
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
B R N O UNIVERSITY OF T E C H N O L O G Y

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ

T) ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

F A C U L T Y OF E L E C T R I C A L ENGINEERING AND COMMUNICATION
D E P A R T M E N T OF C O N T R O L AND INSTRUMENTATION

INTERCONNECTION OF IEEE 802.15.4 AND
ETHERNET NETWORKS

P R O P O J E N I SÍTÍ IEEE 802.15.4 A E T H E R N E T

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

Be. KAREL PAVLATA

doc. Ing. PETR FIEDLER, Ph.D.

B R N O 2011

AUTOR PRACE
A U T H O R

VEDOUCÍ PRÁCE
S U P E R V I S O R

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav automatizace a měřicí techniky

D i p l o m o v á p r á c e
magisterský navazující studijní obor

Kybernetika, automatizace a měření

Student: Bc. Karel Pavlata ID: 83381
Ročník: 2 Akademický rok: 2010/2011

NÁZEV TÉMATU:

Propojení sítí IEEE 802.15.4 a Ethernet

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s problematikou bezdrátových sítí IEEE 802.15.4 realizujte zařízení propojujícícho
bezdrátovou síť standardu IEEE 802.15.4 se sítí Ethernet se zaměřením na sběr dat ze sensorických
sítí.

DOPORUČENÁ LITERATURA:

Termín zadání: 7.2.2011 Termín odevzdání: 23.5.2011

Vedoucí práce: doc. Ing. Petr Fiedler, Ph.D.

prof. Ing. Pavel Jura, CSc.
Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRACT
This work is devoted to the problem of interconnection of different network types, specif
ically IEEE 802.15.4 and Ethernet networks. Motivation for implementing such an inter
connection arises from increased use of WSNs (Wireless Sensor Networks) penetrating
many of today's segments of human activity. Deployment of WSNs stems out of the
need of controlling and/or monitoring of environment this network is attached to. This
usually implies the existence of some kind of Gateway nodes capable of relaying of mea
sured data from inside of the W S N to the outside world and/or providing configuration
information and control commands to the W S N . A Gateway usually accomplishes this
by interconnecting the W S N with other types of networks acting as a border element.
There are different types of Gateways with different capabilities regarding to the network
operation, all dependent on a particular network in use. On the software part the inter
connection may be done from Network up to Application layer of the ISO/OSI model.
Hardware interfaces Physical and Data-Link layers and of course has to be capable of
running interfacing software (which may be rather complex). So there is always balance
between the system complexity and sufficient capabilities.

KEYWORDS

W S N , Gateway, Portux920T, P X B , ZigBit, Linux,IEEE802.15.4, Ethernet, ReST, X M P P

ABSTRAKT
Táto práca sa venuje probému prepojovania rôznych typov sietí, konkrétne sietí typu
IEEE 802.15.4 a Ethernetu. Motivácia vychádza zo stále sa rozširujúceho využitia
bezdrátových senzorických sietí, potreby zberu dát z nich a ich integrácie. To vyžaduje
aby sieť obsahovala prvky schopné preniesť dáta z bezdrátovej siete do okolitého sveta
a prípadne poskytnut konfiguračné a riadiace informácie do vnútra siete. Z hladiska
protokolov a programového vybavenia sa prepojenie uskutočňuje na rôznej úrovni, od
sieťovej až po aplikačnú vrstvu komunikačného modelu ISO/OSI, s podporou hardvéru
na fyzickej a linkovej vrstve.

KLÍČOVÁ SLOVA

W S N , Gateway, Portux920T, P X B , ZigBit, Linux,IEEE802.15.4, Ethernet, ReST, X M P P

PAVLATA, Karel Interconnection of IEEE 802.15.4 and Ethernet Networks: master's
thesis. Brno: Brno University of Technology, Faculty of Electrical Engineering and
Communication, Department of Control and Instrumentation, 2011. 60 p. Supervised
by doc. Ing. Petr Fiedler, Ph.D.

DECLARATION

I declare that I have elaborated my master's thesis on the theme of "Interconnection

of IEEE 802.15.4 and Ethernet Networks" independently, under the supervision of the

master's thesis supervisor and with the use of technical literature and other sources of

information which are all quoted in the thesis and detailed in the list of literature at the

end of the thesis.

As the author of the master's thesis I furthermore declare that, concerning the creation

of this master's thesis, master's thesis, I have not infringed any copyright. In particular,

I have not unlawfully encroached on anyone's personal copyright and I am fully aware

of the consequences in the case of breaking Regulation §11 and the following of the

Copyright Act No 121/2000 Vol. , including the possible consequences of criminal law

resulted from Regulation §152 of Criminal Act No 140/1961 Vol.

Brno

(author's signature)

Experientia dočet
Experience is the best teacher

CONTENTS

Introduction 10

1 Network Architecture 11

2 The Description of Networks 13

2.1 Short description of IEEE 802.15.4 (LR-WPAN) 13
2.1.1 The physical layer [1,2] 13
2.1.2 The M A C layer [1, 2] 14
2.1.3 Higher Layers 16

2.2 Short description of IEEE 802.3 (Ethernet) 18

3 H W design and parts description 19
3.1 W S N node top level design 19

3.1.1 Sensing subsystem 19
3.1.2 Computing and Communication subsystems 20
3.1.3 Power subsystem 20

3.2 Gateway top level design 20
3.3 Portux920T 21
3.4 ZigBit™ 24

4 Detailed design description 27
4.1 Trilobite 27
4.2 W S N PIR node 28
4.3 P X B gateway 29

5 Software implementation 31
5.1 GNU/Linux 32

5.1.1 Overview of T T Y 32
5.1.2 Low level USART driver modifications 32
5.1.3 Line discipline implementation 33

5.2 BitCloud 35
5.3 JamVM 35

5.3.1 JNI 35
5.4 Higher layer protocols and frameworks 37

5.4.1 ReST [17] 37
5.4.2 X M P P [19] 38

5.5 Demo application 39

6 Conclusion 41

Bibliography 42

List of symbols, physical constants and abbreviations 44

List of appendices 47

A PCBs and schematics 48

A . l W S N Gateway 48
A.2 W S N node 51
A. 3 R F headers (Trilobite) 53

B partlists 56
B. l W S N Gateway 56
B.2 W S N Node 57

C Libraries and Frameworks 59

D Content of C D 60

LIST OF FIGURES
1.1 Proposed WSN integration architecture 11
2.1 IEEE 802.15.4 topologies [2] 14
2.2 Schematic view of the beacon frame and the P H Y packet [2] 15
2.3 Schematic view of the data frame and the P H Y packet [2] 15
2.4 Schematic view of the acknowledgment frame and the P H Y packet [2] 15
2.5 Schematic view of the M A C command frame and the P H Y packet [2] 16
2.6 Schematic view of the ZigBee stack 17
2.7 Ethernet frame [11] 18
3.1 Top level diagram of W S N node, adapted from [16] 19
3.2 Top level diagram of Gateway 21
3.3 Portux920T [12] 22
3.4 Portux920T diagram [12] 23
3.5 ZigBit block diagrams [15] 25
4.1 ZigBit 2.4 GHz Wireless Amplified Module 27
4.2 ZigBit 2.4 GHz Dual Chip Antenna 27
4.3 W S N PIR node 28
4.4 W S N G W 30
5.1 Software architecture of the gateway 31
5.2 T T Y core overview [22] 33
5.3 T T Y core layers, adapted from [23] 34
A . l W S N Gateway parts placement 48
A.2 W S N Gateway top side 49
A.3 W S N Gateway bottom side (mirrored) 49
A.4 W S N Gateway schema 50
A.5 W S N PIR node parts placement 51
A.6 W S N PIR node top side 51
A.7 W S N PIR node bottom side (mirrored) 51
A.8 W S N PIR node schema 52
A.9 Trilobite A2 schematic 53
A.10 Trilobite A2 components placement 53
A. 11 Trilobite A2 top P C B layer 54
A. 12 Trilobite A2 bottom P C B layer 54
A.13 Trilobite A M P schematic 54
A. 14 Trilobite A M P components placement 55
A. 15 Trilobite A M P top P C B layer 55
A. 16 Trilobite A M P bottom P C B layer 55

LIST OF TABLES
3.1 ZigBit modules overview [15] 24
3.2 ZigBit specifications [15] 26
4.1 Parameters of used sensors 28
4.2 P X B GPIO assignment 30

LISTINGS

5.1 termios structure 33
5.2 N_ZBT ttyJdisc structure 34
5.3 JNI interface 36
5.4 JNI library example 36
5.5 Data parsing function 39
5.6 Data in the JSON format 39
5.7 USART transmission handling function 40
B . l Partlist for the Gateway 56
B.2 Partlist for the W S N node 57

Karel Pavlata

INTRODUCTION
Wireless Sensor Networks (WSN) use networked, resource constrained embedded de
vices to interact with its environment. Although there is possibility of self-contained
deployment, usually there is a need for input (commands) and/or output (data) in
teractions with W S N depending on particular application scenario. Examples are
Data Collection and Actuator Control services and also Service and Network Dis
covery. These interactions can be divided into three large classes: random access
interactions (request-response model), continuous monitoring (periodic stream of
data) and event-based interactions (sporadic events) which in turn can be further
divided to human-machine and machine-to-machine interactions (client can be either
human or computer). Interactions should be managed in a consistent way regard
less of the type of a client. Although the lack of open and simple standards in this
area makes it difficult, there is a proliferation of the use of technologies based on
ReST 1 architectural design, which is a style of software architecture for distributed
hypermedia systems (such as W W W) [20].

A n important aspect of the W S N is incorporation of techniques contributing to
a decrease of power consumption and thus an increase in the life span of the net
work (devices are usually battery powered). Using techniques like low duty cycle
operation, impose significant delays to the communication that must be dealt with,
in order to ensure smooth operation of the network from client's point of view.
Clients have to be abstracted from peculiarities of particular W S N architecture in
use. This, and the facts that many W S N platforms use devices too constrained in
resources, implies that gateways are a vital part of W S N deployments. IP-based
and HTTP-enabled devices are being developed and emerging, in particular 6Low-
P A N 2 is gaining increasing popularity. However, it is not always feasible to use this
technology due to restrictions in resources. Nevertheless, these kinds of devices can
be supported transparently as there is also the need for network interfacing at the
lower layers.

In first part of this thesis the general concept of a W S N network integration is
described, followed by the brief description of networks.

In the next part, the general design of hardware and it's parts is described
followed by a more detailed description.

The proposed software stack and implementation is described in the last chapter
together with the implemented example application.

1ReST - Representational State Transfer
26LowPAN - IPv6 over Low power Wireless Personal Area Networks

10

Karel Pavlata CHAPTER 1. NETWORK ARCHITECTURE

1 NETWORK A R C H I T E C T U R E
For successful integration of W S N into the Internet and the Web we need to take
into account characteristics of different interactions with W S N and model them,
preferably using some standard protocol. This allows us to hide peculiarities of par
ticular (perhaps proprietary) W S N protocol and export generic interface to users,
thus shield them to the maximum possible extent from the underlying W S N tech
nology which might change or could be even heterogeneous consisting of different
W S N network segments.

Fig. 1.1: Proposed W S N integration architecture

The underlying W S N deployment may consist of several distinct technologies
be it at the level of protocol or even different physical layers as demonstrated
in Fig. 1.1. This forms separate W S N layer connected to the gateways, which
possess internal representation of devices forming the particular network. It ex
ports interface to the users consistently regardless of a W S N in use or type of
a client. In figure there are depicted two types of clients representing humans
and machines. One, being true human client, accessing the data directly using
for instance web browser, the other one, being database agent, collecting selected
data. The important thing is that they share common interface. The gateway
maps resources of the W S N in a ReSTful way, independently of the underlying

11

Karel Pavlata CHAPTER 1. NETWORK ARCHITECTURE

WSN, using URIs 1 and stateless H T T P requests. A l l four C R U D (Create/Read-
/Update/Delete) operations are carried out using methods of the H T T P protocol:
G E T , POST, P U T and D E L E T E . As the interaction is stateless, where state is
actually part of the resource's URI itself, there is no need for per-client state in
formation, and the server is much less complex. The example of resource identifi
cation is: h t t p : / / g a t e w a y / n e t w o r k / n o d e 2 3 / r e s o u r c e s / t e m p e r a t u r e .
The gateway also publishes list of connected nodes forming the network and it's
available resources, so user can navigate to desired information. Interaction with
different types of clients can be handled transparently using the content negotiation
mechanism of H T T P where human clients might request a different type of answer
(HTML) than machines (JSON 2 , X M L) based on M I M E types. Caching of H T T P
requests may also be employed. This preserves the bandwidth and may eliminate
duplicated request to the WSN, thus conserving energy of battery powered nodes.
Each particular resource (e.g. temperature sensor value) is decoupled with a time
frame of validity and represented within the gateway dependent on the underlying
WSN. The node might be sleeping for extended period of time and not be acces
sible. With this representation, gateway can answer user's requests on behalf of
that node with the latest valid value supplying also it's expiration. H T T P caching
mechanism can use this value to cache responses in the network so other users get
their responses quickly. This is particularly suited for the request-response class of
interactions, where users occasionally request some data.

For continuous monitoring (not to mention sporadic events) constant polling for
new data is not suitable as it poses high load on the network. To alleviate this
problem, and because of the inherent asynchrony of W S N from the client's request,
the push-based approach using publish-subscribe model can be used. In contrast to
the pull-based approach mentioned above, push technology utilizes server initiated
communication. This way users register for particular events they are interested
in and they are notified whenever such an event occurs. X M P P (Extensible Mes
saging and Presence Protocol) is well established technology employing decentral
ized client-server architecture and long-lived T C P connections to deliver messages.
Especially it's Extension Protocols XEP-0060: Publish-Subscribe and XEP-0163:
Personal Eventing Protocol are useful for building highly distributed event-driven
applications. Interactions of individual entities are shown in Fig. 1.1. In terms of
X M P P , the whole W S N appear as user with one unique J ID 3 , whereas individual
gateways represent resources. In this way user gets notified regardless of which
gateway receives actual data form the WSNs.

1 URI - Uniform Resource Identifier
2 JSON - Java Script Object Notation
3 JID - Jabber ID

12

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

2 T H E DESCRIPTION OF NETWORKS

2.1 Short description of IEEE 802.15.4 (LR-WPAN)

IEEE standard 802.15.4 specifies the physical layer and part of the data-link layer
(MAC - Media Access Control) of the ISO/OSI model for low-cost, low-speed,
minimal-power Low-rate Wireless Personal Area Networks (LR-WPANs). Possible
network topologies are shown in Fig. 2.1 which include star topology and peer-to-
peer topology. Additional higher layers protocols can add support for routing and
multi-hop communications in the form of mesh or (cluster-)tree topologies. Devices
either use 64 bit long IEEE address or short 16 bit address assigned during associ
ation process. Network can operate either in Beaconing mode with slot reservation
or Non-Beaconing (unslotted) mode. It operates in one of the following frequency
bands using various modulation and spreading techniques:

• 868.0-868.6 MHz: Europe, allows one communication channel (2003, 2006)
• 902-928 MHz: North America, up to ten channels (2003), extended to thirty

(2006)
• 2400-2483.5 MHz: worldwide use, up to sixteen channels (2003, 2006)
• There are several amendments specifying new frequency bands and modulation

techniques such as U W B . See [3, 4, 5]

The standard defines four frame structures (beacon frame Fig. 2.2, data frame
Fig. 2.3, acknowledgement frame Fig. 2.4 and M A C command frame Fig. 2.5) and
specifies following items in detail:

• Device type (PAN Coordinator /FFDVRFD 2)
• Frame structure
• Superframe structure
• Data transfer model (to/from coordinator, peer-to-peer)
• Robustness
• Energy saving considerations
• Security

2.1.1 The physical layer [1, 2]

The physical layer defines set of constants such as maximum P S D U 3 packet size
(127) and provides data transmission service and interface to the physical channel.
It defines two SAPs 4 (PD-SAP, P L M E - S A P) and provides following services to the

1 F F D - Full-Function Device
2 R F D - Reduced-Function Device
3 P S D U - Phy Service Data Unit
4 SAP - Service Access Point

13

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

Sta r Topo logy P e e r - t o - P e e r Topo logy

O

F u l l Funct ion Dev i ce
O R e d u c e d Funct ion Dev i ce
* C o m m u n i c a t i o n F low

Fig. 2.1: IEEE 802.15.4 topologies [2]

above layer using those SAPs:
• Management of the physical R F transceiver
• Energy Detection (ED)
• Link Quality Indication (LQI)
• Clear Channel Assesment (CCA)
• Channel Frequency Selection
• Data transmission and reception

The medium access control (MAC) allows the transmission of M A C frames through
the use of the physical channel. Besides the data service, it offers a management
interface and itself manages access to the physical channel and network beaconing. It
also controls frame validation, guarantees time slots and handles node associations.
Overview of M A C layer responsibilities:

• Beacon generation
• Beacon synchronization
• P A N association and disassociation support
• Utilization of the C S M A / C A channel access mechanism
• Control and maintenance of GTS 5

• Provision of reliable connection by the means of retransmission, A C K 6 and
C R C 7

5 GTS - Guaranteed Time Slot
6 A C K - Acknowledgement
7 CRC - Cyclic Redundancy Check

2.1.2 The M A C layer [1, 2]

14

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

Octets 2 1 4 or 10 0,5,6,10o
14 2 k m n 2

MAC
sublayer

Frame
Control

Sequence
Number

Addressing
Fields

Auxiliary
Securrty
Header

Superframe
Specification

GTS
Fields

Pending
Address
Fields

Beacon
Payload

F C S

MHR MAC Payload MFR

Octets:

PHY
layer

PHY dependent 1 7 + (4to 24) +k + m + n

Preamble
Sequence

Start of Frame
Delimiter

Frame Length /
Reserved PSDU

SHR P H R PHY Payload

P H Y dependent + 8 + (4 to 24) + k + m + n

Fig. 2.2: Schematic view of the beacon frame and the P H Y packet [2]

Octets: 2 1 4 to 20 " . s . e j o o r „ 2

MAC
sublayer

Octets:

PHY
layer

PHY dependent ^

Frame Sequence Addressing Auxiliary
Control Number Fields Security

Header
Data Payload FCS

PHY dependent ^
MHR

5 + (4 to 34) +
MAC Payload

n
M F R

Preamble Start of Frame
Sequence Delimiter

-rame Length
/ Reserved P S D U

S H R P H R P H Y Payload
P H Y dependent + 6 + (4 to 34) + n

Fig. 2.3: Schematic view of the data frame and the P H Y packet [2]

Octets : 2 1 2

MAC
sublayer

Frame
Control

Sequence
Number

F C S

M H R M F R

Octe ts : PHY dependent 1 5

PHY
layer

Preamble
Sequence

Start of
Frame

Delimiter

Frame
Length /

Reserved
P S D U

S H R P H R P H Y P a y l o a d

P H Y dependent + 6

Fig. 2.4: Schematic view of the acknowledgment frame and the P H Y packet [2]

15

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

Octets: 4 to 20 0, 5,6,10, or
14

MAC
sublayer

Frame
Control

Sequence
Number

Addressing
Fields

Auxiliary
Security
Header

Command
Type

Command
Payload F C S

M H R M A C Payload M F R

P H Y dependent + 7 + (4 to 34) + n

Octets PHY dependent 1 6 + (4 to 34) + n

PHY
layer

Preamble
Sequence

Start of
Frame

Delimiter

Frame
Length /

Reserved
PSDU

S H R P H R P H Y Payload

Fig. 2.5: Schematic view of the M A C command frame and the P H Y packet [2]

More information can be found in [1, 2, 3, 4, 5]

2.1.3 Higher Layers

The standard does not define higher layers (the network layer and above) but instead
rely on other standards and specifications which build upon it, such as ZigBee and
6 L 0 W P A N . Short description of the aforementioned follows.

ZigBee [6]

ZigBee is proprietary standard for low-cost, low-power wireless mesh networking
and is maintained by the ZigBee Alliance. It builds upon IEEE802.14.4 L R - W P A N
standard and defines the network layer, security provider and application profiles
for following uses:

• Home Automation
• Home Entertainment and Control
• Automated Meter Reading
• Asset Tracking
• Building Automation
• Industrial Control
• Personal, Home and Hospital Care
• Toys
• R F 4 C E (Radio Frequency for Consumer Electronics)

Schematic view of the ZigBee stack is shown in Fig. 2.6. ZigBee defines three types
of devices:

• ZigBee coordinator (ZC)
• ZigBee Router (ZR)
• ZigBee End Device (ZED)

1G

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

Capabilities of these devices more-less correspond to those defined by IEEE802.15.4.
ZigBee uses A O D V (Ad-hoc On-demand Distance Vector) routing protocol to au
tomatically construct path between nodes. Current ZigBee profiles should support
non-beaconed as well as beaconed modes of operation. More on this topic can be
found in [6, 7, 8].

Application

Application
profiles

Application
framework

MAC Layer

MAC Layer

PHY Layer

Network & Security
Layers

I 802.15.4 I

c ZigBee
Alliance J

Fig. 2.6: Schematic view of the ZigBee stack

6 L 0 W P A N [9] [10]

6 L 0 W P A N acronym means IPv6 over Low power Wireless Personal Area Networks
and it is the name of a working group in the IETF (Internet Engineering Task Force).
The group has defined the adaptation layer (consisting of encapsulation and header
compression mechanisms) that allows IPv6 packets to be sent over IEEE 802.15.4
based networks.

Through deep understanding of the interaction between IEEE 802.15.4, IPv6 and
UDP, 6 L 0 W P A N removes fields which are redundant among those headers, thereby
reducing the size of the packets being transmitted over the air. 6 L 0 W P A N removes a
number of fields in the IPv6 and U D P headers because they take well-known values,
or because they can be inferred from fields in the IEEE802.15.4 header.

17

Karel Pavlata CHAPTER 2. THE DESCRIPTION OF NETWORKS

2.2 Short description of IEEE 802.3 (Ethernet)

Ethernet is a large family of frame-based computer networking technologies desig
nated for LANs. It defines varieties of Physical layers and M A C and L L C sub-layers
of the Data Link layer of the ISO/OSI model. It comes in various speed and physi
cal media types ranging from 10 Mbit/s with distance limit of 100 meters over the
twisted pair up to 100 Gbit/s with distance limit of 100 km over the optical fiber.
New specifications with higher speeds are under development. The most common of
the Ethernet types (this is particularly true for embedded systems) is 100 Mbit/s,
so called Fast Ethernet, particularly it's 100BASE-TX variant which runs over two
twisted wire-pairs inside a category 5 or above U T P cable. Each network segment
can have a maximum distance of 100 meters. In it's typical configuration it provides
full-duplex operation with throughput of lOOMbit/s in both directions. It is reverse
compatible with newer Gigabit Ethernet through procedure called autonegotiation,
where both transmitters agree on common capabilities. The Fig. 2.7 shows the
Ethernet frame structure. Particular fields have following lengths:

• Preamble: 7 octets of 10101010
• SFD: 1 octet of 10101011
• Destination: 6 octets
• Source: 6 octets
• EtherType: 2 octets
• Payload: 46-1500 octets
• FCS (32-bit CRC): 4 octets
Ethernet is the de facto standard of the Internet connection, with almost all of

the Internet end users connected using this technology. The dominant protocol suite
used with Ethernet (and Internet in general) is T C P / I P , residing on the Network
and Transport layers of the ISO/OSI model and containing such protocols as IP,
T C P and UDP. In mature systems reception and transmission is commonly handled
by the Operating system so the user utilize the application interface the particular
system exports to access the network. This is commonly done through sockets. More
about Ethernet can be found in [11].

Preamble S F D
Destination

M A C
Address

Source
M A C

Address
EtherType Payload F C S

Fig. 2.7: Ethernet frame [11]

18

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

3 HW DESIGN AND PARTS DESCRIPTION
Within scope of this thesis common platform for W S N was developed together with
hardware of W S N nodes and the Gateway. Top level designs are described next, fol
lowed by part description. Detailed implementation is described in the next chapter.

3.1 WSN node top level design

W S N node top level designed can be divided into following parts:
• Sensing subsytem
• Computing subsystem
• Communication subsystem
• Power subsystem
The diagram is shown in Fig. 3.1

Sensing
subsystem

Analog
sensors

(CdS/Bat.)

Digital
sensors

(TMP275)

Computing
subsytem

MČGAfniegaÍ281 "
ZigBit

ADC AVR core FLASH

SRAM EEPROM Timers

I/O

Communication
subsystem

1
Radio

transceiver

AT86RF230/
AT86RF212

Energy storage
Li-Ion accumulator

Voltage regulator
TPS78330 Energy harvesting unit

Power subsystem

Fig. 3.1: Top level diagram of W S N node, adapted from [16]

3.1.1 Sensing subsystem

The sensing subsystem of this particular node consists of analog sensors such as
CdS 1 light intensity sensor and battery voltage level connected to the A D C and
digital sensors such as TMP275 temperature sensor connected using T W I interface
and PIR connected using GPIO. CdS and PIR sensors are part of MS-360LP motion

iCdS - Cadmium Sulfide cell

19

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

detection sensor. Sensors were selected with capabilities of low supply voltage and
low power operation in mind.

3.1.2 Computing and Communication subsystems

The computing subsystem together with the communication subsystem are real
ized using ZigBit modules described in sections 3.4. Use of this modules promotes
modularity of the design and allows for quick change of the frequency band.

3.1.3 Power subsystem

The power subsystem comprises Lithium-Ion chemistry accumulator and TPS78330
L D O linear voltage regulator, which is characterized by very low quiescent current.
There is possibility of attaching energy harvesting unit which scavenges available
energy from it's environment.

3.2 Gateway top level design

Top level diagram is shown in Fig. 3.2. The system basically consists of two parts:
• Portux920T SBC 2

• P X B 3 extension board equipped with 2 ZigBit™ modules
Use of SBC capable of running Linux operating system with "standardized"

hardware extension interface is favorable from software as well as hardware point of
view. It allows to separate both sides and use complex board repeatedly if there is
any need for modification. Usage of Linux adds the ease of software developing and
debugging as well as flexibility, together with mature T C P / I P stack implementation.

Parts are interconnected using USARTs 4 available on P X B interface. Usage of
synchronous interface adds robustness and reliability to the interconnection and al
lows for higher communication speed without worrying about baud rate mismatch
in case of ZigBit module's oscillator instability. P X B makes use of DIN41612 con
nectors, so that extension board can be connected to a regular computer using this
interface and an auxiliary board for software development purposes. Individual
components are described in later sections.

2 SBC - Single Board Computer
3 P X B - Portux extension Board
4 USART - Universal Synchronous-Asynchronous Receiver/Transmitter

20

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

Ethernet

~0
O

c
X ID M O —\ in CD n

JTAG

O fl) rr (D
S
<
X
CD

JTAG

WSN module IEEE 802.15.4

AVR
MCU

AT86
RF230 I

WSN module other

ANY
MCU

JTAG

ANY
RADIO I

Fig. 3.2: Top level diagram of Gateway

3.3 Portux920T
Portux920T is Single Board Computer equipped with AT91RM9200 ARM920T core
C P U from german vendor Taskit. Diagram is shown in Fig. 3.4 and Fig. 3.3 shows
actual appearance of Portux920T Eurocard version. Basic features of Portux920T:

• SBC with AT91RM9200 C P U
• half size euroboard
• Linux open source operating system
• flexible Portux Extension Bus provides modularity
Technical details[13]:

C P U
• A tme l® AT91RM9200 with ARM920T core
• A R M 9 T D M I instruction set
• 200 MIPS at 180 MHz
• 16/16 kB data/instruction cache
• Memory Management Unit (MMU)
• External Bus Interface (EBI)

Memory
• 64 M B S D R A M
• 16 M B Flash
• S D / M M C card slot onboard
• Optional CompactFlash card via Portux Extension Bus

Peripherals (onboard)
• 2 serial interfaces, USART 0 and USART 1

21

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

• Debug unit as an alternative to the first serial interface
• M A C 10/100 Mbit/s ethernet
• J T A G
• Portux Extension Bus via 96-pin connector
• Via Portux Extension Bus additionally required modules can be connected

Peripherals (Portux Extension Bus)
• Intergrated components of the microcontroller are accessible via Portux Ex

tension Bus
• 2 serial interfaces, USART 2 and 3
• TWI (Two Wire Interface)
• SPI (Serial Peripheral Interface)
• PIF bus, universal easy programmable 8-bit bus with 64 I/O addresses
• USB host port
• USB client port
• 32 single programmable I/O ports multiplexed with integrated components

(chipselect for EBI , USART 2, USART 3, SPI, TWI)
Operating system

• Embedded Linux, kernel version 2.6
• "U-Boot" bootloader and monitor

22

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

• Journaling Flash file system (JFFS)
• Compiled toolchain, binaries and source code available

Power management
• Supply voltage: 6.5 - 24 V
• Operating voltage: 3.3 V
• Power consumption: 70 mA at 10 V (normal operation)

Eurocard version
• Equipped with 96-pin connector angled (PXB)
• Equipped with standard connector plugs for USART 0 and USART 1 (DSUB-

9) and ethernet (RJ-45)
• Dimensions: 100 mm x 71 mm x 16 mm (half Eurocard)
• Format corresponds to a full Eurocard with an extension board of the same

size, enabling installation in standard housings

J TAG

USB Client,
USB Host,
PIF-BUS, SPI,
USART 2,
USART 3

/••tře
AT91RM92TJ0

MMC/SD-
Card Slot

Portux920T base board

Fig. 3.4: Portux920T diagram [12]

2;-!

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

3.4 ZigBit™

ZigBit™ is the name for range of ultra-compact 802.15.4/ZigBee O E M modules
from Atmel intended for wireless networking applications. It has integrated AT-
megal281, the 8 bit A V R M C U , and R F transceiver and features ease of integration,
ultra-low power consumption and superior radio performance. There exist various
models, summary of which is listed in Tab. 3.1.

Model Image

ZigBit 2.4 GHz Wireless Modules

Balanced Output

Dual Chip Antenna
ZigBit 2.4 GHz Wireless Amplified Modules

Amp UFL-connector

Amp Un-balanced Output
ZigBit 700/800/900 M H z Wireless Module

Balanced Output

Tab. 3.1: ZigBit modules overview [15]

24

Karel Pavlata CHAPTER 3. HW DESIGN AND PARTS DESCRIPTION

Figure 3.5 shows block diagram connection for particular ZigBit modules.
Modules operating on 2.4 GHz make use of the AT86RF230 transceiver and the
ones operating on 700/800/900 MHz makes use of the AT86RF212 transceiver.

(a) 2.4GHz Dual Chip Antenna

Vcc(1.8-3.a/)

IRQ"
UART-«

USART/SPM
I2C-«

JTÄG-«
A N A L O G "

AT86RF230
ATmegal281 RF

Transceiver

GPIO SPI Bus

(b) 2.4GHz Balanced Output

(c) 2.4 GHz Wireless Amplified Module (d) 700/800/900 MHz Balanced Output

Fig. 3.5: ZigBit block diagrams [15]

Parameters of ZigBit Module Hardware Platforms are shown in Table 3.2.
Supported External Interfaces [15]:
• USART/SPI , I2C, 1-wire
• U A R T with CTS/RTS control
• J T A G
• 9 spare GPIOs (up to 25 GPIOs total)
• 2 spare IRQ lines
• 4 A D C lines

2.',

Parameter ZigBit900 ZigBit 2.4 ZigBit 2.4 A M P

Frequency band
E U ISM 863 - 870 MHz
A M ISM 902 - 928 MHz

2.400 - 2.483 GHz 2.400 - 2.483 GHz

Hardware data encryption AES 128bit ? ?

Data rate up to 1 M B i t / s 250 kBit /s 250 kBit /s
Max output power up to +11 dBm +3 dBm +20 dBm
Receiver Sensitivity (PER 1%) up to - 110 dBm - 101 dBm - 104 dBm

Supply Voltage (VCc) 1.8 V to 3.6 V 1.8 V to 3.6 V 3.0 V to 3.6 V
Current Consumption R X / T X 11 mA / 26 mA 19 mA / 18 mA 23 mA / 50 mA
Current Consumption Power Save <6/x A <6/i A <6/i A
On-Chip Flash Memory Size 128 kBytes 128 kBytes 128 kBytes
On-Chip R A M Size 8 kBytes 8 kBytes 8 kBytes
On-Chip E E P R O M Size 4 kBytes 4 kBytes 4 kBytes
Size 18.8 x 13.5 x 2.8 mm ? ?

Weight 1.3 g ? ?

Operating Temperature -40 — +85 °C -40 — +85 °C -40 — +85 °C

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

4 DETAILED DESIGN DESCRIPTION

4.1 Trilobite
To emphasize modular design and create common R F platform for gateway and sen
sor nodes, the Trilobite modules have been created. It's basically P C B 1 containing
ZigBit™ modules with necessary circuitry and B 2 B 2 connector. It allows to freely
interchange between different ZigBit™ modules in one design according to appli
cation's needs and separates power and sensor part from R F part. In this way it's
easy to change frequency bands or event entire wireless technology with rest of the
application left intact.

2.4GHz amplified module and 2.4GHz module with dual chip antenna are shown
in Fig. 4.1 and Fig. 4.2 respectively.

Fig. 4.1: ZigBit 2.4 GHz Wireless Amplified Module

Fig. 4.2: ZigBit 2.4 GHz Dual Chip Antenna

Schematic diagrams and layouts are included in Appendix A.3.

i p CB - Printed Circuit Board
2 B2B - Board-to-Board

27

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

4.2 WSN PIR node
PIR node is one of many sensor nodes realized to form W S N within premises of
Brno University of Technology. This particular node is equipped with the Passive
Infrared sensor to enable motion detection, the CdS light intensity sensor and the
digital temperature sensor. The picture of node is shown in Fig. 4.3 and schematic
diagrams and layouts are included in Appendix A.2.

Fig. 4.3: W S N PIR node

The node is powered by Lithium-Ion chemistry accumulator with fully-charged
voltage above the maximum allowable supply voltage of ZigBit module. To cope
with this problem TPS78330 L D O linear voltage regulator with quiescent current
of 500 nA was used. It regulates output voltage to the value of 3 V (3.3 V for
TPS780330220) during the time when input voltage is above it's regulation point
and then scales with decreasing voltage. To prevent excessive discharge, to which
Li-Ion chemistry is particularly sensitive, shut-down circuitry is employed.

Sensor parameters are summarized in Tab. 4.1. TMP275 is a digital temperature

Sensor Phenomenon Producer VC C[V] Istandby I/4 A] Interface

TMP275 temperature TI 2.7- 5.5 0.1 PC

MS-360LP
PIR motion

light intensity
IR-TEC 3 - 4 10

binary
analog

Tab. 4.1: Parameters of used sensors

sensor with accuracy of ±0.5 °C over the operating range from -20 °C to +100 °C and
resolution of 0.0625 °C. It's wide supply range and low power consumption makes
it ideal for battery powered applications. The sensor is connected to the ZigBit
module using PC interface and it's alarm output is tied to the IRQ pin capable

28

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

of waking the M C U from deep sleep mode in case the programmed temperature
threshold is exceeded. Since power consumption of the sensor in standby mode is
negligible comparing to ZigBit module itself, it is powered directly from main power
supply. The measurement itself is done in one-shot mode after which the sensor
automatically switch itself to standby mode to save energy. The next measurement
cycle is started on demand from the M C U .

IR-TEC's MS-360LP is a low power Passive Infrared motion sensor module with
integrated CdS light intensity sensor. The motion detection output is in a form
of T T L open collector with externally applied pull-up resistor. It is tied to the
pin change IRQ of the ZigBit module to allow wake up from deep sleep when main
oscillator of M C U is not running. Light intensity output forms a voltage divider, the
output of which is fed to the A D C pin. The divider is switched using TS5A23166 TPs
dual SPST analog switch to stop the current flowing through the divider at the time
when there is no ongoing measurement and thus reduce the power consumption.
The battery voltage measurement is done in similar fashion. Supply voltage for
PIR sensor is switchable using TPs TS5A3159 SPDT analog switch. This way, the
power consumption can be reduced even further in times when motion detection is
not required.

Connector with USART and J T A G interface is available on the side of the P C B
for debugging purposes and eventual firmware upgrades.

4.3 PXB gateway

Presented gateway extension board was developed as an universal platform capable
of carrying two W S N radio modules which are attached through board-to-board
connectors. It's intended to run 900 MHz and 2.4 GHz Trilobite modules in parallel
(preferably using modules with external antennas) to interconnect and collect data
from both types of networks, but any kind of W S N modules can be attached provided
the hardware interfacing is done right. The interconnection of modules is done using
synchronous mode of USART interface to increase reliability and communication
speed. There are two USART interfaces available at the P X B port, both of which
are used. If, for any reason in the future the modules are being replaced with types
using other interface, e.g. SPI, Linux either support GPIO based SPI or modification
of extension board can be done without necessity to rebuild complex hardware of
the SBC.

Gateway extension board is equipped with the same temperature sensor as the
aforementioned W S N node to give it some basic sensing capability. It further con
tain USB host interface allowing to attach various peripherals, such as USB Wi-F i

29

Karel Pavlata CHAPTER 4. DETAILED DESIGN DESCRIPTION

cards, bluetooth dongles, etc. Each module has four indication LEDs attached to it
and DIP switch for eventual manual configuration. Also J T A G interface and reset
circuitry for facilitating of firmware development is present. The power part takes
care of powering USB interface. The gateway also features three indication LEDs
connected to the GPIO pins of Portux.

C P U I /O line P X B Function C P U I/O line P X B Function

123 PB28 A13 FI 17 PCO C14 LED1
125 H D M A A14 USB HD 18 P C I C15 LED2
126 HDPA A15 USB HD 122 PB27 A21 LED3
71 PA25 A17 T W D 86 PB6 C28 RST2(2)
72 PA26 C17 T W C K 87 PB7 C30 RST1(1)
68 PA22 C24 RXD2(2) 47 PA5 A30 TXD3(1)
69 PA23 A25 TXD2(2) 48 PA6 C29 RXD3(1)
70 PA24 C23 SCK2(2) 82 PB2 C25 SCK3(1)

Tab. 4.2: P X B GPIO assignment

The picture of the P X B gateway is shown in Fig. 4.4 and schematic diagrams
and layouts are included in Appendix A . l .

Fig. 4.4: W S N G W

30

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

5 SOFTWARE IMPLEMENTATION
Software architecture of the gateway is using layered structure depicted in Fig. 5.1.
With the bottom layer representing physical devices and their eventual firmware,
GNU/Linux operating system is placed above and enables interaction with these
devices on standard and higher level manner. The use of complex operating system
such as Linux is justified by the flexibility and the portability of the final solution at
relatively small cost in terms of hardware performance. Linux has a large community
of users and developers, is entirely open source and scales down well for embedded
systems. There are many applications already available for Linux which can be
used to ease the development. Java virtual machine resides on top of Linux OS. The
same reasoning applies as for use of Linux OS itself. Java is wide spread program
ming language, particularly suitable for networked and multi-threaded applications,
flexible and portable. With plenty of available frameworks and libraries, it allows
for rapid development with no need for cross-compilation for particular hardware
once J V M 1 is running. Virtual machine used here, JamVM is highly optimized and
suitable for embedded systems.

Gateway
management

Data
aggregation

services

PULL service

ReST/HTTP

WSN
stack/abstraction

ZigBee
6LowPan

etc.

PUSH/Event ing
serv ice

XMPP client

Java Vir tual Machine - JamVM

GNU/L inux and dev ice drivers

802.15.4 RF

ANY WSN RF

Fig. 5.1: Software architecture of the gateway

The main part of this thesis deals with lower parts of the software stack, en-
X J V M - Java Virtual Machine

31

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

abling easy and smooth integration of wireless modules within Linux and to allow
applications (written in Java in particular) to be platform independent. Description
of individual layers follows next, ending with overview of frameworks suitable for
implementing the network architecture described in Chap. 1.

5.1 GNU/Linux

The Linux kernel version used is l i n u x - 2 . 6.22 with modifications from taskit
GmbH to incorporate specifics of the Portux920T embedded SBC. It has been cross
compiled for A R M architecture using G C C toolchain. Portux uses U-Boot boot-
loader to load the kernel either form on board flash memory or through the network
using T F T P 2 protocol. The bootloader is configured to provide Linux kernel with
arguments during boot-time, such as where to find and mount root filesystem, par
titioning of on-board flash, size of R A M and which serial port to use as a console
device. SD card is used as storage space with ext-2 type filesystem, which provide
enough space to store all the necessary applications and libraries and also allows for
easy upgrades. Another custom modifications done to the Linux kernel to facilitate
further development are explained in subsequent sections.

5.1.1 Overview of T T Y

Fig. 5.2 shows layered structure of T T Y management. Serial interfaces are part of
the T T Y from historical reason when remote terminals were used, attached using
RS-232 interface.

To allow for greater flexibility and reuse, tty handling is made up of several
building blocks. Low level drivers deal with the underlying serial hardware, hiding
it's peculiarities on different platforms together with T T Y driver. Line disciplines
apply policies to the data according to the specific application. T T Y core manages
all the interconnections and provides core APIs. Flow of data is depicted in Fig. 5.3.

5.1.2 Low level U S A R T driver modifications

Since there is no inherent support for synchronous mode of communication in Linux,
there had to be done some modifications to utilize the capability of USART hardware
present on Portux to work in synchronous mode, t e r m i o s structure (Lst. 5.1)
is used to communicate desired parameters, such as communication speed, parity,
etc. to the low level driver. Flag requesting synchronous mode of communication
has been added to the c_cf l a g field of structure and s e t . t e r m i o s function of

2 T F T P - Trivial File Transfer Protocol

32

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

Fig. 5.2: T T Y core overview [22]

Atmels's USART low level diver has been modified to incorporate necessary actions
in form of register setting etc. In this way we are able to use more robust and
reliable USART communication. This setting is automatically applied upon setting
our custom line discipline (described in the next section) to the particular serial
port. As the termios settings are preserved across openings of the serial port we
change the setting back to the standard asynchronous mode after closing the port.

Listing 5.1: termios structure
s t r u c t t e r m i o s {

t c f l a g _ t c _ i f l a g ; /* input mode flags */
t c f l a g _ t c _ o f l a g ; /* output mode flags */
t c f l a g _ t c _ c f l a g ; /* control mode flags */
t c f l a g _ t c _ l f l a g ; /* local mode flags */
c c _ t c _ l i n e ; /* l i n e d i s c i p l i n e */
c c _ t c_cc[NCCS]; /* control characters */

};

5.1.3 Line discipline implementation

Line disciplines provide an elegant mechanism to use the same serial driver to run
different technologies. The low-level physical driver and the tty driver handle the
transfer of data to and from the hardware, while line disciplines are responsible for
processing the data and transferring it between kernel space and user space [23].

33

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

/dev/ttySX

TTY
I/O Core

TTY Driver

N TTY N ZBT

Line Disciplines

UART/Low-Level Driver

Fig. 5.3: T T Y core layers, adapted from [23]

Linux strictly separates between the user space and the kernel space. As we need
to interact with the hardware, it is much more comfortable to do so from the kernel
side. We can directly access to and configure the GPIO pins needed to interact with
the ZigBit modules and also process the data into frames to facilitate programming
of higher layers. t t y _ l d i s c structure (Lst. 5.2) is used to represent particular line
discipline and is registered using t t y _ r e g i s t e r _ l d i s c () function upon loading
the kernel module containing the line discipline's functionality.

Listing 5.2: N_ZBT ttyJdisc structure
1 s t a t i c s t r u c t t t y _ l d i s c n _ z b t _ l d i s c = {
2 .magic = TTY_LDISC_MAGIC,
3 .name = " n _ z b t " ,
4 . f l a g s = 0,
5 /* routines called from above */
6 .open = n_zbt_open,
7 . c l o s e = n _ z b t _ c l o s e ,
8 .read = n _ z b t _ r e a d ,
9 . w r i t e = n _ z b t _ w r i t e ,

. i o c t l = n _ z b t _ i o c t l ,

. p o l l = n _ z b t _ p o l l ,
/* routines called from below */

. r e c e i v e _ b u f = n _ z b t _ r e c e i v e _ b u f ,

.write_wakeup = n _ z b t _ w r i t e _ w a k e u p ,

.owner = THIS_MODULE,

10

11

12

13

14

15

16 };

N_ZBT line discipline provides compact interface to control the ZigBit device

34

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

and wrap the data to form frames with simple F C S 3 . The synchronization to frame
start and securing the data transmission is done in this way in unlikely case of
transmission error. Line discipline collects data that arrived from the serial port
and transfers them to the user space in frame by frame fashion, using frame buffers
management system. The user space application is protected form data fragmen
tation and consumes whole packets. The same applies for the transmission. Data
are prefixed with a header containing the synchronization pattern and a length and
appended with FCS created by XORing all the data.

5.2 BitCloud

BitCloud is a full-featured embedded software stack from Atmel. The stack provides
a firmware development platform for reliable, scalable, and secure wireless applica
tions running on Atmel hardware kits such as Zigbit modules. Primary application
domains include home automation, commercial building automation, automated me
ter reading, asset tracking, and industrial automation. BitCloud is fully compliant
with ZigBee PRO and ZigBee standards for wireless sensing and control. BitCloud
is used for an example implementation of W S N integration, the functionality of the
gateway can be easily extended for another networks.

5.3 JamVM

JamVM is a small, open source Java Virtual Machine (JVM) suitable for embedded
systems. JamVM is designed to use the G N U Classpath Java class library and sup
port multiple platforms. It features highly optimized interpreter and code-copying
JIT (Just In Time) compiler and has support for JNI (Java Native Interface) and
Reflection API .

5.3.1 J N I

The Java Native Interface (JNI) is a framework that allows Java code running in a
Java Virtual Machine to call native libraries (specific to a hardware platform) written
in other languages. In this way, it allows the Java application to interact with a
device driver through a device file and isolate this to be the only platform specific
part of code. In Lst. 5.3 is listed the exemplary Java part of the JNI implementation
of access to ZigBit modules. The native library l i b d e v i c e i o . so is loaded first
and then methods can be accessed.

3 FCS - Frame Check Sequence

30

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

Listing 5.3: JNI interface
i p u b l i c c l a s s D e v i c e l O {
2 s t a t i c {
3 S y s t e m . l o a d L i b r a r y (" d e v i c e i o ") ;
4 }

5 public s t a t i c native i n t o p e n (S t r i n g d e v i c e) ;
6 public s t a t i c native i n t c l o s e () ;
7 public s t a t i c native i n t read(byte b u f [] , i n t c o u n t) ;
8 public s t a t i c native i n t w r i t e (b y t e b u f [] , i n t c o u n t) ;
9 public s t a t i c native i n t r e s e t () ;
io }

The listing Lst. 5.4 shows one of the native library functions implemented in C
which gets called from the Java application upon calling the open method of the
class listed in Lst. 5.4

Listing 5.4: JNI library example
1 #define N_ZBT 17
2 s t a t i c i n t f d = 0;
3

4 JNIEXPORT j i n t JNICALL
5 Java_DeviceIO_open (JNIEnv * env, j c l a s s c l a s s , j s t r i n g devname)
6 {

7 const char * s t r ;
8 i n t l d i s c , e r r ;
9 s t r = (*env)->GetStringUTFChars(env, devname, NULL);

10 i f (NULL == s t r)
11 return -1;
12 i f (fd) {
13 (* e n v) - > R e l e a s e S t r i n g U T F C h a r s (e n v , devname, s t r) ;
14 return -1;
15 }

16 f d = open (s t r , 0_RDWR | 0_NOCTTY) ;
17 l d i s c = N_ZBT;
is e r r = i o c t l (f d , TIOCSETD, & l d i s c) ;
ig i f (0 != e r r | | l d i s c != N_ZBT) {
20 c l o s e (f d) ;
21 f d = -1;
22 }

2 3 (* e n v) - > R e l e a s e S t r i n g U T F C h a r s (e n v , devname, s t r) ;
24 return f d ;
25 }

First few lines of Lst. 5.4 serve the purpose of getting the filename from Java
environment to it's C representation. On the line 16 the device file is opened and in
the next, the line discipline is applied. The calls to open and i o c t l functions are
platform specific and the library has to be adapted for each specific target platform.

3G

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

5.4 Higher layer protocols and frameworks
This section provides general overview of protocols and frameworks planned to be
used for the final solution of Web integration of the WSN.

5.4.1 ReST [17]

ReST stands for Representational State Transfer. It is an architecture style for de
signing networked applications and relies on stateless, client-server, cacheable com
munication protocol such as HTTP. ReSTful applications use H T T P requests to
post data (create and/or update), read data (make queries), and delete data. As a
programming approach it is a lightweight alternative to Web Services (SOAP) and
R P C (Remote Procedure Call). ReST service is:

• Platform-independent
• Language-independent
• Standards-based (runs on top of HTTP)
• Can easily be used in presence of firewalls
• Security and encryption are built on top of H T T P (e.g. HTTPS)

The query is simply encoded inside U R L and is sent to the server using simple G E T
request method of HTTP. Key components forming the ReST architecture:

• Resources - identified by logical URLs. Represents both state and functionality
• A web of resources - resources should contain links to other resources
• Client-server architecture (application can act as a both)
• Stateless interaction - each request contains all the information required to

complete it and must not rely on previous interactions
• Cacheability - resources should be cacheable whenever possible (with an expi

ration time). The protocol must allow the server to explicitly specify which
resources may be cached and for how long.

Since H T T P is universally used ass the ReST protocol, the H T T P cache-
control headers are used for this purpose.

Clients must respect the server's cache specification for each resource.
• Proxy servers can be used as part of the architecture, to improve performance

and scalability.
It is natural to map the resources the W S N exports in a ReSTful way. This allows

for simple access to the W S N form the Internet regardless of underlying technology.

Restlet [18]

The Restlet is a lightweight and comprehensive, open source framework for mapping
ReST concepts to Java classes. It supports major Internet standards like HTTP,

37

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

HTTPS, SMTP, X M L , JSON, Atom, W A D L and is suitable for both server and
client Web applications. It is planned to be used as a basis of P U L L service of final
solution.

5.4.2 X M P P [19]

The Extensible Messaging and Presence Protocol (XMPP) is an open technology
for real-time communication, using the Extensible Markup Language (XML) as the
base format for exchanging information. In essence, X M P P provides a way to send
small pieces of X M L from one entity to another in close to real time. It provides
following core services:

• Channel encryption
• Authentication
• Presence
• Contact lists
• One-to-one messaging
• Multi-party messaging
• Notifications - XEP-0060 extension, Publish-Subscribe model
• Service discovery - XEP-0030 extension

SOX

SOX is the shortcut for the Sensor Over X M P P , the library developed for the Sensor
Andrew network at the Carnegie Mellon University. SOX library is available in C
and Java programming language and is based on the X M P P ' s XEP-0060 extension
using the push-based publish-subscribe communication model. It is planned to be
implemented as a part of the future development.

38

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

5.5 Demo application
Example application consists of the W S N network sending sensor readings at regular
intervals and the gateway processing the data and making it accessible on the Web
either in H T M L or JSON format. The W S N network firmware is implemented using
BitCloud ZigBee PRO stack mentioned above. The network coordinator resides at
the gateway and starts the network. Sensor nodes join the network and forwards all
the data to the coordinator. Upon reception of the packet, coordinator parses it to
the JSON representation and sends the data to the gateway using US A R T interface.
Parsing is done using the c JSON library and the example of parsing and sending the
data is listed in Lst. 5.5. The notification of nodes joining and leaving the network is
done in similar fashion. This way application keeps track of sensor nodes currently
present in the network and the Web interface presents current state of the network.

Listing 5.5: Data parsing function
1 void b o a r d A b s t r a c t i o n S e n d D a t a (A P S _ D a t a I n d _ t * i n d)

2 {

3 c J S O N * r o o t , * f m t ; char * o u t ;

4 A p p S e n s o r M e s s a g e _ t * m s g = (A p p S e n s o r M e s s a g e _ t *) i n d - > a s d u ;

5 r o o t = c J S O N _ C r e a t e O b j e c t () ;

6 c J S O N _ A d d I t e m T o O b j e c t (r o o t , " m e s s a g e " , c J S O N _ C r e a t e S t r i n g ("

s e n s o r _ r e a d i n g ")) ;

7 c J S O N _ A d d N u m b e r T o O b j e c t (r o o t , " n o d e _ a d d r " , (double) (i n d - > s r c A d d r e s s .

s h o r t A d d r e s s)) ;

8 c J S O N _ A d d I t e m T o O b j e c t (r o o t , " d a t a " , f m t = c J S O N _ C r e a t e O b j e c t ()) ;

9 c J S O N _ A d d S t r i n g T o O b j e c t (f m t , " s e n s o r _ t y p e " , s e n s o r N a m e s [m s g - > t y p e]) ;

1 0 c J S O N _ A d d N u m b e r T o O b j e c t (f m t , " v a l u e " , (double) m s g - > v a l u e) ;

n
12 o u t = c J S O N _ P r i n t (r o o t) ; c J S O N _ D e l e t e (r o o t) ;

1 3 m y _ W r i t e U s a r t (S u s a r t D e s c r i p t o r , (u i n t 8 _ t *) o u t , s t r l e n (o u t)) ;

1 4 f r e e (o u t) ;

15 }

A n example of parsed JSON object transmitted to the gateway created form the
previous listing is listed in Lst. 5.6.

Listing 5.6: Data in the JSON format

1 {

2 " m e s s a g e " : " s e n s o r _ r e a d i n g " ,

3 " d a t a " : {

4 " s e n s o r _ t y p e " : " T e m p e r a t u r e " ,

5 " v a l u e " : 0

6 } ,

7 " n o d e _ a d d r " : 4 8 0 5 9

8 }

39

Karel Pavlata CHAPTER 5. SOFTWARE IMPLEMENTATION

Function handling the transmission is listed in Lst. 5.7. The data are reassembled
and the FCS is checked in the line discipline. The complete packet is then forwarded
to the application.

Listing 5.7: USART transmission handling function
1 i n t m y _ W r i t e U s a r t (H A L _ U s a r t D e s c r i p t o r _ t * d e s c r i p t o r , u i n t 8 _ t * b u f f e r ,

u i n t l 6 _ t l e n g t h)
2 {

3 u i n t 8 _ t b u f [4] , * p t r ;
4 u i n t 8 _ t i , f c s ;
s b u f [0] = Oxaa;
6 b u f [l] = Oxcc | (u i n t 8 _ t) ((l e n g t h » 8) & 0x03);
7 b u f [2] = (u i n t 8 _ t) l e n g t h ;
8 f o r (i = 0, f c s = 0, p t r = b u f f e r ; i < l e n g t h ; i++)
9 f c s "= *ptr++;

1 0 buf [3] = f c s ;
n U S A R T _ W r i t e (d e s c r i p t o r , (u i n t 8 _ t *) b u f , 3) ;
12 U S A R T _ W r i t e (d e s c r i p t o r , (u i n t 8 _ t *) b u f f e r , l e n g t h) ;
1 3 U S A R T _ W r i t e (d e s c r i p t o r , (u i n t 8 _ t *) & b u f [3] , 1) ;
1 4 return l e n g t h ;
15 }

The application is written in Java, runs in JamVM Java Virtual Machine and
consists of two parts. The first part runs in separate thread and opens the de
vice using class listed in Lst. 5.3. It reads all the data frames available and parses
it to the JSON object representation form from the serialized (text) format us
ing JSON-java. The JSON objects are then stored using HashMap container.
The second part is inherited subclass of the NanoHTTPD. c l a s s and implements
the actual H T T P server. Upon the GET request the URL is parsed if it contains
/nodes, / ne twork , / r e s o u r c e s identifiers or identifier of particular resource
(e.g. node address) and serves the response accordingly. If the request has . j s o n
suffix (e.g. / n e t w o r k . j son the JSON object is retrieved from the map and is
serialized to it's textual representation. The response the contains the object and
the c o n t e n t - t y p e H T T P header is set to a p p l i c a t i o n / j s o n . If the url does
not specify the format the H T M L version is build from the data contained in the
map and hyper-links to the nodes or resources are built. For the aforementioned re
quests the application respond with list of currently available nodes, network details
such as P A N ID, extended P A N ID and channel on which the network is started or
resources available in the network (e.g. available sensor types).

40

Karel Pavlata CHAPTER 6. CONCLUSION

6 CONCLUSION
This work dealt with the problem of interfacing IEEE 802.15.4 and Ethernet net
works and tried to do that form as much generic standpoint as possible. The problem
of integration of the Wireless Sensor Network is described, and the network archi
tecture that solves this problem by incorporating gateways is proposed.

Later parts described the hardware of a gateway capable of interfacing these
networks. The idea behind is it's modularity and flexibility, so that the future
development and extensibility is not limited by the design. The suggested solu
tion makes use of Linux equipped A R M based SBC, which is powerful enough to
run complex applications. Ethernet communication and T C P / I P stack is native
to Linux thus software development may concentrate on the original objective of
network integration. Furthermore ZigBit™ R F modules capable of IEEE 802.15.4
communication are used mainly because of severe complexity of R F H W design and
the requirement of certification of devices working in these frequency bands. Use of
O E M modules (with ensured certification) removes this burden. Gateway makes use
of up to two of this modules mainly because of the ability to work on both frequency
band of IEEE 802.15.4 standard.

The implemented software forms hierarchical architecture, mainly focused on the
lower parts comprising firmware for the communication modules and it's integration
to the Linux operating system. Kernel device driver in form of a module implement
ing line discipline was developed and the integration with Java platform has been
done. It allows the possibility of the use of various frameworks and extensions in
the future development.

Sample application forms H T T P server which exports the data from the ZigBee
network to the outside world in a simple ReSTful architecture.

Future work is intended in the area of software implementation and large scale
Wireless Sensor Network deployment as a proof of concept.

41

Karel Pavlata BIBLIOGRAPHY

BIBLIOGRAPHY
[1] IEEE 802.154-2006 [online]. Wikipedia, the free encyclopedia. 04/2010. Avail

able: <http://en.wikipedia.org/wiki/IEEE_802.15.4-2006>. May 17, 2010.

[2] IEEE Std 802.154™ -2006 Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANs) [online]. IEEE. N Y , USA. 09/2006. 323 p. Available:
<http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf>. ISBN 0-
7381-4997-7

[3] IEEE Std 802.154a™ -2007 Amendment 1: Add Alternate
PHYs [online]. IEEE. N Y , USA. 08/2007. 203 p. Available:
<http://standards.ieee.org/getieee802/download/802.15.4a-2007.pdf>. ISBN
0-7381-5584-5

[4] IEEE Std 802.154c™ -2009 Amendment 2: Alternative Physical Layer Ex
tension to support one or more of the Chinese 314-316 MHz, 430-434 MHz,
and 779-787 MHz bands [online]. IEEE. N Y , USA. 04/2009. 33 p. Avail
able: <http://standards.ieee.org/getieee802/download/802.15.4c-2009.pdf>.
ISBN 978-0-7381-5913-3

[5] IEEE Std 802.15.4d™ -2009 Amendment 3: Alternative Physical Layer Exten
sion to support the Japanese 950 MHz bands [online]. IEEE. N Y , USA. 04/2009.
39 p. Available: <http://standards.ieee.org/getieee802/download/802.15.4d-
2009.pdf>. ISBN 978-0-7381-5915-7

[6] ZigBee [online]. Wikipedia, the free encyclopedia. 05/2010. Available:
<http://en.wikipedia.org/wiki/ZigBee>. May 18, 2010.

[7] ZigBee Alliance [online]. ZigBee Alliance. 2010. Available:
<http: //www. zigbee.org/ >.

[8] Welcome to Wireless Sensor Networks Tutorial [online]. Atmel Corporation.
2009. Available: <http://meshnetics.com/zigbee-learning/>.

[9] 6L0WPAN [online]. Wikipedia, the free encyclopedia. 04/2010. Available:
<http://en.wikipedia.org/wiki/61oWPAN>. May 18, 2010.

[10] 6L0WPAN [online]. OpenWSN, Implementing the Internet of Things. 10/2010.
Available: <http://openwsn.berkeley.edu/wiki/OpenLowPan#a6LoWPAN>.
May 16, 2011.

42

http://en.wikipedia.org/wiki/IEEE_802.15.4-2006
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
http://standards.ieee.org/getieee802/download/802.15.4a-2007.pdf
http://standards.ieee.org/getieee802/download/802.15.4c-2009.pdf
http://standards.ieee.org/getieee802/download/802.15.4d-2009.pdf
http://standards.ieee.org/getieee802/download/802.15.4d-2009.pdf
http://en.wikipedia.org/wiki/ZigBee
http://zigbee.org/
http://meshnetics.com/zigbee-learning/
http://en.wikipedia.org/wiki/61oWPAN
http://openwsn.berkeley.edu/wiki/OpenLowPan%23a6LoWPAN

Karel Pavlata BIBLIOGRAPHY

[11] IEEE 802.3 [online]. Wikipedia, the free encyclopedia. 05/2010. Available:
<http://en.wikipedia.Org/wiki/IEEE_802.3>. May 17, 2011.

[12] Portux920T : Overview [online], taskit GmbH. 2006. Available:
<http://www.taskit.de/en/products/portux/index.htm>. Dec 18, 2009.

[13] Portux920T : Technical details [online], taskit GmbH. 2007. Available:
<http://www.taskit.de/en/products/portux/tech.htm>. Dec 18, 2009.

[14] Portux : Technical Reference [online], taskit GmbH. Version 1.2. Available:
<http://www.taskit.de/en/support/manuals.htm>. Dec 18, 2009.

[15] ZigBit™ OEM Modules [online]. 04/2008. Available:
<http://meshnetics.com/>. Dec 18, 2009.

[16] M . K O H V A K K A . Medium Access Control and Hardware Prototype De
signs for Low-Energy Wireless Sensor Networks. T U T , Tampere, 2009.
Available: <http://www.tkt.es.tut.fi/research/daci/pubj3pen/Kohvakka-
Medium_Access_Control_and_Hardware_Prototype_designs_for .Low-
Energy _Wireless_Sensor_Networks.pdf>. ISBN 978-952-15-2153-9.

[17] M . E L K S T E I N . Learn REST: A Tutorial [online]. 04/2011. Available:
<http://rest.elkstein.org/>. May 18, 2011.

[18] L . R I C H A R D S O N A N D S . R U B Y . RESTful Web Services. O'Reil ly Media, Se-
bastopol, CA, USA. 2007. ISBN-13 978-0-596-52926-0

[19] P . S A I N T - A N D R E , K . S M I T H , A N D R . T R O N C O N . XMPP: The Definitive
Guide. O'Reil ly Media, Sebastopol, CA, USA. 2009. ISBN 978-0-596-52126-4

[20] A . K A M I L A R I S . A lightweight resource-oriented application framework for wire
less sensor networks. Master's thesis, Institute of Pervasive Computing, E T H
Zurich, 2009.

[21] S . W I E L A N D . Design and implementation of a gateway for web-based inter
action and management of embedded devices. Master's thesis, Department of
Computer Science, E T H Zurich, 2009.

[22] J . C O R B E T , A . R U B I N I , A N D G . K R O A H - H A R T M A N . Linux Device Drivers,
Third Edition. O'Reil ly Media, Sebastopol, C A , USA. 2005. ISBN 0-596-00590-
3

[23] S R E E K R I S H N A N V E N K A T E S W A R A N . Essential Linux Device Drivers. Prentice
Hall, Upper Saddle River, New Jersey, USA. 2008. ISBN 978-0-13-239655-4

48

http://en.wikipedia.Org/wiki/IEEE_802.3
http://www.taskit.de/en/products/portux/index.htm
http://www.taskit.de/en/products/portux/tech.htm
http://www.taskit.de/en/support/manuals.htm
http://meshnetics.com/
http://www.tkt.es.tut.fi/research/daci/pubj3pen/Kohvakka-?Medium_Access_Control_and_Hardware_Prototype_designs_for%20.Low-?Energy%20_Wireless_Sensor_Networks.pdf
http://www.tkt.es.tut.fi/research/daci/pubj3pen/Kohvakka-?Medium_Access_Control_and_Hardware_Prototype_designs_for%20.Low-?Energy%20_Wireless_Sensor_Networks.pdf
http://www.tkt.es.tut.fi/research/daci/pubj3pen/Kohvakka-?Medium_Access_Control_and_Hardware_Prototype_designs_for%20.Low-?Energy%20_Wireless_Sensor_Networks.pdf
http://rest.elkstein.org/

Karel Pavlata LIST OF SYMBOLS

LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS

A C K Acknowledgement

A D C Analog-to-Digital Converter

A O D V Ad-hoc On-demand Distance Vector

B2B Board-to-Board

C C A Clear Channel Assesment

C F P Contention Free Period

CdS Cadmium Sulfide cell

C S M A / C A Carrier Sense Multiple Access with Collision Avoidance

C R C Cyclic Redundancy Check

ED Energy Detection

FCS Frame Check Sequence

F F D Full-Function Device

GPIO General Purpose Input/Output

GTS Guaranteed Time Slot

H A L Hardware Abstraction Layer

H T T P Hyper Text Transfer Protocol

H W Hardware

I2C Inter-Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IRQ Interrupt Request

ISM Industrial, Scientific and Medical radio band

JID Jabber ID

44

Karel Pavlata LIST OF SYMBOLS

JNI Java Native Interface

JSON JavaScript Object Notation

J T A G Digital interface for debugging of embedded devices, also known as IEEE
1149.1 standard interface

J V M Java Virtual Machine

L A N Local Area Network

L D O Low-dropout regulator

L L C Logical Link Control

LQI Link Quality Indication

L R - W P A N Low-rate Wireless Personal Area Network

M A C Media Access Control

M C U Microcontroller Unit

M I M E Multipurpose Internet Mail Extensions

O E M Original Equipment Manufacturer

P A N Personal Area Network

P C B Printed Circuit Board

PD-SAP Phy Data SAP

PIR Passive Infra-Red

P L M E - S A P Phy Layer Management Entity SAP

PSDU Phy Service Data Unit

P X B Portux extension Board

ReST Representational State Transfer

R F Radio Frequency

R F 4 C E Radio Frequency for Consumer Electronics

R F D Reduced-Function Device

4Ó

Karel Pavlata LIST OF SYMBOLS

R P C Remote Procedure Call

R T S / C T S Request to Send / Clear to Send

SAP Service Access Point

SBC Single Board Computer

SOAP Simple Object Access Protocol

SPI Serial Peripheral Interface bus

SPDT Single Pole, Double Throw

SPST Single Pole, Single Throw

SW Software

T F T P Trivial File Transfer Protocol

T C P / I P Transmission Control Protocol/Internet Protocol

TWI Two Wire Interface (J 2 C like bus)

U D P User Datagram Protocol

US A R T Universal Synchronous-Asynchronous Receiver/Transmitter

USB Universal Serial Bus

U T P Unshielded Twisted Pair

U W B Ultra Wide Band

W A D L Web Application Description Language

WSN Wireless Sensor Network

X M L Extensible Markup Language

X M P P Extensible Messaging and Presence Protocol

ZED ZigBee End Device

ZC ZigBee Coordinator

ZR ZigBee Router

4G

Karel Pavlata LIST OF APPENDICES

LIST OF APPENDICES

A PCBs and schematics 48
A . l W S N Gateway 48
A.2 W S N node 51
A. 3 R F headers (Trilobite) 53

B partlists 56
B. l W S N Gateway 56
B.2 W S N Node 57

C Libraries and Frameworks 59

D Content of C D 60

47

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

A PCBS AND SCHEMATICS

A . l WSN Gateway

Fig. A . l : W S N Gateway parts placement

48

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

Fig. A.2: WSN Gateway top side

Fig. A.3: WSN Gateway bottom side (mirrored)

1!)

U$1

PXB

PXB

A10
B10
C10
A11
B11
C11
A12
B12
C12
A13
B13
C13
A14
B14
C14

B15
C15
A16

A17
B17
C17

B28

i
J I

M/CC_33

VCC_33

IPB28/FIQ •>

HDMA>
JLEDT>

J T E P Ä >

_lLED2>

. IPA25/TWD ~>

JPA26/TWCIO
->VCC_33

J L E D 3 >

VCC_33
_EÄ52SÜK2>

IPA22/RXD2>
A25 IPAP3/TVnp •>

JPB02/SCK3>

C 2 8 PRf i
M/CC_33

A29
JRST2>

R15 470R

22-27-2021-02 Power supply
J2-1 •
J2-2 •

J1
G N D 3 si

T L 3 6 W O

U$2
LF50CDT

GND

^ 1 0 u

GND GND

ü

100n

VI VO
GND

GND

l C 3 _ L

I
GND GND

LEDs

100n

CM OC'

ills'-

GND GND GND

ZigBit #2

IRST2>

GND

Temperature s e n s . A V C C 33

GND GND

USB HOSt A V C C _ 5 0 GND

F1

GND

10n

<HDMA L R11 27R FSF00.5H SMD

<HDPA L R12 27R

§X I r l C6 C11

GND GND GND GND GND

J3-1

J3-2

J3-3

J3-4

ZigBit #1

JrT5TT>

GND

IPA06/RXD3 >

B30
C30 P R 7 r

IPA05/TXD3">

A31
JRSTl>

R16 470R

i
J I

TITLE: usn_pxb_gateuay_v03

Document Number: REU:

• ate: 25.4.2010 9:35:44 Sheet: 1/1

Fig. A.4: W S N Gateway schema

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

A.2 WSN node

Fig. A.5: W S N PIR node parts placement

Fig. A.6: W S N PIR node top side

Fig. A.7: W S N PIR node bottom side (mirrored)

51

Power part
TPS780330220DDC

53261-03

C4 C9 C7 C2 +j_C

RS1 MK1

100n 100n 100n 1u

C10

G N D G N D G N D G N D G N D

G N D G N D

optional, use switch or solder jumper to bypass shutdown

Sensory part
< B A T O N !

VDD

ZigBit
A

<HBZL ™[~4

<RST~

<PIRSHDN
< B A I O N
< C D S O N
<5HDN

:ISPI_CLK

:ISPI_MISO

:ISPI_MOSI

:IGPIOO

:IGPIOI

:1GPI02

:10SC32K_0UT

:1 RESET

:1DGND

:ICPU_CLK

:1I2C_CLK

:1I2C_DATA

:1UART_TXD

:1UART_RXD

:1UART_RTS

:1UART_CTS

:1GPI06

:1GPI07

:1GPI03

:1GPI04

Z1IRQ6

Z1IRQ7

Z1GPI08

Z1US0_EXCLK

Z1US0_TXD

Z1US0_RXD

Z1UART_DTR

Z1GPIO_1WR

Z1AGND

Z1A_VREF

Z1BAT

Z1ADC1

Z1ADC2

Z1ADC3

Z1JTAG_TCK

Z1 JTAG.TDO

Z1JTAG_TDI

Z U T A G . T M S

Z1DVCC

Z1GPI05

GND

JTAG/UART VDD

10PINA-RM2

VDD

Ä L F C
PBT;

LEDS;
XCKÖ>

T x ö :
RXÖ;

G N D

Ul IO part VD^_

Ena
<EET

CM,- .
Q-LTm

w
h-
Q

G N D

TITLE: usn_pir_node_v04

Document Number: REU:

• ate: 25.4.2010 12:51:20 Sheet: 1/1

Fig. A.8: W S N PIR node schema

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

A.3 RF headers (Trilobite)

L P i l SP

G3
C3
C3
• 5

_CLK JTAG_TMS
_I1IS0 JTAG.TDI
_t10SI JTAG.TDO
08 JTAG_TCK
•1 ADC3
• 2 ADC2
32K_0UT ADCl

P$26
E$2.
P$3

SP

G3
C3
C3
• 5

_CLK JTAG_TMS
_I1IS0 JTAG.TDI
_t10SI JTAG.TDO
08 JTAG_TCK
•1 ADC3
• 2 ADC2
32K_0UT ADCl

=$28

P$5

SP

G3
C3
C3
• 5

_CLK JTAG_TMS
_I1IS0 JTAG.TDI
_t10SI JTAG.TDO
08 JTAG_TCK
•1 ADC3
• 2 ADC2
32K_0UT ADCl

>Í30
P$7

SP

G3
C3
C3
• 5

_CLK JTAG_TMS
_I1IS0 JTAG.TDI
_t10SI JTAG.TDO
08 JTAG_TCK
•1 ADC3
• 2 ADC2
32K_0UT ADCl >Í32

p$9 RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

'Í31
psu

RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

>Í36
PÍ13

RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

>Í38
>$' 5

RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

PÍ17

RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

=$42

PÍ19

RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

PS21

RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

PS23
P$24

fP Í25

RESET BAT
DGND A.UREF
CPU.CLK AGNO
I2C.CLK GPIO.IUR
I2C_DATA UARTJDTR
LJART_TXD USART0_RXD
LJART_RXD USART0_TXD
LJART_RTS LJSART0_EXCLK
UART_CTS GPI09
GPI06 IRQ_7
GPI07 IRQ_6

GPI03
GPICM
GPI05
DGND
DGND
•UCC
•UCC

y-i:

T I T L E : Z D M - ň l 2 8 1 - ň 2 _ a d a p t _ v 0 . 2

D o c u m e n t Number : R E U :

• a t e : 2 0 . 1 0 . 2 0 0 9 2 2 : 0 7 : 2 2

Fig. A.9: Trilobite A2 schematic

Fig. A . 10: Trilobite A2 components placement

••)3

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

1 SPI CLK JTAG TMS
SPI MISO JTAG TDI
SPI MDSI JTAG TDO *
GPIO0 JTňG TCK
GPIOl A0C3 *
GPI02 fiDC2
0SC32K OUT fiDCl *
RESET BAT
DGND A URLT
CPU CLK AGND
I2C CLK GPIO 1UR
I2C.DATA UrlRT_DTR
UART.TXD USART0.RXD
UART_RXD USART0.TXD
UART RTS USART0 EXCLK
UART CTS GPI08
GPI06 IRQ 7
GPI07 IRQ.Ó

GPI03 DGND
GPI04 DGND

±1 : —
GPI05 |
DGND | RF_GND
DGND 1 RF.IO
DUCC 1 RF_GND
DUCC 1

4— URR DGND
URR DGND
UTT DGND
UTT DGND

•

ZDM-A1281-Ph

T I T L E : Z D M - ň l 2 8 1 - P N _ a d a p t _

Documen t Number :

D a t e : 9 . 1 2 . 2 0 0 9 0:27:50 | S h e e t : 1 / 1

Fig. A . 13: Trilobite A M P schematic

54

Karel Pavlata APPENDIX A. PCBS AND SCHEMATICS

Fig. A . 14: Trilobite A M P components placement

Fig. A . 15: Trilobite A M P top P C B layer

55

Karel Pavlata APPENDIX B. PARTLISTS

B PARTLISTS

B . l WSN Gateway

Listing B . l : Partiist for the Gateway
P a r t l i s t

E x p o r t e d from wsn_pxb_gateway_v03.sch a t 25.4.2010 23:26:48

EAGLE V e r s i o n 5.7.0 C o p y r i g h t (c) 1988-2010 CadSoft

P a r t V a l u e D e v i c e Package L i b r a r y s:

CI lOu CPOL-EUSMCB SMC_B r c l 1
C2 lOOn C-EUC0603 C0603 r c l 1
C3 lOu CPOL-EUSMCB SMC_B r c l 1
C4 lOOn C-EUC0603 C0603 r c l 1
C5 lOn C-EUC0805 C0805 r c l 1
C6 47p C-EUC0603 C0603 r c l 1
C7 lOOn C-EUC0603 C0603 r c l 1
C8 lOOn C-EUC0603 C0603 r c l 1
C9 In C-EUC0603 C0603 r c l 1
C10 In C-EUC0603 C0603 r c l 1
C l l 47p C-EUC0603 C0603 r c l 1
C12 lOOn C-EUC0603 C0603 r c l 1
D l DIODE-D015-12 D015-12 d i o d e 1
F l FSF00.5H SMD FUSEFSFSMD FSFSMD amina 1
J l JACK-PLUG0 SPC4077 c o n - j a c k 1
J2 22-27-2021-02 22-27-2021-02 6410-02 con-molex 1
J3 22-27-2041-04 6410-04 con-molex 1
JP1 AVR-JTAG- •10ST AVR-JTAG-10 ST AVR-JTAG-10 amina 1
JP2 AVR-JTAG- •10ST AVR-JTAG-10 ST AVR-JTAG-10 amina 1
LED1 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED2 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED3 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED4 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED5 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED 6 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED7 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED8 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED 9 LEDCHIP-LED0 8 0 5 CHIP-LED0805 l e d 1
LED10 LEDCHIP-LEDO 8 0 5 CHIP-LED0805 l e d 1
LED11 LEDCHIP-LEDO 8 0 5 CHIP-LED0805 l e d 1
PB1 DTSM-3 DTSM-3 DTSM-3 amina 1
PB2 DTSM-3 DTSM-3 DTSM-3 amina 1

Karel Pavlata APPENDIX B. PARTLISTS

R l R-EU_R0603 R0603 r c l 1
R2 R-EU_R0 603 R0603 r c l 1
R3 R-EU_R0 603 R0603 r c l 1
R4 270R R-EU_R0 603 R0603 r c l 1
R5 R-EU_R0 603 R0603 r c l 1
R6 R-EU_R0 603 R0603 r c l 1
R7 R-EU_R0 603 R0603 r c l 1
R8 270R R-EU_R0 603 R0603 r c l 1
R9 10k R-EU_R0 603 R0603 r c l 1
RIO 10k R-EU_R0 603 R0603 r c l 1
R H 27R R-EU_R0 603 R0603 r c l 1
R12 27R R-EU_R0 603 R0603 r c l 1
R13 15k R-EU_R0 603 R0603 r c l 1
R14 15k R-EU_R0 603 R0603 r c l 1
R15 470R R-EU_R0 603 R0603 r c l 1
R16 470R R-EU_R0 603 R0603 r c l 1
R17 470R R-EU_R0 603 R0603 r c l 1
R18 470R R-EU_R0 603 R0603 r c l 1
R19 470R R-EU_R0 603 R0603 r c l 1
R2 0 470R R-EU_R0 603 R0603 r c l 1
R21 270R R-EU_R0 603 R0603 r c l 1
R22 270R R-EU_R0 603 R0603 r c l 1
R2 3 270R R-EU_R0 603 R0603 r c l 1
R2 4 10k R-EU_R0 603 R0603 r c l 1
R2 5 R-EU_R0 603 R0603 r c l 1
R2 6 R-EU_R0 603 R0603 r c l 1
S l T L 3 6WO T L 3 6WO TL3XWO s w i t c h 1
S2 219-04 219-04 CTS-219- 04 s w i t c h - • d i l 1
S3 219-04 219-04 CTS-219- 04 s w i t c h - - d i l 1
SJ1 S J S J amina 1
SJ2 S J S J amina 1
U$ l PXB PXB PXB amina 1
U$2 LF50CDT LF50CDT DPACK amina 1
U$4 TMP2 7 5D TMP2 7 5D S08 amina 1
ZI ZB_MODULEL ZB_HEADER_LONG amina 1
Z2 ZB_MODULEL ZB_HEADER_LONG amina 1

B.2 WSN Node

Listing B.2: Partlist for the W S N node

E x p o r t e d from w s n _ p i r _ n o d e _ v 0 4 . b r d at 25.4.2010 23:28:40

EAGLE V e r s i o n 5.7.0 C o p y r i g h t (c) 1988-2010 CadSoft

P a r t V a l u e Package L i b r a r y P o s i t i o n (mm)

57

Karel Pavlata APPENDIX B. PARTLISTS

C l l u C0805 r c l (66 55 21.8)
C2 l u C0805 r c l (55 15 19.85)
C3 lOOn C0603 r c l (66 55 24.7)
C4 lOOn C0603 r c l (43 6 10.5)
C5 l n C0603 r c l (20 6. 65)
C6 lOOn C0603 r c l (34 4 16.65)
C7 lOOn C0603 r c l (19 6 22.55)
C8 l n C0603 r c l (21 65 17.5)
C9 lOOn C0603 r c l (60 95 24.45)
CIO lOu SMC_B r c l (58 1 19.95)
C i l l u C0805 r c l (48 5 7.8)
C12 l n C0603 r c l (24 65 20.1)
C13 l n C0603 r c l (27 9 20.1)
D l D0214AC diodě (54 65 24.55)
LED1 CHIP-LED0603 l e d (36 5 26.25)
LED2 CHIP-LED0603 l e d (36 5 28.5)
PB1 DTSM-3 DTSM-3 amina (26 5 28.1)
PB2 DTSM-3 DTSM-3 amina (30 5 28.1)
PIR1 MS-360LP MS-360 amina (53 45 17)
Ql IRF7303 S08 amina (54 15 28.4)
R l 100k R0603 r c l (61 27.8)
R2 100k R0603 r c l (49 05 26.9)
R3 100k R0603 r c l (49 05 29.9)
R4 470R R0603 r c l (40 26.25)
R5 470R R0603 r c l (40 28.5)
R6 100k R0603 r c l (45 15 4.65)
R7 l k R0603 r c l (52 15 11.7)
R8 R0603 r c l (41 6 14.8)
R9 R0603 r c l (41 6 16.85)
RIO 470R R0603 r c l (13 7.4)
R H 10k R0603 r c l (12 65 22.55)
R12 10k R0603 r c l (17 6 22.55)
RS1 MK16B2 MK16*2 amina (16 32.2)
SJ1 SJ_2S amina (68 4 26. 65)
SJ2 SJ_2S amina (49 85 11.8)
SJ3 SJ amina (62 9 16.35)
SJ4 SJ_2S amina (26 7.1)
SKT1 10PINA-RM2 ZL265-10SG-A amina (22 5)
U $ l TPS780330220DDC SOT23-5 amina (63 65 24.45)
U$2 TS5A23166DCU US8 amina (46 75 16.25)
U$3 TS5A3159-DCK SC70-6L amina (46 10.55)
U$4 TMP275DGK MSOP8 amina (15 2 22.55)
U$6 JMPSMD 2P-SMD amina (70 22 .5)
U$7 TS5A3159-DCK SC70-6L amina (64 65 29. 6)
X2 53261-03 53261-03 con-molex (69 05 12.8)
Z l ZB_HEADER_SHORT amina (40 25)

•18

Karel Pavlata APPENDIX C. LIBRARIES AND FRAMEWORKS

C LIBRARIES AND FRAMEWORKS

Listing of libraries, sources and frameworks used for software development.

Linux

Sources for Linux-2.6.22
h t t p : / / d o w n l o a d . a r m b e d d e d . e u / s o f t w a r e / l i n u x-2.6.22-taskit4.

t g z

BitCloud

Full-Featured, Second Generation Embedded ZigBee PRO Software Stack
h t t p : / / w w w . a t m e l . c o m / d y n / p r o d u c t s / t o o l s _ c a r d . a s p ? t o o l _ i d =

4495

cJSON

A n ultra-lightweight, portable, single-file, simple-as-can-be ANSI-C compliant JSON
parser

h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / c j s o n /

JSON-java
A reference implementation of a JSON package in Java

h t t p s : / / g i t h u b . c o m / d o u g l a s c r o c k f o r d /JSON - j a v a

NanoHTTPD

A free, simple, tiny, nicely embeddable H T T P server in Java
h t t p : / / e l o n e n . i k i . f i / c o d e / n a n o h t t p d /

J a m V M

JamVM vl.5.4, an extremely small Java Virtual Machine
h t t p : / / j a m v m . s o u r c e f o r g e . n e t /

G N U Classpath

G N U Classpath, Essential Libraries for Java, is a G N U project to create free core
class libraries for use with virtual machines and compilers for the Java programming
language

h t t p : / / w w w . g n u . o r g / s o f t w a r e / c l a s s p a t h / c l a s s p a t h . h t m l

59

http://download.armbedded.eu/software/linux-2.6.22-taskit4
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=
http://sourceforge.net/projects/cjson/
https://github.com/douglascrockford/JSON-java
http://elonen.iki.fi/
http://jamvm.sourceforge.net/
http://www.gnu.org/software/classpath/classpath.html

Karel Pavlata APPENDIX D. CONTENT OF CD

D C O N T E N T OF CD

The C D contains following folders and items:

Linux

Contains the Linux kernel with all the modifications. The line discipline implemen
tation is in the file

l i n u x - 2 . 6 . 2 2 - t a s k i t 4 / d r i v e r s / c h a r / n _ z b t . c

J a m V M

Contains the Java Virtual Machine and G N U Classpath cross-compiled for the Por-
tux SBC

rootfs

Contains the root filesystem of the Portux which the linux mounts upon startup
from SD card with all the modules, drivers and applications necessary

BitCloud

Contains the BitCloud stack with all the modifications for custom boards and ex
ample application. The ZigBit firmware part of the application is in the folder
B i t C l o u d _ Z I G B I T _ l _ l l _ 0 / A p p l i c a t ions/GatewayEx/

Java

Contains JNI library for interfacing with the device and all the Java source files and
classes forming the application

P C B

Contains printed circuit board layouts and schematics for all the hardware

text

Contains electronic version of this thesis

GO

