
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PATH PLANNING ALGORITHMS VISUALISATION
VIZUALIZACE ALGORITMŮ PRO PLÁNOVÁNÍ CESTY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MÁRTON BRÉDA
AUTOR PRÁCE

SUPERVISOR Ing. JAROSLAV ROZMAN, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Bachelor's Thesis Specification |||||||||||||||||||||||||
24770

Student: Bréda Márton
Programme: Information Technology
Title: Path Planning Algorithms Visualisation
Category: Artificial Intelligence
Assignment:

1. Study algorithms for path planning algorithms that are used in robotics (road maps, cell
decomposition, probabilistic algorithms, etc.)- Study Diploma work of Jakub Rusňák.

2. Design your own application or adjust existing one that allows visualisation of path planning
algorithms. Consider also with later adding of algorithms.

3. Implement the designed application, including selected algorithms and properly describe the
used algorithms.

4. Test the application and create manual for easily adding of other algorithms.
Recommended literature:

• Howie Choset et al., Principles of Robot Motion, 2005, ISN 0-262-03327-5.
• Rusnák Jakub, Vizualizace algoritmů pro plánování cesty, bakalářská práce, FIT VUT

v Brně, 2017.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rozman Jaroslav, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Bachelor's Thesis Specification/24770/2021/xbredaOO Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
The goal of this paper is to show some of the most important algorithms used in path
planning. It also describes the application, that was created to allow people to experiment
with these algorithms. For this purpose it uses the library that was introduced by Jakub
Rusnak in 2017, which means this is a continuation and possibly extension of his work.

Abstrakt
Cílem tohoto práce je ukázat některé z nejdůležitějších algoritmů používaných při plánování
cest. To také popisuje aplikaci, která byla vytvořena, aby umožnila lidem experimentovat
s těmito algoritmy. K tomuto účelu využívá knihovnu, kterou v roce 2017 představil Jakub
Rusnák, tzn jde o pokračování a možná i rozšíření jeho práce.

Keywords
visualization, Java, path planning algorithms, roadmap, cell decomposition, probabilistic
roadmap, algorithm presentation

Klíčová slova
vizualizace, java, algoritmy plánování cesty, road mapa, buněčné dekompozice, pravdě­
podobnostní algoritmy, java, demonstrační aplikace

Reference
B R E D A , Märton. Path Planning Algorithms Visualisation. Brno, 2022. Bachelor's thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Jaroslav
Rozman, Ph.D.

Path Planning Algorithms Visualisation

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pána Ing.
Jaroslava Rozmana, Ph.D. Uvedl jsem všechny literární prameny, publikace a další zdroje,
ze kterých jsem čerpal.

Márton Bréda
May 6, 2022

Contents

1 Introduction 2

2 Introduction to path planning 3
2.1 Path planning problem, workspace and configuration space 3
2.2 Properties of path planners 4

3 Roadmaps 6
3.1 Visibility Graph 6
3.2 Generalized Voronoi Diagram 8

3.2.1 Construction of the G V D 9
3.3 Canny's Roadmap Algorithm 10

4 Cell Decompositions 12
4.1 Trapezoidal Decomposition 13

5 Sampling-based algorithms 16
5.1 Sampling-Based planner characteristics 16
5.2 Basic P R M 17
5.3 Single-Query Sampling-Based Planners 20

5.3.1 Expansive-Spaces Trees 21
5.3.2 Rapidly-Exploring Random Trees 23

6 Description of the application 27
6.1 The Vizlib library 27
6.2 Application user interface 32
6.3 Specific notes about individual algorithms 33

6.4 Testing the application 34

7 Conclusion 42

Bibliography 43

A Storage medium contents 45

B Editing and running the application using Eclipse 46

1

Chapter 1

Introduction

Pathfinding is an important part of the daily operation of many objects. As a mathematical
problem, it has been solved in detail from many angles. More important is therefore at this
point to pass on this knowledge in a comprehensible form, so other students can continue
to build on it. This work tries to describe and demonstrate with examples some of the most
important algorithms in this industry.

The goal of this thesis was to implement some of the most important algorithms, that
solve path planning problems. To achieve this, an application using the Java language was
implemented for the purposes of experimentation with these algorithms. The application
requires a user interface, that is intuitive with the main focus on the ability to enable
the user to quickly change between the implemented algorithms. The application also
needs to enable the user to execute the algorithms step-by-step, enabling a more detailed
understanding about the workings of the implemented algorithms.

The structure of the thesis is as follows. Chapter 2 contains a short introduction to
the theory of path planning, it introduces the basic concepts to the reader, so the algo­
rithms described in the other chapters can be understood easier. In chapter 3 describes
algorithms that generate deterministic roadmaps. Chapter 4 is dedicated to cell decompo­
sitions. Chapter 5 explains algorithms that generate probabilistic roadmaps. Chapter 6 is
dedicated to the description of the implemented application. Section 6.1 describes the vizlib
library implemented by Jakub Rusnak, this library is used to help with the visualization
of the selected algorithms. Section 6.4 describes how the algorithms were tested, it also
contains statistics about the data gathered during testing.

A textbook of planning algorithms was used as the primary source for this work [4], the
book [11] was used as the secondary source.

2

Chapter 2

Introduction to path planning

This chapter is dedicated to explaining some of the basic terminology and concepts used
in path planning. These terms are used in the rest of the thesis, so it is natural, that the
beginning chapter is dedicated to their explanation.

2.1 Path planning problem, workspace and configuration space

In [11], Latombe describes the path planning problem as follows:

• A C W: The robot, it is a single moving rigid object in world W represented in the
Euclidean space as M2 or IR3.

• O C W: The obstacles are stationary rigid objects in W.

• The geometry, the position, and the orientation of A and Oare known a priori.

• The localization of the O in W is accurately known.

Given a start and goal positions of A C W, plan a path P C W denoting the set of
positions, so that A(p) n O = 0 for any position p G Pa long the path from start to goal,
and terminate and report P if a path has been found, or 0 if no such path exists.

In this thesis, robots are assumed to operate in a planar (R2) ambient space, this is
referred to as the workspace denoted as W . In order to construct the workspace of a robot,
four different concepts need to be well described:

• The robot's geometry

• The workspace in which the robot moves or acts

• The degrees of freedom of the robot's motion

• The initial and the target configuration in the environment

Path planning problems can be directly solved in the workspace, but motion planning
does not usually occur in the workspace. Instead, it occurs in the configuration space. The
concept of a configuration space was first presented by Lozano-Perez [12]. It contains all
the possible configurations of the robot in a workspace. It is usually denoted by C , but in
this thesis it is referred to as Q, to keep it in line with the theory presented in [4].

3

In realistic environments the workspace also contains obstacles. A n obstacle in the
configuration space corresponds to configurations of the robot that intersect an obstacle in
the workspace. Due to these obstacles some configurations are forbidden. A configuration
c is forbidden if the robot intersects an obstacle while positioned at configuration c. Now
the concept of the free configuration space can be defined as the set of all configurations
C minus the set of all forbidden configurations. The free configuration space is usually
denoted as Cfree, but in this thesis it is referred to as Qfree, to keep it in line with the
theory presented in [4].

2.2 Properties of path planners

This section summarizes some of the most important concepts of path planners. In [4] the
book the path planners are characterized according to three criteria:

• The task the planner addresses

• The properties of the robot solving the task

• The properties of the algorithm the planner uses

Task

The book [4] considers four tasks: navigation, coverage, localization and mapping. Naviga­
tion is finding a collision-free path from one configuration to another. Coverage is passing
a sensor over all points in the workspace. Localization is using sensor data to determine
the configuration of the robot. Mapping is exploring and sensing an unknown environment
to construct a representation that is useful for navigation, coverage, or localization. This
thesis deals with algorithms used for navigation and coverage.

Properties of the Robot

Any object that needs to be moved safely can be the subject of a path planning. The planner
is significantly affected by the complexity of the object, the dimension of the configuration
space increases, as the complexity of the robot increases. For this reason, the paper considers
a simple, autonomous robot so that the reader can focus fully on the planning algorithms
themselves. The robot is one-dimensional, its configuration is defined by it's position (x, y).

Properties of the path planning algorithms

Path planning algorithms can be divided into multiple groups according to certain criteria.
Depending on the nature of the environment they are designed for, there are planners

designed for static environments, and dynamic environments. A static environment is
unvarying, the start and goal configurations along with the obstacles are fixed. In dynamic
environments the location of the start, goal and obstacles may vary during the search
process.

Depending on whether the robot has a priori knowledge about the environment, a plan­
ner can be global, if the robot has knowledge about the environment (in form of a map for
example). A planner is local, if it does not have a priori information knowledge about its
environment. In this case the robot needs a way to sense the locations of the obstacles, and
construct a map of the environment during the search process.

4

Depending on the completeness of the path planning algorithm, it can be complete,
meaning that if a solution exists it can find it in finite time. As the complexity of the
configuration space increases, the computing time for these kinds of algorithms may become
too long to be of any practical use. A planner can have weaker forms of completeness, such
as resolution completeness. It means, that if a solution exists at a given resolution, the
planner will find it. Another weaker form of completeness is probabilistic completeness. It
means that the probability of finding a solution converges to 1 as time goes to infinity.

5

Chapter 3

Roadmaps

Planners usually plan a path from a particular start configuration to a particular goal con­
figuration. In the case, where multiple paths have to be planned in the same configuration
space it would make sense to construct a representation of the configuration space, and
save it in a data structure, so it can be accessed later to make the construction of future
paths quicker. The data structure is referred to as a map, the procedure of generating the
map is called mapping.

This chapter focuses on a class of maps called roadmaps [11]. A roadmap is embedded
in the free space and hence the nodes and edges of a roadmap also carry physical meaning.
Using a roadmap, the planner can construct a path between any two points in a connected
component of the robot's free space by first finding a collision-free path onto the roadmap,
traversing the roadmap to the vicinity of the goal, and then constructing a collision-free
path from a point on the roadmap to the goal. This can be done, because all roadmaps
have the following three properties:

• Accessibility : there exists a path from the start to at least one of the graph nodes of
the roadmap, let this node be q'start

• Departability : there exists a path from the goal to at least one of the graph nodes
of the roadmap, let this node be q'goai

• Connectivity : there exists a path between q'start and q'goai for any q'start and q'goai

The following sections describe three different types of roadmaps: visibility maps, like
the Visibility Graph described in section 3.1, deformation retracts, like the Generalized
Voronoi Diagram described in section 3.2 and silhouettes, like Canny's Roadmap Algorithm
described in section 3.3.

3.1 Vis ibi l i ty Graph

The two defining characteristics of visibility maps are [4]:

• The nodes share an edge, if they are within line of sight of each other

• Every point of the configuration space is within line of sight of at least one node of
the visibility graph

G

Figure 3.1: The thin lines indicate the edges of the graph. The circles indicate the vertexes,
the blue line indicates the path between start and goal.

The simplest visibility map is called the visibility graph. [12] [11]
The standard visibility graph is defined in a two-dimensional polygonal configuration

space. The nodes correspond to the vertexes of the polygons, and include the start and
goal locations, the edges are straight lines connecting two line-of-sight nodes. Figure 3.1
shows an example of a visibility graph.

The visibility graph has many needless edges, and needless vertexes. The vertexes, that
are reflex are unnecessary to include in the graph [4]. A vertex V of a polygon is a reflex
vertex if its internal angle is strictly greater than IT . Otherwise the vertex is called convex.
To determine whether a vertex is reflex, one can for example use the following method:
take the two lines of the polygon, that the vertex is part of. Determine the center of the
two lines, and connect them with a line. Determine the center of this line as well. If this
center lies on the outside of the obstacle, the vertex is reflex.

It is also unnecessary to add the lines, that are not separating lines or supporting lines
to the graph [4]. A supporting line is tangent to two obstacles such that both obstacles lie
on the same side of the line. A separating line is tangent to two obstacles such that the
obstacles lie on opposite sides of the line. To determine whether a polygon lies on one side
of a line I the following method can be used. For each of the polygon's edges, calculate
the cross product of I and the edge. If all of the cross products are not negative, or all of

7

Figure 3.2: The thin lines indicate the edges of the graph. The circles indicate the vertexes,
the blue line indicates the path between start and goal.

them are not positive, then all of the edges of the polygon lie or one side of the line, and
therefore the whole polygon lies on one side of the line.

The reduced visibility graph is constructed from supporting and separating lines. Figure
3.2 shows an example of a reduced visibility graph.

3.2 Generalized Voronoi Diagram

First, the thesis gives a definition of the Voronoi diagram. Let S denote a set of points,
these points are referred to as sites in the plane [2]. A Voronoi region is the set of points
closest to a site [2]. The Voronoi diagram is the set of points equidistant to two sites. The
diagram itself sections of the free space into regions, that are closest to a particular site.
A n example is provided in figure 3.3.

The generalized Voronoi diagram (GVD) is a structure, that divides the configuration
space into generalized Voronoi cells (GVCs) around objects. Similar to the ordinary Voronoi
diagram, each G V C contains exactly one object, or site, and every point in the G V C is closer
to its contained object than to any other object. The generalized Voronoi diagram is the

8

Figure 3.3: Voronoi diagram for eight sites in the plane [2]

boundary of the cell complex, and thus every point on the G V D is equidistant from two or
more closest objects [6].

3.2.1 Construction of the G V D

In this section several methods for the construction of the G V D is described.
The first method is a sensor based approach. It incrementally constructs the G V D using

the range sensors of the robot. Using line-of-sight data, the robot accesses the G V D , and
begins tracing an edge until it reaches a meet point (a point, that is equidistant to three
or more obstacles), or a boundary point (a point, where the distance to the closest point
is zero). When the robot encounters a new meet point, it marks off the direction from
which it came as explored, and then identifies all new G V D edges that emanate from it.
From here, the robot explores a new G V D edge until it detects either another meet point
or a boundary point. If it detects another new meet point, the above branching process
recursively repeats. If the robot reaches an old meet point, the robot travels to a meet point
with an unexplored edge associated with it. When the robot reaches a boundary node, it
simply turns around and returns to a meet point with unexplored G V D edges. When all
meet points have no unexplored edges associated with them, exploration is complete.

The second method makes an assumption, that all obstacles in the configuration space
are polygonal. In such space, obstacles have two features, vertexes and edges. The set of
points equidistant to two vertices is a line; the set of points equidistant to two edges is
a line; and the set of points equidistant to a vertex and an edge is a parabola. The planner
can divide the free space into regions, and build the G V D that way.

The third method divides the configuration space into cells, the grid cells that contain
obstacles are assigned the number one, the rest are assigned zero. In the first step, all
zero-valued cells neighboring one-valued cells are labeled with two. Next, all zero-valued
pixels adjacent to two's are labeled with a three, this repeats until all cells are numbered.
This is called the Bushfire algorithm [4]. The method can be viewed as a wave front passing
over the cells of the grid. The wave fronts meet at points where the distance to two different
obstacles is the same. These are points on the G V D .

9

Figure 3.4: Example of the result of sweeping a slice through a two-dimensional configu­
ration space containing two obstacles. The dashed lines represent critical slices, the black
dots represent critical points, and the silhouette is highlighted in black

3.3 Canny's Roadmap Algor i thm

The algorithm is described in great detail in [3]. This thesis only describes it for a two-
dimensional configuration space.

The method described in [3] assumes an arbitrary sweep direction, for the sake of the
explanation, the slice chosen is parallel to the y axis of the configuration space, and the slice
is swept through the configuration space in the q\ direction (the direction towards in which
the x-coordinate increases in value). As the slice is swept through the configuration space,
extremal points along the slice are determined for each slice. In this case these extremal
points are the points where the slice intersects the boundary of an obstacle. The extremal
points of all the slices are the silhouette curves. These curves are usually not connected,
but one can look at the slices, where the number of silhouette curves changes. These slices
are called critical slices, and the ^-coordinates that parameterize them are called are called
critical values. The points on the silhouette curves where the silhouette curves are tangent
to the critical slices are named critical points. Normally on critical slices the silhouette
algorithm is recursively invoked where the new swept slice now has one less dimension than
the critical slice, and this slice is swept in a direction perpendicular to the q\ direction. In
this case it would cause the dimension of the slice to drop from two to one. In this case the
one-dimensional slice is the silhouette. The result is showcased in figure 3.4.

To connect the start and the goal to the graph, the slices they are part of are treated
as critical one-dimensional slices of the initial sweep. The algorithm forms a silhouette
network on these slices. The result is showcased in figure 3.5

10

11

Chapter 4

Cell Decompositions

In this chapter a different representation of the free space is considered, called an exact cell
decomposition. These representations divide the configuration space into simple regions
called cells. The decomposition is exact if, by unifying all the cells, we get the whole
configuration space. Shared edges between cells are not globally defined, but depend on
local conditions, such as changing the nearest or adjacent obstacle. Two cells are adjacent, if
they share such an edge. A graph can be constructed, which represents these relationships,
a node corresponds to a cell, and edges connect the nodes of adjacent cells. This graph
is called an adjacency graph. Wi th the decomposition of the configuration space found, it
is possible to plan a route between the initial and the target configuration in two steps.
First, the cells corresponding to the start and destination are determined. Second, a path
between these cells in the adjacency graph is then searched using algorithms such as A *
[8] or Dijkstra [5]. A n example of a decomposition and adjacency graph can be found on
figure 4.1.

However, cell decompositions can also be used for a different purpose. These algorithms
distinguish themselves by allowing for the creation of a path, that passes through all points
of the configuration space. A path planner, that can construct such a path is called a Cov­
erage path planner, and the path created this way is called a coverage path. A coverage
path can be computed in the following way: first the planner determines an exhaustive walk
through the adjacency graph, since each cell has a simple structure, they can be covered by

(a) The decomposition [13] (b) And the adjacency graph [13]

Figure 4.1: Trapezoidal decomposition example from [13]

12

simple back-and-forth or spiral motions. After each cell is covered in such a way, coverage
is achieved.

This chapter describes the most popular cell decomposition, which is the trapezoidal
decomposition [4].

4.1 Trapezoidal Decomposition

Due to its simplicity, the most used decomposition among the cell decompositions, is the
trapezoidal decomposition. One could say that dividing the configuration space into trian­
gles is more natural. However, this is not the case and even many algorithms for planar
triangulation use trapezoids as their initial decomposition.

This decomposition is limited to a polygonal environment, i.e. an environment in which
each object, including the outer boundary of the available space, is represented by a polygon.
Algorithms capable of dividing any configuration space are called Morse decompositions [1].

Definition of the Decomposition

For the sake of explanation, assume that each vertex Vi on all of the polygons has a unique
x coordinate, i.e., for all i ^ j , Vix ^ Vjx.

To create a decomposition, two half-lines are created at each vertex of the obstacles.
One upwards called the upper vertical extension and the other downwards called the lower
vertical extension, i.e. to both sides of the y axis. When the half-line hits the edge of
an obstacle, a new vertex is created at the intersection point, and a new edge is created
between the intersection point and the vertex. For many vertexes this means that they
generate a line in only one direction, or no lines at all.

The next step is to determine which cells contain the start and goal, once that is done,
the planner can search the adjacency graph for a path between cells. The result of the
graph search is a sequence of nodes, not a path. These nodes have to be connected, and
an explicit path determined. The trapezoid is a convex set, meaning any two points on the
inside of the trapezoid can be connected by a straight line segment, that does not intersect
any obstacles. The planner can use this fact, by connecting the midpoints of the vertical
extensions to the centroids of each trapezoid. The start and goal can be connected to the
graph by drawing a straight line to the vertical extensions midpoints, or the centroid of the
trapezoids containing them.

Construction of the Decomposition

The next issue is the construction of the decomposition. The input for the algorithm is
a configuration space containing polygons, represented by a list of vertexes. The first step
is to sort the vertexes by their x-coordinate in ascending order. This takes 0 (n log n) time,
and O(n) space, where n is the total number of vertexes. The next step is to determine the
vertical extensions. The extensions can be determined by sweeping a sweep line (similar to
the slice in Canny's roadmap algorithm section 3.3 5) through the free space stopping at
the vertexes, which are sometimes termed events. While passing the sweep line, the planner
can maintain a list L that contains the "current" edges which the slice intersects.

Wi th the list L, determining the vertical extensions at each event requires O(n) time
with a simple search, but if the list is stored in an "efficient" data structure like a balanced
tree, then the search requires O(logn) time. It is easy to determine the y-coordinates of

13

the intersection of the line that passes through each vertex Vi and each edge ei . The trick
is to find the appropriate edge or edges for the vertical extensions, i.e., the two edges that
v lies between. Let these two edges be called SLOWER and euppER-

So as long as the "current" list requires O(logn) insertions and deletions, as balanced
trees do, then keeping track of all the edges that intersect the sweep line, i.e., maintaining
L, requires 0(n log n) time. Let e i o w e r and euvver be the two edges that contain v (these
are not eiowER and CUPPER)- The "other" vertex of eiower has a y-coordinate lower than
the "other" vertex of eupper. Now, there are four types of events that can occur (figure 4.2
illustrates these events) and the type of event determines the appropriate action to take on
the list. These events and actions are:

• slower and eupPer are both to the left of the sweep line

— delete eiower and e u p p e r from the list

• slower and eupPer are both to the right of the sweep line

— insert eiower and eUpper into the list

• G^wer is to the left and e u p p e r . is to the right of the sweep line

— delete eiower from the list and insert eupper into the list

• Glower is to the right and e u p p e r . is to the left of the sweep line

— delete e u p p e r . from the list and insert GiOWer into the list

The figure 4.3 contains examples of the sweep line being swept through a polygonal free
space with the corresponding list updates at each event.

14

(a) L : 0 -» {e8, ei3} (b) L : {e8, ei3} -> {e8, e0, e3, ei3}

Chapter 5

Sampling-based algorithms

This chapter introduces the basic concept of Sampling-Based algorithms. Section 5.2 de­
scribes the Probabilistic Roadmap Algorithm (from this point on P R M is used as an ab­
breviation). Section 5.3 describes Single-query Sampling-Based Planners, Expansive-Spaces
Trees (from this point on EST is used as an abbreviation) is described in 5.3.1, and Rapidly
Exploring Random Trees (from this point on R R T is used as an abbreviation) is described
in 5.3.2.

The algorithms described in chapter 3 build roadmaps in the free configuration space.
Every algorithm relied on an explicit representation of the geometry of the configuration
space. These algorithms become impractical in higher dimensions, as their computation
time increases exponentially [4]. Sampling-based algorithms employ a variety of strategies
for generating samples (which are collision-free configurations in the configuration space),
and for connecting the samples with paths. These samples and connections result in a map,
which can be used to solve path-planning problems.

Sampling-based algorithms can be divided into these categories:

• Single-query - for all queries, the algorithm constructs a new graph, which connects
the start and goal points. Examples include R R T , explained in chapter 5.3.2, or EST,
explained in chapter 5.3.1.

• Multi-query - these algorithms construct a graph in the configuration space once.
To search for a path between two points, these algorithms add the two points to
the graph, and search for a path between them. This operation is repeated for each
subsequent query. Examples include P R M , which is explained in chapter 5.2

• Combined - these algorithms use both approaches, and can be used for multiple
searches, and they can use a one-query algorithm internally. Examples include Sam­
pling Based Roadmap of Trees

5.1 Sampling-Based planner characteristics

A characteristic of planners described in this chapter is, that they do not construct the
boundaries of the configuration space, or represent cells in the configuration space. Instead
they rely on procedures, which can determine, whether a configuration of a robot is collision
free.

Another characteristic of these planners, is that they have some form of completeness.
Completeness requires, that the planner always answers a path-planning query correctly, in

16

asymptotically bounded time. Complete planners cannot be implemented for high dimen­
sion configuration spaces, due to the complexities of the computation required. A weaker
form of completeness can be achieved however: if a path exists, the planner will find it after
enough time has passed. The P R M has this characteristic [4].

5.2 Basic P R M

The P R M was first described in [10]. The P R M algorithm works in two phases. First is
the learning phase, during which a roadmap is built in the configuration space; and a query
phase, during which the user-generated queries are answered. The reason for this division
is, so the planner can capture the connectivity of the configuration space effectively, and
the queries can then be answered more efficiently. This section explains the basic form of
the P R M .

The roadmap of the basic P R M is represented by a graph G = (V,E). The nodes V
correspond to configurations chosen randomly from a uniform distribution from the config­
uration space. The edges E correspond to paths; these are collision-free paths connecting
two configurations from V. In their simplest form, these edges are straight lines.

Construction phase

Algorithm 1 describes the steps for the construction of the roadmap. In the beginning the
graph G = (V, E) is empty. Then a random free configuration is sampled, and added to
the graph. The sampling is done using a random uniform distribution on the configuration
space. The sampling is repeated until n configurations have been added to the graph. For
all nodes in the graph the k closest neighbors are selected according to some distance metric
dist (in this case it is the Euclidean distance between configurations). The algorithm then
tries to connect each node to its neighbors (in this case drawing a straight line between
the configurations). If the connection is successful (the edge is not in an obstacle) the edge
between the two vertexes is added to the graph. Figure 5.1 shows a roadmap constructed
in such a way.

17

Algorithm 1 Roadmap Construction Algorithm from [4]
Input
n : number of nodes to put in the roadmap
k : number of closest neighbors to examine for each configuration
Output
A roadmap G = (V,E)

2: £ ^ 0
3: while \ V\ < n do
4: repeat
5: q a random configuration in Q
6: until q is collision-free
7: V <—VU {q}
8: end while
9: for all q G V do

10: Nq <— the k closest neighbors of q chosen from V according to dist
11: for all q' G Nq do
12: if (q, q') £ E and A(q, q') ± NIL then
13: E^EU{(q,q')}
14: end if
15: end for
16: end for

Figure 5.1: Example of P R M after the planning stage. The gray areas are obstacles. Empty
circles are nodes. The straight lines are edges. [4]

Query phase

In this phase the algorithm constructs paths between arbitrary configurations qinu and
Qgoal- These configurations must be collision-free. This process is illustrated in Algorithm
2. The algorithm connects qinu by considering its k closest neighbors according to the

18

distance metric dist, it tries to connect each of them, until one connection is made. The
same procedure is repeated for qgoai • If the connections are successful, the shortest path is
determined using an algorithm like Dijkstra [5] or A * [8]. Figure 5.2 shows a path computed
by this phase.

Algorithm 2 Solve Query Algorithm from [4]
Input
qinit : the initial configuration
qgoai '• the goal configuration
k : the number of closest neighbors to examine for each configuration
G = (V, E) : the roadmap computed by algorithm 1
Output

A path from q^u to qgoal or failure

1: Nqinit <— the k closest neighbors of Qinit
from V according to dist

2: Nqgoal <— the k closest neighbors of Qinit
from V according to dist

3: V <- {qinit} U {qgoal} U V
4: set q' to be the closest neighbor of qinu in Nqinit

5: repeat
6: if A(qinU,q') ^NIL then
7: E ^ (qinu, q')U E
8: else
9: set </ to be the next closest neighbor of qinu in Nqinit

10: end if
11: until a connection was successful to the set Nqinit is empty
12: set q' to be the closest neighbor of qgoai in Nqgoal

13: repeat
14: if A(qgoal,q') ^NIL then
15: E < - {qgoal,q') UE
16: else
17: set </ to be the next closest neighbor of qgoai in Nqgoal

18: end if
19: until a connection was successful to the set Nqgoal is empty
20: P <- shortest path(% n i i, g s o a Z , G)
21: if P is not empty then
22: return P
23: else
24: return failure
25: end if

19

Disadvantages of P R M

The algorithm does not give the optimal solution every time. Considering a configuration
space with a large number of obstacles situated very close to each other. Assuming the
gap between two obstacles is very narrow, and the system generates nodes using a random
uniform distribution. The probability of generating nodes between those gaps is small.
Increasing the number of nodes in the map does not solve this problem, as it exists because
of the chosen distribution. When the system fails to generate a path for such configurations
of the space, it cannot be determined whether it is because the path does not exist, or the
number of vertexes is too small. This problem is solved by the R R T algorithm, explained
in section 5.3.2.

5.3 Single-Query Sampling-Based Planners

There are instances in path planning, where the answer to a single query is desired instead
of multiple. These queries are best solved using single-query planners, as they attempt to
solve a query as fast as possible, and do not focus on exploring the entire configuration
space. P R M described in 5.2 can be used as such a planner. It should check periodically if
the query can be solved, and proceed to the query phase. The next two sections describe
two planners, that were designed for single-query planning, these are ESTs and RRTs. The
planners maintain two trees, one rooted at the start, and one rooted at the goal, and then
grow the trees towards each other until they can be merged into one. In the construction
step a new configuration is selected near the boundaries of the trees, and the planner tries
to connect the configuration to some configuration in the tree. In the merging step, the
planner tries to connect pairs of configuration selected from both trees, on the success of
this step, the two trees became connected at a single point. This means, that a path from
the start configuration exists, and now can be found in the merged tree.

To answer a single query efficiently, it is necessary to cover only parts of the configu­
ration space, that are relevant for solving the query. EST and R R T both have a sampling
strategies, that focus on exploring yet unexplored areas of the configuration space. This

20

means, that the generation of new samples is dependent on the generation of the previous
samples, the start and goal positions.

5.3.1 Expansive-Spaces Trees

Construction of the two trees

Let Tinit and Tgoa\ be trees rooted at the start configuration qinn and the goal configuration
Qgoal respectively. First a random configuration from one of the trees is selected, let this
be q, and let the probability of q being selected be ~KT{Q) and the tree it was selected from
T. The planner then samples a random configuration from the neighborhood of q from
a random uniform distribution, let this configuration be qrand- The planner attempts to
connect q to qrandi if the connection is successful qrand is added to T, and (q, qrand) is
added to the edges of T. The pseudocode describing the tree construction can be found in
algorithm 3 and algorithm 4. Figure 5.3 illustrates this method.

During the roadmap construction of P R M in section 5.2 a new configuration is always
added to the graph, without checking whether it can be connected to the existing graph.
In EST the new configuration is only added to a tree, if it can be connected to that tree,
therefore there is a path between all configurations within a tree.

Algorithm 3 Build EST Algorithm from [4]
Input
qo : the configuration where the tree is rooted
n : number of attempts to expand the tree
Output
A tree T = (V, E), that is rooted at qo and has < n configurations

3:
2
1 V <- {q0}

for {i = 1 to n) do

6:

4:
5

q a randomly chosen configuration from T with probability 7T"t(<7)
end for
return T

21

Figure 5.3: Adding a new configuration to EST. T is the tree, q is the configuration to be
expanded, q'rand and q"and are configurations to be added. [4]

Algorithm 4 Extend E S T Algorithm from [4]
Input
T = (V, E) : an EST
q : a configuration from which to grow T
Output
A new configuration qnew in the neighborhood of q, or NIL in case of failure

1: Qnew a random collision-free configuration from the neighborhood of q
2: if A(q,qnew) then
3: V^VU{qnew}
4: E <- EU{(q,qnew)}
5: return qnew

6: end if
7: return NIL

Configuration weighting

EST relies on its ability not to over sample a region of the configuration space. This is
most pronounced, when sampling in the neighborhood of qinu and qgoai- Because of this,
the probability density function TTT must be given careful consideration. A function, which
generates samples in the neighbourhood of configurations, which are sparse is preferred.
In practice, one approach, that works well associates each configuration q with a weight
WT(Q), that counts the number of configuration within its neighborhood. If TTT is inversely
proportional to WT^q), then the configurations with sparse neighborhoods have a higher
chance to be picked for expansion.

Merging of the two trees

The merging of Tjn# and Tgoai can be achieved by pushing the construction of Tjn# towards
Tgoal- After the planner expanded the tree using the method described in 4, the planner
attempts to connect q to its closest k configurations in Tgoa[. If a connection is successful,

22

Figure 5.4: Merging two EST trees. The configuration q is just added to T ^ . The planner
connected q to y in the second tree Tgoai. [4]

the two trees are merged. Otherwise the trees are swapped, and the process is repeated.
This is illustrated in figure 5.4.

Another way of connecting the two trees is by only growing one of them, but instead
of generating only one configuration from the neighborhood of q, the planner generates
k new configurations instead. The planner then attempts to connect these configurations
one-by-one to Tina. After this a new configuration is chose for expansion. First the planner
checks, whether this randomly selected configuration can be connected to qgoai, and if the
connection is successful, the two trees are merged.

5.3.2 Rapidly-Exploring Random Trees

Construction of the two trees

Let Tinit and Tgoai be trees rooted at the start configuration qinn and the goal configuration
Qgoai respectively. Since both trees are extended, let T denote the tree, that is currently
being extended. First, a random collision-free configuration is selected from a uniform
random distribution from the configuration space, let this be qrand- Then the nearest
configuration from T to qrand is found, let this configuration be qnear- If Qrand is closer to
Qnear than stepsize, the planner check whether a connection between qnear and qrand can be
established. If that is the case qrand is added to the vertexes of T, and the edge (qrand, Qnear)

is added to the edges of T.
In the case qrand is farther from qnear than stepsize, the planner moves from qnear

a distance of stepsize towards qrandi let the configuration the planner arrived at be q n e w .

The planner check whether a connection between qnear and q n e w can be established. If that
is the case qnew is added to the vertexes of T, and the edge (qnew, Qnear) is added to the
edges of T, and q n e w becomes the new qnear- This process is described in the pseudocode
given in algorithms 5 and 6. The process is illustrated in figure 5.5.

a greedier approach can also be considered. The process of stepping towards qrand can be
repeated until either qrand is reached, or the planner cannot establish a connection between
qnew and qnear- This is described in algorithm 7.

23

Algorithm 5 Build R R T Algorithm from [4]
Input
qo : the configuration where the tree is rooted
n : the number of attempts to expand the tree
Output
A tree T = (V, E), that is rooted at qo and has < n configurations

1: V <- {q0}
2: E^$
3: for i = 1 to n do
4: qrand ^~ a randomly chosen free configuration
5: extend R R T (T, qrand)
6: end for
7: return T

Algorithm 6 Extend R R T Algorithm from [4]
Input
T = (V, E) : an R R T
q : a configuration toward which the tree T is grown
Output

A new configuration qnew toward q, or NIL in case of failure

1: Qnear ^~ closest neighbor of q in T

2: qnew ^~ progress qnear by step_size along the straight line in Q between qnear and qrand
3: if qnew is collision-free then
4: V^VU{qnew}
5: E <(— E U {(qnear, Qnew)}
6: return qnew

7: end if
8: return NIL

24

o
•

Figure 5.5: Adding a new configuration to R R T . Configuration qrand is selected randomly.
Configuration q is the closest configuration in T to qrand- Configuration q n e w is obtained
by moving q by stepsize toward qrand- [4]

Algorithm 7 Connect R R T Algorithm from [4]

T = (V, E) : an R R T
q : a configuration toward which the tree T is grown
Output

connected if q is connected to T, failure otherwise

1: repeat
2: Qnew <— extend R R T (T, q)
3: until {qnew = q or q n e w =NIL)
4: if q n e w = q then
5: return connected
6: else
7: return failure
8: end if

Sampling bias

In the base version of R R T the planner selects a configuration from a uniform random
distribution. This can be improved by considering a sampling function, that is biased
towards qgoai- A n extreme approach would be to set qrand to qgoai anytime a random
configuration is generated. This would introduce too much bias, and the R R T would get
stuck, therefore a suitable sampling function is one, that alternates, based on some kind
of probability distribution, between uniform sampling and biased sampling. Experimental
evidence has shown that setting qrand to qgoai with probability p, or randomly generating
Qrand with probability 1 - p from a uniform distribution, works well. Even for small values
of p, such as 0.05, the tree rooted at qinu converges much faster to qgoal than when just
uniform sampling is used [4].

Input

25

Trand

Figure 5.6: Merge two RRTs. Configuration qrand is generated randomly. Configuration q\

was extended to qrand- Configuration q2 is the closest configuration to qrand
 m Tgoai. [4]

Merging of the two trees

Let Tinu and Tgoa\ be trees rooted at the start configuration qinu and the goal configuration
Qgoal respectively. The planner grows both trees toward each other, let T denote the tree,
that is currently being expanded. First, a random configuration is generated from the
configuration space, let this configuration be qrand • R R T extends T towards qrand, and
obtains a new configuration q n e w . Then the planner extends the other tree towards q n e w .
If the planner reaches qnew, that means the trees are merged at qnew, and the algorithm is
terminated. Otherwise the two trees are swapped, and the process is repeated £ times. The
algorithm pseudocode for this is presented in algorithm 8. Figure 5.6 illustrates this.

Algorithm 8 Merge R R T Algorithm from [4]
Input
I i : first R R T
T2 : second R R T
£ : number of attempts allowed to merge T\ and T2

Output

merged if the two RRTs are connected to each other, failure otherwise

1: for i = 1 to £ do

2: qrand ^~ a randomly chosen free configuration
Qnew,l <- extend R R T (T1, q r a n d)

4: if qnew,i / NIL then
5: qnew,2<r- extend R R T (T 2 , q w ^ i)
6: if qnew,i = Qnew,2 then
7: return merged
8: end if
9: S W A P (T i , r 2)

10: end if
11: end for
12: return failure

26

Chapter 6

Description of the application

This chapter describes the implemented application demonstrating the algorithms described
in the previous chapters. Section 6.1 describes the library used for the implementation of the
algorithm. Section 6.2 describes the user interface of the application. Section 6.3 contains
specifics about the individual algorithms. Section 6.4 describes, how the application was
tested, it also describes the results of the tests.

6.1 The Viz l i b library

To help with the implementation of the algorithms described in the previous chapters, the
vizlib library was chosen. This is a library implemented by Jakub Rusnak as part of his
master's thesis [9]. This library abstracts parts of the user interface - views, which allow
the programmer to quickly show how the algorithms work. There are five different types of
views implemented in the library:

• Map View - Visualizes the configuration space 6.1

• CodeView - Contains the pseudocode of the algorithm, it also allows for step-by-step
highlighting of a single line 6.2

• ConsoleView - Allows the programmer to display text information about the currently
executed step 6.3

• Toolbar View - Allows the user to control the simulation using buttons, or edit the
map 6.4

• Parameter View - Allows the user to edit the parameters of the algorithm, also contains
presets 6.5

27

163)

Figure 6.1: Map View

28

1. Add S t a r t to st a r t g r a p h
2. Add Goal to goalgraph
3. w h i l e i<n or S t a r t and Goal c<
4. get random free c o n f i g u r a t i i i
5. q_newl = extend(startgraph,
6. i f q newl != n u l l
7. q_new2 = extend(goalgraph
8. i f q_newl == q_new2
9. break, w h i l e

10. swap st a r t g r a p h and goal<
11. increase i
12. f i n d path from S t a r t to Goal
13. f u n c t i o n Vertex extend(graph
14. get c l o s e s t vertex from gr<
15. re t u r n _ v e r t e x = n u l l
1 fi i f H i = ; r a n r p f r n m o n H n m

n

Figure 6.2: CodeView

Î IIPHI • Will I ÛUU TUUj

Graphs are connected at POINT (860 463)p
Finding path
Path found

Figure 6.3: ConsoleView

Large step back I Step back Large step

Figure 6.4: ToolbarView

29

M a x i m u m number of ver texes t o add t o graph

5 0 0 Tries

Step size

• Show s tep?

Probabi l i ty t o choose goal

1D0.D

0.25

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

Test 9

Figure 6.5: Parameter View

The application has two modes: editing and simulation. In editing mode it is possible
to create a map with obstacles using the buttons in the ToolbarView, or chose one of the
presets, and change algorithm parameters in the Parameter View. The editing mode is
shown in 6.6.

30

Figure 6.6: Application editing mode

In simulation mode the running of the algorithm itself is visualized. On the right side in
the CodeView the pseudocode of the algorithm is displayed, and the ConsoleView displays
information about the currently executed step. The main reason for using this library is to
implement the step-by-step execution of algorithms, that is the most important element in
regards to this thesis. The simulation mode is shown in 6.7.

31

Figure 6.7: Application simulation mode

The work of Jakub Rusnak contains implementations of four path planning algorithm,
that fall under the scope of this thesis, these are Visibility Graph, P R M , EST and R R T
[9]. These implementations were not used in the making of the application for two main
reasons. The first reason is, that they are decentralized, meaning each of the algorithms can
only be run individually, the specifics about how this problem was solved can be found in
section 6.2. The second reason is, that this thesis specifically deals with the implementation
and visualization of path planning algorithms, therefore I decided, that implementing my
own version of the algorithms in question is a better solution. The algorithms can be
implemented in such a way, so that the first problem is solved at the same time.

6.2 Applicat ion user interface

During the design process for the user interface, multiple designs were considered, this
section describes why was the final one chosen over the others.

The original idea was for the whole application to be displayed in one window. This
approach has led to problems however. The view responsible for the changing of the algo­
rithms would have had to be synchronised across all of them. This was not feasible due
to the design of the vizlib library. In the library, when an object of type mainPanel is
created, the views the mainPanel has registered for use have to be specified when calling
its constructor. It is impossible to construct all mainPanel objects simultaneously, the
view responsible for the changing of the mainPanels would therefore be different at the
construction of each mainPanel. The view would also have a different name in each of
the mainPanel implementations, leading to further complications. The mainPanels would
try to access the view simultaneously, this leads to ConcurrentModificationException being
thrown at every mainPanel change.

32

Due to the complications described above I have decided on a different design. The
changing of algorithms is handled in a separate window from the window, that displays the
algorithms. This design solves the problems mentioned in the above paragraph. A n example
of the two application windows is shown in 6.8.

B - • x

Roadmaps

Visibility Graph

Reduced Visibility Graph

Voronoi

Canny's roadmap

Trapezoidal Decomposi...

Cell decomposit ions

Trapezoidal

Probabilistic algorithms

PRM

EST

RRT

Figure 6.8: Second window of the application

6.3 Specific notes about individual algorithms

During the implementation of the algorithms, great care was taken to ensure, that they
resemble their theoretical description described in the previous chapters. This was done
to allow seamless transition from theory to practice and simple experimentation with algo­
rithms, which are described in textbooks. The subsections of this section are dedicated to
differences from the descriptions, and to the explanations of the necessity of these differ­
ences.

Voronoi Diagram

The algorithm described in section 3.2 traverses the entire configuration space to make
a map of it. This means, that the implemented algorithm must calculate whether the
current point of the configuration space is part of the Voronoi diagram or not. In order
to lessen the number of steps needed to construct the graph, a grid was imposed on the
configuration space. The algorithm calculates, whether there is point in the cell, that is part
of the Voronoi diagram. The size of each cell is 5 pixels * 5 pixels, this size was determined
experimentally, with this size the algorithm does not get stuck inside smaller holes, and
runs approximately 25 times faster. The planner also constructs the graph slice-by-slice

33

similar to Canny's roadmap algorithm described in 3.3, this leads to further reductions in
computing time.

The method described in chapter 3.2 also requires the configuration space to be bounded
in some way. The vizlib library does not have a function to make this possible. This is
solved by adding obstacles to the edges of the configuration space for each of the presets.
The user is free to move these bounds as they see fit. The other restriction imposed onto
the algorithm, is that it only works within the bounds of the configuration space, but it
does not treat these bounds as obstacles. If the user deletes all the boundaries, and only
has a single obstacle in the configuration space, all points of the configuration space are
equal distance apart from other obstacles (as the is only one), and are therefore part of the
Voronoi diagram.

Canny's Roadmap algorithm

The algorithm described in section 3.3 considers slices for all values of the x coordinate
of the configuration space. The algorithm implemented only considers every fifth slice
of the configuration space, as well as the slices containing the vertexes of obstacles, this
simplification can be done, due to the fact, that all obstacles are polygonal. This can reduce
the time to construct the graph by up to a factor of 5 (if every slice contains a vertex, there
is no change in computation time). By only leaving out slices, that do not contain vertexes,
it is ensured, that the algorithm does not generate a graph, that intersects obstacles, and
by visiting every slice containing a vertex, it is ensured, that the points of the graph are
connected.

The same statements about the bounds of the configuration space described in the
previous subsection apply to this algorithm as well.

Basic Probabilistic Roadmap

The algorithm described in section 5.2 is a multi-query algorithm. The implemented algo­
rithm, however is the single-query version of P R M , this change was necessary due to the
fact, that the vizlib library only allows the user to set a single start, and a single goal point
[9].

Expansive-Spaces Trees

In order to implement a graph with weighted nodes described in the Configuration weighting
section of 5.3.1, a weighted graph is required. The vizlib library does not have such graph,
so it had to be implemented. The graph is implemented in the file WeightedGraph.java,
and the weighted vertexes are implemented in WeightedVetex.java. The weight calculation
is done by the function named recalculate Weights().

6.4 Testing the application

In this chapter, the comparison and testing of the algorithms is described. Testing was
done using a batch for hand generated maps. There are nine maps in total, they contain
obstacles increasing in number (from left to right on 6.9), and increasing complexity (from
top to bottom on 6.9). These maps can be found as presets for each algorithm, in the
respective algorithm's ParameterView. Figure 6.9 illustrates these maps.

In this chapter I have attempted to answer the following questions:

34

• Which of the deterministic roadmap algorithms generates the shortest path?

• Which of the probabilistic roadmap algorithms generates the shortest path?

• How do deterministic and probabilistic roadmaps compare in terms of path length?

• What effect does the different sampling methods of EST and R R T have on the number
of nodes in the generated graph?

• Given equal amounts of random vertexes P R M or R R T has a higher success rate?

• What effect does the probability of choosing goal instead of a random configuration
in R R T have on the number of random configurations needed to reach the goal?

Unless otherwise stated, to search the graphs, the A * algorithm is used with Euclidean
distance as the heuristic, as it finds the paths faster than Dijkstra's algorithm, for known
start and goal positions [7].

© <
©

© © ^ ^ ^ ^

(a) Testl (b) Test2 (c) Test3

©

(d) Test4 (e) Test5 (f) Test6

© 1

© it
©

(g) Test7 (h) Test8 (i) Test9

Figure 6.9: The maps the tests were conducted on

35

Deterministic algorithm comparison

The algorithms compared in this section are the following:

• Visibility Graph

• Reduced Visibility Graph

• Generalized Voronoi Diagram

• Canny's Roadmap Algorithm

In the context of navigation for deterministic algorithms, one of the most important
indicator of the algorithm's performance is the length of the path found. Figure 6.10
illustrates the paths found on Test9, and the table 6.1 contains the results of all tests.

(a) Visibility Graph (b) Reduced Visibility Graph

(c) Generalized Voronoi Diagram (d) Canny's Roadmap Algorithm

Figure 6.10: Maps generated using Test9

The results show, that the Reduced Visibility Graph provides the shortest path, followed
by the Visibility Graph, followed by the Generalized Voronoi Diagram, followed by Canny's
Roadmap Algorithm. This confirms the relation between the Visibility Graph and the
Reduced Visibility Graph. These algorithms move near the walls of the obstacles, in practice
this may not always be desirable. Canny's Roadmap Algorithm avoids the obstacles inside

36

Tests
Visibility

Graph
Reduced Visibility

Graph
Generalized Voronoi

Diagram
Canny's Roadmap

Algorithm
Testl 912.36 912.36 1083.34 1516.0
Test2 1150.67 1150.67 1600.34 1516.0
Test3 1260.95 1260.95 1245.77 1848.34
Test4 1114.1 895.37 1211.14 1516.0
Test5 1463.66 1306.49 1492.22 1780.57
Test6 1303.95 1303.95 1214.26 1941.62
Test7 1009.91 1009.91 1176.19 1859.74
Test8 1237.59 1311.87 1459.03 2052.46
Test9 1221.76 1127.43 1334.7 2053.32

£ 10674.95 10279.0 11817.01 16084.05

Table 6.1: Results of the tests comparing the lengths of paths found.

the bounds of the configuration space, and follows the bounds instead, and the Generalized
Voronoi Diagram aims to avoid going near the walls as much as possible. The results also
show, that the more obstacles there are, the longer the paths are on average, and the same
goes for the complexity of the obstacles.

Probabilistic algorithm comparison

The algorithms compared in this section are the following:

. Basic P R M

. EST

. R R T

In the context of navigation for probabilistic algorithms, one of the most important
indicator of the algorithm's performance is the length of the path found. Figure 6.11
illustrates a path found on Test9, and the table 6.2 contains the results of all tests.

The algorithms were ran 100 times for each test using the following parameters:

• Basic Probabilistic Roadmap - the number of nodes generated was set to 50, the
maximum number of connections per node was set to 5, in case of failure, the algorithm
was ran again

• Expansive-Spaces Trees - the maximum distance between vertexes was set to 100
pixels, and the random number of nearby nodes generated was set to 5

• Rapidly-Exploring Random Trees - the maximum distance between vertexes was set
to 100 pixels, the maximum number of tries was ignored, so the algorithm always pro­
duces a path, and the probability to select the goal instead of a random configuration
was set to 0.0.

The tests show, that the EST and R R T algorithms generate significantly shorter paths
compared to P R M , this confirms, that guided sampling reduces the length of the generated
paths. In environments with less obstacles EST performed the best, in environments with

37

(a) Probabilistic Roadmap (b) Expansive-Spaces Trees

(c) Rapidly-Exploring Random Trees

Figure 6.11: Maps generated using Test9

Tests Basic Probabilistic Roadmap
Expansive-Spaces

Trees
Rapidly-Exploring

Random Trees
Testl 1530.02 1007.76 1189.24
Test2 1514.04 1423.04 1417.22
Test3 1444.15 1465.08 1261.48
Test4 1359.93 1210.56 1287.25
Test5 1558.14 1515.08 1459.28
Test6 1468.0 1439.16 1307.6
Test7 1375.67 1216.04 1396.16
Test8 1553.59 1565.28 1510.48
Test9 1538.88 1446.12 1418.11

£ 13342.42 12288.12 12246.82

Table 6.2: Results of the tests comparing the average lengths of paths found.

more number of obstacles R R T generated the shortest paths. The complexity of the obsta­
cles increased the length of paths, and had the most significant effect on the EST algorithm.
During testing two additional observation were made. The first is, that the P R M fails more

38

often, the more obstacles are in the configuration space. The second is, that the complexity
of the configuration space disproportionately impacted the runtime of EST.

Comparison of the deterministic and probabilistic algorithms

The results from the previous two sections confirm, that deterministic algorithms generate
shorter paths, than their probabilistic counterparts. Canny's roadmap algorithm is an in­
teresting outlier in the comparisons, as it has generated paths, that are on average 1.2 times
longer than even P R M . The deterministic algorithms consistently generated shorter paths
across 8 of the 9 test cases, except in Test2, where the generated a path in the Generalized
Voronoi Diagram goes in-between the two obstacles instead of going around them. Later
investigation revealed, that this is due to the A * algorithm, that was used to find the path.

Comparison of sampling strategies

This test compares the two sampling strategies used in the EST and R R T algorithms. The
EST uses a sampling strategy, that generates samples near the tree rooted in the start
point, and R R T generates samples from a uniform random distribution, and tries to extend
the tree towards the sample. The number of nodes in each of the generated graphs was
counted, and the results averaged for each testing map. Table 6.3 contains the results.

The algorithms were ran 100 times for each test using the following parameters:

• Expansive-Spaces Trees - the maximum distance between vertexes was set to 100
pixels, and the random number of nearby nodes generated was set to 5

• Rapidly-Exploring Random Trees - the maximum distance between vertexes was set
to 100 pixels, the maximum number of tries was ignored, so the algorithm always pro­
duces a path, and the probability to select the goal instead of a random configuration
was set to 0.0.

Tests
Expansive-Spaces

Trees vertexes
Rapidly-Exploring

Random Trees vertexes
Ratio of vertexes

generated
Testl 21.88 18.25 1.2
Test2 77.8 23.56 3.3
Test3 107.72 23.96 4.5
Test4 48.76 27.44 1.78
Test5 129.04 27.44 4.7
Test6 121.44 27.68 4.39
Test 7 49.68 36.68 1.35
Test8 127.52 47.88 2.66
Test9 99.4 36.52 2.72

average 87.03 29.93 2.9

Table 6.3: Results of the tests comparing the average number of vertexes in the graphs.

The tests show, that the sampling strategy used by R R T generates trees, that have
fewer nodes in them on average by a factor of 2.9, this is to be expected as is R R T a config­
uration is only added to the tree, if it is situated in the direction of the randomly generated
configuration. This trend becomes more pronounced, the more complex the configuration
space is, the number of objects has a bigger effect on this than their complexity.

39

P R M and R R T success rate comparison

This section compares the success rates of P R M and R R T , given the same number of
randomly generated vertexes. Both algorithms utilize the same sampling strategy, but
use the samples in a different way. The P R M algorithm always adds them to its generated
roadmap, while the R R T extends its current roadmap towards them. The table 6.4 contains
the results.

The algorithms were ran 100 times for each test using the following parameters:

• Basic Probabilistic Roadmap - the number of nodes generated was set to 50, the
maximum number of connections per node was set to 5.

• Rapidly-Exploring Random Trees - the maximum distance between vertexes was set
to 100 pixels, the maximum number of tries was set to 50, and the probability to
select the goal instead of a random configuration was set to 0.0.

The reason for the low number of tries per run is, so the differences between the two
algorithms become more pronounced.

Tests
Basic Probabilistic

Roadmap success rate
Rapidly-Exploring

Random Trees success rate
Testl 1.0 1.0
Test2 0.86 0.95
Test3 0.81 0.95
Test4 0.91 0.91
Test5 0.85 0.89
Test6 0.83 0.93
Test 7 0.79 0.84
Test8 0.74 0.61
Test9 0.49 0.46

Table 6.4: Results of the tests comparing the success rates for the algorithms

The test show, that for most cases R R T produces results with higher consistency than
P R M . The paths generated by the R R T were also shorter than those generated by P R M .
The cases of Test8 and Test9 are outliers from this trend, but this test did not take into
account, that adding a node to the graph of P R M a more complex operation, than adding
a node to the graph of R R T . For P R M the 5 closest neighbors have to be determined first,
before the edge can be added, while R R T only determines the closest neighbor once.

Effect of the introduction of a bias into the probability density function
of R R T

This section attempts to test what effect does the probability of choosing goal as a random
configuration in R R T have on the number of random configurations needed to reach the goal.
For the remainder of the section, this probability is referred to as p. The test conducted in
the previous section showed, that from all available configurations the algorithm had the
smallest probability of finding a path on Test9, therefore this is the preset, that is used for
this test. The table 6.5 contains the results.

40

The algorithms was ran 100 times for each tested value of p, the limit on the number
of generated random configurations was ignored, the maximum distance between nearest
Vertexes was set to 100.0.

p
average number of

random configurations
median of

random configurations
0 67.02 57

0.05 75.54 52
0.1 86.28 80
0.15 74.52 51
0.2 75.58 60
0.25 104.46 82

Table 6.5: Results of the tests containing the number of average tries, and the medians for
each number of tries for each p

The dispersion of the results was very big, so the medians of the numbers of generated
random configurations are also compared. The average values do not match the predictions
outlined in [4]. The median values however follow the assumptions outlined in [4] with one
exception for p = 0.1, but this can be attributed to the low number of tests conducted.
From the test, two observations can be made. First, the value of p indeed has an effect
on the generated graph, as stated in [4]. Second, there is an optimal value of p for this
configuration, and this number is between 0.05 and 0.1. At the value p = 0.25 the average
and median both start to become exponentially bigger, and start to approach infinity as p
approaches 1.0.

41

Chapter 7

Conclusion

In this thesis, path planning algorithms were studied. A total of nine algorithms were
implemented. Five for generating deterministic roadmaps, one for generating a coverage
path and three for generating probabilistic roadmaps.

In addition, an application was created in Java that allows step-by-step execution of
these algorithms, so the user can form a better understanding of these algorithms. A study
was also created from the results obtained during the testing of these algorithms.

The study shows, that among the deterministic algorithms the Reduced Visibility
Graph produces the shortest paths for the test data. Among the probabilistic algorithms
Expansive-Spaces Trees (EST) produced the shortest paths for a small number of obstacles,
as the number of objects increases, the Rapidly-Exploring Random Trees (RRT) algorithm
produces shorter paths. The deterministic algorithms on average produce shorter paths
than the probabilistic algorithms, with the exception of Canny's roadmap algorithm, which
produced longer paths than every other algorithm. The different sampling methods of EST
and R R T were compared. This comparison has proven, that RRT's sampling method gen­
erates graphs with fewer nodes. The success rate of the Probabilistic Roadmap Algorithm
(PRM) and R R T was also compared. The algorithms were given the same amount of sam­
ples. The test results show, that on average R R T has a higher success rate, and generates
shorter paths. The effect of the probability of choosing goal instead of a random configura­
tion in R R T has on the number of random configurations needed to reach the goal was also
studied. The tests show, that the optimal probability to chose the goal is between 0.05 and
0.15. Probabilities larger than 0.2 increased the number of random configurations needed.

Within the study of the described approaches, there are frequent examples of environ­
ments with an external obstacle, an obstacle limiting the outer boundary of the available
space. The vizlib library does not allow for creation of such obstacles, a workaround was de­
veloped to solve the problem, because extending the library with this function is not trivial.
The next step in this work would be, to increase the robustness of the implemented algo­
rithms, and to extend the library by the mentioned with the probability of adding external
obstacles. The application should further be extended by the implementation of algorithms
from other authors. Implementing the Opportunistic Path Planner, the Boustophedon De­
composition and the Sampling-Based Roadmap of Trees algorithms found in [4] would be
a good idea.

42

Bibliography

[1] A C A R , E . U . , C H O S E T , H . , R I Z Z I , A . A . , A T K A R , P. N . and H U L L , D. Morse

decompositions for coverage tasks. International Journal of Robotics Research. Apr i l
2002.

[2] A U R E N H A M M E R , F . Voronoi Diagrams—a Survey of a Fundamental Geometric Data
Structure. ACM Comput. Surv. New York, N Y , USA: Association for Computing
Machinery, sep 1991, vol. 23, no. 3, p. 345-405. DOI: 10.1145/116873.116880. ISSN
0360-0300. Available at: https://doi.org/10.1145/116873.116880.

[3] C A N N Y , J . F . The Complexity of Robot Motion Planning. Cambridge, M A , USA:
M I T Press, 1988. ISBN 0262031361.

[4] C H O S E T , H . Principles of Robot Motion: Theory, Algorithms, and Implementation.
Prentice Hall of India, 2005. ISBN 9780262033275.

[5] D I J K S T R A , E . W . A note on two problems in connexion with graphs. Numerische
Mathematik. 1959, vol. 1, p. 269-271.

[6] E D W A R D S , J. , D A N I E L , E . , P A S C U C C I , V . and B A J A J , C. Approximating the
Generalized Voronoi Diagram of Closely Spaced Objects. Computer graphics forum :
journal of the European Association for Computer Graphics, may 2015, vol. 34, no. 2,
p. 299-309.

[7] G O Y A L , A . , M O G H A , P., L U T H R A , R. and S A N G W A N , N . P A T H FINDING: A * OR
D I J K S T R A ' S ? International Journal in IT & Engineering. 2014, vol. 2, p. 1-15.

[8] H A R T , P. E . , N I L S S O N , N . J . and R A P H A E L , B . A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics. 1968, vol. 4, no. 2, p. 100-107. DOI: 10.1109/TSSC. 1968.300136.

[9] J A K U B , R. Vizualizace algoritmů pro plánování cesty. Brno, CZ, 2017. Diplomová
práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Available at:
https://www.fit.vut.cz/study/thesis-file/18368/18368.pdf.

[10] K A V R A K I , L . , Š V E S T K A , P., L A T O M B E , J .-C. and O V E R M A R S , M . Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation. 1996, vol. 12, no. 4, p. 566-580. DOI:
10.1109/70.508439.

[11] L A T O M B E , J .-C. Roadmap Methods. Springer US, 1991. ISBN 978-1-4615-4022-9.
Available at: https://doi.org/10.1007/978-l-4615-4022-9_4.

43

https://doi.org/10.1145/116873.116880
https://www.fit.vut.cz/study/thesis-file/18368/18368.pdf
https://doi.org/10.1007/978-l-4615-4022-9_4

[12] L O Z A N O P E R E Z , T. and W E S L E Y , M . A . A n Algorithm for Planning Collision-Free
Paths among Polyhedral Obstacles. Commun. ACM. New York, N Y , USA:
Association for Computing Machinery, oct 1979, vol. 22, no. 10. DOI:
1 0 . 1 1 4 5 / 3 5 9 1 5 6 . 3 5 9 1 6 4 . ISSN 0001-0782 . Available at:
https://doi.org/10.1145/359156.359164.

[13] P E T R , J . Autonomous helicopter control by a mobile phone with android for precision
agriculture. Praha, CZ, 2018 . Bakalářská práce. Czech Technical University in
Prague. Available at:
https: //www.reseaxchgate.net/publication/329372517_Autonomous_helicopter_
control_by_a_mobile_phone_with_android_for_precision_agriculture.

[14] T H E E C L I P S E F O U N D A T I O N . Eclipse Installer 2022-03 R [Available at
h t tps : / /www.eclipse.org/downloads/packages/instal ler (2022-05-01)] .

44

https://doi.org/10.1145/359156.359164
http://www.reseaxchgate.net/publication/329372517_Autonomous_helicopter_
http://www.eclipse.org/downloads/packages/installer

Appendix A

Storage medium contents

• application - folder for demo application

— PathPlanning.jar - binary file for the application

— src - folder containing source code of application

— examples - folder containing pictures of the algorithms in editing mode and
simulation mode

— vizlib - folder containing the vizlib library necessary for the installation

• text - folder for documentation

— B P xbredaOO.pdf - documentation file
— B P xbredaOO print.pdf - documentation file for print

— src - folder containing source code for the documentation

45

Appendix B

Editing and running the
application using Eclipse

To run the application, the current version of Java is required.
If it is required to edit or compile the source code, it can be done by using Eclipse, and

making a new build. In this case, the installation of the vizlib library is also required, it
can be found in the vizlib folder of the submitted C D . Its installation process is described
in detail in the work of Jakub Rusnak [9]. The short version is as follows:

1. Installation of Eclipse. Installation instructions can be found for example here [14]

2. Installation of the vizlib library [9]

3. Import the .jar file found on the C D described in A

4. Run the program

46

