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I N T R O D U C T I O N 

The 3D reconstruction problem i n the field of computer v is ion aims for creation of a 
detailed and accurate model of real-life objects or environments from a set of measure­
ments. Since the introduction of digital photography, the image processing algorithms 
became one of the most researched topics i n the field of computer vis ion, establish­
ing the basics of recreating 3D structure from camera motion [54]. After four decades 
of research, the 3D reconstruction topic became a mature area, defining projective 
camera geometry, statistical inference methods and established techniques for the es­
timation of sensor pose and 3D structure [27]. Recently, the computational power of 
modern computers and h igh performance graphic processing units, have opened the 
possibilities for the 3 D reconstruction algorithms to reconstruct h ighly detailed 3D 
representations of large-scale environments i n real time. Thus the development effort 
has focused on the processing of large amount of data from mult iple types of sensors 
to create a consistent 3 D model . 

The reconstructed 3D models are used i n a large variety of applications i n fields 
ranging from computer graphics, v i r tual reality, architecture to medicine, movie and 
gaming industry and robotics. The model of an environment offers valuable informa­
tion for city planning or modification of existing bui ldings as we l l as visualizat ion of 
such modifications. Similarly, the 3D reconstruction can be used as a tool for maintain­
ing the cultural heritage, a l lowing the vir tual presentation of the cultural landmark or 
artistic object without physical damage to the original object. The non-invasive scene 
3 D reconstruction finds application i n forensics and crime scene investigation, where 
a crime scene can be scanned to capture al l scene details for further interaction and 
reviewing. 

In the f i lm industry, it is advantageous to know the metric 3 D information about the 
environment for Computer Graphics Imagery (CGI) model l ing and insertion of spe­
cial effects, v i r tual actors or objects into the scene. Accord ing to scale of the scene, as 
wel l as available budget expenses, different types of on-site scene capture techniques 
can be ut i l ized. The laser ranging technology provides very precise depth information 
at the cost of expensive equipment and a need for expert operation. Another option is 
the processing of images from monocular, stereoscopic or spherical cameras or even 
from mult iple types of sensors simultaneously and constructing the model by fusing 
partial reconstructions from ind iv idua l cameras. 

For 3D reconstruction of the environment, it is common to scan the scene w i t h one 
sensor, but using mult iple sensor types is more beneficial. Laser scanners or 36o°field 
of v i ew cameras are able to reconstructed whole scene using only few scans, but they 
are more expensive and require an expert to operate. Other sensors such as monocular 
cameras are easy to use, but to cover whole scene, large number of photos w i t h satis­
factory visual overlap have to be taken. A better 3D model of a scene is the one created 
by combining the models from different sensors - a model of a whole scene is created 
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w i t h surrounding scene reconstructed from laser scanners or 36o°view cameras and 
detailed parts of a scene reconstructed from handheld monocular cameras. 

The contribution of this thesis is a 3D reconstruction system capable of incorporat­
ing data from mult iple types of sensors such as monocular, stereoscopic or spherical 
cameras and laser scanning devices and produce accurate representation of the envi­
ronment. The focus lies on unified representation of different scanning devices, measure­
ments and the spatial relations between them, so one system containing al l sensors 
and measurements is b u i l d and optimised to achieve higher accuracy of the recon­
struction. The system containing data from mult iple types of sensors is optimised 
using very efficient non-linear graph optimisation l ibrary SLAM++[45, 30, 29] 1. 

To evaluate best data processing approach for multisensor registration we perform 
an exhaustive analysis of registration of two spherical images and of a registration of 
spherical and planar image. 

1 https://sourceforge.net/projects/slam-plus-plus/ 
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R E L A T E D W O R K 

The techniques for the 3D reconstruction-Structure from M o t i o n (SFM), Bundle A d ­
justment (BA), Simultaneous Localisation and M a p p i n g ( S L A M ) have been success­
fully applied i n mult iple software systems. Photo tourism [49] is able to create 3D 
models of frequently photographed famous historical bui ldings or tourist attractions 
such as Notre Dame from thousands of planar images available on internet services 
e.g., Flickr1. Processing an unordered set of images is computationally expensive, so 
the main focus of the algorithm is the detection of v isual ly similar images, to cre­
ate reconstruction order that leads to complete model of the scene. The computation 
usually requires several days of processing on cluster of computers. The software 
contains image-modell ing front-end from large photo collections as we l l as photo ex­
plorer w h i c h uses image rendering techniques for smooth translation between images 
that allows vir tual photo tours of famous locations. 

Bundler2 is one of the first S F M software able to process an unordered set of images. 
Its earlier version was used i n Photo Tourism project wh ich was later developed into 
Photosynth? for Microsoft. Bundler's front-end software is able to detect and match 
feature points across the input image set and to incrementally reconstruct the sparse 
3D structure of the scene. Modi f i ed version of Sparse Bundle Adjustment [40] is applied 
i n the process as an under ly ing optimization engine to refine the reconstruction. 

VisualSFM4 represents an user friendly application for image 3D reconstruction 
exploiting multicore parallel ism [59], fast feature extraction and matching [57] and 
bundle adjustment [58]. Further, the reconstructed camera and structure information 
from VisualSFM can be used as an input for Patch-based Mul t i - v i ew Stereo Software 
(PMVS) by Furukawa et al. [20] to obtain dense 3D reconstruction. P M V S starts w i t h 
correspondences estimated by S F M algori thm and iteratively expands the depth to 
surrounding pixels. The false correspondences are filtered out using vis ibi l i ty con­
straints, by removing patches of depth map that lead to vis ibi l i ty conflict (occlusion) 
w i t h other patches. The increased set of corresponding points is further used to refine 
the extrinsic and intrinsic camera parameters i n final B A step. 

The OpenMVG5 is a l ibrary for image processing and mult iple v iew geometry esti­
mation, inc luding algorithms for feature matching of unordered set of images, S F M 
pipeline, optimisation and visualizat ion tools, as wel l as simple examples explaining 
basic functionality. The l ibrary also contains a database of intrinsic camera parame­
ters, w h i c h can be extracted from image Exchangeable image file format (EXIF) data. 
The output of the l ibrary is a sparse 3D point cloud data and camera poses. 

The StereoScan application [22] allows real-time 3D reconstruction by fusing infor­
mation from dense depth maps and camera posit ion estimation based on visual odom-

1 https://www.flickr.com/ 

2 http://www.cs.cornell.edu/ snavely/bundler/ 

3 https://photosynth.net/ 

4 http://ccwu.me/vsfm/ 

5 https://github.com/openMVG/openMVG 
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etry. The real-time processing is achieved by separating the camera pose estimation 
process from map bu i ld ing process w h i c h l inks mult iple views together and recon­
structs reliable point clouds using k n o w n camera positions. 

Microsoft's Kinect Fusion creates detailed 3D model of the indoor scene using the 
Kinect device. O n l y the depth information is used to track the camera posit ion and to 
reconstruct the 3D model of the scene i n real time. The real time, interactive capabili­
ties are possible thanks to the accelerated data processing on the Graphics Processing 
Uni t (GPU), but also non-interactive, offline processing is available. The system finds 
application i n low-cost handheld scanning and geometry-aware and physics-based 
augmented reality applications. 

Commercia l software Capturing Reality6 allows 3D reconstruction from mult iple sen­
sor types - monocular cameras and C L I D A R device. The mul t i sensor reconstruction 
is achieved by transforming coloured 3D point c loud generated by C L I D A R to six 
planar images by projecting the 3 D data to six sides of a cube, and using them for 
registration to images from monocular cameras. 

6 www.capturingreality.com 
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P R A C T I C A L A P P L I C A T I O N 3 
The sclable multisensor 3D reconstruction framework was developed for the task of 
reconstruction of large outdoor scenes for European project I M P A R T 1 i n collaboration 
w i t h two movie companies, FilmLight2 and DoubleNegative3. One of the goals was to 
integrate al l measurements acquired by sensors i n order to create reconstruction of 
3D environment. The available tools, at the time, were too slow for this purpose. The 
need for i n situ visualisation of the 3D reconstructed environment and taking decision 
on w h i c h parts of the scene needs more sampling, motivated the development of a 
fast and accurate system for 3D reconstruction from mult iple sensors. 

In this chapter we describe sensors used for 3D reconstruction, their advantages 
and disadvantages and introduce the datasets captured i n the scope of the I M P A R T 
project. 

3 .I A V A I L A B L E S E N S O R S 

The first step of 3D reconstruction consists of data acquisition. Two main categories of 
data acquisition sensors exist - active and passive. Act ive scanning devices emit some 
k i n d of radiation or light and detect its reflection from object to obtain depth map 
and recreate the object or environment ( L I D A R , R A D A R , structured light). Passive 
scanning sensors, on the other hand do not emit light themselves, but rather use 
reflected natural light instead ( C C D cameras). 

Monocular Cameras 

The conventional cameras are cheap and easy solution to obtain 3D reconstruction. 
The monocular cameras produce planar 2D images images by projecting 3D scene 
onto a 2D camera projective plane. The cues from the images, such as silhouettes, 
shading, texture or motion can be exploited to estimate the 3D geometry of an ob­
ject or scene. The processing of the video sequences from monocular cameras allows 
easier detection of corresponding parts of the scene thanks to the b ig spatial overlap 
between the consecutive images. The estimation of camera poses and 3D structure of 
the environment from mult iple images of a scene is i n literature referred as Structure 
from M o t i o n (SFM). 

1 https://impart.upf.edu/ 

2 http://www.filmlight.ltd.uk/ 

3 http://www.dneg.com/ 
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a) b) 

F i g u r e 1: a) S p h e r o n 4 c a m e r a b) S a m e p a r t of the scene projected i n t o dif ferent (vertical) p a r t of 
s p h e r i c a l i m a g e . 

Spherical Cameras 

Spherical cameras use spherical projection - projecting 3D point of a scene onto a sur­
face of a sphere to create an image capturing whole surrounding scene. Spherical 
cameras provide images wh ich cover the whole surrounding space, so using spheri­
cal images from one or mult iple view-points is a feasible way to create 3D models of 
large environments. 

Devices such as Spheron4 capture spherical image by a vertical line-scan camera w i t h 
wide-angle lens rotating around the centre of projection. The final high-resolution i m ­
age is created by joining scans into a single image that covers 360° i n horizontal and 
~ 180° i n vertical field of view. For storage purposes the spherical image is stored as 
rectangular longitude-latitude image by mapping from spherical model to 2D d imen­
sions of rectangle. Spheron devices are mounted on rigs that al low for precise vertical 
movement for capturing stereo spherical image pairs w i t h defined vertical baseline. 

The main disadvantage of the spherical images and their longitude-latitude rep­
resentation is the distortion introduced by projection from sphere to rectangular 
plane. The same parts of the scene can appear very different depending where i n 
the longitude-latitude image they are projected to (Figure 1 b)). This can cause prob­
lems when extracting and matching features, especially when the images are captured 
w i t h wide baseline. 

Range sensors 

Range detection devices provide information about a depth of the observed object or 
a scene. Laser scanning devices, also called L I D A R , are often ut i l ized to acquire dense 
model of a scene. They employ time-of-flight techniques to estimate the distance of 
a scene point by measuring the time the light beam travels between L I D A R and the 
point. L I D A R s often include rotating mirror that allows to change the angle of the 

4 https://www.spheron.com/ 
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Table 1: Dataset detai ls . * T h e n u m b e r of m o n o c u l a r p l a n a r i m a g e s for Synthet ic dataset is a s u m 

of the i m a g e s of each scenario . 

C C S R Cathedral A t r i u m Studio Synthetic 

Spherical Images 3 3 5 4 — 

Spherical baseline ~ 6m ~ 23m ~ 3 m ~ 1.5m — 

C L I D A R Scans 3 7 — — 3 

C L I D A R baseline ~ 6m ~ 7m — — ~ 6 m 

Planar images 243 92 50 — 30* 

Area 2 5 0 m 2 2500m 2 4 0 0 m 2 100m 2 2 5 0 m 2 

laser beam and thus scanning area around the device. Specialized 3 D L I D A R s w i t h 
added vertical field of v i ew are able to capture dense structured 3D point clouds 
representing the scene. Some devices such as Faro 5 are capable also to fuse colour 
information from wide angle lens camera located at the L I D A R sensor w i t h the 3D 
point c loud data to create the coloured 3D model of the environment. 

3.2 A V A I L A B L E D A T A S E T S 

Several datasets containing data from different types of sensors were acquired to 
evaluate our multisensor processing framework and other applications developed i n 
I M P A R T project. The planar images have been captured by standard hand-held Canon 
and Samsung cameras, covering surrounding area of captured scene. The spherical 
images were acquired w i t h a S p h e r o C a m - H D R 6 system, w h i c h captures vertical scan 
lines by a turning camera w i t h fisheye lenses, synthesises them and provides up to 50 
M p i x latitude-longitude image. The C L I D A R data capture was performed using Faro 
Focus^7 device provid ing a 3 D point c loud data w i t h assigned colour information 
for each point. Details about the content of each dataset is shown i n table 1. 

CCSR dataset 

The CCSR dataset is an outdoor dataset of an enclosed area of approximately 250m 2 . 
The scene was captured by spherical camera from three positions w i t h the displace­
ment of 5 — 6m and three C L I D A R scans are available from approximately same posi­
tions as spherical images. Each capture of spherical image was done at two different 
heights to produce stereo image pairs. The hand-held Canon camera has been used to 
capture the planar images and covers whole surrounding area. M a n y subsets of the 
images are captured w i t h small baseline. 

The scene contains visual reflective markers accompanying the C L I D A R Faro sensor 
wh ich serve for the easy correspondence estimation and sensor registration. U s i n g the 
Faro software 7, precise positions of the sensors can be computed. This poses can be 

5 http://www.faro.com 

6 https://www.spheron.com/ 

7 http:/ /www.faro.com/en-us/products/faro-software/scene/overview 
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e) 
F i g u r e 2: E x a m p l e data f r o m the datasets, u p p l a n a r i m a g e s , d o w n s p h e r i c a l i m a g e , a) C C S R , b) 

C a t h e d r a l , c) A t r i u m , d) Synthet ic a n d e) S t u d i o dataset 

used as a reference for comparison of the accuracy of registration of C L I D A R sensor 
integrated i n our system. 

Cathedral dataset 

The Cathedral dataset covers an area of approximately 2500m 2 and captures the scene 
i n front of Guildford Cathedral bu i ld ing , surrounding smaller bui ldings and parking lot. 
In order to test how the system performs i n the case of large sensor displacements, the 
spherical cameras were placed at positions far apart (approx. 23 m). Seven C L I D A R 
scans are available for this dataset, w h i c h were captured i n different day, so l ightning 
conditions and small details i n scene may be different than i n spherical images. The 
planar images cover only the cathedral bui ld ing , images of no other objects were 
captured. 
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Atrium dataset 

The Atrium dataset captures a semi enclosed, outdoor area of approximately 4 0 0 m 2 

using five spherical camera scans. The planar images capture whole surrounding area. 
The datasets Cathedral, CCSR and Atrium were captured as a part of an European 
project I M P A R T 8 and are available upon request 9. 

Studio dataset 

Studio dataset was captured for the purpose of evaluating the accuracy of spherical 
image registration. The physical distances between the poses of the spherical cameras 
were measured as we l l as the distances to certain distinctive points i n the scene. The 
spherical cameras were precisely placed and aligned to face the same direction. The 
indoor scene was captured from four spherical camera poses. 

Synthetic dataset 

For the purpose of evaluating multisensor 3 D registration algorithm, especially the 
registration of C L I D A R / s p h e r i c a l images and planar images, we used dense C L I D A R 
data to generate artificial views from vir tual planar cameras w i t h k n o w n calibration 
and posit ion i n the scene. This way we are able to generate images from vir tual sen­
sors w i t h k n o w n 3 D poses wh ich are used as a ground truth for comparison w i t h 
estimated poses. Synthetic dataset contains images generated from C L I D A R data of 
CCSR dataset. The registration of C L I D A R sensors is available from the Faro software 
wh ich utilizes visual reflective markers for the computation of the sensor pose. 

Mul t ip le scenarios were considered for the synthetic datasets: 

• Short baseline - The images were generated from vir tual cameras w i t h close dis­
tance to each other (~ 0.3m). These images contain b ig overlap. 

• Long baseline - The baseline between vir tual sensors was approximately 2.5m and 
contain bigger change (~ 30°) i n rotation compared to small baseline dataset. 
The images contain smaller overlap. 

• Combined baseline - This dataset contains images both w i t h small and large base­
line and rotations between sensors. This dataset imitates the real scene capturing 
using a handheld camera. 

• Noise in depth data - The L I D A R depth data are generally very precise. There­
fore to evaluate accuracy of registration of multisensor data i n the presence of 
noise such as i n case of stereo spherical image depth map, the depth map avail­
able from C L I D A R was artificially perturbed by zero mean Gaussian noise w i t h 
standard deviation o~ = 0.15m. This dataset simulates registration of monocular 
images and stereo spherical images. 

8 impart.upf.edu 

9 kahlan.eps.surrey.ac.uk/impart/ 
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B A C K G R O U N D 

This chapter describes image processing, projective geometry, representation of cam­
era models, geometry between cameras observing the scene and the fundamental 
algorithms for estimation of camera pose and 3D structure. 

4.I S E N S O R M O D E L S 

In the fol lowing sections we describe the models of different sensors and the details 
of the imaging process of cameras. 

Pinhole Camera Model 

The simplest model of describing a camera is called pinhole camera model. Pinhole 
camera model is a specialization of the general projective camera model . This model 
utilizes central projection w h i c h assumes a line passing through 3 D w o r l d point and 
centre of projection, intersecting image plane TT i n point where the image is formed 
as shown i n Figure 3. The projection of the 3D point = [X, Y, Z , 1] T to the camera 
plane is performed by apply ing a series of matrix transformation operations specified 
by a camera model. A s s u m i n g that the camera centre of projection lies i n the centre of 
world coordinate frame, its optical axis is oriented along the z — axis and the distance of 

y 

{c m 
1 'm 

c , • 
z —/ z 

F i g u r e 3: P i n h o l e c a m e r a m o d e l . It c a n be seen that g i v e n foca l l e n g t h f , the p o s i t i o n of the 

projected p o i n t ' c ' m i n the p r o j e c t i o n p l a n e TT is = [ f ^ , f J , f ] T . 
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the camera projection plane from centre of projection, called focal length f, is equal to 
one, the homogeneous representation of the projection can be described by equation: 

<l>m = 

"X" 
z " l 0 0 0 
Y 
z 

0 1 0 0 

. 1 . 0 0 1 0. 

(1) 

In the terms of geometric relations, this projection transforms the 3D point from 
camera coordinate frame to camera projection plane coordinate frame. Please note that 
we are using notation for a 3D point i n the coordinate frame of camera, notation 

for a point i n coordinate frame of image (pixel coordinates), and notation ^ f h . 

for a point i n the coordinate frame of projection surface of the camera, also k n o w n as 
normalized image coordinates. 

The equation (1) assumes that the 3 D point coordinates are i n camera coordinate 
frame, i.e., coordinate frame w i t h or igin i n the centre of projection. This is not usually 
va l id i n real scenarios where camera pose and 3 D points are defined i n world coordinate 
frame. Therefore to project the 3 D point to camera projection plane, first it must 
be transformed from w o r l d coordinate frame into the camera coordinate frame. This 
is achieved by using a r ig id transformation [R 11], where R is the rotation of the camera 
coordinate frame and t = — R C , C being position of the camera centre i n the wor ld 
coordinate frame: 

{c} m = [R I t ] { w } m (2) 

Rotation matrix R is a 3 x 3 matrix, element of Special Orthogonal group S 0 3 , wh ich 
is a group of al l va l id rotations around the or igin i n 3D Eucl idean space. The matrix 
[R I t] represents ex t r ins ic camera parameters. 

The focal length of the real w o r l d cameras is generally different than one, therefore 
to transform the point from camera coordinate frame to point i n the image 
coordinate frame the projection has to be scaled to take this into account. A l s o the 
principal point c = [cx,cy, 1] is introduced w h i c h defines the coordinates of centre of 
projection plane i n a coordinate frame of the image. Focal length and principal point 
are called intrinsic camera parameters. They are independent from the structure of the 
scene or camera posit ion or rotation and can be estimated by camera calibration [48]. 
Upper triangular matrix K: 

K 
f x 

0 

0 

0 

h 
0 1 

(3) 

containing intrinsic parameters f and c, and defining central projection is called camera 
calibration matrix. We can write equations (1) and (2) as: 

u "fx 0 

V 0 h 
_1_ . 0 0 1 . 

[R 11] (4) 
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F i g u r e 4: M o d e l of s p h e r i c a l camera . 

or shortly as: 
{ 1 } m ^ K [ R | t ] { w } m . (5) 

If the calibration matrix K of the camera is known, the normal ized coordinates 
can be computed using equation: 

{c>m = K - 1 { i } m . (6) 

The extrinsic camera parameters together w i t h camera calibration matrix K form 
the camera projection matrix P, a 3 x 4 matrix w h i c h defines a projection of a 3D 
point form a w o r l d coordinate frame to 2D image coordinate frame: 

P = K[R 11]. (7) 

Spherical Camera Model 

Central panoramic cameras [52], unl ike the pinhole cameras, use the imaging surface of 
a sphere instead of a planar one. In the projective geometry, the projection of a 3D 

projective space onto a spherical surface is topologically equivalent to the projection 
onto a projective plane. 

Figure 4 shows the model of a spherical camera w i t h a centre of projection C and an 
unit sphere w i t h centre i n the centre of projection is defined. The line passing through 
the 3D point and the camera centre C intersects the spherical surface TT i n two 
points, so it is necessary to assume only half-lines to remove the projection ambiguity. 
The set of al l projections of visible 3D points captured by spherical camera is called 
spherical image, and the spherical projection is defined by a map from 3D space to a 
surface of a sphere. 

The 3D point on the surface of unit sphere can be computed as: 

where H ^ r n || = V x 2 + Y 2 + Z 2 is a L 2 no rm of a vector l c ^ m . 
Similar to the pinhole camera model , the pose of spherical camera i n the w o r l d coor­

dinate frame is defined by transformation matrix [R11], composed of relative rotation 
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R and translation t, w h i c h transforms the 3D point ^ w ^ m from the w o r l d coordinate 
frame into the local coordinate frame of the spherical camera: 

{c} m [R|t] m (9) 

The spherical coordinates are often expressed w i t h angle parameters [0, cp] (Figure 
4), longitude 0 describing the angle between z axis and projection of vector C ^ m 
to plane defined by axis xz, and latitude cp being the angle of vector C ^ w ^ m and axis 
y . Assuming that the radius of the sphere is one, the mathematical transformation 
between spherical coordinates and angular coordinates is given by equations: 

X s i n 0 stricp 

y 
— coscp 

_z_ _cos0 stricp. 

0 
= 

a r c t a n (^] 

. ( P. arccosi j 

(10) 

Mul t ip le formats to store spherical image are used depending on the application. 
F u l l panoramatic image stores spherical image as a 2D rectangular image w i t h x axis 
representing longitude and y axis representing latitude. The range along the x axis is 
ui e [—n, 7t] and axis y v\_ G [—n/2, n/2] and the mapping between longitude-latitude 
and pixel coordinates is given by equation: 

<l>m = 

u 

V — 

. 1 . 

N 

e ± ^ ( M - l ) + l 

• ( N - 1 ) + 1 
2n 
(p+n/2 

1 

(11) 

where M and N are dimensions of the image horizontal ly and vertically. Other possi­
ble format is a cubic panorama [18] consisting of six images representing projection 
of spherical image onto unit cube. 

LIDAR Model 

A l l L I D A R devices work on the principle of measuring time between optical pulse 
generation and its receiving. A laser pulse is generated i n certain direction, reflects 
upon interaction w i t h an object and returns to the device. H i g h speed counter mea­
sures the time of flight between generation of the pulse and its return. 

In this thesis we model L I D A R devices as a sensor w i t h a pose [R11] i n w o r l d coor­
dinate frame, similar to pinhole or spherical camera model , and expect the data to be 
a c loud of 3D points i n the coordinate frame of sensor w i t h intensity or colour infor­
mation. For detailed information about processing of L I D A R signal and computation 
of the point c loud we refer reader to [39]. 
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F i g u r e 5: E p i p o l a r g e o m e t r y b e t w e e n t w o p l a n a r cameras. 

4.2 E P I P O L A R G E O M E T R Y 

Based on the projective camera model , two cameras capturing a scene from different 
positions are constrained by geometric relations between camera centres, 3D points 
and their 2D images defined by epipolar geometry. 

Figure 5 shows two cameras are observing same scene. The 3D point ^ w ^ m , the 
camera centres C and C and the corresponding points i n the projection planes of 
cameras ^ m ^ ' ^ m are coplanar i.e., lie on the same plane n e , called epipolar plane. 
Epipolar plane intersects the camera projection plane i n epipolar lines 1,1' wh ich 
contain the images of 3D point. The epipole e - a distinct point i n the camera image 
plane is formed by projection of other's camera centre point as if was considered as 
a point i n space. Epipoles w i l l always lie on the epipolar plane and epipolar lines, 
independent of the posit ion of 3D point. Epipolar points may lie i n infinity if the 
camera projection planes are coincident. 

Accord ing to epipolar geometry, to mathematically describe the relation between 
the images l c J f r i , ^ c Jfh. of 3D point i w i m , wi thout loss of generality, we can assume 
that the centre of first camera lies i n the or igin of w o r l d coordinate system and its 
rotation matrix is identity. The second camera is positioned according to r ig id trans­
formation [R I t]. If the points and ^ c ' ^m. are the coordinates of the images of 3D 

point i n the coordinate system of cameras C and C respectively, the points are 
related by r ig id transformation: 

{ c ' } m = R { c } m + t _ 

A n d i n the terms of images ^ c ^ m / c ' ^ m and their scales A and A ' : 

A / { c ' } m = R A { c } r r i + t . 

(12) 

(13) 

This equation relates the vectors ^ m , ^ c '^ra through the r ig id transformation [R 11]. In 
order to eliminate scales, both sides can be pre-mult ipl ied by skew-symmetric matrix 
[t]*: 

A ' [ t ] x

{ c ' } m = [ t ] x R A { c } m . (14) 



Another pre-mult ip lying w i t h ^ c ^fh.T yields left side of equation to be equal to 
zero, since the vector [t] x ^ c ^fa is perpendicular to vector ^ c ^ m T and thus its inner 
product ^ c '^raT [t] x ^ c '^fa = 0 is zero. Right side of equation is thus equal to zero, and 
the scale A can be eliminated because it is non-zero, non-negative variable: 

{ c ' } r a T [ t ] x R { c } m = 0 . (15) 

The Equation 15 describes the principle of epipolar geometry and the 3x3 matrix 

E - [t] xR (16) 

is the algebraic representation of epipolar geometry and describes the relative trans­
formation between two cameras and is called the essential matrix [27]. 

4.2.1 Epipolar Geometry for Guided matching 

The guided matching reduces the number of outliers i n the set of corresponding i m ­
age pairs computed by matching algorithm by introducing matching constraints de­
r ived from epipolar geometry relations between the cameras. Assume only image 
^ f a (Figure 5) is k n o w n and we want to know how the corresponding point ^ c '^fa is 
constrained. The epipolar plane TTe defined by camera centres and vector ^ f a inter­
sects projection plane of second camera i n epipolar line I ' — E ^ f a . The correspond­
ing image ^ c '^fa of 3D point ^ w ^ r a lies on this line, satisfying equation I ' ^ c '^fa = 0, so 
i n the terms of stereo correspondence algori thm the search is restricted to 1D space. 

4.3 C A M E R A P O S E E S T I M A T I O N 

Camera registration algorithms estimate the relative transformation between two cam­
eras based on visual information from the camera images. We assume that the intrinsic 
camera parameters are k n o w n for both cameras and that the cameras capture overlap­
p ing parts of the scene. In the init ial ization phase, the areas of the scene that are ob­
served by both cameras are detected by extracting the 2D feature points and matching 
against feature points of other images, creating a set of 2D-2D corresponding points. 
Depending on the available information, three situations may arise: 

• The 3D depth information i n the coordinate frame of the camera is k n o w n for 
the 2D correspondences i n both images (from depth map or previous camera 
registration). In this case, the relative camera posit ion can be estimated from 
alignment of the 3D structure from one camera to other. 

• The 3D depth information is available for one camera, but from 2D-2D corre­
spondences we can establish the relations between 3D points and their 2D i m ­
ages i n second camera. F rom those correspondences the pose of second camera 
can be estimated using Perspective-n-Point (PnP) algorithm. 

• N o 3D information is available, only 2D-2D correspondences between cameras 
without k n o w n poses. In this case we can perform the initialisation - estimation 
of the relative pose between cameras only from 2D-2D correspondences. It is 
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important to f ind the best pair of images for the init ialization of system. The 
images from nearby cameras suffer from large triangulation errors due to small 
baseline. O n the other hand, images captured by cameras w i t h large baseline 
tend to contain little or no overlap between the images thus failing to detect 
enough good corresponding points. 

In fol lowing sections we w i l l look at these situations i n more detail. 

4.3.1 Pose from 3D structure alignment 

If the 3D object points corresponding to 2D image points are k n o w n for both cam­
eras, the problem of the estimation of the relative transformation between cameras 
can be formulated as f inding transformation between two sets of 3D points. The 
transformation estimation between two sets of 3D corresponding points is addressed 
i n [3]. The optimal transformation [R|t] relates corresponding 3D points i n sets 
s = [s0, ST , . . . , s n ] and d = [d 0 , , . . . , d n ] by: 

s i = R d i + t , (17) 

where R is a 3 x 3 rotation matrix and t is a 3 x 1 translation vector. The solution to 
the opt imal transformation can be found by m i n i m i z i n g least squares error: 

n 
E R ( R / t ) = ^ | | s i - ( R d i + t ) | | 2 . (18) 

i 

By f inding the centroids s, d. of the 3D point sets and transforming the points the 
coordinate frame so the centroid of new point sets s c , d c lie i n the or igin of this 
coordinate frame removes the translation component from the error term (18) and the 
equation can be rewritten to: 

E R ( R ) = f_ S i 7 * ! + d ? T d ? - 2 s ? T R d ? . (19) 

1=0 

The error is min imized when the term s ? T R d ? is maximised w h i c h equals to maximis­
ing tr(R, H) , where H is a correlation matrix [3]: 

n 

H = Y_ d i s i T • ( 2 ° ) 

1=0 

Operation t r denotes trace, a sum of diagonal elements of square matrix. The solution 
is found by singular value decomposition (SVD) wh ich decomposes the matrix H = 
U S V T to product of matrices - two unitary matrices U and V and a diagonal matrix S. 
The opt imal rotation matrix R is: 

R = V U T . (21) 

The optimal translation can be obtained from the translation that aligns centroids s, d 
of the point sets: 

t = s - R d . (22) 
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4-3-2 Iterative Closest Point (ICP)for 3D Point Cloud Registration 

If the 3D data is available for each camera, the relative pose can be estimated without 
prior detection of point correspondences by performing 3D point-cloud registration. 
The 3D points can be obtained from the depth map and registered using ICP algo­
ri thm. 

The ICP algorithm has been w ide ly adopted to al ign two given point sets [5, 46]. It 
finds a r ig id 3D transformation (rotation R and translation t) between two overlapping 
clouds of points by alternating between closest point computation for correspondence 
estimation and iteratively min imis ing squared-error of registration between the corre­
sponding points from one set to the other: 

E R (R, t ) = X I Ki list - (Rdj + 1 ) ||2 , (23) 

i- ) 

where n s and are the number of points i n the model set s and reference set d, 
respectively, and A y are the weights for a point match. 

In each ICP iteration, the r ig id 3D transformation can be efficiently calculated by 
singular value decomposition (SVD) [27]. 

The disadvantage of ICP algorithm is that it requires good initialisation and when 
applied to point c loud registration, the ICP algori thm can become very slow w i t h 
large number of 3D points. 

4.3.3 Pose from 3D-2D correspondences 

The camera pose estimation algorithm, or the Perspective-n-Point (PnP) algorithm, 
computes the 6 D O F pose of the camera given the correspondences between 3D points 
i n the w o r l d coordinate frame and their 2D projections i n the camera image and cam­
era calibration matrix. The P3P algorithm [21] solves the min ima l form of the PnP 
algorithm, requiring m i n i m u m of n = 3 point correspondences. The camera pose esti­
mation problem can be formulated as a geometric problem based on the reprojection 
equation of a camera (1). The relations between the 3D and 2D points are used to 
b u i l d a system of equations (Figure 6), based on the law of cosines: given the three 3D 

points ^ w^m.o,i ,2/ their corresponding points ^ f h . 0 , 1 , 2 i n the camera projection sur­
face, camera centre C, distances WQ = | | C ^ w ^ m o | | , w i — | | C ^ w ^ m i | | ,W2 = H C ^ m ^ H , 
angles a = Z ^ f f i i C ^ c ^ f r i 2 , (3 = Z ^ c ^ m o C ^ c ^ f r i 2 , T = Z ^ m o C ^ f h i , distances 

d 0 = | | t w } m ( ) { w } m i ||7 d l = | | { w } m i { w } m 2 | | / d 2 = | | { w } m o { w } m 2 | | _ W e f o r m t h e f o l _ 

lowing system: 

W ] W 2 2 cos a — d^ = 0, 

W Q W 2 2 cos (3 — df = 0, (24) 

W Q W ] 2 c o s y — d^ = 0. 

By solving the set of linear equations i n (24) the distances do, d i , d 2 can be obtained 

and from that the coordinates of 3D points ^ m . 0 , 1 , 2 * n * n e coordinate frame of the 

W J + Wj — 

2 2 
w 2 + w 0 — 
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a) b) 

F i g u r e 6: I l l u s t r a t i o n of P 3 P p r o b l e m ; a) R e l a t i o n s b e t w e e n w o r l d p o i n t s ^1-1x10,1,2 a r i d corre­

s p o n d i n g p o i n t s ^fh.0,1 ,2 i n c a m e r a p r o j e c t i o n surface, b) O n e of tr iangles u s e d for 

b u i l d i n g e q u a t i o n s (24) b y a p p l y i n g cosine law. 

camera computed. The camera pose is estimated by f inding the r ig id transformation 

between the w o r l d 3D points ^ w ^m.o,i ,2 and local 3D points ^ m . o , l , 2 - This algorithm 
produces up to four solutions for the pose estimation problem, but using fourth point 
removes the ambiguity. 

Another approach for solving the PnP problem has been presented i n [38]. The 
Efficient PnP algorithm solves the problem for n ^ 4 corresponding points i n linear 
time complexity. This method expresses each 3D point as a weighted sum of four 
vir tual control points and the coordinates of those control points are unknowns of the 
problem. 

4.3.4 Pose from 2D-2D correspondences 

Without any prior 3D information, the relative pose between cameras can be estimated 
directly from epipolar geometry. To estimate the relative pose of the cameras, without 
loss of generality we can assume the posit ion of first camera i n the centre of coordinate 
frame w i t h zero rotation along coordinate axis: [110]. The second camera pose can be 
expressed relative to the first i n terms of rotation and translation [R|t]. F rom (16) 

we can observe that the essential matrix E is a product of a relative rotation R and 
a skew-symmetric translation matrix [t] x . Factorizing the essential matrix using the 
S V D algorithm [27], E = U S V T , decomposes the Essential matrix to three matrices, 
two unitary matrices U and V and a diagonal matrix S. We can obtain up to four 
possible solutions for relative transformation between the cameras: 

? ' = [ U W V T | ± U 3 ] , [ U W ' V 1 | ± u 3 ] , T-i/Ti 

W 
0 - 1 0 

1 0 0 

0 0 1 

(25) 

where U3 is a last co lumn of U , and using the cheirality [56] constraint, the correct 
solution can be identified. The concept of cheirality has been introduced i n [27]. The 
sign of the cheirality value indicates whether the 3D point lies i n front of camera or 
behind it. For the estimated camera poses the cheirality of the corresponding points 
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has to be positive. The obtained relative transformation is computed up to an arbitrary 
scale. F rom the relative transformation the camera projection matrices are P = K[I | o] 
and P ' = K[R 11] according to (7). 

4.4 R O B U S T E S T I M A T O R S 

The pose estimation algorithms are sensitive to outliers [25]. In geometry estima­
tion, such problems are typical ly solved w i t h the help of robust estimators. M -
Estimators [60, 50] reduce the effect of the outliers by applying weighting function, 
reducing the problem to weighted least-squares estimation. M-Estimators require a 
good init ial guess and works best for low presence of outliers. 

R A N S A C [19] applies a hypothesise-and-test framework on small , randomly se­
lected sets of correspondences. For the model hypothesis generation a small subset of 
the data is used. The val idi ty of such hypothesis is evaluated on the rest of the data 
and the hypothesis w i t h the highest number of inlier data is stored to be challenged 
by next hypothesis. R A N S A C terminates when it is confident that a better solution is 
unl ikely [11], returning ini t ial pose estimate and the correspondence set supporting 
the hypothesis. 

The modification of R A N S A C - MLESAC [53] evaluates the quality of the consensus 
set by computing its l ikel ihood, improving the accuracy through better hypothesis 
assessment. The locally optimised (LO) R A N S A C [12] performs an optimisation of 
the solution using in ly ing data to further improve the estimate accuracy. Biased sam­
pl ing [10] steers the hypothesis generation towards samples w i t h a better l ikel ihood 
of being inliers (as indicated by the correspondence ranking). W a l d S A C [11] allows 
the rejection of poor hypotheses without testing the entire correspondence set, and 
therefore, provides significant computational savings. 

4.5 S T R U C T U R E T R I A N G U L A T I O N 

A s s u m i n g k n o w n camera poses, the 3D points corresponding to the point pair com­
puted by matching algorithm can be estimated by triangulation. The a im of triangu-
lation algorithm is to f ind the intersection of the lines defined by the camera cen­
tres of projection C, C and image coordinates ^ c ^ m / c ' ^ f h . of 3D point (Figure 7). In 
real w o r l d scenarios, due to the presence of the noise, the lines i n 3D space w i l l not 
usually intersect. Therefore mult iple methods such as mid-point algorithm [4], Direct 
Linear Transform (DLT) [27] or optimal triangulation [26] have been presented to find 
the closest point to both lines. The disadvantage of the mid-point and dlt methods is 
that the reconstruction is not invariant to affine nor projective transformation because 
perpendicularity is not preserved under those transformations. 

Given the corresponding pair ^ m / ^ m , the key idea of the opt imal triangula­
tion algori thm (Figure 7) is to f ind a pair of points ^ r h , , ^ t h a t best satisfies the 
epipolar constraint ^ c ^m T E^ c ^rh, = 0. The points satisfying epipolar constraint must 
lie on the corresponding epipolar lines, e.g. the point ^ c ^rh, lies on the epipolar line 
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F i g u r e 7: O p t i m a l t r i a n g u l a t i o n p r o b l e m . T h e o p t i m a l i m a g e p o i n t s ^ c ^ r a / c l ie o n the corre­

s p o n d i n g e p i p o l a r l ines , closest to the m e a s u r e d p o i n t s ^ m / c ' ^ m . 

I = E T^ c '>rrL and vice versa. A t the same time these points should lie as close as 
possible to the original points ^ m / c ' ^ f h . . Therefore we seek to minimize: 

d ( { c } m , { c } m ) 2 + d ( { c ' } m , { c ' } m ) 2 , (26) 

where the function d(^c^rn.,^c^rh.) computes distance between parameter points. Solu­
tion to this triangulation problem can be found using iterative minimiza t ion methods 
or by apply ing non-iterative polynomial method presented i n [26]. The advantage of 
the opt imal triangulation is the affine and projective invariance. 

4.6 B U N D L E A D J U S T M E N T ( B A ) 

The sensor measurements inherently contain noise w h i c h propagates to the estima­
tion of sensor poses and computation of the 3D structure. Mul t ip l e measurements of 
the same variable al low to find opt imal configuration of sensor poses and 3D points 
that minimises the measurement error. This refinement process is usual ly performed 
as a final step of reconstruction pipeline by apply ing optimisation algorithm. The mea­
surement error functions are generally non-linear, so non-linear approaches have to 
be used to find the solution. 

4.6.1 Graph Representation 

We model the static environment and parametrise it as positions of the struc­
ture points together w i t h the poses and parameters of sensors by state variables 
0 — [01 . . . 0 n ] . The sensors observe the environment indirectly by measurements 
z = [zi . . . z m ] . 

For simple and flexible representation highl ight ing the structure of such a complex 
optimisation problem, we adopt a graph representation. Graph model is a graph con­
taining vertices defining the system variables, such as sensor or point positions, con­
nected by edges, representing spatial constraints between the variables derived from 
measurements or pr ior knowledge. The cardinality of the factors define how many 
variables the edge connects e.g., unary factors define constraints for a single variable, 
binary relate two or ternary three variables of the system. 
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F i g u r e 8: G r a p h r e p r e s e n t a t i o n of t w o sensors p o / P i o b s e r v i n g p o i n t s M q , M . - | , M 2 w i t h m e a ­
surements zic w i t h covariances (for s i m p l i c i t y o n l y covar iance of m e a s u r e m e n t ZQ 
is s h o w n ) . 

The goal of the B A is to obtain the Maximum Likelihood Estimation ( M L E ) of a set of 
variables 0, containing the state variables e.g., sensor poses, environment information, 
given the set of relative measurements z: 

0* = argmax P(0 | z) = argmin ( —log(P(0 | z))) . (27) 
e e 

Due to the sensor noise, the measurements are also affected by noise: 

z k = h ( 0 i k , 0 j k ) - v k , (28) 

where the sensor model function h (0^ k , 0 j k ) computes zero noise measurement ac­
cording to the actual configuration of variables 0 i k , 0 j k and v k is normal ly distributed 
zero-mean noise w i t h covariance I k : 

P ( z k I 0tk/ 9jk) oc exp ^ - 1 || z k - h ( 0 i k , 9 j k ) | | | k ^ . (29) 

Finding the M L E from (27) is done by solving the fol lowing non-linear least squares 
problem: 

0* = argmin (- Y_ | | z k - h ( 0 i k / 0 j k ) | | ^ ) . (30) 

0 k=l 

4.6.2 Non-linear Solving 

To find the solution of the N L S , iterative methods such as Gauss-Newton (GN) or 
Levenberg-Marquard (LM) can be applied. These iterative approaches start w i t h an 
ini t ial configuration point 0 ° and, at each step, a correction 6 towards the solution is 
computed. For small ||5||, a Taylor series expansion leads to linear approximations i n 
the neighbourhood of 0 ° 

e ( 0 ° + 6) ^ e ( 0 ° ) + J 6 , (31) 

where e = [e-\,..., e m ] T is the set of al l nonlinear errors, called residuals, between the 
estimated and the actual measurement: 

e k ( z k , 0 ) = z k - h k ( 0 i k , 0 j k ) , (32) 
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and furthermore J is the Jacobian matrix wh ich gathers the derivatives of the compo­
nents of e w i t h respect to the state. Thus, at each iteration q, a linear L S problem is 
solved: 

1 2 

5* = argmin - | | A 6 — b| | , (33) 
6 2 

where A = Z ~ T \ 2 J ( 0 c | ) is the system matrix, b = — e ( 6 q ) the right hand side (r.h.s.) 
and 6 = (6 — 6 q ) the correction to be calculated [17]. The the m i n i m u m is attained 
where the first derivative equals zero: 

A T A 6 - A T b = 0 or A 6 - n = 0 , (34) 

w i t h A = A T A , the square symmetric system matrix, called the information matrix and 
n = A T b , the right hand side. This is commonly referred to as the normal equation. 

4.6.3 Linear Solving 

The linearised version of the problem introduced above can be efficiently solved using 
sparse direct optimization methods, either performing Cholesky or Q R factorizations, 
followed by backsubstitution. Cholesky factorisation yields A = R T R , where R T is the 
Cholesky factor and a forward and back substitutions on R T d = A T b and R6 = d, first 
recovers d and then the actual solution 6. 

Alternatively, the normal equation i n (34) can be skipped and QR factorisation can be 
applied directly to matrix A i n (33), y ie ld ing A = QR, where Q is orthogonal and R is 
upper triangular, similar to R of Cholesky factorization up to the sign (Cholesky w i l l 
always have positive entries on the diagonal). The solution 6 can be directly obtained 
by backsubstitution i n R6 = d where d = R T A T b . Note, that Q is not explicit ly 
formed, instead b is modified dur ing factorisation to obtain d. 

After computing 6, the new linearisation point becomes 

e q + 1 = 0 q 0 6 / ( 3 5 ) 

where the operator © is a corresponding composit ion operator depending on the type 
of the variables. 

4.6.4 Structure of Linearised system 

The system information matrix A contains approximations of second derivatives of 
error functions (28). Because the error function is dependent only on the state 
variables Q\ and 9 j , it w i l l affect the structure of the Jacobian to be non-zero only i n 
the rows corresponding to 6̂  and 9j: 

J i i = 
5eij(9) 

60 
S e i J e O 6e t i (9i) 

0 . . . 3 . . . 0 . . . 3 3 . . . 0 
59i 59i 

(36) 
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F i g u r e 9: P i p e l i n e of the r e c o n s t r u c t i o n . F u l l l ines represent o r d e r of p r o c e s s i n g b l o c k s , d o t t e d 
l ines (green) descr ibe d a t a d e p e n d e n c i e s of each b l o c k . B l u e b l o c k s are p a r t of front-end, 
e s t i m a t i n g i n i t i a l sensor poses a n d 3 D structure . R e d b l o c k represents back-end a n d is 
r e s p o n s i b l e for re f inement of the i n i t i a l es t imat ions , (best seen i n co lour) 

Each measurement produces one row i n the Jacobian matrix w i t h non-zero elements 
on the corresponding co lumn positions. The system information matrix A and the 
coefficient vector r\ are computed according to: 

<vi>es 
r — T 1 (37) 

<i,i>es 

where S is a set of indices of variables that the measurements relate. 
In practice, it is advantageous to keep the information matrix A as the system rep­

resentation because its size depends only on the number of variables, whereas the 
Jacobian matrix A dimensions grow also w i t h measurement count. Augment ing the 
system w i t h a new variable involves increase of the system matrix size. Upda t ing w i t h 
corresponding measurement is an additive operation on the system matrix. G iven the 
ini t ial configuration set of the variables and a set of constraints, the optimal configu­
ration of variables can be found fol lowing the M L E described i n Section 4.6.2. 

4.7 3 D R E C O N S T R U C T I O N P I P E L I N E 

Figure 9 illustrates the flow of the visual 3D reconstruction algorithm. The algorithm 
can be d iv ided into two parts-front-end part responsible for ini t ial estimation of the 
sensor positions and 3D structure, and back-end part that refines this ini t ial estimate 
by applying a non-linear optimizat ion algorithm. 

1. First step of the 3D reconstruction is the data acquisition and selection of input 
data. The set of images should contain overlapping parts of the scene and depict 
a static scene. 

2. The processing continues w i t h detecting feature points i n the input images and 
extracting their descriptors. 
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3. The descriptors are used by a matching algorithm to establish the correspon­
dence pairs between sets of feature points from images, assuming the images 
contain an overlap. False correspondence pairs are filtered out using R A N S A C 
algorithm and Epipolar geometry model of the cameras. 

4. Once the corresponding pairs are established the pose of the camera can be com­
puted, depending on the available information, by one of the 3D pose estima­
tion algorithms (Section 4.3). If no 3D points are associated w i t h the 2D feature 
points, w h i c h is typical for processing the first pair of cameras, the poses of the 
cameras is computed by decomposition of the Essential matrix. Otherwise if the 
3D information is available for some of the feature points, the camera pose is 
estimated using PnP algorithm. 

5. The estimated camera poses and corresponding pairs are used as an input for 
triangulation algori thm to compute the 3D structure. 

Due to the noise i n the measurements, the camera poses and structure points are 
also subject to error. Therefore it is necessary to apply B A algorithm to refine the 
camera poses and 3D structure. B A applies non-linear optimisation algorithms to 
find optimal solution for camera poses and structure positions that minimizes the 
reconstruction error. 
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M U L T I S E N S O R F R O N T E N D 

The multisensor reconstruction algorithm consists of two main parts - multisensor front-
end and multisensor back-end. The multisensor front-end is responsible for processing 
the data from sensors and estimation of the positions and rotations of sensors i n 
the scene, the spatial relations between them and init ial computation of 3D structure. 
The multisensor back-end bui lds internal representation of the system and further 
refines the front-end estimation i n a process called optimisation (Chapter 6). The front-
end processing follows the reconstruction pipeline (Figure 9) - feature and descriptors 
extraction from data, matching, geometry estimation and 3D structure triangulation. 
In this chapter we describe specific approaches applied i n multisensor front-end. 

5.I F E A T U R E D E T E C T I O N A N D D E S C R I P T O R E X T R A C T I O N I N D A T A 

The relations between the sensors are estimated from a sparse set of corresponding 
data points. U s i n g sparse sets of correspondences is computationally efficient and re­
liable for w ide baseline registration. F ind ing the correspondences between two sparse 
sets of feature points is based on matching algorithms w h i c h compare the descriptors 
of the feature points and according to a similari ty function choose the point pairs w i t h 
highest scores. W h e n work ing under wide baseline, the features corresponding to the 
same 3D point can visual ly differ due to the projective transformations of camera 
models. To cope w i t h the visual difference, robust feature descriptors and matching 
methods have to be ut i l ized to detect corresponding image points. 

One of the two image pre-processing algorithms can be applied - projecting the 
spherical image onto a cube [18], creating six images w i t h reduced spherical distortion 
and using them for descriptor extraction, or a projection of the spherical image around 
the feature point to plane tangent to sphere [9]. Compar ison of the matching quality 
of different methods is described further i n this chapter. 

Figure 10: Distortion of the lines in longitude-latitude image. 
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Figure IT. Six cubic images generated from spherical image by projecting the data onto six sides 
of a cube. 

y 
u 

Figure 12: Tangential space. 

Cubic Projection 

By projecting the spherical image to the six sides of a unit cube co-centric w i t h the 
sphere, it is possible to create six planar images w i t h reduced distortion present i n 
longitude-latitude image [18]. U s i n g these six cubic images (Figure 11), standard al­
gorithms for processing of projective images can be applied. Disadvantage of this 
method is that parti t ioning the image to six images causes that the descriptors of 
feature points detected near the borders of the image lose some information. 

Tangential Projection 

The reduction of the spherical distortion as wel l as preservation the continuity of the 
spherical image along left and right border can be achieved by projecting the spherical 
image onto a plane tangent to the sphere at the feature point. This approach extracts 
a patch around the feature point and performs the descriptor extraction on this image 
patch. 
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Figure 13: Correction of an extracted patch - From spherical latitude-longitude image (left) the 
corrected patch (right bottom) is computed using tangential projection. 

The patch is extracted around the feature point, i n a coordinate system of a plane 
tangent to the sphere at the feature point. The basis of the coordinate frame are deter­
mined as shown i n Figure 12. The coordinates of the feature point ^ f h . are computed 
using (10). Vector u — [0,1,0] T is chosen to correspond w i t h the direction of the 
y — axis of the spherical camera. The vectors v, w are computed to form the orthogo­
nal basis for the local coordinate system around feature point ^ f h . using equations: 

W = l w T H X U , 

M - ( 3 8 ) 

therefore the corners of the tangent patch can be computed as: 

(39) 
v w 

± A 3 ^ ' ± A 3 ^ 2 v 2 w 

where A is a scale that defines the size of the patch. For specific size of the patch N i n 
pixel units, the scale can be computed from the knowledge of the pixel w i d t h M of 
the source longitude-latitude image: 

1 N 

« M (40) 
A = 2 t a n ( ^ -

By apply ing the inverse transformation from points on the tangent patch to the spher­
ical image, the image can be sampled and colour information of the patch pixels 
computed (Figure 13). 

5.2 M U L T I S E N S O R R E G I S T R A T I O N 

In a multisensor scenario, where the image data is captured by different types of sen­
sors, it is desirable to process al l available information to create a 3D model of a scene 
and to use the relations between all sensors to achieve better accuracy and coverage 
of the scene. We have defined the epipolar geometry i n Section 4.2 and the relations 
and geometry estimation between planar images i n Section 4.3. In this section we w i l l 
analogously describe the relations between different sensors - two spherical cameras, 
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Figure 14: Epipolar geometry between two spherical cameras. 

spherical and planar camera and C L I D A R scan and spherical camera. These sensors 
are often used for large-scale scene reconstruction, each w i t h advantages and disad­
vantages. Monocular cameras can capture small details and obstructed parts of scene 
but cover small field of view, whereas spherical cameras and C L I D A R devices cover 
large parts of the scene but may not cover al l details. 

5.2.1 Epipolar geometry of Spherical Camera 

Compared to pinhole camera projection, spherical projection is geometrically equiva­
lent, but i n the case of spherical camera, the scene is projected onto a unit sphere in ­
stead of projective plane [41]. The epipolar geometry is va l id also between two spheri­
cal cameras, if the data normalizat ion to unit vectors is performed. This normalizat ion 
transforms the pixel coordinates, or latitude-longitude coordinates to a unit vector on 
a sphere according to (10) and (11). The fol lowing epipolar relations are defined as­
suming normal ized coordinates of the images of 3D point ^ w ^ m - ^ m / c ' ^ f r i wh ich 
together w i t h the camera centres C, C ' define the epipolar plane. 

In Figure 14, we can observe that the 3D point ^ w ^ m is projected into spherical 
imaging surfaces, creating point images ^ f a and ^ c ' ^ fa , and together w i t h camera 
centres C, C are coplanar. The epipolar plane f l e intersects the spherical surfaces i n 
epipolar circles w i t h their centres i n the camera projection centre. The line coinciding 
w i t h camera centres C, C ' intersects the spherical surfaces i n epipoles e, e'. If the 
points ^ f a and ^ c ^fa are corresponding points i n this stereo system, then essential 
matrix relates them by: 

{ c ' } r a T E { c } r a = 0 . (41) 

Note that according to (16), the first part, n ' = ^ c ' ^ f a T E — ^ c '^rn. T [t] x R, creates a 
vector perpendicular to translation vector [t] xR between camera centres C, C and to 
vector ^ c ^fh., therefore defining a normal to the epipolar plane TTe instead of general 
representation of a line as i n case of pinhole cameras. The inner product of this normal 
vector n ' and vector ^ f a is equal to zero: 

n / { c } r a = 0 / (42) 
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i.e. the point ^c^rft lies i n the epipolar plane TTe. Analogous ly this relation is va l id for 
normal vector n = E ^ m and vector ^ c } f a T . 

5.2.2 Spherical - Spherical Camera Registration 

Accurate registration of the spherical images is an important step i n the multisensor 
3D reconstruction process. Spherical images, compared to traditional cameras, capture 
large port ion of a scene and therefore only few stereo image pairs are needed to 
reconstruct whole scene. Each spherical stereo pair yields a 3D point c loud model of 
a scene w i t h respect to centre of the stereo spherical camera. To acquire consistent 
model of a entire scene, these models have to be correctly aligned using one of the 
alignment methods. 

Two methods can be applied for the registration of stereo spherical image pairs -
ICP or 3D pose alignment w i t h correspondence estimation. The ICP registration uses 
3D point c loud data from each sensor and iteratively finds the alignment of the point 
clouds that minimizes distance between closest 3D points. This approach requires 
good initialisation and generally larger amount of 3D points, especially when regis­
tering data captured w i t h wide baseline. Another disadvantage is the computational 
complexity of ICP methods when using large amount of 3D points. 

The 3D pose alignment w i t h correspondence estimation approach estimates the 
relative transformation between sensors by guided matching w i t h the geometry de­
scribed i n Section 4.3.1 as a model . The descriptors from the 2D features are assigned 
to their corresponding 3D points for each sensor, and the matching is performed be­
tween the 3D points. The feature matching stage seeks for nearest neighbours, by 
comparing the associated descriptors. The correspondences are ranked by the M R -
Rayleigh metric [55]. However, the 3D reconstruction framework often operates under 
wide-baseline conditions, w h i c h significantly reduces the number of viable matchings. 
Therefore, the implementation often resorts to a compromise between ambiguity and 
quantity, and considers the mult iple nearest neighbours, instead of the best. Each 
candidate is verified for reciprocity, i.e. whether the points are i n each other's neigh­
bourhoods. Excessively ambiguous matches are rejected by truncating the neighbour­
hoods so that, the ratio of the similari ty scores for the worst candidate w i th in the 
neighbourhood and the best candidate outside is above a threshold. 

In our reconstruction pipeline, we prefer the latter method because the pose esti­
mation using only sparse subset of corresponding 3D points followed by refinement 
achieves similar accuracy results to ICP method but w i t h better time efficiency. The 
comparison of the methods is shown i n Section 7.1. 

In the case of registration of monocular spherical image, the PnP algori thm (Sec­
tion 4.3.3) can be applied to f ind the relative transformation using the 2D-2D corre­
spondences between spherical images to create 3D-2D correspondences. Assuming 
that we use the normal ized unit vectors to represent the points correspondences and 
that at least four correspondences are available to estimate the pose of the new regis­
tered spherical camera. 
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Figure 15: Epipolar geometry between spherical and planar camera. 

5.2.3 Spherical - Planar Camera Registration 

Al though the 3D structure of the environment reconstructed from stereo spherical 
image pairs provides dense scene structure it may contain noise and inaccuracy due 
to the mismatches dur ing disparity map estimation caused by insufficient i l lumina­
tion or lack of texture i n the parts of scene. The information from planar images can 
recreate more details of the scene or improve the accuracy of reconstruction by esti­
mating the structure from mult iple registered planar cameras. A l s o the images from 
hand-held camera are easy to obtain to cover the areas obscured by objects i n the 
scene. 

The registration of planar and spherical cameras is based on visual correspondences. 
The camera models of the spherical and monocular cameras are both projective mod­
els, but w i t h different projection surfaces. Due to the fact that the spherical cameras 
capture complete scene around the camera, the overlap between spherical and monoc­
ular image is usual ly present but small i n the spherical image. This can lead to small 
number of corresponding points and a large number of outliers, therefore a robust 
algorithm is required to determine the relative transformations between the cameras. 
A l s o the distortion i n the longitude-latitude images has to be taken into account (Sec­
tion 5.1). 

The epipolar relations between monocular planar image and a spherical image pro­
jected onto unit cube has been researched i n [8]. We define the relations w i t h the 
spherical image i n its spherical form, because it is a convenient format for internal 
representation directly produced by industrial cameras. 

Fol lowing the notation of Figure 15, we assume geometry of planar and spherical 
camera, where ^ m is a vector of image point i n planar camera imaging surface 
and ^ c a vector of image point on unit sphere of imaging surface of spherical 
camera. The camera centres C, C, 3D point ^ w ^ m and its images define epipolar plane 
n e w h i c h intersects the projection surface of the camera i n epipolar line l e and the 
projection surface of the spherical camera i n epipolar circle r e . A s s u m i n g k n o w n 
essential matrix E, (41) w i l l be va l id also for this scenario, because the l e = ^ c ^ m T E 
defines epipolar line i n the planar image and the image ^ f f i lies on the line, as we l l 
as equation n = ^ m E T defines normal of a epipolar plane w h i c h the point ^ ' ^ m 
contains. 
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Figure 16: Correspondences estimation: a) Guided matching using spherical-planar epipolar con­
straint, b) Guided matching using spherical-planar constraint and 3 D - 2 D registration 
scheme described in Section 4.3.3. 

In the Figure 16, the registration of the longitude-latitude and planar image is 
shown. The guided matching algorithm apply ing the epipolar geometry described 
i n this section finds set of corresponding matches between the images, but sti l l some 
outliers are present because the spherical-planar epipolar constraint restricts the cor­
responding point to lie on epipolar plane or line and therefore any point l y ing on 
those w i l l satisfy the constraint. Therefore these matches are further filtered using the 
3D-2D registration model (Section 4.3.3) to obtain reliable set of corresponding points 
and relative transformation between the sensors. 

5.2.4 CLIDAR Registration 

C L I D A R scans provide accurate dense 3D structure of the scene i n the form of point 
c loud w i t h assigned colour. Often the reconstruction using only few C L I D A R scans 
is sufficient for many applications, but i n a large-scale scenario it is advantageous 
to extend the 3D model w i t h data from other sensors such as spherical cameras or 
handheld cameras to achieve better range, more detailed reconstruction or to cover 
obstructed parts of the scene. For this purpose the relative transformations between 
sensors have to be estimated. 

The C L I D A R devices such as F A R O 1 are composed of mult iple sensors, a range 
measuring laser scanner and camera capable of capturing colour information. The 
precise calibration allows for mapping between 3D points and colour information. 
The devices also provide tools to extract the longitude-latitude image from the colour 
information captured by camera and the 3D point c loud provides depth for each 
element of longitude-latitude image. So this data is equivalent to the data from stereo 
spherical image pair and can be used for the estimation of relative pose of sensors. 

In the case where the longitude-latitude image is not available from C L I D A R device 
and only the coloured 3D point c loud is provided, coloured 3D point c loud can be 
transformed to the from of spherical (and depth) image by projecting the 3D points 

1 www.faro.com 
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Figure 17: Coloured 3 D point cloud from CLIDAR device (top). Generated longitude-latitude 
image from point cloud data (bottom). 

onto unit sphere w i t h the centre i n the frame origin of the point c loud using (8). For 
each such projected 3D point the pixel position is found by computing the longitude-
latitude coordinates and apply ing (11). The source 3D point c loud and a longitude-
latitude image created from C L I D A R scan from Cathedral dataset using this procedure 
are shown i n the Figure 17. 

The generated longitude-latitude image and its corresponding depth information 
can be used for registration either w i t h other longitude-latitude images (Section 5.2.2) 
or w i t h monocular planar images (Section 5.2.3). 

5.3 E V A L U A T I O N O F T H E F R O N T - E N D A P P L I C A T I O N 

We evaluate the quality of correspondence estimation between two images and ac­
curacy of registration w i t h respect to the used descriptor type (SIFT, K A Z E ) and a 
method of image distortion correction. We compare the number, quality of matches 
and the accuracy of image registration using the cubic projection method and tangent 
projection method compared to the basic method - descriptor extraction directly from 
longitude-latitude image. Note that the evaluation i n this section involves poses esti­
mated by front-end application, without system optimisation. 

5.3.1 Spherical-Spherical image registration 

To evaluate the spherical-to-spherical image registration, we use the Studio dataset 
spherical images w h i c h contain ground truth measurements of the distances between 
the centres of spherical camera positions as wel l as distances to distinctive points 
i n the scene (Table 2). For each method (longitude-latitude image, cubic images, tangent 
space) and descriptor type (SIFT, K A Z E ) , we perform the registration of spherical i m ­
ages, and measure the number of va l id correspondence matches (using R A N S A C w i t h 
geometry estimation constraint) used for the estimation of the relative position, and 
compute the error i n the measured distances between spherical cameras and k n o w n 
ground truth information. To achieve the fair comparison of descriptors, the feature 
point set was extracted ind iv idua l ly and the descriptors (SIFT, K A Z E ) were extracted 
for those feature points. We were not able to apply this to the ASIFT approach due to 
the different extraction process. 

Another dataset that we used for spherical registration experiments is the Synthetic 
dataset, containing spherical images generated from C L I D A R data (Table 2). Further 

32 



evaluation has been performed on datasets CCSR, Atrium, and Cathedral to compare 
the number of in ly ing matches used for relative pose estimation depending on the 
used descriptor extraction method i n different baseline settings between capture poses 
~ 3m, 6m, 23m for Atrium, CCSR, Cathedral respectively (Table 3). 

Table 2: Correspondence pairs counts and accuracy of the registration of spherical images for 
every descriptor type (d - directly from longitude-latitude image, c - projection to 6 cu­
bic images, t - projection of the image to tangent plane) for Studio and Synthetic dataset. 
Multiple numbers in each column represents measurements between consecutive spher­
ical images, e.g. first number in Matches column represents number of correspondence 
matches between first and second longitude-latitude image. 

Studio 
Matches Error [mm] Error [°] 

SIFT d 2114/2064/3120 1/24/13 1.2/2.4/0.2 
SIFTc 2571/2023/2868 1/28/8 1.2/2.4/0.2 
SIFT t 2615/2044/3070 1/26/9 1.2/2.5/0.2 

ASIFT d 4541/2987/4801 6/41/8 1.3/2.5/0.2 
ASIFT c 1321/1806/3387 2/35/10 1.2/2.5/0.1 
KAZE d 2426/1972/2887 1/25/10 1.2/2.5/0.1 
KAZE c 2345/1930/2718 1/26/11 1.3/2.3/0.2 
KAZE t 2435/1986/2945 1/21/11 1.2/2.5/0.2 

Synthetic 
Matches Error [mm] Error [°] 

SIFTs 1448/2300 46/87 1.7/1.3 
SIFTc 1354/1982 39/79 1.7/1.2 
SIFT t 1423/2235 32/80 1.7/1.3 

ASIFT s 1666/2129 37/81 1.7/1.3 
ASIFT c 1226/1262 36/81 1.6/1.5 
KAZE s 1456/2189 55/90 1.7/1.3 
KAZE c 1392/1908 55/88 1.7/1.2 
KAZE t 1411/2176 52/83 1.7/1.3 

Summary 

The relative transformation could be estimated using al l three types of descriptors 
w i t h similar number of estimated correspondence pairs, see Table 2. For the registra­
tion of images from sensors w i t h large baseline {Cathedral), ASIFT feature and descrip­
tor extractor provided highest number of estimated correspondences. This is due to 
the extraction of the descriptors also from affine transformed longitude-latitude i m ­
ages and therefore achieving affine invariability. O n the other hand, ASIFT detector 
produces very h igh amount of feature points w h i c h leads to more time expensive 
processing. 
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Table 3: Correspondence pairs counts of the registration of spherical images depending on the 
descriptor type (d - directly from longitude-latitude image, c - projection to 6 cubic im­
ages, t - projection of the image to tangent plane) for Atrium, CCSR and Cathedral datasets. 
Multiple numbers in each column represents measurements between consecutive spher­
ical images, e.g. first number in Matches column represents number of correspondence 
matches between first and second longitude-latitude image. 

Atrium CCSR Cathedral 
SIFT d 
SIFTc 
SIFT t 

2555/1924/1838/2130 
2221/1980/1780/1858 
2334/1949/1731/1902 

1390/1145 
1158/964 
1316/1082 

334/165 
317/161 
315/261 

ASIFT d 
ASIFT c 

2638/1909/1698/1897 
1938/1566/1565/1802 

1804/1864 
1172/1310 

717/597 
564/638 

K A Z E d 
KAZE c 
KAZE t 

2091/1785/1543/1445 
1789/1609/1481/1427 
2177/1769/1608/1703 

1204/1012 
1106/927 
1173/1025 

274/147 
289/214 
274/254 

Compar ing the feature and descriptor extraction directly from longitude-latitude i m ­
ages and extraction from six generated cubic images, the number of established corre­
spondences is lower for the cubic method, mostly due to the image borders i n six gen­
erated images removing information for descriptors compared to longitude-latitude 
image. The overall translation error is similar or slightly lower for al l descriptor types 
using the cubic method compared to the extraction directly from longitude-latitude 
image. The approach ut i l iz ing tangent projection for descriptor extraction provided 
similar number or more correspondence pairs as direct method but resulted mostly i n 
slightly lower translation error than the other two methods. 

A l l methods and descriptor types proved to be feasible for the registration of stereo 
spherical image pairs, w i t h tangent projection method achieving lowest errors i n most 
of the datasets whi le maintaining h igh number of correspondence pairs. For the pro­
cessing of datasets w i t h long baseline (more than 15m), us ing ASIFT features and de­
scriptors assures highest amount of correspondence pairs. For datasets w i t h smaller 
baseline, SIFT or KAZE extractor provides sufficient amount of correspondence pairs 
w i t h the advantage of lower computation time compared to the ASIFT extractor. 

5.3.2 Spherical-Planar image registration 

To create a consistent 3 D reconstruction from spherical and planar images the rela­
tive poses of the sensors have to be estimated. For this task a sufficient number of 
corresponding features i n both type of images has to be determined. Generally, the 
spherical images capture surrounding area on much bigger scale than the planar i m ­
ages w h i c h always capture only small port ion of the scene, therefore the descriptors 
have to be scale invariant. The distortion i n the longitude-latitude images also plays 
important role i n f inding correspondences. Us ing the best descriptor type and distor­
tion correction method (Section 5.1) can lead to more established correspondences and 
therefore to more accurate pose estimation. In this section, we evaluate the accuracy 

34 



Table 4: Spherical-Planar image registration results for different types of descriptors and distor­
tion correction methods used (d - directly from longitude-latitude image, c - projection 
to 6 cubic images, t - projection of the image to tangent plane). The values in the paren­
thesis represent variance. 

Synthetic CCSR 

Matched [%] Error [mm] Error [°] Matched [%] 

SIFT d 100% 80(0.003) 0.521(0.089) 52% 

SIFTc 100% 51(0.001) 0.368(0.019) 50% 
SIFT t 100% 44(0.001) 0.380(0.020) 55% 

ASIFT d 100% 67(0.002) 0.39(0.017) 60% 
ASIFT c 100% 60(0.003) 0.46(0.038) 58% 

K A Z E d 90% 84(0.008) 0.54(0.176) 24% 

K A Z E c 90% 82(0.007) 0.54(0.086) 23% 

K A Z E t 90% 65(0.002) 0.42(0.116) 24% 

of registration of planar images to the spherical image depending on the descriptor 
type and the method of spherical image distortion correction. 

We evaluate the registration algorithm on Synthetic dataset, w i t h ground truth in ­
formation about poses of spherical camera and vir tual planar cameras. The results i n 
the Table 4 show percentage of correctly registered cameras and the mean pose error 
and variance compared to the ground truth for each descriptor type and distortion 
correction method. 

Summary 

For the Synthetic dataset, the registration algorithm was able to register al l planar 
images to the spherical image using SIFT and ASIFT descriptors. KAZE descriptors 
failed to register two images from the Synthetic dataset for each correction method. 

The ASIFT descriptors performed comparably i n both combinations w i t h direct ex­
traction and cubic projection method, but d i d not achieve the accuracy of SIFT descrip­
tors w i t h cubic or tangential projection method. 

Overall , the cubic projection method managed to lower the error for all types of 
descriptors. Furthermore, using the tangent projection method proved to be most ac­
curate of the correction methods. 

Regarding the CCSR dataset, many planar images could not be registered due to 
the camera capturing very small part of of the scene or ground, where not enough 
distinctive features could be found to establish sufficient number of correspondence 
pairs. Us ing the KAZE features failed for the biggest number of the CCSR dataset 
rendering this method not very suitable for processing of real w o r l d dataset. SIFT and 
ASIFT descriptors w i t h tangent correction and direct method succeeded i n most cases 
of the planar-spherical image registration. The cubic method failed at more images 
than other two methods due to the borders i n six generated images leading to less 
information i n descriptors. 

3 5 



M U L T I S E N S O R 3 D R E C O N S T R U C T I O N B A C K - E N D 

The multisensor back-end is tied to the front-end part, and its purpose is to refine 
the init ial sensor poses and structure estimation provided by the front-end algorithm. 
The internal representation consists of variables representing the sensor poses and 
structure points parameters, and of edges derived from the measurement data. The 
ini t ial configuration of the sensor and structure parameters is provided by the front-
end application and it encodes the init ial state of the system. Given this state, we can 
compute the expectations-predictions of the measurements. The difference between 
measurement expectation and actual measurement describes how wel l the actual con­
figuration of system fits the measurements. 

6.1 S L A M + + 

The joint pose and structure refinement is implemented on our open-source, non­
linear graph optimisation library, called S L A M + + [45]. This C++ l ibrary is a very effi­
cient implementation of several non-linear least squares solvers, based on fast sparse 
block matrix manipulat ion for solving the linearised problems. S L A M + + was primar­
i ly developed for efficient solving of S L A M problems i n robotics, w h i c h can be for­
mulated as a non-linear least squares problem similar ly as described i n Section 4.6.2, 
where variables represent robot trajectory and /o r landmark positions, and the edges 
consist of relative measurements of the landmarks from robot positions. S L A M prob­
lem is mathematically equivalent to B A . The general implementation allows for defi­
ni t ion of variables and edges for solving B A problems as wel l . S L A M + + produces fast, 
but accurate estimations, w h i c h most of the time outperforms similar state-of-the-art 
implementations of graph optimisation systems [34, 33, 37]. 

6.1.1 Sparse block matrix structure 

Solving the B A , S L A M and S F M non-linear problems involves operations w i t h matri­
ces having a block structure (Section 4.6.4), because the variables usually have more 
than one degree of freedom (DOF). For example the pose of sensor i n 3D is a vari­
able represented by six parameters - three defining posit ion and three rotation of the 
sensor. The associated system matrix can be interpreted as partitioned into sections 
corresponding to each variable, called blocks, w h i c h can be manipulated at once. 

The dimensions of the system matrix are usually very large, but only a small num­
ber of blocks are non-zero. It is due to the fact that a measurement only affects a few 
variables, for example the field of v i ew of cameras is l imi ted so they do not observe 
all 3D points, i.e. not al l variables are connected by measurements and therefore only 
a few blocks i n the system matrix are non-zero. Therefore it is necessary to use sparse 
block structures for memory efficient storage and use sparse algorithms for matrix 
operations [14, 16]. 
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a) b) c) 

Figure 18: Sparse matrix structure, a) S L A M pose and landmark problem, b) BA problem - nat­
ural order b) BA problem - reordered. The non-zero blocks are in blue, the b) and c) 
matrices contain same amount of non-zero blocks. 

In the existing state of the art implementations of sparse block matrix schemes 
[37, 1], the arithmetic efficiency is mostly reduced, compared to element-wise sparse 
matrices. That can be explained intuit ively by the need for two extra nested loops 
for block rows and block columns that reduce the arithmetics to flow control instruc­
tion ratio and thus also computational efficiency. S L A M + + implementation elegantly 
solves this issue using metaprogramming [43, 45]. 

S L A M + + takes advantage of advanced metaprogramming concepts: type lists are 
employed to represent and manipulate the sets of possible block sizes. Those are used 
i n the matrix operations to generate decision trees that handle al l possible loop sizes i n 
a given matrix. This allows for optimizat ion using loop unrol l ing and vectorization at 
the block level. It can be easily shown that if l o g 2 of the number of different block sizes 
is smaller than the average block size, the resulting code w i l l contain less branching 
and thus w i l l run faster. Note that i n C++, this functionality is accessible using simple 
and easy to read syntax where the list of block sizes is passed to each ind iv idua l 
matrix operation call i n angled brackets. 

The vectorization and loop unrol l ing, i n addit ion to other algorithmic and data 
structure improvements lead to substantial advantages over element-wise sparse i m ­
plementations, as we l l as over the other existing sparse block matrix implementations. 

Addi t ional ly , i n the process of solving a linearised system, direct methods are often 
employed. Some of the other existing implementations such as g2o [37], i S A M [34] or 
Ceres [1] use some sparse block matrix schemes internally but rely on element-wise 
sparse factorization [13, 15]. This requires converting the system matrices, leading to 
reduced efficiency. S L A M + + contains h ighly efficient sparse block Cholesky factoriza­
t ion and thus avoids this conversion. 

The information matrices associated w i t h S L A M problems are usual ly very sparse 
(about 0.1-0.25%). Since the odometry is often involved, edges exist between consecu­
tive poses, y ie ld ing a block diagonal matrix. Add i t i ona l edges i n the form of loop clo­
sures and landmark observations add the off-diagonal non-zeros. In landmark S L A M , 
the landmarks typically form only a small fraction of the system (Figure 18, a)). 

Similarly, the information matrices associated w i t h the B A problems are also very 
sparse, 0.005-0.025%. Unl ike landmark S L A M , however, the landmarks form the ma­
jor part of the system, e.g. 92/57957 i n Guildford Cathedral.On the other hand, i n S L A M 

37 



datasets '\00/'\0000 i n CityTreesiok or 151 /6969 i n Victoria Park. A d d i t i o n a l l y the B A 
systems typically lack odometry and thus they form bipartite graphs. This is often seen 
as an "arrow shape" (Figure 18, c)) matrix when the sensor pose vertices are ordered 
before the landmark posit ion vertices. 

6.1.2 Optimisation 

S L A M + + provides two iterative non-linear optimisation methods-Gauss-
N e w t o n (GN) and Levenberg-Marquardt (LM) . For the B A problems, the L M 
method provides more reliable results because the ini t ial estimation can be relatively 
far from the m i n i m u m and the G N easily diverges. L M is based on efficient damping 
strategies wh ich al low convergence even from poor ini t ial solutions. For that, L M 
solves a slightly modified variant of (34), w h i c h involves a damping factor A: 

(A + A D ) 6 = r , , (43) 

where D can be either the identity matrix, D = I, or the diagonal of the matrix A , 
D = d iag(A) . 

Special structure of the B A problem can be exploited to achieve more efficient solv­
ing of linearised system. Schur complement is employed to solve the linearised prob­
lem i n (43). The system matrix is split i n four blocks separating camera and points 
variables: 

A B P n v 

_ B T C m J i m . 
(44) 

This is a common practice i n solving 3D reconstruction problems, where the camera 
poses are l inked only through the points. It results i n block diagonal A and C matrices, 
wh ich can be easily inverted by inverting the ind iv idua l blocks. If C is invertible, 
the Schur complement of the submatrix C is A — B C 1 B T , and is used to solve for 
the camera pose variables first. This is done by solving S c h u r ( A ) p = n m — B C 1 n p , 
wh ich is amenable to using both direct or iterative solvers (e.g. [40] used a dense 
Cholesky solver, [36] used a sparse one). The points can then be obtained by two 
matrix-vector products m = C 1 ( n m — B T p ) . 

Performing matrix inversion and mult ipl icat ion i n the Schur complement form 
brings reduction i n computational time compared to performing Cholesky factori­
sation of the whole system. 

6.1.3 Incremental approach 

For applications that run i n real time, augmenting the system w i t h new variables and 
measurements needs to be performed efficiently every step. In [29], we present an 
approach that takes advantage of the sparse-block structure of S L A M and B A prob­
lems, and avoids the assembly of the linearised system each iteration by incrementally 
updating the factorised form R of the linear system A and changing the linearisation 
point only when needed. The incremental updates are performed only on the parts of 
the matrix that are affected by new measurements. 
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Incrementally updating the system matrix 

Updat ing the system w i t h a new measurement is additive i n information form [30]. 

We denote D. = J ^ £ j 7 1 J i j and cu = — J^ITT etj to be the increments i n informa­
tion, where J ĵ is the Jacobian of the new measurement. In general, the measurement 
function h(-) involves only two variables, (0t, 9j). For this reason and for simplicity, 
the fol lowing formulation w i l l be restricted to measurements between two variables 
but its application remains general. The corresponding Jacobian, J, is very sparse (36) 

and this translates into a sparse O and cu. The update step only partially changes the 
information matrix A and the information vector n . For s implici ty of the notations, i n 
the fol lowing formulations, the system matrices are split i n parts that change ( A ^ 1, 

r|i ) and parts that remain unchanged ( A Q O / A ] 0 and r|o): 

A = Aoo A j 0 no 

_ A 1 0 A 1 1 + Q . 
(45) 

In the formulation above we deliberately considered that the current measurement 
to be integrated involves the last variable added to the system. This is the situation 
usually encountered i n incremental S L A M problem. Note that this assumption is not 
necessarily needed, the formulation i n (45) stays general. 

A s shown above, only a small part of the information matrix and the information 
vector are changed i n the update process and the same happens w i t h its factorized 
form R. The updated R factor and the corresponding r.h.s. d can be writ ten as: 

R = 
Roo R 0 1 

d = 
d 0 

0 R n 

The updated part of the Cholesky factor and the corresponding right hand side can 
be computed as: 

R n = c h o l ( R | 1 R 1 1 +C1), (47) 

d i = R T i \(fji - R o i d o ) - (48) 

This fast incremental update approach suffers from two important problems. Firstly, 
without periodic reorderings, the factorized form becomes less and less sparse, slow­
ing d o w n the solving. Another problem is that w i th in an iterative non-linear solver 
the linearization point can change every iteration, inval idat ing the entire factorization. 

Incremental Ordering 

The recently introduced data structure, the Bayes tree [33], offers the possibility to 
develop incremental algorithms where reordering and re-linearization are performed 
fluidly, without the need of periodic updates. Inspired by this strategy, S L A M + + pro­
poses an elegant and highly efficient incremental reordering w h i c h combines the effi­
ciency of matrix implementation [29]. 

The order of the rows and columns i n the system matrix A directly influences the 
number of non-zero elements, also called fill-in, i n the f actorised matrix R and affects 
speed of updates. It has been presented [33] that reordering the variables every step 
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A Aord 

Figure 19: Data flow diagram of incremental block Cholesky factorisation. Light blue parts of 
matrix do not change, pink are parts that wil l change, red blocks represent the update 
and dark blue blocks non-zero elements. 

significantly reduces the fill-in of the factorised matrix, but performing the full re­
ordering of whole system matrix A w o u l d be inefficient and w o u l d essentially lead to 
a batch solver. Therefore the partial reordering strategy of the part of the factorised 
matrix affected by update is facilitated. Whole system matrix reordering and factori­
sation is performed only when linearisation point changes or when the updated part 
of factorised matrix is significantly big. 

The approach i n [45] shows how an efficient incremental ordering can be obtained 
by considering a partial ordering on a submatrix of A , wh ich is slightly larger than 
^ 1 1 = A l 1 + ^ a n d wh ich satisfies the conditions of being square and not having any 
non-zero elements above or left of it (Figure 19). This guarantees that the ordering 
heuristics such as approximate m i n i m u m degree [2] w i l l have information about the 

non-zero entries i n A^ 0 = A Q I , w h i c h w o u l d otherwise cause unwanted f i l l - in . 
The factorisation of the A matrix can be performed using Resumed Cholesky algo­

r i thm implemented i n S L A M + + . This algorithm is able to compute factorisation by 
columns whi le only using the calculated values to the left of this column. Therefore 
it is possible to resume the factorisation of the right part of R whi le only using the 
reordered part of A and the unchanged part of the factor RQO • The advantage of this 
approach is the overall s implici ty of the incremental updates to the factor, whi le also 
saving substantial time by avoiding recalculation of Roo-

6.1.4 Covariance Recovery 

In some applications, the estimation of the covariance of the variables is necessary to as­
sert the reconstruction or to evaluate mutual information required i n active mapping. 
The calculation of the covariance amounts to inverting the system matrix I = A 1 . 
For large systems this operation is prohibitive, since it results i n a fully dense matrix. 
M a n y applications require computation of covariances only for a few elements of the 
system matrix, usual ly the covariances of the diagonal elements and of the last col­
umn. For example i n B A application those covariances of diagonal elements represent 
uncertainty of camera poses and 3D point positions. 
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Figure 20: Covariance computed for camera poses and structure points of Cathedral dataset. 

S L A M + + elaborates on the recursive formula for covariance estimation of [6, 23, 32] 
which allows computation of covariances for specific elements from factorised matrix 
R. To compute mult iple elements of the covariance matrix, such as the whole block 
diagonal, these formulas are efficient only if all the intermediate results are stored. 

We mentioned that most of the algorithmic speedups can be applied i n case the 
linearisation point is kept the same. A s demonstrated i n (45), the contribution of new 
measurements is additive. In [31] we show that the same update of covariance matrix 
is subtractive, i.e. the new measurement adds information to the system and reduces 
uncertainty. The proposed scheme allows for incremental calculation of I on demand, 
whenever needed. Calculat ing the covariances incrementally leads to about two orders 
of magnitude speed-up, compared to the other state of the art implementations. 

6.1.5 SLAM++ efficiency results 

The S L A M communi ty developed very efficient solvers due to the need of fast process­
ing i n robotics. To evaluate the S L A M + + efficiency, we compare the implementation 
w i t h similar state of the art solvers such as i S A M [34], g2o [37], gtsam implemen­
tation of the i S A M 2 algorithm [33] and SPA [40]. The evaluation is performed on 
standard simulated robotic datasets - Manhattan [42], 10k [24], Cityiok, CityTreesiok 
[34], Sphere [24], and four real datasets - Intel [28], Killian Court [7], Victoria park [28] 
and Parking Garage [37]. 

A l l the tests were performed on an Intel Core 15 C P U 661 w i t h 8 G B of R A M 
and running at 3.33 G H z . This is a quad-core C P U without hyperthreading and w i t h 
full SSE instruction set support. D u r i n g the tests, the computer was not running any 
time-consuming processes i n the background. Each test was run ten times and the av­
erage time was calculated i n order to avoid measurement errors, especially on smaller 
datasets. 

SPA and g2o are based on similar sparse block matrix scheme wh ich is maintained 
unti l the matrix factorisation is performed, then the switch to format to be able to 
use libraries CSparse [13] and C H O L M O D [15] to perform factorisation, wh ich is a 
time consuming process. Those are state of the art element-wise implementations of 
operations on sparse matrices. SPA is opt imized for 2D S L A M problem, g2o imple-
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mentation is general, a l lowing any type of S L A M , B A or S F M problem. i S A M requires 
periodic batch steps to reduce the fill-in. i S A M 2 is based on Bayes tree data structure, 
allows incremental reordering and f lu id relinearisation. 

Batch Solving 

Timing results for running batch solving are shown i n Table 5. The last row reports 
the values of x 2 error. We denote A — S L A M an algorithm that bui lds linear system 
i n (33) and A — S L A M an algorithm that increments information matrix i n (34). The 
algorithm is also evaluated using factorisation from CSparse (CS) and C H O L M O D 
(CM) libraries. The comparison i n batch mode shows a speed-up of 10% when com­
pared to the fastest implementation wh ich is mainly due to the proposed block matrix 
scheme. Note that the small speed-up is due to the fact that i n this benchmark, the fac­
torization accounts most of the solving time and the compared solvers use the same 
implementations. 

Incremental Solving 

Two incremental algorithms, first updat ing only the system matrix A , performing 
factorisation every step (denoted IncA) and second keeping the factorised matrix L 
up to date (IncL), were evaluated using block Cholesky (BC) factorisation proposed i n 
[45], factorisation from CSparse (CS) and C H O L M O D (CM) libraries. 

In the Table 6, the execution times of the processing of the datasets are shown. 
The flags bioo represent the frequency of batch computations (factorisation of whole 
system matrix A ) each 100 vertices inserted. For the results without those flags, the 
nonlinear system was solved every step i n order to obtain the current estimation, or 
only when needed i n the case of our incremental algorithm. The incremental algo­
r i thm provides a solution w i t h each new update. 
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Manhattan IOK IOOK City ioK TreesioK Intel Kil l ian 

g20(CS) 0.061 0.554 10.814 0.486 0.136 0.007 0.008 
g2o(CH) 0.060 0.550 9.418 0.449 0.139 0.007 0.009 

iSAM(CS) 1.364 2.952 24.958 1.421 0.625 0.036 0.054 

A-SLAM(CS) 0.057 0.634 10.479 0.464 0.139 0.013 0.009 
A-SLAM(CH) 0.061 0.698 12.009 0.531 0.147 0.008 0.010 
A-SLAM(CS) 0.042 0.485 9.221 0.420 0.092 0.005 0.007 
A-SLAM(CH) 0.047 0.580 11.056 0.456 0.109 0.006 0.008 

x 2 6112 171545 8685 31931 548 559 5 - 10 6 

Table 5: Comparison of the batch solvers (CH refers to C H O L M O D and CS to CSparse library). 

Manhattan 10K Ci ty ioK TreesioK Sphere Intel Kil l ian Victoria Garage 

SPA 24.16 518.34 309.56 N / A N / A 1.48 5.67 N / A N / A 

g20 22.51 500.37 302.50 175.12 145.49 1.30 5.02 81.19 20.37 

iSAM(bioo) 4.83 279.93 77.57 22.93 36.22 1.29 4.21 11.92 52.22 

iSAM2 4.93 91.74 60.98 32.69 31.27 0.62 1.19 16.35 3.66 

IncA CS 8.60 287.70 202.84 19.53 216.49 0.65 1.71 23.16 17.32 

IncA C H 10.73 236.28 181.14 24.48 71.49 0.79 2.10 28.26 23.93 

IncA BC 7.21 242.21 188.85 17.57 78.37 0.51 1.24 18.71 11.34 

IncL BC 3.05 79.65 53.95 19.31 9.87 0.35 1.05 11.20 3.41 

error-iSAM2 6205 171600 31951 794 775 559 8 e - 5 370 1.26 

error-incL BC 6111 171919 31931 12062 727 558 5 e - 5 144 1.31 

Table 6: Performance and accuracy tests on multiple datasets. The accuracy is measured as a 
sum of squared errors. The accuracy for landmark datasets (TreesioK, Victoria Park) are 
different because of different landmark parametrisation and therefore incomparable. 

iSAM(blOO) iSAM2 allBatch-A Inc-L 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

vertex 

Figure 22: Quality of the estimations on 10k dataset. 

The incremental algori thm is different from the algorithms of g20 and SPA, where 
a batch step is performed every n variables inserted into the system and no solutions 
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are available in-between, so the results are comparable only to IncA for n = 1. i S A M 
and i S A M 2 provide solution every step, w i t h i S A M requiring periodic batch step (by 
default every 100 steps). Keeping the same linearisation point for long time leads to 
error increases and decreases between those steps (seen i n Figure 22). 

The incremental implementation achieves the fastest results on al l datasets except 
CityTreesiok dataset, wh ich is caused by dense structure of the problem. In this case 
reordering is advantageous over incremental reordering. The closest results to Inch 
algorithm are from i S A M 2 . The difference between those algorithms is that Inch relin-
earizes affected variables only when needed. 

The block Cholesky factorisation algorithm was tested on full system matrices i n 
the incremental algori thm and compared w i t h CSparse and C H O L M O D algorithms. 
The fastest results were achieved using the block Cholesky algorithm for al l tested 
datasets. 

Covariance Recovery 

Table 7 shows the time performance of S L A M + + incremental covariance recovery strat­
egy compared w i t h g2o and i S A M implementations. The block-diagonal and the last 
block co lumn of the covariance matrix are recovered at every step i n al l the cases. 
These are the only elements of the covariance matrix required for taking active deci­
sions based on the current estimation and efficient search for data association i n an 
online S L A M application. The S L A M + + covariance computation for B A datasets were 
performed i n [44]. 

Manhattan 10K CityioK Trees 10K Sphere Intel Killian Victoria Garage 

i S A M 206.58 6712.03 4585.15 1009.91 6051.73 6.23 19.27 310.57 237.13 
g20 18.42 5902.46 3742.66 938.97 5536.48 6.92 21.59 293.09 216.28 

SLAM++ 4.37 179.69 55.87 30.98 24.64 0.54 1.43 13.89 10.77 

SLAM++ Total 13.88 388.67 219.43 60.41 105.35 1.11 2.99 37.11 27.08 

Table 7: Time performance in seconds for the covariance recovery method on multiple S L A M 
datasets. Last row reports total processing time-solving the S L A M problem and covari­
ance computation. 

In conclusion, the proposed implementation significantly outperforms al l the exist­
ing implementations due to the proposed incremental covariance update algorithm 
and the blockwise implementation of the recursive formula. 

6.2 S Y S T E M R E P R E S E N T A T I O N 

We utilize hyper-graph structure to represent the optimisation problem (Section 4.6.1). 

S L A M + + implements variables structures to define sensors poses and points i n 2D 

or 3D space and edge structures to impose constraints between the variables. In this 
section we describe the internal representation of the variable and edge structures 
used i n mutisensor S L A M + + application. 
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6.2.1 Variables 

The configuration of the system consists of variables such as sensor poses and struc­
ture points. A l l variables extend the implementation class C S E B a s e V e r t e x I m p l wh ich 
models the parameter block used for representation of vertex w i t h specified degree of 
freedom. The variable classes also implement the update (35), wh i ch needs to be han­
dled differently for each variable. For example, whereas the update of the 3D point is 
per-element addit ion, the update of 6 D O F posit ion variable is an operation on se(3) 

which is the Lie algebra [51] of the special Euclidean group SE(3). 

3D Point 

Code 1: Implementation of a 3 D point variable. 

1 c l a s s CVertexXYZ : pub l i c CSEBaseVertexImpl<CVertexXYZ, 3> 

The reconstructed environment is represented by 3D points computed from sensor 
measurements e.g., triangulation algorithm from corresponding points between cam­
eras or from depth information from stereo cameras or L I D A R . Due to the presence 
of noise i n the measurements and camera positions, the computed position of the 3D 

points is also perturbed by noise, therefore it is necessary to define the 3D points as 
variables to be able to refine the structure by optimising the system. The 3D structure 
point is represented by a vector M = [x,y, z ] T e 1R describing the posit ion of the point 
i n the w o r l d coordinate frame. 

Monocular camera 

Code 2: Implementation of a monocular camera variable. 

c la s s CVertexCam : pub l i c CSEBaseVertexImpl<CVertexCam, 6> 
protected: 

Eigen::Matrix<double, 5, 1, Eigen::DontAlign> m_v_ in t r i n s i c s ; 

The camera pose consists of posit ion and orientation. The posit ion is defined by three 
parameters representing the posit ion of the sensor i n the w o r l d coordinate frame and 
the rotation is represented by three axis-angle parameters. The axis-angle representa­
tion, i n the form of oce, compared to the rotation matrix representation uses only three 
quantities to describe the rotation. Uni t vector e = [e©, , ej] indicates the axis of 
rotation and the angle a describes magnitude of rotation. 

The camera pose variable has six degrees of freedom and is represented by a vector 
p = [x,y,z, oteo, ote-\,otej], element of se(3), defining the r ig id transformation of the 
camera i n the w o r l d coordinate frame. 

Furthermore the monocular camera is parametrised by intrinsic camera parameters 
- focal length f, pr incipal point c and a first order radial distortion coefficient d of the 
monocular camera. H a v i n g the intrinsic camera parameters as a variable allows for 
calibration refinement. 
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There are two options for model l ing the intrinsic camera parameters - as a part of 
the monocular camera variable or as a separate variable. The former option extends 
the camera variable by a five parameter vector T = [ f x , f y , c x , c y , d] and then the 
optimisation refines the parameters specifically for this camera variable. The option 
involv ing separate intrinsic variable allows for sharing of intrinsic camera parame­
ters between mult iple cameras, opt imising the separate variable l inked to mult iple 
monocular camera variables. This is achieved v ia ternary reprojection edges described 
i n Section 6.2.2. 

Intrinsic Camera Parameters 

Code 3: Implementation of an intrinsic parameters variable. 

c la s s CVe r tex I n t r i n s i c s : pub l i c CSEBaseVertexImpl<CVertexIntr ins ics, 5> 

For model l ing of shared camera calibration, for example, when mult iple images were 
captured by the same camera, the variable for intrinsic parameters is introduced. In­
trinsic camera parameters variable contains information about focal length f, pr incipal 
point c and a first order radial distortion coefficient d of the monocular camera. This 
variable is represented by five parameter vector r = [f x, f y , c x , cy, d]. 

Stereo Spherical Camera and CLIDAR 

Code 4: Implementation of spherical camera and LIDAR variable. 

c la s s CVertexSpheron : pub l i c CSEBaseVertexImpl<CVertexSpheron, 6> 

In Section 5.2.2 we show that the C L I D A R data can be represented and processed 
similar to the stereo spherical cameras. Therefore the variable representation of 
spherical camera and C L I D A R device is the same. This variable is used to repre­
sent the 6 D O F pose of these sensors i n the w o r l d coordinate frame. Similar to the 
monocular camera variable, the posit ion and orientation is represented by a vector 
p = [x,y,z, oteo, ote-\, ote2], element of special Eucl idean group SE(3), defining the 
r ig id transformation of the sensor i n the w o r l d coordinate frame. 

6.2.2 Edges 

Code 5: Implementation of a base edge type. 

template <class CDerivedEdge, c la s s CVertexTypeList , i n t 
_n_res idua l -d imens ion, i n t _n_storage_dimension = -1> 

c la s s CBaseEdgelmpl : pub l i c CBaseEdge 

The measurements impose relations between variables, represented by edges connect­
ing the variables involved i n the measurement. Furthermore we assume independent 
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Gaussian measurement noise, for each measurement z^ , represented by covariance 
matrix 1^. Each edge gives rise to residual (32) and the goal of the back-end is to find 
the configuration of the variables 0 that minimize the sum of squared residuals by 
solving the non-linear least squares problem (30). 

The implementation class CBaseEdgeIrn.pl (Code 5) is templated by list of ver­
tex types. This edge contains dimension of the residual vector and a dimension of 
measurement vector. Based on the number of variables that the edge connects, we 
differentiate between unary, binary and hyper-edges. 

Unary Edge 

The unary edge constraints only one variable and its purpose is to provide a prior 
information. In the context of B A and S L A M applications, the unary edge is used to 
fix the position of the first camera po to w o r l d coordinates. The residual of unary edge 
has form of: 

e ( p o ) = O e p 0 , (49) 

where vector 0 defines desired fixed camera pose and operand 0 is an inverse pose 
composition of SE3 group. 

Reprojection Edge 

Code 6: Implementation of reprojection edge without shared intrinsic parameters. 

c la s s CEdgeP2C3D : pub l i c CBaseEdgeImpl<CEdgeP2C3D, MakeTypel ist( 
CVertexCam, CVertexXYZ), 2> 

Code 7: Implementation of reprojection edge with shared intrinsic parameters-note the defini­
tion of third vertex type C V e r t e x I n t r i n s i c s that the edge connects. 

c la s s CEdgeP2CI3D : pub l i c CBaseEdgeImpl<CEdgeP2CI3D, MakeTypel ist( 
CVertexCam, CVertexXYZ, C V e r t e x I n t r i n s i c s ) , 2> 

Reprojection constraint describes the process of projecting a 3D structure point into 
the 2D image. Reprojection edge can have binary or ternary cardinality. The binary 
reprojection edge (Code 6) connects camera pose variable extended w i t h camera in ­
trinsic parameters and a 3D point. The ternary reprojection edge (Code 7) connects the 
variables of 3D point, sensor pose and camera parameters. 

This edge is established from measurements of a feature point positions i n the i m ­
age of a camera. The reprojection residual function is defined as a difference between 
the observed 2D point measurement and expected 2D posit ion computed as a func­
tion of 3D point ^ w ^ m ^ , camera pose pj and the vector containing camera intrinsic 
parameters T ^ : 

e i j k ( ^ i ) / ^ ^TTlt/Pj/'Tk.) = Z^j — h r e p r o j e c t i o n ( ^ ^TTl i /P j/^k) • (5°) 

The reprojection function h r e p r o j e c t i o n computes the expected posit ion of the image of 
3D point i n the camera projection plane using (5) i n Section 4.1. 
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Figure 23: Graph representation of multisensor optimisation problem. Graph contains seven vari­
ables, three monocular camera variables (blue), one variable representing shared intrin­
sic camera parameters (pink), two variables for stereo spherical camera and CLIDAR 
device (orange) and one variable representing observed 3 D point (red). Unary edge 
e o (Po) defines prior measuremen 

3D Point Edge 

Code 8: Implementation of 3 D point edge. 

c la s s CEdgeSpheronXYZ : pub l i c CBaseEdgeImpl<CEdgeSpheronXYZ, MakeTypelist 
(CVertexSpheron, CVertexXYZ), 3> 

The 3D point edge defines the constraint between sensor posit ion and a measured 3D 
point. This binary edge connects variables of 6 D O F pose (spherical camera or L I D A R ) 
and 3D point. The residual function is the displacement between posit ion of predicted 
3D point and the measurement of the point 3D position: 

e t j (zip^mi/V)) = Zij - ( { w } m t QV]), (51) 

where the operation 0 is an inverse pose composit ion of SE3 group i.e., transforms 
the coordinates of point ^ w ^ m ^ from w o r l d frame to the coordinate frame of sensor. 

6.3 S Y S T E M B U I L D I N G 

The ini t ial configuration of the sensor poses and 3D points is provided by the front-
end application using one of the pose estimation and triangulation algorithms (Sec­
tion 5.2). The system integrates one by one the camera/sensor poses and correspond­
ing 3D points observed from it. A s the data are processed, the measurements between 
the sensors or between the sensors and 3D points are added as edges. Each edge is 
linearised and added to the system matrix A by bu i ld ing the update matrix O (45), 
calculated from Jacobian of the measurement function, and fol lowing the incremental 
strategy described i n previous section. The constraints can be inserted into the system 
i n any order. This way a large connected graph is buil t w i t h edges interconnecting dif­
ferent variables. Figure 23 shows graph representation of simple multisensor system. 

The ini t ial configuration of the system is refined by the optimisation procedure 
(Section 6.1), f inding the solution that minimizes the error functions of the system. 
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E X P E R I M E N T S A N D E V A L U A T I O N 

In this chapter we a im to experimentally evaluate several aspects of the multisensor 
3 D reconstruction application. We focus on the evaluation i n terms of accuracy for 
different sensor combinations. First we evaluate the 3D reconstruction from stereo 
longitude-latitude images, w h i c h is the most challenging sensors to integrate. Then we 
add integration of monocular cameras and C L I D A R sensors and evaluate multisensor 
scenarios. 

7.I E V A L U A T I O N O F S T E R E O S P H E R I C A L I M A G E R E C O N S T R U C T I O N 

We first evaluate the 3D reconstruction from spherical stereo images only. Dense reg­
istration using ICP, described i n Section 4.3.2, has been successfully used i n the litera­
ture for the 3 D reconstruction from spherical images [35]. Therefore, ICP is used as a 
reference i n the time and accuracy evaluations of the refinement method. We refer to 
the refinement by ICP method as ICP. To calculate the ini t ial estimate of the camera 
poses and the 3D structure, the S U R F descriptors were extracted i n the longitude-
latitude images using tangential projection to reduce the spherical distortion effect, and 
guided matching (Section 4.2.1) w i t h geometry model described i n Section 4.3.1 was 
performed to estimate the relative pose. 

We use dense ICP to define a ground truth for testing the accuracy of our method 
i n the outdoor datasets where there are no manual measurements available. For that, 
manual ly matched sparse features are used to calculate an ini t ial estimate for the ICP 
registration, and it w i l l be further referred as GT-ICP. 

Accuracy evaluation of Stereo Spherical image registration 

In our pipeline we can identify two sources of errors that can affect the final recon­
struction, a) the error of the depth map and b) the camera pose estimation error. To 
analyse the accuracy of the stereo spherical registration, ground truth data were mea­
sured for all three datasets. Smaller sensor displacement and flat ground surface of 
the Studio dataset al lowed for precise posit ioning of spherical cameras, and manual 
measurements of distances from the spherical camera positions to several objects i n 
the scene as wel l as distances between camera poses. For the outdoor datasets, Cathe­
dral and CCSR, the ground truth data was generated by manual ly matching sparse 
features to create an initialisation for the dense ICP (GT-ICP). For the ICP registration 
a standard implementation provided by the P C L library [47] was used. The Studio 
dataset contains 4 pairs of stereo longitude-latitude images w i t h 2m and 1 m distance 
between the spherical camera positions. The 3 stereo pairs of CCSR dataset was cap­
tured from positions ~ 6m apart, and 3 stereo pairs of Cathedral dataset share baseline 
~ 23m apart. 
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Table 8: Depth map accuracy results: Differences between GT and measurements in the depth 
map. Each row represents the error between measured and ground truth distance for 
actual spherical camera position. Certain distances were not measured for ground truth, 
those cells are marked by N / A symbol. 

Error [mm] 

Object l . i Object 1.2 Object 2 Object 3 

P i 18 12 2 3 

P2 N / A N / A 7 8 

P 3 N / A N / A 7 8 1 

P 4 17 32 13 3 

The error of the depth map was evaluated for the Studio dataset by comparing the 
calculated depth from the dense stereo processing w i t h the measured ground truth. 
In this dataset, the cameras were placed i n four different positions w i t h a measured 
distances i n between, and distance to objects i n the scene were also measured. Table 8 
shows the errors between the manual ly measured and the estimated 3D positions. The 
depth map error is, i n average, of 1.6 c m for the Studio dataset. We can say that is a 
very good depth calculation from stereo longitude-latitude images for indoor scenes, 
nevertheless, we should expect larger errors i n the outdoor scenes. 

In order to evaluate the joint camera and structure estimation, two types of errors 
are evaluated, a) camera pose estimation error and b) structure error. To compute 
the pose estimation error, the transformations between the GT-ICP and the estimated 
poses are calculated. The errors i n translation and rotation are reported separately, by 
computing the no rm of the translation and the angle of rotation, respectively. For each 
dataset, pair-wise spherical camera registrations are evaluated. The structure error is 
computed i n Studio dataset as an average error of distances to k n o w n objects i n the 
scene. In the case of Cathedral and C C S R datasets, the structure error is given by 
the average euclidean distance between two dense point clouds-one from GT- ICP and 
second from opt imized solution. 

Table 9 confirms our expectations that both, ICP and S L A M + + have similar accuracy, 
and that larger errors i n pose estimation correlate w i t h errors i n structure estimation. 
Note that for longer baselines, the S L A M + + copes better w i t h the errors i n the init ial 
estimation compared to ICP w h i c h requires very good initialisations. This is due to 
the fact that unl ike ICP w h i c h relies only on matches between consecutive spherical 
cameras for each registration, S L A M + + also considers matches over mult iple spherical 
images. 

Time evaluation 

The disadvantage of apply ing ICP for image registration is its processing time. The 
proposed approach offers much faster solutions i n this direction. Table 1, bottom, 
shows that S L A M + + is, for al l datasets, almost three orders of magnitude faster than 
the ICP algorithm. The good time performance stems from the fact that it optimises 
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Table 9: Accuracy results: Top: Structure Error. Bottom: Camera pose error evaluated separately 
for the rotation and translation. 

Criteria Method Studio Cathedral CCSR Criteria Method 
S1-S2 S2-S3 S3-S4 S1-S2 S2-S3 S1-S2 S2-S3 

SLAM++ [mm] 4.6 7.9 11.2 708.7 371.4 374.9 119.3 

Pose err. ICP [mm] 
SLAM++ [°] 

10.7 
1.14 

36.1 
0.57 

50.8 
0.89 

6783 
5.48 

740.5 
3.91 

261.1 
0.81 

149.9 
1.66 

ICP [°] 5.03 0.81 1.38 4.85 4.83 0.52 2.71 

Structure err. SLAM++ [mm] 
ICP [mm] 

16.1 

354 

1120.2 

1765.6 

488.9 

394-7 

Table 10: Time processing evaluation for refinement using SLAM++ and ICP. 

Processing 
Feat. & desc. extract [s] 8.15 7.02 6.32 
Initial estimation [s] 6.99 11.41 25.65 

Refinement 
ICP [s] 146.057 366.024 995.43 
SLAM++[s] 0.120 0.091 0.134 

for a sparse set of points and from the actual efficient implementation of non-linear 
least squares solver S L A M + + . 

By analysing the processing time of each step of the pipeline i n Table 1, we see 
that the time of optimising the camera poses is now very small compared to the 
other processing times i n the pipeline, whi le using ICP, the registration time w o u l d 
have been the predominant time and w o u l d have constituted a bottleneck i n large 
applications. 

7.2 M U L T I S E N S O R R E C O N S T R U C T I O N A C C U R A C Y 

We processed several multisensor datasets using the proposed multisensor 3D re­
construction pipeline. The accuracy evaluation of the reconstruction from monocular 
and C L I D A R sensors is performed on Synthetic dataset w i t h k n o w n ground truth de­
scribed i n Section 3.2. The computed error is per-pose all-to-all relative pose error (RPE) 
obtained as a sum of differences between al l estimated and al l ground truth camera 
relative poses d iv ided by number of cameras n : 

e R P E = ~~ \Vi) © Pij""~l / (52) 
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Cathedral Studio 

Figure 24: 3 D reconstruction from stereo spherical images, a) Inliers after matching with 
R A N S A C algorithm (for better visibility only a fraction of matches is shown for Stu­
dio dataset). Please note that the crossing lines in the left column are not outliers, the 
image is spherical so the left part of the image continues on the right, b) Initial 3 D 
points (red) and camera poses (orange) and optimised 3 D points (green) and camera 
poses (yellow), d) Final dense 3 D reconstruction created by integration points from 
depth maps. 

where the p^j and p^j T is a relative transformation between two estimated camera 
positions and ground truth camera positions respectively and operation 0 performs in ­
verse pose composition. The results are also compared w i t h the commercial software 
CapturingReality1 for w h i c h the R P E is computed as wel l . 

The ini t ial sensor poses are estimated using multisensor pipeline. C L I D A R coloured 
3 D point c loud is transformed to the form of longitude-latitude image by process de­
scribed i n Section 5.2.4. SIFT features and descriptors are extracted from image data 
and the tangential projection is applied to longitude-latitude images to reduce the ef­
fect of spherical distortion. The correspondences are found using guided matching 

1 www.capturingrality.com 
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Table 11: Per-pose all-to-all RPE error of our approach and CapturingReality software compared 
to ground truth of Synthetic dataset. The evaluation of CapturingReality in the presence 
of noise could not be performed due to different handling of input CLIDAR data. 

Our approach CapturingReality 

Synthetic-short RPE [mm] 
RPE [°] 

2.1 
0.034 

3.1 
0.043 

Synthetic-long RPE [mm] 
RPE [°] 

4.3 
0.016 

8.3 
0.132 

Synthetic-combined 
RPE [mm] 

RPE [°] 
4.3 

0.034 
23.9 
0.312 

Synthetic-short-noise 
RPE [mm] 

RPE [°] 
2.3 

0.034 
N / A 
N / A 

Synthetic-long-noise 
RPE [mm] 

RPE [°] 
4.5 

0.021 
N / A 
N / A 

Synthetic-combined-noise 
RPE [mm] 

RPE [°] 
6.1 

0.037 
N / A 
N / A 

Table 12: Average reprojection error in pixels of 3 D reconstructions from monocular, monocu-
lar+spherical and monocular+lidar configurations. 

Monocular Monocular + Sph Monocular + CLIDAR A l l 

CCSR [px] 0.371 0.357 0.354 0.354 
Cathedral [px] 0.236 0.226 0.222 0.224 

Atrium [px] 0.342 0.312 — — 

Synthetic-combined [px] 0.260 — 0.259 — 

(Section 4.2.1) w i t h geometry model depending on the registered sensors. For stereo 
longitude-latitude images the 3D-3D registration model (Section 4.3.1) is used, and 
for longitude-latitude and planar image the spherical-planar epipolar geometry (Sec­
tion 5.2.3) is applied. 

Table 11 shows the per-pose all-to-all registration R P E error of registration of m u l ­
tiple scenarios of Synthetic dataset consisting of 3 C L I D A R scans and 10 generated 
planar images per scenario-containing images from vir tual cameras w i t h short base­
line (Synthetic-short), long baseline (Synthetic-long) and combination of the long and 
short (Synthetic-combined). These datasets were evaluated w i t h two different noise lev­
els i n C L I D A R depth data. First configuration uses depth data directly from C L I D A R 
device, wh ich according to manufacturer, has standard deviation of depth error 2mm. 
For second experiment, the depth data was perturbed by a normal distributed noise 
w i t h standard deviation of 150mm to evaluate the effect of depth map noise on recon­
struction accuracy. 

The input for both algorithms, our and CapturingReality consists of C L I D A R 3D 

point clouds and a set of synthetic planar images. Initial camera parameters were 
provided for both applications to assure the same ini t ial conditions. 
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For short baseline scenario both algorithms achieve similar accuracy results, our 
approach being slightly more accurate. For long and combined baseline our approach 
achieves better results w i t h accuracy of ~ 4 m m R P E per pose. This is because of 
more non-linear iterations (~ 25) of B A solver. I was not possible to specify or check 
for number of iterations for CapturingReality. Even i n the presence of noise i n depth 
data our algori thm achieves accurate results. The evaluation of CapturingReality i n the 
presence of noise could not be performed due to different handl ing of input C L I D A R 
data. 

Further, we compute the reprojection error of the structure, computed as the av­
erage of differences of projected the structure points and their measured positions. 
Figures 27, 26 and 28 show the 3D reconstructions from different types of sensors 
are shown for Cathedral, CCSR and Atrium datasets, introduced i n Section 3.2. Images 
a), b), c) show separate reconstruction for C L I D A R , monocular cameras and spherical 
cameras respectively. The reconstruction from spherical cameras suffers from artefacts 
caused by inaccuracies i n disparity map. In both Figures 27 and 26, the images d), e) 
show reconstruction from spherical cameras, and monocular cameras superimposed 
w i t h green colour and w i t h colour information from the images. Image f) shows re­
construction using al l sensors. O n l y sparse structure from longitude-latitude images is 
shown, i.e. the points for w h i c h the correspondence was established w i t h points from 
other sensors. The coverage of obstructed area by structure from monocular cameras 
can be seen i n Figure 26, f). 

The table 12 displays accompanying reprojection errors for each sensor combination. 
In the visualizations of results (Figure 27,26 c), 28 b)) it is visible that for the spherical 
reconstruction the whole reprojected disparity map contains b ig distortions. But when 
this spherical data is used i n the combination w i t h monocular images, the reprojection 
error drops from 0.371 to 0.357 for CCSR and 0.236 to 0.226 for Cathedral compared to 
reprojection error of reconstruction only from monocular images. Lowest reprojection 
error is achieved using monocular and C L I D A R sensors. 

Accord ing to the evaluation of Synthetic dataset, the presented multisensor 3D re­
construction pipeline compared to the CapturingReality achieves more accurate results. 
The accuracy stems from the quality of established corresponding points and joint 
optimisation by S L A M + + . The joint processing of stereo spherical and monocular 
data improves the reprojection error of monocular reconstruction and structure from 
monocular reconstruction improves the noisy stereo spherical depth map. The accu­
rate depth data from C L I D A R allows for easy integration. 
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a) C L I D A R only b) Monocular only 

c) Spherical only d) Spherical + Monocular (green) 

Figure 25: Reconstructions of the Cathedral dataset 
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a) C L I D A R only b) Monocular only 

+ Monocular 

Figure 26: Reconstructions of the CCSR dataset 
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a) C L I D A R only b) C L I D A R + Monocular (green) 

Figure 27: Reconstruction of Synthetic dataset. 

c) Spherical only + Monocular (green) d) Spherical + Monocular 

Figure 28: Reconstructions of the Atrium dataset 
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C O N C L U S I O N 

The contribution of this thesis is the formulation of the multisensor 3D reconstruc­
tion using unified representation for different sensors and measurements i n terms 
of sparse B A and based on that, obtaining complete solution from all available data 
without need of manual alignment of models created by single sensor reconstruction 
algorithms. The representation consists of variables defining the poses of the sensors 
and structure points and edges encoding the relations between variables. 

A sparse 3D reconstruction pipeline consists of a front-end w h i c h processes the sen­
sor data and provides an init ial estimate for the sensor position and the 3D structures, 
wh ich is further opt imized by the back-end. In this thesis we analysed algorithms 
for reduction of spherical distortion i n images from spherical cameras and generated 
from C L I D A R devices to achieve higher init ial registration accuracy. We evaluated 
mult iple feature extractors, matching and registration accuracy of longitude-latitude 
images and planar images. This thesis proposes an algorithm that computes the ten-
gential projection w h i c h reduces the effect of spherical distortion i n longitude-latitude 
images and achieves better accuracy compared to registration using the longitude-
latitude images i n uncorrected form. 

After the initialisation, the unified system buil t from measurements of multisensor 
data is refined by joint sensor pose and structure optimisation. This offers a robust 
estimation capable of exploit ing relationships between mult iple sensors and refining 
the solution according to those constraints. This is formulated as an optimizat ion on 
graphs where the vertices represent the variables and the edges of the graph are de­
r ived from the measurements. The graph optimizat ion is implemented i n the S L A M + + 
non-linear least squares optimisation l ibrary developed i n collaboration w i t h m y col­
leagues L . Polok and V. Ila. The S L A M + + is a very efficient l ibrary based on fast sparse 
block matrix manipulation. 

The future work w i l l include integration of the incremental optimisation approach 
of S L A M + + for time efficient incremental data processing. Furthermore the processing 
of data from additional sensors w i l l be implemented as we l l as support for processing 
of videos from monocular and spherical cameras, inc luding key-frame selection. A n ­
other area of the interest is the estimation of the dense depth map from the spherical 
images more accurately using the depth information from other sensors. 
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