:... ICMPv6

E6 Neighbor S o l i c i t a t i o n f o r fe80::4633:39ff
E6 Neighbor Advertisement 2881:db3:abed:1:aB

> Frame 82554: 86 bytes or wire (688 b i t s) , 86 bytes captured (688 b
> Ethernet I I , Src: ASUSTekC0MPU_6b:26:74 (f0:79:59:6b:26:74), Dst
> Internet Protocol Version 6, Src: 2001:db8:abed:1:a077:4275:9a8b:a
v Internet Control Message Protocol v6

Type: Neighbor S o l i c i t a t i o n (135)
Code: 8
Checksum: Oxcbcd [correct]
[Checksum Status: Good]
Reserved: 80008880
Target Address: fe88::4633;39ff:feb4:5fa3

> ICMPv6 Option (Source link-Layer address : fB:79:59:6b:26:74)

OOSB 33 33 f f b4 5f a3 fO 7S
G01B 00 98 B8 20 3a f f 20 01
002B 42 75 9a 3b a9 Of f f 02
0038 00 01 f f b4 5f a3 87 OB
B04B 00 08 BB 00 B8 00 46 38
::7: fO 79 59 6b 25 74

59 6b 26 74 36 dd 60
Od bS ab cd 90 Ol aO
00 90 BB 00 98 BO 00 cb cd BB 00 98 00 f e
39 f f fe 04 5f a3 01

Fig. 2.13: The Victims' device communicating with a virtual device

and functioned as described above. The application started by configuring its own
parameters most importantly a randomly generated M A C address provided by the
get_random_mac() function in Scapy. And also a link-local address using the EUI-
64 process. The first packet it sent out was a Neighbour Solicitation packet request­
ing the M A C address from the target as displayed in Fig. 2.13. After the target has
responded, it sent a similar request to the gateway. After both link-local and M A C
addresses were established, the program sent the first Router Advertisement packets
to the target. This changed the default route of the Victim device to the address of
the Attacker. After this was verified on the target device, an ICMPv6 Echo Request
was initialised on the Victim device and sent to the address of its DNS server. The
message was correctly sent to the M A C address of the Attacker. You can see the
captured message and its subsequently changed and forwarded version here in Fig.
2.16

46

1613B 1332.7243448... f a 8 0 : : l fe80::b96c:c817:f160:767d ICMPv6 7S Router Advartisenu

16131 1332.7643422... f e80 : :4638: 39f f : fed0 : b391 fe80: : b96c : c817 : f160 :767d 70 Router AdvertiseirK

> Frame 16130: 7Q bytes ori wire (560 b i t s) , 70 bytes capture
> Ethernet I I , Src: Compallnform_03:71;32 (08:8f:c3:03:71:32
> Internet P r o t o c o l Version 6, Src: f e 8 B : : l , Dst: fe80::b96c
v i n t e r n e t Control Message P r o t o c o l v6

Type: Router Advertisement [134)
Code: 0
Checksum: 0x9347 [c o r r e c t]
[Checksum Status: Good]
Cur hop l i m i t : 0

OxOB. P r f [Default Router Preference): High > -^a£i_^
| Router l i f e t i m e (5): 8
Reachable time (iris): 0

Retrans timer (ins): 0

0O0O fB 79 69 6b 26 74 03 8f
0010 00 90 00 1G 3a f f f e 80
0020 00 00 00 00 00 01 f e 80
0030 CB 17 f l 60 76 7d 86 00
0040 00 00 |2mtjtHi!|tQ

c3 03 71 32 86 dd 60 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 b9 6c
93 47 00 08 00 00 00 00

Fig. 2.14: Sent Router Advertisement packets, with manipulated Router lifetimes

E t h e r n e t a d a p t e r E t h e r n e t 7:

C o n n e c t i o n - s p e c i f i c DNS S u f f i x .
I P v 6 A d d r e s s
Temporary I P v 6 Address
L i n k - l o c a l I P v 6 A d d r e s s
I P v 4 A d d r e s s
Subnet Mask
D e f a u l t Gateway

PS C : \ U s e r s \ B r a n i s l a v > i p c o n f i g

Windows I P C o n f i g u r a t i o n

2881:dbS:abed:1:392S:b8f2:a76b:f792
2881:dbS:abed:1:a«77:4275:9aSb:a90f
f e S B : : b 9 6 c : c S 1 7 : f l 6 8 : 7 6 7 d S S l l
192.16S.1.69
izz.izz. izz.i
feSB::1S11

E t h e r n e t a d a p t e r E t h e r n e t 7:

C o n n e c t i o n - s p e c i f i c DNS S u f f i x
I P v 6 A d d r e s s
Temporary IPv6 A d d r e s s
L i n k - l o c a l I P v 6 A d d r e s s . . .
IPv4- A d d r e s s
Subnet r",ask
D e f a u l t Gateway

2881:dbS:abcd:l:392S:b8f2:a76b:f792
2001:dbS:abed:1:a077:4275:9aBb:a90f
f e S 8 : : b 9 6 c : c S 1 7 : f l 6 0 : 7 6 7 d S l l
192.168.1.69

feS«::463S:39ff:fea9:312fSll

Fig. 2.15: The Victim's configuration before and after and attack

After being received the packet is changed according to the script. Meaning the
destination mac address is changed to the mac address of the virtual port generated
by the attacker, and the IPv6 destination address is also changed with either the
link local, or global address of the virtual device. Both the DNS query and the
response were captured and documented in a automatically generated pcap file.

47

1 282 16,173682403 2001:dbS:abed:1:9564:e346:514f:aalB 2001:4363 4363::8S8B ICMPV5 94 Echc

283 16,216569617 2001:dbS:abed:1:9554:S346:514f:aalB 2001:4363 4363::3B8B ICMPV5 94 Echc

> Frame 282: 94 bytes on wire (752 b i t s) , 94 bytes captured (752 b i t s) on i n t e r f a c e enp7s0, i d 0

>

>

Ethernet I I , Src: ASUSTekC_6b:26:74 (f0:79:59:6b:26:74), Dst: Compalln

Internet Protocol Version 6, Src: 2901:dbfl:abed:1:9554:e346:514f:aa!8,

_93:7i:32 (68:af:c3:93:71:32)

Dst: 2031:4860:4860::8888

Internet Control Message Protocol v6

Type: Echo (ping) request (123)

Code: 0

Checksurn: Gx4dff [correct]

[Checksum Status: Good]

U I d e n t i f i e r : 0x0001

Sequence: 39

j s [No response seen]

> Data (32 bytes)

Fig. 2.16: Captured packet on the Attackers machine

2.5.2 DHCP server mode

The D H C P server underwent a meticulous configuration process, requiring details
from the addressing table submitted in the targets.txt file, along with the creation
of a D H C P address pool. The selected pool, denoted as 9999:: / l 16, was chosen to
facilitate easy differentiation of addresses originating from this pool. To initiate the
application in D H C P mode with this specific configuration, the following command
was executed:

sudo python mitm.py dhep -T t a r g e t s . t x t -n 9999::

-p 116 - i enp7s0

The application commenced by gathering its own parameters, including the M A C
address and a link-local address. A n IPv6 address pool is created from above men­
tioned parameters, begining with the address 9999::1 and ending with the address
9999::fffe. Subsequently, it initiated the process of collecting all M A C addresses
corresponding to the link-local addresses specified in the targets.txt file. In this par­
ticular instance, only one address corresponding to the Victim device was provided
in the targets.txt file.

48

CrumblyBread > sudo python mitm.py dhcp -T t a r g e t s . t x t -n 9999:: -p 116 -1 enp7s8
Welcome to MITM-tools!
Device has been configured
Targets have been configured
Required processes have been s t a r t e d
ATTACK HAS BEEN STARTED (press any key then enter to q u i t)
Sending Router advertisments
Sending Router advertisments

Sent i packets.

fe88::b96c:c817:f168:767d i s rquesting an address

Sent i packets.
fe8B::b96c:c817:f16B:767d i s rquesting an address
Sending Router advertisments
Sending Router advertisments

Fig. 2.17: A screen capture of the application in use

Upon receiving a response from the target device, the program initiated its role
as a DHCPv6 configuration server by advertising itself within the network. At this
point, any DHCPv6 request transmitted by the target device triggered a correspond­
ing response from the application. To validate the functionality, a command was
executed on the target device to request a new DHCPv6 configuration. The result­
ing packet was accurately transmitted to the Attacker device, where the application
responded to the request, seamlessly navigating through the entire DHCPv6 pro­
cess as outlined in RFC-8415[4]. The entirety of this process was captured on the
Attacker device, providing a comprehensive record of the DHCPv6 interactions, as
depicted in Figure 2.18.

1G5 15.318175495 fe BS:: 096c : cß!7 : f!6B :7fJ7d ff82::1 Z DHCPvS 154 Solicit XID: 0*063313 CID: O0010O011fleEib5e9fB7959602674

L

131 17.257125690 fe

132 17.318383432 fe

SO: : 1:93c : cE17 :f!6G :767d

BB::3ic7:95db:d212:fb!8

ff02::1

feB0::bS

2 DHCPvS 209 Request XID: 0x063313 CID: O001OO011fleEib5e9f07959602674 IAA: 9999::!

&c:c817:f16B:767d DUCPvB 146 Reply XID: Oxb633iSCID: GOO100Oilde&b6e8f979596b2674 IAA: 9999::!

i (1I6B bits), 146 bytes captured (1163 bits] c

5 7c Ef ec GO 01 00 fle 09 &1 0 i 79 59 6b 26 74 00 03 09 23 0
3 cS GG GO GB fa BO 05 09 13 9

3 Type: link-layer

3 Type: link-layer addT<

Jware type: Ethernet (i;

• Identity Association

Option: Identity t

Length: 4B

Fig. 2.18: Captured D H C P communication on the Attackers machine

49

The successful configuration was validated on the target device to ensure seamless
integration and optimal functionality. The target device aptly utilized all the param­
eters provided by the application, demonstrating a comprehensive implementation
of the configured settings. For detailed insight into the entire configuration process
and parameters employed, refer to the comprehensive configuration documentation
provided by the application, which is available for examination and verification. Af­
ter the attack is executed, all IPv6 traffic originating from the victim device is no
longer directed to the default gateway. Instead, it is routed to the address generated
by the attacker's device. This redirection signifies a successful interception of the
network traffic, positioning the attacker at a critical juncture within the communi­
cation pathway. As a result, the attacker gains the capability to monitor, record,
manipulate, or even completely block the traffic at will.

Microsoft Windows [Version 10.0.19945.3693]
(c) Microsoft Corporation. A l l r i g h t s reserved.

C: WINDOWS\system32>ipconfig /renew6 "Ethernet 7"

Windows IP Configuration

Unknown adapter Lokálne pripojenie 3:

Media State : Media disconnected
Connection-specific DNS S u f f i x . :

Ethernet adapter Ethernet 7:

Connection-specific DNS S u f f i x
IPv6 Address
IPv6 Address
Temporary IPv6 Address. . . .
L i n k - l o c a l IPv6 Address . . .
IPv4 Address
Subnet Mask
Default Gateway

C: WINDOWS\system32>

2001: db8:abed:1:3928:b0f2:a76b:f792
9999::1
2001:db8:abed:1:15a2:2cd2:2dl3:e791
fe80::b96c:c817:fl50:757d%10
192.168.1.69
255.255.255.0
fe80::1%10
192.168.1.1

Fig. 2.19: Configured address on Victims machine

There is also a potential case, where there are more DHCPv6 servers in the
network. This creates the potential situation where the other server might see the
DHCPv6 Advertise packet and respond before the Attackers device has a chance to
do so. In this case there is nothing an attacker can do to take priority.

50

2.5.3 DNS server mode

Before initiating a DNS M I T M attack, the network operates under standard condi­
tions where any DNS queries generated by the victim device are transmitted directly
to the legitimate DNS server specified in the network configuration. In this typi­
cal setup, DNS queries follow a straightforward path from the victim to the DNS
server without any interception or rerouting. Consequently, we are unable to access,
monitor, or manipulate these queries, as they bypass our device entirely.

To execute the DNS M I T M attack, we configure our device to impersonate the
legitimate DNS server. This is achieved by utilizing the details provided in the
addressing table to craft and send spoofed DNS responses.

sudo python mitm.py dns - T t a r g e t s . t x t -dns dns.txt

- i enp7s0

This command configures the necessary parameters for the operation. The tar­
gets.txt file is parsed to extract all specified target addresses, which, in this instance,
includes only one address. Additionally, the dns.txt file is converted into a Python
dictionary, formatted according to the specifications required by the Scapy library.
The application needs to know the full M A C , link-local and global unicast addresses
of the victim to successfully capture any DNS request.

CrumblyBread > sudo python mitm.py dns -T t a r g e t s . t x t -dns dns.txt - i enp7s8
Welcome to MITH-tools!
Device has been configured
Targets have been configured
Required processes have been s t a r t e d
ATTACK HAS BEEN STARTED [press any key then enter to q u i t)
Sending Router advertisments
Sending Router advertisments
Sending Router advertisments
fe8Q::b96c:c817:f16B:767d sent a Querry
Sending Router advertisments
Sending Router advertisments
Sending Router advertisments
q
Q u i t t i n g
CrumblyBread > |

Fig. 2.20: A screen capture of the application providing a DNS response

After the application configured its parameters, it initiated the attack sequence.
The first step involved compromising the target device by dispatching a meticulously
crafted Router Advertisement packet that included the Recursive DNS Server
(RDNSS) option. This option contained the address of the attacker's device in
the DNS server field. Consequently, the target device now erroneously recognized

51

the attacker's device as a legitimate DNS server, purportedly provided by the de­
fault gateway. This deceptive maneuver ensured that any subsequent DNS queries
originating from the target device would be directed to the attacker's device for
resolution.

2901: d b8: a bed : 1: a07 7 :4275 : 9a8 b: a9... 2001: d be: a bed: 1: 8f ed: 544e:... DNS 86 Standard query 0x0902 AAAA vut.cz

> Frame 1893: 86 bytes on wire (588 b i t s) , 86 bytes captured (588 b l
) Ethernet I I , Src: ASUSTekC0MPU_6b:26:74 (f6:79:59:6b:26:74), Dst:
)-Internet Protocol Version 6, Src: 2001:db8:abed:1:a077:4275:9a8b:a
) User Datagram Protocol, Src Port: 57539, Dst Port: 53

eoao
eoio
8020
8030
8040

9B Sf c3 83 71 32 f 9 79 56 6b 26 74 86 dd 69
lb l b 09 20 11 49 20 01 Od b8 ab cd 99 B l aO
42 75 9a 3b a9 Of 20 01 Od b8 ab cd 98 B l 3f
54 4e c3 31 a2 42 eO ba OB 35 BB 20 94 b9 09
01 00 00 81 80 00 00 00 00 00 B3 76 75 74 02

> Frame 1893: 86 bytes on wire (588 b i t s) , 86 bytes captured (588 b l
) Ethernet I I , Src: ASUSTekC0MPU_6b:26:74 (f6:79:59:6b:26:74), Dst:
)-Internet Protocol Version 6, Src: 2001:db8:abed:1:a077:4275:9a8b:a
) User Datagram Protocol, Src Port: 57539, Dst Port: 53

8050 7a 00 00 l c 00 91
v Domain Name System (query)

8050

Transaction ID: 0x0002
> Flags: 0x0100 Standard query

Questions: 1
Answer RRs: 0
Authority RRs: B
Ad d i t i o n a l RRs: 0

s Queries
> vut.cz: type AAAA, cl a s s IN

Fig. 2.21: DNS query from the victim on the attackers device for the domain vut.cz

Upon intercepting a DNS query, the attacker utilized an Answering-Machine
algorithm, which is integrated within the Scapy framework, to generate an appro­
priate response. This algorithm is designed to process and respond to DNS queries
based on a dns file supplied by the user. It also considers various nuances, includ­
ing the specific options that may be appended to the DNS query. By meticulously
crafting responses that adhere to these parameters, the algorithm effectively main­
tains the illusion of legitimacy, thereby facilitating the continuation of the attack.
During the attack, the target device, believing it was communicating with a trusted
DNS server, would resolve domain names to IP addresses provided by the attacker.
This allowed the attacker to redirect the target device's traffic to malicious sites,
intercept sensitive information, or even facilitate further attacks such as phishing
or malware distribution. From the perspective of a client operating the victim de­
vice, no change in behavior, or appearance was detectable. The device continued
to operate as expected, with network connectivity seemingly intact. However when
the client's browser attempted to load web pages the browser displayed a "page not
found" error. This outcome was observed only during testing, where the address
provided in the DNS query response was intentionally left unassigned to monitor
the attack's effects without causing actual harm. In a real-world scenario, the attack
would be significantly more insidious and difficult to detect. The malicious appli­
cation would provide legitimate responses to DNS queries, redirecting the client's
browser to seemingly authentic, but attacker-controlled, websites. These sites could
mimic legitimate ones, capturing sensitive information such as login credentials or
injecting malicious content into the client's device.

52

http://vut.cz
http://vut.cz
http://vut.cz

2.6 Future Plans

Future plans for the development of the MITM-tools include enhancing its func­
tionality and expanding its feature set, improving detection and evasion techniques,
and focusing on usability and community engagement. To begin with, the tool will
be extended to support additional network protocols beyond IPv6, ICMPv6, and
DHCPv6, such as H T T P / H T T P S and DNS over HTTPS (DoH), along with imple­
menting more sophisticated attack techniques like SSL stripping and advanced DNS
spoofing. In terms of detection and evasion, advanced stealth enhancements will be
developed to bypass modern intrusion detection and prevention systems (IDS/IPS),
mimicking legitimate traffic patterns and utilizing encryption to conceal malicious
activities. Anti-detection measures will also be integrated to neutralize countermea-
sures deployed by network security systems. Usability improvements will involve the
creation of a user-friendly graphical interface to simplify configuration and deploy­
ment, making the tool accessible to users with varying levels of technical expertise.
Additionally, automation features and scripting capabilities will be introduced for
predefined attack scenarios. Finally, community engagement and collaboration will
be emphasized through open-source contributions, fostering community input and
collaborative development, and establishing partnerships with academic institutions
and industry leaders to drive further research and development in network security.

53

Conclusion
In concluding this thesis, the journey from the inception to the development of the
Python application for M I T M attacks marks a significant exploration at the intersec­
tion of programming, networking, and cybersecurity. The creation of this application
represents a unique endeavor to offer a versatile tool capable of integrating various
attack methods into a unified solution.

Throughout the research, the Scapy library's proficiency in crafting and manipu­
lating network packets has been harnessed, coupled with an in-depth understanding
of IPv6, ICMPv6, and DHCPv6 protocols. The application's focus on fake DNS,
DHCP, and default gateway attacks underscores its potential as a comprehensive
toolkit for security professionals and researchers.

As the project evolves, future plans center around refining the application, ex­
panding its capabilities, and addressing challenges identified during testing. Em­
phasis will be placed on ethical considerations, user responsibility, and collabora­
tion within the cybersecurity community. The envisioned trajectory seeks to keep
pace with emerging networking technologies, ensuring the application's relevance in
dynamic cybersecurity landscapes.

The commitment to ethical use, ongoing development, and community collabora­
tion aims to establish the application as a valuable resource for educational purposes
and responsible penetration testing. The continuous evolution of the tool aligns with
the broader goal of contributing to the field of network security and empowering cy­
bersecurity practitioners with effective, responsible, and adaptable solutions.

55

Bibliography
[1] Dr. Steve E. Deering and Bob Hinden. Internet Protocol, Version 6 (IPv6)

Specification. R F C 8200, July 2017. U R L : https://www.rfc-editor.org/
info/rfc8200, doi:10.17487/RFC8200.

[2] Marlon A . Naagas and Anazel P. Gamilla. Denial of service attack: an
analysis to ipv6 extension headers security nightmares. International Jour­
nal of Electrical and Computer Engineering (IJECE), 2022. U R L : https:
//api.semanticscholar.org/CorpusID:247456764.

[3] Hao Wu, Xianglei Dang, Lidong Wang, and Longtao He. Information fusion-
based method for distributed domain name system cache poisoning attack de­
tection and identification. IET Inf. Secur., 10(l):37-44, January 2016.

[4] Tomek Mrugalski, Marcin Siodelski, Bernie Volz, Andrew Yourtchenko, Michael
Richardson, Sheng Jiang, Ted Lemon, and Timothy Winters. Dynamic Host
Configuration Protocol for IPv6 (DHCPv6). R F C 8415, November 2018. U R L :
https://www.rfc-editor.org/info/rfc8415, doi:10.17487/RFC8415.

[5] Mohamed Abdallah Elakrat and Jae Cheon Jung. Development of field pro­
grammable gate array-based encryption module to mitigate man-in-the-middle
attack for nuclear power plant data communication network. Nucl. Eng. Tech-
nol, 50(5):780-787, June 2018.

[6] Liumei Zhang, Yu Han, Yichuan Wang, and Ruiqin Quan. Petri net model
of mitm attack based on ndp protocol. In 2022 International Conference on
Networking and Network Applications (NaNA), pages 402-405, 2022. doi:
10.1109/NaNA56854.2022.00074.

[7] Alexandru Lucian Petrescu, Mohamed Boucadair, and Leaf Y . Yeh. Route
problem at relay during dhcpv6 prefix delegation. 2013. U R L : https://api.
semanticscholar.org/CorpusID:64545539.

[8] Amir Herzberg and Haya Shulman. Retrofitting security into network protocols:

The case of DNSSEC. IEEE Internet Comput., 18(1):66-71, January 2014.

[9] Dave Kuhlman. A Python Book: Beginning Python, Advanced Python, and
Python Exercises, June 2012. U R L : https://www.davekuhlman.org/python_
book_01.pdf.

[10] William A. Simpson, Dr. Thomas Narten, Erik Nordmark, and Hesham Soli-
man. Neighbor discovery for ip version 6 (ipv6). R F C 4861, September

57

https://www.rfc-editor.org/
https://www.rfc-editor.org/info/rfc8415
https://api
https://www.davekuhlman.org/python_

2007. U R L : https://www.rfc-editor.org/info/rfc4861, doi : 10.17487/

RFC4861.

[11] Syam Madanapalli, Jaehoon Paul Jeong, Soohong Daniel Park, and Luc Be-
loeil. IPv6 Router Advertisement Options for DNS Configuration. R F C
6106, November 2010. U R L : https://www.rfc-editor.org/info/rfc6106,

doi:10.17487/RFC6106.

58

https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc6106

Symbols and abbreviations
IPv6 Internet Protocol version 6

M I T M Man-in-the-middle

DHCPv6 The Dynamic Host Configuration Protocol version 6

DNS Domaim Name System

D N S S E C Domain Name System Security Extensions

mDNS Multicast DNS

Zeroconf Zero Configuration Networking

A R P Address Resolution Protocol

N D P Neighbour Discovery Protocol

M A C Media Access Control

SSL Secure Sockets Layer

TLS Transport Layer Security

59

List of appendices

A MITM-tools Application

MITM-tools Application

root of the attached archive
_ mitm. py The main MITM-tools script
classes.py A supporting script containing the used classes
dhcpAM. py Script containing the DHCPvö answering algorithm
dnsAM.py Script containing the DNS answering algorithm
_ targets. txt An example of a Targets file
_ dns. txt An example of a DNS dictionary
_requirements.txt The list of all needed dependencies
README. md The documentation for the code
LICENSE The licence agreement

63

