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INTRODUCTION

The 3D reconstruction problem in the field of computer vision aims for creation of a
detailed and accurate model of real-life objects or environments from a set of measure-
ments. Since the introduction of digital photography, the image processing algorithms
became one of the most researched topics in the field of computer vision, establish-
ing the basics of recreating 3D structure from camera motion [54]. After four decades
of research, the 3D reconstruction topic became a mature area, defining projective
camera geometry, statistical inference methods and established techniques for the es-
timation of sensor pose and 3D structure [27]. Recently, the computational power of
modern computers and high performance graphic processing units, have opened the
possibilities for the 3D reconstruction algorithms to reconstruct highly detailed 3D
representations of large-scale environments in real time. Thus the development effort
has focused on the processing of large amount of data from multiple types of sensors
to create a consistent 3D model.

The reconstructed 3D models are used in a large variety of applications in fields
ranging from computer graphics, virtual reality, architecture to medicine, movie and
gaming industry and robotics. The model of an environment offers valuable informa-
tion for city planning or modification of existing buildings as well as visualization of
such modifications. Similarly, the 3D reconstruction can be used as a tool for maintain-
ing the cultural heritage, allowing the virtual presentation of the cultural landmark or
artistic object without physical damage to the original object. The non-invasive scene
3D reconstruction finds application in forensics and crime scene investigation, where
a crime scene can be scanned to capture all scene details for further interaction and
reviewing.

In the film industry, it is advantageous to know the metric 3D information about the
environment for Computer Graphics Imagery (CGI) modelling and insertion of spe-
cial effects, virtual actors or objects into the scene. According to scale of the scene, as
well as available budget expenses, different types of on-site scene capture techniques
can be utilized. The laser ranging technology provides very precise depth information
at the cost of expensive equipment and a need for expert operation. Another option is
the processing of images from monocular, stereoscopic or spherical cameras or even
from multiple types of sensors simultaneously and constructing the model by fusing
partial reconstructions from individual cameras.

For 3D reconstruction of the environment, it is common to scan the scene with one
sensor, but using multiple sensor types is more beneficial. Laser scanners or 360°field
of view cameras are able to reconstructed whole scene using only few scans, but they
are more expensive and require an expert to operate. Other sensors such as monocular
cameras are easy to use, but to cover whole scene, large number of photos with satis-
factory visual overlap have to be taken. A better 3D model of a scene is the one created
by combining the models from different sensors - a model of a whole scene is created



with surrounding scene reconstructed from laser scanners or 360°view cameras and
detailed parts of a scene reconstructed from handheld monocular cameras.

The contribution of this thesis is a 3D reconstruction system capable of incorporat-
ing data from multiple types of sensors such as monocular, stereoscopic or spherical
cameras and laser scanning devices and produce accurate representation of the envi-
ronment. The focus lies on unified representation of different scanning devices, measure-
ments and the spatial relations between them, so one system containing all sensors
and measurements is build and optimised to achieve higher accuracy of the recon-
struction. The system containing data from multiple types of sensors is optimised
using very efficient non-linear graph optimisation library SLAM++[45, 30, 29]".

To evaluate best data processing approach for multisensor registration we perform
an exhaustive analysis of registration of two spherical images and of a registration of
spherical and planar image.

1 https:/ /sourceforge.net/projects/slam-plus-plus/
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RELATED WORK

The techniques for the 3D reconstruction-Structure from Motion (SFM), Bundle Ad-
justment (BA), Simultaneous Localisation and Mapping (SLAM) have been success-
fully applied in multiple software systems. Photo tourism [49] is able to create 3D
models of frequently photographed famous historical buildings or tourist attractions
such as Notre Dame from thousands of planar images available on internet services
e.g., Flickr*. Processing an unordered set of images is computationally expensive, so
the main focus of the algorithm is the detection of visually similar images, to cre-
ate reconstruction order that leads to complete model of the scene. The computation
usually requires several days of processing on cluster of computers. The software
contains image-modelling front-end from large photo collections as well as photo ex-
plorer which uses image rendering techniques for smooth translation between images
that allows virtual photo tours of famous locations.

Bundler® is one of the first SFM software able to process an unordered set of images.
Its earlier version was used in Photo Tourism project which was later developed into
Photosynth3 for Microsoft. Bundler’s front-end software is able to detect and match
feature points across the input image set and to incrementally reconstruct the sparse
3D structure of the scene. Modified version of Sparse Bundle Adjustment [40] is applied
in the process as an underlying optimization engine to refine the reconstruction.

VisualSFM* represents an user friendly application for image 3D reconstruction
exploiting multicore parallelism [59], fast feature extraction and matching [57] and
bundle adjustment [58]. Further, the reconstructed camera and structure information
from VisualSFM can be used as an input for Patch-based Multi-view Stereo Software
(PMVS) by Furukawa et al. [20] to obtain dense 3D reconstruction. PMVS starts with
correspondences estimated by SFM algorithm and iteratively expands the depth to
surrounding pixels. The false correspondences are filtered out using visibility con-
straints, by removing patches of depth map that lead to visibility conflict (occlusion)
with other patches. The increased set of corresponding points is further used to refine
the extrinsic and intrinsic camera parameters in final BA step.

The OpenMVG? is a library for image processing and multiple view geometry esti-
mation, including algorithms for feature matching of unordered set of images, SFM
pipeline, optimisation and visualization tools, as well as simple examples explaining
basic functionality. The library also contains a database of intrinsic camera parame-
ters, which can be extracted from image Exchangeable image file format (EXIF) data.
The output of the library is a sparse 3D point cloud data and camera poses.

The StereoScan application [22] allows real-time 3D reconstruction by fusing infor-
mation from dense depth maps and camera position estimation based on visual odom-

1 https:/ /www.flickr.com/

2 http://www.cs.cornell.edu/ snavely/bundler/
3 https://photosynth.net/

4 http://ccwu.me/vsfm/

5 https://github.com/openMVG/openMVG
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etry. The real-time processing is achieved by separating the camera pose estimation
process from map building process which links multiple views together and recon-
structs reliable point clouds using known camera positions.

Microsoft’s Kinect Fusion creates detailed 3D model of the indoor scene using the
Kinect device. Only the depth information is used to track the camera position and to
reconstruct the 3D model of the scene in real time. The real time, interactive capabili-
ties are possible thanks to the accelerated data processing on the Graphics Processing
Unit (GPU), but also non-interactive, offline processing is available. The system finds
application in low-cost handheld scanning and geometry-aware and physics-based
augmented reality applications.

Commercial software Capturing Reality® allows 3D reconstruction from multiple sen-
sor types - monocular cameras and CLIDAR device. The multi sensor reconstruction
is achieved by transforming coloured 3D point cloud generated by CLIDAR to six
planar images by projecting the 3D data to six sides of a cube, and using them for
registration to images from monocular cameras.

6 www.capturingreality.com
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PRACTICAL APPLICATION

The sclable multisensor 3D reconstruction framework was developed for the task of
reconstruction of large outdoor scenes for European project IMPART" in collaboration
with two movie companies, FilmLight> and DoubleNegative3. One of the goals was to
integrate all measurements acquired by sensors in order to create reconstruction of
3D environment. The available tools, at the time, were too slow for this purpose. The
need for in situ visualisation of the 3D reconstructed environment and taking decision
on which parts of the scene needs more sampling, motivated the development of a
fast and accurate system for 3D reconstruction from multiple sensors.

In this chapter we describe sensors used for 3D reconstruction, their advantages
and disadvantages and introduce the datasets captured in the scope of the IMPART
project.

3.1 AVAILABLE SENSORS

The first step of 3D reconstruction consists of data acquisition. Two main categories of
data acquisition sensors exist - active and passive. Active scanning devices emit some
kind of radiation or light and detect its reflection from object to obtain depth map
and recreate the object or environment (LIDAR, RADAR, structured light). Passive
scanning sensors, on the other hand do not emit light themselves, but rather use
reflected natural light instead (CCD cameras).

Monocular Cameras

The conventional cameras are cheap and easy solution to obtain 3D reconstruction.
The monocular cameras produce planar 2D images images by projecting 3D scene
onto a 2D camera projective plane. The cues from the images, such as silhouettes,
shading, texture or motion can be exploited to estimate the 3D geometry of an ob-
ject or scene. The processing of the video sequences from monocular cameras allows
easier detection of corresponding parts of the scene thanks to the big spatial overlap
between the consecutive images. The estimation of camera poses and 3D structure of
the environment from multiple images of a scene is in literature referred as Structure
from Motion (SFM).

1 https:/ /impart.upf.edu/
2 http://www.filmlight.ltd.uk/
3 http://www.dneg.com/
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a) b)

Figure 1: a) Spheron*camera b) Same part of the scene projected into different (vertical) part of
spherical image.

Spherical Cameras

Spherical cameras use spherical projection - projecting 3D point of a scene onto a sur-
face of a sphere to create an image capturing whole surrounding scene. Spherical
cameras provide images which cover the whole surrounding space, so using spheri-
cal images from one or multiple view-points is a feasible way to create 3D models of
large environments.

Devices such as Spheron* capture spherical image by a vertical line-scan camera with
wide-angle lens rotating around the centre of projection. The final high-resolution im-
age is created by joining scans into a single image that covers 360° in horizontal and
~ 180° in vertical field of view. For storage purposes the spherical image is stored as
rectangular longitude-latitude image by mapping from spherical model to 2D dimen-
sions of rectangle. Spheron devices are mounted on rigs that allow for precise vertical
movement for capturing stereo spherical image pairs with defined vertical baseline.

The main disadvantage of the spherical images and their longitude-latitude rep-
resentation is the distortion introduced by projection from sphere to rectangular
plane. The same parts of the scene can appear very different depending where in
the longitude-latitude image they are projected to (Figure 1 b)). This can cause prob-
lems when extracting and matching features, especially when the images are captured
with wide baseline.

Range sensors

Range detection devices provide information about a depth of the observed object or
a scene. Laser scanning devices, also called LIDAR, are often utilized to acquire dense
model of a scene. They employ time-of-flight techniques to estimate the distance of
a scene point by measuring the time the light beam travels between LIDAR and the
point. LIDARs often include rotating mirror that allows to change the angle of the

4 https://www.spheron.com/
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Table 1: Dataset details. *The number of monocular planar images for Synthetic dataset is a sum
of the images of each scenario.

CCSR | Cathedral | Atrium | Studio | Synthetic
Spherical Images 3 3 5 4 —
Spherical baseline | ~6ém ~23m ~3m | ~1.5m —
CLIDAR Scans 3 7 — — 3
CLIDAR baseline | ~ém ~7m — — ~6m
Planar images 243 92 50 — 30*
Area 250m? | 2500m* | 400m? | 100m? | 250m?

laser beam and thus scanning area around the device. Specialized 3D LIDARs with
added vertical field of view are able to capture dense structured 3D point clouds
representing the scene. Some devices such as Faro> are capable also to fuse colour
information from wide angle lens camera located at the LIDAR sensor with the 3D
point cloud data to create the coloured 3D model of the environment.

3.2 AVAILABLE DATASETS

Several datasets containing data from different types of sensors were acquired to
evaluate our multisensor processing framework and other applications developed in
IMPART project. The planar images have been captured by standard hand-held Canon
and Samsung cameras, covering surrounding area of captured scene. The spherical
images were acquired with a SpheroCam-HDR® system, which captures vertical scan
lines by a turning camera with fisheye lenses, synthesises them and provides up to 50
Mpix latitude-longitude image. The CLIDAR data capture was performed using Faro
Focus3P7 device providing a 3D point cloud data with assigned colour information
for each point. Details about the content of each dataset is shown in table 1.

CCSR dataset

The CCSR dataset is an outdoor dataset of an enclosed area of approximately 250m?.
The scene was captured by spherical camera from three positions with the displace-
ment of 5 — 6m and three CLIDAR scans are available from approximately same posi-
tions as spherical images. Each capture of spherical image was done at two different
heights to produce stereo image pairs. The hand-held Canon camera has been used to
capture the planar images and covers whole surrounding area. Many subsets of the
images are captured with small baseline.

The scene contains visual reflective markers accompanying the CLIDAR Faro sensor
which serve for the easy correspondence estimation and sensor registration. Using the
Faro software’, precise positions of the sensors can be computed. This poses can be

5 http://www.faro.com
6 https://www.spheron.com/
7 http:/ /www.faro.com/en-us/products/faro-software/scene/overview
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Figure 2: Example data from the datasets, up planar images, down spherical image, a) CCSR, b)
Cathedral, c) Atrium, d) Synthetic and e) Studio dataset

used as a reference for comparison of the accuracy of registration of CLIDAR sensor
integrated in our system.

Cathedral dataset

The Cathedral dataset covers an area of approximately 2500m? and captures the scene
in front of Guildford Cathedral building, surrounding smaller buildings and parking lot.
In order to test how the system performs in the case of large sensor displacements, the
spherical cameras were placed at positions far apart (approx. 23 m). Seven CLIDAR
scans are available for this dataset, which were captured in different day, so lightning
conditions and small details in scene may be different than in spherical images. The
planar images cover only the cathedral building, images of no other objects were
captured.



Atrium dataset

The Atrium dataset captures a semi enclosed, outdoor area of approximately 400m?
using five spherical camera scans. The planar images capture whole surrounding area.
The datasets Cathedral, CCSR and Atrium were captured as a part of an European
project IMPART® and are available upon request?.

Studio dataset

Studio dataset was captured for the purpose of evaluating the accuracy of spherical
image registration. The physical distances between the poses of the spherical cameras
were measured as well as the distances to certain distinctive points in the scene. The
spherical cameras were precisely placed and aligned to face the same direction. The
indoor scene was captured from four spherical camera poses.

Synthetic dataset

For the purpose of evaluating multisensor 3D registration algorithm, especially the
registration of CLIDAR/spherical images and planar images, we used dense CLIDAR
data to generate artificial views from virtual planar cameras with known calibration
and position in the scene. This way we are able to generate images from virtual sen-
sors with known 3D poses which are used as a ground truth for comparison with
estimated poses. Synthetic dataset contains images generated from CLIDAR data of
CCSR dataset. The registration of CLIDAR sensors is available from the Faro software
which utilizes visual reflective markers for the computation of the sensor pose.
Multiple scenarios were considered for the synthetic datasets:

e Short baseline - The images were generated from virtual cameras with close dis-
tance to each other (~ 0.3m). These images contain big overlap.

e Long baseline - The baseline between virtual sensors was approximately 2.5m and
contain bigger change (~ 30°) in rotation compared to small baseline dataset.
The images contain smaller overlap.

o Combined baseline - This dataset contains images both with small and large base-
line and rotations between sensors. This dataset imitates the real scene capturing
using a handheld camera.

e Noise in depth data - The LIDAR depth data are generally very precise. There-
fore to evaluate accuracy of registration of multisensor data in the presence of
noise such as in case of stereo spherical image depth map, the depth map avail-
able from CLIDAR was artificially perturbed by zero mean Gaussian noise with
standard deviation o = 0.15m. This dataset simulates registration of monocular
images and stereo spherical images.

8 impart.upf.edu
9 kahlan.eps.surrey.ac.uk/impart/
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BACKGROUND

This chapter describes image processing, projective geometry, representation of cam-
era models, geometry between cameras observing the scene and the fundamental
algorithms for estimation of camera pose and 3D structure.

4.1 SENSOR MODELS

In the following sections we describe the models of different sensors and the details
of the imaging process of cameras.

Pinhole Camera Model

The simplest model of describing a camera is called pinhole camera model. Pinhole
camera model is a specialization of the general projective camera model. This model
utilizes central projection which assumes a line passing through 3D world point and
centre of projection, intersecting image plane IT in point where the image is formed
as shown in Figure 3. The projection of the 3D point {¢Jm = [X,Y, Z,1]T to the camera
plane is performed by applying a series of matrix transformation operations specified
by a camera model. Assuming that the camera centre of projection lies in the centre of
world coordinate frame, its optical axis is oriented along the z — axis and the distance of

y
/ e} m
Gr /’
C .
) ‘,.../-' Z > 7
R s tebRL R
\H

Figure 3: Pinhole camera model. It can be seen that given focal length f, the position of the
projected point {¢}m in the projection plane TT is (/1. = [f %, f %, 1T,
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the camera projection plane from centre of projection, called focal length f, is equal to
one, the homogeneous representation of the projection can be described by equation:

X
Z 100 0

Um=1Yl=0 1 0 0 , (1)
1 00 1 o

In the terms of geometric relations, this projection transforms the 3D point {¢/m from
camera coordinate frame to camera projection plane coordinate frame. Please note that
we are using notation {¢}m for a 3D point in the coordinate frame of camera, notation
{Um for a point in coordinate frame of image (pixel coordinates), and notation {111
for a point in the coordinate frame of projection surface of the camera, also known as
normalized image coordinates.

The equation (1) assumes that the 3D point coordinates are in camera coordinate
frame, i.e., coordinate frame with origin in the centre of projection. This is not usually
valid in real scenarios where camera pose and 3D points are defined in world coordinate
frame. Therefore to project the 3D point 1V} to camera projection plane, first it must
be transformed from world coordinate frame into the camera coordinate frame. This
is achieved by using a rigid transformation [R | t], where R is the rotation of the camera
coordinate frame and t = —RC, C being position of the camera centre in the world

coordinate frame:
ehm =R g™m. (2)

Rotation matrix R is a 3 x 3 matrix, element of Special Orthogonal group SO3, which
is a group of all valid rotations around the origin in 3D Euclidean space. The matrix
[R | t] represents extrinsic camera parameters.

The focal length of the real world cameras is generally different than one, therefore
to transform the point {¢/m from camera coordinate frame to point {¥m in the image
coordinate frame the projection has to be scaled to take this into account. Also the
principal point ¢ = [cy, ¢y, 1] is introduced which defines the coordinates of centre of
projection plane in a coordinate frame of the image. Focal length and principal point
are called intrinsic camera parameters. They are independent from the structure of the
scene or camera position or rotation and can be estimated by camera calibration [48].
Upper triangular matrix K:

fx 0  cx
K=10 fy cyf- (3)
0 0 1

containing intrinsic parameters f and c, and defining central projection is called camera
calibration matrix. We can write equations (1) and (2) as:

™
u fx 0  cx v
v R0 fy cy [R | t] E (4)
1 0O 0 1 ]
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Figure 4: Model of spherical camera.

or shortly as:
Um ~ K[R | t]{W}m. (5)

If the calibration matrix K of the camera is known, the normalized coordinates ¢/
can be computed using equation:

lehp = k=1t (6)

The extrinsic camera parameters together with camera calibration matrix K form
the camera projection matrix P, a 3 x 4 matrix which defines a projection of a 3D
point form a world coordinate frame to 2D image coordinate frame:

P=K[R|t]. (7)

Spherical Camera Model

Central panoramic cameras [52], unlike the pinhole cameras, use the imaging surface of
a sphere instead of a planar one. In the projective geometry, the projection of a 3D
projective space onto a spherical surface is topologically equivalent to the projection
onto a projective plane.

Figure 4 shows the model of a spherical camera with a centre of projection C and an
unit sphere with centre in the centre of projection is defined. The line passing through
the 3D point {¢)m and the camera centre C intersects the spherical surface T in two
points, so it is necessary to assume only half-lines to remove the projection ambiguity.
The set of all projections of visible 3D points captured by spherical camera is called
spherical image, and the spherical projection is defined by a map from 3D space to a
surface of a sphere.

The 3D point {¢/1i1 on the surface of unit sphere can be computed as:

(chp _ {chm

e’

(8)

where ||(¢Vm|| = /X2 + Y2 + 72 is a L, norm of a vector {¢/m.
Similar to the pinhole camera model, the pose of spherical camera in the world coor-
dinate frame is defined by transformation matrix [R|t], composed of relative rotation

12



R and translation t, which transforms the 3D point {"}m from the world coordinate
frame into the local coordinate frame of the spherical camera:

lehm = RIg™Wim. )

The spherical coordinates are often expressed with angle parameters [0, ¢] (Figure
4), longitude 8 describing the angle between z axis and projection of vector C"'m

to plane defined by axis xz, and latitude @ being the angle of vector C!"V/m and axis
y. Assuming that the radius of the sphere is one, the mathematical transformation
between spherical coordinates and angular coordinates is given by equations:

x| [ 5ind sincp-l
i = y| =| cose J ’
|z ] | cosO sing (10)
Kl B _arctan(ﬁ)
@] | arccosy

Multiple formats to store spherical image are used depending on the application.
Full panoramatic image stores spherical image as a 2D rectangular image with x axis
representing longitude and y axis representing latitude. The range along the x axis is
u € [—m, m] and axis y vi € [-7t/2, /2] and the mapping between longitude-latitude
and pixel coordinates is given by equation:

u ST (M—1)+1
Um= |y = INC 2Ny 1], (11)
1 1

where M and N are dimensions of the image horizontally and vertically. Other possi-
ble format is a cubic panorama [18] consisting of six images representing projection
of spherical image onto unit cube.

LIDAR Model

All LIDAR devices work on the principle of measuring time between optical pulse
generation and its receiving. A laser pulse is generated in certain direction, reflects
upon interaction with an object and returns to the device. High speed counter mea-
sures the time of flight between generation of the pulse and its return.

In this thesis we model LIDAR devices as a sensor with a pose [R|t] in world coor-
dinate frame, similar to pinhole or spherical camera model, and expect the data to be
a cloud of 3D points in the coordinate frame of sensor with intensity or colour infor-
mation. For detailed information about processing of LIDAR signal and computation
of the point cloud we refer reader to [39].

13



Figure 5: Epipolar geometry between two planar cameras.

4.2 EPIPOLAR GEOMETRY

Based on the projective camera model, two cameras capturing a scene from different
positions are constrained by geometric relations between camera centres, 3D points
and their 2D images defined by epipolar geometry.

Figure 5 shows two cameras are observing same scene. The 3D point 1"W'm, the
camera centres C and C’ and the corresponding points in the projection planes of
cameras /1, €'} are coplanar i.e., lie on the same plane TTe, called epipolar plane.
Epipolar plane intersects the camera projection plane in epipolar lines 1,1’ which
contain the images of 3D point. The epipole e - a distinct point in the camera image
plane is formed by projection of other’s camera centre point as if was considered as
a point in space. Epipoles will always lie on the epipolar plane and epipolar lines,
independent of the position of 3D point. Epipolar points may lie in infinity if the
camera projection planes are coincident.

According to epipolar geometry, to mathematically describe the relation between
the images {chp, {e"hm of 3D point Whm, without loss of generality, we can assume
that the centre of first camera lies in the origin of world coordinate system and its
rotation matrix is identity. The second camera is positioned according to rigid trans-
formation [R | t]. If the points {*/m and {¢"'m are the coordinates of the images of 3D
point {W'm in the coordinate system of cameras C and C’ respectively, the points are
related by rigid transformation:

lefm =Rlcbm 4 ¢, (12)
And in the terms of images {chp, {¢"}1 and their scales A and A’
AT = Ralehm 4t (13)

This equation relates the vectors {¢}1, ¢} through the rigid transformation [R | t]. In
order to eliminate scales, both sides can be pre-multiplied by skew-symmetric matrix
[t]x:

A [tly ¢ Hm = [t RA TS (14)

14



Another pre-multiplying with {¢'#" yields left side of equation to be equal to
zero, since the vector [t]y (¢} is perpendicular to vector (¢ 1T and thus its inner

product 11 T[t], ¢} = 0 is zero. Right side of equation is thus equal to zero, and
the scale A can be eliminated because it is non-zero, non-negative variable:

eI T Rl =0, (15)
The Equation 15 describes the principle of epipolar geometry and the 3x3 matrix
E = [tIxR (16)

is the algebraic representation of epipolar geometry and describes the relative trans-
formation between two cameras and is called the essential matrix [27].

4.2.1  Epipolar Geometry for Guided matching

The guided matching reduces the number of outliers in the set of corresponding im-
age pairs computed by matching algorithm by introducing matching constraints de-
rived from epipolar geometry relations between the cameras. Assume only image
lehh (Figure 5) is known and we want to know how the corresponding point (¢4 is
constrained. The epipolar plane TT. defined by camera centres and vector {¢}1i1 inter-
sects projection plane of second camera in epipolar line 1/ = E {¢1#1. The correspond-
ing image ("} of 3D point 1"/ m lies on this line, satisfying equation 1’ ¢} = 0, so
in the terms of stereo correspondence algorithm the search is restricted to 1D space.

4.3 CAMERA POSE ESTIMATION

Camera registration algorithms estimate the relative transformation between two cam-
eras based on visual information from the camera images. We assume that the intrinsic
camera parameters are known for both cameras and that the cameras capture overlap-
ping parts of the scene. In the initialization phase, the areas of the scene that are ob-
served by both cameras are detected by extracting the 2D feature points and matching
against feature points of other images, creating a set of 2D-2D corresponding points.
Depending on the available information, three situations may arise:

e The 3D depth information in the coordinate frame of the camera is known for
the 2D correspondences in both images (from depth map or previous camera
registration). In this case, the relative camera position can be estimated from
alignment of the 3D structure from one camera to other.

e The 3D depth information is available for one camera, but from 2D-2D corre-
spondences we can establish the relations between 3D points and their 2D im-
ages in second camera. From those correspondences the pose of second camera
can be estimated using Perspective-n-Point (PnP) algorithm.

e No 3D information is available, only 2D-2D correspondences between cameras
without known poses. In this case we can perform the initialisation - estimation
of the relative pose between cameras only from 2D-2D correspondences. It is

15



important to find the best pair of images for the initialization of system. The
images from nearby cameras suffer from large triangulation errors due to small
baseline. On the other hand, images captured by cameras with large baseline
tend to contain little or no overlap between the images thus failing to detect
enough good corresponding points.

In following sections we will look at these situations in more detail.

4.3.1 Pose from 3D structure alignment

If the 3D object points corresponding to 2D image points are known for both cam-
eras, the problem of the estimation of the relative transformation between cameras
can be formulated as finding transformation between two sets of 3D points. The
transformation estimation between two sets of 3D corresponding points is addressed
in [3]. The optimal transformation [R|t] relates corresponding 3D points in sets
s =I[sp,81,...,sn] and d = [do,dq,...,dn] by:

si =Rd; +t, (17)

where R is a 3 x 3 rotation matrix and t is a 3 x 1 translation vector. The solution to
the optimal transformation can be found by minimizing least squares error:

n

ER(R 1) =) llsi— (Rdi +1)]%. (18)

i

By finding the centroids §,d of the 3D point sets and transforming the points the
coordinate frame so the centroid of new point sets s¢,d¢ lie in the origin of this
coordinate frame removes the translation component from the error term (18) and the
equation can be rewritten to:

n
Er(R) = Z s$Ts¢ +dsTds —2s¢TRAS . (19)
i=0

The error is minimized when the term siCTRdiC is maximised which equals to maximis-
ing tr(R, H), where H is a correlation matrix [3]:

H= Z dsssT . (20)

Operation tr denotes trace, a sum of diagonal elements of square matrix. The solution
is found by singular value decomposition (SVD) which decomposes the matrix H =
USVT to product of matrices - two unitary matrices U and V and a diagonal matrix S.
The optimal rotation matrix R is:

R=vUu'. (21)

The optimal translation can be obtained from the translation that aligns centroids 8, d
of the point sets:
t=8§—Rd. (22)
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4.3.2 lterative Closest Point (ICP) for 3D Point Cloud Registration

If the 3D data is available for each camera, the relative pose can be estimated without
prior detection of point correspondences by performing 3D point-cloud registration.
The 3D points can be obtained from the depth map and registered using ICP algo-
rithm.

The ICP algorithm has been widely adopted to align two given point sets [5, 46]. It
finds a rigid 3D transformation (rotation R and translation t) between two overlapping
clouds of points by alternating between closest point computation for correspondence
estimation and iteratively minimising squared-error of registration between the corre-
sponding points from one set to the other:

ng Mg
ER(R ) =D D Aijllsi—(Rdj+1)[%, (23)
L

where ng and ng are the number of points in the model set s and reference set d,
respectively, and A ; are the weights for a point match.

In each ICP iteration, the rigid 3D transformation can be efficiently calculated by
singular value decomposition (SVD) [27].

The disadvantage of ICP algorithm is that it requires good initialisation and when
applied to point cloud registration, the ICP algorithm can become very slow with
large number of 3D points.

4.3.3 Pose from 3D-2D correspondences

The camera pose estimation algorithm, or the Perspective-n-Point (PnP) algorithm,
computes the 6DOF pose of the camera given the correspondences between 3D points
in the world coordinate frame and their 2D projections in the camera image and cam-
era calibration matrix. The P3P algorithm [21] solves the minimal form of the PnP
algorithm, requiring minimum of n = 3 point correspondences. The camera pose esti-
mation problem can be formulated as a geometric problem based on the reprojection
equation of a camera (1). The relations between the 3D and 2D points are used to
build a system of equations (Figure 6), based on the law of cosines: given the three 3D

points {W'myg 7 5, their corresponding points {¢/1i 1 5 in the camera projection sur-

face, camera centre C, distances wg = ||[CtW/'mg |, w; = |[CVImy ||, wa = |[CWIm, |,
angles o« = sty cledm,, B = ZlddhmgCledm,,y = zledhmycledm,, distances
do = || me™hmy ||, d7 = |™'m MWimy|l, da = [WHme™im,||. We form the fol-

lowing system:

Wi+ w3 —wiw; 2cosx—d3 =0,
w%-l—w%—wowz Zcos[S—d2 =0, (24)
w3 +wF —wow; 2cosy —d3 = 0.

By solving the set of linear equations in (24) the distances dy, d;,d, can be obtained
and from that the coordinates of 3D points {C}m(),],z in the coordinate frame of the
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Figure 6: Illustration of P3P problem; a) Relations between world points ©¥'mg ¢ , and corre-

sponding points {¢}#hg 1, in camera projection surface. b) One of triangles used for
building equations (24) by applying cosine law.

camera computed. The camera pose is estimated by finding the rigid transformation
between the world 3D points {W}mojlz and local 3D points {C}mojlz. This algorithm
produces up to four solutions for the pose estimation problem, but using fourth point
removes the ambiguity.

Another approach for solving the PnP problem has been presented in [38]. The
Efficient PnP algorithm solves the problem for n > 4 corresponding points in linear
time complexity. This method expresses each 3D point as a weighted sum of four
virtual control points and the coordinates of those control points are unknowns of the
problem.

4.3.4 Pose from 2D-2D correspondences

Without any prior 3D information, the relative pose between cameras can be estimated
directly from epipolar geometry. To estimate the relative pose of the cameras, without
loss of generality we can assume the position of first camera in the centre of coordinate
frame with zero rotation along coordinate axis: [I|o]. The second camera pose can be
expressed relative to the first in terms of rotation and translation [R|t]. From (16)
we can observe that the essential matrix E is a product of a relative rotation R and
a skew-symmetric translation matrix [t]x. Factorizing the essential matrix using the
SVD algorithm [27], E = USVT, decomposes the Essential matrix to three matrices,
two unitary matrices U and V and a diagonal matrix S. We can obtain up to four
possible solutions for relative transformation between the cameras:

P/ = UWVT] £ u3], UWTVT |+ u3],

0 -1 0
W=11 0 0f,
o 0 1

(25)

where uj3 is a last column of U, and using the cheirality [56] constraint, the correct
solution can be identified. The concept of cheirality has been introduced in [27]. The
sign of the cheirality value indicates whether the 3D point lies in front of camera or
behind it. For the estimated camera poses the cheirality of the corresponding points
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has to be positive. The obtained relative transformation is computed up to an arbitrary
scale. From the relative transformation the camera projection matrices are P = K[I| o]
and P/ = K[R|t] according to (7).

4.4 ROBUST ESTIMATORS

The pose estimation algorithms are sensitive to outliers [25]. In geometry estima-
tion, such problems are typically solved with the help of robust estimators. M-
Estimators [60, 50] reduce the effect of the outliers by applying weighting function,
reducing the problem to weighted least-squares estimation. M-Estimators require a
good initial guess and works best for low presence of outliers.

RANSAC [19] applies a hypothesise-and-test framework on small, randomly se-
lected sets of correspondences. For the model hypothesis generation a small subset of
the data is used. The validity of such hypothesis is evaluated on the rest of the data
and the hypothesis with the highest number of inlier data is stored to be challenged
by next hypothesis. RANSAC terminates when it is confident that a better solution is
unlikely [11], returning initial pose estimate and the correspondence set supporting
the hypothesis.

The modification of RANSAC - MLESAC [53] evaluates the quality of the consensus
set by computing its likelihood, improving the accuracy through better hypothesis
assessment. The locally optimised (LO) RANSAC [12] performs an optimisation of
the solution using inlying data to further improve the estimate accuracy. Biased sam-
pling [10] steers the hypothesis generation towards samples with a better likelihood
of being inliers (as indicated by the correspondence ranking). WaldSAC [11] allows
the rejection of poor hypotheses without testing the entire correspondence set, and
therefore, provides significant computational savings.

4.5 STRUCTURE TRIANGULATION

Assuming known camera poses, the 3D points corresponding to the point pair com-
puted by matching algorithm can be estimated by triangulation. The aim of triangu-
lation algorithm is to find the intersection of the lines defined by the camera cen-
tres of projection C,C’ and image coordinates /1, ¢ 11 of 3D point (Figure 7). In
real world scenarios, due to the presence of the noise, the lines in 3D space will not
usually intersect. Therefore multiple methods such as mid-point algorithm [4], Direct
Linear Transform (DLT) [27] or optimal triangulation [26] have been presented to find
the closest point to both lines. The disadvantage of the mid-point and dIt methods is
that the reconstruction is not invariant to affine nor projective transformation because
perpendicularity is not preserved under those transformations.

Given the corresponding pair {¢/1h,{¢"}#, the key idea of the optimal triangula-
tion algorithm (Figure 7) is to find a pair of points /1, {¢"J1i1 that best satisfies the
epipolar constraint e T Elehin = 0. The points satisfying epipolar constraint must
lie on the corresponding epipolar lines, e.g. the point ¢} lies on the epipolar line
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Figure 7: Optimal triangulation problem. The optimal image points {¢}1i, {¢"}111 lie on the corre-
sponding epipolar lines, closest to the measured points {¢}1i, {¢" 4,

1 = ET{¢in and vice versa. At the same time these points should lie as close as
possible to the original points {¢1i, ("}, Therefore we seek to minimize:

d(tmm, )2 + d(tehm, tehm)2, (26)

where the function d({¢}1i, (/1) computes distance between parameter points. Solu-
tion to this triangulation problem can be found using iterative minimization methods
or by applying non-iterative polynomial method presented in [26]. The advantage of
the optimal triangulation is the affine and projective invariance.

4.6 BUNDLE ADJUSTMENT (BA)

The sensor measurements inherently contain noise which propagates to the estima-
tion of sensor poses and computation of the 3D structure. Multiple measurements of
the same variable allow to find optimal configuration of sensor poses and 3D points
that minimises the measurement error. This refinement process is usually performed
as a final step of reconstruction pipeline by applying optimisation algorithm. The mea-
surement error functions are generally non-linear, so non-linear approaches have to
be used to find the solution.

4.6.1  Graph Representation

We model the static environment and parametrise it as positions of the struc-
ture points together with the poses and parameters of sensors by state variables
© =[07...0n]. The sensors observe the environment indirectly by measurements
Z=1[21...2m]

For simple and flexible representation highlighting the structure of such a complex
optimisation problem, we adopt a graph representation. Graph model is a graph con-
taining vertices defining the system variables, such as sensor or point positions, con-
nected by edges, representing spatial constraints between the variables derived from
measurements or prior knowledge. The cardinality of the factors define how many
variables the edge connects e.g., unary factors define constraints for a single variable,
binary relate two or ternary three variables of the system.
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Figure 8: Graph representation of two sensors pgy,p; observing points My, M, M, with mea-
surements zy with covariances Xy (for simplicity only covariance of measurement z,
is shown).

The goal of the BA is to obtain the Maximum Likelihood Estimation (MLE) of a set of
variables 0, containing the state variables e.g., sensor poses, environment information,
given the set of relative measurements z:

0" = argmax P(0 |z) = argmin (—log(P(0 | z))). (27)
(S} (S}

Due to the sensor noise, the measurements are also affected by noise:
zi = h(Bix, 051 ) — Vi, (28)

where the sensor model function h(0;y, 0;;) computes zero noise measurement ac-
cording to the actual configuration of variables 05y, 0; and vy is normally distributed
zero-mean noise with covariance Zy:

1
P(z | O, 05) o exp | —= || zi — (O, 051) IIE, ) - (29)
2

Finding the MLE from (27) is done by solving the following non-linear least squares

problem:
m

1
0* = argmin (z Z |z —h(eik,ejk)H;k ) . (30)
0 k=1

4.6.2  Non-linear Solving

To find the solution of the NLS, iterative methods such as Gauss-Newton (GN) or
Levenberg-Marquard (LM) can be applied. These iterative approaches start with an
initial configuration point Q0 and, at each step, a correction & towards the solution is
computed. For small ||5]|, a Taylor series expansion leads to linear approximations in

the neighbourhood of 6°

&(0°+8) ~e(0°) +]J5, (31)
where e = [ey,...,em] 1is the set of all nonlinear errors, called residuals, between the
estimated and the actual measurement:

]T

ek(Zk,e) :Zk_hk(eiklejk)l (32)
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and furthermore ] is the Jacobian matrix which gathers the derivatives of the compo-
nents of e with respect to the state. Thus, at each iteration g, a linear LS problem is
solved: ]
8" =argmin 5 [A 8 —b|*, (33)
8
where A = £~ 7\2](09) is the system matrix, b = —e(09) the right hand side (rh.s.)
and & = (0 — 09) the correction to be calculated [17]. The the minimum is attained
where the first derivative equals zero:

ATAS—ATb=0 or As—1=0, (34)

with A = AT A, the square symmetric system matrix, called the information matrix and
n = AT b, the right hand side. This is commonly referred to as the normal equation.

4.6.3 Linear Solving

The linearised version of the problem introduced above can be efficiently solved using
sparse direct optimization methods, either performing Cholesky or QR factorizations,
followed by backsubstitution. Cholesky factorisation yields A = R' R, where RT is the
Cholesky factor and a forward and back substitutions on R'd = ATb and Ré = d, first
recovers d and then the actual solution 6.

Alternatively, the normal equation in (34) can be skipped and QR factorisation can be
applied directly to matrix A in (33), yielding A = QR, where Q is orthogonal and R is
upper triangular, similar to R of Cholesky factorization up to the sign (Cholesky will
always have positive entries on the diagonal). The solution & can be directly obtained
by backsubstitution in R§ = d where d = R~TATb. Note, that Q is not explicitly
formed. instead b is modified during factorisation to obtain d.

After computing 8, the new linearisation point becomes

9t =095, (35)

where the operator @ is a corresponding composition operator depending on the type
of the variables.

4.6.4 Structure of Linearised system

The system information matrix A contains approximations of second derivatives of
error functions ey; (28). Because the error function ey; is dependent only on the state
variables 0; and 0;, it will affect the structure of the Jacobian to be non-zero only in
the rows corresponding to 6; and 0;:
o dey5(0) 0 dey;(01) 0 dey;(05)
Jij = 0 |0 o8, '”766)- .

.0l . (36)
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Figure 9: Pipeline of the reconstruction. Full lines represent order of processing blocks, dotted
lines (green) describe data dependencies of each block. Blue blocks are part of front-end,
estimating initial sensor poses and 3D structure. Red block represents back-end and is
responsible for refinement of the initial estimations. (best seen in colour)

Each measurement produces one row in the Jacobian matrix with non-zero elements
on the corresponding column positions. The system information matrix A and the
coefficient vector 1 are computed according to:

Ts—1
A= Z Jijzij Jij,

<i,j>€S

T¢—1
n= Z eijzij Jij

<i,j>€S

(37)

where S is a set of indices of variables that the measurements relate.

In practice, it is advantageous to keep the information matrix A as the system rep-
resentation because its size depends only on the number of variables, whereas the
Jacobian matrix A dimensions grow also with measurement count. Augmenting the
system with a new variable involves increase of the system matrix size. Updating with
corresponding measurement is an additive operation on the system matrix. Given the
initial configuration set of the variables and a set of constraints, the optimal configu-
ration of variables can be found following the MLE described in Section 4.6.2.

4.7 3D RECONSTRUCTION PIPELINE

Figure g illustrates the flow of the visual 3D reconstruction algorithm. The algorithm
can be divided into two parts—front-end part responsible for initial estimation of the
sensor positions and 3D structure, and back-end part that refines this initial estimate
by applying a non-linear optimization algorithm.

1. First step of the 3D reconstruction is the data acquisition and selection of input
data. The set of images should contain overlapping parts of the scene and depict
a static scene.

2. The processing continues with detecting feature points in the input images and
extracting their descriptors.
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3. The descriptors are used by a matching algorithm to establish the correspon-
dence pairs between sets of feature points from images, assuming the images
contain an overlap. False correspondence pairs are filtered out using RANSAC
algorithm and Epipolar geometry model of the cameras.

4. Once the corresponding pairs are established the pose of the camera can be com-
puted, depending on the available information, by one of the 3D pose estima-
tion algorithms (Section 4.3). If no 3D points are associated with the 2D feature
points, which is typical for processing the first pair of cameras, the poses of the
cameras is computed by decomposition of the Essential matrix. Otherwise if the
3D information is available for some of the feature points, the camera pose is
estimated using PnP algorithm.

5. The estimated camera poses and corresponding pairs are used as an input for
triangulation algorithm to compute the 3D structure.

Due to the noise in the measurements, the camera poses and structure points are
also subject to error. Therefore it is necessary to apply BA algorithm to refine the
camera poses and 3D structure. BA applies non-linear optimisation algorithms to
find optimal solution for camera poses and structure positions that minimizes the
reconstruction error.
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MULTISENSOR FRONTEND

The multisensor reconstruction algorithm consists of two main parts - multisensor front-
end and multisensor back-end. The multisensor front-end is responsible for processing
the data from sensors and estimation of the positions and rotations of sensors in
the scene, the spatial relations between them and initial computation of 3D structure.
The multisensor back-end builds internal representation of the system and further
refines the front-end estimation in a process called optimisation (Chapter 6). The front-
end processing follows the reconstruction pipeline (Figure 9) - feature and descriptors
extraction from data, matching, geometry estimation and 3D structure triangulation.
In this chapter we describe specific approaches applied in multisensor front-end.

5.1 FEATURE DETECTION AND DESCRIPTOR EXTRACTION IN DATA

The relations between the sensors are estimated from a sparse set of corresponding
data points. Using sparse sets of correspondences is computationally efficient and re-
liable for wide baseline registration. Finding the correspondences between two sparse
sets of feature points is based on matching algorithms which compare the descriptors
of the feature points and according to a similarity function choose the point pairs with
highest scores. When working under wide baseline, the features corresponding to the
same 3D point can visually differ due to the projective transformations of camera
models. To cope with the visual difference, robust feature descriptors and matching
methods have to be utilized to detect corresponding image points.

One of the two image pre-processing algorithms can be applied - projecting the
spherical image onto a cube [18], creating six images with reduced spherical distortion
and using them for descriptor extraction, or a projection of the spherical image around
the feature point to plane tangent to sphere [g]. Comparison of the matching quality
of different methods is described further in this chapter.

forate
-__i;' l'\l.ﬂ”\;'l*a%'r

Figure 10: Distortion of the lines in longitude-latitude image.
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Figure 11: Six cubic images generated from spherical image by projecting the data onto six sides
of a cube.

Figure 12: Tangential space.

Cubic Projection

By projecting the spherical image to the six sides of a unit cube co-centric with the
sphere, it is possible to create six planar images with reduced distortion present in
longitude-latitude image [18]. Using these six cubic images (Figure 11), standard al-
gorithms for processing of projective images can be applied. Disadvantage of this
method is that partitioning the image to six images causes that the descriptors of
feature points detected near the borders of the image lose some information.

Tangential Projection

The reduction of the spherical distortion as well as preservation the continuity of the
spherical image along left and right border can be achieved by projecting the spherical
image onto a plane tangent to the sphere at the feature point. This approach extracts
a patch around the feature point and performs the descriptor extraction on this image
patch.
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Figure 13: Correction of an extracted patch - From spherical latitude-longitude image (left) the
corrected patch (right bottom) is computed using tangential projection.

The patch is extracted around the feature point, in a coordinate system of a plane
tangent to the sphere at the feature point. The basis of the coordinate frame are deter-

mined as shown in Figure 12. The coordinates of the feature point (¢} are computed
using (10). Vector u = [0,1,0]" is chosen to correspond with the direction of the
y — axis of the spherical camera. The vectors v, w are computed to form the orthogo-
nal basis for the local coordinate system around feature point (/17 using equations:

w =i xu,

(38)
v=wx I,
therefore the corners of the tangent patch can be computed as:
—{clp v w
a; ='““'Mm+ LA ,EA ,
1 RSl 59

where A is a scale that defines the size of the patch. For specific size of the patch N in
pixel units, the scale can be computed from the knowledge of the pixel width M of
the source longitude-latitude image:

azzﬁﬁ ,
DS (40)
A = 2tan (z) .

By applying the inverse transformation from points on the tangent patch to the spher-
ical image, the image can be sampled and colour information of the patch pixels
computed (Figure 13).

5.2 MULTISENSOR REGISTRATION

In a multisensor scenario, where the image data is captured by different types of sen-
sors, it is desirable to process all available information to create a 3D model of a scene
and to use the relations between all sensors to achieve better accuracy and coverage
of the scene. We have defined the epipolar geometry in Section 4.2 and the relations
and geometry estimation between planar images in Section 4.3. In this section we will
analogously describe the relations between different sensors - two spherical cameras,
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Figure 14: Epipolar geometry between two spherical cameras.

spherical and planar camera and CLIDAR scan and spherical camera. These sensors
are often used for large-scale scene reconstruction, each with advantages and disad-
vantages. Monocular cameras can capture small details and obstructed parts of scene
but cover small field of view, whereas spherical cameras and CLIDAR devices cover
large parts of the scene but may not cover all details.

5.2.1 Epipolar geometry of Spherical Camera

Compared to pinhole camera projection, spherical projection is geometrically equiva-
lent, but in the case of spherical camera, the scene is projected onto a unit sphere in-
stead of projective plane [41]. The epipolar geometry is valid also between two spheri-
cal cameras, if the data normalization to unit vectors is performed. This normalization
transforms the pixel coordinates, or latitude-longitude coordinates to a unit vector on
a sphere according to (10) and (11). The following epipolar relations are defined as-
suming normalized coordinates of the images of 3D point ™/m - (¢, (eI which
together with the camera centres C, C’ define the epipolar plane.

In Figure 14, we can observe that the 3D point "W/'m is projected into spherical
imaging surfaces, creating point images (¢)1h and ("1, and together with camera
centres C, C’ are coplanar. The epipolar plane TT. intersects the spherical surfaces in
epipolar circles with their centres in the camera projection centre. The line coinciding
with camera centres C,C’ intersects the spherical surfaces in epipoles e, e’. If the
points (¢} and 1€} are corresponding points in this stereo system, then essential
matrix relates them by:

el elehm =o0. (41)

Note that according to (16), the first part, n’ = eI TE = {ehgyT [t]xR, creates a
vector perpendicular to translation vector [t]xR between camera centres C, C’ and to

vector (€11, therefore defining a normal to the epipolar plane TT, instead of general
representation of a line as in case of pinhole cameras. The inner product of this normal

vector n/ and vector {¢}1h1 is equal to zero:

n’telhi =0, (42)
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i.e. the point {¢/1i1 lies in the epipolar plane TTe. Analogously this relation is valid for
normal vector n = E{¢}1#1 and vector (¢ 1T

5.2.2  Spherical - Spherical Camera Registration

Accurate registration of the spherical images is an important step in the multisensor
3D reconstruction process. Spherical images, compared to traditional cameras, capture
large portion of a scene and therefore only few stereo image pairs are needed to
reconstruct whole scene. Each spherical stereo pair yields a 3D point cloud model of
a scene with respect to centre of the stereo spherical camera. To acquire consistent
model of a entire scene, these models have to be correctly aligned using one of the
alignment methods.

Two methods can be applied for the registration of stereo spherical image pairs -
ICP or 3D pose alignment with correspondence estimation. The ICP registration uses
3D point cloud data from each sensor and iteratively finds the alignment of the point
clouds that minimizes distance between closest 3D points. This approach requires
good initialisation and generally larger amount of 3D points, especially when regis-
tering data captured with wide baseline. Another disadvantage is the computational
complexity of ICP methods when using large amount of 3D points.

The 3D pose alignment with correspondence estimation approach estimates the
relative transformation between sensors by guided matching with the geometry de-
scribed in Section 4.3.1 as a model. The descriptors from the 2D features are assigned
to their corresponding 3D points for each sensor, and the matching is performed be-
tween the 3D points. The feature matching stage seeks for nearest neighbours, by
comparing the associated descriptors. The correspondences are ranked by the MR-
Rayleigh metric [55]. However, the 3D reconstruction framework often operates under
wide-baseline conditions, which significantly reduces the number of viable matchings.
Therefore, the implementation often resorts to a compromise between ambiguity and
quantity, and considers the multiple nearest neighbours, instead of the best. Each
candidate is verified for reciprocity, i.e. whether the points are in each other’s neigh-
bourhoods. Excessively ambiguous matches are rejected by truncating the neighbour-
hoods so that, the ratio of the similarity scores for the worst candidate within the
neighbourhood and the best candidate outside is above a threshold.

In our reconstruction pipeline, we prefer the latter method because the pose esti-
mation using only sparse subset of corresponding 3D points followed by refinement
achieves similar accuracy results to ICP method but with better time efficiency. The
comparison of the methods is shown in Section 7.1.

In the case of registration of monocular spherical image, the PnP algorithm (Sec-
tion 4.3.3) can be applied to find the relative transformation using the 2D-2D corre-
spondences between spherical images to create 3D-2D correspondences. Assuming
that we use the normalized unit vectors to represent the points correspondences and
that at least four correspondences are available to estimate the pose of the new regis-
tered spherical camera.

29



[RIt]

Figure 15: Epipolar geometry between spherical and planar camera.

5.2.3 Spherical - Planar Camera Registration

Although the 3D structure of the environment reconstructed from stereo spherical
image pairs provides dense scene structure it may contain noise and inaccuracy due
to the mismatches during disparity map estimation caused by insufficient illumina-
tion or lack of texture in the parts of scene. The information from planar images can
recreate more details of the scene or improve the accuracy of reconstruction by esti-
mating the structure from multiple registered planar cameras. Also the images from
hand-held camera are easy to obtain to cover the areas obscured by objects in the
scene.

The registration of planar and spherical cameras is based on visual correspondences.
The camera models of the spherical and monocular cameras are both projective mod-
els, but with different projection surfaces. Due to the fact that the spherical cameras
capture complete scene around the camera, the overlap between spherical and monoc-
ular image is usually present but small in the spherical image. This can lead to small
number of corresponding points and a large number of outliers, therefore a robust
algorithm is required to determine the relative transformations between the cameras.
Also the distortion in the longitude-latitude images has to be taken into account (Sec-
tion 5.1).

The epipolar relations between monocular planar image and a spherical image pro-
jected onto unit cube has been researched in [8]. We define the relations with the
spherical image in its spherical form, because it is a convenient format for internal
representation directly produced by industrial cameras.

Following the notation of Figure 15, we assume geometry of planar and spherical
camera, where {¢}# is a vector of image point in planar camera imaging surface
and (¢} a vector of image point on unit sphere of imaging surface of spherical
camera. The camera centres C, C’, 3D point {"V}m and its images define epipolar plane
ITe which intersects the projection surface of the camera in epipolar line le and the
projection surface of the spherical camera in epipolar circle Te. Assuming known
essential matrix E, (41) will be valid also for this scenario, because the 1. = ¢/ E
defines epipolar line in the planar image and the image 1}t lies on the line, as well
as equation n = (¢}hET defines normal of a epipolar plane which the point (¢}
contains.
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Figure 16: Correspondences estimation: a) Guided matching using spherical-planar epipolar con-
straint. b) Guided matching using spherical-planar constraint and 3D-2D registration
scheme described in Section 4.3.3.

In the Figure 16, the registration of the longitude-latitude and planar image is
shown. The guided matching algorithm applying the epipolar geometry described
in this section finds set of corresponding matches between the images, but still some
outliers are present because the spherical-planar epipolar constraint restricts the cor-
responding point to lie on epipolar plane or line and therefore any point lying on
those will satisfy the constraint. Therefore these matches are further filtered using the
3D-2D registration model (Section 4.3.3) to obtain reliable set of corresponding points
and relative transformation between the sensors.

5.2.4 CLIDAR Registration

CLIDAR scans provide accurate dense 3D structure of the scene in the form of point
cloud with assigned colour. Often the reconstruction using only few CLIDAR scans
is sufficient for many applications, but in a large-scale scenario it is advantageous
to extend the 3D model with data from other sensors such as spherical cameras or
handheld cameras to achieve better range, more detailed reconstruction or to cover
obstructed parts of the scene. For this purpose the relative transformations between
sensors have to be estimated.

The CLIDAR devices such as FARO" are composed of multiple sensors, a range
measuring laser scanner and camera capable of capturing colour information. The
precise calibration allows for mapping between 3D points and colour information.
The devices also provide tools to extract the longitude-latitude image from the colour
information captured by camera and the 3D point cloud provides depth for each
element of longitude-latitude image. So this data is equivalent to the data from stereo
spherical image pair and can be used for the estimation of relative pose of sensors.

In the case where the longitude-latitude image is not available from CLIDAR device
and only the coloured 3D point cloud is provided, coloured 3D point cloud can be
transformed to the from of spherical (and depth) image by projecting the 3D points

1 www.faro.com
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Figure 17: Coloured 3D point cloud from CLIDAR device (top). Generated longitude-latitude
image from point cloud data (bottom).

onto unit sphere with the centre in the frame origin of the point cloud using (8). For
each such projected 3D point the pixel position is found by computing the longitude-
latitude coordinates and applying (11). The source 3D point cloud and a longitude-
latitude image created from CLIDAR scan from Cathedral dataset using this procedure
are shown in the Figure 17.

The generated longitude-latitude image and its corresponding depth information
can be used for registration either with other longitude-latitude images (Section 5.2.2)
or with monocular planar images (Section 5.2.3).

5.3 EVALUATION OF THE FRONT-END APPLICATION

We evaluate the quality of correspondence estimation between two images and ac-
curacy of registration with respect to the used descriptor type (SIFT, KAZE) and a
method of image distortion correction. We compare the number, quality of matches
and the accuracy of image registration using the cubic projection method and tangent
projection method compared to the basic method - descriptor extraction directly from
longitude-latitude image. Note that the evaluation in this section involves poses esti-
mated by front-end application, without system optimisation.

5.3.1 Spherical-Spherical image registration

To evaluate the spherical-to-spherical image registration, we use the Studio dataset
spherical images which contain ground truth measurements of the distances between
the centres of spherical camera positions as well as distances to distinctive points
in the scene (Table 2). For each method (longitude-latitude image, cubic images, tangent
space) and descriptor type (SIFT, KAZE), we perform the registration of spherical im-
ages, and measure the number of valid correspondence matches (using RANSAC with
geometry estimation constraint) used for the estimation of the relative position, and
compute the error in the measured distances between spherical cameras and known
ground truth information. To achieve the fair comparison of descriptors, the feature
point set was extracted individually and the descriptors (SIFT, KAZE) were extracted
for those feature points. We were not able to apply this to the ASIFT approach due to
the different extraction process.

Another dataset that we used for spherical registration experiments is the Synthetic
dataset, containing spherical images generated from CLIDAR data (Table 2). Further
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evaluation has been performed on datasets CCSR, Atrium, and Cathedral to compare
the number of inlying matches used for relative pose estimation depending on the
used descriptor extraction method in different baseline settings between capture poses
~3m, 6m, 23m for Atrium, CCSR, Cathedral respectively (Table 3).

Table 2: Correspondence pairs counts and accuracy of the registration of spherical images for
every descriptor type (d - directly from longitude-latitude image, ¢ - projection to 6 cu-
bic images, t - projection of the image to tangent plane) for Studio and Synthetic dataset.
Multiple numbers in each column represents measurements between consecutive spher-
ical images, e.g. first number in Matches column represents number of correspondence
matches between first and second longitude-latitude image.

Studio

Matches Error [mm] Error [°]
SIFT d | 2114/2064/3120 1/24/13 1.2/2.4/0.2

SIFT ¢ | 2571/2023/2868 1/28/8 1.2/2.4/0.2

SIFT t | 2615/2044/3070 1/26/9 1.2/2.5/0.2
ASIFT d | 4541/2987 /4801 6/41/8 1.3/2.5/0.2
ASIFT ¢ | 1321/1806/3387 2/35/10 1.2/2.5/0.1
KAZE d | 2426/1972/2887 1/25/10 1.2/2.5/0.1
KAZE ¢ | 2345/1930/2718 1/26/11 1.3/2.3/0.2
KAZE t | 2435/1986/2945 1/21/11 1.2/2.5/0.2

Synthetic
Matches Error [mm] Error [°]
SIFT s 1448/2300 46,87 1.7/1.3
SIFT ¢ 1354/1982 39/79 1.7/1.2
SIFT t 1423/2235 32/80 1.7/1.3
ASIFT s 1666/2129 37/81 1.7/1.3
ASIFT ¢ 1226/1262 36/81 1.6/1.5
KAZE s 1456/2189 55/90 1.7/1.3
KAZE ¢ 1392/1908 55/88 1.7/1.2
KAZE t 1411/2176 52/83 1.7/1.3

Summary

The relative transformation could be estimated using all three types of descriptors
with similar number of estimated correspondence pairs, see Table 2. For the registra-
tion of images from sensors with large baseline (Cathedral), ASIFT feature and descrip-
tor extractor provided highest number of estimated correspondences. This is due to
the extraction of the descriptors also from affine transformed longitude-latitude im-
ages and therefore achieving affine invariability. On the other hand, ASIFT detector
produces very high amount of feature points which leads to more time expensive
processing.

33



Table 3: Correspondence pairs counts of the registration of spherical images depending on the
descriptor type (d - directly from longitude-latitude image, ¢ - projection to 6 cubic im-
ages, t - projection of the image to tangent plane) for Atrium, CCSR and Cathedral datasets.
Multiple numbers in each column represents measurements between consecutive spher-
ical images, e.g. first number in Matches column represents number of correspondence
matches between first and second longitude-latitude image.

Atrium CCSR Cathedral
SIFT d | 2555/1924/1838/2130 | 1390/1145 | 334/165
SIFT ¢ | 2221/1980/1780/1858 | 1158/964 317/161
SIFT t | 2334/1949/1731/1902 | 1316/1082 | 315/261

ASIFT d | 2638/1909/1698/1897 | 1804/1864 | 717/597

ASIFT ¢ | 1938/1566/1565/1802 | 1172/1310 | 564/638

KAZE d | 2091/1785/1543/1445 | 1204/1012 | 274/147

KAZE ¢ | 1789/1609/1481/1427 | 1106/927 289/214
KAZE t | 2177/1769/1608/1703 | 1173/1025 | 274/254

Comparing the feature and descriptor extraction directly from longitude-latitude im-
ages and extraction from six generated cubic images, the number of established corre-
spondences is lower for the cubic method, mostly due to the image borders in six gen-
erated images removing information for descriptors compared to longitude-latitude
image. The overall translation error is similar or slightly lower for all descriptor types
using the cubic method compared to the extraction directly from longitude-latitude
image. The approach utilizing tangent projection for descriptor extraction provided
similar number or more correspondence pairs as direct method but resulted mostly in
slightly lower translation error than the other two methods.

All methods and descriptor types proved to be feasible for the registration of stereo
spherical image pairs, with tangent projection method achieving lowest errors in most
of the datasets while maintaining high number of correspondence pairs. For the pro-
cessing of datasets with long baseline (more than 15m), using ASIFT features and de-
scriptors assures highest amount of correspondence pairs. For datasets with smaller
baseline, SIFT or KAZE extractor provides sufficient amount of correspondence pairs
with the advantage of lower computation time compared to the ASIFT extractor.

5.3.2 Spherical-Planar image registration

To create a consistent 3D reconstruction from spherical and planar images the rela-
tive poses of the sensors have to be estimated. For this task a sufficient number of
corresponding features in both type of images has to be determined. Generally, the
spherical images capture surrounding area on much bigger scale than the planar im-
ages which always capture only small portion of the scene, therefore the descriptors
have to be scale invariant. The distortion in the longitude-latitude images also plays
important role in finding correspondences. Using the best descriptor type and distor-
tion correction method (Section 5.1) can lead to more established correspondences and
therefore to more accurate pose estimation. In this section, we evaluate the accuracy
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Table 4: Spherical-Planar image registration results for different types of descriptors and distor-
tion correction methods used (d - directly from longitude-latitude image, c - projection
to 6 cubic images, t - projection of the image to tangent plane). The values in the paren-
thesis represent variance.

Synthetic CCSR
Matched [%] | Error [mm] Error [°] Matched [%]
SIFT d 100% 80(0.003) 0.521(0.089) 52%
SIFT ¢ 100% 51(0.001) 0.368(0.019) 50%
SIFT t 100% 44(0.001) 0.380(0.020) 55%
ASIFT d 100% 67(0.002) 0.39(0.017) 60%
ASIFT c 100% 60(0.003) 0.46(0.038) 58%
KAZE d 90% 84(0.008) 0.54(0.176) 24%
KAZE ¢ 90% 82(0.007) 0.54(0.086) 23%
KAZE t 90% 65(0.002) 0.42(0.116) 24%

of registration of planar images to the spherical image depending on the descriptor
type and the method of spherical image distortion correction.

We evaluate the registration algorithm on Synthetic dataset, with ground truth in-
formation about poses of spherical camera and virtual planar cameras. The results in
the Table 4 show percentage of correctly registered cameras and the mean pose error
and variance compared to the ground truth for each descriptor type and distortion
correction method.

Summary

For the Synthetic dataset, the registration algorithm was able to register all planar
images to the spherical image using SIFT and ASIFT descriptors. KAZE descriptors
failed to register two images from the Synthetic dataset for each correction method.

The ASIFT descriptors performed comparably in both combinations with direct ex-
traction and cubic projection method, but did not achieve the accuracy of SIFT descrip-
tors with cubic or tangential projection method.

Overall, the cubic projection method managed to lower the error for all types of
descriptors. Furthermore, using the tangent projection method proved to be most ac-
curate of the correction methods.

Regarding the CCSR dataset, many planar images could not be registered due to
the camera capturing very small part of of the scene or ground, where not enough
distinctive features could be found to establish sufficient number of correspondence
pairs. Using the KAZE features failed for the biggest number of the CCSR dataset
rendering this method not very suitable for processing of real world dataset. SIFT and
ASIFT descriptors with tangent correction and direct method succeeded in most cases
of the planar-spherical image registration. The cubic method failed at more images
than other two methods due to the borders in six generated images leading to less
information in descriptors.

35



MULTISENSOR 3D RECONSTRUCTION BACK-END

The multisensor back-end is tied to the front-end part, and its purpose is to refine
the initial sensor poses and structure estimation provided by the front-end algorithm.
The internal representation consists of variables representing the sensor poses and
structure points parameters, and of edges derived from the measurement data. The
initial configuration of the sensor and structure parameters is provided by the front-
end application and it encodes the initial state of the system. Given this state, we can
compute the expectations—predictions of the measurements. The difference between
measurement expectation and actual measurement describes how well the actual con-
figuration of system fits the measurements.

6.1 SLAM++

The joint pose and structure refinement is implemented on our open-source, non-
linear graph optimisation library, called SLAM++ [45]. This C++ library is a very effi-
cient implementation of several non-linear least squares solvers, based on fast sparse
block matrix manipulation for solving the linearised problems. SLAM++ was primar-
ily developed for efficient solving of SLAM problems in robotics, which can be for-
mulated as a non-linear least squares problem similarly as described in Section 4.6.2,
where variables represent robot trajectory and/or landmark positions, and the edges
consist of relative measurements of the landmarks from robot positions. SLAM prob-
lem is mathematically equivalent to BA. The general implementation allows for defi-
nition of variables and edges for solving BA problems as well. SLAM++ produces fast,
but accurate estimations, which most of the time outperforms similar state-of-the-art
implementations of graph optimisation systems [34, 33, 37].

6.1.1  Sparse block matrix structure

Solving the BA, SLAM and SFM non-linear problems involves operations with matri-
ces having a block structure (Section 4.6.4), because the variables usually have more
than one degree of freedom (DOF). For example the pose of sensor in 3D is a vari-
able represented by six parameters - three defining position and three rotation of the
sensor. The associated system matrix can be interpreted as partitioned into sections
corresponding to each variable, called blocks, which can be manipulated at once.

The dimensions of the system matrix are usually very large, but only a small num-
ber of blocks are non-zero. It is due to the fact that a measurement only affects a few
variables, for example the field of view of cameras is limited so they do not observe
all 3D points, i.e. not all variables are connected by measurements and therefore only
a few blocks in the system matrix are non-zero. Therefore it is necessary to use sparse
block structures for memory efficient storage and use sparse algorithms for matrix
operations [14, 16].
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a) b) <)

Figure 18: Sparse matrix structure, a) SLAM pose and landmark problem. b) BA problem - nat-
ural order b) BA problem - reordered. The non-zero blocks are in blue, the b) and c)
matrices contain same amount of non-zero blocks.

In the existing state of the art implementations of sparse block matrix schemes
[37, 1], the arithmetic efficiency is mostly reduced, compared to element-wise sparse
matrices. That can be explained intuitively by the need for two extra nested loops
for block rows and block columns that reduce the arithmetics to flow control instruc-
tion ratio and thus also computational efficiency. SLAM++ implementation elegantly
solves this issue using metaprogramming [43, 45].

SLAM++ takes advantage of advanced metaprogramming concepts: type lists are
employed to represent and manipulate the sets of possible block sizes. Those are used
in the matrix operations to generate decision trees that handle all possible loop sizes in
a given matrix. This allows for optimization using loop unrolling and vectorization at
the block level. It can be easily shown that if log, of the number of different block sizes
is smaller than the average block size, the resulting code will contain less branching
and thus will run faster. Note that in C++, this functionality is accessible using simple
and easy to read syntax where the list of block sizes is passed to each individual
matrix operation call in angled brackets.

The vectorization and loop unrolling, in addition to other algorithmic and data
structure improvements lead to substantial advantages over element-wise sparse im-
plementations, as well as over the other existing sparse block matrix implementations.

Additionally, in the process of solving a linearised system, direct methods are often
employed. Some of the other existing implementations such as g2o [37], iSAM [34] or
Ceres [1] use some sparse block matrix schemes internally but rely on element-wise
sparse factorization [13, 15]. This requires converting the system matrices, leading to
reduced efficiency. SLAM++ contains highly efficient sparse block Cholesky factoriza-
tion and thus avoids this conversion.

The information matrices associated with SLAM problems are usually very sparse
(about 0.1-0.25%). Since the odometry is often involved, edges exist between consecu-
tive poses, yielding a block diagonal matrix. Additional edges in the form of loop clo-
sures and landmark observations add the off-diagonal non-zeros. In landmark SLAM,
the landmarks typically form only a small fraction of the system (Figure 18, a)).

Similarly, the information matrices associated with the BA problems are also very
sparse, 0.005-0.025%. Unlike landmark SLAM, however, the landmarks form the ma-
jor part of the system, e.g. 92/57957 in Guildford Cathedral.On the other hand, in SLAM
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datasets 100/10000 in CityTrees10k or 151/6969 in Victoria Park. Additionally, the BA
systems typically lack odometry and thus they form bipartite graphs. This is often seen
as an “arrow shape” (Figure 18, c)) matrix when the sensor pose vertices are ordered
before the landmark position vertices.

6.1.2 Optimisation

SLAM++ provides two iterative non-linear optimisation methods-Gauss-
Newton (GN) and Levenberg-Marquardt (LM). For the BA problems, the LM
method provides more reliable results because the initial estimation can be relatively
far from the minimum and the GN easily diverges. LM is based on efficient damping
strategies which allow convergence even from poor initial solutions. For that, LM
solves a slightly modified variant of (34), which involves a damping factor A:

(A+AD)s =1, (43)

where D can be either the identity matrix, D = I, or the diagonal of the matrix A,
D = diag(A).

Special structure of the BA problem can be exploited to achieve more efficient solv-
ing of linearised system. Schur complement is employed to solve the linearised prob-
lem in (43). The system matrix is split in four blocks separating camera and points

variables:
[
m NMm

This is a common practice in solving 3D reconstruction problems, where the camera
poses are linked only through the points. It results in block diagonal A and C matrices,
which can be easily inverted by inverting the individual blocks. If C is invertible,
the Schur complement of the submatrix C is A—BC~'B'", and is used to solve for
the camera pose variables first. This is done by solving Schur(A)p =n,,, — BC! Ny,
which is amenable to using both direct or iterative solvers (e.g. [40] used a dense
Cholesky solver, [36] used a sparse one). The points can then be obtained by two
matrix-vector products m = c! (N, — B’ p).

Performing matrix inversion and multiplication in the Schur complement form
brings reduction in computational time compared to performing Cholesky factori-
sation of the whole system.

A B
BT C

6.1.3 Incremental approach

For applications that run in real time, augmenting the system with new variables and
measurements needs to be performed efficiently every step. In [29], we present an
approach that takes advantage of the sparse-block structure of SLAM and BA prob-
lems, and avoids the assembly of the linearised system each iteration by incrementally
updating the factorised form R of the linear system A and changing the linearisation
point only when needed. The incremental updates are performed only on the parts of
the matrix that are affected by new measurements.
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Incrementally updating the system matrix

Updating the system with a new measurement is additive in information form [30].
We denote Q = ]iT). Z;)J Jij and w = —Jj; Z;j]/ 2 eij to be the increments in informa-
tion, where J;; is the Jacobian of the new measurement. In general, the measurement
function h(-) involves only two variables, (0;,0;). For this reason and for simplicity,
the following formulation will be restricted to measurements between two variables
but its application remains general. The corresponding Jacobian, ], is very sparse (36)
and this translates into a sparse () and w. The update step only partially changes the
information matrix A and the information vector n. For simplicity of the notations, in
the following formulations, the system matrices are split in parts that change (A;;,
1) and parts that remain unchanged (Ayp, Ao and ng):

T
A — Aoo /\10
Ao N1 +Q

Mo
ny +w

(45)

In the formulation above we deliberately considered that the current measurement
to be integrated involves the last variable added to the system. This is the situation
usually encountered in incremental SLAM problem. Note that this assumption is not
necessarily needed, the formulation in (45) stays general.

As shown above, only a small part of the information matrix and the information
vector are changed in the update process and the same happens with its factorized
form R. The updated R factor and the corresponding r.h.s. d can be written as:

g — |Roo 1301 d— (~1o . (46)

The updated part of the Cholesky factor and the corresponding right hand side can
be computed as:

Ry = chol(R};Ry; +Q), (47)
d; =Ry \ (fi1 — Ry do) - (48)

This fast incremental update approach suffers from two important problems. Firstly,
without periodic reorderings, the factorized form becomes less and less sparse, slow-
ing down the solving. Another problem is that within an iterative non-linear solver
the linearization point can change every iteration, invalidating the entire factorization.

Incremental Ordering

The recently introduced data structure, the Bayes tree [33], offers the possibility to
develop incremental algorithms where reordering and re-linearization are performed
fluidly, without the need of periodic updates. Inspired by this strategy, SLAM++ pro-
poses an elegant and highly efficient incremental reordering which combines the effi-
ciency of matrix implementation [29].

The order of the rows and columns in the system matrix A directly influences the
number of non-zero elements, also called fill-in, in the factorised matrix R and affects
speed of updates. It has been presented [33] that reordering the variables every step
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Figure 19: Data flow diagram of incremental block Cholesky factorisation. Light blue parts of
matrix do not change, pink are parts that will change, red blocks represent the update
and dark blue blocks non-zero elements.

significantly reduces the fill-in of the factorised matrix, but performing the full re-
ordering of whole system matrix A would be inefficient and would essentially lead to
a batch solver. Therefore the partial reordering strategy of the part of the factorised
matrix affected by update is facilitated. Whole system matrix reordering and factori-
sation is performed only when linearisation point changes or when the updated part
of factorised matrix is significantly big.

The approach in [45] shows how an efficient incremental ordering can be obtained
by considering a partial ordering on a submatrix of A, which is slightly larger than
A11 = A17 +Q and which satisfies the conditions of being square and not having any
non-zero elements above or left of it (Figure 19). This guarantees that the ordering
heuristics such as approximate minimum degree [2] will have information about the

non-zero entries in A7y = 7\31 , which would otherwise cause unwanted fill-in.

The factorisation of the A matrix can be performed using Resumed Cholesky algo-
rithm implemented in SLAM++. This algorithm is able to compute factorisation by
columns while only using the calculated values to the left of this column. Therefore
it is possible to resume the factorisation of the right part of R while only using the
reordered part of A and the unchanged part of the factor Rpp. The advantage of this
approach is the overall simplicity of the incremental updates to the factor, while also
saving substantial time by avoiding recalculation of Rg.

6.1.4 Covariance Recovery

In some applications, the estimation of the covariance of the variables is necessary to as-
sert the reconstruction or to evaluate mutual information required in active mapping.
The calculation of the covariance amounts to inverting the system matrix £ = A~'.
For large systems this operation is prohibitive, since it results in a fully dense matrix.
Many applications require computation of covariances only for a few elements of the
system matrix, usually the covariances of the diagonal elements and of the last col-
umn. For example in BA application those covariances of diagonal elements represent
uncertainty of camera poses and 3D point positions.
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Figure 20: Covariance computed for camera poses and structure points of Cathedral dataset.

SLAM++ elaborates on the recursive formula for covariance estimation of [6, 23, 32]
which allows computation of covariances for specific elements from factorised matrix
R. To compute multiple elements of the covariance matrix, such as the whole block
diagonal, these formulas are efficient only if all the intermediate results are stored.

We mentioned that most of the algorithmic speedups can be applied in case the
linearisation point is kept the same. As demonstrated in (45), the contribution of new
measurements is additive. In [31] we show that the same update of covariance matrix
is subtractive, i.e. the new measurement adds information to the system and reduces
uncertainty. The proposed scheme allows for incremental calculation of X on demand,
whenever needed. Calculating the covariances incrementally leads to about two orders
of magnitude speed-up, compared to the other state of the art implementations.

6.1.5 SLAM-++ efficiency results

The SLAM community developed very efficient solvers due to the need of fast process-
ing in robotics. To evaluate the SLAM++ efficiency, we compare the implementation
with similar state of the art solvers such as iSAM [34], g20 [37], gtsam implemen-
tation of the iSAM2 algorithm [33] and SPA [40]. The evaluation is performed on
standard simulated robotic datasets - Manhattan [42], 10k [24], City1ok, CityTrees10k
[34], Sphere [24], and four real datasets - Intel [28], Killian Court [7], Victoria park [28]
and Parking Garage [37].

All the tests were performed on an Intel Core i5 CPU 661 with 8 GB of RAM
and running at 3.33 GHz. This is a quad-core CPU without hyperthreading and with
full SSE instruction set support. During the tests, the computer was not running any
time-consuming processes in the background. Each test was run ten times and the av-
erage time was calculated in order to avoid measurement errors, especially on smaller
datasets.

SPA and g2o0 are based on similar sparse block matrix scheme which is maintained
until the matrix factorisation is performed, then the switch to format to be able to
use libraries CSparse [13] and CHOLMOD [15] to perform factorisation, which is a
time consuming process. Those are state of the art element-wise implementations of
operations on sparse matrices. SPA is optimized for 2D SLAM problem, g20 imple-
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Figure 21: [llustration of SLAM datasets: a) Manhattan, b) 10k, c) City1ok, d) CityTrees10k, e)
Sphere, f) Intel, g) Killian Court, h) Victoria Park, i) Parking Garage

mentation is general, allowing any type of SLAM, BA or SFM problem. iSAM requires
periodic batch steps to reduce the fill-in. iSAM2 is based on Bayes tree data structure,
allows incremental reordering and fluid relinearisation.

Batch Solving

Timing results for running batch solving are shown in Table 5. The last row reports
the values of x? error. We denote A — SLAM an algorithm that builds linear system
in (33) and A — SLAM an algorithm that increments information matrix in (34). The
algorithm is also evaluated using factorisation from CSparse (CS) and CHOLMOD
(CM) libraries. The comparison in batch mode shows a speed-up of 10% when com-
pared to the fastest implementation which is mainly due to the proposed block matrix
scheme. Note that the small speed-up is due to the fact that in this benchmark, the fac-
torization accounts most of the solving time and the compared solvers use the same
implementations.

Incremental Solving

Two incremental algorithms, first updating only the system matrix A, performing
factorisation every step (denoted Inc/A) and second keeping the factorised matrix L
up to date (IncL), were evaluated using block Cholesky (BC) factorisation proposed in
[45], factorisation from CSparse (CS) and CHOLMOD (CM) libraries.

In the Table 6, the execution times of the processing of the datasets are shown.
The flags bioo represent the frequency of batch computations (factorisation of whole
system matrix A) each 100 vertices inserted. For the results without those flags, the
nonlinear system was solved every step in order to obtain the current estimation, or
only when needed in the case of our incremental algorithm. The incremental algo-
rithm provides a solution with each new update.
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Manhattan 10K 100K | City10K | Treesi0K | Intel | Killian

g20(CS) 0.061 0.554 | 10.814 | 0.486 0.136 0.007 | 0.008
g20(CH) 0.060 0.550 | 9.418 0.449 0.139 0.007 | 0.009
iISAM(CS) 1.364 2952 | 24958 | 1421 0.625 0.036 | 0.054
A-SLAM(CS) 0.057 0.634 | 10479 | 0.464 0.139 0.013 | 0.009
A-SLAM(CH) 0.061 0.698 | 12.009 | 0.531 0.147 0.008 | 0.010
A-SLAM(CS) 0.042 0.485 | 9.221 | 0.420 0.092 | 0.005 | 0.007
A-SLAM(CH) 0.047 0.580 | 11.056 | 0.456 0.109 0.006 | 0.008

X2 6112 171545 | 8685 31931 548 559 | 5-107°

Table 5: Comparison of the batch solvers (CH refers to CHOLMOD and CS to CSparse library).

Manhattan 10K City10K | Trees10K | Sphere | Intel | Killian | Victoria | Garage
SPA 24.16 518.34 | 309.56 N/A N/A 1.48 5.67 N/A N/A
820 22.51 500.37 | 302.50 175.12 14549 | 1.30 5.02 81.19 20.37
iSAM(b100) 4.83 279.93 77.57 22.93 3622 | 1.29 4.21 11.92 52.22
iSAM2 4.93 91.74 60.98 32.69 31.27 | 0.62 1.19 16.35 3.66
IncA CS 8.60 287.70 | 202.84 19.53 21649 | 0.65 1.71 23.16 17.32
IncA CH 10.73 236.28 | 181.14 24.48 7149 | 0.79 2.10 28.26 23.93
IncA BC 7.21 242.21 188.85 17.57 78.37 | 0.51 1.24 18.71 11.34
IncL BC 3.05 79.65 53.95 19.31 9.87 | 035 | 1.05 11.20 34
error-iSAM2 6205 171600 | 31951 794 775 559 | 8e—5 370 1.26
error-IncL BC 6111 171919 | 31931 12062 727 558 | 5e—5 144 1.31

Table 6: Performance and accuracy tests on multiple datasets. The accuracy is measured as a
sum of squared errors. The accuracy for landmark datasets (Trees10K, Victoria Park) are
different because of different landmark parametrisation and therefore incomparable.

iSAM(b100) e==iSAM2 allBatch-A —Inc-L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
vertex

Figure 22: Quality of the estimations on 10k dataset.

The incremental algorithm is different from the algorithms of g2o and SPA, where
a batch step is performed every n variables inserted into the system and no solutions
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are available in-between, so the results are comparable only to IncA for n = 1. iSAM
and iSAM2 provide solution every step, with iSAM requiring periodic batch step (by
default every 100 steps). Keeping the same linearisation point for long time leads to
error increases and decreases between those steps (seen in Figure 22).

The incremental implementation achieves the fastest results on all datasets except
CityTreesiok dataset, which is caused by dense structure of the problem. In this case
reordering is advantageous over incremental reordering. The closest results to IncL
algorithm are from iSAM2. The difference between those algorithms is that IncL relin-
earizes affected variables only when needed.

The block Cholesky factorisation algorithm was tested on full system matrices in
the incremental algorithm and compared with CSparse and CHOLMOD algorithms.
The fastest results were achieved using the block Cholesky algorithm for all tested
datasets.

Covariance Recovery

Table 7 shows the time performance of SLAM++ incremental covariance recovery strat-
egy compared with g2o and iSAM implementations. The block-diagonal and the last
block column of the covariance matrix are recovered at every step in all the cases.
These are the only elements of the covariance matrix required for taking active deci-
sions based on the current estimation and efficient search for data association in an
online SLAM application. The SLAM++ covariance computation for BA datasets were
performed in [44].

Manhattan 10K City10K | Trees1oK | Sphere | Intel | Killian | Victoria | Garage

iSAM 206.58 6712.03 | 4585.15 | 1009.91 | 6051.73 | 6.23 | 19.27 31057 | 23713

820 18.42 5902.46 | 3742.66 938.97 | 553648 | 6.92 | 21.59 293.09 | 216.28
SLAM++ 4.37 179.69 55.87 30.98 24.64 | 054 | 143 13.89 10.77
SLAM++ Total 13.88 388.67 | 21943 60.41 105.35 | 1.11 2.99 37.11 27.08

Table 7: Time performance in seconds for the covariance recovery method on multiple SLAM
datasets. Last row reports total processing time—solving the SLAM problem and covari-
ance computation.

In conclusion, the proposed implementation significantly outperforms all the exist-
ing implementations due to the proposed incremental covariance update algorithm
and the blockwise implementation of the recursive formula.

6.2 SYSTEM REPRESENTATION

We utilize hyper-graph structure to represent the optimisation problem (Section 4.6.1).
SLAM++ implements variables structures to define sensors poses and points in 2D
or 3D space and edge structures to impose constraints between the variables. In this
section we describe the internal representation of the variable and edge structures
used in mutisensor SLAM++ application.
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6.2.1 Variables

The configuration of the system consists of variables such as sensor poses and struc-
ture points. All variables extend the implementation class CSEBaseVertexImpl which
models the parameter block used for representation of vertex with specified degree of
freedom. The variable classes also implement the update (35), which needs to be han-
dled differently for each variable. For example, whereas the update of the 3D point is
per-element addition, the update of 6DOF position variable is an operation on se(3)
which is the Lie algebra [51] of the special Euclidean group SE(3).

3D Point

Code 1: Implementation of a 3D point variable.

class CVertexXYZ : public CSEBaseVertexImpl<CVertexXYZ, 3>

The reconstructed environment is represented by 3D points computed from sensor
measurements e.g., triangulation algorithm from corresponding points between cam-
eras or from depth information from stereo cameras or LIDAR. Due to the presence
of noise in the measurements and camera positions, the computed position of the 3D
points is also perturbed by noise, therefore it is necessary to define the 3D points as
variables to be able to refine the structure by optimising the system. The 3D structure
point is represented by a vector M = [x,y,z]" € R describing the position of the point
in the world coordinate frame.

Monocular camera

Code 2: Implementation of a monocular camera variable.

class CVertexCam : public CSEBaseVertexImpl<CVertexCam, 6>
protected:
Eigen::Matrix<double, 5, 1, Eigen::DontAlign> m_v_intrinsics;

The camera pose consists of position and orientation. The position is defined by three
parameters representing the position of the sensor in the world coordinate frame and
the rotation is represented by three axis-angle parameters. The axis-angle representa-
tion, in the form of e, compared to the rotation matrix representation uses only three
quantities to describe the rotation. Unit vector e = [eg, ey, e;] indicates the axis of
rotation and the angle « describes magnitude of rotation.

The camera pose variable has six degrees of freedom and is represented by a vector
p = [x, U,z xep, xey, xey], element of se(3), defining the rigid transformation of the
camera in the world coordinate frame.

Furthermore the monocular camera is parametrised by intrinsic camera parameters
- focal length f, principal point ¢ and a first order radial distortion coefficient d of the
monocular camera. Having the intrinsic camera parameters as a variable allows for
calibration refinement.
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There are two options for modelling the intrinsic camera parameters - as a part of
the monocular camera variable or as a separate variable. The former option extends
the camera variable by a five parameter vector T = [fx,fy,cx,cy,d] and then the
optimisation refines the parameters specifically for this camera variable. The option
involving separate intrinsic variable allows for sharing of intrinsic camera parame-
ters between multiple cameras, optimising the separate variable linked to multiple
monocular camera variables. This is achieved via ternary reprojection edges described
in Section 6.2.2.

Intrinsic Camera Parameters

Code 3: Implementation of an intrinsic parameters variable.

class CVertexIntrinsics : public CSEBaseVertexImpl<CVertexIntrinsics, 5>

For modelling of shared camera calibration, for example, when multiple images were
captured by the same camera, the variable for intrinsic parameters is introduced. In-
trinsic camera parameters variable contains information about focal length f, principal
point ¢ and a first order radial distortion coefficient d of the monocular camera. This
variable is represented by five parameter vector T = [fy, fy, cx, ¢y, dl.

Stereo Spherical Camera and CLIDAR

Code 4: Implementation of spherical camera and LIDAR variable.

class CVertexSpheron : public CSEBaseVertexImpl<CVertexSpheron, 6>

In Section 5.2.2 we show that the CLIDAR data can be represented and processed
similar to the stereo spherical cameras. Therefore the variable representation of
spherical camera and CLIDAR device is the same. This variable is used to repre-
sent the 6DOF pose of these sensors in the world coordinate frame. Similar to the
monocular camera variable, the position and orientation is represented by a vector
P = XU,z xep, xeq, xey], element of special Euclidean group SE(3), defining the
rigid transformation of the sensor in the world coordinate frame.

6.2.2 Edges

Code 5: Implementation of a base edge type.

template <class CDerivedEdge, class CVertexTypelList, int
_n_residual_dimension, int _n_storage_dimension = -1>
class (CBaseEdgeImpl : public CBaseEdge

The measurements impose relations between variables, represented by edges connect-
ing the variables involved in the measurement. Furthermore we assume independent

46




Gaussian measurement noise, for each measurement z, represented by covariance
matrix Y. Each edge gives rise to residual (32) and the goal of the back-end is to find
the configuration of the variables 6 that minimize the sum of squared residuals by
solving the non-linear least squares problem (30).

The implementation class CBaseEdgelmpl (Code 5) is templated by list of ver-
tex types. This edge contains dimension of the residual vector and a dimension of
measurement vector. Based on the number of variables that the edge connects, we
differentiate between unary, binary and hyper-edges.

Unary Edge

The unary edge constraints only one variable and its purpose is to provide a prior
information. In the context of BA and SLAM applications, the unary edge is used to
fix the position of the first camera po to world coordinates. The residual of unary edge
has form of:

e(po) =0Spo, (49)
where vector O defines desired fixed camera pose and operand & is an inverse pose

composition of SE3 group.

Reprojection Edge

Code 6: Implementation of reprojection edge without shared intrinsic parameters.

class CEdgeP2C3D : public CBaseEdgeImpl<CEdgeP2C3D, MakeTypelist(
CVertexCam, CVertexXYZ), 2>

Code 7: Implementation of reprojection edge with shared intrinsic parameters—note the defini-
tion of third vertex type CVertexIntrinsics that the edge connects.

class CEdgeP2CI3D : public CBaseEdgeImpl<CEdgeP2CI3D, MakeTypelist(
CVertexCam, CVertexXYZ, CVertexIntrinsics), 2>

Reprojection constraint describes the process of projecting a 3D structure point into
the 2D image. Reprojection edge can have binary or ternary cardinality. The binary
reprojection edge (Code 6) connects camera pose variable extended with camera in-
trinsic parameters and a 3D point. The ternary reprojection edge (Code 7) connects the
variables of 3D point, sensor pose and camera parameters.

This edge is established from measurements of a feature point positions in the im-
age of a camera. The reprojection residual function is defined as a difference between
the observed 2D point measurement and expected 2D position computed as a func-
tion of 3D point Wim;, camera pose p; and the vector containing camera intrinsic
parameters Ty:

eijk(zij, VImy, py, ) = 24 — h’reprojection({W}mirpjrTk) : (50)

The reprojection function hyeprojection cOmputes the expected position of the image of
3D point in the camera projection plane using (5) in Section 4.1.
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Figure 23: Graph representation of multisensor optimisation problem. Graph contains seven vari-
ables, three monocular camera variables (blue), one variable representing shared intrin-
sic camera parameters (pink), two variables for stereo spherical camera and CLIDAR
device (orange) and one variable representing observed 3D point (red). Unary edge
eo(po) defines prior measuremen

3D Point Edge

Code 8: Implementation of 3D point edge.

class CEdgeSpheronXYZ : public CBaseEdgeImpl<CEdgeSpheronXYZ, MakeTypelist
(CVertexSpheron, CVertexXYZ), 3>

The 3D point edge defines the constraint between sensor position and a measured 3D
point. This binary edge connects variables of 6DOF pose (spherical camera or LIDAR)
and 3D point. The residual function is the displacement between position of predicted
3D point and the measurement of the point 3D position:

eij(ziy, " my, py) = zi5 — (Wmi op5), (51)

where the operation & is an inverse pose composition of SE3 group i.e., transforms
the coordinates of point ("} m; from world frame to the coordinate frame of sensor.

63 SYSTEM BUILDING

The initial configuration of the sensor poses and 3D points is provided by the front-
end application using one of the pose estimation and triangulation algorithms (Sec-
tion 5.2). The system integrates one by one the camera/sensor poses and correspond-
ing 3D points observed from it. As the data are processed, the measurements between
the sensors or between the sensors and 3D points are added as edges. Each edge is
linearised and added to the system matrix A by building the update matrix Q (45),
calculated from Jacobian of the measurement function, and following the incremental
strategy described in previous section. The constraints can be inserted into the system
in any order. This way a large connected graph is built with edges interconnecting dif-
ferent variables. Figure 23 shows graph representation of simple multisensor system.
The initial configuration of the system is refined by the optimisation procedure
(Section 6.1), finding the solution that minimizes the error functions of the system.
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EXPERIMENTS AND EVALUATION

In this chapter we aim to experimentally evaluate several aspects of the multisensor
3D reconstruction application. We focus on the evaluation in terms of accuracy for
different sensor combinations. First we evaluate the 3D reconstruction from stereo
longitude-latitude images, which is the most challenging sensors to integrate. Then we
add integration of monocular cameras and CLIDAR sensors and evaluate multisensor
scenarios.

7.1 EVALUATION OF STEREO SPHERICAL IMAGE RECONSTRUCTION

We first evaluate the 3D reconstruction from spherical stereo images only. Dense reg-
istration using ICP, described in Section 4.3.2, has been successfully used in the litera-
ture for the 3D reconstruction from spherical images [35]. Therefore, ICP is used as a
reference in the time and accuracy evaluations of the refinement method. We refer to
the refinement by ICP method as ICP. To calculate the initial estimate of the camera
poses and the 3D structure, the SURF descriptors were extracted in the longitude-
latitude images using tangential projection to reduce the spherical distortion effect, and
guided matching (Section 4.2.1) with geometry model described in Section 4.3.1 was
performed to estimate the relative pose.

We use dense ICP to define a ground truth for testing the accuracy of our method
in the outdoor datasets where there are no manual measurements available. For that,
manually matched sparse features are used to calculate an initial estimate for the ICP
registration, and it will be further referred as GT-ICP.

Accuracy evaluation of Stereo Spherical image registration

In our pipeline we can identify two sources of errors that can affect the final recon-
struction, a) the error of the depth map and b) the camera pose estimation error. To
analyse the accuracy of the stereo spherical registration, ground truth data were mea-
sured for all three datasets. Smaller sensor displacement and flat ground surface of
the Studio dataset allowed for precise positioning of spherical cameras, and manual
measurements of distances from the spherical camera positions to several objects in
the scene as well as distances between camera poses. For the outdoor datasets, Cathe-
dral and CCSR, the ground truth data was generated by manually matching sparse
features to create an initialisation for the dense ICP (GT-ICP). For the ICP registration
a standard implementation provided by the PCL library [47] was used. The Studio
dataset contains 4 pairs of stereo longitude-latitude images with 2m and 1m distance
between the spherical camera positions. The 3 stereo pairs of CCSR dataset was cap-
tured from positions ~ 6m apart, and 3 stereo pairs of Cathedral dataset share baseline
~ 23m apart.
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Table 8: Depth map accuracy results: Differences between GT and measurements in the depth
map. Each row represents the error between measured and ground truth distance for
actual spherical camera position. Certain distances were not measured for ground truth,
those cells are marked by N /A symbol.

Error [mm]

Object 1.1 | Object 1.2 | Object 2 | Object 3
P1 18 12 2 3
P2 N/A N/A 7 8
P3 N/A N/A 78 1
Pq 17 32 13 3

The error of the depth map was evaluated for the Studio dataset by comparing the
calculated depth from the dense stereo processing with the measured ground truth.
In this dataset, the cameras were placed in four different positions with a measured
distances in between, and distance to objects in the scene were also measured. Table 8
shows the errors between the manually measured and the estimated 3D positions. The
depth map error is, in average, of 1.6 cm for the Studio dataset. We can say that is a
very good depth calculation from stereo longitude-latitude images for indoor scenes,
nevertheless, we should expect larger errors in the outdoor scenes.

In order to evaluate the joint camera and structure estimation, two types of errors
are evaluated, a) camera pose estimation error and b) structure error. To compute
the pose estimation error, the transformations between the GT-ICP and the estimated
poses are calculated. The errors in translation and rotation are reported separately, by
computing the norm of the translation and the angle of rotation, respectively. For each
dataset, pair-wise spherical camera registrations are evaluated. The structure error is
computed in Studio dataset as an average error of distances to known objects in the
scene. In the case of Cathedral and CCSR datasets, the structure error is given by
the average euclidean distance between two dense point clouds—one from GT-ICP and
second from optimized solution.

Table g confirms our expectations that both, ICP and SLAM++ have similar accuracy,
and that larger errors in pose estimation correlate with errors in structure estimation.
Note that for longer baselines, the SLAM++ copes better with the errors in the initial
estimation compared to ICP which requires very good initialisations. This is due to
the fact that unlike ICP which relies only on matches between consecutive spherical
cameras for each registration, SLAM++ also considers matches over multiple spherical
images.

Time evaluation

The disadvantage of applying ICP for image registration is its processing time. The
proposed approach offers much faster solutions in this direction. Table 1, bottom,
shows that SLAM++ is, for all datasets, almost three orders of magnitude faster than
the ICP algorithm. The good time performance stems from the fact that it optimises
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Table 9: Accuracy results: Top: Structure Error. Bottom: Camera pose error evaluated separately
for the rotation and translation.

Studio Cathedral CCSR
S1-S52 | S2-53 | S3-54 || S1-S2 | S2-S3 | S1-S2 | S2-S3
SLAM++ [mm] 4.6 7.9 11.2 708.7 | 3714 | 3749 | 1193

Criteria Method

Pose err ICP [mm] 107 | 36.1 50.8 || 678.3 | 740.5 | 261.1 | 149.9
' SLAM++ [°] 114 | 057 | 0.89 548 | 3.91 0.81 1.66
ICP [°] 503 | 081 | 138 || 485 | 483 | 052 | 271
Structure err. SLAM:++ [mm] 16.1 1120.2 488.9
ICP [mm] 35-4 1765.6 394.7

Table 10: Time processing evaluation for refinement using SLAM++ and ICP.

Processing
Feat. & desc. extract [s] 8.15 7.02 6.32
Initial estimation [s] 6.99 11.41 25.65
Refinement
ICP [s] 146.057 || 366.024 | 995.43
SLAM++[s] 0.120 0.091 0.134

for a sparse set of points and from the actual efficient implementation of non-linear
least squares solver SLAM++.

By analysing the processing time of each step of the pipeline in Table 1, we see
that the time of optimising the camera poses is now very small compared to the
other processing times in the pipeline, while using ICP, the registration time would
have been the predominant time and would have constituted a bottleneck in large
applications.

7.2 MULTISENSOR RECONSTRUCTION ACCURACY

We processed several multisensor datasets using the proposed multisensor 3D re-
construction pipeline. The accuracy evaluation of the reconstruction from monocular
and CLIDAR sensors is performed on Synthetic dataset with known ground truth de-
scribed in Section 3.2. The computed error is per-pose all-to-all relative pose error (RPE)
obtained as a sum of differences between all estimated and all ground truth camera
relative poses divided by number of cameras n:

eRPE = — Z Ipij ©pg | (52)
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Cathedral

b)

Figure 24: 3D reconstruction from stereo spherical images. a) Inliers after matching with
RANSAC algorithm (for better visibility only a fraction of matches is shown for Stu-
dio dataset). Please note that the crossing lines in the left column are not outliers, the
image is spherical so the left part of the image continues on the right. b) Initial 3D
points (red) and camera poses (orange) and optimised 3D points (green) and camera
poses (yellow). d) Final dense 3D reconstruction created by integration points from
depth maps.

where the py; and pg-T is a relative transformation between two estimated camera
positions and ground truth camera positions respectively and operation & performs in-
verse pose composition. The results are also compared with the commercial software
CapturingReality" for which the RPE is computed as well.

The initial sensor poses are estimated using multisensor pipeline. CLIDAR coloured
3D point cloud is transformed to the form of longitude-latitude image by process de-
scribed in Section 5.2.4. SIFT features and descriptors are extracted from image data
and the tangential projection is applied to longitude-latitude images to reduce the ef-
fect of spherical distortion. The correspondences are found using guided matching

1 www.capturingrality.com
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Table 11: Per-pose all-to-all RPE error of our approach and CapturingReality software compared
to ground truth of Synthetic dataset. The evaluation of CapturingReality in the presence
of noise could not be performed due to different handling of input CLIDAR data.

Our approach | CapturingReality

Synthetic-short RPE [mm] 2.1 3.1
RPE [°] 0.034 0.043

Synthetic-long RPE [mm] 4.3 8.3
RPE [°] 0.016 0.132

Synthetic-combined RPE [mm] 4.3 23.9
RPE [?] 0.034 0.312
Synthetic-short-noise RPE [mm] 23 N/A
RPE [°] 0.034 N/A
Synthetic-long-noise RPE [mm] 4.5 N/A
RPE [°] 0.021 N/A
Synthetic-combined-noise RPE [mm] 6.1 N/A
RPE [°] 0.037 N/A

Table 12: Average reprojection error in pixels of 3D reconstructions from monocular, monocu-
lar+spherical and monocular+lidar configurations.

Monocular | Monocular + Sph | Monocular + CLIDAR | All
CCSR [px] 0.371 0.357 0.354 0.354
Cathedral [px] 0.236 0.226 0.222 0.224
Atrium [px] 0.342 0.312 — —
Synthetic-combined [px] 0.260 — 0.259 —

(Section 4.2.1) with geometry model depending on the registered sensors. For stereo
longitude-latitude images the 3D-3D registration model (Section 4.3.1) is used, and
for longitude-latitude and planar image the spherical-planar epipolar geometry (Sec-
tion 5.2.3) is applied.

Table 11 shows the per-pose all-to-all registration RPE error of registration of mul-
tiple scenarios of Synthetic dataset consisting of 3 CLIDAR scans and 10 generated
planar images per scenario—containing images from virtual cameras with short base-
line (Synthetic-short), long baseline (Synthetic-long) and combination of the long and
short (Synthetic-combined). These datasets were evaluated with two different noise lev-
els in CLIDAR depth data. First configuration uses depth data directly from CLIDAR
device, which according to manufacturer, has standard deviation of depth error 2mm.
For second experiment, the depth data was perturbed by a normal distributed noise
with standard deviation of 150mm to evaluate the effect of depth map noise on recon-
struction accuracy.

The input for both algorithms, our and CapturingReality consists of CLIDAR 3D
point clouds and a set of synthetic planar images. Initial camera parameters were
provided for both applications to assure the same initial conditions.
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For short baseline scenario both algorithms achieve similar accuracy results, our
approach being slightly more accurate. For long and combined baseline our approach
achieves better results with accuracy of ~ 4mm RPE per pose. This is because of
more non-linear iterations (~ 25) of BA solver. I was not possible to specify or check
for number of iterations for CapturingReality. Even in the presence of noise in depth
data our algorithm achieves accurate results. The evaluation of CapturingReality in the
presence of noise could not be performed due to different handling of input CLIDAR
data.

Further, we compute the reprojection error of the structure, computed as the av-
erage of differences of projected the structure points and their measured positions.
Figures 27, 26 and 28 show the 3D reconstructions from different types of sensors
are shown for Cathedral, CCSR and Atrium datasets, introduced in Section 3.2. Images
a), b), c) show separate reconstruction for CLIDAR, monocular cameras and spherical
cameras respectively. The reconstruction from spherical cameras suffers from artefacts
caused by inaccuracies in disparity map. In both Figures 27 and 26, the images d), e)
show reconstruction from spherical cameras, and monocular cameras superimposed
with green colour and with colour information from the images. Image f) shows re-
construction using all sensors. Only sparse structure from longitude-latitude images is
shown, i.e. the points for which the correspondence was established with points from
other sensors. The coverage of obstructed area by structure from monocular cameras
can be seen in Figure 26, f).

The table 12 displays accompanying reprojection errors for each sensor combination.
In the visualizations of results (Figure 27,26 c), 28 b)) it is visible that for the spherical
reconstruction the whole reprojected disparity map contains big distortions. But when
this spherical data is used in the combination with monocular images, the reprojection
error drops from 0.371 to 0.357 for CCSR and 0.236 to 0.226 for Cathedral compared to
reprojection error of reconstruction only from monocular images. Lowest reprojection
error is achieved using monocular and CLIDAR sensors.

According to the evaluation of Synthetic dataset, the presented multisensor 3D re-
construction pipeline compared to the CapturingReality achieves more accurate results.
The accuracy stems from the quality of established corresponding points and joint
optimisation by SLAM++. The joint processing of stereo spherical and monocular
data improves the reprojection error of monocular reconstruction and structure from
monocular reconstruction improves the noisy stereo spherical depth map. The accu-
rate depth data from CLIDAR allows for easy integration.
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a) CLIDAR only b) Monocular only

c) Spherical only

CLIDAR + Spherical (sparse)

+ Monocular

e) Spherical + Monocular f)

Figure 25: Reconstructions of the Cathedral dataset
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CLIDAR + Spherical (sparse)

+ Monocular

e) Spherical + Monocular f)

Figure 26: Reconstructions of the CCSR dataset
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a) CLIDAR only b) CLIDAR + Monocular (green)

Figure 27: Reconstruction of Synthetic dataset.

a) Monocular only b) Spherical only

c¢) Spherical only + Monocular (green) d) Spherical + Monocular

Figure 28: Reconstructions of the Atrium dataset
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CONCLUSION

The contribution of this thesis is the formulation of the multisensor 3D reconstruc-
tion using unified representation for different sensors and measurements in terms
of sparse BA and based on that, obtaining complete solution from all available data
without need of manual alignment of models created by single sensor reconstruction
algorithms. The representation consists of variables defining the poses of the sensors
and structure points and edges encoding the relations between variables.

A sparse 3D reconstruction pipeline consists of a front-end which processes the sen-
sor data and provides an initial estimate for the sensor position and the 3D structures,
which is further optimized by the back-end. In this thesis we analysed algorithms
for reduction of spherical distortion in images from spherical cameras and generated
from CLIDAR devices to achieve higher initial registration accuracy. We evaluated
multiple feature extractors, matching and registration accuracy of longitude-latitude
images and planar images. This thesis proposes an algorithm that computes the ten-
gential projection which reduces the effect of spherical distortion in longitude-latitude
images and achieves better accuracy compared to registration using the longitude-
latitude images in uncorrected form.

After the initialisation, the unified system built from measurements of multisensor
data is refined by joint sensor pose and structure optimisation. This offers a robust
estimation capable of exploiting relationships between multiple sensors and refining
the solution according to those constraints. This is formulated as an optimization on
graphs where the vertices represent the variables and the edges of the graph are de-
rived from the measurements. The graph optimization is implemented in the SLAM++
non-linear least squares optimisation library developed in collaboration with my col-
leagues L. Polok and V. Ila. The SLAM++ is a very efficient library based on fast sparse
block matrix manipulation.

The future work will include integration of the incremental optimisation approach
of SLAM++ for time efficient incremental data processing. Furthermore the processing
of data from additional sensors will be implemented as well as support for processing
of videos from monocular and spherical cameras, including key-frame selection. An-
other area of the interest is the estimation of the dense depth map from the spherical
images more accurately using the depth information from other sensors.
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