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Anotace 

 

ŠEBA, František. Celulární automaty a jejich přínos v didaktice fyziky. Hradec 

Králové: Přírodovědecká fakulta Univerzity Hradec Králové, 2021. 158 p. 

Disertační práce. 

 

Disertační práce se zabývá celulárními automaty, zejména jejich schopností 

modelovat fyzikální systémy, a zkoumá možnost jejich aplikace v didaktice fyziky. 

Nejprve byla provedena rešerše na dané téma, na jejíž základě jsou v práci 

prezentovány informace o historii, vlastnostech a klasifikaci celulárních automatů. 

Pozornost byla věnována zejména vlastnosti celulárních automatů generovat 

extrémně komplexní chování, na základě velmi jednoduchých pravidel. Této velmi 

zajímavé vlastnosti celulárních automatů je využito k modelování některých 

složitých přírodních systémů, zatímco vlastní popis těchto systémů je realizován 

popisem jednoduchých zákonitostí, kterými se celulární automat řídí. Možnost za 

pomoci celulárních automatů studovat i nejsložitější systémy bez nutnosti použít 

komplexní matematický aparát byla rozpoznána jako přínosem pro didaktiku 

fyziky a tvoří vlastní základ této práce. Za účelem podpořit a demonstrovat tento 

koncept byla vytvořena celá řada modelů přírodních fyzikálních systémů, jejichž 

popis je vždy dán pouze jednoduchými pravidly souvisejícího celulárního 

automatu. Nakonec, za účelem dále demonstrovat potenciál celulárních automatů 

v didaktice fyziky, jsou v práci představeny výsledky současného výzkumu 

v oblasti fyziky dopravy, v jehož kontextu je v práci zdůrazněna schopnost 

celulárních automatů jednoduše popsat systém, který ještě nebyl do detailu 

poznán, a jež je v současnosti předmětem výzkumu. 
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Dissertation thesis. 

 

This thesis deals with the problem of cellular automata, especially with their ability 

to model physical systems, and explores their potential in didactics of physics. In 

order to understand the concept in detail, research on the topic was conducted, 

and based on this research, compiled information about the history, classification, 

function and typology of cellular automata is presented. Special focus was given to 

study the remarkable property of cellular automata to exhibit even the most 

complex behavior, while following only very basic and simple rules. This very 

special property of cellular automata is utilized to model some of the most complex 

systems occurring in nature, while the description of the system itself is still being 

given only by the basic rule set of the underlying cellular automaton. The ability to 

study such complex systems, while not having to rely on complex mathematics is 

understood to have a great potential in didactics of physics and is the fundament of 

this thesis. To support the presented concept, several models of highly complex 

physical systems are presented in this thesis while their rule-based description is 

always delivered in a simple sentence, or by utilizing only elementary visual 

schematics.  Finally, to further highlight the potential of cellular automata in 

didactics of physics, some of the very recent research on physics of traffic is 

presented to highlight the remarkable ability of cellular automata to describe even 

not yet fully understood systems where scientific research is still ongoing. 
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Introduction 

 

The ability to teach well has been a challenge ever since John Amos Comenius and 

Wolfgang Ratke placed the very first fundaments of what we today call didactics. 

This is especially true when one is concerned with teaching natural science, 

physics in particular. Traditionally, a mathematical approach to didactics of 

physics has been adopted for many years with great success. However successful 

this approach might be if applied in general, there still are systems in physics, 

which can’t be easily addressed with this current approach, as the related 

mathematics is simply too complex. The aim of this thesis is to introduce a new 

kind of description mechanism for these systems, which could serve as a 

complementary didactical tool to the currently adopted mathematical approach. 

This description mechanism is based on cellular automata, especially their 

property to generate or mimic complex behavior. First of all, a general description 

of cellular automata will be given and a simple example of how a cellular 

automaton works will be presented. A brief history of the concept will be discussed 

to introduce how cellular automata were invented. After that, the potential of 

cellular automata in didactics of physics will be discussed in detail and several 

cellular-automaton-based models of physical systems will be explored. Each of 

these physical systems which will be modeled are especially difficult to 

educationally address through the standard mathematical approach to highlight 

the potential benefits of the cellular automaton approach. Finally, several models 

from current research on physics of traffic will be discussed to highlight, that the 

very same tools that can be utilized for the description of standard school subjects 

in didactics of physics can be in fact used to address not yet known and understood 

physical phenomena, further highlighting the potential of cellular automata in 

didactics of physics. 
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1. Cellular automata description and history 

 

A cellular automaton is a mathematical idealization of a physical system, where 

space and time are discrete, and where all physical quantities can take only a finite 

set of discrete values [1]. It represents a discrete model of computation. A cellular 

automaton consists of a regular uniform grid (or array) of cells (usually infinite in 

extend), each of which have a finite number of possible states described by a 

discrete variable. The grid itself, can have any non-infinitive number of 

dimensions. For each of the cells, a set of cells called “neighborhood” exists 

(typically, the neighborhood is the cell itself together with cells directly adjacent to 

it). The state of the cellular automaton at any point in time is defined by the 

individual discrete values of each cell. An initial state (the state of the cellular 

automat at time zero) is created by assigning a discrete variable to each cell. A 

cellular automaton evolves in discrete time steps, where a new configuration of the 

cells is acquired by a simultaneous update of all cell states based on the values of 

variables of cells in their neighborhood, and based on a definite set of rules 

(typically mathematical functions) [1], [2]. Cellular automata can simulate a variety 

of real-world systems. The have found application in biology, physics, 

mathematics, social science, philosophy, computer science, art, technology, 

artificial intelligence and artificial life, catastrophe theory, chaos theory, 

complexity theory, cybernetics, dynamical system theory, evolution theory, 

nanotechnology, nonlinear dynamics, self-organization, statistical mechanics, 

traffic modeling and many others. 

 

 

Picture 1. State transition chart of a general cellular automaton [2]. 
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1.1 Description of cellular automata 

 

Before moving to a more detailed discussion about cellular automata, their 

classification and their properties, let us describe and demonstrate on a simple 

cellular automaton example what basic terms apply and what properties and 

behavior a cellular automaton may exhibit. For this purpose, we have chosen a one 

dimensional, two states cellular automaton (the rule 254 automaton described in 

[3]). This automaton lives in a universe represented by a line of cells, which 

stretches indefinitely in both directions (left and right). Each cell can have only one 

of two possible states (discrete numeric state represented by either “1” or “0”, or 

for better imagination by black and white color). Each cell has a neighborhood 

(simply the directly adjacent left and right cell, see picture 2). At time (𝑡 = 0), a 

state is assigned to each cell in the universe (in our example, only one cell will be 

black, all the others will be white). A set of definite rules describe, how a cell state 

can change with each step (what the new color of the cell will be) based on the 

colors of the cell’s neighborhood. For this specific case, the rule specifies (see 

picture 3) that a cell should be black in the next step, if the cell itself, or either of its 

neighbors is black in the previous step. In total, there are 8 different rules (8 

possible transition possibilities) which can be listed in a look up table (this applies 

in general - all rules for each possible cellular automaton, no matter the complexity 

can be listed in a look up table, it is just more compact to define a sentence or a 

mathematical function, which can describe many possible states at once). A general 

feature of cellular automata is, that for most of them their evolution can be 

displayed in a visual way. In fact, for simple cellular automata (like the one in this 

example), not even a computer is necessary and a sheet of graph paper is 

sufficient. The graphical representation of the behavior of the first example cellular 

automat (rule 254) can be seen in picture 4. As you can see, starting from a single 

black cell and applying rule 254 results in a simple growing pattern. 

 

 

Picture 2. Graphical example a cells (visualized black) “neighborhood” (red colored 

cells) [3]. 
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Picture 3. Graphical representation of the rule set (rule 254) used in the first 

example. A cell will have a black color in its next generation, if and only if it is black 

in the previous generation or at least one of its neighbors is black in the previous 

generation [3]. 

 

 

Picture 4. The first 10 steps of evolution of the first example cellular automaton 

(rule 254). The evolution exhibits a simple growth pattern. [3]. 

 

As a next example, let us investigate what happens, if we slightly modify the rule 

set. Let’s say as a new rule, black cells for which both neighborhood cells have 

white color, will now be white instead of black in the next generation. The 

graphical representation of the rule modification can be seen in picture 5. As can 

be seen, even the initial conditions remained the same (still starting from a single 

black cell), just a slight modification of the cellular automaton rule results into a 

completely different pattern. Instead of a growing pattern, the new rule leads to a 

checkboard pattern, although the pattern again is very simple (see picture 6). One 

could come to the conclusion, that for such an easy automaton (only one 

dimensional and a maximum of 8 rules), all possible patterns which can be 

generated will be very simple, but surprisingly this is not the case. Let us consider 

yet another example. The rule set for this third example states, that a cell should be 
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black in the next generation if and only if one of the neighbor cells (but not both) is 

black in the previous generation. Again, the rule set is very simple, but the pattern 

the automaton now exhibits is not simple anymore (see picture 7 and picture 8). It 

seems, that the new rule (rule 90 as described in [3]) generates a pattern 

containing self-similar nested structures, with the overall pattern being much like 

a fractal. But even the pattern is not as simple as patterns from rule 254 and 250, it 

still is highly regular when observed on a larger scale. As a last example, let us 

explore, whether it is possible to generate even a more complex pattern, 

containing no, or only limited regularities. One could assume, that due to the 

simplicity of the underlying rules, the cellular automaton could never exhibit 

complex behavior, however this can be proven wrong. Some of the rules (rule 30 in 

particular), show very complex behavior. Rule 30 can be summarized as follows. If 

a cell and its right neighbor are white in the previous step, the cell will have the 

same color as the left neighbor in the previous step. Otherwise, it will have the 

opposite color. For better imagination, see picture 8 where rule 30 is visualized. 

The pattern generated by rule 30 can be observed in picture 10 (small scale) and 

picture 11 large scale. The remarkable complexity of the emerging pattern is 

fascinating. Also, it is unclear where such an irregularity and complexity comes 

from. The automaton started, as all the other examples, from a single black cell, 

and the underlying rules were also very simple. Yet, it could produce this 

extremely complex pattern. This is a fundamental phenomenon common to all 

cellular automata and is both strange as well as fascinating. The fact that even the 

underlying rules of a system (doesn’t matter whether it is a cellular automaton or a 

natural system) are very simple and even though the starting conditions of that 

system are very simple, the system is still capable of producing behavior of 

extreme complexity. Nobody knows where this complexity comes from. I believe 

that it is possible to take advantage of this fact (without going deeper into detail of 

origin of the complexity) and utilize it to describe some of the most complex 

systems occurring in nature just by finding the underlying rules, without having to 

rely on complex mathematical descriptions. This possibility to describe a system 

without having to apply hard mathematical rigor can be advantageous in didactics, 

as it can open a completely new universe to students which do not have deep 
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knowledge of mathematics, but yet would like to investigate the fascinating beauty 

of these complex natural systems. 

 

 

Picture 5. Graphical representation of the updated rule set (rule 250). The 

difference between the original rule set (rule 254 top row) and the new rule set 

(250 bottom row) is highlighted in red [3]. 

 

 

Picture 6. The first 10 steps of evolution of the modified rule example cellular 

automaton (rule 250). The evolution exhibits a checkboard pattern [3]. 
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Picture 7. The result pattern of the rule 90 automaton displayed on a small-scale 

grid. The pattern is no longer simple and contains interesting triangle like nested 

structures [3]. 

 

 

Picture 8. The result pattern of the rule 90 automaton displayed on a larger scale 

grid. The automaton exhibits a regular fractal like pattern [3]. 

 

 

Picture 9. Graphical representation of the final rule set (rule 30) [3]. 
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Picture 10. The result pattern of the rule 30 automaton displayed on a small-scale 

grid. The pattern shows almost no overall regularity and seems random. 
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Picture 11. The result pattern of the rule 30 automaton displayed on a larger scale 

grid. The pattern is a result of five hundred automaton steps. The asymmetry of the 

left and right side of the pattern is a direct consequence of the asymmetry of the 

underlying rule set. 

 

1.2 History of cellular automata 

The history of cellular automata began at the Los Alamos National Laboratory 

(famous laboratory in the US, well known for its role in the Manhattan Project and 

World War II) in the late 1940’s, and is closely related to the names Stanislaw Ulam 
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(1909-1984) and John von Neumann (1903-1957). Ulam was a mathematician, 

especially known for his contribution to pure and applied mathematics (set theory, 

topology, projective algebra, graph theory and combinatorics), famous for 

inventing the Monte Carlo computation method as well as coinventing the 

hydrogen bomb (together with Edward Teller). Von Neumann was a physicist, 

computer scientist and mathematician (probably one of the best mathematicians of 

his time, who integrated both pure and applied science [4]). He made extensive 

contributions in many fields, including physics (quantum mechanics, 

hydrodynamics, statistical mechanics), economics (game theory), computer 

science (Von Neuman architecture, stochastic computing) and mathematics 

(operator algebra, geometry, topology, set theory). Together with Herman 

Goldstein he designed the architecture of first electronic computers. 

In the late 1940’s, one of the questions that John von Neumann was concerned 

with was the “concept of complication”. In one of his papers [5] he pointed out, that 

while it is tempting to expect that when an automaton performs a certain 

operation, this operation must have a lower degree of complication then the 

automaton itself, thus if an automaton would have the ability of constructing 

another automaton, which again could construct another automaton, this 

construction sequence would show a complexity degeneration tendency. This 

however is in contradiction to what can be seen in nature. Living organisms can 

reproduce themselves without any decrease in complexity. On the top of that, 

enduring evolution makes the complexity of living organisms even grow. Could it 

be possible for a machine to produce another machine as complicated as itself? To 

answer this question, von Neuman suggested an automat consisting of a relatively 

low number of standardized parts, each of which has a specific function. This 

“catalogue” of parts is defined to be able to permit construction of wide variety of 

functions and mechanisms, to have sufficient axiomatic rigor to answer the 

question. Von Neuman was wondering, whether there exists an aggregate out of 

such parts, which, placed in a reservoir full of parts, could build other aggregates 

out of these parts, which are exactly same as the original one.  Through applying 

Turing’s theory of computing automata (Turing was a famous English logician, who 

could prove that a completely general description of any automata can be given in 

a finite number of words [6]), von Neumann was able to prove that building of 
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such an aggregate is feasible, the same way as it is feasible to build a completely 

general computation automat [5]. However, as much as it was theoretically 

possible to build such an aggregate of parts, the difficulty to actually build the 

aggregate, and the complexity and costs of a reservoir full of floating parts 

hindered von Neumann from actually building such an aggregate and reservoir to 

make his proof convincing [7]. Here is, where Ulam (who was working with von 

Neuman at the Los Alamos National Laboratory, and who may have already 

considered independently the same problem) suggested in 1951 to use a discrete 

system of cells, each of which could hold a finite number of states (representing 

individual machine parts), and each of which would have a finite number of 

connections to its neighbor cells. The state of the neighbors at time 𝑡(𝑛) would 

induce in a certain way the state of the cell in time 𝑡(𝑛 + 1). Utilizing this concept, 

von Neuman was able to introduce in 1952 a description of the first self- 

reproducing cellular automaton. It was based on a two-dimensional lattice of cells, 

each of which had only a small neighborhood (only cell which touch are considered 

neighbors) and which could hold 29 different states. Von Neumann gave a proof, 

that a certain configuration could self-reproduce by designing a 200000-cell 

automat that could do so [3], [8]. This design is called von Neumann’s universal 

constructor (see picture 13). 

 

  

Picture 12. John von Neumann’s and Stanislaw Ulam’s photos from their Los 

Alamos ID batch. [9], [10] 
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Picture 13. John von Neumann’s universal constructor on a sheet of paper. [11] 

 

Interesting is, that John von Neumann never published his findings. It seems, that 

once he solved the problem, he moved on to other thinks. Considering Ulam’s and 

von Neumann’s contribution to the invention of cellular automata, one can say, 

that the “cellular” portion comes from Ulam, and the “automata” portion from von 

Neumann [7]. 

In the 1960s, most of the scientific research on cellular automata was related to 

capturing the essence of self-reproduction by studying mathematical properties of 

cellular automata, and even more simple self-reproducing cellular automata were 

found. Also, it was found out, that cellular automata could be considered parallel 

computers, and detailed research (often similar to research on Turing machines) 

was conducted in this field [3]. At the end of 1960s, cellular automata were studied 

as a certain type of dynamic systems [12]. Although at that point in time, even 

though general-purpose computers could have been used to run cellular automata, 

they were mostly used for studding more traditional systems like partial 

differential equations. However, there were exceptions. Stanislaw Ulam used 

computers to produce what he called “recursively defined geometrical objects”, 

which were in fact objects evolving from black cells of simple 2D cellular automata. 

Ulam discovered, that very simple rules could generate a very complex pattern, 

and mentioned that this could have implications relevant to biology [3]. Another 
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exception, and also a big event in the history of cellular automata was the 

discovery of a simple set of rules by John Conway, which he called “The Game of 

Life” and which can exhibit a wide range of complex behavior. The Game of Life 

went widely known in the early computing community thanks to Martin Gardener, 

which published its rules in a Scientific American article [13]. The rules of the 

game are remarkably simple. There is a universe consisting of a two-dimensional 

grid of square cells, which can have only one of two possible states – life or dead 

(or present and non-present). Every cell has its so called “neighborhood”, which 

consists of cells which are directly adjacent to it (vertically, horizontally or 

diagonally). The game evolves in discrete steps in time following 3 simple rules 

(which Conway called “genetic laws”): 

 

1) Survivals. Every alive cell with two or three alive neighbors survives for 

the next generation. 

 

2) Deaths. Every alive cell with four or more neighbors dies from 

overpopulation, every alive cell with one or zero neighbors dies from 

isolation. 

 

3) Births. Every dead cell which has exactly three alive neighbors comes into 

life. 

 

Very important is, that all the births and deaths need to happen simultaneously. 

They form a single generation, a single “move” in the game of life [13]. 

Even though the rules are quite simple, the possible evolution of individual 

patterns can be extremely complex. Some initial configurations, lead to emergence 

of complicated macroscopic patterns, other lead to spontaneous self-organization. 

There are configurations which will evolve chaotic behavior. Some configurations 

lead to formation of a universal constructor. Theoretically, any Turing machine can 

be formed through the game of life, as it is computationally universal [14], [15]. As 

an example, game of life can simulate a counter, it is possible to construct logic 

gates (like OR, AND, NOT, XOR). In fact, several programable computer 

architectures were implemented in the game of life [16]. It is even possible to 
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implement the famous Tetris game in game of life [17]. As can be seen, the game 

attracted a lot of attention through popularization by Martin Gardener, and 

extensive effort was put in finding specific initial conditions, that could show 

interesting behavior, however no real systematic scientific research was 

conducted, as the topic was more or less treated as recreation [3]. There was, 

however, also a completely opposite direction of thinking, taking cellular automata 

far more seriously.  

 

 

Picture 14. Example of some basic patterns from Conway’s Game of Life.  Some 

patterns just stay still, others move or blink. A combination of multiple patters may 

behave extremely complex [18]. 

 

Starting in 1969 with Konrad Suze (inventor of the first working computer – the 

Z3), who published his book Calculating Space [19], [20]. In his book he suggested, 

that the physical laws of the universe are discrete, and that basically all processes 

in the universe and even the universe itself could be an output of a deterministic 

computation of a giant cellular automaton [21]. Independently of Suze, Edward 

Fredkin also suggested that the Universe itself could be some sort of a highly 

parallel computational device, similar to a cellular automaton [22]. This was the 

foundation of a view today known as the simulation hypothesis, 

pancomputationalism and digital physics, which states that the whole universe, 
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inclusive earth and everything else, could in fact be a computer simulation [23], 

[21]. 

In 1981, Steven Wolfram began working on cellular automata. Wolfram was asking 

himself, why is it that complex patterns could arise in nature – apparently violating 

the second law of thermodynamics [3]. Wolfram published his first paper 

investigating cellular automata (rule 30 in particular) in 1983 [1]. In this paper, he 

already discussed in raw form several core ideas, that later lead to formulation of 

what Wolfram himself called “a new kind of science”, especially the idea that 

instead of using mathematical equations (a traditional approach to science), 

complex phenomena can be reproduced by simple cellular automata models. 

Twenty years later, Steven Wolfram published his life work in a book. Wolfram 

argues, that cellular automata have significance in all disciplines of science 

inclusive physics, and that sufficiently complicated automata could be capable of 

simulating any physical system, supposing there is an appropriate input and 

sufficient computational time. And exactly this approach (to use a cellular 

automaton instead of mathematical equations) to describe a physical system is the 

very fundament of this thesis. The approach to describe a (sometimes very) 

complex system, just by a simple set of rules of a cellular automaton, instead of 

hard mathematical rigor is of indisputable value in the didactics of physics, as it 

makes these systems available for study even for first grade and second grade 

students. 

 

1.3 Classification, types and application of cellular automata 

1.3.1 Classification of cellular automata 

 

Even though the behavior and properties of cellular automata vary significantly 

(based on their underlaying rules and initial configuration conditions), and the 

individual patterns yield by individual cellular automata always differ one from 

another, still the number of essentially different types of patterns is limited [3]. 

This was discovered by Steven Wolfram after he observed thousands and 

thousands of unique cellular automaton pattern evolutions. Wolfram argues, that 

based on the behavior and complexity of the observed patterns, almost all cellular 
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automata can be assigned to one of four basic classes. These classes are numbered 

1-4, based on their growing complexity [3]: 

 

• Class 1 – The cellular automaton behavior is very simple, and almost all 

initial configurations lead to a stable uniform final configuration, even if the 

initial configuration is random. 

 

• Class 2 – The cellular automaton behavior is simple. Initial configurations 

may evolve into many different final configurations, but all of them are built 

just from a set of simple structures which either last forever, or repeat itself 

after only a small number of steps.  

 

• Class 3 – The cellular automation behavior is complicated. Initial 

configurations seem to evolve randomly or chaotically. Although small-scale 

structures always seem to form at certain steps, they later are consumed by 

the surrounding chaos. 

 

• Class 4 – The cellular automaton behavior is complex. Initial configurations 

evolve in a mix of order and chaos. Simple local structures emerge and 

move around to interact with other local structures in a very complex way. 

Cellular automaton may be capable of universal computation. 

 

 Although there are some cellular automata, which can’t be classified by this 

system (based on their properties, they may fall into several of the above-

mentioned classes and are not clearly distinguishable), they remain more or less a 

quite unusual specialty as most of the cellular automata behavior falls into one of 

the four mentioned classes [3]. Interesting is to consider the overall activity of 

individual cellular automata classes. One would assume, that the activity of the 

cellular automaton is proportional to its complexity. However, this is not always 

the case. It is no surprise, that for class 1 and class 2 automata, the activity quickly 

slows down to states, where activity is no longer present. Highest activity is 

(counterintuitively) present in class 3 automata, and not in class 4. The reason for 

this is, that class 3 automata seem to have a lot of cells changing at every step. This 
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allows for maintaining a high degree of activity forever. Class 4 cellular 

automatons in contrary, are somewhere in the middle. They do not settle down 

like class 2 automata, so the activity does not cease to exist, but they also cannot 

maintain the high level of activity seen in class 3. This seems to be a general 

characteristic, seen for example also in other types of cellular automata [3]. 

 

1.3.2 Types and application of cellular automata 

 

Cellular automata can be also categorized according the rule logic they follow [2]. 

This of course makes it possible to define many custom categories - based on 

which subset of rule features the cellular automata share. Therefore, it is difficult 

to obtain a complete list of cellular automata types. The most famous types include 

[2]: 

 

• Linear cellular automata - these automata utilize XOR logic. If cellular 

automaton rules contain only XOR logic (in general an affine transform of 

the type 𝑥 → 𝑥⨁𝑐 where ⨁ represents the exclusive or as a generalization 

of addition in vector space or cellular automaton state space), and if these 

rules apply to every cell of the cellular automaton, then the automaton can 

be considered a linear cellular automaton. Typical applications of linear 

cellular automata include studies in graph theory, cryptographic 

applications and VLSI design and test [2], [24], [25]. 

 

• Complement cellular automata - these automata utilize XNOR logic 

(inversion of the above mentioned modulo-2 logic). The rule needs to apply 

to all cells of the automaton. Typically, it is utilized in cryptography [26]. 

 

• Additive cellular automata – these automata utilize a combination of the 

above mentioned XOR and XNOR logic. Their typical applications include 

VLSI design and testing, bit error correction, fault diagnosis, data 

encryption, image processing, and in many other real-life problems like. [2], 

[26], [27], [28]. 
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• Non-linear cellular automata – in general utilize the AND/OR/NOT logic 

and are usually powerful pattern recognizers [2]. 

 

• Uniform cellular automata – If all cells follow the same rule, the 

automaton is considered uniform [2]. 

 

• Hybrid cellular automata – these automata are the opposite of uniform 

automata. If the automaton cells obey different rules, the automaton is 

considered hybrid. Typically, they are utilized in cryptography, but have 

many other applications including idealization of real physical systems like 

fluid dynamics, plasma physics, crystal growth, chemical systems, 

economics or traffic flow systems [29]. 

 

• Null boundary and periodic boundary cellular automata – If in a one- 

dimensional cellular automaton both first and last cell are considered 

neighbors, the automaton is considered a periodic boundary automaton. It 

the opposite case is considered a null boundary automaton. It needs to be 

mentioned, that this condition applies in any finite number of dimensions. 

Typical applications include pattern recognition, pattern generation and 

fault diagnosis [30]. 

 

• Programable cellular automata – If a cellular automation contains some 

control logic, or some control signals, it is considered programable. Based 

on the control signal state (which can dynamically change during the 

automations runtime), the automaton behavior can be directly controlled. 

Typically, such an automaton is utilized in parallel computing and parallel 

computer design [2]. 

 

• Reversible cellular automata – A cellular automation is considered 

reversible, if it can at any state return to its initial conditions. In these types 

of automata also reverse iteration is possible. Typically, the automaton has 

a rule for a standard step 𝑡 = 𝑡 + 1, and it has also a reverse rule to that rule 
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used for a backward step  𝑡 = 𝑡 − 1. In such a case, the automaton can 

eventually reach its initial state 𝑡 = 0. Usual applications are related to 

cryptography [31]. 

 

• Fuzzy cellular automata – These automata utilize fuzzy logic. They are 

capable of pattern recognition and pattern classification. Their fundamental 

advantage is their ability to handle not only binary patterns, but also multi-

cell state patterns including any rational number in (0,1) [32]. 

 

As can be seen, the typology of cellular automata is wide, and so is the range of 

application, ranging from physics and mathematics through computer science and 

cryptography up to biology, material technology and traffic modeling and even up 

to philosophy and social science. The most famous and most utilized applications 

however can be summarized into the following four categories [3], [2]: 

 

a) Parallel computing application category of cellular automata 

 

In machine and computer design, after initial proof of concept prototypes, 

utilization of cellular automata was standardized already from the early 1980s. 

Typical application in computer and machine design include sorting machines, 

parallel multipliers, prime number sieves and parallel processors. Other 

applications consider cellular automata as fault resistant computing machines. For 

pattern recognition and image processing, two-dimensional cellular automata 

were put to a good use as well. A very interesting utilization of cellular automata 

are complex system simulators, which are based on high degree parallelism 

capability, which can lead to several orders magnitude higher simulation 

performance then standard computational systems, while still working at 

comparable costs. Also, cellular automaton based self-replicating structures can be 

used to solve NP-complete problems [2]. 
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b) Physical, biological and chemical system modeling 

 

A second major category of cellular automata utilization is the modeling of physical 

or biological systems, as an alternative approach to standard differential equations 

which are traditionally used for this purpose. Physical systems, where this 

approach was especially successful were all sort of systems where pattern 

formation occurs. The most prominent systems among them include modeling of 

hydrodynamical systems, diffusion systems, spin systems, and diverse forms of 

regular, dendritic or random growth pattern systems. Cellular automata are also 

utilized heavily in chemical system modeling, for example investigation on 

absorption and desorption phenomena, heterogenous catalysis, various diffusion 

systems modeling, solidification process and also phase transformation and alloy 

formation processes [2]. Although the modeling capabilities of cellular automata 

are undisputed (a throughout investigation on how deep cellular automation 

models can reflect physical reality will be delivered in the next chapter), no 

rigorous attempts were ever made to investigate their capabilities in didactics, as 

cellular automata themselves always remained a topic of scientific investigation, or 

were utilized as a scientific modeling or engineering application tools. 

 

c) VLSI design and testing 

 

A major application category of cellular automata is also VLSI design (very large-

scale integration design – integrated circuit design). Typical use cases of cellular 

automata in VLSI design include implementation of multi-stage noise shaping 

cascades utilized in various VLSI application (whenever a parallel generation of 

random analog vectors is required), including analog encryption, secure 

communication, self-tests, stochastic neural networks and simulated annealing 

optimalization in machine learning [2]. 

 

d) Pattern recognition 

 

The fourth and last major category of cellular automata application is related to 

pattern recognition. The solution is based on a syntactic evaluation approach, 
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where a finite cellular automaton works as a so called “language acceptor”, where 

the initial configuration of the automaton is defined by an input string, and the 

acceptance of the input string is represented by a machine halt in a specific 

condition (specific automaton state). By acceptance or rejection of certain input 

strings, the automaton can be trained to recognize patterns. It is a fundamental 

approach in machine learning and now popularized in neural-network-approach-

based pattern recognizers [2]. 

  



28 
 

2. Modelling of physical systems using cellular 

automata 

 

In the previous chapters a brief description and classification of cellular automata 

was given. It was shown that cellular automata found application in many fields. 

For a complete picture, also a historical context was provided. It was as well 

proven on a simple example, that such an elementary algorithm indeed can 

produce behavior of great complexity. But is the simple fact that cellular automata 

can produce complex behavior enough to make the conclusion they can also model 

physical systems or physical reality? This chapter will explore to what extend the 

behavior of cellular automata is similar to the behavior seen in nature, and will 

show that the very same fundamental concepts, that make natural systems behave 

as they do can in fact be found also in cellular automata. To see that there might be 

a common principle working in nature and in cellular automata, one can just have 

a look on the pictures of natural systems and pictures of simple program outputs 

described in [3]. When the detailed level structure is compared, there are 

obviously differences, but once both systems are observed from an overall level it 

is immediately visible that there are surprising similarities. As highlighted in [3], it 

is astonishing how often cellular automata show behavior that is almost identical 

to what can be seen in nature. That can’t be a coincidence. It is suspected [3] that 

there might be a deep correspondence between cellular automata and natural 

systems, much deeper than a plain visual similarity. That is not only the case when 

natural systems and cellular automata are compared. The similarities apply also 

when two independent natural systems are compared. And although individual 

systems may be (and usually are) build up from completely different physical, 

biological or chemical components, their overall behavioral patterns are 

remarkably similar. This suggests, that a certain universality exists which is 

independent on the underlying rules, and that principally it does not matter 

whether the components of a system are real molecules or idealized cells [3]. It is 

this universality that makes cellular automata so much suitable as a tool in 

didactics of physics, as they do not merely reproduce natural patterns without a 

deeper context to the studied system. Instead, it directly touches the (highly 
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abstract) fundaments of the system itself, but in a neat sandbox-like framework of 

simple rules, easily explainable to a student by plain words and traditional 

sentences. In its essence it is similar to mathematics heavily utilized in didactics of 

physics. Both tools (from didactical perspective) utilize a certain language as the 

building block of the interface between the student and the studied matter. But 

while mathematics uses formal language, the cellular automaton concept can 

utilize natural language, which I believe is (especially for basic or secondary school 

education) a major benefit. Obviously, when not considering the didactical aspect, 

the formal language of mathematics (besides some of its known issues [33]) is in 

many respects superior to almost all know tools to scientifically address a studied 

topic, however when the didactical aspect is taken into consideration, most of the 

students will not appreciate the high level of abstraction the mathematical 

axiomatic system is able to provide and in most cases in our current approach in 

didactics of physics, equation and formulas are memorized in a repetitive learning 

ritual rather than throughout studied to establish a deeper understanding of the 

fundamental underlying principles in the universe on the most abstract level. This 

chapter intends to highlight some of the basic phenomena seen in nature and show 

that they have a counterpart in cellular automata, to highlight the immense 

potential of cellular automata in modeling physical systems. 

 

2.1 Randomness in nature and cellular automata 

 

One of the fundamental phenomena seen in nature is randomness. There are many 

systems in nature exhibiting at least at some degree randomness and as seen in 

one of the examples in the previous chapters, cellular automata are perfectly 

capable of exhibiting such randomness too. Essentially, there are three main 

mechanisms how to introduce randomness to a system. First of all, randomness 

can be introduced to a system as part of its underlying rules. In case of a cellular 

automaton, this would correspond to an automaton rule choosing a cell color by 

random, in case of a natural system it would correspond to a random external 

environment continuously affecting the system [3]. A schematic representation in 

form of a cellular automat can be found in picture 15 (a). A second possibility how 
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to introduce randomness to a system is to set it up in the initial configuration of 

the system. For a cellular automaton this could mean that the initial cell states of 

such an automaton are chosen randomly, but the rules the automaton will later 

follow do not involve randomness anymore. A similar concept applies also for a 

natural system. In this case, all the randomness in the system is a function of the 

randomness already present in the systems initial configuration. The concept is 

presented in picture 15 (b).  Both the first and the second mechanism assume, that 

initially there is no randomness present in the system and that it is introduced 

from the outside of the system (either initially, or continuously). In both cases, no 

conclusion can be made about the real origin of the randomness. There is a third 

possible mechanism of how randomness can enter a system, and it is in fact 

responsible for the majority of randomness seen in natural systems. The 

randomness can simply emerge as a product of individual system parts interaction 

as shown in picture 15 (c). This emergence is a fundamental property of complex 

systems and both natural systems as well as cellular automata are known to show 

emergence occurrence as their inherent aspect [34]. This shows a deep 

correspondence between natural systems and cellular automata, which reaches far 

beyond simple visual similarity. All three sources of randomness in a system will 

be studied deeper in the corresponding chapters. 

 

   

(a) (b) (c) 

Picture 15. Schematic examples of how randomness may occur in a system. The 

randomness can be a result of external environmental influence where each cell 

(or component) of a system is continuously influenced by an external random 

input (a), it can be a result of initial random configuration of a system (b) or it can 

emerge as a property of the system itself from individual system part interaction 

(c) [3]. 
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2.1.1 Environment induced randomness 

 

As discussed in the previous chapter, randomness of any specific system may be a 

result of continuous interaction of that particular system with its environment.  A 

classic example of such a system is the notoriously know Brownian motion. It is a 

natural phenomenon occurring in a system where particles are submerged in a 

certain medium (for example gas or liquid) which causes these particles to exhibit 

random motion, and was first described by the biologist Robert Brown in 1827 

while observing a pollen immersed in water through his microscope [35]. At that 

time, nobody could explain the origin of this phenomenon, and it was the 

physicists Albert Einstein who could explain more than 80 year later the random 

walk like motion of pollen through continuous interaction with the surrounding 

water molecules [36]. It is an excellent example of how the surrounding 

environment can induce randomness (in this particular case originating from 

physical properties of the underlying thermodynamic temperature) in a system. In 

a two dimensional, two states cellular automaton analogy of the described 

Brownian motion system one of the cells in the automatons von Neumann 

neighborhood (also called 4-neighborhood) would be randomly chosen to change 

its state based on a simple (non-random) rule set. The random choosing of a 

neighboring cell simulates the random influence of the external environment. For 

comparison see picture 16 (a)-(c). Most left picture (a) is a camera-traced real 

system particle trajectory captured by special video imaging technology (see [37] 

for reference). Middle picture (b) shows a cellular automaton approach.  Right 

picture (c) shows the extremely simplified cellular automaton analogy described 

above. As you can see, the real physical system (a) and the cellular automaton 

approach (b) are near-identical. Even the simplest cellular automaton case (c) 

shows patterns very similar to a real physical system. 
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(a) (b) (c) 

Picture 16. (a) - Real Brownian motion of an of 3T6 mouse fibro-blast cells 

endosome containing fluorescent DiI-LDL capture by a feature point tracking 

technology described in [37]. (b) and (c) show patterns generated by a cellular 

automaton approach [38].  

 

2.1.2 Randomness induced by initial conditions 

 

A second mechanism responsible for random behavior of systems is the 

randomness coming from initial system conditions. This topic is heavily studied by 

chaos theory and in principle applies to systems, that although being deterministic 

by nature are very sensitive to small variations in their starting conditions. Even an 

infinitesimally small variation in the systems initial configuration might result in a 

dramatical difference in its later state. A very famous metaphor mentioned in 

correspondence with chaos theory is the so called “butterfly effect” introduced by 

Edward Lorenz during his study of weather prediction models [39]. The metaphor 

mentions, that theoretically just a small butterfly flapping its wings might create 

tiny changes in the atmosphere, that could cascade and result into a tornado on the 

other side of the world. A simpler everyday example of how tiny changes in initial 

conditions of a system can affect the behavior and resulting state of a system can 

be found in dice games. Consider a well-known dice game called “craps”. In this 

game, players (called “shooters”) usually roll two dices in a way, that the throw is 

powerful enough to hit the farther back wall of the playing table. Theoretically, if a 

player would throw the dices two times with exactly the same initial position, 

strength, hand rotation, hand height and with all other throw parameters being 

exactly the same, the dices should show exactly the same result. Practically this not 

even close to possible, as no human being is able to control the throw in such a 
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precise manner and there will always be a slight difference in initial throw 

conditions. These tiny changes in the initial conditions can result in completely 

different outcomes of the throws in a complex way and such throws are considered 

uniformly random. There are many other physical systems showing this kind of 

initially introduced randomness, among them some of the most prominent being 

fluid flow, stock market, road traffic, double rod pendulum or the famous three 

body problem. A cellular automaton analogy of randomness induced by initial 

conditions is for example a one-dimensional cellular automaton with a 

neighborhood equal to the neighborhood described in picture 2 in chapter 1.1. The 

initial state of the automaton is generated randomly, with each cell having a 

certain probability to have state 0 (black cell). That means the initial conditions are 

completely random. After that, for each step of the automaton the cells are updated 

by an elementary rule - to change a cell to have black color only if its right cell has 

also a black color. The right cell is always set to have white color. In such a way, all 

black cells are shifted one cell to the left in each step. This update is completely 

deterministic and one can easily know the automaton state after arbitrary many 

steps. The black cells distribution though remains random as in the initial 

automaton state and is a result of the initial randomness propagating step after 

step through the automaton evolution. 

 

  

(a) (b) 

Picture 17. Example of randomness induced by initial conditions in a double rod 

pendulum system. The randomness is based on extreme sensitivity of a system to 

its initial conditions. Picture (a) and (b) show two separate double rod pendulum 

systems, where one system differs from the other only by an extremely small 

displacement of the second rod (displacement of only 0.1 rad). Even though the 
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initial conditions are nearly the same and both systems follow the same physical 

rules, each rod system generates a completely different trajectory. 

 

2.1.3 Randomness intrinsically generated by a system 

 

In the two previous chapters, two sources of randomness were discussed. Both had 

something in common. They described sources of randomness that essentially 

came from the outside of the system. Although in such a case a system based on its 

external random input (either continuous input or set up in its initial conditions) 

can show random behavior, it never can generate randomness by itself. This 

chapter will show that there are physical and artificial systems, that can generate 

randomness intrinsically, without utilizing external environment as a source for 

randomness. It will be shown that such a system does not necessarily need to be 

extremely complex and have sophisticated rules. In fact, a system might be 

(counterintuitively) extremely simple, working only with elementary rules, yet it 

still can generate randomness. A good example is the cellular automaton based on 

rule 30 described in [3] and show in pictures 10 and 11 in chapter 1.1. Even 

though the overall picture shows some regularities (for example stripe-like 

patterns to the left of the picture), if one considers only the middle cell of the 

automaton for each step (an array of cells going from top to bottom as seen 

schematically in picture 18 – a) and checks the color distribution in this array of 

cells (highlighted in red), the overall pattern is distributed uniformly random as 

seen in picture 18 (b) [40], [41]. In fact, the algorithm is utilized as a random 

number generator in the famous Wolfram Mathematica software [3]. 
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(a) (b) 

Picture 18. Uniform random numbers generated by the rule 30 cellular automaton 

described in [3]. Left picture (a) shows a schematic representation of how the 

automaton intrinsically generates a uniformly random cell distribution (red cell 

array). Blue cells act as the seed for the generator and different seeds will yield 

different uniformly distributed cell sequences [40]. Right picture (b) compares the 

distribution generated by the rule 30 cellular automaton (blue bars) with the 

continuous uniform distribution (red line) [41]. 

 

As discussed in [3], the intrinsic generation of randomness might be the major 

source of randomness seen in natural system. This does not mean that external 

environment sources or initial configuration sources of randomness do not 

contribute to randomness in nature. But whenever there is a large amount of 

randomness generated in a natural system in a short time, intrinsic source of 

randomness is most likely the origin. As mentioned in the previous chapters, 

randomization of initial conditions can lead to a certain level of randomness in a 

system, but practically there is a limit to the amount of chaos (in the stochastic 

sense) that this source can contribute. During the systems evolution no additional 

randomness is added, and therefore it maintains certain limits imposed initially. 

Also, a system can be continuously affected by surrounding environmental noise. 

The issue with this source of randomness however is, that it can take a lot of time 

to reach a certain level of randomness, as the system does not contribute any 

portion of randomness internally. Therefore, the simplest way how to get a larger 

level of randomness fast is the intrinsic generation of randomness, especially with 

increasing system complexity, as the systems complexity has a dampening effect 

on the environmental induced randomness, but has an amplification effect on 

intrinsic randomness generation due to its inherent emergent behavior ability 

which in certain sense is a function of the systems complexity. And indeed, nature 
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contains many systems on all scale levels, which show intrinsic randomness 

generation, and among them there are even systems directly resembling cellular 

automaton behavior (see picture 19 as an example). Examples range from atomic 

scale physics, where the uncertainty principle guaranties an intrinsic source of 

randomness [42], through single cell living organisms - where intrinsic noise in 

biochemical processes in bacteria can deliver an evolutionary advantage [43], up 

to self-generated variability in decision making in higher organisms  [44]. 

 

 

                                    (a)                             (b) 

Picture 19. Comparison between the rule 30 cellular automaton output (b) and a 

shell of a sea snail of the species Conus textile [45]. The remarkable similarity is no 

coincidence. The snail grows (like a one-dimensional cellular automaton) one layer 

(line) of cells at a time. The cell color depends on interaction between neighboring 

pigment cells (similar to an automaton rule where a color of the cell is defined by 

its neighborhood state). It is an impressive example of how general principles yield 

- independently of the way how they are implemented (may it be artificially 

through a computer algorithm or naturally through a biological mechanisms) - 

similar patterns, further highlighting the deep correspondence between cellular 

automata and natural systems. Note, that the random like snail texture draws its 

randomness intrinsically through complex interaction between the snail’s tissue 

elements. 

 

As a final conclusion of this chapter, it needs to be noted, that both physical 

systems and cellular automata are perfectly capable of exhibiting random 

behavior. Furthermore, it is clear that both utilize the very same three mechanisms 

to do so. This shows that there is a deep correspondence between cellular 

automata and nature, which suggests that cellular automata resemble physical 
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reality on a far deeper level than it would be primarily expected. They do not just 

visually look alike, they share the very same fundamental principles (at least from 

randomness and random behavior perspective – but it will be shown later that in 

many other aspects), that make the systems behave like they do.  

 

2.2 Continuity and discreteness in nature and cellular automata 

 

Another fundamental concept in modeling physical reality is its apparent 

continuity. Many natural systems seem to exhibit behavior that is in many respects 

smooth and continuous (although many others exhibit discrete behavior as will be 

discussed later). So why should an artificial system like a cellular automaton, 

which features discrete elements (cells), be able to model a natural system with 

continuous behavior? The central point here is, that natural systems themselves 

can look on a microscopical level quite discrete (matter consists of discrete 

elements – atoms and molecules), but when looking on a large enough sample, the 

behavior can look smooth and continuous. An example is water. On microscopical 

level it’s made up of molecules, but observed from a larger distance, it seems like a 

continuous fluid. Considering this example, it is completely plausible that also an 

artificial system (cellular automaton), which is discrete on a microscopic level, 

could exhibit continuous behavior when observed on a large enough scale or from 

a far enough distance. A fundamental question is, why systems consisting of 

discrete elements can have continuous behavior. And as described in [3], the key 

element seems to be randomness. Without randomness, a systems macroscopic 

structure in many aspects resembles its microscopic arrangement, like for example 

in case of crystals. In a single crystal, atoms are arranged near perfectly 

periodically and this order is reflected in the crystals macroscopic structure as 

seen in picture 20.  
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(a) (b) 

Picture 20. Microscopic and macroscopic structure of a halite (NaCl) crystal. The 

perfectly periodical cubic arrangement of atoms (a) [46], is reflected in the 

macroscopic structure of the crystal (b) [47].  

 

But once randomness is present in a system, it tends to average out these 

microscopic arrangements, being able to smoothen out any traces of discreteness, 

so the final result might look continuous. This seems to apply independently of the 

systems underlying rules and independent of the system being an artificial cellular 

automaton, or a real physical system. To demonstrate this concept, imagine four 

one-dimensional cellular automation particle systems, where a particle exhibits a 

random walk-like motion (see picture 21 for reference). Each step, the particle can 

move randomly to the left or to the right. How exactly (how many steps to the left 

or to the right) this random movement is done depends on internal automaton 

rules (each of these four automatons have a different though still random 

movement rule). Independently of what automaton is observed, when considering 

just one discrete particle, it will exhibit its random-walk motion and end in a 

certain discrete position. But if one does not look at the individual particle 

positions (microscopic view), but rather takes into consideration the overall 

particle distribution after many independent runs of the automaton (macroscopic 

view), it can be immediately noticed that the resulting distribution is continuous 

and smooth. The randomness seems to completely wash away the microscopic 

details of the automaton and that despite the difference in each automatons rule 

set. In this particular random walk case (but in general this applies for many 

similar systems and for a wide range of individual microscopic structures and 
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underlying system rules), the resulting distribution will always be the so-called 

Gaussian distribution as suggested by the Central Limit theorem [3]. Similar 

systems can also be found in the physical world. An excellent example is the 

famous Galton board [48], which is vertical board consisting of rows of pegs and 

equally sized bins (and illustration can be found on picture 22). A large number of 

small beads are dropped from the above and bounce either left or right as they hit 

the pegs. Finally, dependent on the random path the beads have chosen, they land 

in one of the collecting bins at the bottom of the board. The number of beads in 

each bin (the height of the accumulated beads in each bin) approximates the 

gaussian distribution. Finally, it needs to be said that the resulting distribution 

does not necessarily need to be a Gaussian distribution. Dependent on the internal 

automaton or physical system structure, the smooth behavior and the resembled 

distribution might be any possible distribution. In natural systems the most 

famous distributions include the Poisson distribution, log-normal distributions, 

exponential and gamma distributions, uniform distributions, power laws, 

binominal distribution and even some discrete distributions [49]. All these smooth 

macroscopic patterns however are a result of the underlying interactions of many 

hidden small-scale discrete structures, and on top of that it does not even need to 

be a natural system at all as was demonstrated in [3].  
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Picture 21. Four random walk one dimensional cellular automatons. Each 

automaton has a different underlying rule for each step. In case (a), a particle can 

move one position to the left or to the right (chosen by random). In case (b), it can 

move either 0 or 1 or 2 to the left or to the right (chosen randomly). In case (c), it 

can move either 0 pr 1 step to the left or to the right, and in case (d) it alternates by 

moving to the left or to the right. As can be seen, independently of the rules, the 

resembled distribution will always be a Gaussian distribution [3]. 
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Picture 22. Example of a Galton board. The accumulated beads in the bins 

approximate the bell curve demonstrating the central limit theorem. [48] 

 

But what about discreetness in nature and cellular automata? Alternative to the 

above-mentioned continuity coming from discrete structure, one needs also to 

consider that there are many systems in nature showing discrete behavior. A 

natural question arises in this context. If there is a possibility for a discrete system 

to show continuous behavior, is it also possible for a continuous system to show 

discrete behavior? And in deed that seems to be the case [3]. Many natural systems 

(even systems showing otherwise complex behavior) show at some level discrete 

behavior. A classic example is boiling water. When some water is taken, and its 

temperature is slowly but continuously increased (let’s say starting from 10° C). 

First of all, not much happens. The water just gets hotter and hotter. But when the 

temperature of 100° C is reached, suddenly a sharp discrete transition occurs, and 
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all the water is transformed into steam. Many other systems with otherwise 

continuous changes exhibit this sort of discrete transition behaviour. Some 

systems (traditionally gradient based systems) can lead to formation of discrete 

patterns (an example is a zebra or a tiger hide, where continuous interaction of 

individual pigment cells can lead to very discrete, sharp colour transition looking 

patterns). Yet another example of a simple physical system exhibiting sharp state 

transition (based on continuous change in initial conditions) is a ball on a wavy 

surface (see picture 23). When a ball starts to the left of the central hump, it will 

always roll towards the left-hand minimum, however if the initial starting position 

is changed continuously and the ball passes the top of the hump, suddenly the ball 

does not roll to the left-hand minimum anymore, but rolls to the right-hand 

minimum instead. A discrete transition in the systems behaviour occurs. Even 

though the mathematical equation which describes this system is very smooth and 

continuous, the behavior itself is essentially discrete [3]. Cellular automata can also 

exhibit such sharp transition behavior, even the variation of their initial condition 

is smooth and continuous. As an example, see picture 24. Until a certain threshold 

in black cell density is reached (very similar to the hump and ball example 

previously mentioned) the automaton produces only white stripes. However, once 

the density passes the 50% black cell threshold, only black stripes survive. As can 

be seen this cellular automaton is able to exhibit the sharp discrete transition 

behavior seen so often I natural systems. The automaton shown in picture 24 

(based on rule 184 as described in [3]) is not some special case. Many other 

cellular automata of diverse properties are able to exhibit such sharp discrete 

behavior. A particularly interesting example can be seen on picture 25. The two-

dimensional automaton used to generate this picture is able to produce (within 

several automaton steps only) patterns with continuous (but sharply separated) 

boundaries. Similar patterns are often found in nature in animal fur pigmentation. 
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Picture 23. A system of a ball and wavy surface. When the initial ball position is 

anywhere to the left of the central hump, it will always roll to the left. But once the 

initial ball position is anywhere to the right of the central hump, it will always roll 

to the right. Even if the change in initial ball position is continuous and smooth, 

eventually a sharp and discrete transition occurs [3]. 

 

 

Picture 24. A one-dimensional cellular automaton based on rule 184. The 

automaton shows discrete change of behavior based on continuous change of 

initial automaton conditions. After the number of black cells in the initial 

configuration reaches more than 50% off all cells, the automaton makes a sharp 

transition and show different behavior [3]. 
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Picture 25. A two-dimensional cellular automaton which starts from a random 

initial condition. The rule set states that a cell in the next generation will have a 

white color, if there are less than 4 black cells in its neighborhood (diagonal cells 

included) otherwise it will have a black color. After only a small number of steps, 

continuous sharp borders between black and white picture parts arise. Although 

the border shape is smooth, the transition from one side of the border to the other 

is sharp [3]. 

 

As was discussed above, there is a remarkable correspondence between real 

physical systems and cellular automata also when it comes to the discreetness 

and/or continuity of the systems behavior point of view.  It again shows how 

deeply cellular automata can resemble a real system, further strengthening the 

assumption that there is a deeper natural law acting on both cellular automaton as 

well as on a real system in nature, which is the real reason why they look so much 

alike, rather than just coincidentally look similar on a mere visual level. Therefore, 

the cellular automaton approach to modeling physical reality has a great potential, 

as both the modeled system as well as the artificial model in fact share common 

fundament. 

 

2.3 Computational equivalence of natural and artificial systems 

 

As was already discussed in chapters 1.2 and 1.3 but ultimately mentioned in [6] 

and [3], there are certain cellular automata (or Turing machines in general) 
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capable of universal computation. As a matter of fact, these automata or these 

Turing machines are not only able to compute and solve a certain specific problem 

described by their initial programing or configuration. They can be used to 

simulate and compute literally any other cellular automaton or Turing machine. 

This special property of automata is often referred to as computational 

universality. What’s really interesting is, that such a universal automaton does not 

necessarily need to be extremely complex in configuration or rule set. In fact, some 

of the most basic automatons (like for example the game of life automaton with 

only a two-dimensional universe, two possible cell states, and with three basic 

rules) are already capable of universal computation, as was demonstrated in [14], 

[15], [16]. There are even one-dimensional cellular automata that are 

computationally universal, like for example the rule 110 cellular automaton 

described in [3]. It seems that universality is not some think uncommon in cellular 

automata, and especially class 4 automata are often regarded as universal. Four 

examples of class 4 automata can be found on picture 26. 
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Picture 26. Examples of different class 4 cellular automata described in [3]. The top 

left automaton is the already discussed rule 110 which universality was confirmed. 

The remaining three shown automata are suspected to be universal, but were not 

yet confirmed universal. An assumption is made that all class 4 cellular automata, 

which are capable of forming a rich enough set of localized structures (like for 

example triangle patterns in rule 110) will support universality [3]. 

 

When considering how simply computational universality can arise in cellular 

automata, one wonders if such computational universality can also arise in natural 

systems. And indeed, it can be shown that it does. Schematically seen is a 

computational problem (as seen in picture 27 - a) basically a mapping of a certain 

input domain to a corresponding output domain. This is a very general think. It is 

not necessary to do any concrete assumptions about the origin or properties of the 
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domains itself (like their nature, physical implementation etc). The input domain 

might very well be a multidimensional array of virtual cells (as in case of a cellular 

automaton) or an electrical signal. It can even be a quantum system (as 

demonstrated in quantum computing experiments [50]) or a set of molecules or 

chain of proteins as often seen in living organisms. Thus, even natural systems are 

able to solve computational problems. But to be able to assess computational 

universality in natural systems (in the same context as in artificial systems), one 

needs to prove that such a natural system is able to solve not just one, but many 

computational problems. A certain descriptor (as seen in picture 27 – b), needs to 

be present to specify which problem is determined to be solved. And indeed, there 

are systems in nature which show presence of such descriptors (or instruction 

sets). The most common example is a core biological process called protein 

biosynthesis which happens in living cells. During this process a certain input 

domain (proteinogenic amino acids) is transformed to an output domain 

(polypeptide chain) according a descriptor known as DNA, while following a 

certain grammatic while doing so. The genetic code (in other words the rule set to 

keep the analogy with cellular automata) is highly similar in all living systems and 

can be easily captured in a simple table of 64 entries [51] (again note the similarity 

to cellular automata and the rule look up table described in chapter 1.1). The 

molecular implementation of this process is extremely complex, and will not be 

discussed in detail, however note the remarkable similarity of this biological 

system to a general computer system which utilizes source code (set of 

instructions) interpreted by a compiler. It was shown, that DNA (or RNA) based 

universal computation is plausible [52], and that DNA/RNA based computational 

systems which exist in living cells, are Turing-equivalent and can compute any 

computable function. 
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(a) (b) 

Picture 27. Schematic representation of a computation problem and a general 

computation system which can address such a problem. Note the black box of the 

computational system in picture b. The black box may contain any possible 

mechanism which translates the input domain to its output domain controlled by 

the descriptor [52]. 

 

 

 

(a) (b) 

Picture 28. An example of a combinatorial logic circuit (a) utilizing combinators B, 

C, and K. Picture (b) shows an RNA based implementation of simple addition. The 

RNA program itself (C) represents an addition operation of 2+6. Transcript 

operations and references necessary for program execution, together with 

combinator definition are represented in A and B [52]. 
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Another example of a natural system capable of universal computation is the 

human brain. Being one of the most complex systems in nature, even after decades 

of intensive research, the human brain was so far not fully understood. It contains 

billions of brain cells and more then 100 trillion connections through which the 

individual cells interact in a highly unilinear fashion accompanied by super-

complex chemical interactions as well. Through this interaction of multiple 

physical and functional elements, complex mental states emerge. The emergent 

behaviour (being one key aspect of all complex systems) is thought to be key for 

further understanding of the human brain [53]. As can be seen both real physical 

systems and cellular automata are capable of universal computation. This is yet 

another common feature shared by both the artificial as well as the real-world 

physical system, which goes far beyond a simple visual correlation and again 

highlights how deeply cellular automata correspond to real systems in nature.  

It is intriguing, how vastly both systems correspond. They share similarities on the 

origin of their random behaviour, similarities in experienced complexity and 

emergent behaviour, they resemble continuity and discreetness in their behaviour 

in the very same way, and they even share the same capability of universal 

computation. Therefore, if one describes a certain feature of a system utilizing an 

artificially implemented cellular automaton model, the knowledge or insight 

gained can be easily utilized when making assumption on how a real physical 

system works, just because they behave on similar fundamental principles. 

 

  

(a) (b) 

Picture 29. Artistic representations of neural pathways in parts of a human brain. 

The structures are extremely complex [54]. 
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3. Potential of cellular automata in didactics of 

physics 

 

In physics, traditionally, a mathematical approach to research has been 

established, and indeed it always had a great success. This inevitably led to a 

general assumption, that serious physics research must always be founded on solid 

mathematical rigor, and possibly be backed up with a lot of complex equations. But 

even armed with solid mathematics, there are still very basic physical phenomena, 

which could not yet be explained. As an example, take fluid dynamics, and 

especially the phenomenon of turbulence. The state-of-the art mathematical 

description is realized through the famous Navier–Stokes equations [55], which is 

a set of non-linear partial differential equations which describe the flow of viscous 

fluids. Until now, it is not known, whether these equations have always a solution 

in three dimensions. In fact, it is one of the unsolved mathematical mysteries and 

one of the 7 so called millennium problems [56], [57]. Therefore, when modelling 

fluid dynamics (which has major importance in everyday engineering) a computer 

aided approach is always preferred, and an empirical measurement for both model 

validation as well as model initial input parameters is conducted [58]. There are 

many other physical phenomena, where a mathematical approach still could not 

provide a proper description, and theoretically, there might even be systems 

where a complete and consistent description will never be possible because of the 

very nature of the axiomatic system of mathematics [33]. 

Our educational system and approach to didactics of physics follows the trend of 

utilizing mathematical description of physical systems, and indeed our course 

books about physics are full of simple mathematical descriptions and models of the 

basic physical phenomena teched to today’s students.  This of course fulfills its 

purpose and is in many aspects excellent to teach physics, but some of today’s 

students (especially the ones not interested in mathematics or the ones with poor 

mathematical understanding) have trouble to follow this approach, and as a result 

physics is sometimes regarded as a difficult and I dare to say “unpopular” subject, 

even for first grade and second grade students. But even for students familiar with 

mathematics who like the subject, today’s physics course books offer only simple 
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models of very basic phenomena, which are easily captured with mathematical 

tools available for the everyday student, and are often stripped of any “extras”, just 

to make it enough elementary to be captured with a simple enough mathematical 

equation. Individual topics and example systems are picked up on purpose to meet 

the requirement for mathematical simplicity, and as a result a lot of interesting 

physics and physical systems are easily missed, because they just simply do not fit 

into the box defined by the mathematical constraints. Other topics are stripped of 

the very essence, that makes the system behave as it does, just to ensure 

application of mathematics is possible. Again, take fluid dynamics and turbulent 

flow as an example. In order to make the description possible (even for not 

elementary school students), the model is simplified, flow fields are considered 

absolutely symmetric, flow is modeled around a cylinder with uniform free stream 

flow by superimposing a flow filed of an ideal vortex, the description is done in two 

dimensions and viscosity is not taken into consideration (no boundary layer), even 

though this in fact is the real source of turbulence and the experienced dynamics of 

the system [59]. It is far more interesting to model flow around real-life objects 

like fish or bird like shapes, or around airplanes or city buildings (instead of 

modeling flow around an abstract cylinder). More complex, real-life phenomena in 

nature and technology tent to be omitted in education, as their behavior and 

dynamics is so complex, that their rigorous description borders on several 

disciplines. Each of these disciplines tent to describe only part of the system with 

tools inherent to the respective subject, and fail in providing a general description 

of the system and introduce its beauty to students. Take for example the complex 

system of a superorganism called the ant colony. This topic is briefly touched in 

biology where a short description of ant morphology, reproduction, 

communication or nest construction is discussed - simply topics that can be easily 

captured by biological lessons because of their simplicity, and the didactical tools 

used by biology (more relying on description than abstract theories or 

mathematical description), but other aspects of the superorganism, like how it 

organizes, or where the extreme complexity of the system’s dynamics comes from 

(which is the real source of why are ants from evolution perspective so successful) 

is completely omitted. Here, physics could provide some description options and 

some valuable insight even for secondary school class if it would have the right 
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tools to do it (mathematical rigor is not the right tool here). It would promote 

synergy between individual school subjects, as the real-life phenomena are not 

restricted to some specific subject only. Further continuing with the ant example, 

there is a lot of potential for a physics lesson to describe the dynamics, chemistry 

lesson to describe the pheromones and concentration mechanisms, mathematics to 

describe the graph theory or the relation to computer science and computer search 

algorithms. Such a system would be a gold mine for education, if there was a way 

how to describe it in a simple enough way to catch the student’s interest. Another 

example are traffic systems, for example freeway traffic. This subject is not 

included in our physics coursebooks at all, because although the experienced 

dynamics is interesting (take for example the famous congestion forming out of 

nowhere), the combination of complex mathematics and socio-dynamical 

interactions make it impossible to be described easily for a secondary school 

student. There are a lot of other interesting examples, and real-life systems 

exhibiting a lot of interesting behavior which could be introduced to students, 

were there a way how to do the description easy enough and without heavily 

relying on mathematical description. And exactly here it is where cellular automata 

could bring a completely new kind of description possibility. As discussed in 

previous chapters, the ability of a cellular automaton to exhibit even the most 

complex behavior, just by following very simple rules is an ideal foundation for this 

new kind of description. Such a cellular automaton, and especially its underlying 

rules could be explained in a very easy way to the student, and then the student 

could investigate the complex dynamics which is generated by such a system. The 

student can try to modify the rules and experience the influence of such a rule 

change of the system. In this way, a student could experiment and study systems, 

which current traditional mathematical approach to didactics of physics would 

never make possible. Some of these systems and the corresponding cellular 

automatons will be presented in this thesis. It needs to be point out as well, that 

some of the cited literature suggests [3], that a description of physical (social, 

philosophical, computer and many other) systems is feasible (and even 

advantageous) by utilizing cellular automata and that it in fact represents a 

completely new kind of science which touches almost every scientific research 

area, without the necessity to heavily rely on complex mathematical rigor, and that 
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the fact that the systems can be represented by simple programs is not a 

coincidence but rather that here is a deep correspondence between simple 

programs and systems observed in nature [3]. Some of the literature even 

suggests, that the whole universe and every think in it is an output of a giant 

cellular automaton [23], [21]. The aim of this thesis is not to investigate whether 

this might be true or not, but if there is a solid scientific interest in explaining the 

universe with cellular automaton approach, there certainly is a solid possibility to 

utilize this approach also in traditional didactics, much like mathematics is utilized 

today for example in didactics of physics. Let us now explore some of the 

biological, physical and social systems, which might very easy by simulated by a 

cellular automaton approach. 

 

3.1 Cellular automaton approach to model fluid flow 

 

As a first example of how a cellular automaton could be utilized in didactics of 

physics is a cellular automaton modeling fluid flow. Fluid flow was chosen as an 

example especially because it is so difficult to address with the standard 

mathematical approach to didactics of physics, and is therefore a good example 

how to address the topic by different means, and possibly bring the topic closer to 

a secondary grade student. First of all, a short introduction to fluid flow will be 

given to describe the topic from general point of view, after that, a cellular 

automaton approach of the flow description will be shown. 

3.1.1 Introduction to fluid flow 

 

In physics, fluid flow or fluid dynamics is studied as part of continuum mechanics. 

It basically describes the flow of fluids, liquids and gasses. Due to the complexity of 

the topics, there are several independent sub disciplines focusing on individual 

states of matter and their flow (for example aerodynamics is focused to study the 

motion of gasses, hydrodynamics focuses on the motion of liquids). Fluid dynamics 

in general has many practical applications, ranging from weather forecast, aircraft 

or car motion simulation (aerodynamical force calculations for fuel consumption 

optimization), animal locomotion study, urban planning and bridge building 



54 
 

(simulation of airflow around  these objects is crucial for their stability in various 

environmental conditions), pipeline flow simulation (transport of petroleum or 

water), blood flow in medicine,  up to nuclear fission weapon explosion dynamics 

modeling (the explosion dynamics is responsible for holding the fission material 

long enough together to assure enough energy is released) and gas motion study in 

stars or interstellar space (for example nebulae formation or convective zone 

dynamics in stars) [60]. In general, there are two types of flow patterns – laminar 

flow and turbulent flow. Laminar flow is characteristic with its streamlined flow 

where the fluid glides along distinct regular layers without mixing fluids from 

individual layers. Laminar flow is fairly simple to model and describe with simple 

mathematics. Turbulent flow starts to form when in some parts of the fluid the 

kinetic energies overcome the overall damping effect of the fluid’s viscosity. It is 

characterized by the formation of vortices (turbulent flow patterns of various size), 

which interact with one another in a very complex way displaying chaotic 

dynamics. Turbulent flow in general is very difficult to model with mathematics 

and therefore, in general, science and engineering relies on computational fluid 

dynamics (CFD) [61]. Due to the microscopic nature of fluids (fluids on 

microscopic level consist of a large number of molecules), it is possible to model 

fluid flow with cellular automata [3]. 
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(a) (b) 

Picture 30. Picture left shows an example of vortices on a soap bubble. The 

patterns are extremely complex [62]. The right picture shows a vortex formation 

known as Karman vortex street. The street formed in Earth’s atmosphere as a 

result on air flow around an island [63]. 

 

3.1.2 Fluid flow simulation cellular automaton 

 

Fluids consist on microscopic level of discrete particles. These particles collide 

with each other, which is the origin of the experienced dynamics. A simple 

idealization of this concept can be given by a cellular automaton consisting of a 

fixed grid (the automaton universe) and a collection of discrete particles. The 

particles are allowed to move along the grid. If a particle meets another particle 

both particles adopt a new heading according a set of simple collision rules 

(described in picture 31). If a particle hits a foreign object (special part of the grid) 

it is reflected and travels in the opposite direction [3]. Four consecutive algorithm 

steps can be seen in picture 32. 
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Picture 31. Particle collision rules applicable for the fluid flow simulation cellular 

automaton [3]. 

 

 

Picture 32. Four consecutive automaton steps. The particles collide according the 

rules described on picture 31. When a particle meets a foreign object (in black), it 

gets bounced back [3]. 

 

When observed on microscopic scale, the automaton does not show any surprising 

patterns. However once zoomed out, the system shows a very interesting dynamics 

and remarkable fluid flow patterns, which are similar to patterns observed in 

nature. Pictures 33 and 34 shows how complex, vortex-like patterns start to 

emerge when the system is observed from a larger scale perspective. 

 

 

Picture 33. Remarkable flow patterns start to show up when the system is 

observed from a larger perspective. The picture most left shows the basic grid with 

the individual particles. Consecutive pictures show a zoomed-out view, which is 

obtained by averaging the particle headings. A steady and uniform stream of 

particles is inserted to the automaton (on a left side) to simulate a real fluid 
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stream. In this example, the incoming particle velocity is 30% of maximum velocity 

defined for the automaton. [3] 
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Picture 34. Further evolution of the cellular automaton for another 70000 steps. 

The average speed of incoming particles is about 40% of maximum speed. The 

example consists of about 30 million cells and each individual velocity vector is 

calculated as an average of 20x20 cells. [3] 

 

Even the cellular automaton rules are very simple, again the dynamics it exhibits is  

extremely complex, much like in a real-world vortex exhibiting system (compare 

with picture 30). The remarkable similarity to a real system is not only based on a 

visual perception of the dynamics. When the physical quantities of the system (like 

viscosity or Reynold’s number) are calculated (this can be done based on particle 

numbers and flow speed), and based on these quantities a comparison to a real 

experiment is done, it can be seen that the agreement with the experimental result 

is very good. This is remarkable concerning the simple underlying rules of the 

automaton [2]. In fact, the automaton and its rules are so simple, that they can be 

easily explained to a secondary school (or even a primary school) student with 

plain word, and literally no mathematical description is necessary to explain the 

phenomenon of turbulence and turbulent flow to a student. 
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4. Pilot didactical purpose cellular automaton 

models  

 

In this chapter, three pilot cellular automaton models will be explored to explain 

the potential of cellular automaton description approach in didactics of physics. 

Because of practical reasons, these models were implemented in Microsoft Excel. 

 

4.1 Microsoft Excel as a cellular automaton programming 

interface 

 

As discussed in the previous chapters concerning cellular automata, the key 

elements of every cellular automaton are a regular uniform grid of cells from 

which each can have a specific state (represented for example by a discrete 

number, or a color), and which is governed by a set of rules describing how a cell 

should change based on its own state and the state of other cells. To model such a 

system is fairly easy. For example, in Conway’s “Game of Life”, a piece of graph 

paper (grid of cells) and a pencil (to change the cell states) is sufficient in order to 

explore the whole game and all the possibilities it provides. There is, however, a 

variety of other tools. For scientific research, Matlab [64] is used regularly as the 

state-of-the-art tool for modeling and simulation. Unfortunately, for the purpose of 

didactics and simple modeling, such advanced software is simply too complex and 

expensive to be bought by a standard elementary or secondary school, and 

therefore Matlab remains a domain of technical universities or large corporates, 

which have their own research and development and can afford the related costs. 

And even if a university student has the opportunity to utilize Matlab during his 

study, the exploration of the tool is rather limited (it is usually used only for a few 

highly specialized courses), and after leaving university, the student most probably 

never gets to utilize Matlab ever again (if he does not continue his career as a 

researcher, which is rather rare). There is a tool however, which is fairly common 

both for secondary school, as well as universities and further in most of the 

companies (no matter the size), which can be used for simulation and modeling. 
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The mentioned tool is Microsoft Excel [65]. Although it is usually used in a 

completely different context (Excel is largely regarded as a spreadsheet software, 

rather than a tool for simulation or modeling). In the consecutive chapters a robust 

framework for utilizing Microsoft Excel as a simulation and modeling tool will be 

presented, primarily to implement simple cellular-automaton-based models of real 

physical systems. The potential of these models in education, and in foremost in 

didactics of physics, will be further discussed. The main and fundamental 

advantage of Excel hereby is, that it is present on most of the computers in schools 

and business environments and is usually already present in the installation 

package utilized to set-up the computers in these environments. Excel, as its 

inherent feature, contains “cells”, and an integrated development environment, 

based on the programming language Visual Basic 6 [66], which can 

programmatically access these “cells” (the cells are regarded as objects and Visual 

Basic utilizes standard object-oriented approach much like Matlab to access these 

objects). This means Excel contains all necessary tools for implementing a cellular 

automaton - a grid of cells (needed to construct the cellular automaton universe), 

an environment for designing governing rules of any possible cellular automaton, 

and an environment to run the resulting automaton. These features, together with 

its near to omni-presence in today’s school and university environments make it a 

perfect tool to be used in application of cellular automata in didactics of physics 

(and possibly in didactics of various other school subjects). It will be shown, that 

Excel can be utilized in much more ways than just for standard spreadsheet 

calculation, and that it has a vast potential in didactics of physics. In the 

consecutive chapters, three cellular automaton models will be shown, each 

representing an interesting physical system. The systems were chosen on purpose 

to be sort of “border systems”, which are on the edge of physics and other school 

subjects (in this case biology and traffic research) and which would be very 

difficult to describe by utilizing standard mathematical description approach 

common in today’s didactics of physics. It will be shown, that by utilizing the 

concept of describing a system by a cellular automaton with a set of simple rules, 

even such complicated “border systems” can be effectively described and brought 

to the attention of students, and that even very complex system dynamics can be a 

result of very simple underlying rules, which can be comprehended even by 
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elementary school students, and that literally no understanding of mathematics is 

necessary to study such a system from an educational perspective. 

 

4.2 Ant simulator 

 

The first example of a cellular automaton modelling a physical system is the so 

called “ant simulator”. The simulator will show some of the basic concepts of how 

ants search for food to keep their bodies alive. However, before moving to a 

detailed description of the automaton itself, let’s first explore the world of ants. 

 

4.2.1 Introduction to ants 

 

Ants are one of the most successful groups of insects in the animal kingdom. They 

dominate their respective environments as predators, scavengers and indirectly 

also as herbivores [67]. One can argue, that much of the success can be related to 

the fact, that ants are eusocial insects – they have the highest level of social 

organization in animal society, featuring cooperative brood care, existence of 

castes (specialized behavioral groups performing only a certain specialized task – 

for example workers perform food production and brood care, soldiers perform 

defense tasks, egg-layer assure offspring), common food procurement and 

distribution and overlapping generations [68]. Ants form colonies that range in 

size from only a dozen individuals, up to highly organized super-societies 

containing tens of millions of individuals which form diverse specialized groups. 

Ant colonies are sometimes described as superorganisms, because individuals 

collectively work together to support the colony and operate as a unified entity. 

Ants as a species are extremely successful.  They have colonized almost every 

landmass on Earth, excluding only Antarctica [69], [70]. They are estimated to 

form 15-25% of the terrestrial animal biomass. In fact, if compared to the number 

of humans on earth, there is more than a million ants for each human being on 

earth [71]. Ants show a variety of interesting behavioral patterns. They range from 

nomadic “hunters”, “gatherers” and “cattle breeders” up to species cultivating fungi 

as a food source [69]. Some species carry on slavery by kidnapping the ants of 
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other species to work for them, other show social parasitism - by allowing females 

to migrate into colonies of a different species and let them raise their descendants 

[72]. Due to the division of labor and communication between individuals, ants are 

able to solve complex problems. Task like transportation of food, overcoming 

obstacles, building anthills are performed almost optimal [73]. Principles of their 

behavior have withstood the proof of one hundred million years.  

One of the key aspects of why ants are so much successful, is the way how they 

share information, especially information about food source location. This 

communication is extremely sophisticated. It does not merely show other nest 

mates the direction to food, but it rather organizes the whole system (ant colony) 

in a very interesting way, allowing the system to self-regulate its food search 

activity. It is able to promote food locations with higher profitability, while keeping 

memory of previously profitable locations. Investigation showed, that ant 

communication is manly based on chemical marking. Ants put pheromone trails 

(there are many different types of pheromones secreted from different ant body 

parts), which can provide either positive feedback or negative feedback to the ant 

colony to organize it foraging activity. When a successful forage ant finds a food 

source, and returns to the nest, it lays down a pheromone trail. Other ants, 

attracted by the pheromone trail, finally also find the food source and put down a 

pheromone trail during their way back to the nest. In such a way, the pheromone 

trail marking the path to the food source gets reinforced steadily while more and 

more ants find the food source and put more and more pheromone trails providing 

positive feedback. On the other hand, when the food source is depleted (or is too 

far away), the pheromone trail does not get reinforced fast enough and eventually 

evaporates, providing negative feedback [73]. Even though the individual ants 

possess only minimal intelligence, the system as a whole is able to organize itself in 

a very complex way solving many difficult problems (for example find the shortest 

path between two point – in context of ants between food source and nest) not 

unlikely a cellular automaton, which in mathematics (especially graph or network 

theory) is a well know problem difficult to solve, and while it can be solved in 

linear time, the related algorithms are quite sophisticated [74] (in comparison to 

what a second grade student has in its mathematical portfolio for comprehension). 

One way how to make this intriguing topic available even for second grade school 
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students is to describe the system not mathematically, but by a cellular automaton 

with some simple rule set. A student could study this rule set and the resulting 

systems dynamics. By making changes to the rules, the student could study the 

influence of each rule on the dynamics and with this experimenting and hands on 

approach even such a complex system could be available for study in a secondary 

grade school environment. To following example implemented in Microsoft Excel 

will show the basic principles. 

 

4.2.2 Ant simulation cellular automaton 

 

The universe of the ant simulation cellular automation consists of a two-

dimensional grid of cells. Each cell can have one state of a possible set of different 

states. The states are no longer so simple like it was for elementary cellular 

automata – just black and white color, but they are still simple enough to be 

described in plain sentences. A cell can contain a pheromone trail (a discrete 

number describing the pheromone scent intensity), or food (again a discrete value 

describing the richness of the food source), or an ant, or a superposition of the 

mentioned states (a cell state can contain an ant, food, pheromone – all this at the 

same automaton step). Important is, that even the automaton states are 

complicated objects, a cell still can have only one specific discrete state from a 

finite discrete cell state set. The neighborhood is defined to be only directly 

adjacent cells both vertically, horizontally and diagonally, with the direct 

neighborhood being the 3 cells directly in front of the ant cell. 

 

 

  



64 
 

 

Picture 35. Example are from the ant simulator cellular automaton universe. A cell 

can contain and ant, food or pheromone or a superposition of all these states. The 

direct neighborhood of the ant is highlighted in green color (darker green means 

higher pheromone value). 

 

At time (𝑡 = 0), a state is assigned to each cell in the universe based on initial 

configuration of the ant simulator (the number of ants, food source location and 

other variables). The whole cellular automaton is governed by simple rules, which 

can be described in two sentences:  

 

1) An ant searching for food will always make a step towards the neighbor cell 

with the highest pheromone value, if there is none it will choose a neighbor 

cell at random. 

 

2) An ant which already found food will return to the nest by the shortest 

possible way and drop pheromone trails each step. 

 

For better visualization of the rule set, the rules are described as actions done by 

each ant as listed in table 1. Each action is done in a top-down consecutive order as 

listed in the table. Please note that each ant action is in fact a whole set of rules 

which apply to the ant cell and neighbor cells, and which define how the cell states 

should change in the next automaton step based on their current values. 
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Table 1. Summary of cellular automaton rules, for simplification described as 

individual ant actions rather than a look up table. 

 

The simulation itself is caried out in an excel sheet. The excel sheet is divided into 

2 separate parts. First, the so called “arena” (see picture 36 right), is the place 

where the cellular automaton runs. All steps are executed here. Second part is the 

GUI part (graphical user interface part – see picture 36 left). In this part, the 

student can modify individual model parameters, place food sources and control 

the simulation. A short description of the individual GUI parts can be reviewed at 

picture 37, and a short description of the arena and its elements is present on 

picture 38.  

 

Ants searching for food Ants returning with food 

Scent for pheromone (3 neighboring 

cells) 

Drop a pheromone 

Do a step towards the cell with the 

largest pheromone value. 

Do a step towards the nest 

If no pheromone, pick one of the 3 

neighboring cells at random 

 

If food is found, return with food 
 



66 
 

 

Picture 36. The ant simulator excel sheet is divided logically into two separate 

parts. Left, the GUI is intended to adjust the simulation parameters and for general 

simulation control. Right, the “arena” is where the cellular automaton simulation 

actually runs. 

 

 

Picture 37. Short description of the individual GUI control units.  A more detailed 

description together with a program manual will be provided in a separated 

document. 
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Picture 38. The ant simulator arena where the cellular automaton runs. Some of 

the arena elements are described individually on the right side of the picture. 

 

4.2.3 Examples of interesting ant simulator dynamics patterns 

 

Even though the underlying rules of the cellular automaton are fairly simple, the 

exerted complexity of the systems dynamics is not. Dependent on the automaton’s 

initial configuration, several very interesting patters emerge. Some of these 

patterns will be show here as an example, and the reasons why such a pattern 

emerged will be discussed. Finally, several questions will be asked, as an example 

what questions could be asked to a student investigating the system. 
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Picture 39. Example of pheromone trail formation. Darker green represents a 

higher pheromone concentration. The pheromone evaporation rate was set to be 

extremely low. Left trail is older than the right trail and exhibits more pheromone 

concentration at the outer parts of the trail, due to the fact that pheromone 

dispersion was working for a longer time. 
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(a) (b) 

Picture 40. Example of pheromone trail formation. While both trails show a 

uniform evaporation rate (set to 10%) resulting in higher concentration of 

pheromone near the ant producing the trail, the trail in the right picture is broader 

due to a higher pheromone dispersion rate (set to 60%). 

 

  

(a) (b) 

Picture 41. Example of pheromone trail formation. While for the left picture, a 

stabile path from nest to food source could not be established (not enough positive 

feedback enforced by strong enough pheromone trail - because of limited number 

of ants), the right picture shows a stabile path between food source and ant nest. In 

the right picture, the number of ants was increased to have a strong enough 
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positive feedback to form a stabile path. Whether the feedback is strong enough to 

maintain a stable path between food source and nest depends on the 

environmental conditions (pheromone evaporation and dispersion rates) and on 

the number of ants that produce pheromone. 

 

  

(a) (b) 

Picture 42. Example of pheromone trail formation with multiple food sources 

available. After an initial phase of gathering, where all three food sources were 

selected (left picture, after 61 algorithm steps), one main path was established 

between the closest and largest food source (right picture after 238 algorithm 

steps). Eventually, one of the paths (solutions) was reinforced so much, that it 

dominated the other paths (solutions). This is an example how ants can put focus 

on the most promising food source first, gaining the best ratio between spend 

energy and amount of gathered food, which results in an evolutionary advantage. 
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(a) (b) 

Picture 43. Example of pheromone trail formation in dependence on the 

surrounding environmental conditions (pheromone evaporation rate and 

pheromone dispersion rate). As can be seen, that if there is no “natural selection” 

force acting on the pheromone trails (the trails never evaporate, nor disperse) 

stable paths are always formed no matter the food source location or the number 

of food sources (picture left). However, if there is a selection force acting on the 

pheromone trails (negative reinforcement of the trails is possible), semi-stable 

paths start to emerge and disappear in dependence on food location and distance. 

In the picture right, after some time, one of the paths was reinforced enough to 

stabilize. The other one nearly evaporated. 
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(a) (b) 

Picture 44. Example of pheromone trail formation in dependence on the maximum 

sensitivity of an ant towards pheromone concentration (if pheromone value is 

above the antSensitivityMax threshold, the pheromone value is considered to be 

zero). Interesting to see is, that if the ant sensitivity is unlimited (responding to 

any pheromone concentration) as shown in the left picture, a stable path between 

food source and ant nest will not be established. In contrary, if there is a maximum 

limit on sensitivity towards pheromone, a stable path between food source and ant 

nest is established immediately. This is because if there is no threshold on the 

sensitivity towards pheromone, the ants always follow the highest pheromone 

gradient. But this gradient points towards the ant (which is returning to the nest, 

moving effectively from the food source rather than towards it). As a result, ants 

follow other ants to the nest, not towards food. If, however, there is a defined 

threshold on the maximum sensitivity towards pheromone, some of the ants are 

able to follow lower pheromone concentration on the edges of the trail, and in 

some cases finally reach the food source. 

 

Interesting questions to ask the student: 

 

1) What is the reason for forming of a positive feedback loop resulting in 

promotion of one of the food source selection solutions? 

2) What is the reason for forming a negative feedback loop resulting in 

demotion of some of the food source selection solutions? 
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3) What does trail evaporation mean? How is it done? 

4) What does trail dispersion mean? How is it done? 

5) Why is always the closest food source selected? 

6) What is the effect of the existence of a maximum pheromone sensitivity 

threshold? 

7) What happens if an ant trail never evaporates? How does it affect the 

systems dynamics? 

8) What is the potential of this ant behavior in robotics and swarm 

intelligence? List some application possibilities 

 

As can be seen, even such simple rules can generate a system of remarkable 

complexity, which in many aspects reflects the dynamics of an ant society. Because 

the environment of the simulation is Microsoft Excels, it can by immediately made 

available on most of the computers available in school environments. As a 

complementary didactical material, it can be utilized in didactics of physics and 

biology. It is important to be said, that the implementation of the algorithm itself is 

fairly easy, as the algorithm itself is not complicated. There is a potential of this 

approach to be utilized in didactics of computer science or programming, as it 

demonstrates very simple principles of object-oriented approach to programming 

and such an algorithm could be easily implemented by a talented second grade 

school student. There is also a vast potential in didactics of cybernetics and 

robotics, as the utilized algorithm principles in many ways correspond to artificial 

intelligence and bio-robotic modelling [75]. As can be seen, by utilizing cellular 

automaton approach for description of a physical system, many interesting 

systems can be explored, which otherwise would be unavailable for didactical 

purposes. This promotes interdisciplinary approach to education, which is an 

undisputable advantage. 

 

4.3 Flocking simulator 

 

A second example of a cellular automaton modelling a physical system is the so 

called “flocking simulator”. The simulator will show some of the basic concepts of 
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how flocking behavior in bird flocks emerges and what rules can lead to such and 

interesting dynamics. But first of all, a short theoretical description of the topic will 

be presented. 

 

4.3.1 Introduction to flocking and swarm formation 

 

A flock or a swarm is usually a cluster of objects (in most cases biological objects of 

similar size like insects, birds or fish) which exhibit collective behavior (much like 

ants in the previous example), and is extensively studied in many fields of science, 

especially in physics, biology, network theory, information theory and computer 

science [76]. Flocks and swarms are one of the most sophisticated achievements in 

collective behavior in animal kingdom and are inspiration for both science as well 

as engineering. The complex behavior is thought to be a result of simple local 

interactions between individual members, and is again an example how simple 

underlying rules can form a very interesting and complex dynamics. All swarming 

systems share some common features like the lack of a central controlling element 

(a leader), only local perception of the environment, and a fast adaptation 

possibility to a sudden change in the environment or surrounding. Due to a high 

degree of emergent behavior (behavior which is not present in the individual 

agents, but which emerges as a result of interaction of these agents) presence, a 

swarm can solve complex problems essential for swarm individuals survival – like 

for example predator avoidance, locomotion energy saving, food gathering or 

nesting [76]. From a broader perspective, swarm systems are studied in physics as 

systems which are not in a thermal equilibrium (so called active matter physics 

and active matter system) [77], [78], however the utilized mathematics is far 

beyond the target of a second grade student. Therefore, we will utilize the cellular 

automaton description approach for simulating a simple flocking system to bring 

this system to the student’s attention without relying on mathematics. 

4.3.2 Flocking simulation cellular automaton 

 

Similar to the ant simulator, the universe of the flocking simulation cellular 

automation consists also of a two-dimensional grid of cells. Each cell can have one 
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state of a possible set of different states, where a cell state is a discrete number 

giving information about bird presence, its speed, and its heading. The 

neighborhood is a configurable parameter, and is usually composed of all cells in a 

certain radius around a cell. At time (𝑡 = 0), a state is assigned to each cell in the 

universe based on the initial configuration of the flocking simulator (let n be the 

total number of birds, then n cells from the universe are picked by random and a 

bird with a random orientation is assigned as the cell’s state, all the others cells are 

left blank). The whole cellular automaton is governed by simple rules, which can 

be described in three sentences:  

 

1) If a bird is too close (what is too close is defined by a configurable 

parameter of the simulator), turn away (change orientation to face in a 

different direction). This is called separation. 

 

2) If a bird is not too close, adjust its orientation to face in an average direction 

of all birds in its neighborhood (flock) and towards the position average of 

all birds in its neighborhood. This step is called alignment and cohesion. 

 

3) Advance the bird by a certain step (speed is a configurable parameter of the 

simulator). This is called motion. 

 

For better visualization of the rules, please see picture 28. 

 

 

Picture 45. Visualization of the flocking simulator rules. Picture to the most left 

shows separation behavior, and is the upmost important biological imperative 
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(collision avoidance is essential for survival and is therefore evaluated first). The 

middle picture shows alignment behavior - align towards the average direction of 

surrounding flock members. The right picture shows cohesion behavior – align 

towards the average position of the surrounding flock members. Alignment and 

cohesion are the second important biological imperative (staying close together 

with other flock members assures lesser attack surface and protection) [79]. 

 

Also similar to the ant simulator, the simulation itself is caried out in an excel 

sheet. The excel sheet is divided into 2 separate parts. First, the so called “arena” 

(see picture 46 right), is the place where the cellular automaton runs. It is in many 

aspects the same as in the ant simulator with the only difference being the arenas 

topology, where the ant arena is simply a rectangular “box” with rigid borders and 

an ant will bounce of these borders, whereas the flocking simulator topology is a 

torus, and the left and right (or top and bottom respectively) border are wrapped. 

That means if a bird moves beyond the edge of the border, it appears directly at the 

opposite border edge of the arena. Second part is the GUI part (see picture 46 left). 

In this part, the student can modify individual model parameters like number of 

birds, the visual perception of birds, separation distance and so on to control the 

simulation.  

 

 

Picture 46. The flocking simulator excel sheet is divided logically into two separate 

parts. Left, the GUI is intended to adjust the simulation parameters (like number of 
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birds, or bird vision) and for general simulation control. Right, the “arena” is where 

the cellular automaton simulation is caried out. 

 

4.3.3 Examples of interesting flocking simulator dynamics patterns 

 

Consistent with other cellular automatons, the dynamics observed as a result of 

the flocking simulator is quite complex, even though the underlying rules are quite 

simple. Dependent on the automaton’s initial configuration, several very 

interesting patterns emerge. Let us now discuss some of these patterns in detail, 

and explore what lead to he observed behavior. Finally, similar to the ant simulator 

example, and consistent with all the other examples delivered, several questions 

will be asked, as example questions for students investigating the system. 

 

  

(a) (b) 

Picture 47. The picture to the left shows the cellular automaton at time (𝑡 = 0). As 

can be seen, bird position and bird alignments are distributed randomly. The 

picture to the right shows further evolution of the automaton. As can be seen, after 

only a few steps, the automaton starts to form compact bird clusters, each with a 

dozen bird individuals. A cluster, once formed, stays reasonably compact. The 

individual birds perform a circling motion around the center of the cluster, and the 

central spot itself exhibits a random walk like motion in relation to the ever-
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changing bird position distribution. The resulting dynamics is very similar to what 

can be seen in real flocking systems. 

 

  

(a) (b) 

Picture 48. The picture to the left shows, what happens if the bird vision is 

restricted from its original 360° to only 70°. The flock formation still works, but the 

clusters are more compact compared to the example with unrestricted vision. This 

is a result of a change in rule 1. Because the vision is now restricted, far less birds 

are considered neighbors (flock members) and the collision avoidance behavior 

towards them is not executed. As a result, the cluster is more compact. The picture 

to the right shows how the dynamics is affected if rule 2 would be omitted (no 

alignment and cohesion behavior). As can be seen, the automaton does not form 

compact aggregates anymore. Although in some cases (when the birds come too 

close to another bird) a collision avoidance maneuver is executed and as a result 

the bird heading is slightly changed, the overall dynamics shows bird motion 

following straight paths. 
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(a) (b) 

Picture 49. The picture to the left shows, how a restriction of the cohesion behavior 

affects the overall dynamics. As can be seen, after only a few steps, the bird 

headings get synchronized for all birds in the cellular automaton. As a result, all 

birds uniformly fly in the same direction forming a very regular pattern. The 

picture to the right shows how the magnitude of rule 1 and rule 2 parameters 

affect the flocking dynamics. As can be seen, under a certain combination of 

alignment, cohesion and separation, a different flock shape is formed. The flock is 

no longer a cluster, but while still showing compact behavior, it is stretched in one 

direction. Under this setting (especially at the distant edges of the flock) birds can 

spontaneously leave the flock (the forces imposed by rule 1 and 2 are not strong 

enough to prevent the bird leaving the flock). 

 

Interesting questions to ask the student: 

 

1) What behavioral elements need to be present in order to flock?  

2) Under which minimal vision angle flocking starts to work? 

3) With limited vision, much more dense bird aggregates form, even the 

separation distance parameter didn’t change. Can you explain why? 

4) Why do birds in nature form flocks? What is the evolutionary advantage? 

5) What is the maximum separation distance in order flocking to work? 

6) What if there is no bird alignment? Will flock still form? Why? 
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7) What happens if alignment, cohesion and separation happen at the same 

rate? Why? 

8) Can you name other flocking systems in nature? 

 

4.4 Freeway traffic simulator 

 

The third example of a cellular automaton modelling a physical system is the so 

called “freeway traffic simulator”. The simulator will show some of the basic 

concepts of how congestions or traffic jams formations can occur in freeway traffic, 

even there is no blocking object (like works on road or traffic accident) or speed 

restriction imposed. The automaton is based on the so-called Nagel–Schreckenberg 

model, and is an example on how human psychology can have an impact on traffic 

microstructure, and traffic jam formation. First, some of the theoretical aspects of 

the Nagel-Schreckenberg model, and traffic in general will be explored. 

 

4.4.1 Introduction to traffic flow modelling 

 

Traffic on freeways is a highly complex phenomenon. Traffic agents, driven by 

their need to reach their travel targets, form a complicated transport network 

which is a subject of scientific interest ever since automotive traveling and 

transportation started to be affordable for the major population. Although the 

individual agents may (and do) significantly differ in their properties (each human 

being is an individual, and traffic participants are no exception), they all share the 

same roads and freeways. By operating on the same resource, the agents interact 

with one another and form a specific microscopic and macroscopic structure. 

During the last twenty years, a variety of models describing traffic and traffic flow 

were developed. While some of the models focus on the time-space evolution of 

traffic flow quantities like traffic density or velocity, and review the system from a 

large scale perspective and collective vehicular flow point of view (macroscopic 

view of traffic flow) [80], [81], [82] other models focus predominantly on the 

dynamics of individual traffic agents, and how they influence or are influenced by 

other agents (microscopic view on traffic flow) [83], [84], [85]. Between these two 
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worlds, there is a variety of hybrid model approaches which utilize in some ratio 

both the macroscopic and the microscopic perspective [86], [87], [88]. Due to the 

wide range of application, mathematical modelling of traffic flow remains a big 

challenge even for scientific research, and is therefore not suitable for didactics of 

physics in a second-grade school environment with the standard mathematical 

approach to didactics of physics. However, researchers in [85] showed, that a 

simple cellular automaton model can be utilized to simulate and explain some of 

the basic aspects of traffic flow, especially how traffic jams can form without any 

apparent reason. Such an automaton might be utilized for didactical purpose. 

 

4.4.2 Nagel-Schreckenberg model cellular automaton 

 

The Nagel-Schreckenberg cellular automaton is much simpler than the previous 

two examples. The universe of this automation consists only of a one-dimensional 

line of cells (representing a road), which ends are wrapped (the ends are 

connected so the whole line forms a circle, much like a giant roundabout). Each cell 

can have one state of a possible set of different states. It is eighter empty, or 

contains a car with an assigned single discrete velocity value. At time (𝑡 = 0), a 

state is assigned to each cell by placing a fixed number (configurable parameter of 

the model) of cars with random initial velocities (between 0 and the maximum 

velocity). For the cellular automaton the following simple rules apply: 

 

1) For all cars, which didn’t reach maximum velocity (a configurable model 

parameter), the velocity is increased by one. This step is called acceleration. 

 

2) Each car checks the distance (in cells) to the next car in front of it. If this 

distance is lower than the actual velocity value of the car, the velocity is 

adjusted to be equal to the number of empty cells in front of the car (this is 

done in order to avoid collision). The step is called slowing down. 
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3) For each car with a non-zero velocity, the velocity is reduced by one unit 

with a certain probability p (for example if p=0.1, then in 10% of the cases 

the velocity is reduced by one unit. This step is called randomization 

 

4) At least, all cars move forward by number of cells defined by their velocity. 

For example, if the velocity is 4, the car moves forward by 4 cells. This step 

is called car motion. 

 

The simulation is caried out in an excel sheet. Again, the excel sheet is divided into 

2 separate parts. The GUI part and the arena part (please see picture 50), where 

the GUI part serves for simulation control and the simulation itself is caried out in 

the arena part. 

 

 

Picture 50. The freeway traffic simulator is divided logically into two separate 

parts (left the simulation control and right the arena where the simulation takes 

place). The GUI part contains far more charts then the previous two examples. The 

charts display basic traffic macroscopic quantities – traffic density, traffic intensity 

and mean velocity and capture the relation between these quantities. 
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4.4.3 Examples of interesting freeway traffic simulator dynamics patterns 

 

It is not surprising, that the dynamics of traffic flow is heavily dependent on traffic 

density, and in context of the Nagel-Schreckenberg model, also heavily on the step 

3 probability (please see the cellular automaton rules – step 3 in the previous 

chapter). In fact, the stochastic parameter p is fundamental. Without it, the model 

is reduced to a deterministic cellular automaton, where the cars move in a set 

pattern and do not model the behavior of a real human driver anymore. The 

stochastic parameter p is what allows for spontaneous traffic jam formation in this 

model [89]. The following examples (summarized in pictures 51-54) show, how 

the dynamics can change with increasing traffic density (number of cars) and how 

it is dependent on the noise parameter p. 

 

  

(a) (b) 

Picture 51. The picture left shows the evolution of the automaton with 10 cars and 

𝑝 = 0.15. Car speed is highlighted by color, where brighter shades of green 

correspond to higher car speed and shades of red correspond to low speed 

(eventually zero speed for dark red). As can be seen, even though there was a 

randomly introduced congestion (upper left part of the picture), it quickly 

dissolved and never formed again. The car density is simply too low to 

spontaneously form traffic jams. The picture right shows the same simulation, 

however the number of cars was doubled (now featuring 20 cars). As can be seen, 

although the noise parameter didn’t change (𝑝 = 0.15), a traffic jam formed (thick 
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red line). With increasing algorithm steps, the traffic jam seems to be moving to the 

left. The same dynamics can be experienced in real freeway traffic, where 

sometimes a traffic jam forms out of nowhere (such a jam is also called a ghost 

jam) and the resulting disturbance in the car distribution starts to travel 

backwards in form of a wave (sometime also called a traffic wave). 

 

  

(a) (b) 

Picture 52. Influence of the stochastic parameter 𝑝 on the model behavior.  The 

picture left shows evolution of an automaton with 20 cars, but an extremely low 

noise parameter (𝑝 = 0.01). As can be seen, the automaton is reduced to a 

deterministic model and no traffic jam formed (compare to picture 34 right), 

where for the same number of cars a traffic jam formed immediately with a noise 

parameter 𝑝 = 0.15. The picture right shows evolution of an automaton with only 

10 cars, but with a high noise parameter (𝑝 = 0.40). It can be seen, that even with a 

small number of cars, a traffic jam can form if the noise parameter is high enough 

(compare to picture 51 left where for the same number of cars but with a lower 

noise parameter a traffic jam didn’t form). 
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(a) (b) 

Picture 53. Similar to real road traffic, a traffic jam can form spontaneously, and 

can also spontaneously dissolve (see picture left; number of cars = 10, 𝑝 = 0.4). 

Picture to the right shows what happens if the noise parameter is equal to 1. The 

resulting model is reduced to a deterministic cellular automaton and does not 

reflect real road traffic anymore. 

 

  

(a) (b) 

Picture 54. The influence of maximum velocity on the model dynamics. Although 

both pictures (left and right) share the same number of cars and noise factor 

(number of cars = 15, 𝑝 = 0.2). In the picture left (maximum velocity = 4) traffic 

jams do not form. In the picture right (maximum velocity = 7) a traffic jams forms 

almost immediately.  It is widely known, that maximum velocity can have a big 
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impact on traffic jam formation. In fact, in many countries inclusive Czech 

Republic, freeway traffic is usually monitored and simulation of future system 

development are caried out. Based on simulation results, maximum speed is 

adjusted to prevent spontaneous traffic jam formation and optimizing car through 

put rate (traffic intensity). This allows for better road (limited resource) 

utilization. 

 

 

Picture 55. Upper figure shows a mean velocity vs density plot for several different 

noise parameters p. As can be seen, with increasing noise, there is a lower mean 

velocity for the traffic flow, and traffic starts to condense (sudden break down in 

mean velocity) at lower densities. The condensation is a sign of congested traffic. 

The lower picture shows the fundamental diagram (special diagram utilized in 

traffic research showing a plot of traffic intensity vs traffic density) for several 

different noise parameters p. This diagram shows a sudden break down in traffic 

intensity highlighting that from a certain density, the traffic intensity stops to grow 

and starts decrease almost linearly. As can be seen with increasing noise, this 

breakdown point is shifted to lower densities, and affect the maximum traffic 

intensity. 
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Picture 56. Upper figure shows a mean velocity vs density plot for several different 

maximum velocity parameter values. As can be seen, the higher the velocity limit 

is, the sooner (sooner means at lower densities) the transition to congested flow 

happens. The lower picture shows the fundamental diagram for several different 

maximum velocity parameter values. As can be seen, with increasing maximum 

velocity limit, the flow intensity gradient is also increasing, but the transition to 

congested flow is sharper and happens at lower densities. 

 

Interesting questions to ask the student: 

 

1) How does the noise parameter p affect traffic jam formation?  

2) What does the noise parameter p represent in real road traffic? 

3) What model setting allow for best resource (road) utilization (maximum 

traffic intensity? 

4) What is a fundamental diagram? 

5) Why do traffic jams appear out of nowhere? 

6) How does vehicle speed affect traffic jam formation? 
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7) Why does a traffic jam seem to move backwards against traffic flow? 

8) Is it possible for a traffic jam once spontaneously formed to also 

spontaneously dissolve? Can you adjust the model settings to show an 

example? 

 

4.5 Further simulator ideas and potential in didactics of other 

school subjects 

 

Due to the vast range of application of cellular automata (as demonstrated in 

chapter 1), and due to their extensive ability to model all different kinds of systems 

in nature (as asserted in chapter 2), cellular automata certainly show great 

potential also in didactics of other school subjects. Some promising models with 

great didactical potential (which in their nature are easily implementable by a 

cellular automaton) will be shown. As discussed in the previous chapters nearly 

any natural phenomenon can be modeled by a cellular automaton, but because the 

target group are mainly first grade or second grade students, models with 

interesting dynamics or models which yield complex or aesthetic patterns were 

chosen, simply to attract and provoke curiosity in students. 

 

4.5.1 Nuclear reaction simulation 

 

In physics and in chemistry a process called nuclear reaction is well known and is 

studied in physics or in chemistry class throughout the world. In a very simplified 

schematical description, the process involves two nuclei (or a nucleus and a 

subatomic particle) which collide and produce new nuclei or new subatomic 

particles. One of the most prominent examples of a nuclear reaction is the nuclear 

controlled chain reaction of Uranium-235 in nuclear power plants or in nuclear 

weapons. The reaction starts, when a Uranium-235 atom absorbs a neutron, and as 

a result, fissions into two fragments releasing three new neutrons and a vast 

amount of energy. If further Uranium-235 atoms are present, they might collide 

with the newly generated neutrons and the fission process repeats, releasing even 
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more neutrons and more energy (see picture 57 – a). In power plants, this reaction 

is controlled by an additional mechanism, which absorbs (or slows down) some 

number (the number can be controlled) of the neutrons prohibiting their future 

collision with a Uranium-235 atom and a potential fission (see picture 57 – b). The 

process is schematically described on picture 57. 

 

  

(a) (b) 

Picture 57. Schematic representation of a controlled nuclear fission of uranium-

235 [90]. 

 

What one can immediately notice is how easy this process could be modeled by a 

two-dimensional cellular automaton. This automaton would consist of certain cells 

representing the Uranium-235 (with colors representing before/after collision 

states), other cells would represent neutrons (with cell states either “present” or 

“non present”) and yet other cells would represent the moderator (a neutron cell 

colliding with a moderator cell would switch to “non present”). A control GUI of 

this automaton would interface with the student and assure the model is 

configurable (the student could set the number of Uranium-235 cells, number of 

initial neutron cells, number of moderator cells, it could provide options for 

random initial cell distribution or allow for certain structures to be set) and a 

certain chart filed showing the cellular automaton current macroscopic state (how 

many Uranium-235 cells are still present, how many neutron cells are present, 

what is the amount of released energy or if the reaction is increasing or 

diminishing. It could even report if the reaction is out of control and if the reactor 
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will explode). Certainly, it would allow for an interactive environment, in which the 

student could learn a lot not only about nuclear reactions or nuclear power plants, 

but also about self-regulating systems. 

 

4.5.2 Lightning strike simulator 

 

A lightning strike is an electrical discharge between atmosphere and ground. It 

often occurs in nature as a repeated event during a storm and is visually very 

impressive. In a simplified understanding, the lightning strike stars in clouds by a 

polarization of positive and negative charges within the cloud. Usually, the positive 

charges accumulate at top of the cloud and the negative charges at bottom. As the 

static charge in the cloud builds up, it starts to ionize the surrounding air, making it 

more conductive. Electrons start to travel through the conducting air forming a 

step ladder (with a familiar zig-zag pattern which is thought to be attributed to 

dust particles present in the atmosphere). As the step ladder approaches the 

earths surface, positive charges from the earth start to migrate upwards towards 

the step ladder. The upwards migrating positive charges are often referred to as 

streamers. Once contact between the streamer and ladder is made, the positive 

charges on the earth surface fly very quickly towards the negative charges in the 

cloud. The flash of light seen is called lightning. A schematic representation of 

whole process can be seen on picture 58 a-e. 
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(a) (b) (c) 

  

 

(d) (e) (f) 

Picture 58. A schematic representation of how a lightning strike forms (a-e). On 

picture f (bottom right) a picture of a real lightning is shown. [91] 

 

It needs to be mentioned, that the above-mentioned description is extremely 

simplified and in fact one needs to have deeper understanding of electrical physics 

and thermodynamics to have at least some understanding of the process. It needs 

to be pointed out as well, that even though this phenomenon is subject of scientific 

research for many decades, the process is not yet fully understood. Therefore, a 

cellular automaton model of this process could certainly support in teaching of this 

complicated matter. The cellular automaton again could contain a GUI and an 

arena where the actual automaton would run. Inside the arena, three separated 

areas (cloud, air and ground) would contain specific types of cells. The cloud cells 

(at the bottom region of the cloud) would be generated by random at initialization 

phase of the automaton (the exact number of charge cells would be a configurable 
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parameter) and would perform random motion inside the cloud. The air area 

would contain randomly distributed dust particles (the number and maybe also 

the distribution pattern could be a configurable parameter). The ground area 

would contain cells representing positive charges and could contain some peak-

like positive charge displacements (representing houses or trees) which would be 

a subject of initial configuration and could be placed randomly in the ground area. 

During the actual run of the automaton, certain rules (gradient rules similar to the 

ant simulator related to positive and negative charges would represent the electric 

filed, certain random walk rules including the dust cells would assure the top-

down movement of negative charges form the cloud toward ground). Finally, when 

the random path like trajectories of the step ladders and the streamers connect a 

discharge would be released (basically just a graphical highlighting in white, blue 

or yellow of the drawn trajectories). Such a cellular automaton could help to 

provide a solid understand of the rules behind lightning strike formation just by 

focusing on charge movement rules instead of the complicated underlying forces 

behind the charges themselves. This would make the topic more accessible for first 

and second grade student. 

 

4.5.3 Simulation of water boiling 

 

Everybody who prepared tea or who cooks eggs for breakfast knows the 

phenomenon of water boiling and how fascinating it is. As a standard in todays 

first and second grade physics class, the water boiling phenomenon is simply 

explained as the related phase transition of water to steam which occurs in water 

when a certain boiling point heat threshold is reached. The physics behind the 

intriguing (seemingly random) bubble pattern formation and the specific noise 

which boiling water is producing is usually completely omitted. When water boils, 

a certain kind of inhibition process occurs (in some way similar to dendritic crystal 

growth), which is related to the energy consumed by the phase transition of water 

to steam. As the steam bubble forms, the necessary phase transition energy is 

drawn from the surrounding water heat, decreasing locally its temperature and 

inhibiting further boiling its direct vicinity [3]. This phenomenon can be very easily 
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simulated by a two-dimensional cellular automaton [92]. The principle is based on 

a slight disproportionality of the heat distribution among the cells (each cell state 

is defined by an integer number representing the temperature) which is randomly 

set up during initialization phase of the automation. After the water (cells in 

automaton) is heated (gradual step by step increase of the integer number of each 

cell which represents the temperature) and upon certain cells reach the phase 

transition temperature, energy from surrounding cells is drained (a process 

similar the diffusion step of the ant simulator but with an opposite gradient). If the 

cell temperature is represented by color, interesting bubble patterns will form, 

much like patterns in a glass of boiling water. 

 

   

(a) (b) (c) 

Picture 59. A real glass of boiling water (a) [93] a one-dimensional cellular 

automaton output patter simulation boiling water (b) [3], and a two-dimensional 

cellular automaton showing heat transfer in a bubble (c) [92]. 

 

4.5.4 Crystallization of water and snowflake formation 

 

It is well known, that water, upon freezing, can generate strikingly beautiful 

patterns. The physical mechanism behind snowflake formation is very similar to 

the boiling mechanism described above, but goes in the opposite direction. Once a 

certain part of the forming snowflake solidifies (freezes), certain amount of heat is 

released, preventing the water in its direct vicinity from further freezing. This 

simple rule, when reflected by a simple two-dimensional cellular automaton can 

generate patterns which remarkably resemble real snowflake patterns [3]. For 
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comparison see picture 60 (real snowflakes) and picture 61 (cellular automata 

generated patterns). 

 

Picture 60. Example of different shapes of real snowflakes [3]. 

 

 

Picture 61. Evolution of a two-dimensional cellular automaton. The automaton rule 

states, that a cell shall be black in the next step only if exactly one of its neighbors 
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was black in the previous step. The patterns are remarkably similar to real 

snowflakes [3].  

4.5.5 Fur pattern formation 

 

In animals interesting fur coat or skin patterns emerge. This pattern formation is 

thought to be a result of evolution, as animals with specific coat patterns gain a 

significant survival advantage. Some animals develop patterns which help them 

blend with their environment to avoid potential predators [94], other (often 

poisonous) animals show bright colored warning patterns to scare of an attacker 

[95]. The mechanism of the cellular automaton class resembling these kinds of 

patters was discussed in chapter 2. Here, I would like to present a comparison 

between real fur patterns and cellular automaton outputs to further highlight how 

similar they can get – see picture 62. 

 

  

(a) (b) 

Picture 62. Fur textures of real feline like animals (a) [96] vs patterns generated by 

a cellular automaton (b) [97]. 
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4.5.6 Diffusion-limited aggregation 

 

Diffusion-limited aggregation is a process often described in chemistry and 

physics, which is related to processes where particles perform a random walk due 

to Brownian motion and then settle and form aggregates. They often occur in 

systems where diffusion works as the primary mechanism for particle transport 

[98], and can be observed in many systems including mineral deposit, dendritic 

growth of crystals, coral growth, but also in a system with a dielectric breakdown 

or the Hele-Shaw flow (flow between two parallel plates separated by a very small 

gap) which can sometimes be observed when injecting a large quantity of oil into 

water. The fractal like patterns generated by these systems are visually very 

intriguing and could therefore provoke interest in the topic in students. They are 

extremely hard to rigorously study and only a few non-trivial solutions are known 

[99], but are very easy to reproduce with a cellular automaton. The idea behind the 

cellular automaton is to add cells to a cluster based on a random walk picking of 

the added cell position. The random walk starts far away from the cluster, but once 

the random-walking cell reaches a cell adjacent to the cluster, it will keep its 

position. Only one cell at a time can perform this aggregation algorithm [3]. 

 

  

(a) (b) 

Picture 63. Left (a) a so-called Lichtenberg figure burned into wood. Such figures 

often appear within dialectical breakdown and is an example of a diffusion-limited 
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aggregation pattern [100]. Right (b) shows a viscous fingering picture often 

occurring in Hele-Shaw flow [99]. 

 

  

(a) (b) 

Picture 64. Picture left (a) shows a diffusion-limited aggregation model based on a 

simple cellular automaton described in [3]. Right picture shows a multi color 

example of the aggregation where the cell colors were chosen based on time of 

arrival of the random particle [101]. 

 

4.5.7 Cellular automata in didactics of computer science 

 

An absolutely typical example is the application of cellular automata in didactics of 

computer science and informatics. Not only that computer science directly borders 

on physics (system modelling is a typical tool used in physics, and computer 

science provides one of the most common tools utilized in modelling of these 

systems – programming languages and computers), cellular automata themself are 

also a typical filed of study in computer science, due to their connection to artificial 

languages and automated computing. There is however a fundamental difference 

in the substance of the didactical aspect. While for physics (and also other similar 

subjects, like biology or chemistry as will be shown later in this chapter) the 

potential of cellular automata lies in their ability to describe a complex system 

with simple rules - which can be expressed in natural language, for computer 

science, the benefit is simply the fact, that they can be very easily implemented in 

any programming language. That makes them perfect as a sandbox environment 
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for demonstrating basic programming archetypes as are for example object-

oriented programming, accessing classes and methods, working with arrays and 

indexes or parsing strings and basic MISRA application. To further demonstrate 

this concept, let us return to the ant simulator example described in chapter 4.2. 

Even though the ant simulator looks complex, it in fact is not. Very basic 

programming tools and very basic object-oriented approach was utilized in its 

implementation, and any second grade student interested in informatics and 

programming can implement a similar automaton. As an example, refer to picture 

65, which shows two print screens of two ant simulator source code parts. Both 

source code examples show basic programming structures taught in programming 

classes. 

 

 

 

(a) (b) 

Picture 65. Screen shots of source code parts of the ant simulator. Only very basic 

programming principles were utilized, making the source code easily accessible to 

any programming student. Picture left (a) shows and example of how ants are 

initialized at the beginning of the simulation. An array of instances of the clsAnt 

class is iteratively generated and configured by a for cycle. Picture right (b) shows 

a classic example of a sorting algorithm commonly known as bubble sort which is a 

standard example used in any programming class. 
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5. Cellular automata and the physics of traffic 

 

As could be seen during the exploration of various cellular automata and their 

ability to model interesting phenomena in nature, the underlying rules of even a 

very complex system do not necessarily need to be complex as well. Remarkably 

simple rules can capture the essential mechanisms responsible for many 

phenomena seen in nature. Some of the phenomena (usually the very basic 

phenomena easily described by mathematics) are subject to school education, 

other are not yet fully understood and are subject to scientific research. The ability 

of cellular automata as a new kind of description tool to be applied both for known 

phenomena as well to unknown phenomena make it a very interesting tool to be 

utilized in didactics of physics. It does not only make it possible to investigate 

complex systems that border on several school subjects (like ants in physics, 

biology or computer science, or snow flake formation in in chemistry and physics) 

but also promotes synergy between individual school subjects. It can be in the 

same way utilized to explore systems that are not yet “discovered” and that are 

currently subject to scientific research. Similar to the promotion of inter-

disciplinary thinking, this approach promotes synergy between science and 

education. It encourages and supports a student in trying to figure out, why an 

unknown, not yet understood system exhibits a certain behavior, and puts them 

temporarily in a role of a researcher. They are challenged to try out their reasoning 

and critical thinking, and explore their creative potential to come up with some 

think new. In this way, a student can not only learn to understand, but a student 

can learn how to think [102]. 

 

In this chapter, some of our recent research on physics of traffic will be presented 

where simple cellular automata were utilized to model the studied systems. In 

contrary to the previous chapters, this chapter will utilize a far more mathematical 

approach and a more rigorous language for describing the explored systems, 

following standard notion utilized in theoretical physics. And it will seem to the 

reader that the whole style in which this thesis is written has changed. The reader, 

until now exploring certain new concepts in didactics of physics, will be challenged 

with concepts and language utilized in theoretical physics rather than in didactics, 
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which at first can look confusing. The reader could argue that it does not 

correspond to the topic of this thesis at all, but there is a certain very important 

logic behind why the following chapter is part of this thesis. This whole thesis 

emphasizes a certain (highly theoretical) concept, namely that cellular automata 

represent a completely new and fundamentally different approach for description 

of physical systems, and that this approach has a certain potential in didactics of 

physics. It was argued, and backed up by multiple examples and numerous 

references, that cellular automata basically embody a new description language 

and represent therefore potentially a completely new vector of approach in 

didactics, bordering upon being a completely new paradigm in education. 

Therefore, it is so much important to prove, that when cellular automata are being 

referred to as a new “language”, they should be capable of delivering the cognitive 

access to literally any topic, no matter how complicated or abstract it may be. 

Therefore, in this last chapter a completely different topic is raised (physics of 

traffic), and although accompanied by advanced statistics and within the 

framework of random matrix theory, there is always a cellular automaton utilized 

in describing the topic. It is therefore always possible to understand any of the 

modeled systems and any of the assessed topics, just by understanding the 

governing rules of the corresponding cellular automaton. This should act as a proof 

of concept - a proof that cellular automata are powerful enough to explain even the 

most theoretical concepts about physics of traffic in a natural language, which is 

otherwise only explainable by the formal language of mathematics. 

 

5.1 Quantitative analysis of probabilistic dependencies in a 

thermal balanced traffic gas 

 

As briefly discussed in the previous chapter about traffic flow modeling, traffic in 

its essence is a highly complex phenomenon. The agents (traffic participants) exert 

influence on each other during their trips, and organize themselves in a very 

interesting way, which leads to emerging of complex micro structural patterns. A 

key aspect of the system is the interaction happening between the traffic 

participants, and a lot of thought has been given about the nature of these 
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interactions, especially about their range. While some of the research on traffic 

considers the interaction to happen only between the directly neighboring agents 

(short-ranged interactions) [85], [103], [104]. Other research suggests that there 

might be more agents interacting [105]. The interaction range is a measure of how 

many cars ahead of the driver’s car still have influence on the driver’s decision 

making, and this chapter will explore some of the tools which might be utilized to 

quantify (in a sense to assign a certain real number) this measure. The tools 

(mainly mathematical tools) are quite simple and can easily be a subject of 

technical university study for a bachelor degree. To create the substrate on which 

these tools can be tested a cellular automaton approach will be utilized. The reason 

for this is the ability of a cellular automaton to generate a complex enough system 

to reflect reasonably on real road traffic, while still maintaining a good enough 

ability to design the microstructure of the system just by carefully choosing the 

underlying automaton rules. The approach is not very different from the presented 

cellular automaton utilization approach in didactics of physics. First, a simple way 

how to generate complex behavior is selected (the cellular automaton), and then 

the dynamics of the system is studied by utilizing certain tools. The difference here 

is, that for the scientific perspective (or educational perspective at university level) 

the tools utilized to study the system might be quite advanced (rigorous, 

mathematical approach) while for first and secondary grade school a verbal 

description or a visual evaluation is quite sufficient to have a grasp on the core 

properties of a system.  

 

5.1.1 Model description 

 

The model utilized to study the interaction range and related applicable tools for 

its quantification is based on the modified Metropolis algorithm [106], [107], [108] 

(the algorithm is part of the Markov Chain Monte Carlo method family of 

algorithms). From physics point of view, the operation of the automaton can be 

understood as relaxation of a one-dimensional gas (one dimensional set of 

particles) towards its thermal equilibrium (the ensemble of particles exerts 

repulsive force on each other, until they reach some equilibrium state – much like a 
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classical gas exposed to a thermal bath). From traffic research point of view, the 

particles are considered traffic agents and the repulsive forces acting represent the 

collision avoidance behavior of a driver. It is well known, that once this gas (also 

called traffic gas) stabilizes in its equilibrium state, the resulting interparticle 

spacing statistics (i.e., the spacing distribution) is very similar to intervehicle 

spacing distribution seen in real road traffic. The automaton works as follows: 

 

Imagine M point like particles located equidistantly on a circle with a mean 

distance equal to 1. The particles move on the circle, but are prohibited to change 

their order. An inverse temperature parameter β (also called statistical resistivity) 

specifies the systems entropy. A positive β (i.e., a positive value of entropy) 

represents the amount of chaos in the generalized stochastic sense, and when 

related to traffic gas models, it can be thought of as a parameter reflecting the 

mental pressure the driver is experiencing during his trip. An integer parameter N 

specifies the number of interacting agents. The particle positions are repeatedly 

updated according to following simple rules: 

 

1) Calculate the potential energy of the particle ensemble using the following 

formula: 

 

                                                         𝑈1 = −∑∑ln(𝑥𝑘+𝑙 − 𝑥𝑘)                                           (1)

𝑁

𝑙=1

𝑀

𝑘=1

 

 

where M represents the number of particles on the circle, N represents the 

number of interacting agents, and 𝑥 is the particle position. 

 

2) Pick a random particle-index 𝑗 ∈ {1, 2, … ,𝑀}. 

3) Draw a random number 𝛾 uniformly distributed in the interval (0, 1). 

4) Compute a new position for the particle 𝑥𝑗
′ = 𝑥𝑗 + 𝛾. Because the particles 

are prohibited to change their order, only values of 𝛾 that are less than 𝑥𝑗+1 

are accepted. 

5) Calculate the potential energy 𝑈2 using the same formula as for 𝑈1 



103 
 

6) If 𝑈2 ≤ 𝑈1, then the move is accepted, the particle changes its position, and 

the traffic gas takes its new configuration. However, if 𝑈2 ≥ 𝑈1, then the 

move is accepted only with a probability of 𝑒−𝛽∆𝑈 , where 𝛽 specifies the 

systems entropy, and ∆𝑈 = 𝑈2 − 𝑈1. 

 

This system reaches its equilibrium state very quickly (typically within a few 

thousand iterations – see picture 66 for reference). The resulting inter-particle 

spacing distribution is used as a substrate to test the mathematical tools for 

interaction range quantification.  

 

Picture 66. Relaxation of the particle system into associated thermal equilibrium. 

The data displayed is the result of 60 000 iterations of the above-mentioned 

algorithm for the temperature parameter 𝛽 = 1, N = 2 and M = 100. The blue line 

represents the potential energy for one complete realization of the model. The red 

line represents the mean potential energy of 400 realizations of the algorithm. As 

can be seen, the particle system very swiftly reaches its equilibrium state (only 

about 8000 iterations are needed), and then fluctuates around a certain mean 

value of the potential energy. 
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Picture 67. Probability density functions for diverse temperature parameters 𝛽. N 

= 1 and M = 100. The shape of the density function describing the interparticle 

spacing distribution changes with increasing 𝛽. While for 𝛽 approaching 0, the 

distribution describes a stochastically independent process, for increasing 𝛽 (i.e., 

increasing mental strain of the driver), the distribution starts to be similar to 

spacing distributions seen in real traffic situations. 
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Picture 68. Probability density functions for various interaction ranges N. 𝛽 = 1 and 

M = 100. The shape of the density function changes with increasing N, but after N = 

3 there is no further significant change in the distributions shape. The interaction 

range N seems to have influence on the distribution shape only for a maximum of 3 

interacting elements. 

 

5.1.2 Mathematical tools for quantitative analysis of probabilistic 

dependencies 

 

Measuring dependencies among data is a crucial part of statistical inference and is 

essential for understanding the nature of relations between elements of a system. 

This is especially valid for traffic systems. There are many dependence measures. 

The most prominent among them are the Pearson’s correlation coefficient, 

distance correlation and mutual information [109], [110], [111], but there are also 

other measures like kernel measures of conditional dependence, mutual 

dependence, number variance or convolution perturbance [112], [113], [114], 

[115]. In the following sub-chapters, we will discuss the Pearson’s correlation 
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coefficient as one of the most used tools for dependence detection, the number 

variance − which comes originally from random matrix theory, and convolution 

perturbance − a relatively new approach for dependence measure. These 

mathematical tools will be applied on the data generated by the model described in 

the previous chapter, and the obtained results further discussed. 

 

5.1.2.1 Pearson’s correlation coefficient 

 

Pearson’s correlation coefficient is a measure of the linear correlation between two 

variables x and y. It has a value between +1 and -1, where 1 is a total positive linear 

correlation, 0 is no linear correlation, and -1 is a total negative linear correlation. It 

is defined as the covariance of the two variables divided by the product of their 

standard deviations: 

 

                                                        𝜌𝑥,𝑦 =
𝐶𝑜𝑣(𝑥, 𝑦)

√𝑉𝑎𝑟(𝑥)𝑉𝑎𝑟(𝑦)
                                                     (2) 

 

Pearson’s correlation coefficient is symmetric: 𝐶𝑜𝑟𝑟(𝑥, 𝑦) =  𝐶𝑜𝑟𝑟(𝑦, 𝑥). A key 

mathematical property of the coefficient is that it is invariant under changes of 

scale and location of the random variables. The disadvantage of the coefficient is 

that it captures only a linear dependence. A zero value of the coefficient does not 

mean that the two random variables are automatically independent. It only implies 

that they are linearly independent. Unfortunately, dependencies upon traffic data 

are thought to be highly nonlinear [115], [116]. Nevertheless, the Pearson’s 

correlation coefficient is a valuable tool for a first glance assessment of the level of 

dependence in the data. 
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Picture 69. The figure shows the interpolated Pearson’s correlation coefficients for 

diverse interaction ranges N. While for N = 1, there is only a limited correlation 

related to statistical noise of the sample, for N > 1 there is a clearly visible increase 

in correlation. The correlation coefficient continues to grow until N = 6 (black line). 

After N = 6 there is no further significant increase in correlation. The interaction 

range N seems to have major influence on the amount of correlation only for a 

maximum of 6 interacting elements. As can be seen, the correlation coefficient also 

increases with increasing β. Especially interesting is, that with increasing N (the 

number of interacting agents) the amount of correlation starts to significantly 

increase already for lower values of β. As β represents the mental strain 

experienced by the driver (which is usually highly dependent on the traffic density, 

as will be shown later), it is clearly visible that if the driver needs to react to 

multiple traffic participants (for example not only the car directly ahead of him, but 

also to other cars farer ahead), the amount of dependance (or amount of 

correlation) he introduces to the data by making adjustment of its speed and 

position increases very fast even in the lower traffic density region. This means, 

that if a driver faces a situation where he needs to react to multiple drivers, the 

amount of action he takes towards the traffic participants (adjusting position or 
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speed) increases dramatically with the stress he experiences. This is very similar 

to what can be seen in real traffic. 

 

5.1.2.2 Number variance 

 

Number variance was originally used to describe the eigenvalues in random matrix 

theory, i.e., for describing the spectral rigidity of energy levels in quantum chaotic 

systems. It also accurately describes the variance in particle position for a certain 

class of interacting gases (for example Dyson’s Coulomb gas) [117], [118]. It can be 

used for the investigation of statistical variances in traffic data, and it can deliver 

information on the amount of dependence among a data set. We have used the 

number variance for the detection of previously introduced dependencies among 

the data generated by the above-mentioned model. The number variance is 

calculated as follows: 

Imagine a set {𝑟𝑖 ∶ 𝑖 = 1. .𝑀} of distances between point-like particles located on a 

circle. The mean distance over the complete set is equal to one. If we divide the 

interval [0,𝑀] into subintervals [(𝑘 − 1)𝑀, 𝑘𝑀], each of a length 𝐿1 and define 

𝑛𝑘(𝐿) to be the number of particles in the kth subinterval, we know that the 

average value �̅�(𝐿) taken over all subintervals is equal to: 

 

                                                  �̅�(𝐿) =
1

𝑀/𝐿
∑𝑛𝑘(𝐿)

𝑀/𝐿

𝑘=1

= 𝐿                                                    (3) 

 

The number variance ∆𝑛(𝐿) is then defined as: 

 

                                                ∆𝑛(𝐿) =
1

𝑀/𝐿
∑(𝑛𝑘(𝐿) − 𝐿)

2

𝑀/𝐿

𝑘=1

                                               (4) 

 

This quantity describes the variance in the number of particles contained in a fixed 

part of the circle, and measures fluctuations of this number. A significant 

advantage of this method is that it can capture also non-linear dependencies upon 

a dataset. 
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Picture 70. Plot of the number variance for diverse interaction ranges N, where β = 

1 and M = 100. While the number variance of independent events (black line with 

diamonds) is a straight line with a slope (gradient) of 1, the slope of the lines 

representing the results for different interaction ranges N is shifted to lower 

numbers. Hereby lower gradients represent higher levels of dependence. The 

gradient of number variance (also called statistical compressibility) is an important 

indicator of the traffic regime it describes, and can help to deliver important 

inference on the corresponding traffic microstructure.  

 

5.1.2.3 Convolution perturbance 

 

It is well known from probability theory, that the probability density of the sum of 

two (or more) independent random variables is the convolution of their individual 

densities: 
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                                    ℎ(𝑧) = (𝑓 ∗ 𝑔)(𝑧) = ∫ 𝑓(𝑧 − 𝑡)𝑔(𝑡)𝑑𝑡
∞

−∞

                                         (5) 

 

But what if the variables are not independent? Does this convolution property 

break down? We have investigated the data generated by our model and were 

looking if there are any differences between the convolution of the probability 

densities describing the inter-particle spacing, and the density of the sum of these 

inter-particle spacings. In a system, where only two particles interact, it can be 

reasonably expected, that successive inter-particle spacings are not correlated, and 

therefore the density resulting from the convolution should match the density of 

the sum of the spacings. If, however, there are more particles interacting, and there 

is a certain correlation between individual inter-particle spacings, the convolution 

should not be equal to the sum of the individual inter-particle spacing densities. 

We have interpreted the level of difference between these two densities, i.e., the 

sum of the absolute distance between each point of one density to the 

corresponding point of the other density, as a probabilistic dependence of the 

random variables describing the inter-particle spacing. We call this measure 

“convolution perturbance”. 
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Picture 71. Plot of the convolution perturbance for diverse values of β where M = 

100. As can be seen, the amount of difference (the distance) between the 

convolved densities, and the density of the sum of the inter-article spacings does 

increase with the interaction range N, and also increases with the temperature 

parameter β. Such a behavior has been expected due to the nature of β and N, and 

as can be seen, the convolution perturbance was able to meet this expectation and 

give information about the dependence upon the dataset. 

 

5.1.3 Potential in didactics of physics 

 

The previous chapters have shown a simple way how to set-up a system potent 

enough to model automotive traffic (although no comparison to real road traffic 

data was delivered yet). Hereby the cellular automaton approach discussed in this 

thesis was selected, mainly because of the ability of cellular automata to generate 

very complex dynamics based on very simple rules. Traffic in its essence is also a 

system with a very complex dynamics, which is also based on very simple rules 

(simple actions like “accelerate”, “break” or “change direction” are enough to let 
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the complex microscopic and macroscopic structure seen in real road traffic to 

emerge). The rules of the above-mentioned model were carefully selected to 

introduce artificial correlation to the model’s output, and a special attention was 

given to the rules to be easily configured (an integer N describes the number of 

interacting agents and a driver’s mental strain factor β describes how likely the 

drive is to react to its environment and both of these parameters can be easily 

configured by the student itself, just by changing the initial configuration numbers 

of the model). In addition, several tools to detect the introduced correlation were 

given to the student to be applied on the output data (the tools match the 

requirement to be simple enough to be taught to bachelor degree students). Now, 

under the teacher’s guidance, the student is able to investigate what happens to 

the system if the initial configuration is changed, and the student is encouraged to 

apply the received mathematical tools on a system that very closely matches real 

road traffic system. The benefit of this interdisciplinary approach (in this case the 

disciplines are physics and mathematics) is, that the student is immediately able to 

utilize the tools learned in one subject (mathematics) in the other subject (physics) 

and on top of that in physics of a very concrete every day experienced system (real 

road traffic). The student learns to understand how basic underlying rules of a 

system affect its dynamics while utilizing tool acquired in another subject to study 

the system from a mathematical perspective both at the same point in time. 

Interesting is, that the same types of tools are utilized in current state-of-the art 

scientific research related to traffic, and similar cellular automata are utilized to 

construct traffic models which are an essential part of such research. The 

remarkable ability of cellular automata to model the most complex phenomena 

just by applying several very simple rules can be utilized both in science as well as 

in didactics and shows how thin the border can be between school subjects and 

scientific research if the same tools are applied. It is a great example of the 

potential of cellular automata in didactics. The following chapters will show 

several other examples of scientific research on real road traffic, where, similar to 

the example above, cellular automata were used to model the studied system and 

mathematics to study the systems properties. This time however, these examples 

will contain also real road data, taken from real road measurements, which will be 
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compared to the cellular automaton output, and the similarities and differences 

between a real system and the cellular automaton system will be evaluated. 

 

5.2 Traffic Flow Merging – Statistical and Numerical modeling of 

microstructure 

 

This chapter will show a freeway traffic system, which especially people 

commuting by cars on freeways to major cities for work know all too well. The 

discussion is about construction works on freeways.  

 

   

(a) (b) (c) 

Picture 72. Road work ahead. A very typical situation experienced by drivers on a 

freeway in real road traffic. 

 

What actually happens to traffic macroscopic and microscopic structure in the 

vicinity of a region where traffic streams are forced to merge? We have 

investigated the statistical distribution of the time headways, as well as their 

changes induced by a merging process, and verified through measurement, that 

the resulting statistics can be well described by the generalized inverse gaussian 

distribution, and on top of that, that the same distribution (but with different 

parameters) can be utilized also describe the headway distribution of classical free 

flow traffic).  Furthermore, we can show, that the dynamics of the merging process 

can be easily described by a simple cellular automaton like model (a 

thermodynamic particle-like model, very similar to the model described in the 

previous chapter) with an implicit gap-acceptance rule controlling the merging 

process. It is yet another example, how a simple cellular automaton can describe 

even the most complex systems. It has also an important practical application. 
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Road works in general, and line reduction in particular have a crucial impact on 

traffic capacity. Compared to a free flow regime on a resource (road) without a 

bottle neck, the capacity of a bottle neck can be reduced up to 30% [119]. 

Furthermore, traffic flow withing the bottleneck itself is significantly unstable and 

traffic conditions may change suddenly in a very short time. It can easily happen 

without any obvious reason, that a free-flow regime suddenly changes to 

synchronized flow, or to a stop-and-go regime. A good model of this process would 

help to apply dynamic traffic control, and support prevention of complications 

resulting from such sudden changes like loss of road capacity. The detection of 

individual vehicular interactions is very difficult, as the information provided on 

individual cars by single point measurements is usually not sufficient. However it 

has been demonstrated in [104], [120], [121], that one can detect such interactions 

by means of a segmented analysis of vehicular headways/clearances and make 

assumption about the interactions by analyzing the statistical properties among 

these segments. It opens up an opportunity to comprehend the essence of 

vehicular merging (zipping). By analyzing real road data (particularly from 

construction works on Czech freeways) we can show, that before, during and after 

the merging process, the distribution describing the time clearances is a 

generalized inverse gaussian distribution. The consecutive chapters will also show 

how stochastic resistivity (a parameter reflecting on the mental strain of the driver) 

evolves during the merging process. Finally, we will show the implementation of a 

simple merging model which can reasonably reflect on the vehicular 

microstructure withing the zipping area, and compare the model outputs with the 

data measured on a real-road. From practical point of view, the results of the 

model can be used for example for optimized traffic dynamics control of real road 

zipping.  

 

5.2.1 Classical approach to traffic merging 

 

Research on zipping processes in vehicular traffic has been ongoing for a long time. 

Earlier works of Daganzo [122], Zheng [123], Hidas [124], Wang [125], and others 

have been trying to find an effective simulation tool for merging operations. 
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Roughly speaking, a general problem of these attempts is the fact that they all are 

neglecting the statistical nature of traffic flows and/or do not take into account 

different distributions of headways in various traffic regimes. Usually, the models 

consider traffic to be uniformly distributed. However, recent research shows [120], 

[126], [117], [127], [128], that this is by no means the case. Rather, different traffic 

regimes show different distributions each of which describes a certain specific case 

and a certain specific traffic regime. Therefore, when modelling traffic merging, 

one needs to look for an alternative approach. 

 

5.2.2 Empirical observations of traffic merging and their statistical 

interpretations 

5.2.2.1 Origin of the data 

 

The data utilized for the follow up statistical analysis was measured during 

construction works on the Czech Highway D1 (notoriously famous for its ever-

lasting construction works and resulting traffic congestions) from June to August 

2016 on a 16km long road segment. The segment was chosen because it contains 

an area, where a two-line traffic flow merges (because of the roadworks) into one 

line (see picture 73 for a schematic description). Three sets of radar detectors 

(Wavetronics SmartSensor HD, with an accuracy of 0.1s for time measurements 

and 0.1km/h for velocity measurements) were put into three critical locations. The 

first and second detector (D1 and D2) have been placed in front of the merging 

area (localization: 216,5 km - one for the left line, one for the right line), the third 

detector (D3) has been placed directly inside the construction area (localization: 

227,1 km). The last radar (localization: 232,5 km) was put behind the construction 

work exit area, where the flow can utilize two lines again. Unfortunately, data from 

this radar was not finally used (no detector was placed) for the analysis, because of 

the exit towards Olomouc (situated directly after the construction site). The exit 

disrupted the traffic flow far too much to make any statistical analysis reasonable. 
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Picture 73. Schematic representation of the D1 highway segment where the 

measurements were made. The chosen segment is 16km long. 

 

The collected data (3.22 million events in total) has the following structure. The 

sets 

 

                                      𝑇(𝑖𝑛) = {𝜏𝑗,𝑘
(𝑖𝑛) ∶ 𝑗 = 1, 2, … ,𝑁 ∧  𝑘 = 1, 2, … ,𝑀}                          (6) 

                                    𝑇(𝑜𝑢𝑡) = {𝜏𝑗,𝑘
(𝑜𝑢𝑡) ∶ 𝑗 = 1, 2, … ,𝑁 ∧  𝑘 = 1, 2, … ,𝑀}                        (7) 

 

contain chronologically ordered time-stamps, each time stamp representing a kth 

car from the jth sample. The set 𝑇(𝑖𝑛) contains the timestamps captured during 

entering the detector line, whereas the set 𝑇(𝑜𝑢𝑡) contains the timestamps captured 

when the vehicle left the detector line. Constants M and N represent the sampling 

size and the total number of samples. In a similar way, 

 

                                      𝑉 = {𝑣𝑗,𝑘 ∶ 𝑗 = 1, 2, … ,𝑁 ∧  𝑘 = 1, 2, … ,𝑀}                                  (8) 

 

is the set of vehicular velocities. For each sub-sample j, it is possible to calculate 

the local traffic intensity 

 

                                                               𝐼𝑗 =
𝑀

𝜏𝑗,𝑀
(𝑖𝑛) − 𝜏𝑗,1

(𝑜𝑢𝑡)
                                                         (9) 
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and local average velocity 

 

                                                                 𝑣�̅� =
∑ 𝑣𝑗,𝑘
𝑀
𝑘=1

𝑀
                                                            (10) 

 

based on these quantities a good approximation of the local traffic density can be 

obtained [127], [103]: 

 

                                                                        𝜌𝑗 =
𝐼𝑗

𝑣�̅�
                                                                 (11) 

 

Individual (re-scaled) time-clearances are then calculated as follows: 

 

                                                𝑥𝑗,𝑘 =
𝑀(𝜏𝑗,𝑘

(𝑖𝑛) − 𝜏𝑗,𝑘−1
(𝑜𝑢𝑡))

∑ 𝜏𝑗,𝑖
(𝑖𝑛)𝑀

𝑖=1 − ∑ 𝜏𝑗,𝑖−1
(𝑜𝑢𝑡)𝑀

𝑖=1

                                               (12) 

 

which ensures for all sample means that 

 

                                                               𝑥�̅� =
∑ 𝑥𝑗,𝑘
𝑀
𝑘=1

𝑀
= 1                                                      (13) 

 

It is well known [129], [128], [126], [130], [131] that such a re-scaling procedure 

brings a considerable advantage when investigating relations in many types of 

systems, including economic, physical, biological, socio-physical or purely 

mathematical systems. 

 

5.2.2.2 Macroscopic characteristics of a traffic merging systems 

 

The macroscopic variables 𝐼𝑗 , 𝜌𝑗  and 𝑣�̅� characterize the macroscopic state of the jth 

sample. To understand what traffic regime the explored sample is experiencing, 

one needs to check its position on the so-called Intensity-Density plane (ID-plane, 

also called fundamental diagram). The position of the sample on the plane is 

defined by its ID coordinates 𝜌𝑗 , 𝐼𝑗 . and helps to identify what traffic regime 
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vehicles from this sample are experiencing. Usually, a driver from a sample far 

right to the bottom of the ID plane (high traffic density, low traffic intensity) 

experiences congested traffic, whereas a driver from a sample with lower traffic 

density and higher traffic intensity most probably experiences free flow. What is 

essential before moving to any sort of statistical analysis is to assure that only a 

homogenous data sample will be analyzed. Because traffic, in general, is not 

uniform, when observing a larger sample of successive vehicles, it is clearly visible 

that each part of a larger sample has a different microstructure. Indeed, it is well 

known, that traffic dynamics exhibits many surprising patterns like traffic jams, 

stop-and-go waves propagating through the traffic sample, transitions to and from 

congested traffic states, local instabilities or meta-stabilities of traffic flow, 

scattering, platoon formation or traffic synchronization. Therefore, a larger sample 

of traffic data is difficult to be described with a single probability distribution, and 

is rather a mix of several different distributions, as it is a mix of several different 

traffic states at the same point in time. To avoid analyzing a non-homogenous data 

sample, consequently only samples from a limited region of the ID plane, that 

contain samples of similar statistical properties and traffic microstructure were 

subject of the analysis. 
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Picture 74. Fundamental diagram showing data from the D1, D2 and D3 detectors. 

Blue and red dots highlight data from detector D1 and D2 (left line and right line) 

which captured data before the vehicles entered the road work merging area. 

Purple marks show data from the D3 detector directly from the construction area 

where the flow has been merged. Strait lines highlight vehicles within the 

fundamental diagram, which move with the same velocity. It is immediately visible, 

that by merging of the two lines (which exhibit free traffic flow states), the mean 

velocity dropped dramatically from 120 km/h to roughly 80 km/h. This is a result 

of a traffic phase change induced by the zipping area, in which traffic suddenly 

swings from free flow to synchronized flow [132]. 

 

5.2.2.3 Microscopic characteristics of a traffic merging systems 

 

As discussed, standard traffic flow without any merging can be very well descried 

by the generalized inverse gaussian distribution (GIG distribution) [133], [134]. 

We have investigated if this is true also for the area directly after zipping occurs 

(data captured by the D3 detector), and if the same general principles apply also 
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for a merged traffic stream. The aim was to investigate, whether the merging 

process had some fundamental impact on the microscopic nature of traffic. To be 

more specific, we wanted to know, if the probability density function 

 

                                                       𝑓(𝑥) = 𝐴Φ(𝑥)𝑥𝛼𝑒−
𝛽
𝑥𝑒−𝐷𝑥                                               (14) 

 

where Φ(𝑥) is the Heaviside step function, and where 𝐴 and 𝐷 are scaling and 

normalization constants: 

 

 

          𝐴−1 =
1

𝐴
=

{
 
 

 
 
2(
𝛽

𝐷
)

𝛼+1
2
Κ𝛼+1(2√𝛽𝐷)

Γ(𝛼 + 1)

(𝛼 + 1)𝛼+1

                    𝛽 ≠ 0, 𝛼 ∈ 𝑹

                       𝛽 = 1, 𝛼 > −1

                    (15) 

 

                                                       D = α + β +
3 − 𝑒

−2√
𝛽
4+𝛼

2
                                             (16) 

 

where Κ𝛼+1(𝑥) represents a modified Bessel function of the second kind, and Γ 

represents the gamma function, could accurately describe not only bot streams 

before merging, but also the final merged traffic stream. 

 

A crucial statistical quantity is the stochastic resistivity 𝛽 ≥ 0, which describes the 

systems resistance to stochastic influences. When referring to traffic, it can be 

understood as a parameter reflecting on the mental strain the driver is 

experiencing and acts as an indicator of repulsive forces in the system. Lower 

values of 𝛽 correspond to a system being close to a Poissonian system of random 

non-correlated events and suggest no interaction between individual 

particles/elements/agents.  In contrary, extremely high values if 𝛽 → ∞ lead to an 

equidistant arrangement of particles, which corresponds to a deterministic system. 

Therefore, a particular value of the resistivity (detected in vehicular systems) 

reveals an extent to which interaction forces (i.e. socio-dynamical impulses 

influencing driver’s decisions and maneuvering) are damped by stochastic 
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fluctuations. Higher values of 𝛽 indicate stronger mental strain of the driver, and 

stronger interactions between individual drivers. As an illustration of how well the 

generalized inverse gaussian distribution can described the traffic data, please see 

picture 75. The parameters  𝛼 and 𝛽 of the associated GIG distribution were 

estimated based on the measured time headways by the Minimum Distance 

Estimation method (MDE), where the distance to be minimized can be described 

by the following metrics: 

 

 

                                                  μ = (∫ |𝐻(𝑥) − 𝑓(𝑥)|2𝑑𝑥
∞

0

)

1
2

                                            (17) 

 

where 𝐻(𝑥) represents the histogram of scaled time headways, and 𝑓(𝑥) 

represents the GIG probability density function. 
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Picture 75. Measured time headway distribution (histogram) with its 

corresponding estimated GIG distribution (green, blue and purple line). The 

picture shows how two traffic streams (measured by the D1 and D2 detectors) 

having an equal density between 7 and 10 vehicles per kilometer merge into one 

stream having a density between 10 and 14 vehicles per kilometer. As can be seen, 

the statistical model very accurately reproduces the empirical distributions both 

for each individual line before merging (green and blue line), as well as the final 

merged flow (purple line). 
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Picture 76. Estimated stochastic resistivity parameter 𝛽 for each line in relation to 

traffic density. As can be seen, for lower densities, less ten 7 vehicles per kilometer, 

the mental strain parameter 𝛽 is pretty low, indicating that in low density traffic, 

there is not much mental pressure exerted on the driver (this is in correspondence 

to our everyday experience during driving). However, once the traffic density 

increases, the pressure the driver is experiencing also increases. For the merged 

stream (because of the just undergone zipping procedure and because of the 

narrower driving line related to the surrounding construction work), the mental 

strain level rises already at densities around 8 vehicles per kilometer as the driver 

needs to evaluate more information in a short time. Especially interesting is the 

evolution of the mental strain parameter for the fast line (the line that is being 

merged). For densities up to 15 vehicles per kilometer, drivers in both lines 

experience roughly the same amount of stress. However, for densities beyond that, 

there is a very sharp increase in the stress level the drivers experience in the fast 

line. This is because the merging procedure is about to start and there is far too 

low space in front of the driver resulting in a higher repulsive force acting on the 

driver (drivers in the fast line are forced to slow down because of many other cars 
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in front of them did slow down as they prepare for the zipping maneuver). 

Interesting is, that this is in no way the case for the slow line. There (at least at the 

location measured by the detector) seems to be no dramatic increase in the stress 

level experienced by the driver. 

 

5.2.2.4 Modeling traffic merging by utilizing a cellular automaton 

 

In the previous chapter, empirical data from a traffic merging procedure were 

studied in detail together with a statistical model based on the generalized inverse 

gaussian distribution. It could be shown, that the mentioned distribution can very 

accurately model the assessed situation. In this chapter, a traffic flow merging 

simulation based on a simple thermodynamic gas (traffic gas) cellular automaton 

will be presented. In many ways, it is very similar to the simple gas model 

described in the previous chapters, however it has been extended to incorporate 

the zipping procedure. The automaton consists of two one-dimensional thermal-

like gases whose particles are attracted/repulsed by a combined and 

η−parametrized potential 

 

                                                    𝜑 = 𝜂 ln 𝑥 +
1

𝑥
           (𝜂 > 0)                                              (18) 

 

and controlled by a fixed value of the stochastic resistivity 𝛽 ≥ 0. For such a gas, 

analytical solutions of associated steady-state distributions are well known [104] 

and lead to headways that are GIG distributed. Moreover, it is shown in [135] and 

discussed in [127] that a general system with asymmetric, forwardly-directed 

interactions and driving terms (which is a typical variant of traffic models) can be 

very reliably approximated by the many particle thermodynamic system like this. 

Above that, it is well known that the above-mentioned thermal-like gas generates 

GIG-distributed headways also in far-from-equilibrium states, which represents a 

great benefit for modelling of merging traffic. The model has random initial 

conditions (location of particles in each stream) and fixed parameters 𝛽1 and 𝛽2 

assigned to the individual to-about-to-be-merged streams, and consists of three 

segments (see picture 77). The first segment contains the two traffic streams, that 
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are going to be merged. The second segment contains the merging area, and the 

third segment contains the merged stream together with a detection are. All these 

segments change their states according to bellow described rules, but each 

segment has different values of configuration parameters. In the third segment, 

particles are captured by a virtual detector (much like vehicles were captured by a 

real radar detector in the real road example given above) and related headway 

distributions were acquired also in the same way (MDE). 

 

 

 

Picture 77. Schematic example of the merging automaton. Two separate traffic 

streams (brown and grey curves, containing blue and green particles) merge into 

one stream according to fixed merging rules. A detection area after the merging are 

captures information about passing particles. 

 

Consider an ensemble of N point like particles at positions 𝑥1(𝑡) >  𝑥2(𝑡)  > ⋯ >

 𝑥𝑁(𝑡), where 𝑡 is an integer value representing the time step of the automaton. 

The particle positions are updated by applying the following steps: 

 

1) Timer 𝑡 is increased by one 
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2) Potential energy of the particle ensemble is calculated based on the 

following formula: 

 

                          𝑈(𝑡) = 𝜂∑ ln(𝑥𝑘(𝑡) − 𝑥𝑘+1(𝑡)) + ∑
1

𝑥𝑘(𝑡) − 𝑥𝑘+1(𝑡)

𝑁−1

𝑘=1

                  (19)

𝑁−1

𝑘=1

 

 

3) Pick a random particle-index 𝑙 ∈ {1, 2, … ,𝑁}. 

4) A mean headway in the given segment is evaluated 

 

                                             𝑤 =
1

𝑁 − 1
∑(𝑥𝑘(𝑡) − 𝑥𝑘+1(𝑡))

𝑁−1

𝑘=1

                                           (20) 

 

5) Draw a random number 𝛿 uniformly distributed in the interval (0, 1) and 

compute a new position for the 𝑙th particle: 𝑥𝑙(𝑡 + 1) = 𝑥𝑙(𝑡) + 𝛿𝑤. Because 

the particles are prohibited to change their order, the new position is 

accepted only if 𝑥𝑙(𝑡 + 1) < 𝑥𝑙−1(𝑡) otherwise the position is not updated 

and stays the same 𝑥𝑙(𝑡 + 1) = 𝑥𝑙(𝑡) and the algorithm is skipped to step 9. 

6) The potential energy of the new particle configuration is evaluated 

 

𝑈′ = 𝑈(𝑡) + 𝜂 ln (
𝑥𝑙−1(𝑡) − 𝑥𝑙(𝑡 + 1)

𝑥𝑙−1(𝑡) − 𝑥𝑙(𝑡)
) +

1

𝑥𝑙−1(𝑡) − 𝑥𝑙(𝑡 + 1)
      

−
1

𝑥𝑙−1(𝑡) − 𝑥𝑙(𝑡)
 

(21) 

 

7) If 𝑈′ ≤ 𝑈(𝑡) then the 𝑙th particle takes on the new value 𝑥𝑙(𝑡 + 1) 

8) If 𝑈′ > 𝑈(𝑡) then the Boltzmann factor ℎ = 𝑒−𝛽(𝑈
′−𝑈(𝑡)) is compared with 

another random number 𝑟 uniformly distributed in the interval (0, 1). If ℎ >

𝑟 the 𝑙th particle takes on the new value 𝑥𝑙(𝑡 + 1) too. Otherwise, the 

original configuration remains unchanged and 𝑥𝑙(𝑡 + 1) = 𝑥𝑙(𝑡). 

9) For every 𝑘 ≠ 𝑙 we set 𝑥𝑘(𝑡 + 1) = 𝑥𝑘(𝑡). 

 

In this manner, particles positions from the first and second segment, where the 

coefficients of resistivity (required in step 8) are specified at the beginning of a 
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simulation procedure, are updated periodically before they enter the zipping area. 

Here they are merged into one one-dimensional ensemble (keeping the order in 

which particles entered the segment), that is described by a potential energy 

respective to the zipping area. An effective value of resistivity in the zipping area is 

then calculated as an average resistivity of all particles lying within this area: 

 

                                                                  𝛽 =∑(
𝛽𝑙
𝑁
)

𝑁

𝑙=1

                                                             (22) 

 

Where 𝛽𝑙 is either 𝛽1 or 𝛽2 in dependence from which line the particle entered the 

merging area. This represents an implicit merging rule reflecting an empirical 

behavior of drivers moving in the vicinity of a merging point. After the particles 

pass through the zipping area to the detection area, their headways are recorded 

and statistically evaluated. It needs to be mentioned, that in the zipping are itself, 

the particle positions are updated in the very same way like they are in the two 

lines prior the merging, with the only difference being the 𝛽 parameter utilized in 

step 8, which is calculated as a merged parameter from 𝛽1 or 𝛽2 in dependance on 

the particle configuration within the merging area. The above-mentioned 

algorithm is executed individually for both lines and the zipping area until the each 

of the segments reaches its individual thermal equilibrium and their headway 

distributions are statistically stable in time. The models output can be seen in 

picture 78. A comparison of the models output and real road merging data is 

displayed in picture 79. 
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Picture 78. The histogram shows the headway distribution for individual lines as 

well as the merging are acquired by relaxing the merging particle gas cellular 

automaton model into its thermal equilibrium. Green, blue and purple curves 

represent an associated GIG probability density function. As can be seen, the GIG 

also very accurately fits the data generated by the automaton merging model. 
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Picture 79. Comparison between real road headway probability distribution and 

simulation result distribution. As can be seen, the headway distribution acquired 

by the model very accurately matches the real road equivalent. The initial 

configuration parameters of the model were chosen based on estimated 

parameters from the real road merging. 

 

Based on stochastic analysis of original vehicle-by-vehicle data measured in the 

vicinity of the zipping area it is clearly visible, that regardless of the detector 

position, all the time-clearance distributions belong to the family of the generalized 

inverse Gaussian distributions. The estimation procedure based on MDE however 

reveals significant differences in the stochastic resistivity of in-flow and out-flow 

streams. It confirms an intuitive opinion that streams in the left (fast) and right 

(slow) lanes (before the zipping area) are not statistically equivalent, despite the 

fact that they can have the same or similar macroscopic properties. Evolution of 

the stochastic resistivity (for evolving traffic density), which is one of the 

fundamental description quantities in physics of traffic, clearly shows that driver 

strategies (decision rules and maneuvering) are different in the fast and slow 



130 
 

entrance-lanes and are also different inside the construction area. It is also very 

interesting, that a simple cellular automaton model, which follows only basic 

intuitive rules can generate output remarkably similar to the real road situation. 

Both real road data, as well as the automaton model output highlight, that the 

merging procedure amplifies synchronization among cars. In other words, drivers 

experiencing a merging situation in real road traffic are more likely to adapt their 

driving behavior based on the behavior of surrounding cars to avoid collision. This 

is a result of increased mental strain experienced during the merging procedure, 

which in many aspects challenges the driver, and it is of no surprise that such a 

driver will adjust its driving behavior accordingly. 

 

5.3 Super-chaotic statistics in traffic flow 

 

In the previous chapter, traffic merging was investigated in detail. Analysis of data 

from a real road construction site showed, that there is a significant difference in 

statistical properties between the fast (left) and slow (right) line, and that 

imposing some restriction area on the common resource (road) can lead to a 

dramatic change in the driver’s behavior and traffic flow in general. But is this the 

case also for unrestricted traffic? We have investigated the nature and level of 

correlation among vehicles in real road two-lane traffic data, and found out that 

there is a remarkable difference in the driver’s behavior between the two driving 

lines, even when there is no apparent external influence or traffic restriction 

imposed on the system. 

 

5.3.1 Origin of the data 

 

The data we base our investigation on was measured by a set of inductive dual-

loop traffic detectors, located on the D0 motorway in Prague (also commonly 

known as the Prague Ring). The advantage of using a dual-loop detector system is 

that is can capture both the vehicle speed as well as its length with a good 

precision. To illustrate how the system works, please refer to picture 80. The 

measurement system consists of two separate loops, the Mloop and the Sloop, both 
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with the same loop length and a fixed distance between them. When one of the 

loops detects a vehicle, a timer is started, and when the vehicle is detected by the 

second loop, the timer is stopped. The time at which the vehicle arrives at the Mloop 

- 𝑡𝑚−𝑜𝑛 and the time at which the vehicle arrives at the Sloop - 𝑡𝑠−𝑜𝑛, can be used to 

calculate the vehicle speed [136]: 

 

                                                     𝑠𝑝𝑒𝑒𝑑 =
𝑙𝑑𝑖𝑠𝑡 + 𝑙𝑙𝑜𝑜𝑝

(𝑡𝑠−𝑜𝑛 − 𝑡𝑚−𝑜𝑛)
                                                  (23) 

 

Where: 𝑙𝑙𝑜𝑜𝑝 = Loop length in meters 

       𝑙𝑑𝑖𝑠𝑡  = Distance between the two loops in meters 

       𝑡𝑠−𝑜𝑛 = Vehicle entry time at the first loop 

       𝑡𝑚−𝑜𝑛= Vehicle entry time at the second loop 

 

 
Picture 80. A schematic diagram of an inductive dual-loop traffic detector [136]. 

 

Based on the vehicle speed, and based on the 𝑂𝑛𝑡𝑖𝑚𝑒 - the time the vehicle spends 

moving across the detector, the vehicle length can be obtained by: 

  

                           𝐿𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = [𝑠𝑝𝑒𝑒𝑑 (
𝑂𝑛𝑡𝑖𝑚𝑒−𝑀 + 𝑂𝑛𝑡𝑖𝑚𝑒−𝑆

2
)] − 𝑙𝑙𝑜𝑜𝑝                             (24) 
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Where: 𝑠𝑝𝑒𝑒𝑑 is the Vehicle speed, 𝑙𝑙𝑜𝑜𝑝 is the Loop length in meters, 𝑂𝑛𝑡𝑖𝑚𝑒−𝑀is 

the time the vehicle moves across the first loop and 𝑂𝑛𝑡𝑖𝑚𝑒−𝑆 is the time the 

vehicle moves across the second loop. 

 

In a similar way, other important macroscopic and microscopic quantities can be 

extracted out of the data. Especially important are the time and distance headways 

(the time or the distance between two vehicles passing a detector), traffic density 

(the number of vehicles in a fixed road length), traffic intensity (the number of 

vehicles passing a point in a fixed time) and mean velocity (sum of velocities of 

fixed number of vehicles, divided by the number of vehicles). Also, similar to the 

assessment of the real road merging data explained in the previous chapter, a 

unification procedure had to be done for the data, to avoid analyzing a non-

homogenous data sample. We have split the data into small samples each 

containing only a limited number of entries. Then, for each of the individual sample 

sets, the random variables describing the data (like for example time headways, or 

distance headways) were re-scaled to have a mean value of one. Finally, for each of 

the individual sample sets, local traffic density and traffic intensity was calculated, 

in order to understand at what position this sample set is located in the 

fundamental diagram. Only limited regions of the fundamental diagram, containing 

samples of similar statistical properties and traffic microstructure were subject of 

evaluation. Picture 81 shows the resulting fundamental diagram of the acquired 

data. Left, the fast and slow lane is represented by different colors, showing a 

difference in shape of the fundamental diagram. The heat map representation of 

the fundamental diagram (see picture 81 right) shows the number of vehicles 

belonging to the same region of the fundamental diagram. The heat is proportional 

to the number of vehicles. The two separate heat-center lines visible on the figure 

are the fast and the slow lane. The slow lane has a bigger heat-center as it contains 

in general more vehicles. The data in picture 81 represents 52 billion vehicles 

captured by 8 different detectors during a period of one year. 
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(a) (b) 

Picture 81. Fundamental diagram representation of the measured data. 

 

5.3.2 The difference between the fast and the slow lane 

 

As can be seen on the heat map representation of the fundamental diagram in 

picture 81, already on macroscopic level both lanes display differences. For the 

same traffic densities, the fast lane exhibits a sharper increase in traffic intensity, 

and is able to maintain this increase even in more dense traffic before finally 

entering saturation and congested traffic. The comparison of mean velocities, 

displayed in picture 82 confirms this observation. While both lanes contain a 

similar region of slow-movers for low densities < 20 vehicles/km, the faster 

moving vehicles show different properties in the mean velocity trend. For the slow 

lane, the maximum mean velocity seems to slightly grow for densities below 10 

vehicles/km, and then enters a bound regime, experiencing a linear decrease in 

mean velocity, until reaching the threshold value at density 35 vehicles/km, 

followed by a sharp breakdown in mean velocity which signalizes that the traffic 

has entered congestion. For the fast lane however, there seems to be a bound 

regime from the very beginning, displaying as well a decrease in mean velocity, but 

with a milder slope. Also, vehicle in the fast lane seem to enter the congestion 

related breakdown in mean velocity later, at density 40-45 vehicles/km. 
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Picture 82. Mean velocity comparison of the fast and slow lane. 

 

To understand the differences in the microscopic structure, we have once again 

utilized the generalized inverse gaussian distribution to assess the distribution of 

the random variables describing the time headways between vehicles. As 

discussed in the previous chapter, the GIG distribution is perfect for such an 

assessment, as it not only very accurately describes time headways between 

vehicles in real road traffic, but can also describe a general many particle systems 

in far-from-equilibrium state. (Interesting is to mention that the GIG distribution is 

known to accurately describe not only traffic data, but also for example the 

intervals between failures of air-conditioning equipment, intervals between pulses 

along nerve fibers, fracture toughness of MIG welds and has a close connection to 

the hazard functions and lifetime modelling in general [134]). For the purpose of 

investigating the micro structure of unrestricted two-lane traffic flow, we 

introduce the probability density function: 

 

                                                       𝑓(𝑥) = 𝐴Φ(𝑥)𝑥𝛼𝑒−
𝛽
𝑥𝑒−𝐷𝑥                                               (25) 
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where Φ(𝑥) is the Heaviside step function, and  

 

                                         𝐴 =
1

2 (
𝛽
𝐷
)

𝛼+1
2
Κ𝛼+1(2(𝛼 + 1)√𝐷𝛽)

                                          (26) 

 

where Κ𝛼+1(𝑥) represents a modified Bessel function of the second kind, and 𝛽 >

0, 𝐷 > 0 and 𝛼 are real parameters (compared to the previous notion of the GIG 

from the traffic merging model, we didn’t express 𝐷 to be a function of 𝛼 and 𝛽 so 

the current function is a three-parameter function rather than a two parameter 

one from the previous chapter). Similar to the previous example, the 𝛽 parameter 

indicates the systems entropy. It represents the amount of chaos in the system and 

when referring to traffic, it can be understood as a parameter reflecting on the 

mental strain the driver is experiencing and acts as an indicator of repulsive forces 

in the system. As can be seen in picture 84 (b), the stress parameter 𝛽 is heavily 

influenced by traffic density. When traffic density is low, the driver experiences 

low stress levels, as there is no necessity to respond to the local traffic (no 

repulsive forces slowing down vehicles). The probability distribution is reduced to 

the Poisson distribution - see picture 83 (b). However, with increasing traffic 

density, the driver is forced more and more to respond to its surrounding and the 

driver needs to evaluate more and more information in a short time, increasing the 

stress level consistently. The correlation between individual drivers rises, and the 

data can no longer be described by the Poisson distribution. Once the stress level is 

unbearable, the driver slows down. If this happens in a larger scale, the system 

enters a congested state and the mean velocity and traffic intensity decreases 

dramatically, sometimes even halting the whole traffic flow. Note the difference in 

𝛽 parameter dependence on traffic density for the fast and slow lane in picture 84 

(b). 

The α parameter on the other hand represents attractive forces in the system. It 

represents the desire of the driver to follow or catch upon a vehicle. In short range 

interaction, the repulsive forces always prevail, reflecting on the instinct for self-

preservation, however when the distance between the drivers gets sufficient, 

attractive interaction gains more and more ground. Note the difference in α 
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parameter dependence on traffic density for the fast and slow lane in picture 84 

(a). 

The interaction of the driver with other vehicles is defined by a ratio between the 

stress parameter β and the attraction parameter α. Both are dependent on traffic 

density (larger densities result in larger value for both of the parameters). Let us 

therefore introduce the force ratio 𝜅 = −
𝛼

𝛽
, which represents the level of attractive 

force presence in the system. As can be seen in picture 83 (a-f), the generalized 

inverse Gaussian distribution can very accurately describe situations in both the 

fast and the slow lane, for low and high densities. 

 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Picture 83. Inter-vehicle time headway statistics. Bars represent the probability 

density for real traffic data. The red curve represents the GIG distribution 

 

  

(a) (b) 

  

(c) (d) 

Picture 84. Evolution of fit parameters 𝛼, 𝛽 and D in relation to traffic density, 

together with the force ratio 𝜅. 

 



138 
 

5.3.3 Number variance of traffic flow 

 

Finally, to assess the nature of inter-vehicle interaction, and the character of 

difference between the slow and the fast lane, we have used the number variance 

distribution (which detailed description was delivered in chapter 7.1.2.2). For this 

purpose, the entire fundamental diagram was sliced into 100 pieces, each piece 

representing a small traffic density region. Consecutively, applying the formula (4), 

the number variance distribution for both fast and slow lane was calculated for 

each of these density regions separately. Consistent with the observations made 

utilizing the fundamental diagram view and the GIG density estimation (for which 

the fast and the slow lane showed major differences) also the statistical properties 

of the number variance distribution differ lane to lane considerably. While the 

number variance distribution of the data from the slow lane - see picture 85 (a) - 

confirms the expectation that there is no correlation between vehicles for ultra-

low densities (the red curve matches exactly the curve for independent events), 

and that higher traffic densities (green, blue and purple line) show increasing 

correlation with increasing traffic density, the number variance of the fast lane 

shows a completely different (and extremely unexpected) behavior. Indeed, 

against the expectation, the number variance distribution obtained for the fast lane 

- see picture 85 (b), shows for lower densities a gradient higher than 1, making this 

distribution super-Poissonian and not matching the distribution for independent 

events at all - see the red, green and blue curve in picture 85 (b). Similar super-

Poissonian distributions can be found for example in photon counting experiments 

and statistics of light, in quantum optics [137], [138], [139], [140]. In these 

experiments, thermal light (for example sun light) shows intensity fluctuations as 

its inherent aspect and as a result, there is a statistical tendency for photons to 

arrive simultaneously at a detector, resulting in so called “photon bunching” (this 

phenomenon can be in general attributed to the wave-particle duality of photons 

and is in physics known as the Hanbury Brown and Twiss effect [141]). The related 

probability distribution of photon arrival time at the detector is super-Poissonian.  
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(a) (b) 

Picture 85. Number variance distribution for data from the slow lane (left) and 

from the fast lane (right). 

 

 

Picture 86. Photon spacing for coherent light (laser), anti-bunched light and 

bunched (thermal) light [142]. Note the spacings for the bunching case. 

 

For fast lane traffic data, the super-Poissonian character of the number variance 

distribution might be attributed to a similar effect, which we call “vehicle 

bunching” in order to keep the analogy with thermal light and quantum optics. 

However, the source of the bunching is different. It originates in the driver’s lane-

changing behavior. Imagine a common traffic situation experienced on freeways. A 

driver in the slow lane wants to overtake a slower moving vehicle and decides to 

change to the fast lane. When there is a vehicle moving in the fast lane, it might 

need to slow down in order to avoid collision with the lane-changing vehicle from 
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the slow lane. When there are more vehicles moving in the fast lane, they are 

slowed as well, forming a bunch of vehicles moving within a close distance, not 

unlike bunched photons - see picture 86. Not many of such overtaking maneuvers 

originating in the slow lane are necessary to block the fast lane locally, which 

results in traffic intensity fluctuations in the fast lane. As a result, the fast lane 

exhibits super-Poissonian like statistics for traffic densities as far as 20 

vehicles/km. Also note that the probability distribution of time headways for the 

fast lane for ultra-low densities shown in picture 83 is not exactly a Poisson 

distribution as the probability of having very small time-headways is much larger 

than in should be for an uncorrelated sample. This is because it captures the small 

time-headways between individual vehicles which form a vehicle bunch in the fast 

lane. 

 

 

 

Picture 87. The gradient of Number Variance (statistical compressibility) in 

relation to traffic density. A gradient of 1 indicates independent events. 
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Interesting is also to review the evolution of the number variance gradient (also 

called statistical compressibility) with traffic density. As can be seen in picture 87, 

for the slow lane the gradient decreases with increasing traffic density, indicating 

an increase in correlation among the vehicles. This trend continues until reaching a 

local minimum in statistical compressibility (local correlation maximum) at 

densities approximately 10 vehicles/km. Note that this is exactly the density, 

where the estimated parameter D reaches its maximum value - see picture 84 (c). 

For the fast lane, the statistical compressibility starts already at values larger than 

1, indicating positive correlation and “vehicle bunching”. Beginning at traffic 

density of about 5 vehicles/km, the vehicle bunching effect starts to increase. At 

the same time, the compressibility decrease in the slow lane starts to slow down, 

as more and more vehicles perform a lane-change, exiting the slow lane 

(increasing entropy) and feeding the vehicle bunching effect at the fast lane. Also, 

the estimated parameter 𝛽 (i.e. the mental strain parameter) starts to separate at 

this density, showing different values for the slow lane and the fast lane (𝛽 in the 

fast lane increases faster, because some of the vehicles in the slow lane are doing 

the lane change maneuver, increasing stress level for drivers in the fast lane). This 

effect culminates in traffic densities approximately 15 vehicles/km. From this 

density onwards, fewer and fewer vehicles from the slow lane try to perform a 

lane-change maneuver, as the fast lane is simply too occupied to do the maneuver 

safely, and the willingness to start such a maneuver decreases. As a result, the 

number of vehicle-bunching situations decreases, intensity fluctuations dissipate, 

and the slow lanes 𝛽 parameters run perpendicular to the fast lane 𝛽 parameter, 

indicating that the mental stress level increases with traffic density in the same 

manner for both slow and fast lane. Starting at traffic densities 20 vehicles/km 

onwards, the statistical compressibility for the fast lane falls below 1, and the 

system transits from its super-Poissonian regime to the standard sub-Poissonian 

regime seen in the slow lane, until finally reaching a congested state for both lanes, 

indicated by a similar compressibility for both of the lanes – this happens at traffic 

density approximately 30 vehicles/km. Note, that this is exactly the density where 

there is a break down in mean velocity for the slow-lane - see picture 82. 
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Conclusion 

 

The aim of this thesis was to deliver a complete and comprehensive overview of 

cellular automata and their potential in didactics of physics. The concept itself was 

based on the ability of cellular automata to exhibit even the most complex 

dynamics, while being in fact generated only by a set of very simple rules. This 

remarkable ability of cellular automata to describe a system just by describing 

these underlying simple rules was proven to be advantageous in didactics of 

physics, because it permits to study even the most complex systems from an 

educational perspective without having to rely on complex mathematical rigor. 

This is especially important in education of first grade and second grade students, 

where the education in mathematics just started and where students do not have 

enough mathematical understanding to be able to comprehend complex systems. 

However, it is these systems which exhibit a variety of very interesting dynamics, 

which often borders on several subject, and which, if sufficiently explained to 

students would promote synergy between individual school subject. It was shown, 

that cellular automata can deliver an easy way how to describe these systems, and 

make their study possible in first grade and second grade school environments, 

where a standard mathematical description approach would not be possible 

because of the related requirements for mathematical simplicity. This concept was 

not only shown to be applicable to already well understood systems which border 

on several school subjects, but also to systems that are not yet fully understood, 

and which are currently subject to scientific research. It establishes an 

interdisciplinary approach to teaching, and promotes synergy between science and 

education. The student is not simply expected to just memorize content through a 

repetitive learning ritual, which often results in development of a database-like 

understanding of physics through memorizing simple equations, without having 

deeper understanding of the highly abstract concept and relations defined by these 

equations. In contrary, the student is expected to put its own hands on the subject, 

study the underlying rules and their impact on the dynamics of the studied system. 

It challenges the student not only to memorize, but also to think. And a student 

who can think should be the contribution of our educational system to our society. 
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