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ABSTRACT 
This thesis presents the development of a Python application designed to execute Man-in-
the-Middle (MITM) attacks within a virtual IPv6 network. Motivated by a deep interest 
in information security, networking, and programming, this research aims to create a 
versatile tool that integrates various attack methods into a single, cohesive solution. 
The objectives include the development of Python code utilizing the Scapy library, a 
thorough understanding of IPv6, ICMPv6, and DHCPv6 protocols, and the creation 
of an application that focuses on three primary attack vectors: a fake DNS server, a 
fake D H C P server, and a fake default gateway. The evaluation criteria will assess the 
performance and advantages of the application compared to existing specialized tools. 
Methodologically, the Scapy library is employed, and a virtual network environment is 
meticulously designed for comprehensive testing. Ethical considerations emphasize user 
responsibility in the utilization of such tools, drawing analogies with dual-purpose tools 
like knives. 
The scope of the thesis encompasses theoretical foundations, application design, virtual 
network setup, testing methodologies, and result analysis. The aim is to contribute 
valuable insights into MITM attacks while providing a versatile tool for security prac­
titioners. The research explores the intersection of Python programming, networking 
protocols, and cybersecurity, offering a thorough investigation into the dynamic field of 
Man-in-the-Middle attacks. 

KEYWORDS 
Man-in-the-middle, IPv6, ICMPv6, DHCPv6, DNS, Python, Scapy, default gateway, 
DHCPv6 server, DNS server 
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Introduction 
This thesis is devoted to the development of a Python application for executing Man-
in-the-Middle (MITM) attacks within a virtual IPv6 network. Driven by a passion 
for informational security, networking, and programming, the author seeks to create 
a versatile tool that combines various attack methods into a unified solution. 

The core objectives include exploring Python development using the Scapy l i ­
brary, understanding IPv6, ICMPv6, and DHCPv6 protocols, and creating an ap­
plication focusing on three key attack vectors: a fake DNS server, a fake DHCPv6 
server, and a fake default gateway. The research extends to evaluating the applica­
tion's performance compared to existing specialized tools. 

Utilizing the Scapy library, the application is designed for a virtual network en­
vironment, featuring inside and outside networks for comprehensive testing. Ethical 
considerations emphasize user responsibility, drawing parallels with tools that have 
dual purposes, such as knives. 

Chapters will delve into theoretical foundations, application design, virtual net­
work setup, testing methodologies, and result analysis. The aim is to contribute 
insights into M I T M attacks, offering a versatile tool for security practitioners. 
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Aim of the thesis 
The main goal of this work is to create a python application that allows man-in-the-
middle IPv6 attacks within a virtual network environment. This application should 
be versatile and adaptive to many different situations, types of networks and devices, 
but also easy to use and customize for professional users and beginners alike. We 
want to emphasise the automation and efficiency of this tool for a truly seamless 
experience with the combination of good readability and comprehensiveness of the 
output data. These standards should allow any user to choose our tool over, or in 
combination with already available tools, which will be compared with our result in 
the thesis. With the combination of good documentation, this tool should be at the 
same level with currently used tools and could have the potential to be used widely 
around the world. 
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1 Theory 

1.1 Internet Protocol version 6 

The Internet Protocol version 6 (IPv6) enables devices within digital networks to 
route packets of information to their correct destinations. This forms the foundation 
for connecting the entire world to the World Wide Web. The IPv6 protocol is the 
latest iteration of the Internet Protocol, designed to replace its predecessor, IPv4, 
due to its vastly superior address space among other enhancements [1]. This version 
was created to address the challenge of the internet's expansion beyond IPv4's capa­
bilities. IPv4 allows for packets to be split into multiple fragments, accommodating 
the limited transmission sizes of network segments. However, with modern transmis­
sion line capacities, packet fragmentation was replaced with a system of extension 
headers. This system permits the stacking of headers one after another, poten­
tially increasing a packet's size up to 4 G B , known as Jumbo Packets. The header 
length is also fixed by eliminating IPv4's variable-length options field, resulting in 
a 40-byte header. This is twice the size of the IPv4 header, which is a significant 
improvement given the considerably longer addresses. The address length has been 
quadrupled, allowing many more devices to connect to the internet. IPv6 addresses 
can be categorized into two main groups and further divided into numerous types[2]. 

1.1.1 IPv6 address structure 

Every IPv6 address is 128 bits in length. This results in 2 1 2 8 possible combinations, 
or approximately 3 • 10 3 8. This vast number allows each existing device to have a 
unique address. To maintain the organization of the address space, addresses consist 
of two complementary parts. The initial bits of any address identify the specific 
network. Each network can also contain smaller sub-networks, which inherit the 
network portion of the address from the parent network. The remaining part of the 
address is used to identify individual devices within the network. The maximum size 
of any network is determined by the length of this part. This also implies that the 
lengths of these two parts are variable. To track this, a number is always appended 
to any address called the **prefix**. A prefix simply represents the number of bits 
from the beginning of the address that define the network. Devices with identical 
prefix bits belong to the same network. 

Unicast Addresses 

Unicast addresses are addresses that identify a single network interface on a node. 
They serve as a unique identifier for communication with a specific device. The most 
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common types of unicast addresses include the Global Unicast address, which 
functions similarly to a postal address. This unique address refers to a single network 
interface of a node on the global network. A l l global IPv6 addresses begin with a 
48 b global prefix and are then subnetted using a 16-bit Subnet ID. This structure 
helps reduce the size of the global IPv6 routing table. Link-local addresses are 
another type of unicast address used by devices for direct communication. Every 
device automatically configures a link-local address, which always starts with the 
prefix FE80::/10 and is completed with the M A C address of the interface. This 
address allows a device to request a global address, inform connected devices of its 
presence, or communicate without a router. Routers do not forward packets with 
link-local source or destination addresses to other links. 

Multicast Addresses 

A Multicast address allows a device to send a packet to a group of recipients. In 
IPv6, a multicast address is identified by the first 8 bits being set to 1. Conse­
quently, every IPv6 multicast address begins with ff. The IPv6 protocol does not 
include a broadcast address, so to send a packet to all nodes, we use the All-Nodes 
Address. If this address is used as the destination, it indicates that the packet is 
meant to be received by all nodes, prompting each node that receives it to reply. 
Additionally, the All-Routers Address enables a device to send a packet to all 
routers on the network. It is used as the destination address for Router Solicitation 
and is typically defined as ff02::2. 

Given the vast size of the internet today, it is often necessary to connect to an­
other network. To communicate outside its network, one router within the network 
must be connected to the internet and serve as the default gateway. A gateway 
functions as a point of entry into another network, often leading to a change in 
addressing and the use of different networking technologies. Essentially, a router di­
rects data packets between networks with distinct network prefixes. Each computer's 
networking software maintains a routing table that determines which interface to 
use for transmission and which router within the network should forward specific 
sets of addresses. When none of these forwarding rules match a particular desti­
nation address, the default gateway is selected as the fallback router. The default 
gateway can be configured using the route command to set the node's routing table 
and default route. 

Enterprise network systems often consist of multiple internal network segments. 
When a device wants to communicate with a host on the public internet, it sends 
the data packet to the default gateway of its network segment. This router also 
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has a default route configured to a device on an adjacent network, moving one step 
closer to the public network. 

There are three different ways a device can be assigned an address: stateless 
address assignment, stateful address assignment, and manual assignment. 

Stateless auto configuration 

Stateless Address Auto-configuration (SLAAC) means that no internal state is re­
quired in the device or any other device in the network. The significant bits are 
taken from the network address, and the rest is generated either randomly—where 
there is a minimal risk of duplication due to the vast IPv6 address space—or using 
the EUI-64 identifier, where a M A C address is used as the basis. This process is 
deterministic, meaning it produces the same address if the same M A C address is 
provided. This fact can enable tracking a specific device throughout the internet. 

Statefull assignment 

Stateful assignment relies on the internal state of a device, typically a server in the 
network using the DHCPv6 protocol. The server keeps track of the addresses in use 
by devices in the network. This method ensures a unique address for each device, 
although it incurs a small amount of network traffic. 

Manual assignment 

The most reliable but also the most time-consuming method is manual assignment. 
It requires the system administrator to designate and assign an address to every 
connected device. This method demands significantly more effort compared to the 
other two, and for that reason, it is rarely used aside from small and controlled 
networks. 

1.1.2 Domain Name System 

The Domain Name System, commonly referred to as DNS, is a crucial and funda­
mental component of internet infrastructure. It functions as a distributed and hierar­
chical system for translating human-readable domain names, such as "www.vut.cz," 
into the numerical IP addresses used by network devices to locate and communicate 
with each other. This translation process is essential because computers operate us­
ing IP addresses, while users prefer the convenience of domain names for accessing 
websites, email services, and other online resources [3]. 
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DNS operates as a global network of interconnected servers, organized into a 
hierarchical structure. The system includes various types of DNS servers, with root 
servers at the top of the hierarchy, followed by top-level domain (TLD) servers, and 
authoritative name servers for individual domains. When a user enters a domain 
name into a web browser or another networked application, their device sends a 
DNS query to a DNS resolver. This resolver, often provided by the internet service 
provider (ISP) or configured on the user's device, is responsible for locating the 
appropriate DNS server to resolve the requested domain. 

Once the resolver identifies the necessary DNS server, it sends a request for the 
corresponding IP address. The DNS server processes the request, either by providing 
the IP address directly or referring the resolver to another DNS server if necessary. 
The resolver then caches the response for future use, reducing the need to repeatedly 
contact DNS servers for frequently accessed domains. 

DNS serves as a fundamental enabler of internet navigation, ensuring that users 
can access websites and services without the need to remember long IP addresses. 
It plays a pivotal role in internet security by authenticating and validating domain 
name ownership through DNSSEC (Domain Name System Security Extensions) and 
helping to detect and mitigate malicious activities, such as DNS spoofing or cache 
poisoning. Overall, DNS is an integral part of the digital ecosystem, making it 
possible for individuals and organizations to access and interact with the vast array 
of resources available on the internet. 

Multicast DNS 

Multicast DNS (mDNS) is a networking protocol designed to facilitate the automatic 
discovery of devices and services on a local network without needing a centralized 
Domain Name System (DNS) server. Developed as part of the Zero Configuration 
Networking (Zeroconf) initiative, mDNS enables devices to announce their pres­
ence and respond to queries within a local network using multicast IP addresses. 
This protocol simplifies the process of identifying and connecting to devices such as 
printers, cameras, and other networked services without requiring manual configu­
ration or traditional DNS servers. mDNS is particularly useful in scenarios lacking 
dedicated DNS infrastructure, promoting seamless and hassle-free communication 
between devices in a local network environment. 

1.2 Internet Control Message Protocol version 6 

The Internet Control Message Protocol version 6 (ICMPv6) is a supporting proto­
col for the internet protocol. It is used to transfer control messages such as errors, 
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success notifications, and pings. ICMPv6 helps in discovering devices, establishing 
initial connections, and alerting nodes about redirections in case of network failures. 
Similar to the Internet Protocol, ICMPv6 was adapted into its version 6 to work 
alongside IPv6, ensuring stable communication at the network layer. ICMPv6 mes­
sages are divided into two categories: informational messages and error messages. 
For this thesis, we will focus solely on the former. The most basic type of informa­
tional message is the Echo message. Echo messages, often known as pings, are used 
to verify connectivity between two devices. A ping consists of two separate mes­
sages: an echo request and an echo reply. The request is sent to a device to check 
connectivity, and the reply is sent back to the original sender to confirm successful 
communication. 

1.2.1 Neighbour Discovery Protocol 

ICMPv6 also uses a Neighbour Discovery Protocol to discover nodes on it's 
own network. 

Router Solicitation 

To establish a connection of a device with the router in the network. Firstly, when a 
device connects to a IPv6 network, it sends out a Router Solicitation packet. This 
means it does not have a router to send its traffic to and is requesting configuration 
information. 

Router Advertisement 

Any available router responds with a Router Advertisement packet to provide a 
default gateway, a default hop limit and other configuration details. Routers can also 
send out Router Advertisements automatically after a configured amount of time. A 
Router Advertisement packet is also used to discover nodes that are directly linked 
to our device. 

Neighbor Solicitation 

A Neighbor Solicitation packet is used to ask neighbouring devices for their 
physical and link layer addresses. 

Neighbor Advertisement 

If a node receives such a message, it replies with a so called Neighbor Adver­
tisement message to provide its information and the requesting node can note its 
information into its memory. 
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Redirect Message 

Lastly, we will need to look at the Redirect Message. Such a message is sent by a 
router to notify devices that it is no longer available for routing traffic. It also needs 
to provide an address to a replacement router so devices can have an alternative to 
sucessfully route their traffic. 

1.3 Dynamic Host Configuration Protocol for IPv6 

Dynamic Host Configuration Protocol for IPv6 (DHCPv6) is a widely used network 
protocol designed to automate the process of assigning IPv6 addresses and network 
configuration parameters to devices connected to the same IPv6 network. DHCPv6 
plays a crucial role in efficiently managing and distributing IPv6 addresses within a 
network, ensuring that devices can easily and accurately communicate in the IPv6 
environment. 

DHCPv6 closely resembles the operation of D H C P for IPv4 but has been cus­
tomized to meet the specific requirements of the IPv6 protocol. When a device, 
referred to as a DHCPv6 client, connects to an IPv6 network, it typically requires 
an IPv6 address and other essential network configuration parameters. These pa­
rameters include subnet prefixes, DNS server information, default gateway details, 
and additional network settings. A DHCPv6 server in the network provides these 
parameters. DHCPv6 servers are responsible for managing and distributing these 
parameters to the devices that request them. 

The DHCPv6 process as described in [4] begins when a DHCPv6 client sends 
a DHCPv6 SOLICIT message to the network in search of a DHCPv6 server. The 
message also contains fields called options which represent different network param­
eters the client is requesting. In response a DHCPv6 server within the network 
responds with an ADVERTISE message where it provides the client with an IPv6 
address and any other necessary configuration data in the same options fields. A l ­
ternatively, it can provide the client with an error message, for example when all 
addresses are depleted. The client sends a REQ UEST message where it can ask for 
more options or changes to the assigned configuration. The server then responds 
with a CONFIRM message which signals to the client that the configuration was 
successfully completed and the process is over. It's important to note that DHCPv6 
can operate in different modes, offering flexibility to network administrators. These 
modes include stateful and stateless modes as mentioned above. 

One of the main advantages of DHCPv6 is its role in simplifying network admin­
istration and management. It significantly reduces the need for manual configuration 
of individual devices and ensures the efficient allocation of IPv6 addresses, which is 
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essential for addressing the growing number of internet-connected devices and the 
transition to IPv6. It helps to ensure that devices across IPv6 networks can effort­
lessly and dynamically obtain the resources they need to participate in the exchange 
of data and services. 

1.4 Man-in-the-middle Attack 

A man-in-the-middle (MITM) attack 1 is a cybersecurity threat where an attacker 
secretly intercepts and possibly alters the communication between two parties, typ­
ically without their knowledge or consent. In this type of attack, the attacker 
positions themselves between the two legitimate parties, effectively becoming a mid­
dleman who can eavesdrop on the data being exchanged. This can occur in various 
forms of communication, including internet traffic, emails, or wireless connections 
[5]. 

The attacker can then either passively monitor the communication or actively 
manipulate it, potentially stealing sensitive information, injecting malicious content, 
or causing disruptions. To carry out a man-in-the-middle attack, the attacker often 
exploits vulnerabilities in the communication channel or uses techniques like Address 
Resolution Protocol (ARP) spoofing in IPv4, DNS poisoning, or SSL/TLS (Secure 
Sockets Layer/Transport Layer Security) interception. 

Default gateway spoofing 

Default gateway spoofing is a technique used in man-in-the-middle (MITM) attacks 
within IPv6 networks. In IPv6, the default gateway is a crucial component respon­
sible for routing traffic between devices on the local network and external networks, 
including the internet. When an attacker impersonates the default gateway in an 
IPv6 network, they gain control over the network traffic that passes through this 
gateway, effectively becoming the central point through which all data flows. 

By spoofing the IPv6 default gateway, the attacker can intercept or manipulate 
all communication between devices on the local network and external destinations. 
This becomes particularly effective for executing M I T M attacks within the IPv6 
local network. 

Default gateway spoofing in IPv6 often involves techniques like Neighbor Discov­
ery Protocol (NDP) spoofing. In this scenario, the attacker sends deceptive NDP 
messages to network devices, rerouting their traffic through the attacker-controlled 

1Also known as a monster-in-the-middle, machine-in-the-middle, meddler-in-the-middle, 
manipulator-in-the-middle, person-in-the-middle (PITM), or adversary-in-the-middle (AITM) at­
tack. 
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gateway. This enables the attacker to intercept all unencrypted data and potentially 
inject malicious content into web pages or software updates. 

To mitigate the risks associated with default gateway spoofing in IPv6 networks, 
network administrators can implement several security measures. These include 
monitoring NDP caches, configuring network devices to use static NDP entries, or 
deploying intrusion detection systems to detect and prevent such attacks. Addition­
ally, the use of encryption for network traffic, particularly through protocols like 
VPNs, or establishing secure communication channels, adds an extra layer of pro­
tection against M I T M attacks, including those involving default gateway spoofing 
in IPv6 environments. 

Despite these measures, a significant number of networks are not properly con­
figured or do not use any of these techniques, leaving them vulnerable to such 
attacks [6]. 

Impersonating a DHCPv6 server 

Another method used in conjunction with default gateway spoofing is the spoofing 
of a DHCPv6 server. DHCPv6 is responsible for assigning network configuration 
information, such as IP addresses, subnet prefixes, and DNS server details, to devices 
within the network. When an attacker successfully spoofs a DHCPv6 server, they 
can distribute false or malicious configuration parameters to unsuspecting devices. 

By impersonating a DHCPv6 server, the attacker can manipulate the IPv6 ad­
dressing scheme and provide rogue DNS server information. This allows them to 
direct network traffic through their own malicious infrastructure, leading to the in­
terception of sensitive data, DNS manipulation, and further facilitation of future 
attacks. 

To safeguard against DHCPv6 server spoofing, network administrators should 
implement security measures like DHCPv6 snooping, which validates the legitimacy 
of DHCPv6 servers, and utilize technologies such as Router Advertisement Guard 
(RA-Guard) to prevent unauthorized Neighbor Discovery (ND) and DHCPv6 server 
announcements. Regular monitoring of DHCPv6 server activities and the use of 
secure communication practices help protect against potential M I T M attacks, in­
cluding those involving DHCPv6 server spoofing[7]. 

This method of attack is harder to detect, making it an effective way to compro­
mise a network. 

Rogue DNS server 

Impersonating a Domain Name System (DNS) server is a prevalent and concern­
ing tactic utilized in sophisticated man-in-the-middle (MITM) attacks, particularly 
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within IPv6 networks. DNS is an essential component of the internet that translates 
human-readable domain names into IP addresses, facilitating web browsing and com­
munication between devices. When an attacker impersonates a DNS server, they 
manipulate the DNS resolution process, intercepting and altering DNS queries and 
responses or simply creating their own. This enables them to redirect legitimate 
domain requests to malicious IP addresses, potentially leading to a wide range of 
malicious activities. 

In a DNS server impersonation attack, the attacker typically establishes a rogue 
DNS server or modifies the DNS queries and responses flowing through the network. 
One common method is DNS cache poisoning, where the attacker injects forged DNS 
data into the cache of a DNS resolver. As a result, the compromised DNS resolver 
may return malicious IP addresses when queried for a particular domain, causing 
users to unknowingly connect to malicious websites or servers. 

Another technique that attackers employ is DNS tunneling, which allows them to 
divert DNS traffic through their controlled DNS server. In such cases, the attacker 
can use covert channels within DNS requests and responses to exfiltrate data, bypass 
network security measures, or maintain persistent access to a compromised network. 

Mitigating DNS server impersonation attacks is critical for maintaining the in­
tegrity and security of network communication. Network administrators can im­
plement a variety of DNS security measures to counteract these threats. DNSSEC 
(Domain Name System Security Extensions) is a critical tool that provides cryp­
tographic authentication of DNS data, ensuring the authenticity and integrity of 
DNS responses. Additionally, using trusted and reputable DNS servers with strong 
security practices can help reduce the risk of DNS server impersonation. Employ­
ing anomaly detection and monitoring tools for DNS traffic can provide real-time 
insights into unusual activities and promptly identify and respond to potential at­
tacks. 

DNS server impersonation in M I T M attacks poses a significant threat to the 
security and privacy of network communications. Implementing robust security 
practices, including DNSSEC, careful DNS server selection, and active monitoring, is 
crucial to safeguard against such attacks and ensure the reliability of DNS resolution 
in the face of potential manipulation. [8]. 
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2 Thesis Results 

2.1 Development tools 

For our application we will be using a number of available tools to speed up and 
ease up development. 

2.1.1 Python 

Python is a flexible and high-level coding language renowned for its straightfor­
wardness and clarity. It is extensively utilized for numerous purposes such as web 
development, data analytics, machine learning, and many others. Python's vast 
array of libraries and strong community backing make it a favored option for both 
novices and seasoned programmers. Its neat and succinct syntax, coupled with 
its cross-platform interoperability, renders it an effective instrument for a broad 
spectrum of programming endeavors. Its adaptability is the primary factor for our 
selection, given the multitude of open-source networking tools built on Python. [9]. 

2.1.2 Scapy 

Scapy is a robust Python library employed for network packet manipulation and 
analysis. It enables us to generate, transmit, intercept, and examine network pack­
ets at a granular level, rendering it an indispensable tool for network engineers, se­
curity experts, and researchers. Scapy offers the capability to design custom packets 
and carry out various network-related activities, such as network scanning, protocol 
testing, and packet inspection. Its adaptability and extensibility make it a widely 
utilized tool for handling network protocols and packet-level operations in Python. 

2.1.3 EVE-NG 

Emulated Virtual Environment Next Generation (EVE-NG) is a robust network 
emulation platform tailored for IT professionals, network engineers, and students to 
simulate intricate networking scenarios. It offers a virtualized environment where 
users can create and link virtual routers, switches, firewalls, and other network 
devices to mirror real-world network setups. E V E - N G supports a broad spectrum 
of virtualization technologies, including Cisco, Juniper, and other vendor equipment, 
enabling users to test and validate network designs, troubleshoot issues, and gain 
practical experience without the necessity for physical hardware. This adaptable 
platform is renowned for its user-friendliness, flexibility, and capability to operate 
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on standard hardware, making it an invaluable resource for learning, testing, and 
honing networking skills. 

To implement these complex scenarios, we utilize VMware Workstation Player 
13, a robust and widely accessible virtualization software package. VMware Work­
station Player 13 is renowned for its ability to efficiently simulate entire computer 
operating systems. In our setup, we use this software to create and manage virtual 
machines representing different roles within the network. 

Specifically, we simulate a Windows 10 virtual machine as the victim device. 
Windows 10 was chosen due to its widespread use and relevance in real-world scenar­
ios, which provides a realistic environment for testing the application's effectiveness. 
The victim machine runs standard user applications and network services, making 
it an ideal target for M I T M attacks. By employing a Windows 10 virtual machine, 
we can assess the application's performance and stealthiness in intercepting and 
manipulating data traffic within a typical user environment. 

On the other hand, the attacker is represented by a Manjaro Linux virtual ma­
chine. Manjaro Linux is selected for its extensive toolset and ease of customiza­
tion, which are essential for developing and running the M I T M attack application. 
The Manjaro virtual machine is configured with the necessary network tools and l i ­
braries, such as Scapy, to perform sophisticated network attacks. Using Linux as the 
attacker's operating system provides a flexible and powerful platform to implement 
and test various attack vectors. 

2.2 Scenario 

The final program should be very universal, meaning it is supposed to operate in 
many different situations.Impersonating a Domain Name System (DNS) server is a 
prevalent and concerning tactic utilized in sophisticated M I T M attacks, particularly 
within IPv6 networks. DNS is an essential component of the internet that translates 
human-readable domain names into IP addresses, facilitating web browsing and 
communication between devices. When an attacker impersonates a DNS server, 
they manipulate the DNS resolution process, intercepting and altering DNS queries 
and responses or simply creating their own. This enables them to redirect legitimate 
domain requests to malicious IP addresses, potentially leading to a wide range of 
malicious activities. 

In a DNS server impersonation attack, the attacker typically establishes a rogue 
DNS server or modifies the DNS queries and responses flowing through the network. 
For instance, DNS cache poisoning is a often used method, where the attacker injects 
forged DNS data into the cache of a DNS resolver. As a result, the compromised DNS 
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resolver may return malicious IP addresses when queried for a particular domain, 
causing users to unknowingly connect to malicious websites or servers. 

Another technique that attackers employ is DNS tunneling, which allows them to 
divert DNS traffic through their controlled DNS server. In such cases, the attacker 
can use covert channels within DNS requests and responses to exfiltrate data, bypass 
network security measures, or maintain persistent access to a compromised network. 

Mitigating DNS server impersonation attacks is critical for maintaining the in­
tegrity and security of network communication. Network administrators can imple­
ment a variety of DNS security measures to counteract these threats. DNSSEC is a 
critical tool that provides cryptographic authentication of DNS data, ensuring the 
authenticity and integrity of DNS responses. Additionally, using trusted and rep­
utable DNS servers with strong security practices can help reduce the risk of DNS 
server impersonation. Employing anomaly detection and monitoring tools for DNS 
traffic can provide real-time insights into unusual activities and promptly identify 
and respond to potential attacks. 

DNS server impersonation in M I T M attacks poses a significant threat to the 
security and privacy of network communications. Implementing robust security 
practices, including DNSSEC, careful DNS server selection, and active monitoring, 
is crucial to safeguard against such attacks and ensure the reliability of DNS resolu­
tion in the face of potential manipulation Here is a description of the hypothetical 
scenario for the purpose of this thesis. 

Fig. 2.1: Simulated Topology 

The simulated network topology, meticulously constructed within the E V E - N G 
virtual environment, serves as a critical testing ground for our program, primarily 
due to the lack of physical devices. While some components of the topology are 
realized as physical devices for testing purposes, the primary focus of evaluation 
is within the controlled and isolated E V E - N G environment, safeguarded against 
external connections. 
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To simplify the replication of simulated scenarios in the real world, stateless 
configuration is employed for the victim computers, ensuring that any addresses will 
work with the application. This configuration ensures that the victims acquire their 
addresses in a manner consistent with real-world network behavior. The routers 
within the topology are virtual instances of the Juniper vJunos Evolved router1, 
providing a solid foundation for network emulation. Similarly, the switches are 
virtual representations of the Juniper vJunos Switch, faithfully reproducing the 
functionalities of actual network switches. 

This intricately designed test network aims to simulate a diverse array of cyber 
threat scenarios and assess the resilience of network infrastructures. At the core of 
this network is the main network, comprising a switch (SI) intricately connected to 
a router (Rl) . Notably, the attacker's laptop and the first victim (Victim 1) are also 
linked to the SI switch, showcasing the adaptability of the simulated environment 
in accommodating diverse network configurations. 

The design choice to represent victims as singular devices, while aimed at re­
source optimization, incorporates scalability for more intricate testing scenarios. 
Router SI extends its connectivity by linking to another switch (S2), which, in turn, 
integrates another Victim P C (Victim 2). This expansion adds complexity to the 
potential threat landscape, enabling a more thorough evaluation of the program's 
efficacy. 

R l assumes the pivotal role of a default gateway for the entire network, facilitat­
ing seamless communication and data flow between the various components. The 
topology is intelligently divided into two interconnected networks, with routers R l 
and R2 establishing a connection between them. To add further complexity to the 
setup, another instance of switch S2 is connected to R2, hosting yet another P C 
called Remote Host used to check connectivity to any remote host. This multi-
layered network structure mirrors the intricacies of real-world scenarios, allowing 
for a more comprehensive evaluation of the program's performance. 

Within this elaborate topology, a DNS server has been strategically incorporated 
into switch S2, serving as a centralized entity that manages domain name resolu­
tion for both interconnected networks. This addition enhances the realism of the 
simulated environment, mirroring the crucial role of DNS servers in actual network 
architectures. 

In summary, the intricately designed network topology within the E V E - N G sim­
ulated environment emulates a diverse array of cyber threat scenarios. The inter­
connected routers, switches, and victim computers create a dynamic environment 
that allows for a thorough evaluation of network resilience and the effectiveness of 

1 Additional testing on the Mikrotik Cloud Hosted Router was also successfull 
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security measures. This comprehensive platform provides valuable insights into the 
program's capabilities and its ability to mitigate various cybersecurity challenges. 

2.2.1 Device Set-up 

The victim machines are operating with a standard installation of Windows 10 
(22H2) Home edition. This baseline configuration ensures that no special settings, 
configurations, or firewall rules are necessary for the M I T M attack to be success­
ful. By utilizing a default installation, we can simulate a typical user environment, 
thereby providing a realistic assessment of the application's efficacy in intercepting 
and manipulating data traffic. 

The attacker machine, on the other hand, is configured with a fresh installa­
tion of Manjaro Linux 23.0 on a x86 architecture and using the Plasma desktop 
manager option. Manjaro Linux is selected for its robust performance, flexibility, 
and comprehensive toolset, which are essential for conducting sophisticated net­
work attacks. The attacker machine must have Python installed, along with all 
required dependencies necessary for the script to run correctly. These dependencies 
include network libraries such as Scapy, which facilitate packet manipulation and 
network traffic analysis. The application makes use of specifically of the firewall 
tool ip6tables and the tee command, without which it can not properly function. 
The network infrastructure includes Juniper 2 and Mikrotik 3 routers, which are con­
figured in a hybrid IPv4 and IPv6 mode. However, it is important to note that no 
IPv4 traffic is generated on the network, focusing the attack solely on IPv6 traffic. 
This configuration is particularly relevant given the increasing adoption of IPv6 and 
the unique security challenges it presents. By focusing on IPv6, we can explore 
vulnerabilities specific to this protocol and demonstrate the application's capability 
to exploit them. Additionally, the DHCPv6 servers on the network are disabled, 
resulting in the use of stateless addresses by the machines. By disabling DHCPv6 
and relying on S L A A C , we can assess how effectively the application can perform 
M I T M attacks in environments that use stateless address configuration and compare 
our results with a test performed with a stateful configuration. The use of standard 
installations and configurations for both the victim and attacker machines, along 
with the hybrid IPv4/IPv6 network setup and the reliance on stateless addresses, 
provides a comprehensive and realistic testing environment. This setup ensures that 
the M I T M attack application can be evaluated under typical network conditions, 
highlighting its practical applicability and effectiveness in real-world scenarios. 

2Juniper vJunos Swtich 23.1R1 and vJunosEvolved Router 23.1R1 
3 Mikrotik Cloud Hosted Router 7.14.3 

33 



2.3 Application 

The terminal application is built on the Python library called click which makes the 
process of developing terminal command applications very easy. We do not need any 
complicated functions to parse command options and arguments. Click can handle it 
easily and pass the arguments down to the main functions. The application consists 
of 3 modes of operation the user chooses when starting the process. The modes are 
chosen when starting the application by the first argument right after the name of 
the script. A n example command can look like this: 

sudo python mitm.py gateway - t f e 8 0 : : 4 -gw fe80 : :1 - i ethO 

Additional parameters can be listed by typing —help after any mode command. 

2.3.1 Gateway impersonation mode 

CrumblyBread > python mitm.py gateway — h e l p 
Usage: mitm.py gateway [OPTIONS] 

Options: 
- i , — i n t e r f a c e TEXT I n t e r f a c e of the network 
-T, — T a r g e t s F i l e TEXT F i l e w i t h 11 addresses of t a r g e t s 
- t , — t a r g e t TEXT Target IPv6 address 
-gw, —ga t e w a y TEXT The d e f a u l t gateway to impersonate 
-p, -pcap W r i t e the t r a f f i c i n t o a pcap f i l e 
— h e l p Show t h i s message and e x i t . 

CrumblyBread > | 

Fig. 2.2: Parameters for the gateway impersonation mode 

In this mode we can provide a single target by using the parameter -t or multiple 
targets by providing a path to a file where link-local addresses are listed on each line 
to the - T option. The - i option points to the interface we desire to use for the attack. 
The application can not run correctly without this option being specified. Lastly 
the -gw option needs to be provided with the address of the real link-local address 
of the default gateway as it is not yet able to request it autonomously. Lastly the -p 
option starts generates a pcap file with all captured traffic. After these parameters 
are provided, the application starts by configuring itself with necessary information 
and then automatically starts the attack. 

In this operational mode, the application attempts to mimic a default gateway 
while concealing router advertisement packets from the legitimate default gateway. 
It then redirects any traffic involving a victim to the genuine gateway, ensuring 
proper routing. This is achieved by repeatedly sending router advertisement (RA) 
packets into the network, using the link-local and M A C addresses of the original 
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default gateway as source addresses in the Ethernet and IPv6 packet layers, respec­
tively. A crucial aspect is the manipulation of the router lifetime parameter within 
the Neighbor Discovery (ND) router advertisement layer, setting it to a value of 
0. This configuration indicates that any device receiving this packet, in accordance 
with R F C 4861 section 4.2, will not designate this address as its gateway. Subse­
quently, a similar packet, featuring the attacker's device address as the source, is 
sent, but with the router lifetime adjusted to its maximum value. These packets are 
transmitted at regular intervals of five seconds, ensuring the continuous injection of 
these deceptive advertisements into the network. A n alternative method involves 
monitoring the network for the genuine gateway's advertisement before sending the 
deceptive packets. This approach ensures that targeted devices, upon receiving 
the manipulated advertisement, direct their traffic to our specified IP address. We 
then intercept and forward this traffic to the legitimate gateway. This methodol­
ogy ensures seamless routing while enabling the attacker to manipulate the data 
traffic without detection. To achieve comprehensive bidirectional traffic capture, we 
generated random virtual M A C and link-local addresses using the EUI-64 process. 
This innovative solution allowed us to create multiple virtual interfaces that serve 
as virtual Ethernet ports, each configured with unique identifiers. These virtual 
interfaces were instrumental in capturing all traffic directed to and from the target 
devices, thereby ensuring that no data packets were missed during the interception 
process. The deployment of virtual addresses provided a dual advantage. Firstly, 
it enabled the circumvention of the inherent limitations associated with incomplete 
traffic capture, thereby allowing for the interception of both incoming and outgoing 
communications. Secondly, and equally important, it facilitated the differentiation 
of traffic originating from various devices within the network. This differentiation 
was crucial for accurately monitoring and manipulating the network traffic specific to 
each target device, thereby eliminating any potential for confusion or overlap in the 
intercepted data. Furthermore, this approach adheres to a systematic methodology 
to ensure robustness and reliability. By continuously sending router advertisements 
with carefully manipulated parameters and by establishing virtual interfaces with 
unique identifiers, the application maintains a high level of control over network 
traffic. This sophisticated level of control is essential for the successful execution 
of Man-in-the-Middle attacks, as it allows for precise manipulation and redirection 
of data flows without alerting the target devices or the legitimate network infras­
tructure. In conclusion, the strategic use of virtual M A C and link-local addresses 
significantly enhances the application's capacity to perform detailed traffic analysis 
and manipulation. By ensuring that bidirectional traffic capture is comprehensive 
and that traffic from different devices can be precisely distinguished, the method­
ology employed not only improves the robustness of the M I T M attacks but also 
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contributes to a more rigorous and systematic approach to network traffic intercep­
tion and analysis. Consequently, the generation and utilization of virtual addresses 
stand as a pivotal enhancement, bolstering the effectiveness and precision of our 
overall strategy in performing Man-in-the-Middle attacks within a virtual network 
environment. 
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Fig. 2.3: Development diagram of the gateway impersonation mode 
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As this diagram shows, the application adopts the guise of a default gateway, 
steering incoming traffic to the legitimate gateway by sending deceptive packets 
with manipulated router lifetime values. The development diagram highlights the 
need to refine the packet injection process for efficiency and enhance bidirectional 
traffic interception techniques to bolster the overall effectiveness of this deceptive 
maneuver. 

2.3.2 Rogue DHCPv6 server 

CrumblyBread > python mi.tm.py dhcp — h e l p 
Usage: mitm.py dhcp [OPTIONS] 

Options: 
- i , — i n t e r f a c e TEXT I n t e r f a c e you want to connect to 
-T, — t a r g e t s F i l e PATH F i l e p a t h t o l i s t of t a r g e t s to g i v e addresses 
-n, — n e t w o r k A d d r e s s TEXT Network address of poo l 
-p, — p r e f i x TEXT P r e f i x l e n g t h of the poo l 
-dns TEXT Address of DNS s e r v e r 
— h e l p Show t h i s message and e x i t . 

CrumblyBread =• | 

Fig. 2.4: Parameters for the rogue D H C P mode 

As the Figure 2.4 shows, we need to specify the interface on which we want to listen 
for DHCPv6 requests to the - i parameter. The application needs an interface for 
proper function. Also a file of link-local addresses of desired targets separated on 
each line. The file of targets is passe to the - T parameter. For proper initialization 
of the server, an address pool needs to be defined. This is done by providing the 
network address of the pool to the -n parameter, and the desired prefix to the -
p parameter. Also, a better way of defining the address space is planned to be 
implemented in the future as this method is not ideal. The last thing this mode can 
offer is a DNS server in the -dns field, that we would have configured if requested. 
By default the server will use the public google DNS server. 

The primary function of a DHCPv6 server is to provide DHCPv6 addresses to 
newly connected devices. For the server to be discoverable by these devices, it must 
be advertised across the network. This is accomplished through the transmission 
of modified router advertisement messages. To signal the availability of address 
configuration in the network, the Managed address configuration flag is set to 1, in 
accordance with R F C 4861 section 4.2 [10]. Additionally, the Other configuration 
flag is set, indicating the server's capability to provide other configuration param­
eters. The transmission of these packets is initiated from the legitimate link-local 
address, necessitating the configuration of the router lifetime field to 0 to avoid 
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presenting our device as a default route. This ensures that new devices connecting 
to the network dispatch DHCPv6 solicit messages to the All DHCP Relay Agents 
and Servers multicast address ff02::l:2, as specified in R F C 8415 section 7.1 [4]. 
These solicit messages can be responded to with an advertisement message. The 
packet manipulation library Scapy is utilized for crafting these responses. Although 
Scapy provides an Answering Machine for crafting replies to requests, it currently 
lacks the capability to delegate IP addresses in the DHCPv6 process. Consequently, 
this functionality needs to be implemented from scratch. The modification of the 
original Scapy answering machine is required to facilitate responses to the basic 
DHCPv6 process outlined in the Theory section on DHCPv6. The implementation, 
while basic, enables the assignment of addresses and processing of any options at­
tached by the client to their packets. However, it currently supports only the most 
fundamental interactions, with each address eligible for assignment only once. 

2.3.3 Rogue DNS server 

CrumblyBread > python mitm.py dns — h e l p 
Usage: mitm.py dns [OPTIONS] 

Options: 
- i , — i n t e r f a c e TEXT I n t e r f a c e you want t o connect t o 
-T, — T a r g e t s F i l e PATH F i l e p a t h to l i s t of t a r g e t s to p r o v i d e dns 
-dns, — D n s F i l e PATH F i l e p a t h to a dns t r a n s l a t i o n f i l e 
- j o k e r R e d i r e c t a l l q u e r i e s t o the f i r s t address i n DNS 

F i l e 
— h e l p Show t h i s message and e x i t . 

CrumblyBread s- | 

Fig. 2.5: Parameters for the rogue DNS mode 

The parameter that this mode requires to function is a DNS file, where each line is 
composed of an IPv4 address, then an IPv6 address separated by a space, then a 
domain name to be matched with these addresses separated by yet another space. 
This correctly configured file needs to be passed to the -dns argument. A text file 
of link-local addresses of targets passed into the - T parameter and an interface to 
listen for DNS requests in the - i parameter. Additionally the optional -joker flag 
can be attached to the command, which will cause the server to reply to every single 
incoming request with the first address in the DNS file. 

In the role of a DNS server impersonator, the initiation of communication with 
targeted devices requires a systematic approach. The first step involves notifying de­
vices of the impersonator's existence through the strategic dissemination of a Router 
Advertisement to all designated targets. This notification process is designed with 
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subtlety in mind, with the router lifetime intentionally set to 0 to avoid promoting 
the imposter device as the default route. A critical facet of this communication is 
the incorporation of a Recursive DNS Server Option layer, meticulously configured 
in strict accordance with R F C 6106 section 5.1 [11]. As a result, nodes traversing the 
network will seamlessly designate this server as their IPv6 DNS server, unwittingly 
paving the way for subsequent interception and manipulation.Upon successful inte­
gration into the network, all incoming DNS requests are intercepted and subjected 
to a meticulous processing mechanism orchestrated by Scapy. The configuration of 
this mechanism is highly customizable, involving the specification of user-defined 
parameters and the provisioning of a DNS file.This intricate process ensures the 
covert interception and manipulation of DNS requests within the network, allow­
ing the Python application to operate seamlessly as a DNS server impersonator. 
The nuanced configuration parameters and meticulous adherence to R F C standards 
underscore the sophistication and effectiveness of the DNS manipulation aspect of 
the application, enhancing its overall capabilities in the realm of Man-in-the-Middle 
attacks.The figure 2.6 outlines the key steps involved in the DNS server imperson­
ation process, including the router advertisement, Recursive DNS Server Option 
configuration, interception and processing of DNS requests, and the subsequent re­
sponse mechanism. The flow provides a visual representation of the communication 
sequence between the targeted devices and the impersonator device during the DNS 
manipulation process. The DNS file serves as a comprehensive guide, housing do­
mains earmarked for translation and their corresponding IPv4 addresses. These 
addresses are curated meticulously to respond to type A requests. Simultaneously, 
the DNS file contains IPv6 addresses, strategically assigned for responding to type 
A A A A requests. In instances where a suitable address cannot be determined from 
the DNS file, the DNS request seamlessly transitions to the next stage.The next 
stage involves the judicious forwarding of DNS requests to a legitimate DNS server, 
ensuring a comprehensive approach to address resolution. This intricate process 
ensures covert interception and manipulation of DNS requests within the network. 
The nuanced configuration parameters and meticulous adherence to R F C standards 
underscore the sophistication and effectiveness of the DNS manipulation aspect of 
the application, thereby enhancing its overall capabilities in the realm of Man-in-
the-Middle attacks. 
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Fig. 2.6: Development diagram of the DNS mode 

2.4 Virtual testing 

2.4.1 Default gateway testing 

Before the attack, a Windows device typically receives its network configuration 
via D H C P or manual settings, establishing the IP address, subnet mask, default 
gateway, and DNS servers correctly. The device relies on these legitimate settings 
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to communicate effectively within the network. With using normal traffic flow, the 
device routes all traffic through the default gateway, and DNS queries are resolved 
by trusted DNS servers. Users experience uninterrupted network services, with web 
pages and applications functioning as expected. Standard security measures include 
active antivirus software like Windows Defender, configured firewalls, and regular 
system updates. These measures protect the device against known threats and 
ensure overall network security. 
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Fig. 2.7: Flow of a packet in the network 

Following a default gateway spoofing attack, the Windows device is tricked into 
routing traffic through the attacker's device. This is achieved by the attacker sending 
a malicious Router Advertisement packet, spoofing the default gateway and possibly 
altering DNS server settings. With the attacker's device now acting as the default 
gateway, all traffic is intercepted. DNS queries are redirected to the attacker's DNS 
server, which can respond with malicious IP addresses. Despite this interception, the 
user's experience might remain seemingly normal initially. The immediate observ­
able change for users may be minimal. Web browsing and other network activities 
will appear unaffected due to the attacker's efforts to provide legitimate-looking 
responses. However, subtle issues, such as occasional "page not found" errors, can 
arise if DNS responses are misconfigured. These errors were particularly evident 
during controlled testing when unassigned addresses were used in DNS responses. 
The attack poses significant security risks. Sensitive data, including login creden­
tials and personal information, can be captured. Standard antivirus and firewall 
protections will not detect the attack, as the traffic itself appears legitimate but is 
rerouted through a malicious intermediary. 
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Fig. 2.8: The flow of a packet through a spoofed 

2.4.2 DHCP server testing 

Under normal conditions, a Windows device obtains its network configuration from 
a legitimate D H C P server. This configuration includes the IP address, subnet mask, 
default gateway, and DNS server addresses, which are essential for proper network 
communication. With correct settings from a legitimate D H C P server, the Windows 
device routes its traffic through the authorized gateway and resolves DNS queries 
through trusted DNS servers. The network operates smoothly, with web browsing, 
email, and other services functioning without issues. Standard security measures on 
a Windows device include active antivirus software, configured firewalls, and regular 
updates. These measures protect against common threats and ensure the device's 
overall security. 
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Fig. 2.9: A rogue DHCPv6 server connected to the topology 
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In a rogue DHCPv6 server attack, the attacker introduces a malicious D H C P 
server into the network, responding to DHCPv6 requests faster than the legitimate 
server. The Windows device, receiving incorrect settings, reconfigures its network 
parameters according to the attacker's instructions. This includes an incorrect de­
fault gateway and potentially malicious DNS servers. Once the network configu­
ration is compromised, all traffic from the Windows device is routed through the 
attacker's device. DNS queries are redirected to the attacker's DNS servers, which 
can resolve domain names to malicious IP addresses, leading users to phishing sites 
or other harmful destinations. The immediate impact on the user might be minimal 
and not easily detectable. Network connectivity remains, and applications may con­
tinue to function. However, there are subtle signs, such as occasional connectivity 
issues, slower response times, or access to unexpected websites. These symptoms 
arise from the interception and manipulation of traffic by the rogue D H C P server. 
The attack significantly compromises the device's security. The attacker can capture 
sensitive information, including login credentials and personal data. Additionally, 
by manipulating DNS responses, the attacker can redirect users to fraudulent web­
sites to collect information or distribute malware. Standard security measures may 
not immediately detect this type of attack, as the device operates under seemingly 
legitimate network settings provided by the rogue D H C P server. 

2.4.3 DNS server testing 

Under normal circumstances, a Windows device receives DNS server information 
either through a Router Advertisment packet. Alternatively, network administra­
tors or users might manually configure the DNS server settings to point to specific, 
trusted DNS servers. These DNS servers are typically part of the network's infras­
tructure or reputable public DNS services, ensuring accurate and reliable resolution 
of domain names to IP addresses. With correct DNS settings in place, the Win­
dows device queries legitimate DNS servers to resolve domain names. This seamless 
translation is essential for enabling users to access websites, email servers, and other 
internet-based services without interruption. Consequently, network operations, in­
cluding web browsing, email communication, software updates, and cloud-based 
services, function smoothly and securely, providing a reliable user experience. Ac­
tive antivirus software continuously scans for and neutralizes malware, viruses, and 
other malicious software. Configured firewalls monitor and control incoming and 
outgoing network traffic based on predetermined security rules, helping to prevent 
unauthorized access and data breaches. Regular updates to the operating system 
and installed software ensure that the device is protected against the latest secu­
rity vulnerabilities and exploits. These updates often include patches for newly 
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discovered threats and enhancements to existing security features. 

Fig. 2.10: A victim sending a DNS query 

In a rogue DNS server attack, the attacker either poisons the DNS cache or pro­
vides malicious DNS server settings through D H C P or direct network manipulation. 
The Windows device unknowingly configures itself to use the rogue DNS server, 
redirecting its DNS queries to the attacker-controlled server. With the DNS server 
compromised, all DNS queries from the Windows device are directed to the rogue 
server. The attacker can resolve domain names to malicious IP addresses, leading 
users to phishing sites, malware distribution points, or other harmful destinations. 
The immediate impact on the user might be minimal and not easily detectable. 
Network connectivity remains, and applications may continue to function normally. 
However, subtle symptoms such as unexpected website redirects, unusual SSL cer­
tificate warnings, or slower response times may occur due to the interception and 
manipulation of DNS queries by the rogue server. The attack poses significant 
security risks. The attacker can capture sensitive information, including login cre­
dentials and personal data, by redirecting users to fraudulent websites. Additionally, 
by providing malicious DNS responses, the attacker can facilitate the distribution 
of malware. Standard security measures may not immediately detect this type of 
attack, as the DNS traffic itself appears legitimate but is being manipulated by the 
rogue server. 

Fig. 2.11: A victim sending a DNS query after it has been manipulated 

44 



2.5 Testing on physical devices 

For a short period of time, I was able to gain access to physical devices and was able 
to use them to recreate a section of my simulated topology as seen in Fig. 2.1. The 
recreated section looked like this: 

1 L 1 L 

v. 
• Victiml 

v. 
(cje-OMS 

fa '-mom \\ ±!^y [et-CJWOj 

• vitch 1 • R' 
r ^ m  

i —6 
er 

eth 3)T 

• Attach er 

3)T 

• Attach er er er 

Fig. 2.12: Topology of the physical network 

The addresses were set up according to this addressing table: 

Table 2.1: Addressing table for physical testing 

Device name link-local address M A C address 
R l fe80::l cc:bl:82:82:6b:7a 
Attacker fe80::81c7:95db:d212:fbl8 c4:23:60:7c:5f:ec 
Victim fe80::b96c:c817:fl60:767d 08:8f:c3:03:71:32 

A l l we need to start the program is to download it with the command 

git clone https://github.com/CrumblyBread/mitm-tools.git 

or downloading the archive from this U R L 

https://github.com/CrumblyBread/mitm-tools 

and navigating into the new folder with the terminal command 

cd mitm-tools 

now the script is ready to use. For installation of required dependencies see the file 
or get access to it on the aforementioned U R L 
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2.5.1 Gateway impersonation mode 

Before initiating the attack, the network operates under standard conditions where 
any IPv6 traffic generated by the victim device is transmitted directly to the default 
gateway. In this typical network configuration, the data packets follow a straightfor­
ward path from the victim to the designated gateway, without any interception or 
rerouting. Consequently, the attacker remains unable to access, monitor, or manip­
ulate this traffic, as it bypasses the attacker's device entirely. The gateway imper­
sonation mode was initialised by providing the chosen details from the addressing 
table to the application. The command used to start it was 

sudo python mitm.py gateway -t fe80::b96c:c817:f160:767d 

-gw fe80::l - i enp7s0 -p 

2901: dbS: abed : 1: a077 :4275: 9a8b : afl... 
f eSB::4638:39ff:fsb4:5fa3 

f f 0 2 : : l : f f b 4 : 6 f a 3 ICMPv6 
2801: dbS: abed : 1: a077 :4275:... ICMPv6 

E6 Neighbor S o l i c i t a t i o n f o r fe80::4633:39ff 
E6 Neighbor Advertisement 2881:db3:abed:1:aB 

> Frame 82554: 86 bytes or wire (688 b i t s ) , 86 bytes captured (688 b 
> Ethernet I I , Src: ASUSTekC0MPU_6b:26:74 (f0:79:59:6b:26:74), Dst 
> Internet Protocol Version 6, Src: 2001:db8:abed:1:a077:4275:9a8b:a 
v Internet Control Message Protocol v6 

Type: Neighbor S o l i c i t a t i o n (135) 
Code: 8 
Checksum: Oxcbcd [correct] 
[Checksum Status: Good] 
Reserved: 80008880 
Target Address: fe88::4633;39ff:feb4:5fa3 

> ICMPv6 Option (Source link-Layer address : fB:79:59:6b:26:74) 

OOSB 33 33 f f b4 5f a3 fO 7S 
G01B 00 98 B8 20 3a f f 20 01 
002B 42 75 9a 3b a9 Of f f 02 
0038 00 01 f f b4 5f a3 87 OB 
B04B 00 08 BB 00 B8 00 46 38 
::7: fO 79 59 6b 25 74 

59 6b 26 74 36 dd 60 
Od bS ab cd 90 Ol aO 
00 90 BB 00 98 BO 00 cb cd BB 00 98 00 f e 
39 f f fe 04 5f a3 01 

Fig. 2.13: The Victims' device communicating with a virtual device 

and functioned as described above. The application started by configuring its own 
parameters most importantly a randomly generated M A C address provided by the 
get_random_mac() function in Scapy. And also a link-local address using the EUI-
64 process. The first packet it sent out was a Neighbour Solicitation packet request­
ing the M A C address from the target as displayed in Fig. 2.13. After the target has 
responded, it sent a similar request to the gateway. After both link-local and M A C 
addresses were established, the program sent the first Router Advertisement packets 
to the target. This changed the default route of the Victim device to the address of 
the Attacker. After this was verified on the target device, an ICMPv6 Echo Request 
was initialised on the Victim device and sent to the address of its DNS server. The 
message was correctly sent to the M A C address of the Attacker. You can see the 
captured message and its subsequently changed and forwarded version here in Fig. 
2.16 
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1613B 1332.7243448... f a 8 0 : : l fe80::b96c:c817:f160:767d ICMPv6 7S Router Advartisenu 

16131 1332.7643422... f e80 : :4638: 39f f : fed0 : b391 fe80: : b96c : c817 : f160 :767d 70 Router AdvertiseirK 

> Frame 16130: 7Q bytes ori wire (560 b i t s ) , 70 bytes capture 
> Ethernet I I , Src: Compallnform_03:71;32 (08:8f:c3:03:71:32 
> Internet P r o t o c o l Version 6, Src: f e 8 B : : l , Dst: fe80::b96c 
v i n t e r n e t Control Message P r o t o c o l v6 

Type: Router Advertisement [134) 
Code: 0 
Checksum: 0x9347 [ c o r r e c t ] 
[Checksum Status: Good] 
Cur hop l i m i t : 0 

OxOB. P r f [Default Router Preference): High > -^a£i_^ 
| Router l i f e t i m e (5): 8 
Reachable time (iris): 0 

Retrans timer (ins): 0 

0O0O fB 79 69 6b 26 74 03 8f 
0010 00 90 00 1G 3a f f f e 80 
0020 00 00 00 00 00 01 f e 80 
0030 CB 17 f l 60 76 7d 86 00 
0040 00 00 |2mtjtHi!|tQ 

c3 03 71 32 86 dd 60 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 b9 6c 
93 47 00 08 00 00 00 00 

Fig. 2.14: Sent Router Advertisement packets, with manipulated Router lifetimes 

E t h e r n e t a d a p t e r E t h e r n e t 7: 

C o n n e c t i o n - s p e c i f i c DNS S u f f i x . 
I P v 6 A d d r e s s 
Temporary I P v 6 Address 
L i n k - l o c a l I P v 6 A d d r e s s 
I P v 4 A d d r e s s 
Subnet Mask 
D e f a u l t Gateway 

PS C : \ U s e r s \ B r a n i s l a v > i p c o n f i g 

Windows I P C o n f i g u r a t i o n 

2881:dbS:abed:1:392S:b8f2:a76b:f792 
2881:dbS:abed:1:a«77:4275:9aSb:a90f 
f e S B : : b 9 6 c : c S 1 7 : f l 6 8 : 7 6 7 d S S l l 
192.16S.1.69 
izz.izz. izz.i 
feSB::1S11 

E t h e r n e t a d a p t e r E t h e r n e t 7: 

C o n n e c t i o n - s p e c i f i c DNS S u f f i x 
I P v 6 A d d r e s s 
Temporary IPv6 A d d r e s s . . . . 
L i n k - l o c a l I P v 6 A d d r e s s . . . 
IPv4- A d d r e s s 
Subnet r",ask 
D e f a u l t Gateway 

2881:dbS:abcd:l:392S:b8f2:a76b:f792 
2001:dbS:abed:1:a077:4275:9aBb:a90f 
f e S 8 : : b 9 6 c : c S 1 7 : f l 6 0 : 7 6 7 d S l l 
192.168.1.69 

feS«::463S:39ff:fea9:312fSll 

Fig. 2.15: The Victim's configuration before and after and attack 

After being received the packet is changed according to the script. Meaning the 
destination mac address is changed to the mac address of the virtual port generated 
by the attacker, and the IPv6 destination address is also changed with either the 
link local, or global address of the virtual device. Both the DNS query and the 
response were captured and documented in a automatically generated pcap file. 
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1 282 16,173682403 2001:dbS:abed:1:9564:e346:514f:aalB 2001:4363 4363::8S8B ICMPV5 94 Echc 

283 16,216569617 2001:dbS:abed:1:9554:S346:514f:aalB 2001:4363 4363::3B8B ICMPV5 94 Echc 

> Frame 282: 94 bytes on wire (752 b i t s ) , 94 bytes captured (752 b i t s ) on i n t e r f a c e enp7s0, i d 0 

> 

> 

Ethernet I I , Src: ASUSTekC_6b:26:74 (f0:79:59:6b:26:74), Dst: Compalln 

Internet Protocol Version 6, Src: 2901:dbfl:abed:1:9554:e346:514f:aa!8, 

_93:7i:32 (68:af:c3:93:71:32) 

Dst: 2031:4860:4860::8888 

Internet Control Message Protocol v6 

Type: Echo (ping) request (123) 

Code: 0 

Checksurn: Gx4dff [correct] 

[Checksum Status: Good] 

U I d e n t i f i e r : 0x0001 

Sequence: 39 

j s [No response seen] 

> Data (32 bytes) 

Fig. 2.16: Captured packet on the Attackers machine 

2.5.2 DHCP server mode 

The D H C P server underwent a meticulous configuration process, requiring details 
from the addressing table submitted in the targets.txt file, along with the creation 
of a D H C P address pool. The selected pool, denoted as 9999:: / l 16, was chosen to 
facilitate easy differentiation of addresses originating from this pool. To initiate the 
application in D H C P mode with this specific configuration, the following command 
was executed: 

sudo python mitm.py dhep -T t a r g e t s . t x t -n 9999:: 

-p 116 - i enp7s0 

The application commenced by gathering its own parameters, including the M A C 
address and a link-local address. A n IPv6 address pool is created from above men­
tioned parameters, begining with the address 9999::1 and ending with the address 
9999::fffe. Subsequently, it initiated the process of collecting all M A C addresses 
corresponding to the link-local addresses specified in the targets.txt file. In this par­
ticular instance, only one address corresponding to the Victim device was provided 
in the targets.txt file. 
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CrumblyBread > sudo python mitm.py dhcp -T t a r g e t s . t x t -n 9999:: -p 116 -1 enp7s8 
Welcome to MITM-tools! 
Device has been configured 
Targets have been configured 
Required processes have been s t a r t e d 
ATTACK HAS BEEN STARTED (press any key then enter to q u i t ) 
Sending Router advertisments 
Sending Router advertisments 

Sent i packets. 

fe88::b96c:c817:f168:767d i s rquesting an address 

Sent i packets. 
fe8B::b96c:c817:f16B:767d i s rquesting an address 
Sending Router advertisments 
Sending Router advertisments 

Fig. 2.17: A screen capture of the application in use 

Upon receiving a response from the target device, the program initiated its role 
as a DHCPv6 configuration server by advertising itself within the network. At this 
point, any DHCPv6 request transmitted by the target device triggered a correspond­
ing response from the application. To validate the functionality, a command was 
executed on the target device to request a new DHCPv6 configuration. The result­
ing packet was accurately transmitted to the Attacker device, where the application 
responded to the request, seamlessly navigating through the entire DHCPv6 pro­
cess as outlined in RFC-8415[4]. The entirety of this process was captured on the 
Attacker device, providing a comprehensive record of the DHCPv6 interactions, as 
depicted in Figure 2.18. 

1G5 15.318175495 fe BS:: 096c : cß!7 : f!6B :7fJ7d ff82::1 Z DHCPvS 154 Solicit XID: 0*063313 CID: O0010O011fleEib5e9fB7959602674 

L 

131 17.257125690 fe 

132 17.318383432 fe 

SO: : 1:93c : cE17 :f!6G :767d 

BB::3ic7:95db:d212:fb!8 

ff02::1 

feB0::bS 

2 DHCPvS 209 Request XID: 0x063313 CID: O001OO011fleEib5e9f07959602674 IAA: 9999::! 

&c:c817:f16B:767d DUCPvB 146 Reply XID: Oxb633iSCID: GOO100Oilde&b6e8f979596b2674 IAA: 9999::! 

i (1I6B bits), 146 bytes captured (1163 bits] c 

5 7c Ef ec GO 01 00 fle 09 &1 0 i 79 59 6b 26 74 00 03 09 23 0 
3 cS GG GO GB fa BO 05 09 13 9 

3 Type: link-layer 

3 Type: link-layer addT< 

Jware type: Ethernet (i; 

• Identity Association 

Option: Identity t 

Length: 4B 

Fig. 2.18: Captured D H C P communication on the Attackers machine 
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The successful configuration was validated on the target device to ensure seamless 
integration and optimal functionality. The target device aptly utilized all the param­
eters provided by the application, demonstrating a comprehensive implementation 
of the configured settings. For detailed insight into the entire configuration process 
and parameters employed, refer to the comprehensive configuration documentation 
provided by the application, which is available for examination and verification. Af­
ter the attack is executed, all IPv6 traffic originating from the victim device is no 
longer directed to the default gateway. Instead, it is routed to the address generated 
by the attacker's device. This redirection signifies a successful interception of the 
network traffic, positioning the attacker at a critical juncture within the communi­
cation pathway. As a result, the attacker gains the capability to monitor, record, 
manipulate, or even completely block the traffic at will. 

Microsoft Windows [Version 10.0.19945.3693] 
(c) Microsoft Corporation. A l l r i g h t s reserved. 

C: WINDOWS\system32>ipconfig /renew6 "Ethernet 7" 

Windows IP Configuration 

Unknown adapter Lokálne pripojenie 3: 

Media State : Media disconnected 
Connection-specific DNS S u f f i x . : 

Ethernet adapter Ethernet 7: 

Connection-specific DNS S u f f i x 
IPv6 Address 
IPv6 Address 
Temporary IPv6 Address. . . . 
L i n k - l o c a l IPv6 Address . . . 
IPv4 Address 
Subnet Mask 
Default Gateway 

C: WINDOWS\system32> 

2001: db8:abed:1:3928:b0f2:a76b:f792 
9999::1 
2001:db8:abed:1:15a2:2cd2:2dl3:e791 
fe80::b96c:c817:fl50:757d%10 
192.168.1.69 
255.255.255.0 
fe80::1%10 
192.168.1.1 

Fig. 2.19: Configured address on Victims machine 

There is also a potential case, where there are more DHCPv6 servers in the 
network. This creates the potential situation where the other server might see the 
DHCPv6 Advertise packet and respond before the Attackers device has a chance to 
do so. In this case there is nothing an attacker can do to take priority. 
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2.5.3 DNS server mode 

Before initiating a DNS M I T M attack, the network operates under standard condi­
tions where any DNS queries generated by the victim device are transmitted directly 
to the legitimate DNS server specified in the network configuration. In this typi­
cal setup, DNS queries follow a straightforward path from the victim to the DNS 
server without any interception or rerouting. Consequently, we are unable to access, 
monitor, or manipulate these queries, as they bypass our device entirely. 

To execute the DNS M I T M attack, we configure our device to impersonate the 
legitimate DNS server. This is achieved by utilizing the details provided in the 
addressing table to craft and send spoofed DNS responses. 

sudo python mitm.py dns - T t a r g e t s . t x t -dns dns.txt 

- i enp7s0 

This command configures the necessary parameters for the operation. The tar­
gets.txt file is parsed to extract all specified target addresses, which, in this instance, 
includes only one address. Additionally, the dns.txt file is converted into a Python 
dictionary, formatted according to the specifications required by the Scapy library. 
The application needs to know the full M A C , link-local and global unicast addresses 
of the victim to successfully capture any DNS request. 

CrumblyBread > sudo python mitm.py dns -T t a r g e t s . t x t -dns dns.txt - i enp7s8 
Welcome to MITH-tools! 
Device has been configured 
Targets have been configured 
Required processes have been s t a r t e d 
ATTACK HAS BEEN STARTED [press any key then enter to q u i t ) 
Sending Router advertisments 
Sending Router advertisments 
Sending Router advertisments 
fe8Q::b96c:c817:f16B:767d sent a Querry 
Sending Router advertisments 
Sending Router advertisments 
Sending Router advertisments 
q 
Q u i t t i n g 
CrumblyBread > | 

Fig. 2.20: A screen capture of the application providing a DNS response 

After the application configured its parameters, it initiated the attack sequence. 
The first step involved compromising the target device by dispatching a meticulously 
crafted Router Advertisement packet that included the Recursive DNS Server 
(RDNSS) option. This option contained the address of the attacker's device in 
the DNS server field. Consequently, the target device now erroneously recognized 
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the attacker's device as a legitimate DNS server, purportedly provided by the de­
fault gateway. This deceptive maneuver ensured that any subsequent DNS queries 
originating from the target device would be directed to the attacker's device for 
resolution. 

2901: d b8: a bed : 1: a07 7 :4275 : 9a8 b: a9... 2001: d be: a bed: 1: 8f ed: 544e:... DNS 86 Standard query 0x0902 AAAA vut.cz 

> Frame 1893: 86 bytes on wire (588 b i t s ) , 86 bytes captured (588 b l 
) Ethernet I I , Src: ASUSTekC0MPU_6b:26:74 (f6:79:59:6b:26:74), Dst: 
)-Internet Protocol Version 6, Src: 2001:db8:abed:1:a077:4275:9a8b:a 
) User Datagram Protocol, Src Port: 57539, Dst Port: 53 

eoao 
eoio 
8020 
8030 
8040 

9B Sf c3 83 71 32 f 9 79 56 6b 26 74 86 dd 69 
lb l b 09 20 11 49 20 01 Od b8 ab cd 99 B l aO 
42 75 9a 3b a9 Of 20 01 Od b8 ab cd 98 B l 3f 
54 4e c3 31 a2 42 eO ba OB 35 BB 20 94 b9 09 
01 00 00 81 80 00 00 00 00 00 B3 76 75 74 02 

> Frame 1893: 86 bytes on wire (588 b i t s ) , 86 bytes captured (588 b l 
) Ethernet I I , Src: ASUSTekC0MPU_6b:26:74 (f6:79:59:6b:26:74), Dst: 
)-Internet Protocol Version 6, Src: 2001:db8:abed:1:a077:4275:9a8b:a 
) User Datagram Protocol, Src Port: 57539, Dst Port: 53 

8050 7a 00 00 l c 00 91 
v Domain Name System (query) 

8050 

Transaction ID: 0x0002 
> Flags: 0x0100 Standard query 

Questions: 1 
Answer RRs: 0 
Authority RRs: B 
Ad d i t i o n a l RRs: 0 

s Queries 
> vut.cz: type AAAA, cl a s s IN 

Fig. 2.21: DNS query from the victim on the attackers device for the domain vut.cz 

Upon intercepting a DNS query, the attacker utilized an Answering-Machine 
algorithm, which is integrated within the Scapy framework, to generate an appro­
priate response. This algorithm is designed to process and respond to DNS queries 
based on a dns file supplied by the user. It also considers various nuances, includ­
ing the specific options that may be appended to the DNS query. By meticulously 
crafting responses that adhere to these parameters, the algorithm effectively main­
tains the illusion of legitimacy, thereby facilitating the continuation of the attack. 
During the attack, the target device, believing it was communicating with a trusted 
DNS server, would resolve domain names to IP addresses provided by the attacker. 
This allowed the attacker to redirect the target device's traffic to malicious sites, 
intercept sensitive information, or even facilitate further attacks such as phishing 
or malware distribution. From the perspective of a client operating the victim de­
vice, no change in behavior, or appearance was detectable. The device continued 
to operate as expected, with network connectivity seemingly intact. However when 
the client's browser attempted to load web pages the browser displayed a "page not 
found" error. This outcome was observed only during testing, where the address 
provided in the DNS query response was intentionally left unassigned to monitor 
the attack's effects without causing actual harm. In a real-world scenario, the attack 
would be significantly more insidious and difficult to detect. The malicious appli­
cation would provide legitimate responses to DNS queries, redirecting the client's 
browser to seemingly authentic, but attacker-controlled, websites. These sites could 
mimic legitimate ones, capturing sensitive information such as login credentials or 
injecting malicious content into the client's device. 
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2.6 Future Plans 

Future plans for the development of the MITM-tools include enhancing its func­
tionality and expanding its feature set, improving detection and evasion techniques, 
and focusing on usability and community engagement. To begin with, the tool will 
be extended to support additional network protocols beyond IPv6, ICMPv6, and 
DHCPv6, such as H T T P / H T T P S and DNS over HTTPS (DoH), along with imple­
menting more sophisticated attack techniques like SSL stripping and advanced DNS 
spoofing. In terms of detection and evasion, advanced stealth enhancements will be 
developed to bypass modern intrusion detection and prevention systems (IDS/IPS), 
mimicking legitimate traffic patterns and utilizing encryption to conceal malicious 
activities. Anti-detection measures will also be integrated to neutralize countermea-
sures deployed by network security systems. Usability improvements will involve the 
creation of a user-friendly graphical interface to simplify configuration and deploy­
ment, making the tool accessible to users with varying levels of technical expertise. 
Additionally, automation features and scripting capabilities will be introduced for 
predefined attack scenarios. Finally, community engagement and collaboration will 
be emphasized through open-source contributions, fostering community input and 
collaborative development, and establishing partnerships with academic institutions 
and industry leaders to drive further research and development in network security. 
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Conclusion 
In concluding this thesis, the journey from the inception to the development of the 
Python application for M I T M attacks marks a significant exploration at the intersec­
tion of programming, networking, and cybersecurity. The creation of this application 
represents a unique endeavor to offer a versatile tool capable of integrating various 
attack methods into a unified solution. 

Throughout the research, the Scapy library's proficiency in crafting and manipu­
lating network packets has been harnessed, coupled with an in-depth understanding 
of IPv6, ICMPv6, and DHCPv6 protocols. The application's focus on fake DNS, 
DHCP, and default gateway attacks underscores its potential as a comprehensive 
toolkit for security professionals and researchers. 

As the project evolves, future plans center around refining the application, ex­
panding its capabilities, and addressing challenges identified during testing. Em­
phasis will be placed on ethical considerations, user responsibility, and collabora­
tion within the cybersecurity community. The envisioned trajectory seeks to keep 
pace with emerging networking technologies, ensuring the application's relevance in 
dynamic cybersecurity landscapes. 

The commitment to ethical use, ongoing development, and community collabora­
tion aims to establish the application as a valuable resource for educational purposes 
and responsible penetration testing. The continuous evolution of the tool aligns with 
the broader goal of contributing to the field of network security and empowering cy­
bersecurity practitioners with effective, responsible, and adaptable solutions. 
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Symbols and abbreviations 
IPv6 Internet Protocol version 6 

M I T M Man-in-the-middle 

DHCPv6 The Dynamic Host Configuration Protocol version 6 

DNS Domaim Name System 

D N S S E C Domain Name System Security Extensions 

mDNS Multicast DNS 

Zeroconf Zero Configuration Networking 

A R P Address Resolution Protocol 

N D P Neighbour Discovery Protocol 

M A C Media Access Control 

SSL Secure Sockets Layer 

TLS Transport Layer Security 
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List of appendices 

A MITM-tools Application 





MITM-tools Application 

root of the attached archive 
_ mitm. py The main MITM-tools script 
classes.py A supporting script containing the used classes 
dhcpAM. py Script containing the DHCPvö answering algorithm 
dnsAM.py Script containing the DNS answering algorithm 
_ targets. txt An example of a Targets file 
_ dns. txt An example of a DNS dictionary 
_requirements.txt The list of all needed dependencies 
README. md The documentation for the code 
LICENSE The licence agreement 
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