UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA

Katedra organické chemie

Preklinický vývoj ⁶⁸Ga značených peptidů pro zobrazování glioblastomu

Bakalářská práce

Autor:

Studijní program:

Studijní obor:

Typ studia:

Vedoucí práce:

Jana Štěpánková

B1407 Chemie

Bioorganická chemie

Prezenční

PharmDr. Miloš Petřík, Ph.D.

Olomouc 2015

Prohlášení:

Prohlašuji, že jsem bakalářskou práci vykonala samostatně pod odborným vedením PharmDr. Miloše Petříka, Ph.D. a že jsem uvedla veškeré použité literární a informační zdroje. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

Souhlasím s tím, aby byla má bakalářská práce zpřístupněna v knihovně Katedry organické chemie, Přírodovědecké fakulty, Univerzity Palackého v Olomouci.

V Olomouci dne:

Podpis:

Poděkování:

Předně bych ráda poděkovala PharmDr. Miloši Petříkovi, Ph.D. za odborné vedení mé bakalářské práce, za jeho vstřícnost, ochotu, cenné rady a připomínky. Rovněž děkuji Klinice nukleární medicíny FNOL za poskytnutí radiofarmak.

Bibliografická identifikace

Jméno a příjmení autora:	Jana Štěpánková	
Název práce:	Preklinický vývoj ⁶⁸ Ga značených peptidů pro zobrazování glioblastomu	
Typ práce:	Bakalářská	
Pracoviště:	Ústav molekulární a translační medicíny Lékařské fakulty Univerzity Palackého v Olomouci	
Vedoucí práce:	PharmDr. Miloš Petřík, Ph.D.	
Rok obhajoby práce:	2015	

Abstrakt:

Tématem této bakalářské práce je testování peptidů značených radioaktivním izotopem ⁶⁸Ga pro potenciální využití k diagnostice multiformního glioblastomu (GBM) metodou pozitronové emisní tomografie. Multiformní glioblastom je nejčastěji se vyskytující a nejzávažnější typ mozkového nádoru. Včasná diagnostika a terapie mohou výrazně přispět ke zlepšení kvality a délky života osob s GBM. Některé ⁶⁸Ga značené peptidy se jeví jako potenciálně vhodná radiodiagnostika pro zobrazení glioblastomu. Vybrané ⁶⁸Ga značené peptidy jsem podrobila *in vitro* a *in vivo* testování. Výsledky *in vivo* experimentů jsem následně porovnávala s klinicky používanými radiofarmaky, konkrétně s ¹⁸F-fluorodeoxyglukosou a ¹⁸F-fluorothymidinem, a vyhodnotila jsem jejich potenciál pro radiodiagnostiku GBM.

Klíčová slova:	glioblastom, PET, CT, radiofarmaka, NODAGA-RGD dimer acetát, DOTA-substance P
Počet stran:	73
Jazyk:	Čeština

Bibliographical identification

Author's first name and surname:	Jana Štěpánková
Title:	Preclincal Development of ⁶⁸ Ga Labelled Peptides for Glioblastoma Imaging
Type of thesis:	Bachelor
Department:	Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc
Supervisor:	PharmDr. Miloš Petřík, Ph.D.
The year of presentation:	2015

Abstract:

The topic of this bachelor thesis is testing of peptides labelled with radioactive isotope ⁶⁸Ga for glioblastoma multiforme (GBM) imaging using positron emission tomography. Glioblastoma multiforme is the most common and serious type of brain tumor. Early diagnosis and therapy may significantly contribute to improve quality and length of life of people with GBM. Certain ⁶⁸Ga labelled peptides appears as potential radiodiagnostics for GBM imaging. Selected ⁶⁸Ga labelled peptides were tested *in vitro* and *in vivo*. The results of *in vivo* experiments were compared and evaluated with clinically used radiopharmaceuticals, namely ¹⁸F-fluorodeoxyglucose and ¹⁸F-fluorothymidine, and evaluated their potential for radiodiagnosis of GBM.

Keywords:	glioblastoma	multiforme,	PET,	CT,
	radiopharmaceuti	cals, NODAGA-R	GD dimer	acetate,
	DOTA-Substance	e P		
Number of pages:	73			
Language:	Czech			

Obsah

1. Úvod	
2. Teoretická část	
2.1. Glioblastom	11
2.1.1. Zobrazovací metody pro diagnostiku GBM	
2.1.1.1. Výpočetní tomografie	13
2.1.1.2. Magnetická rezonance	14
2.1.1.3. Pozitronová emisní tomografie	15
2.1.1.4. Jednofotonová emisní výpočetní tomografie	16
2.1.1.5. Hybridní systémy	17
2.1.2. Terapie GBM	
2.2. Experimentální modely GBM	19
2.2.1. Buněčné linie glioblastomu	19
2.2.2. Zvířecí modely	
2.3. Radiofarmaka	
2.3.1. Radionuklidy	
2.3.1.1. Typy radioaktivních přeměn	
2.3.1.2. Výroba a získávání radionuklidů	
2.3.1.3. Gallium-68	
2.3.2. Experimentální radioaktivně značené látky pro diagnostiku GBM	25
2.3.2.1. RGD peptidy	
2.3.2.2. Substance P	
2.3.3. Klinicky používaná radiofarmaka pro diagnózu GBM	
2.3.3.1. ¹⁸ F-fluorodeoxyglukosa	
2.3.3.2. ¹⁸ F-fluorothymidin	
3. Experimentální část	
3.1. Cíle práce	30
3.2. Použité přístroje a chemikálie	30
3.3. Metodická část	
3.3.1. Radioaktivní značení	
3.3.2. Kontrola kvality značení	
3.3.3. Testy stability	
3.3.4. Rozdělovací koeficient	
3.3.5. Vazba na proteiny	33
3.3.6. Testování <i>in vivo</i> stability v moči	33

3.3.7. PET/CT zobrazování laboratorních myší	
3.3.8. <i>Ex vivo</i> biodistribuce laboratorních myší	
3.4. Výsledky	
3.4.1. NODAGA-RGD dimer acetát	
3.4.1.1. Radioaktivní značení	
3.4.1.2. Testy stability	
3.4.1.3. Rozdělovací koeficient	
3.4.1.4. Vazba na proteiny	
3.4.1.5. Testování in vivo stability v moči	
3.4.1.6. PET/CT zobrazování nenádorových myší	
3.4.1.7. PET/CT zobrazování nádorových myší	39
3.4.1.8. Ex vivo biodistribuce u nenádorových myší	
3.4.1.9. Ex vivo biodistribuce u nádorových myší	
3.4.2. DOTA-substance P	
3.4.2.1. Radioaktivní značení	
3.4.2.2. Testy stability	
3.4.2.3. Rozdělovací koeficient	
3.4.2.4. Vazba na proteiny	
3.4.2.5. Testování in vivo stability v moči	
3.4.2.6. PET/CT zobrazování nenádorových myší	
3.4.2.7. PET/CT zobrazování nádorových myší	
3.4.2.8. <i>Ex vivo</i> biodistribuce u nenádorových myší	
3.4.2.9. Ex vivo biodistribuce u nádorových myší	
3.4.3. ¹⁸ F-fluorodeoxyglukosa	
3.4.3.1. PET/CT zobrazování nenádorových myší	
3.4.3.2. PET/CT zobrazování nádorových myší	
3.4.3.3. <i>Ex vivo</i> biodistribuce u nenádorových myší	
3.4.3.4. Ex vivo biodistribuce u nádorových myší	57
3.4.4. ¹⁸ F-fluorothymidin	
3.4.4.1. PET/CT zobrazování nenádorových myší	
3.4.4.2. <i>Ex vivo</i> biodistribuce u nenádorových myší	60
4. Diskuze	
5. Závěr	
6. Použitá literatura	
VI I VILLUU LLUU UVUI U MINIMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

Seznam použitých zkratek

ACN	acetonitril
Arg	arginin
Asp	asparagová kyselina
BGO	germanát bismutu
CNS	centrální nervový systém
СТ	výpočetní tomografie
DFO	desferrioxamin B
DNA	deoxyribonukleová kyselina
DOTA	1,4,7,10-tetraazacyklodekan-1,4,7,10-tetraoctová kyselina
DTPA	diethylentriaminpentaoctová kyselina
FDG	fluorodeoxyglukóza
FLT	fluorothymidin
fMR	funkční magnetická rezonance
GBM	multiformní glioblastom
GIT	gastrointestinální trakt
Gln	glutamin
Gly	glycin
GSO	gadolinium orhtosilikát
HT	hnědý tuk
HU	Hounsfieldova jednotka
L	ledviny
Leu	leucin
LSO	lutecium orthosilikát
LT	laboratorní teplota
Lys	lysin
М	mozek
Met	methionin
MM	močový měchýř
MR	magnetická rezonance
Ν	nádor
NK	neurokinin
NMR	nukleární magnetická rezonance
NODAGA	1,4,7-triazacyklononan-1-glutarová kyselina-4,7-dioctová kyselina
NOTA	1,4,7-triazacyklononantrioctová kyselina
Р	místo podání

p. i.	po podání
PBS	fosfátový pufr
PET	pozitronová emisní tomografie
Phe	fenylalanin
Pro	prolin
r. o.	retroorbitálně
RGD	sekvence aminokyselin arginin – glycin – asparagová kyselina
RCHČ	radiochemická čistota
RP-HPLC	vysokoúčinná kapalinová chromatografie na obrácených fázích
S	srdce
SD	směrodatná odchylka
SP	substance P
SPECT	jednofotonová emisní výpočetní tomografie
TFA	trifluoroctová kyselina
TK1	thymidin-kinasa 1
Tyr	tyrosin
WHO	Světová zdravotnická organizace

1. Úvod

Multiformní glioblastom (GBM) je nejzávažnějším typem mozkového nádoru. Úplné vyléčení pacienta s GBM je prakticky nemožné, pouze necelá dvě procenta pacientů přežijí tři roky od diagnózy tumoru. Terapie tohoto vysoce maligního onemocnění je v současné době založena na resekci nádoru, radioterapii a chemoterapii, přičemž rozsah a radikalita léčby závisí především na celkovém stavu pacienta. Tyto terapeutické postupy dokáží prodloužit život pacienta v průměru zhruba o 14 měsíců. Ačkoliv se jedná o onemocnění s velmi špatnou prognózou, včasná diagnostika a terapie dokáží často zlepšit kvalitu a délku života pacientů trpících GBM.

Pro diagnostiku multiformního glioblastomu se uplatňují zejména zobrazovací metody, a to výpočetní tomografie (CT), pozitronová emisní tomografie (PET), jednofotonová emisní výpočetní tomografie (SPECT) a magnetická rezonance (MR). Jedná se o vysoce citlivé a neinvazivní metody, jejichž dostupnost se v posledních letech zvyšuje. S výhodou se používají zejména tzv. hybridní systémy, které kombinují více zobrazovacích technik, např. PET/CT a PET/MR, a které umožňují získat jak anatomická, tak funkční data v rámci jednoho vyšetření.

Pro vyšetření metodou pozitronové emisní tomografie je nutná aplikace radiofarmaka do těla pacienta. Účinnou složkou radiofarmaka je jeden nebo více radionuklidů. Radioaktivní izotopy emitují ionizující záření, které je zachyceno detektory a zpracováno na obrazový snímek. Radiofarmaka, která se v současnosti využívají k PET vyšetření v nukleární medicíně, a tedy i k diagnostice glioblastomu, jsou především látky značené pozitronovým zářičem ¹⁸F. V případě diagnostiky GBM se v klinické praxi nejčastěji používají ¹⁸F-fluorodeoxyglukosa a ¹⁸F-fluorothymidin.

Ve své bakalářské práci jsem se zabývala studiem látek značených perspektivním pozitronovým zářičem ⁶⁸Ga. Předmětem mého studia byly ⁶⁸Ga-NODAGA-RGD dimer acetát a ⁶⁸Ga-DOTA-substance P a jejich potenciální využití pro radiodiagnostiku multiformního glioblastomu. Na základě předchozích studií obdobných látek by se tyto experimentální látky měly hromadit v buňkách mozkového nádoru, čehož by se dalo využít k diagnostice GBM metodou PET. Pro srovnání jsem analogické *in vivo* experimenty prováděla i s ¹⁸F-fluorodeoxyglukosou a ¹⁸F-fluorothymidinem.

2. Teoretická část

2.1. Glioblastom

Glioblastom (GBM), někdy též označovaný jako multiformní glioblastom, je nejčastější a nejmalignější nádor mozku, který bývá řazen mezi astrocytární nádory (1). Tyto tumory se vyvíjí z astrocytů, což jsou podpůrné buňky neuronů vykonávající řadu funkcí nezbytných pro správnou činnost centrálního nervového systému (2).

Multiformní glioblastom postihuje typicky dospělé jedince mezi 45. a 70. rokem života a častěji se vyskytuje u mužů (muži : ženy = 1,5 : 1). Glioblastom se může vyvíjet z různých typů mozkových nádorů, nejčastěji z difúzního astrocytomu nebo anaplastického astrocytomu (sekundární glioblastom), ale mnohem častěji se vyvíjí *de novo*, tedy bez průkazu předchozí existence (primární glioblastom). Glioblastomy většinou rostou v mozkové tkáni s epicentrem v bílé hmotě. Přestože se jedná o jeden z nejzhoubnějších lidských nádorů, nemetastazuje (1).

Astrocytární nádory se dle klasifikace WHO dělí do čtyř stupňů závažnosti na základě jejich malignity (3). Stupeň I zahrnuje nádory, které rostou pomalu, a po jejich chirurgickém odstranění je velmi vysoká šance na úplné vyléčení. Tumory stupně II se většinou šíří do okolních tkání a navzdory jejich nízké proliferační aktivitě často recidivují. Buňky nádorů stupně III se poměrně rychle dělí a je u nich prokázána malignita. Nejzávažnější je IV. stadium. Nádorové buňky se velmi rychle a agresivně dělí, tkáň je náchylná k nekróze a nádor je infiltrován do okolní tkáně, což výrazně ztěžuje jeho úplné odstranění a vyléčení pacienta (4). Klasifikace astrocytárních nádorů podle jejich malignity je znázorněna v tabulce 1.

Stupeň malignity	Typ nádoru	Průměrná doba přežití
Ι	Pilocytický astrocytom	Dlouhodobě
II	Difúzní astrocytom	7-8 let
III	Anaplastický astrocytom	2 roky
IV	Multiformní glioblastom	1 rok

Tabulka 1	. Klasifikace	astrocytárních	nádorů,	WHO	2007 (5).
-----------	---------------	----------------	---------	-----	-----------

Anamnéza u primárního GBM je velice krátká, u 50 % pacientů kratší než 3 měsíce (1). Příznaky jsou převážně způsobeny nitrolební hypertenzí (zvýšení tlaku v dutině lebeční), což se nejčastěji projevuje bolestmi hlavy, nevolností a zvracením, poruchami psychiky a vědomí (5). Prvním klinickým příznakem často bývá epileptický záchvat. U sekundárních GBM je anamnéza delší, průměrně 4-5 let. Prognóza glioblastomu je velice špatná, pouze 1,8 % pacientů přežije tři roky od stanovení diagnózy (1).

Obrázek 1. Multiformní glioblastom ve spánkové oblasti mozku. (**a**) Snímek z magnetické rezonance (MR) s použitím kontrastní látky. (**b**) Fotografie zobrazující rozsáhlou oblast patologické tkáně (6).

2.1.1. Zobrazovací metody pro diagnostiku GBM

Ke zjištění lokalizace, rozsahu, popř. charakteru nádoru je k dispozici řada neuroradiologických zobrazovacích metod. Výpočetní tomografie (CT) umožňuje určit lokalizaci nádoru, jeho velikost a strukturu. Magnetická rezonance (MR) je v současnosti nejvyužívanější metodou pro diagnostiku mozkových nádorů (5). Snímky z MR se podobají snímkům z CT, avšak mají mnohem vyšší rozlišení, takže je možné rozeznat jednotlivé tkáně s daleko větší přesností (7). Hojně využívané jsou i metody založené na aplikaci radiofarmaka do těla pacienta. Konkrétně se jedná o pozitronovou emisní tomografii (PET) a jednofotonovou emisní výpočetní tomografii (SPECT) (8). Obě techniky zpracovávají radioaktivní signál z radiofarmak kumulovaných v cílené tkáni (9). Často se využívají tzv. hybridní systémy, které představují kombinaci více zobrazovacích technik, např. PET/CT či PET/MR. Výhodou těchto systémů je současný záznam anatomického a funkčního skenování (8).

2.1.1.1. Výpočetní tomografie

Výpočetní tomografie (CT) je jedna z nejběžnějších a nejvyužívanějších zobrazovacích metod jak pro výzkumné, tak pro klinické účely. Základním omezením této techniky je nízká schopnost rozlišit měkké tkáně. Zatímco kosti jsou na CT snímcích dostatečně kontrastní díky jejich vysoké hustotě (obsahují fosforečnan vápenatý), měkké tkáně mají nižší hustotu a jsou na snímcích málo kontrastní. Problém s rozlišením měkkých tkání řeší použití kontrastních látek, které často obsahují atomy jodu, zlata nebo barya. Tyto prvky absorbují rentgenové záření a tím zajišťují vyšší rozlišení získaných snímků (10).

Při vyšetření je pacient fixován na posuvném lůžku, které postupně prochází skenovacím stojanem, ten má podobu prstence se zdrojem rentgenového záření (rentgenkou) a souborem detektorů (11; 12). Pacient je prosvěcován rentgenovým zářením v určité rovině postupně bod po bodu. Záření, které prochází tělem pacienta, je z části absorbováno tkáněmi a detektory zaznamenávají míru zeslabení rentgenového záření. V počítači je pak signál z detektorů převeden na obrazové snímky (11). Absorpce záření tkáněmi závisí na denzitě daného materiálu, rozdíly v hustotě jsou na snímcích zobrazeny různými stupni šedi (12). Absorpční vlastnosti jednotlivých tkání v lidském těle jsou vyjádřeny relativně pomocí tzv. Hounsfieldových jednotek (HU) neboli CT čísel (11). Hodnota HU je definována vztahem (13):

$$HU = rac{\mu - \mu_w}{\mu_w} \cdot k$$
 ,

kde

 μ je koeficient zeslabení tkáně

 μ_w je koeficient zeslabení vody

k je smluvená konstanta o velikosti 1000.

Pro diagnostické využití je k dispozici rozsah 2000 CT čísel. Vzduch má hodnotu -1000 HU, voda 0 HU a kompaktní kostní tkáň +1000 HU (13).

Obrázek 2. Princip výpočetního tomografu (14).

2.1.1.2. Magnetická rezonance

Magnetická rezonance má výsadní postavení v diagnostice degenerativních onemocněních CNS, vrozených vad a v diagnostice nádorů mozku a míchy (11). Výhodou magnetické rezonance je, že se jedná o neinvazivní metodu a pacient není při vyšetření vystaven ionizujícímu záření (15). Dosud nebyly pozorovány žádné biologické účinky související s aplikací silného magnetického pole či radiofrekvenčního záření (13). Pomocí MR lze ve vysokém rozlišení zobrazit měkké tkáně, výsledkem snímání je velké množství snímků v různých rovinách. Hlavními nevýhodami MR jsou vysoké pořizovací a provozní náklady a omezená dostupnost zařízení. Vyšetření může být problematické pro pacienty trpící klaustrofobií. Při samotném skenování se pacient nachází ve vyšetřovacím "tunelu" a doba vyšetření trvá v průměru 30-45 minut. Existuje několik kontraindikací omezujících použití magnetické rezonance. U těhotných žen by vyšetření MR mělo být aplikováno s velkou opatrností, a to především v průběhu prvního trimestru (15). Vyšetření dále není vhodné pro pacienty s kardiostimulátory či kovovými implantáty (13; 15). Ve srovnání s CT se u magnetické rezonance daleko více vyskytují nežádoucí artefakty snižující kvalitu výsledného snímku (15).

Magnetická rezonance patří mezi nejsložitější vyšetřovací techniky. Principem této metody je sledování změn chování buněk v lidském těle při působení silného magnetického pole. Konstrukce zobrazovacích systémů vychází z fenoménu jaderné magnetické rezonanční spektroskopie (NMR) (11), která je využívána pro strukturní analýzu organických látek.

Jádra atomů obsahují protony a neutrony. Protony neustále rotují kolem své osy, tento pohyb se označuje jako spin. Jelikož jsou protony kladně nabité a pohybují se, vytváří ve svém okolí magnetické pole a vykazují magnetický moment. Podmínka, aby jádra byla v NMR pozorovatelná, je, že nukleonové číslo musí být liché (magnetické momenty se nevyruší). Charakteristickým příkladem je atom vodíku ¹H, který má v jádře jeden proton (11). V medicíně jsou dále využívány izotopy ¹³C, ¹⁹F, ²³Na a ³¹P (13).

Za normálních okolností (mimo magnetické pole) jsou magnetické momenty jader prostorově neuspořádané. Vložíme-li jádra s nenulovým magnetickým momentem do vnějšího magnetického pole, zorientují se souhlasně (paralelně) či opačně (antiparalelně) vzhledem k vektoru magnetické indukce daného magnetického pole (13). Jádra v antiparalelním uspořádání mají nepatrně vyšší energii, proto se v tomto stavu nachází méně jak polovina všech jader. Nerovnoměrné rozdělení jader v obou energetických hladinách způsobí, že tkáň vykazuje celkový magnetický moment. Do tkáně se následně dodá energie v podobě elektromagnetického impulzu o určité frekvenci, čímž se změní počet jader v paralelním a antiparalelním uspořádání a dojde k magnetické rezonanci (11).

Signál rezonujících jader je zpracován počítačovým programem a výsledkem prostorové rekonstrukce hustoty těchto jader je zobrazení řezu tkání – tomogram. Vlivem různé hustoty pozorovaných atomů (nejčastěji atomy vodíku ¹H) v různých tkáních poskytuje tato metoda vysoce kontrastní rozlišení jednotlivých typů měkkých tkání (13). Pro zlepšení kontrastu ve výsledném tomogramu se v MR používají kontrastní látky – sloučeniny s navázaným paramagnetickým prvkem, často gadoliniem, železem, manganem či chromem. Podáním kontrastní látky pacientovi lze zviditelnit i struktury, které nebyly v nativním snímku rozlišitelné (11).

Obrázek 3. Srovnání CT a MR. V levé části snímek z CT, v pravé části snímek z MR (16).

2.1.1.3. Pozitronová emisní tomografie

Pozitronová emisní tomografie je jednou z nejpokročilejších diagnostických radionuklidových metod. Zatímco u výpočetní tomografie (CT) se zdroj pronikavého záření nachází mimo tělo pacienta, u pozitronové emisní tomografie (PET) se takovýto zdroj nachází uvnitř těla pacienta (13).

Vyšetřovanému se před PET skenováním podá většinou intravenózně malé množství radiofarmaka, které je v závislosti na svých biologických vlastnostech distribuováno v těle pacienta. Radioaktivní záření je následně detekováno a počítačem zpracováno na snímky, které zachycují rozložení radioaktivity v organismu. Vyšetření pozitronovou emisní tomografií nezahrnuje zobrazení struktur, jedná se o detekci specifické funkce v různých oblastech těla (17).

Radiofarmaka používaná k PET vyšetření obsahují radionuklid, jehož jádro má přebytek protonů a při radioaktivní přeměně daného jádra jsou emitovány kladně nabité elektrony neboli pozitrony (18). Takovéto radionuklidy označujeme jako pozitronové zářiče. Vyzařované pozitrony urazí v látkovém prostředí jen velmi krátkou vzdálenost, protože při setkání s opačně nabitými elektrony dochází ihned k anihilaci za vzniku dvou kvant záření gama o energii 511 keV. Dva vznikající paprsky gama záření se od místa vzniku šíří přesně v opačných směrech a jsou zachyceny dvěma protistojnými detektory v tzv. koincidenčním zapojení. Signál je zaznamenán a dále zpracován jen tehdy, dojde-li k němu na obou detektorech současně. Přístroje bývají realizovány tak, že jsou oba detektory mechanicky spojeny a mohou vykonávat rotační pohyb kolem těla pacienta (13). Data získaná z detektorů jsou využita pro rekonstrukci snímku, na kterém je patrná distribuce radionuklidu v požadovaném řezu těla pacienta (19).

Detektory pro PET systémy mají podobu krystalů z různých materiálů. Mezi materiály využívané pro výrobu scintilačních detektorů patří především jodid sodný dopovaný thaliem, germanát bismutu (BGO), fluorid barnatý, gadolinium orthosilikát (GSO) a lutecium orthosilikát (LSO) (18).

2.1.1.4. Jednofotonová emisní výpočetní tomografie

Jednofotonová emisní výpočetní tomografie (SPECT) využívá obdobně jako PET radiofarmaka, avšak obě tyto metody se značně odlišují. Rozdíly jsou v používaných radionuklidech, přístrojovém vybavení, ve zpracování výsledků i klinických aplikacích (8). U PET vyšetření je nutné používat pozitronové zářiče, kdežto u metody SPECT se využívají běžné zdroje gama záření jako např. jód ¹³¹I nebo technecium ^{99m}Tc (13).

Většinou se provádí statické SPECT vyšetření. Statické snímání zobrazuje rozložení radiofarmaka v cílové tkáni po určité době od podání látky, dynamická forma vyšetření zachycuje změny koncentrace radiofarmaka v dané tkáni s rostoucím časem. Dynamické skenování je také proveditelné, ale v klinické praxi se příliš neuplatňuje kvůli technické náročnosti metody.

Hlavními zdroji chyb při kvantitativním vyhodnocování SPECT snímků je zeslabení neboli atenuace záření jako důsledek fotoefektu a Comptonova rozptylu. Rozptýlené záření může tvořit až 60 % všech impulzů zaznamenaných při vyšetření. Jedná se o fotony, jejichž energie byla částečně pohlcena ještě v těle pacienta při Comptonově rozptylu a které se náhodně dostaly do směru, který jim umožnil projít kolimátorem až k detektoru. Takovýto

signál je pak nesprávně lokalizován do místa, ve kterém došlo k rozptylu, nikoli do místa vzniku záření. Rozptýlené záření snižuje kontrast snímku a zkresluje intenzitu zdroje. Část fotonů ze zdroje do detektoru vůbec nedorazí. Buďto v tkáni zaniknou důsledkem fotoefektu nebo jsou Comptonovým rozptylem vychýleny mimo detektor. Z toho vyplývá, že počet částic, které dorazí na detektor, je nižší než počet částic, které byly vyzářeny zdrojem. Výsledné snímky pak neodpovídají skutečné distribuci radionuklidu v tkáni, je proto nutná korekce na zeslabení a rozptyl záření (8).

Obrázek 4. Princip SPECT – schéma zobrazující nerozptýlené fotony absorbované v krystalu, fotoefekt a Comptonův rozptyl (8).

2.1.1.5. Hybridní systémy

V poslední době mají v medicíně široké uplatnění systémy kombinující více zobrazovacích metod – např. PET/CT a PET/MR. Hybridní systémy umožňují lépe popsat korelaci mezi strukturou a funkcí jednotlivých tkání. Tyto techniky našly využití v onkologii, neurologii a kardiologii (20).

Systémy kombinující pozitronovou emisní tomografii (PET) a výpočetní tomografii (CT), anebo magnetickou rezonanci (MR) se hojně uplatňují v diagnostice onkologických onemocnění. CT, resp. MR poskytuje informace o struktuře a anatomii, PET naopak podává informace o metabolismu jednotlivých oblastí v organismu.

Před vyšetřením je pacientovi intravenózně podáno radiofarmakum (často ¹⁸F-fluorodeoxyglukosa) a po určité době od podání látky se provede vlastní snímání, které je zahájeno vyšetřením PET, následuje CT, resp. MR. Vyšetření PET/CT trvá v průměru kolem třiceti minut (17), doba vyšetření PET/MR se pohybuje v rozmezí 30-90 minut v závislosti na rozsahu vyšetření (buď se provádí snímání určité části těla pacienta, nebo je snímáno celé

tělo) (20). Výsledkem je velké množství řezů z obou typů skenování, jejichž vyhodnocování je časově velmi náročné. Na vyhodnocování snímků se podílejí specialisté z oblasti nukleární medicíny a radiologie.

Výhodou systému PET/CT, resp. PET/MR je zvýšení správnosti diagnostiky díky společnému vyhodnocování výsledků obou vyšetření na jednom místě v jeden čas. Také pro pacienta je toto kombinované vyšetření výhodnější a komfortnější, absolvuje dvě specializovaná vyšetření naráz a v případě PET/CT dokonce při nižší radiační zátěži (17).

2.1.2. Terapie GBM

Strategie léčby GBM závisí na charakteru nádoru, na jeho velikosti a umístění v mozku, dále na věku a celkovém stavu pacienta (5). Základní terapeutickou metodou u většiny mozkových nádorů je neurochirurgický zákrok (21). Primárním cílem chirurgických postupů je maximálně možná resekce nádoru, aniž by došlo k poškození funkčně důležitých oblastí mozku (5). Rozhodujícím prognostickým faktorem je radikalita zákroku (21). Radikální resekce je mnohem efektivnější, má pozitivní vliv na sledované prognostické faktory, tj. celkovou dobu přežití a čas do progrese onemocnění (5). Částečná resekce tumoru má vždy horší léčebné výsledky. Bezpečnost radikálního zákroku je zvýšena použitím moderních technologií, např. funkční magnetické rezonance (fMR), která je prováděna během výkonu.

Strategie léčby, zvláště pooperační, musí být určena multidisciplinárním týmem odborníků, který je zpravidla tvořen neurochirurgem, radiačním a klinickým onkologem, diagnostikem a neurologem.

Dalším léčebným postupem po resekci nádoru bývá radioterapie (cílené ozařování nádoru), která zlepšuje léčebné výsledky. Pokud to stav pacienta umožňuje, může být společně s radioterapií aplikována chemoterapie. Mezi cytostatika používaná při terapii multiformního glioblastomu patří např. temozolomid nebo deriváty nitrosourey (21).

Medián přežití pacientů, u kterých je aplikována radioterapie v kombinaci s chemoterapií, je 14,6 měsíců (22). V současnosti jsou široce zkoumány nové účinnější terapeutické strategie, které by zajistily zvýšení průměrné doby přežití pacientů nebo dokonce minimalizovaly riziko recidivy glioblastomu. Vysoký potenciál mají metody tzv. cílené biologické léčby a antiangiogenní léčby (23). Rovněž pro diagnostiku

glioblastomu jsou zkoumány efektivnější postupy a metody, např. využití nových radiofarmak pro diagnostiku GBM metodou pozitronové emisní tomografie.

2.2. Experimentální modely GBM

V *in vitro* podmínkách jsou kultivovány buněčné kultury. Buňky vyjmuté z organismu jsou pěstovány v prostředí média, které se svým složením a vlastnostmi velmi blíží tělním tekutinám, tj. krevní plazmě, lymfě, mozkomíšnímu moku atd. Jako buněčné linie jsou označovány také soubory buněk mající charakter nádorových buněk, takřka neomezeně se dělí a lze je uchovávat libovolně dlouhou dobu. Buněčné kultury mají široké uplatnění v medicíně, jsou zkoumány např. možnosti regulace buněčného cyklu, objasnění procesů vedoucích ke vzniku nádorů a testování účinku nových léčiv a jiných chemických látek (24).

Spojovací článek mezi testováním na molekulární úrovni a zařazením diagnostické či terapeutické metody do klinické praxe představují laboratorní zvířata (25). Testování experimentálních látek na zvířecích modelech je nedílnou součástí preklinického vývoje nových léčiv. Využití *in vivo* modelů je důležité především pro zkoumání mechanismů nemocí, testování nových léčiv, diagnostických a terapeutických postupů (26).

2.2.1. Buněčné linie glioblastomu

Výběr konkrétní buněčné linie závisí na účelu daného experimentu. Je dostupná řada typů buněčných linií odpovídajících glioblastomu, např. A172, U-138 MG, LN-18, LN-229, U-87 MG, U-118 MG, T98G, DBTRG-05MG, M059K a M059J. Jako model primárního glioblastomu slouží buněčná linie U-87 MG (27).

Buněčnou linii U-87 MG izoloval švédský vědec Jan Pontén v roce 1966 z gliomu čtyřiceti čtyřletého bělocha, nicméně genomická sekvence této linie byla publikována až v roce 2010 (28; 29). U-87 MG buňky se využívají jako *in vivo* a *in vitro* model astrocytárního nádoru IV. stupně, čemuž podle klasifikace WHO z roku 2007 odpovídá multiformní glioblastom (28; 30). *In vivo* aplikace buněk linie U-87 MG slouží především ke studiu nových diagnostických a terapeutických postupů. Do zvířecího modelu se buňky zavádějí subkutánně či ortotopicky (31). V *in vitro* podmínkách se provádí zejména testování cytotoxického účinku na nádorové buňky během chemoterapie (30).

2.2.2. Zvířecí modely

Primární mozkové nádory jsou zkoumány na zvířatech ze dvou hlavních důvodů – výzkum napomáhá určit genetické změny vedoucí ke vzniku nádoru a umožňuje navrhnout vhodnou diagnostickou a terapeutickou metodu. Přestože se zvířatům často aplikují lidské nádorové linie, výsledky *in vivo* testování a jejich aplikace v klinické praxi se poněkud odlišují v důsledku několika faktorů: nádory ve zvířecích modelech nevykazují takové biologické vlastnosti jako nádory pacientů, odlišuje se biodistribuce v těle zvířete a v těle člověka, tumory v modelových zvířatech neodpovídají heterogenitě lidských onemocnění (32).

Pro *in vivo* testování multiformního glioblastomu se využívají zejména malí hlodavci (myši a potkani). Výhody těchto modelů spočívají v tom, že lze spolehlivě určit vývoj a rychlost růstu nádoru a také jeho lokalizaci v organismu. Ačkoliv testování nové terapie na malých zvířatech může být úspěšné, nedostatek větších zvířat (např. psů) pro studium GBM ztěžuje vyhodnocení účinku terapie u lidských pacientů. Zvířecí modely pro laboratorní testování mohou být různě modifikovány, využívají se např. imunodeficientní myši (nu/nu) kmene BALB/c (33).

Pro zobrazování malých laboratorních zvířat byla vyvinuta speciální zobrazovací zařízení, která jsou analogií přístrojů, jež se využívají v běžné klinické praxi pro pacienty. Jedná se především o zařízení mikro-CT, mikro-PET a mikro-SPECT (25). Při vyšetření laboratorních zvířat zmíněnými přístroji se podobně jako u pacientů aplikují kontrastní či radioaktivně značené látky. Testování experimentálních radiofarmak má význam pro zavedení nových efektivnějších diagnostických strategií do klinické praxe.

2.3. Radiofarmaka

Radiofarmakum představuje léčivý přípravek obsahující jeden nebo více radionuklidů a sloužící výhradně k lékařským účelům. Radiofarmaka jsou využívána pro diagnostické i terapeutické účely a napomáhají porozumět kinetice léčiva, jeho distribuci mezi jednotlivými tkáněmi, metabolismu či vylučování. Při výrobě, manipulaci a používání radiofarmak je nutné, na rozdíl od běžných léků, splňovat speciální požadavky na práci se zdroji ionizujícího záření (8).

Radiofarmaka jsou připravována ve formě parenterálních, perorálních, inhalačních nebo topických přípravků. V nukleární medicíně jsou nejvyužívanější parenterální přípravky,

které se podávají intravenózně. Do této skupiny patří pravé roztoky, koloidní disperze a suspenze. K perorálnímu podání jsou určeny roztoky či tuhé látky ve formě želatinových tobolek. Do skupiny inhalačních radiofarmak patří radioaktivní plyny a dispergované radioaktivně značené koloidní roztoky. Využití mají i topické přípravky pro lokální aplikaci (34).

Radiofarmaky mohou být jednoduché anorganické látky anebo složitější organické molekuly jako např. proteiny a peptidy. Radionuklid je v daném léčivu v iontové formě, případně může být vázán kovalentně či ve formě komplexu (8). Radionuklid – zdroj ionizujícího záření – je hlavní účinnou složkou radiofarmaka (34).

2.3.1. Radionuklidy

Radionuklidy jsou nestabilní izotopy, které se stabilizují samovolnou emisí nabité částice nebo vyzářením fotonu. Stabilita případně nestabilita jádra souvisí se strukturálním uspořádáním nukleonů v jádře atomu (34). Radioaktivita je pak schopnost samovolné přeměny nestabilních jader radionuklidů na jádro jiného nuklidu za vzniku ionizujícího záření. Jádro, které se přeměňuje, označujeme jako mateřské a nově vznikající jádro jako dceřiné (8). Přeměna mateřského jádra na dceřiné může probíhat několika různými způsoby.

2.3.1.1. Typy radioaktivních přeměn

Přeměna α je charakteristická pro těžší jádra, jako jsou radon, uran, neptunium (19). Při této přeměně jsou vyzařovány tzv. α -částice, jedná se o jádra helia ⁴₂He, která jsou mimořádně stabilní díky vysoké vazebné energii. Záření α je monoenergetické, což znamená, že všechny α -částice emitované z jádra radionuklidu mají stejnou energii (34). Přestože mají heliová jádra poměrně vysokou energii, jejich dosah v tkáni je pouze okolo 0,03 mm (8).

K přeměně β⁻ dochází u jader s přebytkem neutronů oproti stabilnímu stavu. V jádře dochází k přeměně neutronu na proton za současného uvolnění β⁻-částice (elektronu) a antineutrina. β⁻-částice nese pouze podíl přeměnové energie, zbývající energii přenáší antineutrino. Záření β⁻ je tedy spojité, obsahuje energie v rozmezí 0-E_{max} (maximální energie je dána přeměnovou energií) (34). Dosah záření v tkáni je v průměru 1-4 mm. V nukleární medicíně je tato přeměna typická pro izotopy ¹³¹I, ¹³³Xe (8).

U jader, která se odchylují od stabilního stavu nedostatkem neutronů nebo přebytkem protonů, dochází k přeměně protonu na neutron za vyzáření β^+ -částice (pozitronu) a neutrina. Obdobně jako u přeměny β^- je záření spojité. V nukleární medicíně se využívají jako pozitronové zářiče např. ¹⁸F, ¹⁵O, ¹³N, ¹¹C, ⁶⁸Ga.

Alternativou k přeměně β^+ je tzv. elektronový záchyt (34). Dochází při něm k zachycení elektronu z vnitřní slupky elektronového obalu jádrem. Elektron se spojí s protonem za vzniku neutronu a doprovodného γ -záření. Z radionuklidů používaných v nukleární medicíně je tento proces charakteristický pro tyto nuklidy – ⁶⁷Ga, ¹¹¹In, ¹²³I, ¹²⁵I, ⁵⁷Co.

Záření γ doprovází přeměny α a β. Vzniklé dceřiné jádro se nachází v excitovaném stavu a přebytečné energie se zbavuje ve formě elektromagnetického záření – γ-záření. Při této přeměně se nemění počet nukleonů v jádře. Excitované stavy jader mohou ležet na různých energetických hladinách, tedy i emitované γ-záření může mít různou energii. Pro jednotlivé radionuklidy je však energie γ-záření přesně definovaná, např. izotop jodu ¹³¹I emituje γ-záření o energiích 364 keV, 637 keV, 723 keV a 284 keV (8).

Při vnitřní konverzi je γ -záření z části nebo zcela nahrazeno vyzářením elektronů (34). Emitované záření γ vyrazí z elektronového obalu elektron, který převezme veškerou energii fotonu a samotný foton zanikne. Energeticky obohacený elektron vyletí z atomu. Mezi elektrony emitovanými při β -přeměně a vnitřní konverzi je výrazný rozdíl. Při β -přeměně jsou elektrony emitované z jádra a mají spojitou oblast energií, kdežto elektrony vnitřní konverze jsou emitovány z elektronového obalu a mohou vytvořit několik skupin monoenergetických elektronů.

Některá jádra mohou v excitovaném stavu přetrvávat delší dobu, nacházejí se v tzv. metastabilním stavu. Při přechodu na základní energetickou hladinu je produkováno γ-záření. Tento jev se označuje jako jaderná izomerie. V nukleární medicíně je typická např. pro izotopy ^{99m}Tc a ^{81m}Kr (8).

2.3.1.2. Výroba a získávání radionuklidů

Radiofarmaka využívaná v lékařské praxi obsahují výhradně uměle připravené radioaktivní izotopy. Ty se připravují jadernými reakcemi v cyklotronech, jaderných reaktorech nebo se získávají ve formě tzv. dceřiných radionuklidů z radionuklidových generátorů (8).

V cyklotronu jsou kladně nabité částice jako protony, deuterony nebo alfa částice urychleny ve vakuu působením elektrického pole (8; 19). Dráha urychlených částic je ovlivňována magnetickým polem tak, že se částice pohybují po kruhových drahách se zvětšujícím se poloměrem, vykonávají v podstatě spirálovitý pohyb (8; 34). Nakonec energeticky bohatší částice dopadají na vhodný terč, interagují s jádry a proběhne daná jaderná reakce (34). Ve větších množstvích se vyrábějí radionuklidy s delším poločasem přeměny, např. ¹¹¹In ($T_{1/2} = 6$ h), ⁶⁷Ga ($T_{1/2} = 78$ h), ¹²³I ($T_{1/2} = 13$ h) nebo ²⁰¹Tl ($T_{1/2} = 74$ h). Existují i menší cyklotrony, které slouží pro výrobu radioaktivních izotopů biogenních prvků s krátkým poločasem rozpadu. Tato zařízení jsou umístěna přímo na pracovištích, kde se připravené radionuklidy použijí pro značení radiofarmak. Nejvíce využívané jsou izotopy ¹⁸F ($T_{1/2} = 110$ min), ¹¹C ($T_{1/2} = 20$ min), ¹³N ($T_{1/2} = 10$ min) a ¹⁵O ($T_{1/2} = 2,1$ min) (8).

V jaderných reaktorech probíhají řízené řetězové reakce, při kterých jsou stabilní jádra (štěpný materiál) ozařována neutrony a vznikají nové radioaktivní izotopy (8; 34). Primární význam jaderných reaktorů je získávání energie, avšak lze jich využít i pro výrobu radionuklidů (34). Jako jaderné palivo se nejčastěji používá obohacený uran ²³⁵U nebo plutonium ²³⁹Pu (19).

Radionuklidové generátory mají využití pro získávání krátkodobých radionuklidů přímo na pracovištích nukleární medicíny. Princip spočívá v radioaktivní přeměně mateřského radionuklidu s delším poločasem rozpadu na dceřiný prvek (8). V generátoru je umístěna skleněná nebo plastová kolona naplněná nosičem, na který je adsorbován mateřský prvek (19). Přirozenou radioaktivní přeměnou vzniká dceřiný prvek, který je z kolony vymýván vhodným rozpouštědlem, jelikož oba radioaktivní izotopy mají rozdílné vlastnosti (19; 34). Z generátoru je možné opakovaně eluovat dceřiný izotop po intervalu, který závisí na poločasu přeměny mateřského radionuklidu. Výhodou generátorů radionuklidů je fakt, že poskytují opakovaně radionuklidy s krátkým poločasem rozpadu, které pro pacienta znamenají minimální radiační zátěž a zároveň umožňují kvalitní zobrazení (34). Příkladem radionuklidových generátorů mohou být ⁹⁹Mo/^{99m}Tc, ⁶⁸Ge/⁶⁸Ga, ⁹⁰Sr/⁹⁰Y, ⁶²Zn/⁶²Cu nebo ⁸²Sr/⁸²Ru generátor.

V současné době se v nukleární medicíně nejvíce využívá molybden-techneciový generátor ⁹⁹Mo/^{99m}Tc. Poločas rozpadu radionuklidu ⁹⁹Mo je 66 hodin a poločas rozpadu vznikajícího ^{99m}Tc je 6 hodin. Začíná se prosazovat germanium-galliový generátor ⁶⁸Ge/⁶⁸Ga, který výborně kombinuje mateřský prvek ⁶⁸Ge s dlouhým poločasem rozpadu 271 dní a dceřiný prvek ⁶⁸Ga s krátkým poločasem rozpadu 68 minut (19).

Obrázek 5. Schematické znázornění radionuklidového generátoru ⁹⁹Mo/^{99m}Tc (34).

2.3.1.3. Gallium-68

V klinické praxi jsou běžně využívány pro značení radiofarmak pozitronové zářiče produkované cyklotrony – ¹⁸F, ¹¹C, ¹³N a ¹⁵O. Alternativní variantou jsou radionuklidy produkované generátory, např. izotopy ^{99m}Tc, ⁶⁸Ga, ⁸²Rb nebo ⁶²Cu (35). Výhodou generátorů je jejich relativně nízká cena a fakt, že radioaktivní izotop pro značení je prakticky neustále k dispozici (35; 36). V posledních letech se výrazně zvýšil zájem o aplikace ⁶⁸Ga pro PET vyšetření (37).

 ${}^{68}\text{Ge}/{}^{68}\text{Ga}$ generátor kombinuje mateřský prvek ${}^{68}\text{Ge}$ s dlouhým poločasem rozpadu (T_{1/2} = 270,95 dní) a dceřiný prvek ${}^{68}\text{Ga}$ s krátkým poločasem rozpadu (T_{1/2} = 67,71 min). V poslední době je hojně užívaný generátor se stacionární fází TiO₂, na které je nanesen mateřský prvek. Jako eluční činidlo se využívá 0,1M HCl (35).

Gallium se nachází ve 13. skupině (III. A skupině) periodické tabulky prvků. Jeho chemické vlastnosti se velmi podobají železu Fe³⁺ (37). Ve vodných roztocích je jediným stabilním oxidačním stavem Ga³⁺ při kyselém pH. Ion Ga³⁺ patří mezi tvrdé Lewisovy kyseliny a stabilní komplexy vytváří s tvrdými Lewisovými bázemi, což jsou ligandy obsahující elektronově-donorní atomy kyslíku, dusíku nebo síry. Na Ga³⁺ komplexy jsou kladeny určité požadavky, aby mohly být využívány jako radiofarmaka. Je nutná termodynamická stabilita komplexů vůči hydrolýze a kinetická inertnost, aby nedocházelo k výměně ligandu s transferinem – proteinem obsaženým v lidském séru.

Většina chelatačních činidel, která tvoří komplexy s iontem Ga^{3+} jsou hexadentátní (šestivazné). Bylo však zjištěno, že i cheláty s koordinačním číslem 4 nebo 5 jsou v *in vivo* podmínkách stabilní. Ligandy, které umožňují kovalentní vazbu s cílovou molekulou a zároveň váží kovový ion, se označují jako bifunkční chelátory. Při výběru vhodného chelatačního činidla musí být zohledněny tři základní faktory: I) komplexace s radioaktivním izotopem kovu by měla být rychlá a s vysokým výtěžkem, II) vzniklý chelát by měl být dostatečně kineticky stabilní v rozmezí pH 4-8 (nesmí docházet k odštěpení kovu z komplexu) a III) je nutná inertnost vůči iontům krevního séra (Ca^{2+} , Zn^{2+} , Mg^{2+}) (35).

Jedna z prvních molekul, která byla použita pro radioaktivní značení izotopem ⁶⁸Ga byl desferrioxamin (DFO). Tato molekula se ovšem neosvědčila jako vhodné chelatační činidlo, jelikož komplex ⁶⁸Ga-DFO byl stabilní pouze při koncentracích DFO > 5 μmol/l. Nejznámějším chelátorem, který vytváří stabilní komplexy s raioaktivními kovy, je DOTA (1,4,7,10-tetraazacyklodekan-1,4,7,10-tetraoctová kyselina). Další hojně studovaná chelatační činidla jsou např. NODAGA (1,4,7-triazacyklononan-1-glutarová kyselina-4,7dioctová kyselina) a NOTA (1,4,7-triazacyklononantrioctová kyselina). Uvedené cheláty se používají v konjugaci s vhodnými biologicky aktivními látkami, např. peptidy. (35).

Obrázek 6. Struktury běžných chelatačních činidel pro ⁶⁸Ga (38).

2.3.2. Experimentální radioaktivně značené látky pro diagnostiku GBM

2.3.2.1. RGD peptidy

RGD peptidy obsahují ve své struktuře sekvenci aminokyselin arginin (R) – glycin (G) – asparagová kyselina (D). Tato sekvence je důležitá, jelikož vykazuje vysokou afinitu a selektivitu k integrinu $\alpha_v\beta_3$ (39). Jedná se o molekuly na povrchu aktivovaných endoteliálních buněk během angiogeneze indukované nádorem (39; 40). V posledních letech byla široce zkoumána úloha integrinu $\alpha_v\beta_3$ během růstu nádoru. Bylo zjištěno, že právě RGD sekvence má vysokou afinitu k této molekule (39).

Testování RGD peptidů vychází z předpokladu, že látky organismu vlastní vykazují vysokou selektivitu k cílovým strukturám a jejich aplikace je mnohdy výhodnější než aplikace látek, které se v těle přirozeně nevyskytují. RGD sekvence je součástí mnoha extracelulárních komponent, jako jsou proteiny fibronektin a vitronektin, které se váží na integriny (41).

RGD-dimer acetát je dimerní cyklický pentapeptid s aminokyselinovou sekvencí Arg-Gly-Asp-Tyr-Lys a řadí se do skupiny RGD peptidů označovaných jako c(RGDyK). Pro radioaktivní značení a následné PET vyšetření se osvědčily RGD peptidy, v jejichž struktuře se několikanásobně opakuje motiv základního peptidu, jelikož interagují s integrinem $\alpha_v\beta_3$ ve vyšší míře. S rostoucí multiplicitou peptidů roste však také jejich koncentrace v ostatních tkáních, což je nežádoucí, výsledkem by mohl být nízký poměr radioaktivity nádor-orgány.

Obrázek 7. Struktura látky NODAGA-RGD dimer acetát.

Cyklické RGD peptidy byly zkoumány v rozličných nádorových modelech, značeny různými pozitronovými zářiči (¹⁸F, ⁶⁸Ga, ⁶⁴Cu) a konjugovány s několika bifunkčními chelátory (DOTA, NOTA, NODAGA) (39). RGD peptidy mají velký potenciál pro vývoj radiodiagnostických a antiangiogenních metod, pro vývoj nových radiofarmak nebo chemoterapeutik (41).

2.3.2.2. Substance P

Tachynkininy jsou peptidy syntetizované nervovými a gliovými buňkami centrálního a periferního nervového systému, byly však nalezeny i mimo nervový systém, konkrétně v endoteliálních, svalových a zánětlivých buňkách. Účastní se jak fyziologických, tak patologických procesů – např. přenosu vzruchu a nocicepce (vznik a transport signálu o bolesti). Tachykininy jsou charakteristické sekvencí Phe-X-Gly-Leu-Met-NH₂. Jejich biologická odezva je aktivována tachykininovými receptory NK1, NK2 a NK3. Nejdůležitějším zástupcem ze skupiny tachykininů je substance P, která představuje hlavní ligand pro receptor typu NK1. Přítomnost funkčních NK1 receptorů byla prokázána u maligních mozkových nádorů gliového původu (42). Bylo též zjištěno, že aktivita SP-NK1 receptorů se podílí na vzniku a rozvoji tumoru.

Substanci P tvoří sekvence Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH₂.

Obrázek 8. Struktura látky DOTA-substance P.

Substance P je zkoumána v různých oblastech. Provádějí se studie, jež se snaží využít selektivní antagonisty NK1 receptorů, blokovat jejich aktivitu a inhibovat tak růst nádoru (42). Jiná studie se zaměřila na význam substance P při astmatu a navržení nových terapeutických postupů pro léčbu tohoto chronického onemocnění (43). Substance P byla také testována na nádorových liniích jako potenciální radiofarmakum, např. na buněčné linii lidského astrocytárního nádoru U-373 MG. Závěrem studie bylo, že by substance P mohla sloužit k detekci aktivních NK1 receptorů u nádoru, tedy k diagnostice nádoru (44).

2.3.3. Klinicky používaná radiofarmaka pro diagnózu GBM

2.3.3.1. ¹⁸F-fluorodeoxyglukosa

2-[¹⁸F]fluoro-2-deoxyglukosa (¹⁸F-FDG) je nejběžnější PET radiofarmakum připravované v cyklotronu (19). ¹⁸F-FDG se podává pacientům nitrožilně asi jednu hodinu před PET vyšetřením (aktivita 200-700 MBq, hodnota je upravena v závislosti na hmotnosti pacienta a citlivosti PET kamery) (8; 45).

 18 F-fluorodeoxyglukosa se z krve dostává do extracelulární tekutiny a odtud je transportována do buněk obdobně jako běžná glukosa. Uvnitř buněk probíhá fosforylace za účasti enzymu hexokinasy a vzniká 18 F-FDG-6-fosfát, který již není v organismu metabolizován. Tím dochází v buňce ke kumulaci detekovatelného radionuklidu (8). Kompetice mezi 18 F-FDG a plazmatickou glukosou by mohla zhoršovat kontrast patologických tkání, je proto nutné před vyšetřením alespoň 6 hodin nejíst a dosáhnout tak nízké glykémie – obsah glukosy v krvi by měl být < 8,3 mmol/l (8; 45). Velký přísun tekutin je žádoucí kvůli snížení radiační zátěže močových cest, pacient však nesmí pít nápoje obsahující glukosu (45). 18 F-FDG se vysoce hromadí v šedé kůře mozkové, jelikož glukosa představuje pro mozek základní zdroj energie (8).

¹⁸F-fluorodeoxyglukosa se primárně používá ke studiu metabolismu mozku a srdce, k diagnostice epilepsie a zobrazení většiny druhů zhoubných nádorů a jejich metastází (19; 45). ¹⁸F-FDG je vhodná pro diagnostiku gliomů, jelikož v buňkách mozkových nádorů dochází ke zvýšení metabolismu glukosy a na základě rychlosti glykolýzy lze určit i stupeň malignity a rozlišit tak multiformní glioblastom (46).

Obrázek 9. Struktura látky ¹⁸F-FDG (47).

2.3.3.2. ¹⁸F-fluorothymidin

3'-deoxy-3'-[¹⁸F]fluorothymidin (¹⁸F-FLT) je radioaktivně značená forma pyrimidinové nukleové báze thymidinu (48). ¹⁸F-FLT je v organismu fosforylován, reakci

v cytosolu buněk katalyzuje enzym thymidin kinasa-1 (TK1) (49). Fosforylovaný ¹⁸F-fluorothymidin se hromadí uvnitř proliferujících buněk a asi 60 minut zůstává stabilní (49; 50).

¹⁸F-FLT se podává intravenózně, aktivita podaná pacientovi by se měla pohybovat v rozmezí 150-600 MBq dle hmotnosti jedince a citlivosti PET kamery. ¹⁸F-FLT se rychle kumuluje v cílových tkáních, PET-skenování se provádí po 15-30 minutách po podání radiofarmaka. Je důležité, aby pacient před a po vyšetření zvýšil příjem tekutin z důvodu snížení radiační zátěže močových cest. U přípravku nejsou známá žádná omezení, která by se týkala charakteru požitých jídel a nápojů. ¹⁸F-FLT je metabolizován v játrech, transportován krví a nakonec vyloučen ledvinami. Nejvíce se hromadí v kostní dřeni, v ledvinách, močovém měchýři, v játrech a v nádorové tkáni s vysokou proliferační aktivitou.

¹⁸F-fluorothymidin je vhodný pro diagnostiku maligních nádorů a určení stupně buněčné proliferace (50). Ve zdravém mozku je kumulace ¹⁸F-FLT nízká, ale v proliferujících nádorových buňkách se ¹⁸F-FLT ochotně hromadí dle rychlosti syntézy DNA (46). Na základě proliferační aktivity buněk je možné určit stupeň malignity nádoru (50) a rozpoznat tak i nejmalignější typ mozkového tumoru – multiformní glioblastom.

Obrázek 10. Struktura látky ¹⁸F-FLT (51).

3. Experimentální část

3.1. Cíle práce

Cílem mé bakalářské práce je na základě *in vitro* a *in vivo* experimentů posoudit potenciál dvou peptidů značených radioaktivním izotopem ⁶⁸Ga pro diagnostiku multiformního glioblastomu metodou pozitronové emisní tomografie. Konkrétně jsem se zabývala látkami NODAGA-RGD dimer acetát a DOTA-substance P. *In vivo* testování jsem podrobila i dvě klinicky používaná radiofarmaka, konkrétně ¹⁸F-fluorodeoxyglukosu a ¹⁸F-fluorothymidin. Výsledky *in vivo* experimentů studovaných ⁶⁸Ga značených peptidů jsem porovnala s klinicky používanými radiofarmaky a vyhodnotila, zda jsou vhodné pro radiodiagnostiku GBM.

3.2. Použité přístroje a chemikálie

⁶⁸Ge/⁶⁸Ga generátor (Eckert & Ziegler, Berlín, Německo), vysokoúčinný kapalinový chromatograf (Dionex UltiMate 3000, Thermo Scientific, Waltham, MA, USA), radiodetektor (Raytest, Straubenhardt, Německo), kolona Watrex Nucleosil 120 C18 5 μm 250x4 mm (Watres, Praha, Česká republika), PET/SPECT/CT systém pro malá laboratorní zvířata (Albira, Bruker Biospin Corporation, Woodbridge, USA), automatický gama počítač (Wizard², PerkinElmer, USA), ionizační komora, centrifuga, analytické váhy, termoblok, vortex, třepačka.

NODAGA-RGD dimer acetát (ABX, Radeberg, Německo), DOTA-substance P (ABX, Radeberg, Německo), ¹⁸F-fluorodeoxyglukosa (ÚJV Řež, Česká republika), ¹⁸F-fluorothymidin (RadioMedic, Řež, Česká republika). Ostatní použité chemikálie jsou běžně komerčně dostupné ve vysoké čistotě: acetátový pufr (c = 1,14 mol/l), HCl (c = 0,1 mol/l), roztok FeCl₃ (c = 0,1 mol/l), roztok DTPA (c = 6 mmol/l), acetonitril, fosfátový pufr, fyziologický roztok, isofluran, deionizovaná voda, trifluoroctová kyselina, oktanol.

3.3. Metodická část

3.3.1. Radioaktivní značení

Izotop gallia ⁶⁸Ga pro radioaktivní značení peptidů jsem získala z ⁶⁸Ge/⁶⁸Ga generátoru ve formě iontu ⁶⁸Ga³⁺ (⁶⁸GaCl₃). Jako eluční činidlo jsem použila 0,1M HCl. Eluát jsem odebírala po frakcích a frakci o přibližném objemu 1 ml s aktivitou 50-70 MBq jsem použila pro značení peptidů. Testovala jsem různá množství peptidů v reakční směsi, konkrétně 1, 5 a 10 µg. Reakční směs obsahovala testovaný peptid, 300 µl radioaktivního eluátu ⁶⁸Ga a 30 µl 1,1M acetátového pufru. Směs jsem nechala inkubovat při laboratorní teplotě, resp. při 95°C a v časových intervalech 15, 60 a 120 minut jsem provedla kontrolu kvality značení pomocí RP-HPLC. Ze získaných dat jsem vyhodnotila optimální reakční doba) s ohledem na požadovanou radiochemickou čistotu > 95%.

3.3.2. Kontrola kvality značení

Kontrolu kvality značení jsem prováděla pomocí vysokoúčinného kapalinového chromatografu s radiodetekcí. Dle Českého lékopisu je pro látky značené izotopem gallia ⁶⁸Ga nutná radiochemická čistota minimálně 95% (52).

Chromatografické podmínky:

- kolona Watrex Nucleosil 120 C18 5 µm 250x4 mm (Watrex, Praha, Česká republika)
- průtoková rychlost: 1 ml/min
- gradientová eluce: 0-3 min ... 100% A

3-10 min ... 50% A + 50% B 10-13 min ... 20% A + 80% B 13-15 min ... 100% B (A = 99,9% H₂O + 0,1% TFA; B = 99,9% ACN + 0,1% TFA)

detekce: radiodetektor (Raytest, Straubenhardt, Německo)

3.3.3. Testy stability

Pro testování stability v lidském séru jsem smísila 100 µl značeného preparátu s 300 µl lidského séra a směs jsem nechala inkubovat v inkubátoru při teplotě 37°C. Po 30, 60 a 120 minutách jsem ze směsi odebrala vzorek o objemu 100 µl a přidala k němu 150 µl ACN. Vzniklou sraženinu jsem oddělila centrifugací (15 000 rpm, 3 min). Pomocí RP-HPLC jsem zanalyzovala supernatant.

K dalším testům, které ověřily stabilitu komplexu ⁶⁸Ga s peptidem v prostředí se zvýšenou koncentrací Fe³⁺ a konkurenčního chelátoru, jsem používala roztoky 0,1M FeCl₃ a 6mM DTPA. Ke 150 μl značeného preparátu jsem přidala 150 μl roztoku FeCl₃, resp. DTPA a směs jsem nechala inkubovat při 37°C. Po 30, 60 a 120 minutách jsem odebrala vzorky pro analýzu na HPLC.

Pro testování stability značeného preparátu v prostředí o vyšším pH jsem do reakční směsi přidala dalších 100 µl 1,1M acetátového pufru pro úpravu pH na hodnotu 6-7 (kontrola pomocí pH papírku). Po 30, 60 a 120 minutách jsem odebrala vzorky a provedla RP-HPLC analýzu.

3.3.4. Rozdělovací koeficient

K celému objemu značeného preparátu (přibližně 400 µl) jsem přidala 600 µl PBS. Do zkumavky (eppendorfky) jsem odpipetovala 50 µl takto naředěného preparátu a přidala jsem 500 µl oktanolu a 450 µl PBS. Tímto postupem jsem připravila celkem šest vzorků a nechala je na třepačce protřepávat po dobu 20 minut. Následně jsem vzorky vložila do centrifugy (15 000 rpm, 1 min). Vzorky jsem odebrala jak z vodné, tak z oktanolové fáze. Následně jsem měřila radioaktivitu v jednotlivých vzorcích pomocí automatického gama počítače. Ze získaných dat jsem vypočítala rozdělovací koeficient (log P) testovaných peptidů. Jedná se o dekadický logaritmus podílu radioaktivity v oktanolové (%) a vodné fázi (%):

 $\log P = \log \frac{CPM \ (\%)_{oktanolová}{fáze}}{CPM \ (\%)_{vodná}{fáze}}$

3.3.5. Vazba na proteiny

Testováním vazby na proteiny se ověřilo, jak se dané peptidy váží na proteiny v lidském séru. Z hlediska možné aplikace v nukleární medicíně je žádoucí, aby vazba na krevní proteiny byla co nejnižší a látka v organismu nesetrvávala delší dobu, než je nutné pro vyšetření. Stanovení vazby na proteiny ⁶⁸Ga značených peptidů bylo prováděno s využitím gelové chromatografie. Na gelové koloně se zadržují nízkomolekulární látky (intaktní testovaný komplex) a naopak v eluátu jsou přítomny látky vysokomolekulární (látky navázané na krevní proteiny).

10 μl značeného preparátu jsem smísila se 190 μl lidského séra a směs jsem nechala inkubovat při 37°C. Současně jsem připravila směs 10 μl značeného preparátu a 190 μl PBS, kterou jsem rovněž nechala inkubovat při 37°C a pracovala s ní analogicky jako se směsí obsahující sérum. Po 30, 60 a 120 minutách jsem odebrala 25 μl vzorku, nanesla jej na předpřipravenou gelovou kolonu a centrifugovala (2 000 g, 2 min). Následně jsem pomocí automatického gama počítače změřila radioaktivitu na gelové kolonce a v eluátu a vyhodnotila vazbu na proteiny testovaných peptidů.

3.3.6. Testování in vivo stability v moči

Laboratorním myším, kterým byly podány látky ⁶⁸Ga-NODAGA-RGD dimer acetát a ⁶⁸Ga-DOTA-substance P, byla 30 a 90 minut po podání testované látky odebrána moč. Vzorky moči byly zanalyzovány pomocí RP-HPLC. Účelem bylo zjistit, zda se dané látky v organismu metabolizují nebo jsou vylučovány v nezměněné formě.

3.3.7. PET/CT zobrazování laboratorních myší

Všechny experimenty byly prováděny v souladu se zákonem 246/1992 Sb., se souhlasem Ministerstva školství, mládeže a tělovýchovy (MSMT-18933/2013-1 a MSMT-22421/2013-12) a se souhlasem Odborné komise na ochranu zvířat proti týrání Lékařské fakulty Univerzity Palackého v Olomouci. Veškeré experimenty byly prováděny na myších samicích kmene BALB/c (Anlab, Praha, Česká Republika).

Před aplikací testované látky zvířeti bylo vždy po radioaktivním značení (v případě peptidů ⁶⁸Ga-NODAGA-RGD dimer acetát a ⁶⁸Ga-DOTA-substance P) ověřeno, zda se pH

preparátu pohybuje v rozmezí 6-7, a byla provedena kontrolní analýza značení pomocí RP-HPLC. Klinicky používané látky ¹⁸F-FDG a ¹⁸F-FLT jsem získala z Kliniky nukleární medicíny Fakultní nemocnice Olomouc a před podáním zvířeti nebyly tyto látky dále upravovány.

Příslušné radiofarmakum bylo myším aplikováno retroorbitálně, aktivita jedné dávky se pohybovala v rozmezí 4-9 MBq. Skenování bylo provedeno pomocí zobrazovacího systému PET/SPECT/CT pro malá laboratorní zvířata. Během celého vyšetření byly laboratorní myši udržovány v celkové anestezii (k tomuto účelu bylo používáno inhalační anestetikum isofluran). Pro každou látku jsem provedla dva typy vyšetření – dynamické a statické zobrazování. Při dynamickém skenování se během 90 minut zaznamenával pouze radioaktivní signál pomocí PET. Data pro jeden snímek byla shromažďována po dobu 5 minut. Celkem tedy bylo získáno 18 snímků zachycujících distribuci radioaktivně značené látky v laboratorní myši v čase. Statické skenování zahrnovalo vyšetření PET i CT a provádělo se po 30 a 90 minutách od podání radioaktivně značené látky.

Po vyšetření byla data zrekonstruována pomocí softwaru Albira Reconstructer (Bruker Biospin Corporation, Woodbridge, USA) a jednotlivé snímky byly upravovány v počítačových programech PMOD (PMOD Technologies Ltd., Curych, Švýcarsko) a VolView (Kitware Inc., New York, USA).

3.3.8. Ex vivo biodistribuce laboratorních myší

Preparáty peptidů značených ⁶⁸Ga (opět kontrola pH a kvality značení před aplikací laboratorním zvířatům) byly naředěny 600 µl fyziologického roztoku. Látky ¹⁸F-FDG a ¹⁸F-FLT nebyly upravovány. Připravené roztoky byly retroorbitálně aplikovány myším, jedna látka byla podána vždy šesti laboratorním myším. Aktivita jedné dávky se pohybovala v rozmezí 1-2 MBq.

Po 30 minutách od podání látky byly usmrceny tři laboratorní myši a následně 90 minut p. i. byly usmrceny zbývající tři laboratorní myši. Každé myši byly odebrány následující orgány: krev, slezina, slinivka, žaludek (vyprázdněný), střeva, ledviny, játra, srdce, plíce, sval, kost, u nádorových zvířat byl navíc odebrán i nádor. Jednotlivé orgány byly zváženy a následně byla proměřena radioaktivita v orgánech pomocí automatického gama počítače. Naměřená data byla vyhodnocena jako procento podané dávky na gram orgánu (%ID/g). Kultivace nádorů u laboratorních myší byla prováděna následovně. Laboratorním myším bylo subkutánně aplikováno $5 \cdot 10^6$ U-87 MG buněk na pravý bok a průběžně byl sledován růst nádoru. Experimentální zvířata s velikostí nádoru 100-300 mm³ (zhruba měsíc po subkutánní aplikaci nádorových buněk) byla používána pro zobrazování pomocí PET/CT a pro *ex vivo* biodistribuční studie.

3.4. Výsledky

3.4.1. NODAGA-RGD dimer acetát

3.4.1.1. Radioaktivní značení

Vysoká radiochemická čistota byla naměřena u preparátů obsahujících 5 a 10 µg RGD peptidu. Radiochemická čistota preparátu s obsahem peptidu 1 µg nevyhovovala požadované hodnotě. Pro další experimenty jsem tedy zvolila následující podmínky radioaktivního značení: 5 µg peptidu a inkubace po dobu 15 minut při laboratorní teplotě. V tabulce 2 jsou shrnuty výsledky optimalizace podmínek radioaktivního značení NODAGA-RGD dimer acetátu. Z radiochromatogramu na obrázku 11 je patrné, že retenční čas RGD peptidu v daném chromatografickém systému je 8,4 min.

množství peptidu (µg)	teplota	reakční doba (min)	RCHČ (%)
		15	6,4
1	LT	60	9
		120	13
		15	99,9
5	LT	60	99,8
		120	99,3
		15	99,9
10	LT	60	99,9
		120	99,5

Tabulka 2. Optimalizace podmínek radioaktivního značení NODAGA-RGD dimer acetátu.

Obrázek 11. Radiochromatogram⁶⁸Ga-NODAGA-RGD dimer acetátu.

3.4.1.2. Testy stability

Komplex ⁶⁸Ga-NODAGA-RGD dimer acetát projevil vysokou stabilitu v testovaných prostředích, konkrétně v koncentrovaných roztocích FeCl₃ a DTPA, v lidském séru a v prostředí s vyšším pH. V tabulce 3 jsou shrnuty hodnoty radiochemické čistoty zjištěné metodou RP-HPLC.

3.4.1.3. Rozdělovací koeficient

Hodnota rozdělovacího koeficientu (log P) pro ⁶⁸Ga-NODAGA-RGD dimer acetát uvedená v tabulce 3 je průměrnou hodnotou ze šesti měření. Výsledná hodnota log P±SD činí -3,39±0,17.

3.4.1.4. Vazba na proteiny

Z dat naměřených automatickým gama počítačem jsem vyhodnotila procentuální obsah radioaktivity na koloně a v eluátu. Rozhodující byla hodnota aktivity v eluátu, která vystihuje vazbu radioaktivního komplexu na krevní proteiny. Hodnota pro ⁶⁸Ga-NODAGA-RGD dimer acetát byla i po 120 minutách nízká (3,97 %). Výsledky měření po 30, 60 a 120 minutách jsou uvedeny v tabulce 3.
Log P ± SD	Doba inkubace	Vazba na proteiny	Stabilita v lidském	Stabilita v 0,1M FeCl ₃	Stabilita v 6mM DTPA	Stabilita po zvýšení pH
8	(min)	(%)	séru (%)	(%)	(%)	(%) ¹
	30	4,25	99,9	99,9	99,8	99,9
-3,39±0,17	60	2,00	99,9	99,9	99,7	99,9
	120	3,97	99,9	99,7	99,8	99,9

Tabulka 3. Výsledky *in vitro* testování ⁶⁸Ga-NODAGA-RGD dimer acetátu.

3.4.1.5. Testování in vivo stability v moči

Na obrázku 12 jsou zobrazeny radiochromatogramy ⁶⁸Ga-NODAGA-RGD dimer acetátu a moči laboratorních myší odebrané 30 a 90 minut po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu. Z obrázku je patrné, že se retenční časy píků na všech třech radiochromatogramech shodují (8,4 min).

Obrázek 12. Radiochromatogramy vyjadřující *in vivo* stabilitu ⁶⁸Ga-NODAGA-RGD dimer acetátu.

3.4.1.6. PET/CT zobrazování nenádorových myší

Dynamické PET vyšetření poukazuje na to, že se ⁶⁸Ga-NODAGA-RGD dimer acetát poměrně rychle dostává z krve přes ledviny do močového měchýře. V žádném jiném orgánu

se nekumuluje. Po 90 minutách od podání látky je již téměř veškerá radioaktivita soustředěna v močovém měchýři (viz obrázek 13).

Výsledky statického PET/CT vyšetření korelují s výsledky dynamického PET skenování. Na obrázku 14 jsou po 30 minutách od podání látky dobře viditelné ledviny a močový měchýř, po 90 minutách od podání je výrazný radioaktivní signál pouze v močovém měchýři.

Obrázek 14. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu (L = ledviny, MM = močový měchýř).

3.4.1.7. PET/CT zobrazování nádorových myší

Na snímcích dynamického PET vyšetření (viz obrázek 15) lze pozorovat, že se ⁶⁸Ga-NODAGA-RGD dimer acetát kumuluje v nádoru. Dobře pozorovatelný radioaktivní signál v oblasti nádoru je možné identifikovat zhruba 15-60 minut od podání látky. 90 min p. i. není nádor na snímku již příliš výrazný, téměř veškerá radioaktivita je soustředěna v oblasti močového měchýře.

Snímky ze statického PET/CT vyšetření doplňují výsledky z dynamického PET zobrazování. Na obrázku 16 je možné vidět, že 30 min p. i. je radioaktivní signál v nádoru dostatečně výrazný, dále je možné pozorovat kumulaci radioaktivity v ledvinách a močovém měchýři. 90 minut p. i. je nejvýraznější močový měchýř, radioaktivní signál v ledvinách a nádoru je méně výrazný.

Obrázek 15. Dynamické PET skenování nádorové myši po aplikaci 68Ga-NODAGA-RGD dimer acetátu; koronální řezy (MM = močový měchýř, N = nádor, L = ledviny, P = místo podání).

Obrázek 16. Statické PET/CT vyšetření nádorové myši 30 min a 90 min po aplikaci 68 Ga-NODAGA-RGD dimer acetátu (N = nádor, L = ledviny, MM = močový měchýř).

3.4.1.8. Ex vivo biodistribuce u nenádorových myší

30 minut po podání ⁶⁸Ga-NODAGA-RGD dimer acetátu byla naměřena nejvyšší radioaktivita v ledvinách (5,85±0,24 %ID/g). V krvi byla naměřena radioaktivita 0,68±0,13 %ID/g, což poukazuje na to, že se značená látka z krve velice rychle dostává do ledvin a následně do močového měchýře. 90 min p. i. klesla hodnota radioaktivity v krvi na 0,09±0,01 %ID/g, nejvyšší radioaktivita byla naměřena opět v ledvinách (3,21±0,41 %ID/g). Zjištěná data pro jednotlivé orgány jsou zobrazena v grafu 1. V každém časovém intervalu byla naměřená data získána ze skupiny tří zvířat.

Graf 1. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu.

3.4.1.9. Ex vivo biodistribuce u nádorových myší

30 minut p. i. byla nejvyšší radioaktivita zaznamenána v ledvinách (6,44±0,80 %ID/g). Poměrně vysoká hodnota radioaktivity byla naměřena i u nádoru, a to sice 5,59±2,10 %ID/g. Hodnota radioaktivity naměřené v krvi činila 1,00±0,24 %ID/g. Po 90 minutách od aplikace značené látky zvířeti klesla radioaktivita v ledvinách na hodnotu 3,52±0,36 %ID/g, pro nádor byla zjištěna hodnota 3,13±0,79 %ID/g a pro krev 0,15±0,02 %ID/g. Hodnoty pro všechny sledované orgány jsou zpracovány v grafu 2. V každém časovém intervalu byla naměřená data získána ze skupiny tří zvířat.

Ze získaných dat jsem vypočítala také následující poměry: nádor – sval, nádor – krev, nádor – ledviny. Poměr radioaktivity v nádoru a ve svalu vyjadřuje kumulaci látky v nádoru vzhledem k pozadí, za které považujeme sval. Zvyšující se hodnota poměru radioaktivit v nádoru a v krvi v čase vypovídá o specifické kumulaci látky v cílové tkáni. Testovaný peptid se vylučuje přes ledviny do moči, takže je radioaktivita v ledvinách poměrně vysoká. Nicméně stabilní hodnota poměru nádor – ledviny v čase poukazuje na to, že nedochází k nežádoucí kumulaci radioaktivity v ledvinách. Výsledky jsou shrnuty v tabulce 4.

Graf 2. *Ex vivo* biodistribuce u nádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu.

Tabulka 4. Poměry kumulace radioaktivity v nádoru k vybraným orgánům pro látku ⁶⁸Ga-NODAGA-RGD dimer acetát.

poměr	30 min p. i.	90 min p. i.
nádor - krev	5,62	20,21
nádor - sval	11,94	11,66
nádor - ledviny	0,87	0,89

3.4.2. DOTA-substance P

3.4.2.1. Radioaktivní značení

Hodnota radiochemické čistoty zjištěná analýzou RP-HPLC byla při laboratorní teplotě pro všechna testovaná množství peptidu nevyhovující (< 95%). V následných experimentech jsem proto zvolila vyšší reakční teplotu, konkrétně 95°C, radiochemická čistota poté dosahovala vyhovujících hodnot. Množství 1 µg peptidu nebylo pro radioaktivní značení vhodné, jelikož nesplnilo limit radiochemické čistoty ani při vyšší reakční teplotě, 5 µg vyhovovalo požadované hodnotě RCHČ, avšak pro následující experimenty jsem zvolila množství 10 µg, pro které byly hodnoty RCHČ nejvyšší. Výsledky radioaktivního značení jsou shrnuty v tabulce 5. Za optimální podmínky pro radioaktivní značení DOTA-substance P jsem zvolila množství peptidu 10 µg a inkubaci při teplotě 95°C po dobu

15 minut. Retenční čas ⁶⁸Ga-DOTA-substance P při RP-HPLC byl 8,9 min (viz obrázek 17). Pík s retenčním časem 2,8 min odpovídá izotopu ⁶⁸Ga, který není vázán v komplexu s peptidem.

množství peptidu (µg)	teplota	reakční čas (min)	RCHČ (%)
		15	2,4
	LT	60	2,8
1		120	5,2
1		15	13,9
	95°C	60	24,4
		120	30,6
		15	5,0
	LT	60	24,7
5		120	41,5
5		15	95,1
	95°C	60	96,0
		120	95,5
		15	8,0
	LT	60	33,2
		120	42,8
10		15	96,3
	95°C	60	97,2
	<i>)5</i> C	120	97,5

Tabulka 5. Optimalizace podmínek radioaktivního značení ⁶⁸Ga-DOTA-substance P.

Obrázek 17. Radiochromatogram ⁶⁸Ga-DOTA-substance P.

3.4.2.2. Testy stability

V lidském séru projevil komplex ⁶⁸Ga-DOTA-substance P vysokou stabilitu, v koncentrovaných roztocích FeCl₃ a DTPA byl však méně stabilní. Radiochemická čistota v obou prostředích v čase klesala. Při pH 6-7 byl komplex stabilní. Naměřené hodnoty jsou uvedeny v tabulce 6.

3.4.2.3. Rozdělovací koeficient

Výsledná hodnota rozdělovacího koeficientu (log P) pro ⁶⁸Ga-DOTA-substanci P činila -3,03±0,33 (průměrná hodnota z měření šesti vzorků).

3.4.2.4. Vazba na proteiny

Z dat naměřených automatickým gama počítačem jsem vyhodnotila procentuální obsah radioaktivity na koloně a v eluátu. Procentuální hodnota vyjadřující aktivitu v eluátu byla po 120 minutové inkubaci téměř 30 %. Jednotlivé hodnoty naměřené po 30, 60 a 120 minutách jsou uvedeny v tabulce 6.

Tabulka 6. Výsledky in vitro testování ⁶⁸Ga-DOTA-substance P.

	Doba	Vazba na	Stabilita	Stabilita v 0,1M	Stabilita v 6mM	Stabilita po
$Log P \pm SD$	inkubace	proteiny	v lidském	FeCl ₃	DTPA	zvýšení pH
	(min)	(%)	séru (%)	(%)	(%)	(%)
$-3,03 \pm 0,33$	30	22,35	98,2	88,4	73,4	98,2
	60	24,49	98,2	85,1	63,1	98,1
	120	29,21	98,0	78,8	56,1	98,1

3.4.2.5. Testování in vivo stability v moči

Z radiochromatogramů ⁶⁸Ga-DOTA-substance P a vzorků moči získaných z laboratorních myší 30 min a 90 min po aplikaci ⁶⁸Ga-DOTA-substance P (viz obrázek 18) je patrné, že je značená látka v organismu degradována. Rozkládá se na dvě složky s retenčními časy 8,0 min a 8,3 min. Upravením podmínek analýzy, případně dalšími postupy by se dalo zjistit, o jaké látky se jedná. Tento fakt však nebyl předmětem zájmu mého testování.

Obrázek 18. Radiochromatogramy vyjadřující in vivo stabilitu ⁶⁸Ga-DOTA-substance P.

3.4.2.6. PET/CT zobrazování nenádorových myší

Snímky z dynamického PET zobrazování na obrázku 19 ukazují, že se látka ⁶⁸Ga-DOTA-substance P dostává poměrně rychle krví do ledvin a dále do močového měchýře. Ze snímku je patrná i určitá kumulace radioaktivity v gastrointestinálním traktu. U nenádorových myší je tedy po podání ⁶⁸Ga-DOTA-substance P nejvyšší kumulace radioaktivity v ledvinách, močovém měchýři a v GIT.

Na snímcích ze statického PET/CT vyšetření (viz obrázek 20) jsou patrná místa s nejvyšší radioaktivitou odpovídající dynamickému PET skenování. Jak po 30 minutách, tak po 90 minutách od podání ⁶⁸Ga-DOTA-substance P je možné pozorovat dosti výraznou kumulaci radioaktivity v močovém měchýři, dále pak v ledvinách a v místě podání. 90 min p. i. je aktivita v ledvinách nižší a naopak signál močového měchýře je intenzivnější než po 30 minutách od podání látky.

Obrázek 20. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci 68 Ga-DOTA-substance P (P = místo podání, L = ledviny, MM = močový měchýř).

3.4.2.7. PET/CT zobrazování nádorových myší

Na snímcích z dynamického PET vyšetření na obrázku 21 není vůbec pozorovatelná retence radioaktivity v nádoru, ⁶⁸Ga-DOTA-substance P se v něm tedy nekumuluje. Výrazný radioaktivní signál je ihned po podání zejména v ledvinách, močovém měchýři, místě podání a v gastrointestinálním traktu. 90 min p. i. je radioaktivita soustředěna zejména v oblasti močového měchýře a nepatrně i v ledvinách.

Na obrázku 22 jsou snímky ze statického PET/CT vyšetření. Výrazná akumulace radioaktivity je patrná v ledvinách a močovém měchýři, a to jak 30 minut, tak 90 minut od podání značené látky. Radioaktivní signál v nádoru není na snímcích patrný.

Obrázek 22. Statické PET/CT vyšetření nádorové myši 30 min a 90 min po aplikaci 68 Ga-DOTA-substance P (L = ledviny, MM = močový měchýř).

3.4.2.8. Ex vivo biodistribuce u nenádorových myší

V grafu 3 jsou zobrazeny výsledky *ex vivo* biodistribuce u nenádorových myší pro radioaktivně značený peptid ⁶⁸Ga-DOTA-substance P 30 minut a 90 minut po aplikaci. Nejvýraznější je kumulace radioaktivity v ledvinách s hodnotami 23,90±3,51 %ID/g 30 min p. i. a 26,21±3,77 %ID/g 90 min p. i. V každém časovém intervalu byla naměřená data získána ze skupiny tří zvířat.

Graf 3. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-DOTA-substance P.

3.4.2.9. Ex vivo biodistribuce u nádorových myší

Výsledky *ex vivo* biodistribuce ⁶⁸Ga-DOTA-substance P u nádorových myší 30 minut a 90 minut po aplikaci opět poukazují na vysokou kumulaci radioaktivity v ledvinách (viz graf 4), přes které se látka vylučuje z krve do močového měchýře. Hodnota radioaktivity v ledvinách činí 20,49 \pm 10,00 %ID/g 30 min p. i., resp. 16,40 \pm 2,65 %ID/g 90 min p. i. V nádoru je dle grafu 4 patrná přítomnost radioaktivity, která je však dosti nízká (odpovídající hladině radioaktivitě v krvi), a proto není pozorovatelná na snímcích z PET vyšetření. V každém časovém intervalu byla naměřená data získána ze skupiny tří zvířat.

Tabulka 8 zobrazuje výsledky poměrů kumulace radioaktivity v nádoru k vybraným orgánům (krev, sval, ledviny). Hodnota poměru radioaktivit nádor – krev je velmi nízká, což svědčí o tom, že se peptid v nádoru specificky nekumuluje. Poměr radioaktivit nádor – sval vyjadřuje retenci látky v nádoru vzhledem k pozadí. Výsledky poukazují na to, že se radioaktivita zadržuje více v nádoru než ve svalu (pozadí). Hodnoty poměru radioaktivit nádor – ledviny jsou nízké, což vypovídá o vysoké kumulaci ⁶⁸Ga-DOTA-substance P v ledvinách.

Graf 4. *Ex vivo* biodistribuce u nádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-DOTA-substance P.

Tabulka 7. Poměry kumulace radioaktivity v nádoru k vybraným orgánům pro látku ⁶⁸Ga-DOTA-substance P.

poměr	30 min p. i.	90 min p. i.
nádor - krev	0,93	2,84
nádor - sval	3,10	6,45
nádor - ledviny	0,10	0,04

3.4.3. ¹⁸F-fluorodeoxyglukosa

3.4.3.1. PET/CT zobrazování nenádorových myší

Na obrázku 23 lze pozorovat snímky z dynamického PET skenování pro ¹⁸F-fluorodeoxyglukosu v nenádorové myši. Kumulace radioaktivity je prakticky ihned po podání výrazná především v oblasti srdce, mozku, gastrointestinálního traktu a močového měchýře. Látka se opět vylučuje přes ledviny do moči, ovšem na exkreci se podílí i gastrointestinální trakt. Ledviny nejsou na obrázku příliš dobře viditelné, jelikož nebylo možné vybrat snímek takového řezu, který by zachycoval všechna místa s vysokou radioaktivitou současně. Po 90 minutách od podání ¹⁸F-FDG je zachycena nejvyšší radioaktivita v srdci a močovém měchýři, výrazně radioaktivní jsou i oblasti mozku a gastrointestinálního traktu.

Na snímcích ze statického PET/CT skenování (viz obrázek 24) lze opět pozorovat nejvýraznější oblasti, ve kterých se ¹⁸F-fluorodeoxyglukosa kumulovala, a to sice mozek, srdce, oblast hrudníku a krku (retence v hnědém tuku), gastrointestinální trakt a močový měchýř. 90 min p. i. je radioaktivita v srdci a močovém měchýři vyšší než 30 min p. i., naopak radioaktivita v oblasti GIT klesá.

Obrázek 24. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci ¹⁸F-FDG (M = mozek, S = srdce, GIT = gastrointestinální trakt, MM = močový měchýř, HT = hnědý tuk).

3.4.3.2. PET/CT zobrazování nádorových myší

Obrázek 25 zachycuje výsledky devadesátiminutového dynamického PET vyšetření nádorové myši, které byla r. o. aplikována ¹⁸F-FDG. Kumulace radioaktivity v nádoru je dobře pozorovatelná již 30 minut po aplikaci. Avšak ideální je provádět vyšetření 45-60 minut od podání radiofarmaka, kdy je kumulace látky v nádoru vysoká a tumor je na PET snímcích dobře rozlišitelný.

Na obrázku 26 jsou zobrazeny vybrané snímky ze statického PET/CT zobrazování nádorové myši 30 min a 90 min po aplikaci ¹⁸F-FDG. Akumulace radioaktivity v nádoru je výrazná a velice dobře identifikovatelná a to jak 30, tak 90 minut od podání látky. Relativně vysoká radioaktivita byla zachycena také v oblasti mozku, srdce, GIT, močového měchýře a v hnědém tuku, což koreluje s výsledky statického vyšetření nenádorových myší.

P = misto podání, M = mozek, S = srdce).

Obrázek 26. Statické PET/CT vyšetření nádorové myši 30 min a 90 min po aplikaci ¹⁸F-FDG (P = místo podání, M = mozek, S = srdce, N = nádor, GIT = gastrointestinální trakt, MM = močový měchýř, HT = hnědý tuk).

3.4.3.3. Ex vivo biodistribuce u nenádorových myší

Z grafu 5 je patrné, že nejvyšší radioaktivita byla naměřena u srdce, konkrétně hodnoty 24,03±5,45 %ID/g 30 min p. i. a 44,86±4,15 %ID/g 90 min p. i. Orgánem s druhou nejvyšší naměřenou radioaktivitou byly ledviny. 30 min p. i. byla zjištěna hodnota 5,28±0,28 %ID/g a 90 min p. i. zhruba poloviční hodnota 2,42±0,24 %ID/g. V každém časovém intervalu byla naměřená data získána ze skupiny tří zvířat.

Graf 5. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ¹⁸F-FDG.

3.4.3.4. Ex vivo biodistribuce u nádorových myší

Výsledky *ex vivo* biodistribuce u nádorových myší po aplikaci ¹⁸F-fluorodeoxyglukosy jsou znázorněny v grafu 6. Z naměřených hodnot dominují opět hodnoty radioaktivity pro srdce: 41,45±9,09 %ID/g 30 min p. i. a 41,54±9,96 %ID/g 90 min p. i. Hodnota radioaktivity pro nádor naměřená 30 min p. i. činí 3,77±0,92 %ID/g. 90 minut po podání ¹⁸F-FDG byla v nádoru zjištěna vyšší radioaktivita, konkrétně 5,05±0,50 %ID/g. V každém časovém intervalu byla naměřená data získána ze skupiny tří zvířat.

V tabulce 8 jsou shrnuty poměry kumulace radioaktivity v nádoru k vybraným orgánům. Poměr radioaktivit nádor – krev hovoří ve prospěch nádoru a vyjadřuje míru specifického vychytávání dané látky z krve cílovou tkání (nádorem). Hodnota podílu radioaktivit nádor – sval je dostatečně vysoká a vyjadřuje kumulaci radiofarmaka v nádoru vzhledem k pozadí. Porovnání hodnot radioaktivit pro nádor a pro srdce poukazuje na to, že se látka v poměrně velké míře hromadí v srdci.

Graf 6. *Ex vivo* biodistribuce u nádorových myší 30 min a 90 min po aplikaci ¹⁸F-FDG.

Tabulka 8. Poměry kumulace radioaktivity v nádoru k vybraným orgánům pro látku ¹⁸F-fluorodeoxyglukosa.

poměr	30 min p. i.	90 min p. i.
nádor - krev	1,96	1,95
nádor - sval	2,67	3,58
nádor - srdce	0,09	0,12

3.4.4. ¹⁸F-fluorothymidin

3.4.4.1. PET/CT zobrazování nenádorových myší

Ze snímků dynamického PET skenování nenádorové myši po aplikaci ¹⁸F-FLT na obrázku 27 je patrná zvýšená retence radioaktivity v krevním oběhu po celých devadesát minut. Výraznou kumulaci radioaktivity je pak možné pozorovat v oblasti gastrointestinální traktu a močového měchýře.

Obrázek 28 zachycuje snímky ze statického PET/CT zobrazení ¹⁸F-FLT v nenádorové myši 30 a 90 min p. i. Relativně vysoká radioaktivita byla detekována v gastrointestinálním traktu a v močovém měchýři. Obě tyto oblasti jsou výrazně radioaktivní i po 90 minutách od retroorbitálního podání ¹⁸F-FLT.

Obrázek 28. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci ¹⁸F-FLT (GIT = gastrointestinální trakt, MM = močový měchýř).

3.4.4.2. Ex vivo biodistribuce u nenádorových myší

V grafu 7 jsou zpracována data charakterizující *ex vivo* biodistribuci u nenádorových myší pro látku ¹⁸F-fluorothymidin. Pro krev byly zjištěny hodnoty $5,04\pm0,14$ %ID/g 30 min p. i. a 2,34 $\pm0,23$ %ID/g 90 min p. i., které potvrzují vyšší zadržování radioaktivity v krevním oběhu. Nejvyšší hodnoty radioaktivity byly opět naměřeny pro ledviny, konkrétně 9,67 $\pm1,03$ %ID/g 30 min p. i. a 4,20 $\pm0,27$ %ID/g 90 min p. i. Hodnota radioaktivity ve střevech byla stanovena po 30 minutách od podání látky jako 5,03 $\pm0,43$ %ID/g a po 90 minutách od podání látky jako 4,45 $\pm0,31$ %ID/g. Ze získaných dat plyne, že radioaktivita ve střevech s časem příliš neklesá, což koreluje s obrázky z dynamického a statického skenování.

Graf 7. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ¹⁸F-FLT.

4. Diskuze

Multiformní glioblastom (GBM) patří mezi nejzávažnější typy mozkových nádorů. Vyvíjí se z astrocytů (podpůrné buňky CNS), proto jej řadíme do skupiny astrocytárních tumorů. Existují dvě formy GBM rozlišené na základě toho, jaký má nádor vývoj. Vyvíjí-li se z jiného typu mozkového nádoru, označujeme jej jako sekundární glioblastom, častější jsou však případy, kdy se nádor vyvine bez průkazu předchozí existence (tzv. *de novo*), pak je glioblastom označován jako primární (1). Dle klasifikace nádorů na základě jejich malignity podle Světové zdravotnické organizace z roku 2007 se GBM řadí mezi tumory IV., tedy nejzávažnějšího stupně (5).

Velký význam pro včasnou diagnostiku multiformního glioblastomu, která hraje klíčovou roli v následné prognóze tohoto onemocnění, mají zobrazovací metody. V současnosti je trendem používání tzv. hybridních systémů, konkrétně PET/CT nebo PET/MR. Výpočetní tomografie, resp. magnetická rezonance podají informace o anatomii a pozitronová emisní tomografie podá informace o distribuci radiofarmaka v organismu (20).

Radiofarmaka používaná v onkologii k diagnostice a terapii jsou navržena tak, aby se specificky kumulovala v nádorových tkáních. V neuroonkologii se využívají např. látky ¹⁸FDG, ¹⁸FLT, ¹¹C-methionin a ¹⁸F-tryptofan. Tyto látky mají však určitá omezení a nevýhody. Například použití ¹⁸F-fluorodeoxyglukosy může vést jak k falešně pozitivním, tak k falešně negativním výsledkům, protože metabolismus ¹⁸FDG v nádoru není zcela specifický a může se vyskytovat i při zánětech či infekcích. Z tohoto důvodu se testují jak nové radionuklidy, tak nové biologicky aktivní látky, které by bylo možné radioaktivně označit a které by vedly ke zpřesnění výsledků vyšetření (53).

Základní podmínky, které musí radionuklid pro radioaktivní značení léčiva splňovat, je vhodný poločas rozpadu s ohledem na plánované použití, snadná dostupnost a jednoduché a rychlé značení v případě radiofarmak, která jsou připravována na oddělení nukleární medicíny. V poslední době je pro přípravu nových radiodiagnostik široce zkoumán zejména izotop ⁶⁸Ga s poločasem rozpadu 68 minut, který lze získat z ⁶⁸Ge/⁶⁸Ga generátoru. Předmětem testování zůstávají především rozličné biologicky aktivní látky vhodné pro radioaktivní značení tímto izotopem.

Ve své bakalářské práci jsem se zaměřila na studium dvou peptidů značených izotopem ⁶⁸Ga, konkrétně RGD-dimer acetátu s chelátorem NODAGA a substance-P s chelátorem DOTA. NODAGA-RGD-dimer acetát obsahuje sekvenci aminokyselin arginin – glycin – asparagová kyselina, která vykazuje velkou afinitu k integrinu $\alpha_{\nu}\beta_{3}$

na povrchu aktivovaných nádorových buněk (39). DOTA-substance P interaguje s tachykininovými receptory typu NK1, jejichž aktivita souvisí se vznikem a vývojem nádoru (42). V rámci své bakalářské práce jsem provedla řadu *in vitro* a *in vivo* experimentů se záměrem vyhodnotit potenciál testovaných látek pro radiodiagnostiku glioblastomu a výsledky jsem porovnávala s klinicky používanými radiofarmaky, jmenovitě s ¹⁸F-fluorothymidinem.

Radioaktivní značení obou testovaných peptidů bylo relativně snadné a rychlé, avšak ⁶⁸Ga se do komplexu s NODAGA-RGD-dimer acetátem vázalo lépe než do komplexu s látkou DOTA-substance P. Radioaktivního značení o vysoké radiochemické čistotě (> 95%) pro NODAGA-RGD-dimer acetát se dosáhlo po 15 minutách při laboratorní teplotě, kdežto u látky DOTA-substance P bylo potřeba reakční směs 15 minut inkubovat při teplotě 95°C. Lišilo se také množství peptidů potřebných pro vyhovující RCHČ. Pro radioaktivní značení NODAGA-RGD dimer acetátu jsem používala množství 5 μg, kdežto u DOTAsubstance P bylo zapotřebí dvojnásobné množství.

⁶⁸Ga-NODAGA-RGD-dimer acetát prokázal vysokou stabilitu ve všech testovaných prostředích, kterými byly koncentrované roztoky FeCl₃ a DTPA, lidské sérum a prostředí s vyšším pH (pH = 6-7). ⁶⁸Ga-DOTA-substance P byla velmi stabilní v prostředí lidského séra a v roztoku s vyšším pH, ale v roztocích FeCl₃, resp. DTPA probíhal postupný rozklad komplexu. V koncentrovaném roztoku FeCl₃ docházelo pravděpodobně k výměně iontu ⁶⁸Ga³⁺ za ion Fe³⁺ a v roztoku DTPA docházelo k transchelataci ⁶⁸Ga³⁺ z komplexu s peptidem do komplexu s DTPA. ⁶⁸Ga-NODAGA-RGD-dimer acetát tedy při *in vitro* testování jevil mnohem vyšší stabilitu než ⁶⁸Ga-DOTA-substance P.

Hodnota rozdělovacího koeficientu (log P) pro ⁶⁸Ga-NODAGA-RGD dimer acetát byla stanovena jako -3,39±0,17 a pro ⁶⁸Ga-DOTA-substanci P jako -3,03±0,33. Oba testované peptidy prokázaly hydrofilní vlastnosti a z tohoto pohledu byly vhodné pro jejich zamýšlené použití.

Jelikož se jedná o látky, které by se mohly potenciálně aplikovat pacientům, bylo důležité ověřit také jejich vazbu na krevní proteiny. ⁶⁸Ga-NODAGA-RGD-dimer acetát vykazoval výborné výsledky, procentuální vyjádření vazby na proteiny daného peptidu činilo pouze 3,97 % po 120 minutové inkubaci. U látky ⁶⁸Ga-DOTA-substance P byla vazba na proteiny několikanásobně vyšší (29,21 % po 120 minutách inkubace) ve srovnání s ⁶⁸Ga-NODAGA-RGD-dimer acetátem.

Výsledky analýz vzorků moči odebraných laboratorním myším 30 min p. i. a 90 min p. i. měly odhalit, zda jsou testované peptidy v organismu metabolizovány. U látky

⁶⁸Ga-NODAGA-RGD-dimer acetát se retenční časy všech tří píků (radiochromatogram aplikované látky, moči odebrané 30 min p. i. a moči odebrané 90 min p. i., viz obrázek 12) shodovaly (8,4 min), z čehož vyplývá, že látka není v těle degradována a vylučuje se močí v nezměněné podobě. Z radiochromatogramů na obrázku 18 lze usoudit, že ⁶⁸Ga-DOTA-substance P se na rozdíl od ⁶⁸Ga-NODAGA-RGD dimer acetátu v těle velmi rychle rozkládá a vznikají dva metabolity.

Nedílnou součástí této práce byly také *in vivo* experimenty, jejichž cílem bylo určit biodistribuci studovaných látek v laboratorních myších. U látky ⁶⁸Ga-NODAGA-RGD dimer acetát aplikované nenádorovým myším byly výrazným orgánem, ve kterém se kumuloval radioaktivní komplex, ledviny, přes něž se látka poměrně rychle vylučovala do močového měchýře. Právě v oblasti močového měchýře byla pozorovatelná vysoká akumulace radioaktivity, a to zejména 90 minut po podání látky (viz obrázky 13, 14). U ⁶⁸Ga-DOTA-substance P byly v nenádorových myších zjištěny obdobné výsledky, navíc byla v krátkém časovém intervalu po podání látky zjištěna kumulace radioaktivity v gastrointestinálním traktu, který se pravděpodobně částečně podílí na vylučování tohoto peptidu (viz obrázek 19).

Pro porovnání *in vivo* chování studovaných látek v laboratorních myších byla k zobrazování hybridním systémem PET/CT aplikována také klinicky používaná radiofarmaka ¹⁸FDG a ¹⁸FLT. Na vylučování ¹⁸F-fluorodeoxyglukosy se podílí ledviny a GIT, proto byla v těchto oblastech zjištěna vysoká retence radioaktivity (viz obrázky 23, 24). Látka se rovněž kumulovala v metabolicky aktivních tkáních – v hnědém tuku, v oblasti srdce a mozku, což by mohlo být omezujícím faktorem při diagnostice mozkového nádoru. Naproti tomu ¹⁸F-fluorothymidin se zadržoval především v oblasti GIT a močového měchýře (viz obrázky 27,28).

Výsledky biodistribuce testovaných látek v nádorových myších ukázaly, že ⁶⁸Ga-NODAGA-RGD dimer acetát se výrazně kumuloval v nádoru, což je zřetelně viditelné na obrázcích 15 a 16. Po 90 minutách od podání látky je již akumulace radioaktivity v nádorové tkáni méně výrazná, ideální doba pro vyšetření je tedy zhruba po 15-60 minutách od podání látky. Na snímcích z dynamického (obrázek 21) ani statického (obrázek 22) skenování není patrná kumulace ⁶⁸Ga-DOTA-substance P v nádoru. Nehromadění této látky v nádoru neodpovídá teoretickým předpokladům, nicméně plně podporuje výsledky získané ze studia *in vitro* a *in vivo* stability této látky. ⁶⁸Ga-DOTA-substance P je v organismu velmi rychle metabolizována, což zabraňuje její potenciální kumulaci v nádorové tkáni.

¹⁸F-FDG se v nádoru zadržovala a nádor byl dobře rozlišitelný (viz obrázky 25, 26). U laboratorních myší byl nádor aplikován subkutánně na pravý bok. Otázkou je, zda by byl nádor dostatečně kontrastní při ortotopické aplikaci nádoru, protože ¹⁸F-fluorodeoxyglukosa se ve velké míře kumuluje v mozku. U ¹⁸F-FLT nebylo provedeno zobrazování nádorových myší z důvodu nedostatku laboratorních myší s dostatečně vyvinutým nádorem v termínu dodání ¹⁸F-FLT. Nicméně, ¹⁸F-fluorothymidin byl jako radiodiagnostikum pro multiformní glioblastom studován mimo jiné v rámci bakalářské práce studentky Hany Adámkové v roce 2014 (54). Na základě tohoto testování se ¹⁸F-FLT jevil jako vhodnější radiofarmakum pro diagnostiku GBM než ¹⁸F-FDG, jelikož retence ¹⁸F-FLT v nádorové tkáni byla dostatečně vysoká a kumulace radioaktivity v mozku byla podstatně nižší než retence ¹⁸F-FDG.

Data získaná z ex vivo biodistribučních experimentů plně korespondovala s výsledky získanými pomocí PET/CT zobrazování. Z ex vivo biodistribučních dat pro nenádorové myši dominovaly hodnoty akumulované radioaktivity v ledvinách. a to jak u ⁶⁸Ga-NODAGA-RGD dimer acetátu, tak u ⁶⁸Ga-DOTA-substance P. Avšak u peptidu ⁶⁸Ga-DOTA-substance P byla kumulace radioaktivity v ledvinách několikanásobně vyšší než u ⁶⁸Ga-NODAGA-RGD dimer acetátu. Pro ¹⁸F-fluorodeoxyglukosu byla nejvyšší hodnota radioaktivity naměřena u srdce, hodnoty kumulované radioaktivity pro ledviny jsou srovnatelné s hodnotou ⁶⁸Ga-NODAGA-RGD pro dimer acetát. Hodnoty pro ¹⁸F-fluorothymidin jsou vyšší než pro ostatní testované látky z důvodu vysoké retence radioaktivity v krevním oběhu. Nejvyšší hodnota radioaktivity byla zaznamenána opět v ledvinách.

U *ex vivo* experimentů na nádorových myších bylo zjištěno, že hodnota akumulované radioaktivity pro nádor 30 min p. i. u látky ⁶⁸Ga-NODAGA-RGD-dimer acetát je přibližně dvakrát vyšší než pro látku ⁶⁸Ga-DOTA-substance P. Tato data potvrzují informace z PET/CT skenování. ⁶⁸Ga-NODAGA-RGD-dimer acetát se v nádoru kumuluje v poměrně velké míře a umožňuje identifikaci nádoru na PET snímcích, kdežto na snímcích z PET vyšetření pro ⁶⁸Ga-DOTA-substanci P není nádor pozorovatelný kvůli nízké retenci látky v tumoru způsobenou velmi nízkou *in vivo* stabilitou této látky. U ¹⁸F-FDG je hodnota radioaktivity v nádoru o něco nižší než u látky ⁶⁸Ga-NODAGA-RGD-dimer acetát, ale naopak vyšší než u látky ⁶⁸Ga-DOTA-substance P. Tato radioaktivita kumulovaná v tumoru je dostačující k identifikaci nádoru na snímcích z PET zobrazování. Pro ¹⁸F-FLT nebylo provedeno měření radioaktivity v jednotlivých orgánech a nádoru, jelikož nebyl k dispozici dostatek laboratorních myší s dostatečně vyvinutým nádorem v termínu dodání ¹⁸F-FLT.

5. Závěr

V rámci své bakalářské práce jsem prováděla preklinické testování ⁶⁸Ga značených peptidů NODAGA-RGD dimer acetátu a DOTA-substance P, které by mohly být v budoucnu využívány pro efektivnější diagnostiku multiformního glioblastomu pomocí pozitronové emisní tomografie. Preklinické testování zahrnovalo jak *in vitro*, tak *in vivo* experimenty.

Radioaktivní značení bylo relativně snadno proveditelné u obou testovaných peptidů, avšak ⁶⁸Ga-NODAGA-RGD dimer acetát se jevil jako mnohem stabilnější než komplex ⁶⁸Ga-DOTA-substance P, což se projevilo v rozdílném *in vivo* chování obou peptidů. ⁶⁸Ga-NODAGA-RGD dimer acetát se u nádorových myší kumuloval v nádoru v mnohem vyšší míře než metabolicky degradovaná ⁶⁸Ga-DOTA-substance P. Díky zvýšené akumulaci radioaktivity v nádorové tkáni umožňoval ⁶⁸Ga-NODAGA-RGD dimer acetát zřetelné zobrazení nádoru pomocí pozitronové emisní tomografie. Na základě výsledků získaných z *in vitro* a *in vivo* experimentů ⁶⁸Ga značených peptidů se jevil jako vhodný kandidát pro radiodiagnostiku multiformního glioblastomu zejména ⁶⁸Ga-NODAGA-RGD

Součástí mé bakalářské práce bylo rovněž porovnání *in vivo* chování ⁶⁸Ga značených peptidů s klinicky používanými radiofarmaky, konkrétně s ¹⁸F-fluorodeoxyglukosou a ¹⁸F-fluorothymidinem. ⁶⁸Ga-NODAGA-RGD dimer acetát prokázal výhodnější farmakokinetické vlastnosti v porovnání s ¹⁸F-FDG a ¹⁸F-FLT, což potvrdilo vysoký potenciál ⁶⁸Ga-NODAGA-RGD dimer acetátu pro diagnostiku multiformního glioblastomu metodou pozitronové emisní tomografie.

Radiofarmaka značená izotopem ⁶⁸Ga našla v posledních letech významné uplatnění v nukleární medicíně a mnoho látek značených tímto radioizotopem má velký potenciál pro využití v klinické praxi. Výhodou těchto radiofarmak je relativně jednoduché a rychlé radioaktivní značení a krátký poločas rozpadu radionuklidu snižující radiační zátěž vyšetřovaných pacientů. Komplex ⁶⁸Ga-NODAGA-RGD dimer acetát lze podle získaných dat považovat za další z řady nadějných potenciálních radiofarmak značených izotopem ⁶⁸Ga. Na základě této studie se ⁶⁸Ga-NODAGA-RGD dimer acetát jevil jako perspektivní radiodiagnostikum pro diagnostiku multiformního glioblastomu v klinické praxi.

Seznam obrázků

Obrázek 1. Multiformní glioblastom ve spánkové oblasti mozku. (**a**) Snímek z magnetické rezonance (MR) s použitím kontrastní látky. (**b**) Fotografie zobrazující rozsáhlou oblast patologické tkáně (6).

Obrázek 2. Princip výpočetního tomografu (14).

Obrázek 3. Srovnání CT a MR. V levé části snímek z CT, v pravé části snímek z MR (16).

Obrázek 4. Princip SPECT – schéma zobrazující nerozptýlené fotony absorbované v krystalu, fotoefekt a Comptonův rozptyl (8).

Obrázek 5. Schematické znázornění radionuklidového generátoru ⁹⁹Mo/^{99m}Tc (34).

Obrázek 6. Struktury běžných chelatačních činidel pro ⁶⁸Ga (38).

Obrázek 7. Struktura látky NODAGA-RGD dimer acetát.

Obrázek 8. Struktura látky DOTA-substance P.

Obrázek 9. Struktura látky ¹⁸F-FDG (47).

Obrázek 10. Struktura látky ¹⁸F-FLT (51).

Obrázek 11. Radiochromatogram ⁶⁸Ga-NODAGA-RGD dimer acetátu.

Obrázek 12. Radiochromatogramy vyjadřující *in vivo* stabilitu ⁶⁸Ga-NODAGA-RGD dimer acetátu.

Obrázek 13. Dynamické PET skenování nenádorové myši po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu; koronální řezy (MM = močový měchýř, L = ledviny, P = místo podání).

Obrázek 14. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci 68 Ga-NODAGA-RGD dimer acetátu (L = ledviny, MM = močový měchýř).

Obrázek 15. Dynamické PET skenování nádorové myši po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu; koronální řezy (MM = močový měchýř, N = nádor, L = ledviny, P = místo podání).

Obrázek 16. Statické PET/CT vyšetření nádorové myši 30 min a 90 min po aplikaci 68 Ga-NODAGA-RGD dimer acetátu (N = nádor, L = ledviny, MM = močový měchýř).

Obrázek 17. Radiochromatogram ⁶⁸Ga-DOTA-substance P.

Obrázek 18. Radiochromatogramy vyjadřující *in vivo* stabilitu ⁶⁸Ga-DOTA-substance P.

Obrázek 19. Dynamické PET skenování nenádorové myši po aplikaci 68 Ga-DOTA-substance P; koronální řezy (MM = močový měchýř, L = ledviny, GIT = gastrointestinální trakt, P = místo podání).

Obrázek 20. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci 68 Ga-DOTA-substance P (P = místo podání, L = ledviny, MM = močový měchýř).

Obrázek 21. Dynamické PET skenování nádorové myši po aplikaci ⁶⁸Ga-DOTA-substance P; koronální řezy (MM = močový měchýř, L = ledviny, P = místo podání, GIT = gastrointestinální trakt).

Obrázek 22. Statické PET/CT vyšetření nádorové myši 30 min a 90 min po aplikaci 68 Ga-DOTA-substance P (L = ledviny, MM = močový měchýř).

Obrázek 23. Dynamické PET skenování nenádorové myši po aplikaci ¹⁸F-FDG; koronární řezy (MM = močový měchýř, P = místo podání, GIT = gastrointestinální trakt, M = mozek, S = srdce).

Obrázek 24. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci ¹⁸F-FDG (M = mozek, S = srdce, GIT = gastrointestinální trakt, MM = močový měchýř, HT = hnědý tuk).

Obrázek 25. Dynamické PET skenování nádorové myši po aplikaci ¹⁸F-FDG; koronární řezy (MM = močový měchýř, P = místo podání, M = mozek, S = srdce).

Obrázek 26. Statické PET/CT vyšetření nádorové myši 30 min a 90 min po aplikaci ¹⁸F-FDG (P = místo podání, M = mozek, S = srdce, N = nádor, GIT = gastrointestinální trakt, MM = močový měchýř, HT = hnědý tuk).

Obrázek 27. Dynamické PET skenování nenádorové myši po aplikaci ¹⁸F-FLT; koronární řezy (MM = močový měchýř, GIT = gastrointestinální trakt).

Obrázek 28. Statické PET/CT vyšetření nenádorové myši 30 min a 90 min po aplikaci ¹⁸F-FLT (GIT = gastrointestinální trakt, MM = močový měchýř).

Seznam grafů

Graf 1. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu.

Graf 2. *Ex vivo* biodistribuce u nádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-NODAGA-RGD dimer acetátu.

Graf 3. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-DOTA-substance P.

Graf 4. *Ex vivo* biodistribuce u nádorových myší 30 min a 90 min po aplikaci ⁶⁸Ga-DOTA-substance P.

Graf 5. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ¹⁸F-FDG.

Graf 6. Ex vivo biodistribuce u nádorových myší 30 min a 90 min po aplikaci ¹⁸F-FDG.

Graf 7. *Ex vivo* biodistribuce u nenádorových myší 30 min a 90 min po aplikaci ¹⁸F-FLT.

Seznam tabulek

Tabulka 1. Klasifikace astrocytárních nádorů, WHO 2007 (5).

Tabulka 2. Optimalizace podmínek radioaktivního značení NODAGA-RGD dimer acetátu.

Tabulka 3. Výsledky *in vitro* testování ⁶⁸Ga-NODAGA-RGD dimer acetátu.

Tabulka 4. Poměry kumulace radioaktivity v nádoru k vybraným orgánům pro látku ⁶⁸Ga-NODAGA-RGD dimer acetát.

Tabulka 5. Optimalizace podmínek radioaktivního značení ⁶⁸Ga-DOTA-substance P.

Tabulka 6. Výsledky *in vitro* testování ⁶⁸Ga-DOTA-substance P.

Tabulka 7. Poměry kumulace radioaktivity v nádoru k vybraným orgánům pro látku ⁶⁸Ga-DOTA-substance P.

Tabulka 8. Poměry kumulace radioaktivity v nádoru k vybraným orgánům pro látku ¹⁸F-fluorodeoxyglukosa.

6. Použitá literatura

1. Kozler, P et al. Intrakraniální nádory. 1. Praha : Galén, 1998.

2. **Sofroniew, MV a Vinters, HV.** Astrocytes: biology and pathology. *Acta Neuropathol.* 2010, 119, stránky 7-35.

3. American Brain Tumor Association. American Brain Tumor Association. [Online] 2014. [Citace: 7. Leden 2015.] http://www.abta.org/secure/glioblastoma-brochure.pdf.

4. Louis, DN et al. The 2007 WHO Classification of Tumours of the Central Nervous System. *Acta Neuropathol.* 2007, 114, stránky 97-109.

5. Fadrus, P, Lakomý, R, Hübnerová, P et al. Intrakraniální nádory – diagnostika a terapie. *Interní med.* 2010, 12, stránky 376-381.

6. **Rees, JH et al.** From the Archives of the AFIP. Glioblastoma Multiforme: Radiologic-Pathologic Correlation. *RadioGraphics*. 1996, 16, stránky 1413-1438.

7. Janota, J. Magnetická rezonance. Practicus. 2008, 7, stránky 34-36.

8. Kupka, K, Kubinyi, J, Šámal, M et al. Nukleární medicína. 1. Praha : P3K, 2007.

9. Ollinger, JM a Fessler, JA. Positron-Emission Tomography. *IEEE Signal Process. Mag.* 1997, 97, stránky 43-55.

10. Wathen, CA et al. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast. *Sensors*. 2013, 13, stránky 6957-6980.

11. Navrátil, L, Rosina, J et al. Medicínská biofyzika. 1. Praha : Grada, 2005.

12. **Peterová, V.** CT – základy vyšetření, indikace, kontraindikace, možnosti, praktické zkušenosti. *Med. Pro Praxi.* 2010, 7, stránky 90-94.

13. **Hrazdira, I a Mornstein, V.** *Lékařská biofyzika a přístrojová technika.* 1. Brno : Neptun, 2001.

14. Wikimedia Commons. Princip CT. *Wikimedia Commons*. [Online] 2009. [Citace: 20. Únor 2015.] http://cs.wikipedia.org/wiki/Počítačová tomografie.

15. Erkonen, WE a Smith, WL. Radiology: The Basics and Fundamentals of Imaging. 3. Philadelphia : Lippincott Williams & Wilkins, 2010.

16. **Savage, N.** Path Found to a Combined MRI and CT Scanner. *IEEE Spectrum*. [Online] 2013. [Citace: 28. Únor 2015.] http://spectrum.ieee.org/biomedical/imaging/path-found-to-acombined-mri-and-ct-scanner.

17. Bělohlávek, O a Fencl, P. Hybridní zobrazování výpočetní a pozitronovou emisní tomografií. *Interní med.* 2004, 2, stránky 61-63.

18. Sharp, PF, Gemmell, HG a Murray, AD. *Practical Nuclear Medicine*. 3. London : Springer-Verlag, 2005.

19. Saha, GB. Fundamentals of Nuclear Pharmacy. 6. New York: Springer Science+Business Media, 2010.

20. Torigian, DA et al. PET/MR Imaging: Technical Aspects and Potential Clinical Applications. *Radiology*. 2013, 267, stránky 26-44.

21. Šlampa, P, Burkoň, P a Komínek, L. Glioblastom přehled léčby. *Postgrad. med.* 2010, 7, stránky 760-765.

22. **Dubrow, R et al.** Time trends in glioblastoma multiforme survival: the role of temozolomide. *Neuro-Oncology*. 2013, 15, stránky 1750-1761.

23. Franceschi, E et al. Treatment options for recurrent glioblastoma: pitfalls and future trends. *Expert Rev Anticancer Ther.* 2009, 9, stránky 613-619.

24. Kočárek, E, Pánek, M a Novotná, D. Klinická cytogenetika I: úvod do klinické cytogenetiky, vyšetřovací metody v cytogenetice. 2. Praha : Karolinum, 2010.

25. Sánchez, F et al. ALBIRA: A small animal PET/SPECT/CT imaging system. *Med Phys.* 2013, 40, 051906.

26. Xie, Q et al. A highly invasive human glioblastoma pre-clinical model for testing therapeutics. *J Transl Med.* 2008, 6, stránky 77-90.

27. ATCC. Brain Tumor Cell Lines. ATCC. [Online] 2011. [Citace: 5. Duben 2015.]

28. ATCC. U-87 MG (ATCC® HTB-14[™]). *ATCC*. [Online] 2014. [Citace: 7. Únor 2015.] https://www.lgcstandardsatcc.org/products/all/HTB-14.aspx?geo_country=cz&slp=1#.

29. Clark, MJ et al. U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer Cell Line. *PLoSGenet*. 2010, 6, stránky 1-16.

30. **abcam.** U-87 MG (Human glioblastoma-astrocytoma, epithelial-like cell line) Nuclear Lysate (ab14903). *abcam.* [Online] 2012. [Citace: 7. Únor 2015.] http://www.abcam.com/u-87-mg-humanglioblastoma-astrocytoma-epithelial-like-cell-line-nuclear-lysateab14903.html.

31. **Dearling, JLJ et al.** Specific uptake of 99m Tc-NC100692, an $\alpha\nu\beta$ 3-targeted imaging probe, in subcutaneous and orthotopic tumors. *Nucl Med Biol.* 2013, 40, stránky 788-794.

32. Huszthy, PC et al. In vivo models of primary brain tumors: pitfalls and perspectives. *Neuro-Oncology*. 2012, 14, stránky 979-993.

33. **Candolfi, M et al.** Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. *J Neurooncol.* 2007, 85, stránky 133-148.

34. Lázníček, M a Komárek, P. Základy radiofarmacie. 1. Praha : Karolinum, 1998.

35. **Fani, M, André, JP a Maecke, HR.** ⁶⁸Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. *Contrast Media Mol. Imaging.* 2008, 3, stránky 53-63.

36. **Velikyan, I.** Prospective of ⁶⁸Ga-Radiopharmaceutical Development. *Theranostics*. 2014, 4, stránky 47-80.

37. **Petrik, M et al.** In vitro and in vivo evaluation of selected ⁶⁸Ga-siderophores for infection imaging. *Nucl Med Bio.* 2012, 39, stránky 361-369.

38. Zeglis, BM a Lewis, JS. A pracical guide to the construction of radiometallated bioconjugates for positron emission tomography. *Dalton Trans.* 2011, 40, stránky 6168-6195.

39. **Oxboel, J et al.** Comparison of two angiogenesis PET tracers ⁶⁸Ga-NODAGA- $E[c(RGDyK)]_2$ and ⁶⁴Cu-NODAGA- $E[c(RGDyK)]_2$; in vivo imaging studies in human xenograft tumors. *Nucl Med Bio.* 2014, 41, stránky 259-267.

40. **Knetsch, PA et al.** [⁶⁸Ga]FSC-(RGD)₃ a trimeric RGD peptide for imaging $\alpha_{\nu}\beta_{3}$ integrin expression based on a novel siderophore derived chelating scaffold—synthesis and evaluation. *Nucl Med Biol.* 2015, 42, stránky 115-122.

41. Zitzmann, S, Ehemann, V a Schwab, M. Arginine-Glycine-Aspartic Acid (RGD)-Peptide Binds to Both Tumor and Tumor-Endothelial Cells in Vivo. *Cancer Research*. 2002, 62, stránky 5139-5143.

42. Łazarczyk, M, Matyja, E a Lipkowski, A. Substance P and its receptors – a potential target for novel medicines in malignant brain tumour therapies. *Folia Neuropathol.* 2007, 45, stránky 99-107.

43. **Bom, AT et al.** Substance P in Long-Lasting Asthma. Immunoinflammatory pathways. *Allergy Clin Immunol Int.* 2006, 18, stránky 1-7.

44. **Mozaffari, S et al.** Synthesis and Preliminary Evaluation of a New ^{99m}Tc Labeled Substance P Analogue as a Potential Tumor Imaging Agent. *IJPR*. 2015, 14, stránky 97-110.

45. SÚKL. PŘÍBALOVÁ INFORMACE: INFORMACE PRO UŽIVATELE 2-[¹⁸F]-FDG.SÚKL.[Online]2010.[Citace:21.Březen2015.]http://www.sukl.cz/download/pil/PI3142.pdf.

46. Fougère, C et al. Molecular imaging of gliomas with PET: Opportunities and limitations. *Neuro-Oncology*. 2011, 13, stránky 806-819.

47. **Wikimedia Commons.** Chemical structure of fludeoxyglucose (¹⁸F) [¹⁸F-FDG]. *Wikimedia Commons.* [Online] 2009. [Citace: 21. Březen 2015.] http://commons.wikimedia.org/wiki/File:Fludeoxyglucose_18-F_skeletal.svg.

48. **Barthel, H et al.** 3'-Deoxy-3'-[¹⁸F]Fluorothymidine as a New Marker for Monitoring Tumor Response to Antiproliferative Therapy in Vivo with Positron Emission Tomography. *CanRes.* 2003, 63, stránky 3791-3798.

49. Schiepers, C et al. ¹⁸F-fluorothymidine kinetics of malignant brain tumors. *Eur J Nucl Med Mol Imaging*. 2007, 34, stránky 1003-1011.
50. **RadioMedic.** PŘÍBALOVÁ INFORMACE: INFORMACE PRO UŽIVATELE 3'-[18F]FLT, INJ. *RadioMedic*. [Online] 2010. [Citace: 21. Březen 2015.] http://www.radiomedic.byznysweb.cz/domain/radiomedic/files/nove_spc_pil/PIL_FLT.pdf.

51. Sigma-Aldrich. 3'-Deoxy-3'-fluorothymidine. Sigma-Aldrich. [Online] 2015. [Citace:21.Březen2015.]http://www.sigmaaldrich.com/catalog/product/aldrich/361275?lang=en®ion=CZ.

52. Ministerstvo zdravotnictví ČR. Český lékopis 2009 - Doplněk 2013. 1. Praha : Grada, 2013.

53. **Doležalová, I, Bolčák, K a Kuba, R.** Využití pozitronové emisní tomografie (PET) v neurologii. *Neurol. praxi.* 2014, 15, stránky 16-21.

54. Adámková, H. Zobrazování myšího modelu glioblastoma multiforme pomocí PET/CT systému. Olomouc, 2014. Bakalářská práce. Univerzita Palackého v Olomouci, Přírodovědecká fakulta.