
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF CONTROL AND INSTRUMENTATION

INTERCONNECTION OF IEEE 802.15.4 AND
ETHERNET NETWORKS

PROPOJENÍ SÍTÍ IEEE 802.15.4 A ETHERNET

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. KAREL PAVLATA
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. PETR FIEDLER, Ph.D.
SUPERVISOR

BRNO 2011

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav automatizace a měřicí techniky

Diplomová práce
magisterský navazující studijní obor

Kybernetika, automatizace a měření

Student: Bc. Karel Pavlata ID: 83381
Ročník: 2 Akademický rok: 2010/2011

NÁZEV TÉMATU:

Propojení sítí IEEE 802.15.4 a Ethernet

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s problematikou bezdrátových sítí IEEE 802.15.4 realizujte zařízení propojujícícho
bezdrátovou síť standardu IEEE 802.15.4 se sítí Ethernet se zaměřením na sběr dat ze sensorických
sítí.

DOPORUČENÁ LITERATURA:

Termín zadání: 7.2.2011 Termín odevzdání: 23.5.2011

Vedoucí práce: doc. Ing. Petr Fiedler, Ph.D.

prof. Ing. Pavel Jura, CSc.
Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRACT
This work is devoted to the problem of interconnection of different network types, specif-
ically IEEE 802.15.4 and Ethernet networks. Motivation for implementing such an inter-
connection arises from increased use of WSNs (Wireless Sensor Networks) penetrating
many of today’s segments of human activity. Deployment of WSNs stems out of the
need of controlling and/or monitoring of environment this network is attached to. This
usually implies the existence of some kind of Gateway nodes capable of relaying of mea-
sured data from inside of the WSN to the outside world and/or providing configuration
information and control commands to the WSN. A Gateway usually accomplishes this
by interconnecting the WSN with other types of networks acting as a border element.
There are different types of Gateways with different capabilities regarding to the network
operation, all dependent on a particular network in use. On the software part the inter-
connection may be done from Network up to Application layer of the ISO/OSI model.
Hardware interfaces Physical and Data-Link layers and of course has to be capable of
running interfacing software (which may be rather complex). So there is always balance
between the system complexity and sufficient capabilities.

KEYWORDS

WSN, Gateway, Portux920T, PXB, ZigBit, Linux,IEEE802.15.4, Ethernet, ReST, XMPP

ABSTRAKT
Táto práca sa venuje probému prepojovania rôznych typov siet́ı, konkrétne siet́ı typu
IEEE 802.15.4 a Ethernetu. Motivácia vychádza zo stále sa rozširujúceho využitia
bezdrátových senzorických siet́ı, potreby zberu dát z nich a ich integrácie. To vyžaduje
aby siět obsahovala prvky schopné preniešt dáta z bezdrátovej siete do okolitého sveta
a pŕıpadne poskytnúť konfiguračné a riadiace informácie do vnútra siete. Z ȟladiska
protokolov a programového vybavenia sa prepojenie uskutočňuje na rôznej úrovni, od
siětovej až po aplikačnú vrstvu komunikačného modelu ISO/OSI, s podporou hardvéru
na fyzickej a linkovej vrstve.

KĹIČOVÁ SLOVA

WSN, Gateway, Portux920T, PXB, ZigBit, Linux,IEEE802.15.4, Ethernet, ReST, XMPP

PAVLATA, Karel Interconnection of IEEE 802.15.4 and Ethernet Networks: master’s
thesis. Brno: Brno University of Technology, Faculty of Electrical Engineering and
Communication, Department of Control and Instrumentation, 2011. 60 p. Supervised
by doc. Ing. Petr Fiedler, Ph.D.

DECLARATION

I declare that I have elaborated my master’s thesis on the theme of “Interconnection

of IEEE 802.15.4 and Ethernet Networks” independently, under the supervision of the

master’s thesis supervisor and with the use of technical literature and other sources of

information which are all quoted in the thesis and detailed in the list of literature at the

end of the thesis.

As the author of the master’s thesis I furthermore declare that, concerning the creation

of this master’s thesis, master’s thesis, I have not infringed any copyright. In particular,

I have not unlawfully encroached on anyone’s personal copyright and I am fully aware

of the consequences in the case of breaking Regulation § 11 and the following of the

Copyright Act No 121/2000 Vol., including the possible consequences of criminal law

resulted from Regulation § 152 of Criminal Act No 140/1961 Vol.

Brno .

(author’s signature)

Experientia docet
Experience is the best teacher

CONTENTS

Introduction 10

1 Network Architecture 11

2 The Description of Networks 13

2.1 Short description of IEEE 802.15.4 (LR-WPAN) 13

2.1.1 The physical layer [1, 2] . 13

2.1.2 The MAC layer [1, 2] . 14

2.1.3 Higher Layers . 16

2.2 Short description of IEEE 802.3 (Ethernet) 18

3 HW design and parts description 19

3.1 WSN node top level design . 19

3.1.1 Sensing subsystem . 19

3.1.2 Computing and Communication subsystems 20

3.1.3 Power subsystem . 20

3.2 Gateway top level design . 20

3.3 Portux920T . 21

3.4 ZigBitTM . 24

4 Detailed design description 27

4.1 Trilobite . 27

4.2 WSN PIR node . 28

4.3 PXB gateway . 29

5 Software implementation 31

5.1 GNU/Linux . 32

5.1.1 Overview of TTY . 32

5.1.2 Low level USART driver modifications 32

5.1.3 Line discipline implementation 33

5.2 BitCloud . 35

5.3 JamVM . 35

5.3.1 JNI . 35

5.4 Higher layer protocols and frameworks 37

5.4.1 ReST [17] . 37

5.4.2 XMPP [19] . 38

5.5 Demo application . 39

6 Conclusion 41

Bibliography 42

List of symbols, physical constants and abbreviations 44

List of appendices 47

A PCBs and schematics 48

A.1 WSN Gateway . 48

A.2 WSN node . 51

A.3 RF headers (Trilobite) . 53

B partlists 56

B.1 WSN Gateway . 56

B.2 WSN Node . 57

C Libraries and Frameworks 59

D Content of CD 60

LIST OF FIGURES

1.1 Proposed WSN integration architecture 11

2.1 IEEE 802.15.4 topologies [2] . 14

2.2 Schematic view of the beacon frame and the PHY packet [2] 15

2.3 Schematic view of the data frame and the PHY packet [2] 15

2.4 Schematic view of the acknowledgment frame and the PHY packet [2] 15

2.5 Schematic view of the MAC command frame and the PHY packet [2] 16

2.6 Schematic view of the ZigBee stack 17

2.7 Ethernet frame [11] . 18

3.1 Top level diagram of WSN node, adapted from [16] 19

3.2 Top level diagram of Gateway . 21

3.3 Portux920T [12] . 22

3.4 Portux920T diagram [12] . 23

3.5 ZigBit block diagrams [15] . 25

4.1 ZigBit 2.4 GHz Wireless Amplified Module 27

4.2 ZigBit 2.4 GHz Dual Chip Antenna 27

4.3 WSN PIR node . 28

4.4 WSN GW . 30

5.1 Software architecture of the gateway 31

5.2 TTY core overview [22] . 33

5.3 TTY core layers, adapted from [23] 34

A.1 WSN Gateway parts placement . 48

A.2 WSN Gateway top side . 49

A.3 WSN Gateway bottom side (mirrored) 49

A.4 WSN Gateway schema . 50

A.5 WSN PIR node parts placement . 51

A.6 WSN PIR node top side . 51

A.7 WSN PIR node bottom side (mirrored) 51

A.8 WSN PIR node schema . 52

A.9 Trilobite A2 schematic . 53

A.10 Trilobite A2 components placement 53

A.11 Trilobite A2 top PCB layer . 54

A.12 Trilobite A2 bottom PCB layer . 54

A.13 Trilobite AMP schematic . 54

A.14 Trilobite AMP components placement 55

A.15 Trilobite AMP top PCB layer . 55

A.16 Trilobite AMP bottom PCB layer . 55

LIST OF TABLES

3.1 ZigBit modules overview [15] . 24

3.2 ZigBit specifications [15] . 26

4.1 Parameters of used sensors . 28

4.2 PXB GPIO assignment . 30

LISTINGS

5.1 termios structure . 33

5.2 N ZBT tty ldisc structure . 34

5.3 JNI interface . 36

5.4 JNI library example . 36

5.5 Data parsing function . 39

5.6 Data in the JSON format . 39

5.7 USART transmission handling function 40

B.1 Partlist for the Gateway . 56

B.2 Partlist for the WSN node . 57

Karel Pavlata

INTRODUCTION

Wireless Sensor Networks (WSN) use networked, resource constrained embedded de-

vices to interact with its environment. Although there is possibility of self-contained

deployment, usually there is a need for input (commands) and/or output (data) in-

teractions with WSN depending on particular application scenario. Examples are

Data Collection and Actuator Control services and also Service and Network Dis-

covery. These interactions can be divided into three large classes: random access

interactions (request-response model), continuous monitoring (periodic stream of

data) and event-based interactions (sporadic events) which in turn can be further

divided to human-machine and machine-to-machine interactions (client can be either

human or computer). Interactions should be managed in a consistent way regard-

less of the type of a client. Although the lack of open and simple standards in this

area makes it difficult, there is a proliferation of the use of technologies based on

ReST1 architectural design, which is a style of software architecture for distributed

hypermedia systems (such as WWW)[20].

An important aspect of the WSN is incorporation of techniques contributing to

a decrease of power consumption and thus an increase in the life span of the net-

work (devices are usually battery powered). Using techniques like low duty cycle

operation, impose significant delays to the communication that must be dealt with,

in order to ensure smooth operation of the network from client’s point of view.

Clients have to be abstracted from peculiarities of particular WSN architecture in

use. This, and the facts that many WSN platforms use devices too constrained in

resources, implies that gateways are a vital part of WSN deployments. IP-based

and HTTP-enabled devices are being developed and emerging, in particular 6Low-

PAN2 is gaining increasing popularity. However, it is not always feasible to use this

technology due to restrictions in resources. Nevertheless, these kinds of devices can

be supported transparently as there is also the need for network interfacing at the

lower layers.

In first part of this thesis the general concept of a WSN network integration is

described, followed by the brief description of networks.

In the next part, the general design of hardware and it’s parts is described

followed by a more detailed description.

The proposed software stack and implementation is described in the last chapter

together with the implemented example application.

1ReST - Representational State Transfer
26LowPAN - IPv6 over Low power Wireless Personal Area Networks

10

Karel Pavlata CHAPTER 1. NETWORK ARCHITECTURE

1 NETWORK ARCHITECTURE

For successful integration of WSN into the Internet and the Web we need to take

into account characteristics of different interactions with WSN and model them,

preferably using some standard protocol. This allows us to hide peculiarities of par-

ticular (perhaps proprietary) WSN protocol and export generic interface to users,

thus shield them to the maximum possible extent from the underlying WSN tech-

nology which might change or could be even heterogeneous consisting of different

WSN network segments.

R
R

E

R

Gatew ay

R

E

E

E

E
EE

R

Gatew ay

E

R

R

Gatew ayR

Enduser

R

DB SQL Server
with wrapper

XMPP XMPP

XMPP

X
M

P
P

XM
PP

R
e
S
T
/H

TT
P

R
e
S
T
/H

T
T
P

Network A

Network B
E

Direct DB access

E

E - end device

R - router

A@wsn.net/gw1 A@wsn.net/gw2 B@wsn.net/gw1

B@wsn.net/gw2

Fig. 1.1: Proposed WSN integration architecture

The underlying WSN deployment may consist of several distinct technologies

be it at the level of protocol or even different physical layers as demonstrated

in Fig. 1.1. This forms separate WSN layer connected to the gateways, which

possess internal representation of devices forming the particular network. It ex-

ports interface to the users consistently regardless of a WSN in use or type of

a client. In figure there are depicted two types of clients representing humans

and machines. One, being true human client, accessing the data directly using

for instance web browser, the other one, being database agent, collecting selected

data. The important thing is that they share common interface. The gateway

maps resources of the WSN in a ReSTful way, independently of the underlying

11

Karel Pavlata CHAPTER 1. NETWORK ARCHITECTURE

WSN, using URIs1 and stateless HTTP requests. All four CRUD (Create/Read-

/Update/Delete) operations are carried out using methods of the HTTP protocol:

GET, POST, PUT and DELETE. As the interaction is stateless, where state is

actually part of the resource’s URI itself, there is no need for per-client state in-

formation, and the server is much less complex. The example of resource identifi-

cation is: http://gateway/network/node23/resources/temperature.

The gateway also publishes list of connected nodes forming the network and it’s

available resources, so user can navigate to desired information. Interaction with

different types of clients can be handled transparently using the content negotiation

mechanism of HTTP where human clients might request a different type of answer

(HTML) than machines (JSON2, XML) based on MIME types. Caching of HTTP

requests may also be employed. This preserves the bandwidth and may eliminate

duplicated request to the WSN, thus conserving energy of battery powered nodes.

Each particular resource (e.g. temperature sensor value) is decoupled with a time-

frame of validity and represented within the gateway dependent on the underlying

WSN. The node might be sleeping for extended period of time and not be acces-

sible. With this representation, gateway can answer user’s requests on behalf of

that node with the latest valid value supplying also it’s expiration. HTTP caching

mechanism can use this value to cache responses in the network so other users get

their responses quickly. This is particularly suited for the request-response class of

interactions, where users occasionally request some data.

For continuous monitoring (not to mention sporadic events) constant polling for

new data is not suitable as it poses high load on the network. To alleviate this

problem, and because of the inherent asynchrony of WSN from the client’s request,

the push-based approach using publish-subscribe model can be used. In contrast to

the pull-based approach mentioned above, push technology utilizes server initiated

communication. This way users register for particular events they are interested

in and they are notified whenever such an event occurs. XMPP (Extensible Mes-

saging and Presence Protocol) is well established technology employing decentral-

ized client-server architecture and long-lived TCP connections to deliver messages.

Especially it’s Extension Protocols XEP-0060: Publish-Subscribe and XEP-0163:

Personal Eventing Protocol are useful for building highly distributed event-driven

applications. Interactions of individual entities are shown in Fig. 1.1. In terms of

XMPP, the whole WSN appear as user with one unique JID3, whereas individual

gateways represent resources. In this way user gets notified regardless of which

gateway receives actual data form the WSNs.

1URI - Uniform Resource Identifier
2JSON - Java Script Object Notation
3JID - Jabber ID

12

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

2 THE DESCRIPTION OF NETWORKS

2.1 Short description of IEEE 802.15.4 (LR-WPAN)

IEEE standard 802.15.4 specifies the physical layer and part of the data-link layer

(MAC - Media Access Control) of the ISO/OSI model for low-cost, low-speed,

minimal-power Low-rate Wireless Personal Area Networks (LR-WPANs). Possible

network topologies are shown in Fig. 2.1 which include star topology and peer-to-

peer topology. Additional higher layers protocols can add support for routing and

multi-hop communications in the form of mesh or (cluster-)tree topologies. Devices

either use 64 bit long IEEE address or short 16 bit address assigned during associ-

ation process. Network can operate either in Beaconing mode with slot reservation

or Non-Beaconing (unslotted) mode. It operates in one of the following frequency

bands using various modulation and spreading techniques:

� 868.0-868.6 MHz: Europe, allows one communication channel (2003, 2006)

� 902-928 MHz: North America, up to ten channels (2003), extended to thirty

(2006)

� 2400-2483.5 MHz: worldwide use, up to sixteen channels (2003, 2006)

� There are several amendments specifying new frequency bands and modulation

techniques such as UWB. See [3, 4, 5]

The standard defines four frame structures (beacon frame Fig. 2.2, data frame

Fig. 2.3, acknowledgement frame Fig. 2.4 and MAC command frame Fig. 2.5) and

specifies following items in detail:

� Device type (PAN Coordinator/FFD1/RFD2)

� Frame structure

� Superframe structure

� Data transfer model (to/from coordinator, peer-to-peer)

� Robustness

� Energy saving considerations

� Security

2.1.1 The physical layer [1, 2]

The physical layer defines set of constants such as maximum PSDU3 packet size

(127) and provides data transmission service and interface to the physical channel.

It defines two SAPs 4 (PD-SAP, PLME-SAP) and provides following services to the

1FFD - Full-Function Device
2RFD - Reduced-Function Device
3PSDU - Phy Service Data Unit
4SAP - Service Access Point

13

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

Reduced Function Device
Full Function Device

Star Topology Peer-to-Peer Topology

PAN
Coordinator

Communication Flow

PAN
Coordinator

Fig. 2.1: IEEE 802.15.4 topologies [2]

above layer using those SAPs:

� Management of the physical RF transceiver

� Energy Detection (ED)

� Link Quality Indication (LQI)

� Clear Channel Assesment (CCA)

� Channel Frequency Selection

� Data transmission and reception

2.1.2 The MAC layer [1, 2]

The medium access control (MAC) allows the transmission of MAC frames through

the use of the physical channel. Besides the data service, it offers a management

interface and itself manages access to the physical channel and network beaconing. It

also controls frame validation, guarantees time slots and handles node associations.

Overview of MAC layer responsibilities:

� Beacon generation

� Beacon synchronization

� PAN association and disassociation support

� Utilization of the CSMA/CA channel access mechanism

� Control and maintenance of GTS 5

� Provision of reliable connection by the means of retransmission, ACK 6 and

CRC 7

5GTS - Guaranteed Time Slot
6ACK - Acknowledgement
7CRC - Cyclic Redundancy Check

14

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

PHY
layer

Beacon
Payload

MAC Payload

n

MFR

2

PHY Payload

PSDU

7 + (4 to 24) + k + m + n

Frame Length /
Reserved

Preamble
Sequence

MAC
sublayer

PHY dependent

SHR

MHR

Frame
Control

Addressing
Fields

Sequence
Number

Superframe
Specification

GTS
Fields

FCS

2 4 or 10 1 2 m

Start of Frame
Delimiter

Octets:

Octets:

Pending
Address
Fields

k

Auxiliary
Security
Header

0, 5, 6, 10 o
14

PHY dependent + 8 + (4 to 24) + k + m + n

1

PHR

Fig. 2.2: Schematic view of the beacon frame and the PHY packet [2]

PHY
layer

Data Payload

MAC Payload

n

FCS

MFR

2

Sequence
Number

1 4 to 20

Addressing
Fields

2

Frame
Control

MHR

PSDU

PHY Payload

5 + (4 to 34) + n

Frame Length
/ Reserved

1

PHR

Start of Frame
Delimiter

Preamble
Sequence

MAC
sublayer

PHY dependent

SHR

Octets:

Octets:

0, 5, 6, 10 or
14

Auxiliary
Security
Header

PHY dependent + 6 + (4 to 34) + n

Fig. 2.3: Schematic view of the data frame and the PHY packet [2]

PHY
layer

2

MHR MFR

1

Frame
Control

PSDU

PHY Payload

5

Preamble
Sequence

MAC
sublayer

1

Frame
Length /

Reserved

SHR

PHY dependent

PHR

Sequence
Number

FCS

2

Start of
Frame

Delimiter

Octets:

Octets:

PHY dependent + 6

Fig. 2.4: Schematic view of the acknowledgment frame and the PHY packet [2]

15

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

PHY
layer

MAC Payload

n

FCS

MFR

2

Sequence
Number

1 4 to 20

Addressing
Fields

2

Frame
Control

MHR

PSDU

PHY Payload

6 + (4 to 34) + n

Frame
Length /

Reserved

1

PHR

Preamble
Sequence

MAC
sublayer

PHY dependent

SHR

Command
Type

Command
Payload

1

Start of
Frame

Delimiter

Octets:

Octets:

Auxiliary
Security
Header

0, 5, 6, 10, or
14

PHY dependent + 7 + (4 to 34) + n

Fig. 2.5: Schematic view of the MAC command frame and the PHY packet [2]

More information can be found in [1, 2, 3, 4, 5]

2.1.3 Higher Layers

The standard does not define higher layers (the network layer and above) but instead

rely on other standards and specifications which build upon it, such as ZigBee and

6LoWPAN. Short description of the aforementioned follows.

ZigBee [6]

ZigBee is proprietary standard for low-cost, low-power wireless mesh networking

and is maintained by the ZigBee Alliance. It builds upon IEEE802.14.4 LR-WPAN

standard and defines the network layer, security provider and application profiles

for following uses:

� Home Automation

� Home Entertainment and Control

� Automated Meter Reading

� Asset Tracking

� Building Automation

� Industrial Control

� Personal, Home and Hospital Care

� Toys

� RF4CE (Radio Frequency for Consumer Electronics)

Schematic view of the ZigBee stack is shown in Fig. 2.6. ZigBee defines three types

of devices:

� ZigBee coordinator (ZC)

� ZigBee Router (ZR)

� ZigBee End Device (ZED)

16

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

Capabilities of these devices more-less correspond to those defined by IEEE802.15.4.

ZigBee uses AODV (Ad-hoc On-demand Distance Vector) routing protocol to au-

tomatically construct path between nodes. Current ZigBee profiles should support

non-beaconed as well as beaconed modes of operation. More on this topic can be

found in [6, 7, 8].

PHY Layer

MAC Layer

MAC Layer

Network & Security
Layers

Application
framework

Application
profiles

Application

H
ar

dw
ar

e
A

pp
lic

at
io

n
Z

ig
B

ee
 S

ta
ck

IEEE
802.15.4

ZigBee
Alliance

Fig. 2.6: Schematic view of the ZigBee stack

6LoWPAN [9][10]

6LoWPAN acronym means IPv6 over Low power Wireless Personal Area Networks

and it is the name of a working group in the IETF (Internet Engineering Task Force).

The group has defined the adaptation layer (consisting of encapsulation and header

compression mechanisms) that allows IPv6 packets to be sent over IEEE 802.15.4

based networks.

Through deep understanding of the interaction between IEEE 802.15.4, IPv6 and

UDP, 6LoWPAN removes fields which are redundant among those headers, thereby

reducing the size of the packets being transmitted over the air. 6LoWPAN removes a

number of fields in the IPv6 and UDP headers because they take well-known values,

or because they can be inferred from fields in the IEEE802.15.4 header.

17

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

2.2 Short description of IEEE 802.3 (Ethernet)

Ethernet is a large family of frame-based computer networking technologies desig-

nated for LANs. It defines varieties of Physical layers and MAC and LLC sub-layers

of the Data Link layer of the ISO/OSI model. It comes in various speed and physi-

cal media types ranging from 10 Mbit/s with distance limit of 100 meters over the

twisted pair up to 100 Gbit/s with distance limit of 100 km over the optical fiber.

New specifications with higher speeds are under development. The most common of

the Ethernet types (this is particularly true for embedded systems) is 100 Mbit/s,

so called Fast Ethernet, particularly it’s 100BASE-TX variant which runs over two

twisted wire-pairs inside a category 5 or above UTP cable. Each network segment

can have a maximum distance of 100 meters. In it’s typical configuration it provides

full-duplex operation with throughput of 100Mbit/s in both directions. It is reverse

compatible with newer Gigabit Ethernet through procedure called autonegotiation,

where both transmitters agree on common capabilities. The Fig. 2.7 shows the

Ethernet frame structure. Particular fields have following lengths:

� Preamble: 7 octets of 10101010

� SFD: 1 octet of 10101011

� Destination: 6 octets

� Source: 6 octets

� EtherType: 2 octets

� Payload: 46-1500 octets

� FCS (32-bit CRC): 4 octets

Ethernet is the de facto standard of the Internet connection, with almost all of

the Internet end users connected using this technology. The dominant protocol suite

used with Ethernet (and Internet in general) is TCP/IP, residing on the Network

and Transport layers of the ISO/OSI model and containing such protocols as IP,

TCP and UDP. In mature systems reception and transmission is commonly handled

by the Operating system so the user utilize the application interface the particular

system exports to access the network. This is commonly done through sockets. More

about Ethernet can be found in [11].

Preamble SFD
Source
MAC

Address

Destination
MAC

Address
EtherType FCSPayload

Fig. 2.7: Ethernet frame [11]

18

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

3 HW DESIGN AND PARTS DESCRIPTION

Within scope of this thesis common platform for WSN was developed together with

hardware of WSN nodes and the Gateway. Top level designs are described next, fol-

lowed by part description. Detailed implementation is described in the next chapter.

3.1 WSN node top level design

WSN node top level designed can be divided into following parts:

� Sensing subsytem

� Computing subsystem

� Communication subsystem

� Power subsystem

The diagram is shown in Fig. 3.1

Power subsystem

 Sensing
 subsystem

 Computing
 subsytem

ADC

SRAM EEPROM

AVR core FLASH

Timers

I/O

Communication
 subsystem

Radio
transceiver

AT86RF230/
AT86RF212

 MCU ATmega1281

Energy storage
Li-Ion accumulator

Voltage regulator
TPS78330

Energy harvesting unit

Analog
sensors

(CdS/Bat.)

Digital
sensors

(TMP275)

ZigBit

Fig. 3.1: Top level diagram of WSN node, adapted from [16]

3.1.1 Sensing subsystem

The sensing subsystem of this particular node consists of analog sensors such as

CdS1 light intensity sensor and battery voltage level connected to the ADC and

digital sensors such as TMP275 temperature sensor connected using TWI interface

and PIR connected using GPIO. CdS and PIR sensors are part of MS-360LP motion

1CdS - Cadmium Sulfide cell

19

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

detection sensor. Sensors were selected with capabilities of low supply voltage and

low power operation in mind.

3.1.2 Computing and Communication subsystems

The computing subsystem together with the communication subsystem are real-

ized using ZigBit modules described in sections 3.4. Use of this modules promotes

modularity of the design and allows for quick change of the frequency band.

3.1.3 Power subsystem

The power subsystem comprises Lithium-Ion chemistry accumulator and TPS78330

LDO linear voltage regulator, which is characterized by very low quiescent current.

There is possibility of attaching energy harvesting unit which scavenges available

energy from it’s environment.

3.2 Gateway top level design

Top level diagram is shown in Fig. 3.2. The system basically consists of two parts:

� Portux920T SBC 2

� PXB3 extension board equipped with 2 ZigBitTM modules

Use of SBC capable of running Linux operating system with ”standardized”

hardware extension interface is favorable from software as well as hardware point of

view. It allows to separate both sides and use complex board repeatedly if there is

any need for modification. Usage of Linux adds the ease of software developing and

debugging as well as flexibility, together with mature TCP/IP stack implementation.

Parts are interconnected using USARTs4 available on PXB interface. Usage of

synchronous interface adds robustness and reliability to the interconnection and al-

lows for higher communication speed without worrying about baud rate mismatch

in case of ZigBit module’s oscillator instability. PXB makes use of DIN41612 con-

nectors, so that extension board can be connected to a regular computer using this

interface and an auxiliary board for software development purposes. Individual

components are described in later sections.

2SBC - Single Board Computer
3PXB - Portux eXtension Board
4USART - Universal Synchronous-Asynchronous Receiver/Transmitter

20

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

Po
rtu

x
9

2
0

T
 S

B
C

Ethernet

M
M

C
/S

D

R
S
-2

3
2

R
S
-2

3
2

JTAG

A
R

M
9

M
C

U

Po
rtu

x
 E

x
te

n
sio

n
 B

u
s

2
x
U

S
A

R
T
 +

 G
P
IO

T
W

I, U
S
B

 H
o
st

P
O

W
E
R

G
a
te

w
a
y
 P

X
B

 E
x
te

n
sio

n
JTAG

Po
rtu

x
 E

x
te

n
sio

n
 B

u
s

JTAG

WSN module IEEE 802.15.4

AVR
MCU

AT86
RF230

WSN module other

ANY
MCU

ANY
RADIO

Fig. 3.2: Top level diagram of Gateway

3.3 Portux920T

Portux920T is Single Board Computer equipped with AT91RM9200 ARM920T core

CPU from german vendor Taskit. Diagram is shown in Fig. 3.4 and Fig. 3.3 shows

actual appearance of Portux920T Eurocard version. Basic features of Portux920T:

� SBC with AT91RM9200 CPU

� half size euroboard

� Linux open source operating system

� flexible Portux Extension Bus provides modularity

Technical details[13]:

CPU

� Atmel® AT91RM9200 with ARM920T core

� ARM9TDMI instruction set

� 200 MIPS at 180 MHz

� 16/16 kB data/instruction cache

� Memory Management Unit (MMU)

� External Bus Interface (EBI)

Memory

� 64 MB SDRAM

� 16 MB Flash

� SD/MMC card slot onboard

� Optional CompactFlash card via Portux Extension Bus

Peripherals (onboard)

� 2 serial interfaces, USART 0 and USART 1

21

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

Fig. 3.3: Portux920T [12]

� Debug unit as an alternative to the first serial interface

� MAC 10/100 Mbit/s ethernet

� JTAG

� Portux Extension Bus via 96-pin connector

� Via Portux Extension Bus additionally required modules can be connected

Peripherals (Portux Extension Bus)

� Intergrated components of the microcontroller are accessible via Portux Ex-

tension Bus

� 2 serial interfaces, USART 2 and 3

� TWI (Two Wire Interface)

� SPI (Serial Peripheral Interface)

� PIF bus, universal easy programmable 8-bit bus with 64 I/O addresses

� USB host port

� USB client port

� 32 single programmable I/O ports multiplexed with integrated components

(chipselect for EBI, USART 2, USART 3, SPI, TWI)

Operating system

� Embedded Linux, kernel version 2.6

� ”U-Boot” bootloader and monitor

22

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

� Journaling Flash file system (JFFS)

� Compiled toolchain, binaries and source code available

Power management

� Supply voltage: 6.5 - 24 V

� Operating voltage: 3.3 V

� Power consumption: 70 mA at 10 V (normal operation)

Eurocard version

� Equipped with 96-pin connector angled (PXB)

� Equipped with standard connector plugs for USART 0 and USART 1 (DSUB-

9) and ethernet (RJ-45)

� Dimensions: 100 mm x 71 mm x 16 mm (half Eurocard)

� Format corresponds to a full Eurocard with an extension board of the same

size, enabling installation in standard housings

Fig. 3.4: Portux920T diagram [12]

23

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

3.4 ZigBitTM

ZigBitTM is the name for range of ultra-compact 802.15.4/ZigBee OEM modules

from Atmel intended for wireless networking applications. It has integrated AT-

mega1281, the 8 bit AVR MCU, and RF transceiver and features ease of integration,

ultra-low power consumption and superior radio performance. There exist various

models, summary of which is listed in Tab. 3.1.

Model Image

ZigBit 2.4 GHz Wireless Modules

Balanced Output

Dual Chip Antenna

ZigBit 2.4 GHz Wireless Amplified Modules

Amp UFL-connector

Amp Un-balanced Output

ZigBit 700/800/900 MHz Wireless Module

Balanced Output

Tab. 3.1: ZigBit modules overview [15]

24

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

Figure 3.5 shows block diagram connection for particular ZigBitTM modules.

Modules operating on 2.4 GHz make use of the AT86RF230 transceiver and the

ones operating on 700/800/900 MHz makes use of the AT86RF212 transceiver.

(a) 2.4GHz Dual Chip Antenna (b) 2.4GHz Balanced Output

ATmega1281
AT86RF230

RF
Transceiver

VCC(1.8 - 3.6V)

GPIO SPI Bus

IRQ
UART

USART/SPI
I2C

JTAG
ANALOG

SW SW

LNA

PA

RF
I/O

Antenna

(c) 2.4 GHz Wireless Amplified Module (d) 700/800/900 MHz Balanced Output

Fig. 3.5: ZigBit block diagrams [15]

Parameters of ZigBit Module Hardware Platforms are shown in Table 3.2.

Supported External Interfaces [15]:

� USART/SPI, I2C, 1-wire

� UART with CTS/RTS control

� JTAG

� 9 spare GPIOs (up to 25 GPIOs total)

� 2 spare IRQ lines

� 4 ADC lines

25

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

P
a
ra

m
e
te

r
Z

ig
B

it
9
0
0

Z
ig

B
it

2
.4

Z
ig

B
it

2
.4

A
M

P

F
re

q
u
en

cy
b
an

d
E

U
IS

M
86

3
-

87
0

M
H

z
2.

40
0

-
2.

48
3

G
H

z
2.

40
0

-
2.

48
3

G
H

z

A
M

IS
M

90
2

-
92

8
M

H
z

H
ar

d
w

ar
e

d
at

a
en

cr
y
p
ti

on
A

E
S

12
8b

it
?

?

D
at

a
ra

te
u
p

to
1

M
B

it
/s

25
0

k
B

it
/s

25
0

k
B

it
/s

M
ax

ou
tp

u
t

p
ow

er
u
p

to
+

11
d
B

m
+

3
d
B

m
+

20
d
B

m

R
ec

ei
ve

r
S
en

si
ti

v
it

y
(P

E
R

1%
)

u
p

to
-

11
0

d
B

m
-

10
1

d
B

m
-

10
4

d
B

m

S
u
p
p
ly

V
ol

ta
ge

(V
C
C

)
1.

8
V

to
3.

6
V

1.
8

V
to

3.
6

V
3.

0
V

to
3.

6
V

C
u
rr

en
t

C
on

su
m

p
ti

on
R

X
/T

X
11

m
A

/
26

m
A

19
m

A
/

18
m

A
23

m
A

/
50

m
A

C
u
rr

en
t

C
on

su
m

p
ti

on
P

ow
er

S
av

e
<

6µ
A

<
6µ

A
<

6µ
A

O
n
-C

h
ip

F
la

sh
M

em
or

y
S
iz

e
12

8
k
B

y
te

s
12

8
k
B

y
te

s
12

8
k
B

y
te

s

O
n
-C

h
ip

R
A

M
S
iz

e
8

k
B

y
te

s
8

k
B

y
te

s
8

k
B

y
te

s

O
n
-C

h
ip

E
E

P
R

O
M

S
iz

e
4

k
B

y
te

s
4

k
B

y
te

s
4

k
B

y
te

s

S
iz

e
18

.8
x

13
.5

x
2.

8
m

m
?

?

W
ei

gh
t

1.
3

g
?

?

O
p

er
at

in
g

T
em

p
er

at
u
re

-4
0

—
+

85
�

-4
0

—
+

85
�

-4
0

—
+

85
�

Tab. 3.2: ZigBit specifications [15]

26

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

4 DETAILED DESIGN DESCRIPTION

4.1 Trilobite

To emphasize modular design and create common RF platform for gateway and sen-

sor nodes, the Trilobite modules have been created. It’s basically PCB1 containing

ZigBitTM modules with necessary circuitry and B2B2 connector. It allows to freely

interchange between different ZigBitTM modules in one design according to appli-

cation’s needs and separates power and sensor part from RF part. In this way it’s

easy to change frequency bands or event entire wireless technology with rest of the

application left intact.

2.4GHz amplified module and 2.4GHz module with dual chip antenna are shown

in Fig. 4.1 and Fig. 4.2 respectively.

Fig. 4.1: ZigBit 2.4 GHz Wireless Amplified Module

Fig. 4.2: ZigBit 2.4 GHz Dual Chip Antenna

Schematic diagrams and layouts are included in Appendix A.3.

1PCB - Printed Circuit Board
2B2B - Board-to-Board

27

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

4.2 WSN PIR node

PIR node is one of many sensor nodes realized to form WSN within premises of

Brno University of Technology. This particular node is equipped with the Passive

Infrared sensor to enable motion detection, the CdS light intensity sensor and the

digital temperature sensor. The picture of node is shown in Fig. 4.3 and schematic

diagrams and layouts are included in Appendix A.2.

Fig. 4.3: WSN PIR node

The node is powered by Lithium-Ion chemistry accumulator with fully-charged

voltage above the maximum allowable supply voltage of ZigBit module. To cope

with this problem TPS78330 LDO linear voltage regulator with quiescent current

of 500 nA was used. It regulates output voltage to the value of 3 V (3.3 V for

TPS780330220) during the time when input voltage is above it’s regulation point

and then scales with decreasing voltage. To prevent excessive discharge, to which

Li-Ion chemistry is particularly sensitive, shut-down circuitry is employed.

Sensor parameters are summarized in Tab. 4.1. TMP275 is a digital temperature

Sensor Phenomenon Producer Vcc[V] Istandby[µA] Interface

TMP275 temperature TI 2.7 - 5.5 0.1 I2C

MS-360LP
PIR motion

IR-TEC 3 - 4 10
binary

light intensity analog

Tab. 4.1: Parameters of used sensors

sensor with accuracy of ±0.5 � over the operating range from -20 � to +100 � and

resolution of 0.0625 �. It’s wide supply range and low power consumption makes

it ideal for battery powered applications. The sensor is connected to the ZigBit

module using I2C interface and it’s alarm output is tied to the IRQ pin capable

28

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

of waking the MCU from deep sleep mode in case the programmed temperature

threshold is exceeded. Since power consumption of the sensor in standby mode is

negligible comparing to ZigBit module itself, it is powered directly from main power

supply. The measurement itself is done in one-shot mode after which the sensor

automatically switch itself to standby mode to save energy. The next measurement

cycle is started on demand from the MCU.

IR-TEC’s MS-360LP is a low power Passive Infrared motion sensor module with

integrated CdS light intensity sensor. The motion detection output is in a form

of TTL open collector with externally applied pull-up resistor. It is tied to the

pin change IRQ of the ZigBit module to allow wake up from deep sleep when main

oscillator of MCU is not running. Light intensity output forms a voltage divider, the

output of which is fed to the ADC pin. The divider is switched using TS5A23166 TI’s

dual SPST analog switch to stop the current flowing through the divider at the time

when there is no ongoing measurement and thus reduce the power consumption.

The battery voltage measurement is done in similar fashion. Supply voltage for

PIR sensor is switchable using TI’s TS5A3159 SPDT analog switch. This way, the

power consumption can be reduced even further in times when motion detection is

not required.

Connector with USART and JTAG interface is available on the side of the PCB

for debugging purposes and eventual firmware upgrades.

4.3 PXB gateway

Presented gateway extension board was developed as an universal platform capable

of carrying two WSN radio modules which are attached through board-to-board

connectors. It’s intended to run 900 MHz and 2.4 GHz Trilobite modules in parallel

(preferably using modules with external antennas) to interconnect and collect data

from both types of networks, but any kind of WSN modules can be attached provided

the hardware interfacing is done right. The interconnection of modules is done using

synchronous mode of USART interface to increase reliability and communication

speed. There are two USART interfaces available at the PXB port, both of which

are used. If, for any reason in the future the modules are being replaced with types

using other interface, e.g. SPI, Linux either support GPIO based SPI or modification

of extension board can be done without necessity to rebuild complex hardware of

the SBC.

Gateway extension board is equipped with the same temperature sensor as the

aforementioned WSN node to give it some basic sensing capability. It further con-

tain USB host interface allowing to attach various peripherals, such as USB Wi-Fi

29

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

cards, bluetooth dongles, etc. Each module has four indication LEDs attached to it

and DIP switch for eventual manual configuration. Also JTAG interface and reset

circuitry for facilitating of firmware development is present. The power part takes

care of powering USB interface. The gateway also features three indication LEDs

connected to the GPIO pins of Portux.

CPU I/O line PXB Function CPU I/O line PXB Function

123 PB28 A13 FI 17 PC0 C14 LED1

125 HDMA A14 USB HD 18 PC1 C15 LED2

126 HDPA A15 USB HD 122 PB27 A21 LED3

71 PA25 A17 TWD 86 PB6 C28 RST2(2)

72 PA26 C17 TWCK 87 PB7 C30 RST1(1)

68 PA22 C24 RXD2(2) 47 PA5 A30 TXD3(1)

69 PA23 A25 TXD2(2) 48 PA6 C29 RXD3(1)

70 PA24 C23 SCK2(2) 82 PB2 C25 SCK3(1)

Tab. 4.2: PXB GPIO assignment

The picture of the PXB gateway is shown in Fig. 4.4 and schematic diagrams

and layouts are included in Appendix A.1.

Fig. 4.4: WSN GW

30

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

5 SOFTWARE IMPLEMENTATION

Software architecture of the gateway is using layered structure depicted in Fig. 5.1.

With the bottom layer representing physical devices and their eventual firmware,

GNU/Linux operating system is placed above and enables interaction with these

devices on standard and higher level manner. The use of complex operating system

such as Linux is justified by the flexibility and the portability of the final solution at

relatively small cost in terms of hardware performance. Linux has a large community

of users and developers, is entirely open source and scales down well for embedded

systems. There are many applications already available for Linux which can be

used to ease the development. Java virtual machine resides on top of Linux OS. The

same reasoning applies as for use of Linux OS itself. Java is wide spread program-

ming language, particularly suitable for networked and multi-threaded applications,

flexible and portable. With plenty of available frameworks and libraries, it allows

for rapid development with no need for cross-compilation for particular hardware

once JVM1 is running. Virtual machine used here, JamVM is highly optimized and

suitable for embedded systems.

802.15.4 RF

G
P
R

S
/E

D
G

E

J ava Virtual Machine - JamVM

W
iF

i

B
lu

e
to

o
th

E
th

e
rn

e
t

..
.

ANY WSN RF

GNU/Linux and device drivers

PULL service

ReST/HTTP

WSN

stack/abstraction

Gateway
management

PUSH/Eventing
 service

XMPP client

Data
aggregation

services

ZigBee
6LowPan

etc.

Fig. 5.1: Software architecture of the gateway

The main part of this thesis deals with lower parts of the software stack, en-

1JVM - Java Virtual Machine

31

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

abling easy and smooth integration of wireless modules within Linux and to allow

applications (written in Java in particular) to be platform independent. Description

of individual layers follows next, ending with overview of frameworks suitable for

implementing the network architecture described in Chap. 1.

5.1 GNU/Linux

The Linux kernel version used is linux-2.6.22 with modifications from taskit

GmbH to incorporate specifics of the Portux920T embedded SBC. It has been cross

compiled for ARM architecture using GCC toolchain. Portux uses U-Boot boot-

loader to load the kernel either form on board flash memory or through the network

using TFTP2 protocol. The bootloader is configured to provide Linux kernel with

arguments during boot-time, such as where to find and mount root filesystem, par-

titioning of on-board flash, size of RAM and which serial port to use as a console

device. SD card is used as storage space with ext-2 type filesystem, which provide

enough space to store all the necessary applications and libraries and also allows for

easy upgrades. Another custom modifications done to the Linux kernel to facilitate

further development are explained in subsequent sections.

5.1.1 Overview of TTY

Fig. 5.2 shows layered structure of TTY management. Serial interfaces are part of

the TTY from historical reason when remote terminals were used, attached using

RS-232 interface.

To allow for greater flexibility and reuse, tty handling is made up of several

building blocks. Low level drivers deal with the underlying serial hardware, hiding

it’s peculiarities on different platforms together with TTY driver. Line disciplines

apply policies to the data according to the specific application. TTY core manages

all the interconnections and provides core APIs. Flow of data is depicted in Fig. 5.3.

5.1.2 Low level USART driver modifications

Since there is no inherent support for synchronous mode of communication in Linux,

there had to be done some modifications to utilize the capability of USART hardware

present on Portux to work in synchronous mode. termios structure (Lst. 5.1)

is used to communicate desired parameters, such as communication speed, parity,

etc. to the low level driver. Flag requesting synchronous mode of communication

has been added to the c cflag field of structure and set termios function of

2TFTP - Trivial File Transfer Protocol

32

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

hardware

tty
driver

tty
line

discipline

kernel

user

tty
core

Fig. 5.2: TTY core overview [22]

Atmels’s USART low level diver has been modified to incorporate necessary actions

in form of register setting etc. In this way we are able to use more robust and

reliable USART communication. This setting is automatically applied upon setting

our custom line discipline (described in the next section) to the particular serial

port. As the termios settings are preserved across openings of the serial port we

change the setting back to the standard asynchronous mode after closing the port.

Listing 5.1: termios structure

1 struct termios {

2 tcflag_t c_iflag; /* input mode flags */

3 tcflag_t c_oflag; /* output mode flags */

4 tcflag_t c_cflag; /* control mode flags */

5 tcflag_t c_lflag; /* local mode flags */

6 cc_t c_line; /* line discipline */

7 cc_t c_cc[NCCS]; /* control characters */

8 };

5.1.3 Line discipline implementation

Line disciplines provide an elegant mechanism to use the same serial driver to run

different technologies. The low-level physical driver and the tty driver handle the

transfer of data to and from the hardware, while line disciplines are responsible for

processing the data and transferring it between kernel space and user space [23].

33

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

TTY Driver

UART/Low-Level Driver

TTY
I/O Core

/dev/ttySX

N_TTY N_ZBT...

Line Disciplines

Fig. 5.3: TTY core layers, adapted from [23]

Linux strictly separates between the user space and the kernel space. As we need

to interact with the hardware, it is much more comfortable to do so from the kernel

side. We can directly access to and configure the GPIO pins needed to interact with

the ZigBit modules and also process the data into frames to facilitate programming

of higher layers. tty ldisc structure (Lst. 5.2) is used to represent particular line

discipline and is registered using tty register ldisc() function upon loading

the kernel module containing the line discipline’s functionality.

Listing 5.2: N ZBT tty ldisc structure

1 static struct tty_ldisc n_zbt_ldisc = {

2 .magic = TTY_LDISC_MAGIC,

3 .name = "n_zbt",

4 .flags = 0,

5 /* routines called from above */

6 .open = n_zbt_open,

7 .close = n_zbt_close,

8 .read = n_zbt_read,

9 .write = n_zbt_write,

10 .ioctl = n_zbt_ioctl,

11 .poll = n_zbt_poll,

12 /* routines called from below */

13 .receive_buf = n_zbt_receive_buf,

14 .write_wakeup = n_zbt_write_wakeup,

15 .owner = THIS_MODULE,

16 };

N ZBT line discipline provides compact interface to control the ZigBit device

34

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

and wrap the data to form frames with simple FCS3. The synchronization to frame

start and securing the data transmission is done in this way in unlikely case of

transmission error. Line discipline collects data that arrived from the serial port

and transfers them to the user space in frame by frame fashion, using frame buffers

management system. The user space application is protected form data fragmen-

tation and consumes whole packets. The same applies for the transmission. Data

are prefixed with a header containing the synchronization pattern and a length and

appended with FCS created by XORing all the data.

5.2 BitCloud

BitCloud is a full-featured embedded software stack from Atmel. The stack provides

a firmware development platform for reliable, scalable, and secure wireless applica-

tions running on Atmel hardware kits such as Zigbit modules. Primary application

domains include home automation, commercial building automation, automated me-

ter reading, asset tracking, and industrial automation. BitCloud is fully compliant

with ZigBee PRO and ZigBee standards for wireless sensing and control. BitCloud

is used for an example implementation of WSN integration, the functionality of the

gateway can be easily extended for another networks.

5.3 JamVM

JamVM is a small, open source Java Virtual Machine (JVM) suitable for embedded

systems. JamVM is designed to use the GNU Classpath Java class library and sup-

port multiple platforms. It features highly optimized interpreter and code-copying

JIT (Just In Time) compiler and has support for JNI (Java Native Interface) and

Reflection API.

5.3.1 JNI

The Java Native Interface (JNI) is a framework that allows Java code running in a

Java Virtual Machine to call native libraries (specific to a hardware platform) written

in other languages. In this way, it allows the Java application to interact with a

device driver through a device file and isolate this to be the only platform specific

part of code. In Lst. 5.3 is listed the exemplary Java part of the JNI implementation

of access to ZigBit modules. The native library libdeviceio.so is loaded first

and then methods can be accessed.

3FCS - Frame Check Sequence

35

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

Listing 5.3: JNI interface

1 public class DeviceIO {

2 static {

3 System.loadLibrary("deviceio");

4 }

5 public static native int open(String device);

6 public static native int close();

7 public static native int read(byte buf[], int count);

8 public static native int write(byte buf[], int count);

9 public static native int reset();

10 }

The listing Lst. 5.4 shows one of the native library functions implemented in C

which gets called from the Java application upon calling the open method of the

class listed in Lst. 5.4

Listing 5.4: JNI library example

1 #define N_ZBT 17

2 static int fd = 0;

3

4 JNIEXPORT jint JNICALL

5 Java_DeviceIO_open (JNIEnv * env, jclass class, jstring devname)

6 {

7 const char *str;

8 int ldisc, err;

9 str = (*env)->GetStringUTFChars(env, devname, NULL);

10 if (NULL == str)

11 return -1;

12 if (fd) {

13 (*env)->ReleaseStringUTFChars(env, devname, str);

14 return -1;

15 }

16 fd = open(str, O_RDWR | O_NOCTTY);

17 ldisc = N_ZBT;

18 err = ioctl(fd, TIOCSETD, &ldisc);

19 if (0 != err || ldisc != N_ZBT) {

20 close(fd);

21 fd = -1;

22 }

23 (*env)->ReleaseStringUTFChars(env, devname, str);

24 return fd;

25 }

First few lines of Lst. 5.4 serve the purpose of getting the filename from Java

environment to it’s C representation. On the line 16 the device file is opened and in

the next, the line discipline is applied. The calls to open and ioctl functions are

platform specific and the library has to be adapted for each specific target platform.

36

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

5.4 Higher layer protocols and frameworks

This section provides general overview of protocols and frameworks planned to be

used for the final solution of Web integration of the WSN.

5.4.1 ReST [17]

ReST stands for Representational State Transfer. It is an architecture style for de-

signing networked applications and relies on stateless, client-server, cacheable com-

munication protocol such as HTTP. ReSTful applications use HTTP requests to

post data (create and/or update), read data (make queries), and delete data. As a

programming approach it is a lightweight alternative to Web Services (SOAP) and

RPC (Remote Procedure Call). ReST service is:

� Platform-independent

� Language-independent

� Standards-based (runs on top of HTTP)

� Can easily be used in presence of firewalls

� Security and encryption are built on top of HTTP (e.g. HTTPS)

The query is simply encoded inside URL and is sent to the server using simple GET

request method of HTTP. Key components forming the ReST architecture:

� Resources - identified by logical URLs. Represents both state and functionality

� A web of resources - resources should contain links to other resources

� Client-server architecture (application can act as a both)

� Stateless interaction - each request contains all the information required to

complete it and must not rely on previous interactions

� Cacheability - resources should be cacheable whenever possible (with an expi-

ration time). The protocol must allow the server to explicitly specify which

resources may be cached and for how long.

Since HTTP is universally used ass the ReST protocol, the HTTP cache-

control headers are used for this purpose.

Clients must respect the server’s cache specification for each resource.

� Proxy servers can be used as part of the architecture, to improve performance

and scalability.

It is natural to map the resources the WSN exports in a ReSTful way. This allows

for simple access to the WSN form the Internet regardless of underlying technology.

Restlet [18]

The Restlet is a lightweight and comprehensive, open source framework for mapping

ReST concepts to Java classes. It supports major Internet standards like HTTP,

37

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

HTTPS, SMTP, XML, JSON, Atom, WADL and is suitable for both server and

client Web applications. It is planned to be used as a basis of PULL service of final

solution.

5.4.2 XMPP [19]

The Extensible Messaging and Presence Protocol (XMPP) is an open technology

for real-time communication, using the Extensible Markup Language (XML) as the

base format for exchanging information. In essence, XMPP provides a way to send

small pieces of XML from one entity to another in close to real time. It provides

following core services:

� Channel encryption

� Authentication

� Presence

� Contact lists

� One-to-one messaging

� Multi-party messaging

� Notifications - XEP-0060 extension, Publish-Subscribe model

� Service discovery - XEP-0030 extension

SOX

SOX is the shortcut for the Sensor Over XMPP, the library developed for the Sensor

Andrew network at the Carnegie Mellon University. SOX library is available in C

and Java programming language and is based on the XMPP’s XEP-0060 extension

using the push-based publish-subscribe communication model. It is planned to be

implemented as a part of the future development.

38

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

5.5 Demo application

Example application consists of the WSN network sending sensor readings at regular

intervals and the gateway processing the data and making it accessible on the Web

either in HTML or JSON format. The WSN network firmware is implemented using

BitCloud ZigBee PRO stack mentioned above. The network coordinator resides at

the gateway and starts the network. Sensor nodes join the network and forwards all

the data to the coordinator. Upon reception of the packet, coordinator parses it to

the JSON representation and sends the data to the gateway using USART interface.

Parsing is done using the cJSON library and the example of parsing and sending the

data is listed in Lst. 5.5. The notification of nodes joining and leaving the network is

done in similar fashion. This way application keeps track of sensor nodes currently

present in the network and the Web interface presents current state of the network.

Listing 5.5: Data parsing function

1 void boardAbstractionSendData(APS_DataInd_t* ind)

2 {

3 cJSON *root,*fmt; char *out;

4 AppSensorMessage_t *msg = (AppSensorMessage_t*)ind->asdu;

5 root = cJSON_CreateObject();

6 cJSON_AddItemToObject(root, "message", cJSON_CreateString("

sensor_reading"));

7 cJSON_AddNumberToObject(root, "node_addr", (double) (ind->srcAddress.

shortAddress));

8 cJSON_AddItemToObject(root, "data", fmt=cJSON_CreateObject());

9 cJSON_AddStringToObject(fmt, "sensor_type", sensorNames[msg->type]);

10 cJSON_AddNumberToObject(fmt, "value", (double) msg->value);

11

12 out = cJSON_Print(root); cJSON_Delete(root);

13 my_WriteUsart(&usartDescriptor, (uint8_t*)out, strlen(out));

14 free(out);

15 }

An example of parsed JSON object transmitted to the gateway created form the

previous listing is listed in Lst. 5.6.

Listing 5.6: Data in the JSON format

1 {

2 "message": "sensor_reading",

3 "data": {

4 "sensor_type": "Temperature",

5 "value": 0

6 },

7 "node_addr": 48059

8 }

39

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

Function handling the transmission is listed in Lst. 5.7. The data are reassembled

and the FCS is checked in the line discipline. The complete packet is then forwarded

to the application.

Listing 5.7: USART transmission handling function

1 int my_WriteUsart(HAL_UsartDescriptor_t *descriptor, uint8_t *buffer,

uint16_t length)

2 {

3 uint8_t buf[4], *ptr;

4 uint8_t i, fcs;

5 buf[0] = 0xaa;

6 buf[1] = 0xcc | (uint8_t)((length >> 8) & 0x03);

7 buf[2] = (uint8_t)length;

8 for (i = 0, fcs = 0, ptr = buffer; i < length; i++)

9 fcs ˆ= *ptr++;

10 buf[3] = fcs;

11 USART_Write(descriptor, (uint8_t*)buf, 3);

12 USART_Write(descriptor, (uint8_t*)buffer, length);

13 USART_Write(descriptor, (uint8_t*)&buf[3], 1);

14 return length;

15 }

The application is written in Java, runs in JamVM Java Virtual Machine and

consists of two parts. The first part runs in separate thread and opens the de-

vice using class listed in Lst. 5.3. It reads all the data frames available and parses

it to the JSON object representation form from the serialized (text) format us-

ing JSON-java. The JSON objects are then stored using HashMap container.

The second part is inherited subclass of the NanoHTTPD.class and implements

the actual HTTP server. Upon the GET request the URL is parsed if it contains

/nodes, /network, /resources identifiers or identifier of particular resource

(e.g. node address) and serves the response accordingly. If the request has .json

suffix (e.g. /network.json the JSON object is retrieved from the map and is

serialized to it’s textual representation. The response the contains the object and

the content-type HTTP header is set to application/json. If the url does

not specify the format the HTML version is build from the data contained in the

map and hyper-links to the nodes or resources are built. For the aforementioned re-

quests the application respond with list of currently available nodes, network details

such as PAN ID, extended PAN ID and channel on which the network is started or

resources available in the network (e.g. available sensor types).

40

Karel Pavlata CHAPTER 6. CONCLUSION

6 CONCLUSION

This work dealt with the problem of interfacing IEEE 802.15.4 and Ethernet net-

works and tried to do that form as much generic standpoint as possible. The problem

of integration of the Wireless Sensor Network is described, and the network archi-

tecture that solves this problem by incorporating gateways is proposed.

Later parts described the hardware of a gateway capable of interfacing these

networks. The idea behind is it’s modularity and flexibility, so that the future

development and extensibility is not limited by the design. The suggested solu-

tion makes use of Linux equipped ARM based SBC, which is powerful enough to

run complex applications. Ethernet communication and TCP/IP stack is native

to Linux thus software development may concentrate on the original objective of

network integration. Furthermore ZigBitTM RF modules capable of IEEE 802.15.4

communication are used mainly because of severe complexity of RF HW design and

the requirement of certification of devices working in these frequency bands. Use of

OEM modules (with ensured certification) removes this burden. Gateway makes use

of up to two of this modules mainly because of the ability to work on both frequency

band of IEEE 802.15.4 standard.

The implemented software forms hierarchical architecture, mainly focused on the

lower parts comprising firmware for the communication modules and it’s integration

to the Linux operating system. Kernel device driver in form of a module implement-

ing line discipline was developed and the integration with Java platform has been

done. It allows the possibility of the use of various frameworks and extensions in

the future development.

Sample application forms HTTP server which exports the data from the ZigBee

network to the outside world in a simple ReSTful architecture.

Future work is intended in the area of software implementation and large scale

Wireless Sensor Network deployment as a proof of concept.

41

Karel Pavlata BIBLIOGRAPHY

BIBLIOGRAPHY

[1] IEEE 802.15.4-2006 [online]. Wikipedia, the free encyclopedia. 04/2010. Avail-

able: <http://en.wikipedia.org/wiki/IEEE 802.15.4-2006>. May 17, 2010.

[2] IEEE Std 802.15.4TM -2006 Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area

Networks (WPANs) [online]. IEEE. NY, USA. 09/2006. 323 p. Available:

<http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf>. ISBN 0-

7381-4997-7

[3] IEEE Std 802.15.4aTM -2007 Amendment 1: Add Alternate

PHYs [online]. IEEE. NY, USA. 08/2007. 203 p. Available:

<http://standards.ieee.org/getieee802/download/802.15.4a-2007.pdf>. ISBN

0-7381-5584-5

[4] IEEE Std 802.15.4cTM -2009 Amendment 2: Alternative Physical Layer Ex-

tension to support one or more of the Chinese 314-316 MHz, 430-434 MHz,

and 779-787 MHz bands [online]. IEEE. NY, USA. 04/2009. 33 p. Avail-

able: <http://standards.ieee.org/getieee802/download/802.15.4c-2009.pdf>.

ISBN 978-0-7381-5913-3

[5] IEEE Std 802.15.4dTM -2009 Amendment 3: Alternative Physical Layer Exten-

sion to support the Japanese 950 MHz bands [online]. IEEE. NY, USA. 04/2009.

39 p. Available: <http://standards.ieee.org/getieee802/download/802.15.4d-

2009.pdf>. ISBN 978-0-7381-5915-7

[6] ZigBee [online]. Wikipedia, the free encyclopedia. 05/2010. Available:

<http://en.wikipedia.org/wiki/ZigBee>. May 18, 2010.

[7] ZigBee Alliance [online]. ZigBee Alliance. 2010. Available:

<http://www.zigbee.org/>.

[8] Welcome to Wireless Sensor Networks Tutorial [online]. Atmel Corporation.

2009. Available: <http://meshnetics.com/zigbee-learning/>.

[9] 6LoWPAN [online]. Wikipedia, the free encyclopedia. 04/2010. Available:

<http://en.wikipedia.org/wiki/6loWPAN>. May 18, 2010.

[10] 6LoWPAN [online]. OpenWSN, Implementing the Internet of Things. 10/2010.

Available: <http://openwsn.berkeley.edu/wiki/OpenLowPan#a6LoWPAN>.

May 16, 2011.

42

http://en.wikipedia.org/wiki/IEEE_802.15.4-2006
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
http://standards.ieee.org/getieee802/download/802.15.4a-2007.pdf
http://standards.ieee.org/getieee802/download/802.15.4c-2009.pdf
http://standards.ieee.org/getieee802/download/802.15.4d-2009.pdf
http://standards.ieee.org/getieee802/download/802.15.4d-2009.pdf
http://en.wikipedia.org/wiki/ZigBee
http://www.zigbee.org/
http://meshnetics.com/zigbee-learning/
http://en.wikipedia.org/wiki/6loWPAN
http://openwsn.berkeley.edu/wiki/OpenLowPan#a6LoWPAN

Karel Pavlata BIBLIOGRAPHY

[11] IEEE 802.3 [online]. Wikipedia, the free encyclopedia. 05/2010. Available:

<http://en.wikipedia.org/wiki/IEEE 802.3>. May 17, 2011.

[12] Portux920T : Overview [online]. taskit GmbH. 2006. Available:

<http://www.taskit.de/en/products/portux/index.htm>. Dec 18, 2009.

[13] Portux920T : Technical details [online]. taskit GmbH. 2007. Available:

<http://www.taskit.de/en/products/portux/tech.htm>. Dec 18, 2009.

[14] Portux : Technical Reference [online]. taskit GmbH. Version 1.2. Available:

<http://www.taskit.de/en/support/manuals.htm>. Dec 18, 2009.

[15] ZigBitTM OEM Modules [online]. 04/2008. Available:

<http://meshnetics.com/>. Dec 18, 2009.

[16] M. Kohvakka. Medium Access Control and Hardware Prototype De-

signs for Low-Energy Wireless Sensor Networks . TUT, Tampere, 2009.

Available: <http://www.tkt.cs.tut.fi/research/daci/pub open/Kohvakka-

Medium Access Control and Hardware Prototype designs for Low-

Energy Wireless Sensor Networks.pdf>. ISBN 978-952-15-2153-9.

[17] M. Elkstein. Learn REST: A Tutorial [online]. 04/2011. Available:

<http://rest.elkstein.org/>. May 18, 2011.

[18] L. Richardson and S. Ruby. RESTful Web Services. O´Reilly Media, Se-

bastopol, CA, USA. 2007. ISBN-13 978-0-596-52926-0

[19] P. Saint-Andre, K. Smith, and R. Tronçon. XMPP: The Definitive

Guide. O´Reilly Media, Sebastopol, CA, USA. 2009. ISBN 978-0-596-52126-4

[20] A. Kamilaris. A lightweight resource-oriented application framework for wire-

less sensor networks. Master´s thesis, Institute of Pervasive Computing, ETH

Zurich, 2009.

[21] S. Wieland. Design and implementation of a gateway for web-based inter-

action and management of embedded devices. Master´s thesis, Department of

Computer Science, ETH Zurich, 2009.

[22] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers,

Third Edition. O´Reilly Media, Sebastopol, CA, USA. 2005. ISBN 0-596-00590-

3

[23] Sreekrishnan Venkateswaran. Essential Linux Device Drivers. Prentice

Hall, Upper Saddle River, New Jersey, USA. 2008. ISBN 978-0-13-239655-4

43

http://en.wikipedia.org/wiki/IEEE_802.3
http://www.taskit.de/en/products/portux/index.htm
http://www.taskit.de/en/products/portux/tech.htm
http://www.taskit.de/en/support/manuals.htm
http://meshnetics.com/
http://www.tkt.cs.tut.fi/research/daci/pub_open/Kohvakka-Medium_Access_Control_and_Hardware_Prototype_designs_for_Low-Energy_Wireless_Sensor_Networks.pdf
http://www.tkt.cs.tut.fi/research/daci/pub_open/Kohvakka-Medium_Access_Control_and_Hardware_Prototype_designs_for_Low-Energy_Wireless_Sensor_Networks.pdf
http://www.tkt.cs.tut.fi/research/daci/pub_open/Kohvakka-Medium_Access_Control_and_Hardware_Prototype_designs_for_Low-Energy_Wireless_Sensor_Networks.pdf
http://rest.elkstein.org/

Karel Pavlata LIST OF SYMBOLS

LIST OF SYMBOLS, PHYSICAL CONSTANTS

AND ABBREVIATIONS

ACK Acknowledgement

ADC Analog-to-Digital Converter

AODV Ad-hoc On-demand Distance Vector

B2B Board-to-Board

CCA Clear Channel Assesment

CFP Contention Free Period

CdS Cadmium Sulfide cell

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CRC Cyclic Redundancy Check

ED Energy Detection

FCS Frame Check Sequence

FFD Full-Function Device

GPIO General Purpose Input/Output

GTS Guaranteed Time Slot

HAL Hardware Abstraction Layer

HTTP Hyper Text Transfer Protocol

HW Hardware

I2C Inter-Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IRQ Interrupt Request

ISM Industrial, Scientific and Medical radio band

JID Jabber ID

44

Karel Pavlata LIST OF SYMBOLS

JNI Java Native Interface

JSON JavaScript Object Notation

JTAG Digital interface for debugging of embedded devices, also known as IEEE

1149.1 standard interface

JVM Java Virtual Machine

LAN Local Area Network

LDO Low-dropout regulator

LLC Logical Link Control

LQI Link Quality Indication

LR-WPAN Low-rate Wireless Personal Area Network

MAC Media Access Control

MCU Microcontroller Unit

MIME Multipurpose Internet Mail Extensions

OEM Original Equipment Manufacturer

PAN Personal Area Network

PCB Printed Circuit Board

PD-SAP Phy Data SAP

PIR Passive Infra-Red

PLME-SAP Phy Layer Management Entity SAP

PSDU Phy Service Data Unit

PXB Portux eXtension Board

ReST Representational State Transfer

RF Radio Frequency

RF4CE Radio Frequency for Consumer Electronics

RFD Reduced-Function Device

45

Karel Pavlata LIST OF SYMBOLS

RPC Remote Procedure Call

RTS/CTS Request to Send / Clear to Send

SAP Service Access Point

SBC Single Board Computer

SOAP Simple Object Access Protocol

SPI Serial Peripheral Interface bus

SPDT Single Pole, Double Throw

SPST Single Pole, Single Throw

SW Software

TFTP Trivial File Transfer Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TWI Two Wire Interface (I2C like bus)

UDP User Datagram Protocol

USART Universal Synchronous-Asynchronous Receiver/Transmitter

USB Universal Serial Bus

UTP Unshielded Twisted Pair

UWB Ultra Wide Band

WADL Web Application Description Language

WSN Wireless Sensor Network

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

ZED ZigBee End Device

ZC ZigBee Coordinator

ZR ZigBee Router

46

Karel Pavlata LIST OF APPENDICES

LIST OF APPENDICES

A PCBs and schematics 48

A.1 WSN Gateway . 48

A.2 WSN node . 51

A.3 RF headers (Trilobite) . 53

B partlists 56

B.1 WSN Gateway . 56

B.2 WSN Node . 57

C Libraries and Frameworks 59

D Content of CD 60

47

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

A PCBS AND SCHEMATICS

A.1 WSN Gateway

C
A

32
DIN 41612
Type R Receptacle

1

B

C
A

B

12

A
nt

en
na

 s
pa

ce

A
nt

en
na

 s
pa

ce

O
N1

2
3

4

O
N1

2
3

4

14

FUSE

U$1

J1

C1

D
1

J2

S
1

U
$2

C2

C3

C4

Z
1

Z
2

JP
1

JP
2

S2 S3

U$4
J3

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

R1

R2

R3

R4

R5

R6

R7

R8

S
J1

S
J2

C9
C10

P
B

1

P
B

2

R9
R10

C5

R
11

R
12

R
13

R
14

C
6

C
11

C12

C8

C7

R15

R
16

R
17

R
18

R19 R20

LE
D

9

LED10

LE
D

11

R
21

R
22

R
23

R24

R25

R26

Fig. A.1: WSN Gateway parts placement

48

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

Fig. A.2: WSN Gateway top side

Fig. A.3: WSN Gateway bottom side (mirrored)

49

Power supply LEDs

ZigBit #2

ZigBit #1

Temperature sens. USB Host

PXB

PXB

GND

10u

GND

22-27-2021-02

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

TL36WO

LF50CDT

100n

GND

10u 100n

GND GNDGND

V
C

C
_5

0

219-04

219-04

TMP275D

GND

270R

270R

VCC_33

VCC_33

GND

V
C

C
_3

3
V

C
C

_3
3

GND

GND

1n

1n

DTSM-3

DTSM-3

10k

10k

VCC_33

VCC_33

GND

G
N

D

VCC_33

VCC_33

VCC_33

VCC_33

VCC_33

GND

FSF00.5H SMD

VCC_50

GND

10n

GND

27R

27R

15
k

15
k

GND GND

47p 47p

GND GND

VCC_33

GND

100n

100n

GND

100n

GND
470R

470R

47
0R

47
0R

470R

470R

GND GND GND

27
0R

27
0R

27
0R

10k

GND

GND

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32

U$1
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

A21

A22

A23

A24

A25

A26

A27

A28

A29

A30

A31

A32

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

C31

C32

3
2
1

J1

C1

D1

J2-1
J2-2

2
3

1

S1

VI1

2

VO 3

U$2

GNDC2 C3 C4

1
Z1SPI_CLK

2
Z1SPI_MISO

3
Z1SPI_MOSI

4
Z1GPIO0

5
Z1GPIO1

6
Z1GPIO2

7
Z1OSC32K_OUT

8
Z1RESET

9
Z1DGND

10
Z1CPU_CLK

11
Z1I2C_CLK

12
Z1I2C_DATA

13
Z1UART_TXD

14
Z1UART_RXD

15
Z1UART_RTS

16
Z1UART_CTS

17
Z1GPIO6

18
Z1GPIO7

19
Z1GPIO3

20
Z1GPIO4

21
Z1GPIO5

22
Z1DVCC

23
Z1JTAG_TMS

24
Z1JTAG_TDI

25
Z1JTAG_TDO

26
Z1JTAG_TCK

27
Z1ADC3

28
Z1ADC2

29
Z1ADC1

30
Z1BAT

31
Z1A_VREF

32
Z1AGND

33
Z1GPIO_1WR

34
Z1UART_DTR

35
Z1US0_RXD

36
Z1US0_TXD

37
Z1US0_EXCLK

38
Z1GPIO8

39
Z1IRQ7

40
Z1IRQ6

1
Z2SPI_CLK

2
Z2SPI_MISO

3
Z2SPI_MOSI

4
Z2GPIO0

5
Z2GPIO1

6
Z2GPIO2

7
Z2OSC32K_OUT

8
Z2RESET

9
Z2DGND

10
Z2CPU_CLK

11
Z2I2C_CLK

12
Z2I2C_DATA

13
Z2UART_TXD

14
Z2UART_RXD

15
Z2UART_RTS

16
Z2UART_CTS

17
Z2GPIO6

18
Z2GPIO7

19
Z2GPIO3

20
Z2GPIO4

21
Z2GPIO5

22
Z2DVCC

23
Z2JTAG_TMS

24
Z2JTAG_TDI

25
Z2JTAG_TDO

26
Z2JTAG_TCK

27
Z2ADC3

28
Z2ADC2

29
Z2ADC1

30
Z2BAT

31
Z2A_VREF

32
Z2AGND

33
Z2GPIO_1WR

34
Z2UART_DTR

35
Z2US0_RXD

36
Z2US0_TXD

37
Z2US0_EXCLK

38
Z2GPIO8

39
Z2IRQ7

40
Z2IRQ6

1
2

3

4

5

6
7

8
9

10

JP1

1
2

3

4

5

6
7

8
9

10

JP2

5
6
7
8 1

2
3
4

S2

5
6
7
8 1

2
3
4

S3

U$4

SDA1

SCL2

ALR3

GND4 A2 5
A1 6
A0 7
V+ 8

J3-1

J3-2

J3-3

J3-4

LE
D

1
LE

D
2

LE
D

3
LE

D
4

LE
D

5
LE

D
6

LE
D

7
LE

D
8

R1
R2
R3
R4

R5
R6
R7
R8

21
SJ1

21
SJ2

C9

C10

2 1

PB1

2 1

PB2

R9

R10

F1

C5

R11

R12

R
13

R
14

C6 C11

C12

C8

C7

R15

R16

R
17

R
18

R19

R20

LE
D

9

LE
D

10

LE
D

11

R
21

R
22

R
23

R24 R25 R26

RST2

RST2

RST2

RST1

RST1

RST1

HDMA

HDMA

HDPA

HDPA

PA25/TWD
PA25/TWD

PA26/TWCK

PA26/TWCK

PB28/FIQ

PB28/FIQ

PA23/TXD2

PA23/TXD2

PA24/SCK2

PA24/SCK2

PA22/RXD2

PA22/RXD2

PB02/SCK3

PB02/SCK3

PA06/RXD3

PA06/RXD3

PA05/TXD3

PA05/TXD3

PB6

PB7

LED1

LE
D

1

LED2

LE
D

2

LED3

LE
D

3

+ +

JTAG

TDI

TDO

TMS

TCK

VCC VREF

SRST

TRST

GND

GND

JTAG

TDI

TDO

TMS

TCK

VCC VREF

SRST

TRST

GND

GND

1
2

3
4

O
N

1
2

3
4

O
N

Fig. A.4: WSN Gateway schema

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

A.2 WSN node

A
nt

en
na

 s
pa

ce

1

RM2

MEDER
PIR1

X2

U
$1

C
1

C2

C3

C
4

R1

R
2

R
3

C5

C
6

C7

U
$6

R4

R5

Q1

U
$7

P
B

1

P
B

2

U$4

Z1

RS1

U
$2

U$3

SJ2

SJ1

R
6

R7

R8

R9

D
1

LED1

LED2

R
10

C8
R

11

R12

S
J3

C10

C11

S
J4

C12 C13

C9

Fig. A.5: WSN PIR node parts placement

Fig. A.6: WSN PIR node top side

Fig. A.7: WSN PIR node bottom side (mirrored)

51

optional, use switch or solder jumper to bypass shutdown

Power part

Sensory part

ZigBit UI IO part

JTAG/UART

MS-360LP

53261-03

TPS780330220DDC

1u

GND

VDD

V
B

A
T

V
D

D

1u

GND GND GND GND GND

100n

GND

100n

GND

100k

100k100k

1n

10
0n

100n

GND

GND

JMPSMD

GND

47
0R

47
0R

IR
F

73
03

IR
F

73
03

TS5A3159-DCK

GND

V
B

A
T

V
B

A
T

GND

DTSM-3

D
T

S
M

-3

GND

V
B

A
T

10PINA-RM2

TMP275DGK

MK16B2

TS5A23166DCU

TS5A3159-DCK

S
V

D
D

100k

V
D

D

1k

GND

V
B

A
T

V
D

D

V
B

A
T

470R

GND

VDD

VDD VDD

1n

10
k

10
k

VDD

GND

10u

GND

GND

1u

GND

1n

1n

100n

GND

1

2

PIR(OC) 4

GND

Vcc

3 CDS

PIR1

X2-1
X2-2
X2-3 IN

EN

OUT

VSET/FB

GND

U$1

C1 C2C3 C4

R1

R2R3

C
5

C
6

C7

12

U$6

R
4

R
5

Q1A Q1B

U$7

NO1

GND2

NC3 COM 4
V+ 5
IN 6

21

PB1

2
1

P
B

2

SKT1P1
SKT1P2
SKT1P3
SKT1P4

SKT1P6
SKT1P5

SKT1P7
SKT1P8
SKT1P9
SKT1P10

U$4

SDA1

SCL2

ALR3

GND4 A2 5
A1 6
A0 7
V+ 8

1
Z1SPI_CLK

2
Z1SPI_MISO

3
Z1SPI_MOSI

4
Z1GPIO0

5
Z1GPIO1

6
Z1GPIO2

7
Z1OSC32K_OUT

8
Z1RESET

9
Z1DGND

10
Z1CPU_CLK

11
Z1I2C_CLK

12
Z1I2C_DATA

13
Z1UART_TXD

14
Z1UART_RXD

15
Z1UART_RTS

16
Z1UART_CTS

17
Z1GPIO6

18
Z1GPIO7

19
Z1GPIO3

20
Z1GPIO4

21
Z1GPIO5

22
Z1DVCC

23
Z1JTAG_TMS

24
Z1JTAG_TDI

25
Z1JTAG_TDO

26
Z1JTAG_TCK

27
Z1ADC3

28
Z1ADC2

29
Z1ADC1

30
Z1BAT

31
Z1A_VREF

32
Z1AGND

33
Z1GPIO_1WR

34
Z1UART_DTR

35
Z1US0_RXD

36
Z1US0_TXD

37
Z1US0_EXCLK

38
Z1GPIO8

39
Z1IRQ7

40
Z1IRQ6

RS1

NO11

COM12

IN23

GND4 NO2 5
COM2 6

IN1 7
V+ 8

U$2
U$3

NO1

GND2

NC3 COM 4
V+ 5
IN 6

31

2

SJ2

3
1

SJ1
2

R6

R7R
8

R
9

D
1

LE
D

1

LE
D

2

R10

C
8

R
11

R
12

2
1

S
J3

C10

C11

31

2

SJ4

C12

C
13

C9

RST

RST

RST

SHDN

SHDN

PIRSHDN

PIRSHDN

PIR

PIR

CDSON

CDSON

CDS

CDS

BAT

BAT

SDA

SDA

SCL

SCL

ALR

ALR

BATON

BATON

TCK

TCK

TDO

TDO

TDI

TDI

TMS

TMS

RX1

R
X

1

TX1

T
X

1

XCK1

XCK0

XCK0

TX0

TX0

RX0

RX0

PBT

PBT

LED1

LED1

LED2

LED2

AGND

AGND

P
IR

+

Fig. A.8: WSN PIR node schema

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

A.3 RF headers (Trilobite)

Fig. A.9: Trilobite A2 schematic

Fig. A.10: Trilobite A2 components placement

53

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

Fig. A.11: Trilobite A2 top PCB layer

Fig. A.12: Trilobite A2 bottom PCB layer

Fig. A.13: Trilobite AMP schematic

54

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

Fig. A.14: Trilobite AMP components placement

Fig. A.15: Trilobite AMP top PCB layer

Fig. A.16: Trilobite AMP bottom PCB layer

55

Karel Pavlata APPENDIX B. PARTLISTS

B PARTLISTS

B.1 WSN Gateway

Listing B.1: Partlist for the Gateway

Partlist

Exported from wsn_pxb_gateway_v03.sch at 25.4.2010 23:26:48

EAGLE Version 5.7.0 Copyright (c) 1988-2010 CadSoft

Part Value Device Package Library Sheet

C1 10u CPOL-EUSMCB SMC_B rcl 1

C2 100n C-EUC0603 C0603 rcl 1

C3 10u CPOL-EUSMCB SMC_B rcl 1

C4 100n C-EUC0603 C0603 rcl 1

C5 10n C-EUC0805 C0805 rcl 1

C6 47p C-EUC0603 C0603 rcl 1

C7 100n C-EUC0603 C0603 rcl 1

C8 100n C-EUC0603 C0603 rcl 1

C9 1n C-EUC0603 C0603 rcl 1

C10 1n C-EUC0603 C0603 rcl 1

C11 47p C-EUC0603 C0603 rcl 1

C12 100n C-EUC0603 C0603 rcl 1

D1 DIODE-DO15-12 DO15-12 diode 1

F1 FSF00.5H SMD FUSEFSFSMD FSFSMD amina 1

J1 JACK-PLUG0 SPC4077 con-jack 1

J2 22-27-2021-02 22-27-2021-02 6410-02 con-molex 1

J3 22-27-2041-04 6410-04 con-molex 1

JP1 AVR-JTAG-10ST AVR-JTAG-10ST AVR-JTAG-10 amina 1

JP2 AVR-JTAG-10ST AVR-JTAG-10ST AVR-JTAG-10 amina 1

LED1 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED2 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED3 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED4 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED5 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED6 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED7 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED8 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED9 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED10 LEDCHIP-LED0805 CHIP-LED0805 led 1

LED11 LEDCHIP-LED0805 CHIP-LED0805 led 1

PB1 DTSM-3 DTSM-3 DTSM-3 amina 1

PB2 DTSM-3 DTSM-3 DTSM-3 amina 1

56

Karel Pavlata APPENDIX B. PARTLISTS

R1 R-EU_R0603 R0603 rcl 1

R2 R-EU_R0603 R0603 rcl 1

R3 R-EU_R0603 R0603 rcl 1

R4 270R R-EU_R0603 R0603 rcl 1

R5 R-EU_R0603 R0603 rcl 1

R6 R-EU_R0603 R0603 rcl 1

R7 R-EU_R0603 R0603 rcl 1

R8 270R R-EU_R0603 R0603 rcl 1

R9 10k R-EU_R0603 R0603 rcl 1

R10 10k R-EU_R0603 R0603 rcl 1

R11 27R R-EU_R0603 R0603 rcl 1

R12 27R R-EU_R0603 R0603 rcl 1

R13 15k R-EU_R0603 R0603 rcl 1

R14 15k R-EU_R0603 R0603 rcl 1

R15 470R R-EU_R0603 R0603 rcl 1

R16 470R R-EU_R0603 R0603 rcl 1

R17 470R R-EU_R0603 R0603 rcl 1

R18 470R R-EU_R0603 R0603 rcl 1

R19 470R R-EU_R0603 R0603 rcl 1

R20 470R R-EU_R0603 R0603 rcl 1

R21 270R R-EU_R0603 R0603 rcl 1

R22 270R R-EU_R0603 R0603 rcl 1

R23 270R R-EU_R0603 R0603 rcl 1

R24 10k R-EU_R0603 R0603 rcl 1

R25 R-EU_R0603 R0603 rcl 1

R26 R-EU_R0603 R0603 rcl 1

S1 TL36WO TL36WO TL3XWO switch 1

S2 219-04 219-04 CTS-219-04 switch-dil 1

S3 219-04 219-04 CTS-219-04 switch-dil 1

SJ1 SJ SJ amina 1

SJ2 SJ SJ amina 1

U$1 PXB PXB PXB amina 1

U$2 LF50CDT LF50CDT DPACK amina 1

U$4 TMP275D TMP275D SO8 amina 1

Z1 ZB_MODULEL ZB_HEADER_LONG amina 1

Z2 ZB_MODULEL ZB_HEADER_LONG amina 1

B.2 WSN Node

Listing B.2: Partlist for the WSN node

Exported from wsn_pir_node_v04.brd at 25.4.2010 23:28:40

EAGLE Version 5.7.0 Copyright (c) 1988-2010 CadSoft

Part Value Package Library Position (mm)

57

Karel Pavlata APPENDIX B. PARTLISTS

C1 1u C0805 rcl (66.55 21.8)

C2 1u C0805 rcl (55.15 19.85)

C3 100n C0603 rcl (66.55 24.7)

C4 100n C0603 rcl (43.6 10.5)

C5 1n C0603 rcl (20 6.65)

C6 100n C0603 rcl (34.4 16.65)

C7 100n C0603 rcl (19.6 22.55)

C8 1n C0603 rcl (21.65 17.5)

C9 100n C0603 rcl (60.95 24.45)

C10 10u SMC_B rcl (58.1 19.95)

C11 1u C0805 rcl (48.5 7.8)

C12 1n C0603 rcl (24.65 20.1)

C13 1n C0603 rcl (27.9 20.1)

D1 DO214AC diode (54.65 24.55)

LED1 CHIP-LED0603 led (36.5 26.25)

LED2 CHIP-LED0603 led (36.5 28.5)

PB1 DTSM-3 DTSM-3 amina (26.5 28.1)

PB2 DTSM-3 DTSM-3 amina (30.5 28.1)

PIR1 MS-360LP MS-360 amina (53.45 17)

Q1 IRF7303 SO8 amina (54.15 28.4)

R1 100k R0603 rcl (61 27.8)

R2 100k R0603 rcl (49.05 26.9)

R3 100k R0603 rcl (49.05 29.9)

R4 470R R0603 rcl (40 26.25)

R5 470R R0603 rcl (40 28.5)

R6 100k R0603 rcl (45.15 4.65)

R7 1k R0603 rcl (52.15 11.7)

R8 R0603 rcl (41.6 14.8)

R9 R0603 rcl (41.6 16.85)

R10 470R R0603 rcl (13 7.4)

R11 10k R0603 rcl (12.65 22.55)

R12 10k R0603 rcl (17.6 22.55)

RS1 MK16B2 MK16*2 amina (16 32.2)

SJ1 SJ_2S amina (68.4 26.65)

SJ2 SJ_2S amina (49.85 11.8)

SJ3 SJ amina (62.9 16.35)

SJ4 SJ_2S amina (26 7.1)

SKT1 10PINA-RM2 ZL265-10SG-A amina (22 5)

U$1 TPS780330220DDC SOT23-5 amina (63.65 24.45)

U$2 TS5A23166DCU US8 amina (46.75 16.25)

U$3 TS5A3159-DCK SC70-6L amina (46 10.55)

U$4 TMP275DGK MSOP8 amina (15.2 22.55)

U$6 JMPSMD 2P-SMD amina (70 22.5)

U$7 TS5A3159-DCK SC70-6L amina (64.65 29.6)

X2 53261-03 53261-03 con-molex (69.05 12.8)

Z1 ZB_HEADER_SHORT amina (40 25)

58

Karel Pavlata APPENDIX C. LIBRARIES AND FRAMEWORKS

C LIBRARIES AND FRAMEWORKS

Listing of libraries, sources and frameworks used for software development.

Linux

Sources for Linux-2.6.22

http://download.armbedded.eu/software/linux-2.6.22-taskit4.

tgz

BitCloud

Full-Featured, Second Generation Embedded ZigBee PRO Software Stack

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=

4495

cJSON

An ultra-lightweight, portable, single-file, simple-as-can-be ANSI-C compliant JSON

parser

http://sourceforge.net/projects/cjson/

JSON-java

A reference implementation of a JSON package in Java

https://github.com/douglascrockford/JSON-java

NanoHTTPD

A free, simple, tiny, nicely embeddable HTTP server in Java

http://elonen.iki.fi/code/nanohttpd/

JamVM

JamVM v1.5.4, an extremely small Java Virtual Machine

http://jamvm.sourceforge.net/

GNU Classpath

GNU Classpath, Essential Libraries for Java, is a GNU project to create free core

class libraries for use with virtual machines and compilers for the java programming

language

http://www.gnu.org/software/classpath/classpath.html

59

http://download.armbedded.eu/software/linux-2.6.22-taskit4.tgz
http://download.armbedded.eu/software/linux-2.6.22-taskit4.tgz
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4495
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4495
http://sourceforge.net/projects/cjson/
https://github.com/douglascrockford/JSON-java
http://elonen.iki.fi/code/nanohttpd/
http://jamvm.sourceforge.net/
http://www.gnu.org/software/classpath/classpath.html

Karel Pavlata APPENDIX D. CONTENT OF CD

D CONTENT OF CD

The CD contains following folders and items:

Linux

Contains the Linux kernel with all the modifications. The line discipline implemen-

tation is in the file

linux-2.6.22-taskit4/drivers/char/n zbt.c

JamVM

Contains the Java Virtual Machine and GNU Classpath cross-compiled for the Por-

tux SBC

rootfs

Contains the root filesystem of the Portux which the linux mounts upon startup

from SD card with all the modules, drivers and applications necessary

BitCloud

Contains the BitCloud stack with all the modifications for custom boards and ex-

ample application. The ZigBit firmware part of the application is in the folder

BitCloud ZIGBIT 1 11 0/Applications/GatewayEx/

Java

Contains JNI library for interfacing with the device and all the Java source files and

classes forming the application

PCB

Contains printed circuit board layouts and schematics for all the hardware

text

Contains electronic version of this thesis

60

	Introduction
	Network Architecture
	The Description of Networks
	Short description of IEEE 802.15.4 (LR-WPAN)
	The physical layer wiki802154,ieee802154
	The MAC layer wiki802154,ieee802154
	Higher Layers

	Short description of IEEE 802.3 (Ethernet)

	HW design and parts description
	WSN node top level design
	Sensing subsystem
	Computing and Communication subsystems
	Power subsystem

	Gateway top level design
	Portux920T
	ZigBitTM

	Detailed design description
	Trilobite
	WSN PIR node
	PXB gateway

	Software implementation
	GNU/Linux
	Overview of TTY
	Low level USART driver modifications
	Line discipline implementation

	BitCloud
	JamVM
	JNI

	Higher layer protocols and frameworks
	ReST learnrest
	XMPP xmpp

	Demo application

	Conclusion
	Bibliography
	List of symbols, physical constants and abbreviations
	List of appendices
	PCBs and schematics
	WSN Gateway
	WSN node
	RF headers (Trilobite)

	partlists
	WSN Gateway
	WSN Node

	Libraries and Frameworks
	Content of CD

