

VUT VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVEDSITY OF TECHNICKÉ V BRNĚ

FAKULTA STROJNÍHO ÚSTAV MATEMATIKY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING **INSTITUTE OF MATHEMATICS**

VÝVOJ MATEMATICKÉHO MODELU PRO PREDIKCI SOUČINITELE PŘESTUPU TEPLA PŘI SPRCHOVÉM CHLAZENÍ HORKÝCH OCELOVÝCH POVRCHŮ

DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF THE HEAT TRANSFER COEFFICIENT DURING SPRAY COOLING OF HOT STEEL SURFACES

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR

BRIAN OBERTA

VEDOUCÍ PRÁCE SUPERVISOR

Ing. MARTIN CHABIČOVSKÝ, Ph.D.

BRNO 2021

Zadání bakalářské práce

Ústav:	Ústav matematiky
Student:	Brian Oberta
Studijní program:	Aplikované vědy v inženýrství
Studijní obor:	Matematické inženýrství
Vedoucí práce:	Ing. Martin Chabičovský, Ph.D.
Akademický rok:	2020/21

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce:

Vývoj matematického modelu pro predikci součinitele přestupu tepla při sprchovém chlazení horkých ocelových povrchů

Stručná charakteristika problematiky úkolu:

Sprchové chlazení horkých (až 1250 °C) ocelových povrchů je doprovázeno různými stádii varu. Tento děj je natolik složitý, že dosud neexistuje vhodný matematický či fyzikální model pro predikci součinitele přestupu tepla. Znalost součinitele přestupu tepla pro jednotlivé druhy trysek a jejich nastavení je však klíčová pro návrh chlazení pro ocelářský průmysl.

Cíle bakalářské práce:

V rámci bakalářské práce se student seznámí s teorií varu při sprchovém chlazení a též s experimentálním zjišťováním součinitele přestupu tepla. Student porovná existující fyzikální a matematické přístupy k modelování této problematiky. Dále student využije rozsáhlou existující experimentální databázi pro tvorbu vhodného matematického modelu pro predikci součinitele přestupu tepla. V rámci bakalářské práce se předpokládá využití základních metod regresní analýzy a práce s programem MATLAB.

Seznam doporučené literatury:

INCROPERA, F. P., DE WITT, D. P. Fundamentals of heat and mass transfer. 3rd ed. New York: John Willey & Sons, 1990. ISBN 0-471-51729-1

MAYINGER, F. Thermo and Fluid Dynamic Principles of Heat Transfer during Cooling. In: LIŠČIC, B., TENSI, H. M., CANALE, L., TOTTEN, G. E., eds. Quenching theory and technology. 2nd ed., CRC Press Taylor & Francis Group, 2010, str. 129-157, ISBN 978-0-8493-9279-5

CHABIČOVSKÝ, M. Faktory ovlivňující sprchové chlazení za vysokých teplot. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2015. 105 s. Vedoucí dizertační práce prof. Ing. Miroslav Raudenský, CSc.

YAO, S., COX, T.L. A general heat transfer correlation for impacting water sprays on high temperature surfaces. Experimental Heat Transfer, 2002, roč. 15, č. 4, str. 207-219

BERNARDIN, J., MUDAWAR, I. Film boiling heat transfer of droplet streams and sprays. International Journal of Heat and Mass Transfer, 1997, 40 (11), str. 2579-2593

WENDELSTORF, J., SPITZER, K. H., WENDELSTORF, R. Spray water cooling heat transfer at high temperatures and liquid mass fluxes. International Journal of Heat and MassTransfer, 2008, 51 (19-20), pp. 4902–4910

Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku 2020/21

V Brně, dne

L. S.

prof. RNDr. Josef Šlapal, CSc. ředitel ústavu doc. Ing. Jaroslav Katolický, Ph.D. děkan fakulty

Abstrakt

Sprchové chladenie sa v metalurgickom priemysle využíva pri kontinuálnom odlievaní, valcovaní za tepla a tepelnom spracovaní. Chladiaca kvapalina je pomocou trysiek rozprašovaná na chladený povrch. Z fyzikálneho hľadiska sa jedná o nútenú konvekciu s prítomnosťou varu. Sprchové chladenie je ovplyvňované faktormi súvisejúcimi s vlastnosťami chladiacej kvapaliny, v našom prípade vody (možstvo dopadajúcej vody, teplota vody, veľkosť dopadajúcich kvapiek a ich dopadové rýchlosti), a s vlastnosťami chladeného povrchu (teplota chladeného povrchu, drsnosť povrchu, prítomnosť oxidov a tiež typ materiálu). Doposiaľ neexistujú presné fyzikálne rovnice, ktoré by dokázali prenos tepla pri sprchovom chladení popísať. Táto práca sa venuje tvorbe modelu pre predikciu súčiniteľu prestupu tepla pri blanovom vare a modelu pre predikciu Leidenfrostovej teploty na základe vlastností sprchového chladenia (chladiacej kvapaliny, chladeného povrchu) s dôrazom na vplyv teploty chladiacej kvapaliny. Na základe údajov z experimentálnych meraní vytváram korelácie slúžiace k aproximácii súčiniteľa prestupu tepla a Leidenforstovej teploty. Následne mnou vytvorené modely porovnávam s doteraz zverejnenými modelmi.

Abstract

Spray cooling of hot surfaces is used in the metallurgical industry for continuous casting, hot rolling and heat treatment. The water is sprayed by the nozzle on the cooled surface. Physically speaking, the process of cooling can be characterized as forced convection with the presence of the boiling. The spray cooling is influenced by the factors depanding on characteristics of cooling liquid (water impingement density, water temperature, droplet size, impact velocity) and characteristics of cooled surface (surface temperature, surface roughness, presence of oxides, type of material). In the moment, there are not exact physical equation which can precisely describe the complicated process of heat transfer during spray boiling. This thesis deals with the creation of the model for prediction of the heat transfer coefficient during film boiling and the model for prediction of the Leidenfrost temperature. These models are depending on characteristics of spray cooling. The creation of the models is based on experimentaly mesured data. My created models are then compared with already published models.

Kľúčové slová

Sprchové chladenie, súčiniteľ prestupu tepla, Leidenfrostova teplota, blanový var

Keywords

Spray cooling, heat transfer coefficient, Leidenfrost temperature, film boiling

Bibliografická citácia

OBERTA, Brian. Vývoj matematického modelu pro predikci součinitele přestupu tepla při sprchovém chlazení horkých ocelových povrchů. 54 s., 6 s. príloha. Brno, 2021. Dostupné z: https://www.vutbr.cz/studenti/zav-prace/detail/133284. Bakalářská práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky. Vedoucí práce Ing. Martin Chabičovský, Ph.D.

Prehlásenie

Prehlasujem, že som bakalársku prácu Vývoj matematického modelu pro predikci součinitele přestupu tepla při sprchovém chlazení horkých ocelových povrchů vypracoval samostatne pod vedením Ing. Martina Chabičovského, Ph.D. s použitím materiálov uvedených v zozname literatúry.

Brian Oberta

Poďakovanie

Rád by som poďakoval svojmu vedúcemu bakalárskej práce Ing. Martinovi Chabičovskému, Ph.D. za usmernenie, ochotu vždy poradiť, za čas strávený konzultáciami a prípravu materiálov a zdrojov.

Brian Oberta

Obsah

Ú	vod		5
1	Pre	nos tepla	6
	1.1	Prenos tepla vedením	6
	1.2	Prenos tepla prúdením	6
	1.3	Prenos tepla sálaním	7
	1.0	Var	7
	1.1	Faktory ovplyvňujúce prestup tenla pri sprchovom chladení	ġ
	1.0	Fristujúce korolácie a modely pro predikciu súčiniteľa prestupu topla a	9
	1.0	Loidenfrostovu teplotu	11
		161 Súčinitel prostupu tenla	11
		1.6.1 Suchiter prestuputepia	11 19
		1.0.2 Leidenirostova tepiota	12
2	\mathbf{Reg}	resná analýza	13
	2.1	Základné charakteristiky	13
	2.2	Regresná funkcia	13
		2.2.1 Lineárna regresia	13
		2.2.2 Nelineárna regresia	14
	2.3	Charakteristiky regresnej funkcie	14
		2.3.1 Reziduálny súčet štvorcov	14
		2.3.2 Celkový súčet štvorcov	15
		2.3.3 Koeficient determinácie	15
	2.4	Výpočet regresných koeficientov lineárnej regresie	15
		2.4.1 Metóda najmenších štvorcov	15
	2.5	Výpočet regresných koeficientov nelineárnej regresie	16
		2.5.1 Transformácia na lineárny model	16
		2.5.2 Optimalizácia	16
	2.6	Intervaly spol'ahlivosti	16
	-	2.6.1 Výpočet intervalu spoľahlivosti	17
			-
3	Lab	oratórne merania	19
	3.1	Sucinitel presupu tepla a Leidenfrostova teplota	19
		3.1.1 Popis experimentálneho zariadenia a vzorky	19
		3.1.2 Postup experimentu	19
	3.2	Sautrov stredný priemer kvapiek a rýchlosť kvapiek	21
	3.3	Impaktné tlaky	22
		3.3.1 Meranie impaktných tlakov	22
		3.3.2 Výpočet množstva dopadajúcej vody	22
	3.4	Experimentálne získané dáta	25
4	Moo	delovanie	26
	4.1	Súčiniteľ prestupu tepla	26
	-	4.1.1 Vzorové modely	26
		4.1.2 Vlastné modely	29
	4.2	Leidenfrostova teplota	36
		4.2.1 Vzorové modely	36
			- •

$\mathbf{5}$

4.2.2 Vlastné modely	39
5 Porovnanie existujúcich korelácii a vlastných modelov	48
Záver	51
Zoznam použitej literatúry	53
Prílohy	55
Príloha A - Podobnostné čísla	55
Príloha B - Parametre pre výpočet množstva dopadajúcej vody	56
Príloha C - Lineárne tvary modelov pre výpočet súčiniteľu prestupu tepla a Leidenfrostovej teploty	57
Príloha D - Porovnanie vlastností vlastných modelov	58
Príloha E - Závislosť súčiniteľa prestupu tepla od množstva dopadajúcej vody pre model 4.5	59
Príloha F - Súbory v programe excel	60

Vymedzenie cieľov práce

Cieľom tejto bakalárskej práce je oboznámiť sa s problematikou prenosu tepla pri sprchovom chladení, metódami regresnej analýzy a optimalizácie, a následné vytvorenie matematických modelov pre predikciu súčiniteľa prestupu tepla a Leidenfrostovej teploty.

Úvod

Sprchové chladenie ako alternatíva k chladeniu vnorením sa využíva v rôznych priemyselných odvetviach. Táto práca sa venuje sprchovému chladeniu horúcich oceľových povrchov v metalurgickom priemysle. Pri sprchovom chladení za pomoci trysky striekame chladiace médium (vodu, vodu so vzduchom) na horúci oceľový povrch. Tým tento povrch ochladzujeme. Pri prestupe tepla z chladeného povrchu do chladiaceho média dochádza k nútenej konvekcií s fázovou premennou. Počas sprchového chladenia nastáva viacero režimov varu (bublinový var, prechodový var, blanový var) popísaných krivkou varu. Tieto režimy sa menia v závislosti od rozdielu teploty chladiaceho média a chladeného povrchu. Dôležitým tranzitným bodom je Leidenfrostova teplota, po jej dosiahnutí končí prechodový var a začína blanový var. Blanový var nastáva pri vysokých teplotách chladeného povrchu a vyznačuje sa nízkou efektivitou chladenia. Okrem režimu varu ovplyvňuje efektivitu sprchového chladenia viacero faktorov. Medzi tieto faktory patrí množstvo dopadajúcej kvapaliny, dopadová rýchlosť kvapiek, sauterov stredný priemer kvapiek, teplota chladiacej kvapaliny, teplota povrchu a iné. Jedným z ukazovateľov efektivity sprchového chladenia je súčiniteľ prestupu tepla. Cieľom tejto práce je vytvorenie modelu pre predikciu súčiniteľu prestupu tepla pri blanovom vare a modelu pre predikciu Leidenfrostovej teploty. Model budem vytvárať pomocou optimalizácie a regresnej analýzy. Ako základ modelu poslúžia experimentálne odmerané hodnoty parametrov ovplyvňujúcich sprchové chladenie (nezávislé premenné) a odmerané hodnoty súčiniteľa prestupu tepla a Leidenfrostovej teploty (závislé premenné).

Prvá kapitola má za úlohu vysvetliť základné pojmy a súvislosti problematiky prenosu tepla a sprchového chladenia. Následne v nej prezentujem niektoré významné modely pre predikciu súčiniteľu prestupu tepla a Leidenfrostovej teploty. Druhá kapitola je venovaná štatistike, regresnej analýze a optimalizácii. Uvádzam v nej pojmy a metódy, ktoré budem neskôr používať pri vytváraní modelov, ich evaluácií a porovnaní. Tretia kapitola popisuje experimentálnu časť práce. Opisuje teda zostavenie experimentov, spôsob ich prevedenia, výstupné dáta a ich úpravu. Štvrtá kapitola je venovaná samotnej tvorbe modelov. Vstupujú do nej moje poznatky o problematike sprchového chladenia, regresnej analýzy a optimalizácie, odmerané dáta a existujúce modely. Výstup tejto kapitoly je viacero vlastných modelov pre predikciu súčiniteľu prestupu tepla pri blanovom vare a pre predikciu Leidenfrostovej teploty. V poslednej kapitole vyberám dva najvhodnejšie vlastné modely (jeden pre výpočet súčiniteľu prestupu tepla, druhý pre Leidenfrostovu teplotu) a porovnávam ich s už existujúcimi modelmi.

1 Prenos tepla

Nasledujúca kapitola slúži ako úvod do problematiky prenosu tepla pri sprchovom chladení. Informácie v tejto kapitole pochádzajú z dvoch primárnych zdrojov [1] [2]. Teplo je spolu s prácou prostriedok, pomocou ktorého si prostredie vymieňa energiu so svojím okolím. Prenos tepla je teda termálna energia v pohybe vyvolanom priestorovým rozdielom teplôt. Aby mohol vzniknúť prenos tepla zo sústavy do okolia alebo naopak, musí existovať teplotný gradient. Bez neho nemôže prenos tepla nastať. Prenos tepla môže prebehnúť buď jedným s nasledujúcich základných mechanizmov, alebo ich kombináciou:

- Vedenie (kondukcia)
- Prúdenie (konvekcia)
- Sálanie (radiácia)

1.1 Prenos tepla vedením

Vedenie tepla - kondukciu môžeme charakterizovať ako transfer energie od častíc s väčším energetickým potenciálom k časticiam s menším energetickým potenciálom. Tento prenos prebieha na molekulárnej (pri kvapalinách a plynoch) až atomárnej (pri pevných látkach) úrovni. Ak je splnený základný predpoklad prenosu tepla, tj. existuje tepelný gradient, prenos tepla prebieha v smere klesajúcej teploty. Vyššia teplota je spojená s vyššou energiou molekúl. Keď sa takáto molekula s vyššou energiou stretne s molekulou s nižšou energiou, prebehne transfer energie medzi molekulami. Transfer energie ale nie je podmienený zrážaním častíc. Molekuly sa v plynoch a kvapalinách neustále náhodne pohybujú. Pri tomto náhodnom pohybe molekuly z energeticky nabitejšej (teplejšej) oblasti prenášajú energiu do energeticky menej nabitej (studenšej) oblasti . Tento proces prenosu tepla vedením nazývame tepelná difúzia.

Rozdiel medzi kvapalinou a plynom je v tom, že v kvapaline sú molekuly látky bližšie k sebe a teda k interakciám medzi nimi dochádza častejšie a sú silnejšie. Pri pevných látkach sa vedenie tepla uskutočňuje pohybom atómov vo forme vlnenia kryštalickej mriežky. Pri vodivých látkach sa k tejto forme pridáva aj postupný pohyb voľných elektrónov. Vedenie tepla je charakterizované Furierovým zákonom:

$$\dot{q} = -\lambda \nabla T, \tag{1.1}$$

kde $\dot{q}[Wm^{-2}]$ je hustota tepelného toku, $\lambda[Wm^{-1}K^{-1}]$ je súčiniteľ tepelnej vodivosti a ∇T je teplotný gradient. Uvažujme homogénny materiál bez vnútorného pohybu a teplotné pole T(x, y, z) vyjadrené pomocou kartézkej súradnicovej sústavy, potom môžeme rovnicu vedenia tepla v telese napísať ako:

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \dot{Q} = \rho c_p \frac{\partial T}{\partial t}, \tag{1.2}$$

kde $\rho[kgm^{-3}]$ je hustota materiálu, $c_p[Jkg^{-1}K^{-1}]$ je merná tepelná kapacita materiálu pri konštantnom tlaku, $\dot{Q}[Jm^{-3}]$ je teplo generované v materiáli, t[s] je čas a T[K] je teplota.

1.2 Prenos tepla prúdením

Prenos tepla prúdením – konvekcia sa skladá z dvoch mechanizmov. Prvý mechanizmus je mikroskopickej úrovni. Jedná sa o náhodný pohyb molekúl, teda difúziu. Druhý mechanizmus je makroskopický, objemový pohyb tekutiny, teda advekcia. Najvýznamnejší prípad konvekcie je prenos tepla medzi tekutinou v pohybe a ohraničujúcim povrchom. Konvekciu môžeme ďalej klasifiovať podľa charakteru prúdenia:

- Nútená
- Prirodzená
- Kombinovaná (var, kde sú parné bubliny vztlakovou silou tlačené hore)

Pokiaľ pri prenose tepla nastáva fázová premena (var a kondenzácia), hovoríme o prenose latentného tepla. K takémuto druhu tepelného transferu patrí aj sprchové chladenie horúcich povrchov študované v tejto práci. Bez ohľadu na druh konvekcie môžeme hustotu tepelného toku charakterizovať Newtonovým ochladzovacím zákonom:

$$\dot{q} = \alpha (T_s - T_\infty), \tag{1.3}$$

kde $\alpha[WK^{-1}m^{-2}]$ je súčiniteľ prestupu tepla. Súčiniteľ prestupu tepla zahrňuje všetky parametre ovplyvňujúce konvekciu. $T_s[K]$ je teplota povrchu a $T_{\infty}[K]$ je teplota tekutiny v dostatočnej vzdialenosti od povrchu.

1.3 Prenos tepla sálaním

Z každého povrchu s nenulovou teplotou je vyžarovaná energia. Tento druh prenosu tepla nazývame sálanie. Pri sálaní je energia prenášaná vo forme elektromagnetického žiarenia. Preto, na rozdiel od vedenia a prúdenia, tento proces nevyžaduje médium (hmotnú látku) prenášajúce energiu. Vďaka tomuto faktu môže prenos tepla sálaním prebiehať aj vo vákuu. Maximálna hustota tepelného toku, ktorá môže byť z povrchu ideálneho žiariča (absolútne čierneho telesa – vyžaruje maximálnu možnú energiu) emitovaná, je popísaná Stefan – Boltzmanovým zákonom:

$$\dot{q} \equiv E = \sigma T_s^4, \tag{1.4}$$

kde $\sigma = 5,67*10^{-8} [Wm^{-2}K^{-4}]$ je Stefan – Boltzmannova konštanta
a T_s je teplota povrchu. Pre reálne povrchy platí vzťah:

$$E = \epsilon \sigma T_s^4, \tag{1.5}$$

kde $\epsilon \in [0, 1]$ je pomerná emisivita a udáva ako efektívne je sálanie z povrchu v porovnaní s ideálnym žiaričom. V prípade sálania z malého povrchu kompletne obklopeného veľkým povrchom, sa dá vyjadriť obdoba Newtonovho ochladzovacieho zákona, zavedením súčiniteľa prestupu tepla žiarením α_z :

$$\alpha_z = \epsilon \sigma (T_s + T_\infty) (T_s^2 + T_\infty^2). \tag{1.6}$$

1.4 Var

Var je dej pri ktorom na rozhraní pevnej látky a kvapaliny dochádza k vyparovaniu. Aby var mohol nastať musí teplota povrchu pevnej látky T_s dosiahnuť teplotu saturácie T_{sat} danej kvapaliny pre daný tlak. Pre saturovaný var platí nasledujúca forma Newtonovho zákona:

$$\dot{q} = \alpha (T_s - T_{sat}) = \alpha \Delta T_e, \tag{1.7}$$

kde $T_{sat} = 100^{\circ}C$ je teplota saturácie pre vodu, ΔT_e je teplota prehriatia povrchu alebo tiež excesívna teplota.

Var sa vyznačuje tvorbou bublin na povrchu tuhej látky, ich rastom a následným oddelením od povrchu. Veľkosť bublín a rýchlosť ich vzniku závisí od viacerých faktoroch, a to: exesívna teplota, drsnosť povrchu a termo-fyzikálne vlastnosti kvapaliny. Dynamika varu-tvorba bublín a ich následné stúpanie k voľnému povrchu výrazne ovplyvňuje pohyb kvapaliny blízko povrchu telesa a má tak zásadný vplyv na súčiniteľ prestupu tepla. Var prebieha v rôznych podmienkach, podľa toho ho aj klasifikujeme. Pri procese varu vo veľkom objeme, je tekutina iniciálne v pokoji bez pôsobenia externých síl ktoré by ju uvádzali do pohybu. Celkový pohyb častíc v kvapaline je spôsobený prirodzenou konvekciou a pohybom spôsobeným vznikom bublín a ich stúpaním k voľnej hladine. Ak je zložkou pohybu častíc v kvapaline okrem pohybu spôsobeného vznikom bublín a ich stúpaním k voľnej hladine aj samotný pohyb kvapaliny ako celku, tj. obtekanie povrchu, hovoríme o vare s nútenou konvekciou. Dalej môžeme var klasifikovať ako saturovaný a podchladený. Pri saturovanom vare je teplota kvapaliny na úrovni teploty saturácie, bubliny sa po vzniku oddelia od povrchu a vplyvom vztlakovej sily stúpajú k voľnému povrchu kde opúšťajú kvapalinu. Pri podchladenom vare je teplota kvapaliny nižšia ako teplota saturácie, bubliny po vzniku kondenzujú naspäť do kvapaliny. Pri spchovom chladení rozlišujeme 4 režimy varu.

Obr. 1: Krivka varu pre srpchové chladenie

Na krivke varu pre sprchové chladenie (viz. Obrázok 1) môžeme pozorovať 4 oblasti A,B,C,D. V každej oblasti prebieha rozdielny režim varu:

- (A) Konvekcia: Nastáva pri T_s mierne nad teplotou saturácie. V tejto fáze nevznikajú bublinky. Keď že na kvapalinu pôsobia externé sily, prenos tepla je popísaný rovnicou nútenej konvekcie.
- (B) Bublinový var: Táto fáza nastáva pri zvýšení teploty povrchu. Jedná sa o dvojfázovú (para a kvapalina) nútenú konvekciu. V tomto režime varu dochádza k tvorbe bublín, ich nárastom a následnom oddelení od povrchu. So zvyšujúcou sa teplotou povrchu sa stáva čoraz viac varných jadier aktívnych (bubliny vznikajú v čoraz menších nedoko-nalostiach povrchu), narastá tvorba bublín a bubliny začínajú vzájomne interferovať (ovplyvnenie, kontakt, prerastanie). Bubliny tiež tvoria parné stĺpce. Počas bublinového varu so stúpajúcou teplotou povrchu dosiahne súčiniteľ prestupu tepla svoju maximálnu hodnotu (viz. Obrázok 1, bod P). Pri ďalšom stúpaní T_s je dosiahnutá

maximálna hustota tepelného toku (viz. Obrázok 1, bod CHF). Po prekročení tejto medznej hodnoty sa už so zvyšujúcou teplotou hustota tepelného toku a súčiniteľ prestupu tepla znižuje.

- (C) Prechodný var: Nastáva po dosiahnutí maximálnej hustoty tepelného toku. Jedná sa o režim varu, pri ktorom tvorba bublín tak vysoká, že bubliny začínajú vytvárať súvislú parnú vrstvu na povrchu. Na niektorých miestach ešte prebieha bublinový var, inde už prebieha blanový var. Množstvo povrchu s blanovým varom sa so zvyšujúcou teplotou povrchu zvyšuje. Súčiniteľ tepelnej vodivosti pary je mnohonásobne nižší ako súčiniteľ tepelnej vodivosti kvapaliny, preto čím viac povrchu je pokrytého parnou vrstvou, tým viac sa znižuje súčiniteľ tepelnej vodivosti aj hustota tepelného toku.
- (D) Blanový var: Nastáva po dosiahnutí Leidenfrostovej teploty (viz. Obrázok 1, bod TL). Pri T_L nastáva minimum hustoty tepelného toku. Po prekročení T_L je medzi celou plochou povrchu a kvapalinou stabilná parná vrstva. Kvapalina sa tak už povrchu vôbec nedotýka (nezmáča ho), bubliny sa tvoria na rozhraní kvapaliny a pary. Prenos tepla prebieha vedením a sálaním cez parnú vrstvu. S rastúcou teplotou povrchu sa zvyšuje vplyv prenosu tepla sálaním a tým pádom aj hustota tepelného toku.

Na krivke (viz. Obrázok 1) sa nachádzajú 3 významné prechodové body. Prvý bod je ONB (onset of nucleal boiling), bod kedy začína bublinový var. Druhý bod je CHF (critical heat flux), a teda bod kedy končí režim bublinového varu. V tomto bode je maximálna hustota tepelného toku dosiahnutá počas procesu. Posledný významný bod je TL, a teda Leidenfrostova teplota, hranica medzi prechodným a blanovým varom. V tomto bode je minimálna hustota tepelného toku.

1.5 Faktory ovplyvňujúce prestup tepla pri sprchovom chladení

Parametre ovplyvňujúce koeficient prestupu tepla môžeme rozdeliť do dvoch kategórii. Prvá kategória sú parametre súvisiace s vlastnosťami chladiacej kvapaliny (v našom prípade vody). Do tejto kategórie patrí medzi nami merané parametre možstvo dopadajúcej vody, teplota vody, veľkosť dopadajúcich kvapiek a ich dopadové rýchlosti. Druhá kategória je tvorená parametrami súvisejúcimi s chladeným povrchom. Sem patrí teplota chladeného povrchu, drsnosť povrchu, prítomnosť oxidov a tiež typ materiálu [3]. Z tejto kategórie uvažujeme v tejto práci len teplotu chladeného povrchu. Ďalej sú uvedené vybrané faktory, ktoré budú využívané v praktickej časti tejto práce.

• Množstvo dopadajúcej vody

Najvýznamnejší faktor ovplyvňujúci prenos tepla pri sprchovom chladení [3]. Najčastejšie je reprezentovaný priemerným množstvom dopadajúcej vody $\dot{Q}_i[m^3m^{-2}s^{-1}]$ alebo hustotou dopadajúcej vody $\dot{m}_L[kgm^{-2}s^{-1}]$. Zo zvyšujúcou sa hustotou dopadajúcej vody sa zvyšuje Leidenfrostova teplota a teplota pri ktorej nastáva kritická hustota tepelného toku [4], [5].

Závislosť súčiniteľa prestupu tepla od hustoty dopadajúcej vody je daná charkteristikou daného sprchového chladenia, može byť mocninná alebo lineárna (viz. Obrázok 2). Pri nízkych hodnotách hustoty dopadajúcej vody povrch nie je zaplavený vodou a nedochádza k interakciám medzi kvapkami. Sprchové chladenie v tejto fáze nazývame ideálne, platí tu lineárna závislosť medzi množstvom dopadajúcej vody a súčiniteľom prestupu tepla [4]. S rastúcou hustotou dopadajúcej vody začína byť

Obr. 2: Závislosť súčiniteľa prestupu tepla od hustoty dopadajúcej vody [6]

povrch zaplavený a interakcie medzi kvapkami sú čoraz častejšie. Chladenie sa tak odkláňa od ideálneho a závislosť medzi súčiniteľom prestupu tepla a hustotou dopadajúcej vody sa stáva mocninná [6].

• Teplota vody

Narozdiel od chladenia vo veľkom objeme, kde je teplota vody dominantý faktor [4], pri sprchovom chladení je jej vplyv menej výrazný aj menej prezkúmaný. Z doterajších výzkumov na vodo-vzdušných tryskách [7], tryskách s plochým vodným lúčom [8] a tryske s valcovitým lúčom [9] plynie, že s rastúcou teplotou vody sa Leidenfrostova teplota posúva k nizším teplotám. Teplota vody ovplyňuje jej hustotu, dynamickú viskozitu, mernú tepelnú kapacitu materiálu pri konštantnom tlaku a súčiniteľ tepelnej vodivosti. Tieto parametre vody majú vplyv na charakter prúdenia a teda aj sprchového chladenia. V našich modeloch sa vyskytujú priamo (hustota vody) alebo nepriamo, vo forme Prantlovho čísla (dynamická viskozita, merná tepelná kapacita materiálu pri konštantnom tlaku, súčiniteľ tepelnej vodivosti). Závislosť Prandtolvho čísla na teplote vody môžeme vidieť na Obrázku 3

Obr. 3: Závislosť Prandtlovho čísla na teplote vody

• Ostatné parametre Pri bežných tryskách neexistuje možnosť meniť dopadovú rýchlosť kvapiek, ani Sauterov priemer kvapiek nezávisle na prietoku. Obecne platí, že pri vyššom prietoku tryskou rastie dopadová rýchlosť kvapiek a zväčšuje sa aj Sauterov stredný priemer kvapiek. Sauterov stredný priemer kvapiek ovplyvňuje množstvo vzájomných interakcii kvapiek. S rastúcim priemerom rastie aj množstvo interakcí. Dopadová rýchlosť kvapiek určuje do akej miery sú kvapky pri blanovom vare schopné prerážať parnú vrstvu a dostať sa až k chladenému povrchu. S rastúcou dopadovou rýchlosťou kvapiek je schopnosť prerážať parnú vrstvu vyššia [10].

1.6 Existujúce korelácie a modely pre predikciu súčiniteľa prestupu tepla a Leidenfrostovu teplotu

V tejto časti práce sa stručne oboznámime s publikovanými koreláciami, pomocou ktorých sa dá predikovať súčiniteľ prestupu tepla a Leidenfrostova teplota. Niektoré z týchto korelácii som použil ako základ pre tvorbu vlastných modelov.

1.6.1 Súčinitel prestupu tepla

• Pre aproximáciu α bol v šúdii [6] zvolený prístup hlbšie rozoberajúci fyzikálne závislosti. Jeho výsledkom je korelácia:

$$\epsilon = \frac{\dot{Q}}{\dot{m}_L \Delta h}$$

kde člen Δh predstavuje celkové množstvo tepla, ktoré je kvapalina schopná absolvovať a má tvar:

$$\Delta h = \left[h_{lg} + c_{p,l}(T_{sat} - T_{\infty}) + c_{p,v}(T_s - T_{sat})\right],$$

kde $h_{lg}[J/kg]$ predstavuje latentné vaporizačné teplo, $c_{p,l}[Jkg^{-1}K^{-1}]$ predstavuje mernú tepelnú kapacitu kvapaliny pri konštantnom tlaku a $c_{p,v}[Jkg^{-1}K^{-1}]$ predstavuje mernú tepelnú kapacitu pary pri konštantnom tlaku. Člen ϵ predstavuje vplyv charakteristík sprchového chladenia reprezentovaných Weberovým číslom a má tvar:

$$\varepsilon = 8 * 10^{-7} \left[\frac{W e_s T_{sat}}{(\Delta T_{sub} + \Delta T_{sat})} \right]^{-0.62} + 3.5 * 10^{-3} \left[\frac{W e_s T_{sat}}{(\Delta T_{sub} + \Delta T_{sat})} \right]^{-0.2},$$

kde $\Delta T_{sub} = (T_{sat} - T_{\infty})$ a $\Delta T_{sat} = (T_s - T_{sat})$.

Aby sme pomocou tejto korelácie mohli aproximovať súčiniteľ presupu tepla, vyjadríme tepelný tok ako $\dot{Q} = \alpha (T_s - T_\infty)$. Vo výsledku tak dostávame tvar:

$$\alpha = \frac{\varepsilon \dot{m}_L \Delta h}{(T_s - T_\infty)}.$$
(1.8)

Tento model je vhodný pre dopadové rýchlosti kvapiek v intervale $0, 6 - 20ms^{-1}$ a hustotu dopadajúcej vody v intervale $0,016 - 50,5kgm^{-2}s^{-1}$.

• V štúdii [11] bola publikovaná rovnica popisujúca vplyv množstva dopadajúcej vody Q_i , dopadovej rýchlosti kvapiek v a ich Sauterovho stredného priemeru d_{32} na súčiniteľ prestupu tepla v tvare pre teploty vody v intervale $20 - 30^{\circ}C$:

$$\alpha = 19, 6Q_i^{0,461} v^{0,261} d_{32}^{-0,208}.$$
(1.9)

Táto rovnica bude neskôr v práci použitá ako vzorová pri tvorbe vlastných modelov.

• Štúdia [12] sa zaoberala vplyvom hustoty dopadajúcej vody (v intervale $3-30kgm^{-2}s^{-1}$) a teploty povrchu (v intervale $200 - 1100^{\circ}C$) na α . Teplota vody v tejto štúdii bola okolo $18^{\circ}C$ a dopadová rýchlosť kvapiek $13 - 15ms^{-1}$. Výsledný model má tvar:

$$\alpha = 190 + tanh\left(\frac{\dot{m}_L}{8}\right) \left(140\dot{m}_L \left[1 - \frac{\dot{m}_L \Delta T}{72000}\right] + 3,26\Delta T^2 \left[1 - tanh\left\{\frac{\Delta T}{128}\right\}\right]\right),\tag{1.10}$$

kde \pm predstavuje hraničné hodnoty 95% intervalu spoľahlivosti a $\Delta T = T_s - T_{\infty}$.

• V štúdii [13] bolo prezentovaných viacero modelov pre aproximáciu súčiniteľa prestupu tepla pri blanovom vare, pre naše hodnoty Q_i a v sa najlepšie hodí nasledujúci:

$$\alpha = 143, 3 * 10^3 Q_i^{0.566} v^{0.639} \Delta T^{-0.539}, \qquad (1.11)$$

kde $\Delta T = T_s - T_{\infty}$. Tento model je vhodný pre hodnoty Q_i v intervale $3, 5 * 10^{-3} - 9, 96 * 10^{-3} m^3 m^{-2} s^{-1}$ a hodnoty v v intervale $10 - 30 m s^{-1}$.

• V štúdii (Fujimoto) bola prezentovaná nasledujúca rovnica:

$$\alpha = 1,9N^{0.65}d_{30}^{1,1}v^{1,1},\tag{1.12}$$

kde $N[m^{-3}]$ vyjadruje počet kvapiek v rozsahu 3,77 * $10^7 - 1,48 * 10^8$, $d_{30}[m]$ je objemový stredný priemer kvapiek v rozsahu $83 - 206 \mu m$ a v je priemerná dopadová rýchlosť kvapiek v rozsahu 6, $8 - 15,6ms^{-1}$.

1.6.2 Leidenfrostova teplota

• V štúdii [6] bol prezentovaný model pre aproximáci
u T_L založený na Weberovom čísle spreja. Má tvar:

$$T_L = 1400We_s^{0,13},\tag{1.13}$$

Kde $We_s = \frac{\dot{m}_L^2 D_{32}}{\rho \sigma}$ je Weberovo číslo spreja. Vplyv teploty vody sa v tejto rovnici prejavuje len nepriamo, pomocou členov hustoty vody ρ a povrchového napätia σ , ktoré sú od teploty vody zavislé. Táto rovnica je vhodná pre dopadové rýchlosti kvapiek v intervale $0, 6 - 20ms^{-1}$ a hustotu dopadajúcej vody v intervale $0, 016 - 50, 5kgm^{-2}s^{-1}$.

• V štúdii [14] bol prezentovaný model pre výpočet T_L založený na priemernej dopadovej rýchlosti kvapiek v:

$$T_L = 162 + 24, 3v^{0.64}. (1.14)$$

• V štúdii [15] bol prezentovaný model popisujúci vplyv množstva dopadajúcej vody Q_i , dopadovej rýchlosti kvapiek v a ich Sauterovho stredného priemeru d_{32} na T_L pre teploty vody v intervale $20 - 30^{\circ}C$:

$$T_L = 351 Q_i^{0,111} v^{0,174} d_{32}^{0,006}.$$
 (1.15)

Tento model nám neskôr poslúži ako vzor pre vytváranie modelov vlastných.

$\mathbf{2}$ Regresná analýza

V tejto kapitole popíšem metódy a nástroje štatistiky a regresnej analýzy, ktoré som využíval pri tvorbe modelov a ich následnej analýze a porovnaní [16] [17].

Základné charakteristiky 2.1

Sú veličiny pomocou ktorých popisujeme nami skúmaný štatistický súbor $(x_1, ..., x_n)$. Medzi základné charakteristiky patria:

- priemer $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, rozptyl $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$,
- smerodatná odchylka $\sigma = \sqrt{\sigma^2}$

2.2Regresná funkcia

Je funkcia, pomocou ktorej dokážeme aproximovať vzťah pozorovanej náhodnej veličiny Y na reálnom vektore nezávisle premenných $X = (X_1, ..., X_k)$. Regresná funkcia má tvar:

$$y = f(\boldsymbol{x}, \boldsymbol{\beta}), \tag{2.1}$$

kde y je závislá premenná (pozorovaná hodnota náhodnej veličiny Y), $\boldsymbol{x} = (x_1, ..., x_k)$ je vektor nezávisle premenných (pozorovaná hodnota vektoru X) a $\beta = (\beta_1, ..., \beta_k)$ je vektor regresných koeficientov.

2.2.1Lineárna regresia

Je oblasť regresie v ktorej medzi náhodnou veličinou a nezávisle premennými veličinami platí lineárny vzťah:

$$y = \beta_1 x_1 + \dots + \beta_k x_k + \varepsilon, \tag{2.2}$$

kde ε je náhodná chyba merania. Pre výpočet hodnoty regresných koeficientov je potrebné opakované meranie veličiny y, pri príslušných hodnotách premenných $x_1, x_2, ..., x_k$. Opakovanými meraniami dostaneme následujúci tvar:

$$y_i = \beta_1 x_{11} + \ldots + \beta_k x_{1k} + \varepsilon_1$$

$$\vdots$$

$$y_n = \beta_1 x_{n1} + \ldots + \beta_k x_{nk} + \varepsilon_n,$$

v maticovom tvare:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nk} \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta_1} \\ \vdots \\ \boldsymbol{\beta_n} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix},$$

kde $y_i, x_{i1}, ..., x_{ik}$ sú opakované hodnoty sledovaných veličín a náhodnej chyby ε_i pre *n*-meraní, t.j. pre i = 1, ..., n.

Pre náhodné chyby $\varepsilon_i, ..., \varepsilon_n$ musí platiť, že sú:

- nesystematické, a teda $E(\varepsilon_i) = 0$ pre i = 1, ..., n;
- homogénne v rozptyle, tj. $D(\varepsilon_i) = \sigma^2$ pre i = 1, ..., n;

• nekorelované, tj. $C(\varepsilon_i,\varepsilon_j)=0$ pre $i\neq j,\,i,j=1,...,n$

Symbolicky môžme maticový tvar prepísať ako:

$$\boldsymbol{Y} = \boldsymbol{\mathbb{X}}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \tag{2.3}$$

kde maticu X obshujúcu náhodné prvky x_{ij} , nazývame matica plánu. Takýto model potom označíme $Y \sim L(\mathbb{X}\beta, \sigma^2 I)$ a nazývame lineárny regresný model (LRM). Predpoklajme, že n > k a $rank(\mathbb{X}) = k$. Potom možeme model označiť ako lineárny model plnej hodnosti a stĺpce matice X sú nezávislé.

2.2.2 Nelineárna regresia

Je podobná lineárnej regresii s tým rozdielom, že medzi náhodnou veličinou a nezávisle premennými veličinami platí nelineárny vzťah, všeobecne môžeme nelineárny regresný model zapísať v tvare:

$$\boldsymbol{y} = f(\boldsymbol{x}, \boldsymbol{\theta}) + \boldsymbol{\varepsilon}, \tag{2.4}$$

kde $\boldsymbol{\theta} = (\theta_1, ..., \theta_k)$ je vektor neznámych regresných koeficientov a $\boldsymbol{\varepsilon}$ je nekorelovaná náhodná chyba s $E(\boldsymbol{\varepsilon}) = \mathbf{0}$ a $D(\boldsymbol{\varepsilon}) = \sigma^2$.

2.3 Charakteristiky regresnej funkcie

2.3.1 Reziduálny súčet štvorcov

Reziduá sú rozdiely medzi hodnotami závislej premennej určenými pri pozorovaniach a hodnotami závislej premennej predikovanými modelom, majú teda tvar:

$$r_i = y_i - \hat{y}_i,\tag{2.5}$$

kde y_i je zmeraná hodnota závislej premennej a $\hat{y}_i = f(\mathbf{X}_i, \boldsymbol{\beta})$ je hodnota závislej premennej vypočítaná modelom kde $\mathbf{X}_i = (x_{i1}, \ldots, x_{ik})$ pre i = 1, ..., n. Umocnením reziduí a ich následným sčítaním dostaneme rezidáulny súčet štvorcov, a teda celkový obsah štvorcov nad reziduami. Ten má tvar:

$$S_e = \sum_{i}^{n} (y_i - \hat{y}_i)^2, \qquad (2.6)$$

pre i = 1, ..., n. Pri ohodnotení presnoti modelu nám poslúži veličina Res^2 . Jedná sa o reziduálny súčet štvorcov predelený počtom meraní n. Dostaneme tak priemernú hodnotu druhej mocniny odchylky predikovanej hodnoty y_i od zmeranej hodnoty \hat{y}_i :

$$Res^{2} = \frac{1}{n} \sum_{i}^{n} (y_{i} - \hat{y}_{i})^{2}, \qquad (2.7)$$

pre i = 1, ..., n.

2.3.2 Celkový súčet štvorcov

Je suma kvadratických odchyliek nameraných hodnô
t $\boldsymbol{Y}=y_1,...,y_n$ od ich strednej hodnoty $\bar{\boldsymbol{Y}}:$

$$S_t = \sum_{i}^{n} (y_i - \bar{y})^2, \qquad (2.8)$$

kde $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$ je priemerná hodnota nameraných hodnôt náhodnej veličiny \boldsymbol{Y} .

2.3.3 Koeficient determinácie

V regresnej analýze používame koeficient determinácie ako mierku presnosti regresného modelu. Udáva, aký podiel rozptylu sa podarilo regresiou vysvetliť. Označujeme R^2 a má tvar:

$$R^2 = 1 - \left(\frac{S_e}{S_t}\right),\tag{2.9}$$

kde S_e je reziduálny súčet štvorcov a S_t je celkový súčet štvorcov. Koeficient determinácie nadobúda hodnoty v intervale $\langle 0, 1 \rangle$, čím je jeho hodnota väčšia tým je model presnejší. Nevýhoda R^2 spočíva v tom, že má tendenciu sa zvyšovať s rastúcim počtom nezávislých premenných v regresnom modeli, aj keď tieto nové premenné v skutočnosti nenesú novú informáciu o závislej premmenej. Preto sa používa aj adjustovaný koeficient determinácie R_a^2 , ten má tvar:

$$R_a^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1},$$
(2.10)

kde R^2 je koeficient determinácie, n je počet meraní a p je počet premenných v modeli.

2.4 Výpočet regresných koeficientov lineárnej regresie

Cieľom regresnej analýzy je aproximácia závislej premennej Y za pomoci nezávisle premenných X a regresných koeficientov β . Výpočet regresných koeficientov je možné urobiť rôznymi spôsobmi. Ja som vo svojej práci používal Analytické nástroje programu Excel. Ten počíta regresné koeficienty metódou najmenších štvorcov.

2.4.1 Metóda najmenších štvorcov

Jedná sa o metódu, pri ktorej neznáme regresné koeficienty určujeme za pomoci minimalizácie reziduálneho súčtu štvorcov, cieľovú funkciu minimalizácie si označíme $g(\boldsymbol{\beta})$:

$$g(\boldsymbol{\beta}) = \sum_{i}^{n} (y_i - f(\boldsymbol{X}_i, \boldsymbol{\beta}))^2 \to min.$$

Minimum funkcie $g(\beta)$ nájdeme tak, že parciálne derivácie $g(\beta)$ podľa jedntlivých regresných koeficientov položíme rovné nule:

$$\frac{\partial g}{\partial \beta_j} = \frac{\partial \sum_i^n (y_i - f(\boldsymbol{X}_i, \boldsymbol{\beta}))^2}{\partial \beta_j} = 0$$

pre j = 1, ..., k. Následne dostaneme lineárny systém k + 1 rovníc sk + 1 neznámymi, z ktorého určíme jednotlivé parametre β .

2.5 Výpočet regresných koeficientov nelineárnej regresie

Regresné funkcie s ktorými počítame v tejto práci majú nelineárny tvar. Konkrétne sa jedná o tvar mocninnej regresie:

$$y = \theta_0 x_1^{\theta_1} x_2^{\theta_2} \dots x_k^{\theta_k}.$$
 (2.11)

Regresné koeficienty $\boldsymbol{\theta}$ sme počítali dvoma spôsobmi.

2.5.1 Transformácia na lineárny model

Linearizácia prebieha tak, že nahradíme všetky nezávislé premenné X_j (s hodnotami x_j) a závislú premennú Y(s hodnotami y) za ich transormácie F_j (s hodnotami f_j) resp. W(s hodnotami w) vo všetkých vzťahoch týkajúcich sa lineárnej regresie. Následne možeme použiť všetky úvahy a metódy lineárnej regresie na takto transformovaný nelineárny regresný model:

$$w = \beta_0 + \beta_1 f_1 + \beta_2 f_2 \dots + \beta_k x_k.$$
(2.12)

V našom prípade danú regresnú funkciu (2.11) zlogaritmujeme a tým ju prevedieme na lineárny tvar:

$$ln(y) = ln(\theta_0) + \theta_1 ln(x_1) + \theta_2 ln(x_2) + \dots + \theta_k ln(x_k) = \beta_0 + \beta_1 ln(x_1) + \dots + \beta_k ln(x_k), \quad (2.13)$$

závislú premennú Y sme nahradili jej prirodzeným logaritmom ln(Y), nezávislé premenné X_j sme tiež nahradili ich prirodzeným logaritmom $ln(X_j)$ pre j = 1, ..., k. Po tejto linearizácii možeme regresné koeficienty (okrem θ_0) určiť pomocou metód lineárnej regresie (viz. Metóda najmenších štvorcov). Kedže β_0 v linéarnom tvare regresného modelu nereprezentuje θ_0 , ale $ln(\theta_0)$. Bodový odhad θ_0 dostaneme ako $\theta_0 = e^{\beta_0}$.

2.5.2 Optimalizácia

Druhý spôsob výpočtu regresných koeficientov v tejto práci je optimalizačný. Cieľovú funkciu $F(\mathbf{Y}, \mathbf{X}_1, ..., \mathbf{X}_k)$ si zostrojíme ako reziduílny súčet štvorcov pre danú rovnicu:

$$F = \sum_{1}^{n} (y_i - (\theta_0 x_{i1}^{\theta_1} x_{i2}^{\theta_2} \dots x_{ik}^{\theta_k}))^2$$
(2.14)

následne ju minimalizujeme za pomoci zmeny regresných koeficientov $\theta_0, ..., \theta_k$. Túto minimalizáciu sme realizovali za pomoci programu Excel - Solver. Ten pre nelineárnu optimalizáciu využíva metódu GRG (Generalized reduced gradient) [18]. Po zoptimalizovaní sme dostali minimálnu hodnotu cieľovej funkcie F a hodnoty regresných koeficientov $\theta_0, ..., \theta_k$ pri ktorých bolo toto minimum dosiahnuté.

2.6 Intervaly spoľahlivosti

Interval spoľahlivosti (konfidenčný interval) pre paramterer γ so spoľahlivosťou $1 - \alpha$ kde $\alpha \in \langle 0, 1 \rangle$ je dvojica takých štatistík (T_1, T_2) , že $P(T_1 \leq \gamma \leq T_2) = 1 - \alpha$ pre každú hodnotu parametra γ . Intervalový odhad parametru γ so spoľahlivoťou $1 - \alpha$ je interval $\langle t_1; t_2 \rangle$ a píšeme $\gamma \in \langle t_1; t_2 \rangle$, kde t_1, t_2 sú hodnoty štatistík T_1, T_2 na danom štatistickom súbore $(\boldsymbol{X}, \boldsymbol{Y})$. Spolahľivosť $1-\alpha$ znamená že pri mnohonásobnom opakovanom výbere s konštantným rozsahom n z daného základného súboru približne $(1 - \alpha)100\%$ všetkých intervalových odhadov obsahuje skutočnú hodnotu parametra γ a naopak $\alpha 100\%$ ich túto hodnotu neobsahuje.

2.6.1 Výpočet intervalu spoľahlivosti

Pomocou regresnej analýzy a optimalizácie sme schopný spočítať bodový odhad regresných koeficientov β, θ pre daný model. Ďalej nás bude zaujímať výpočet intervalov spoľahlivosti pre tieto koeficienty. Ten pre lineárne modely spočítame následovným spôsobom.

Nech má lineárny model tvar:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k.$$

Najskôr si spočítame odhad rozptylu daného modelu, ten má tvar:

$$\hat{\sigma}^2 = \frac{S_e}{n-k},\tag{2.15}$$

kde S_e je rezíduálny súčet štvorcov, n je počet pozorovaní ak je počet regresných koeficientov.

Potom si určíme upravenú maticu plánu $\underline{\mathbb{X}}$ v tvare:

$$\underline{\mathbb{X}} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix}.$$

Následne spočítame rozptyly koeficientov β :

$$\hat{\sigma}^2(\underline{\mathbb{X}}^T\underline{\mathbb{X}})^{-1} = \mathbf{V} = \begin{pmatrix} Var(\beta_0) & & \\ & \ddots & \\ & & Var(\beta_k) \end{pmatrix},$$

kde $\underline{\mathbb{X}}^T$ je transponová upravená matica plánu. Rozptyly koeficientov $\boldsymbol{\beta}$ ležia na diagonále matice \boldsymbol{V} .

Ďalej odmocnením rozp
tylov dostaneme smerodajnú odchýlku s pre jednotlivé ko
eficienty:

$$s_{\beta_i} = \sqrt{Var(\beta_i)},\tag{2.16}$$

pre i = 0, 1, ..., k.

Následne zostrojíme interval spoľahlivosti pre β_i ako:

$$\langle \beta_i - t_{(p,n-k)} s_{\beta_i}, \beta_i + t_{(p,n-k)} s_{\beta_i} \rangle,$$

kde $t_{(p,n-k)}$ je kvantil Studentovho rozdelenia pre $p = (1 - \frac{\alpha}{2}), i = 0, 1, ..., k$.

Pre nelineárnu regresiu je postup veľmi podobný, s tým rozdielom, že namiesto upravenej matice plánu \underline{X} použijeme Jakobiho maticu J. Tá má tvar:

$$\mathbb{J} = \begin{pmatrix} \frac{\partial f(\boldsymbol{x},\boldsymbol{\theta})}{\partial \theta_0} |_{x_1} & \frac{\partial f(\boldsymbol{x},\boldsymbol{\theta})}{\partial \theta_1} |_{x_1} & \cdots & \frac{\partial f(\boldsymbol{x},\boldsymbol{\theta})}{\partial \theta_k} |_{x_1} \\ \frac{\partial f(\boldsymbol{x},\boldsymbol{\theta})}{\partial \theta_0} |_{x_2} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \frac{\partial f(\boldsymbol{x},\boldsymbol{\theta})}{\partial \theta_0} |_{x_n} & \cdots & \cdots & \frac{\partial f(\boldsymbol{x},\boldsymbol{\theta})}{\partial \theta_k} |_{x_n} \end{pmatrix}.$$
(2.17)

Pomocou Jakobiho matice spočítame rozptyly koeficientov $\boldsymbol{\theta}$:

$$\hat{\sigma}^2 (\mathbb{J}^T \mathbb{J})^{-1} = \mathbf{V} = \begin{pmatrix} Var(\theta_0) & & \\ & \ddots & \\ & & Var(\theta_k) \end{pmatrix},$$

Následným odmocnením rozp
tylov $Var(\theta_i)$ dostaneme smerodajnú odchýlku s_{θ_i} pr
ei=0,1,...,k.Nakoniec zostrojíme interval spoľahlivosti pr
e θ_i ako:

$$\langle \theta_i - t_{(p,n-k)} s_{\theta_i}, \theta_i + t_{(p,n-k)} s_{\theta_i} \rangle,$$

pre i = 0, 1, ..., k.

3 Laboratórne merania

Dáta ktoré vstupujú ako parametre do modelov pre výpočet súčiniteľa prestupu tepla a Leidenfrostovej teploty, sú výsledkom viacerých experimentov. V rámci mojej práce som experimenty sám nezostavoval, použil som dáta z už vykonaných meraní. Meranie súčiniteľa prestupu tepla a Leidenfrostovej teploty, rovnako ako meranie impaktných tlakov pre jednotlivé trysky, prebehlo v Laboratoři přenosu tepla a proudění, VUT FSI. Meranie dopadovej rýchlosti kvapiek a ich Sauterovho priemeru prebehlo v Ústave Geoniky Akademie věd České republiky. Zmerané dáta som následne upravil a dopočítal z nich nami požadované parametre.

3.1 Súčiniteľ presupu tepla a Leidenfrostova teplota

Experiment začína osadením termoelektrických článkov (senzorov na meranie teploty) do testovacej dosky (vzorky). Vzorka je následne umiestnená do testovacieho zariadenia, kde je ohriata na požadovanú teplotu. Po zahriatí je vzorka schladená vodou pomocou trysky. V priebehu chladenia sú zaznamenávané teploty zmerané termočlánkami umiestnenými pod povrchom chladenej vzorky, a tiež poloha trysky voči vzorke. Využitím inverznej úlohy prenosu tepla bol vypočítaný súčiniteľ prestupu tepla, teplota povrchu, hustota tepelného toku a následne určená Leidenfrostova teplota.

3.1.1 Popis experimentálneho zariadenia a vzorky

K experimentu bolo použité existujúce experimentálne zariadenie v Laboratoři přenosu tepla a proudění (viz. Obrázok 4). Toto zariadenie slúži na vysokoteplotné (do 1250°C) merania chladiacich účinkov trysiek používaných v sekundárnom chladení pri kontinuálnom odlievaní oceli. Zariadenie sa skladá zo zdvíhacieho mechanizmu, na ktorom je umiestnená skúšobná vzorka, z pohyblivého nosníku s tryskou a elektrickej pece.

Testované boli dve trysky, každá pri dvoch rôznych prietokoch. Tak dostávame celkom štyri tryskové konfigurácie:

- M1: Vodo-vzdušná tryska od výrobcu Delavan (W19917-15 8.0 90) pri prietoku 1.
- M2: Vodo-vzdušná tryska od výrobcu Delavan (W19917-15 8.0 90) pri prietoku 2.
- F1: Vodná tryska s plochým lúčom od výrobcu Spraying Systems (8510XT) pri prietoku 1.
- F2: Vodná tryska s plochým lúčom od výrobcu Spraying Systems (8510XT) pri prietoku 2.

Vzorka je doska z nerezovej austenitickej oceli (EN 1.4828) z rozmermi 600 mm x 320 mm o hrúbke 25 mm. Do vzorky boli z horenj strany vyvŕtané diery a bolo do nej umiestnených celkom osemnácť plášťových termočlánkov tak aby vzdialenosť medzi hrotom termočlánku a chladeným povrchom bola 2 ± 0.01 mm. Vzdialenosť medzi termočlánkami je 67 mm. Priamo pod tryskou sa nachádza bod A, vo vzdialenosti 134 mm od neho bod C (viz. Obrázok 5).

3.1.2 Postup experimentu

Experiment začína nahriatím testovacej vzorky na počiatočnú teplotu. Pred dosiahnutím tejto teploty zapíname vodné čerpadlo a nastavujeme tlak vody. Keď je vzorka nahriatá a tlak vody nastavný, zapíname záznamové zariadenie, vyberáme vzorku z pece a umiestnime ju do požadovanej polohy. Následne sa trysky určenou rýchlosťou pohybujú

Obr. 4: Schéma zariadenia na meranie chladiacich vlastností trysiek používaných v sekundárnom chladení pri kontinuálnom odlievaní oceli

Obr. 5: Schéma umiestnenia trysky voči chladenej doske

pod nahriatou vzorkou. Medzi tryskou a nahriatym povrchom je umiestnený pneumatický deflektor, ktorý v zavretom stave odráža vodu mimo povrchu vzorky. Pri pohybe dopredu je deflektor otvorený a voda tak strieka zo vzdialenosti 190 mm (M1,M2) alebo 207 mm (F1,F2) na chladený povrch dosky. Pri zpätnom pohybe do základnej polohy je deflektor zavrený, kvôli regenerácii teplotného pola na povrchu dosky. Vo chvíli keď je teplota povrchu menšia ako požadovaná koncová teplota, je experiment ukončený a dáta zaznamenané záznamovým zariadením sú uložené do počítača. Za pomoci matematických metód sú namerané dáta následne spracované a vyhodnotené [19] [20]. V odmeraných dátach vidíme, ako s rastúcou teplotou vody mierne klesá súčiniteľa prestupu tepla (viz. Obrázok 6), a tiež výraznejšie klesanie Leidenfrostovej teploty (viz. Obrázok 7).

Obr. 6: Závislosť súčiniteľa prestupu tepla od teploty vody pri 950°C

Obr. 7: Závislosť Leidenfrostovej teploty od teploty

3.2 Sautrov stredný priemer kvapiek a rýchlosť kvapiek

Veľkosť a rýchlosť kvapiek bola odmeraná v dvoch bodoch (A,C) vzdialených 134 mm od seba (viz. Obrázok 5). Merané body boli umiestnené na myslenej rovinne kolmej na osu trysky a vzdialenej 190 mm (pre tryskovú konfiguráciu M1,M2) alebo 207 mm (pre tryskovú konfiguráciu F1,F2) od trysky. V rovnakej pozícii voči tryske sa pri meraní súčiniteľu prestupu tepla nachádzala testovaná vzorka. Meranie prebehlo za pomoci rozpoznania obrazu (optical imaging). Sprej bol zaznamenaný na vysokorýchlostnú kameru s vysokým rozlíšením a režimom dvojitého snímania obrazu (double frame mode). Oproti objektívu kamery ležal pulzujúci laser zosynchronizovaný s kamerou za pomoci PTU kontrolného panelu. Režim dvojitého snímania obrazu zapezpečuje zachytenie páru fotiek. Páry fotiek boli zaznamenávané s frekvenciou 15 Hz. Dohromady tak vzniklo 400 párov fotiek. Za pomoci matematického softvéru sme schopný na páre dvoch po sebe idúcich fotiek identifikovať tú istú kvapku. Pár fotiek bol vždy zaznamenaný s časovým rozdielom 5 ms. Po identifikácii kvapky softvér určí jej priemer a vypočíta rýchlosť. Všetky identifikované kvapky sú zaznamenané a štatisticky analyzované. Z merania dostaneme ako výstup Sauterov stredný priemer a rýchlosti kvapiek.

Obr. 8: Schéma merania rýchlosti a veľkosti kvapiek (a), meranie rýchlosti a veľkosti kvapiek (b)

3.3 Impaktné tlaky

Meranie impaktných tlakov prebehlo v Laboratoři přenosu tepla a proudění, VUT FSI. Otestovali sme dva druhy trysiek (M,F), každú pre dva rôzne prietoky. Tak sme dostali dáta popisujúce impaktné tlaky pre celkom štyri merané tryskové konfigurácie (M1, M2, F1, F2). Z týchto dát som následne vypočítal množstvo dopadajúcej vody pre jednotlivé konfigurácie trysiek.

3.3.1 Meranie impaktných tlakov

Pre zadanú tryskovú konfiguráciu sa tlakový senzor pohybuje popod trysku. Pre jednotlivé polohy senzoru pod tryskou sú zaznamené hodnoty tlaku dopadajúcej vody. Tlakový senzor bol zostrojený ako okrúhly pliešok s priemerom 10 mm. Senzor meral silu pôsobiacu na pliešok so známou plochou, ktorá sa potom prepočítala na tlak. Presnosť silového senzoru je 0,5% z merateľného rozsahu (0-5N). Celková skenovaná plocha pod tryskou mala rozmery 300 mm x 50 mm pre trysku F a 440 mm x 80 mm pre trysku M. Odmeranie tlaku prebehlo vždy po posunutí senzoru o 2 mm (pre trysku F)/ 5 mm (pre trysku M) ose X a o 2 mm na ose Y. Dáta boli spracované počítačom a ako výsledok sme dostali pole impaktných tlakov pre dané tryskové konfigurácie (viz. Obrázok 9).

3.3.2 Výpočet množstva dopadajúcej vody

Z merania impaktných tlakov sme dostali rozloženie impaktných tlakov Im[Pa] pre jednotlivé konfigurácie trysiek. S impaktnými tlakmi budeme pracovať pomocou matice impaktných tlakov I. Tá má tvar:

$$\mathbb{I} = \begin{pmatrix} Im_{11} & \dots & Im_{x1} \\ \vdots & \ddots & \vdots \\ Im_{1y} & \dots & Im_{xy} \end{pmatrix},$$

Obr. 9: Vizualizácia zmeraných impaktných tlakov pre M2

Obr. 10: Schéma umiestnenia bodov A, C1, C2 pre M2

kde Im_{ij} je impaktný tlak v polohe [i, j], pre i = 1, ..., x a j = 1, ..., y. V tabuľke 1 sú uvedené celkové prietoky $Q[ls^{-1}]$ pre jednotlivé trysky.

Konfigurácia trysky	Celkový prietok $Q[ls^{-1}]$
M1	0,284
M2	$0,\!378$
F1	0,063
F2	0,124

Tab. 1: Celkové prietoky pre jednotlivé konfigurácie trysiek

Pomocou prietokov a impaktných tlakov sme vypočítali množstvo dopadajúcej vody Q_i , ktoré je pre aproximáciu súčiniteľu prestupu tepla a Leidenfrostovej teploty kľúčové.

Najskôr sme sčítali impaktné tlaky vo všetkých meraných bodoch, ako sumu všetkých prkov matice I. Tak sme dostali celkový impatný tlak na dosku pre danú kofiguráciu try-

siek. Následne sme pre danú tryskovú konfiguráciu vydelili celkový prietok (viz.: tab.1) celkovým impaktným tlakom. Touto hodnotou prenásobíme všetky prvky matice a dostaneme tak maticu množstva dopadajúcej vody \mathbb{Q} :

$$\left(\frac{Q}{\sum_{1}^{x}\sum_{1}^{y}Im_{ij}}\right)\mathbb{I} = \mathbb{Q} = \begin{pmatrix}Q_{11} & \dots & Q_{x1}\\ \vdots & \ddots & \vdots\\ Q_{1y} & \dots & Q_{xy}\end{pmatrix}$$

kde $Q_{ij}[ls^{-1}]$ je množstvo dapadajúcej vody v polohe [i, j]. Z matice \mathbb{Q} sú pre nás zaujímavé tri podmatice $\mathbb{Q}_A, \mathbb{Q}_{C1}, \mathbb{Q}_{C2}$, príslušiace bodom A[0;0], C1[-135;0] a C2[135;0] (viz. Obrázok 10). Tieto podmatice reprezentujú hodnoty množstva dopadajúcej vody v okoliach bodov A, C1 a C2 v nasledovnom tvare:

$$\mathbb{Q}_{K} = \begin{pmatrix} Q_{K_{ac}} & \dots & Q_{K_{bc}} \\ \vdots & \ddots & \vdots \\ Q_{K_{ad}} & \dots & Q_{K_{bd}} \end{pmatrix},$$

pre $K \in \{A, C1, C2\}$ kde okolie bodu $K \in \langle a, b \rangle \times \langle c, d \rangle$.

Priemerné množstvo dopadajúcej vod
y $Q_i[lm^{-2}s^{-1}]$ v danom bode vypočítame ako sumu všetkých prkov matic
e \mathbb{Q}_K vydelenou plochou okolia daného bod
u $S_K=10$ mm x 10 mm:

$$\frac{\sum_{a}^{b} \sum_{c}^{d} Q_{K_{ij}}}{S_{K}} = Q_{i},$$

kde $Q_i[lm^{-2}s^{-1}]$ je nami požadovaná veličina, množstvo dopadajúcej vody v bodeK a $S_K{=}100\ mm^2.$

Takto vypočítame množstvo dopadajúcej vody pre bod A, ktorý leží priamo pod tryskou. Množstvo dopadajúcej vody pre bod C vypočítame ako priemer hodnôt množstva dopadajúcej vody pre body C1 a C2. Hodnoty množstva dopadajúcej vody sú v intervale $Q_i \in \langle 3, 6; 66, 48 \rangle [lm^{-2}s^{-1}]$. Výsledky prepočtu impaktných tlakov na množstvo dopadajúcej vody možeme vidieť v nasledujúcej tabuľke:

Tab. 2: Množstvo dopadajúcej vody pre jednotlivé polohy pod tryskou a konfigurácie trysiek

Konfigurácia trysiek	Poloha pod tryskou	$Q_i[lm^{-2}s^{-1}]$
M1	A	$43,\!93$
	C	35,75
M2	A	66,48
	C	$52,\!38$
F1	A	14,99
	C	$3,\!6$
F2	A	29,5
	C	7,09

3.4 Experimentálne získané dáta

Skombinovaním výstupov z meraní sme získali dve sady dát. Dátová sada α pozostáva z 34 pozorovaní, dátová sada T_L pozostáva z 29 pozorovaní. Dátové sady pre každé pozorovanie nasledujúce parametre :

- Druh trysky a umiestnenie meraného bodu: Celkovo 4 konfigurácie trysiek (M1,M2,F1,F2) a dve polohy meraného bodu (A,C) viz. Obrázok 5.
- Dopadová rýchlosť kvapiek $v[ms^{-1}]$
- Sauterov stredný priemer kvapiek $d_{32}[m]$
- Teplota vody $T_{\infty}[{}^{\circ}C]$: Alebo tiež teplota kvapaliny v dostatočnej vzdialenosti od chladeného povrchu. V našich meraniach naberá hodnoty od 12,6°C do 78,5°C. Od teploty vody sú priamo závislé parametre charakterizujúce jej vlastnosti pri sprchovom chladení a to: hustota vody $\rho[kgm^{-3}]$, merná tepelná kapacita vody pri konštantnom tlaku $c_p[Jkg^{-1}K^{-1}]$, dynamická viskozita $\mu[kgm^{-2}s^{-1}]$ a súčiniteľ tepelnej vodivosti vody $\lambda[Wm^{-1}K^{-1}]$.
- Množstvo dopadajúcej vody $Q_i[m^3m^{-2}s^{-1}]$: Vypočítané zo zmeraných hodnôt impaktných tlakov.
- Súčiniteľ pretupu tepla $\alpha[WK^{-1}m^{-2}]$: Vypočítaný inverznou úlohou pre sadu dát HTC.
- Leidenfrostova teplota $T_L[^{\circ}C]$: Vypočítaná inverznou úlohou pre sadu dát T_L .

Celkovo tak obe dátové sady pozostávajú z odmeranej hodnoty závislej premennej (α, T_L) a hodnôt parametrov sprchového chladenia $(v, d_{32}, T_{\infty}, \rho, c_p, \mu, \lambda, Q_i)$ pri ktorých bola táto hodnota závislej premennej odmeraná. Tieto parametre boli v nasledujúcej časti práce použité ako vstupy pre vzorové modely, vlastné modely a už existujúce korelácie na odhad súčiniteľa prestupu tepla a Leidenfrostovej teploty. V modeloch sa vyskytujú aj dva parametre, ktoré sa v priebehu meraní nemenili a to teplota povrchu $T_s = 950^{\circ}C$ a teplota saturácie vody $T_{sat} = 100^{\circ}C$.

4 Modelovanie

V tejto kapitole práce sa budeme venovať samotnej tvorbe modelov. Najskôr aplikujeme dva už existujúce modely na naše zmerané dáta a vyhodnotíme ich presnosť. Následne ich zoptimalizujeme aby sme ich presnosť čo najviac zvýšili. Tieto modely budú pre nás vzorové, ich kombináciou vytvoríme radu vlastných modelov. Táto kapitola bude rozdelená na dve časti. Prvá časť bude venovaná modelom pre výpočet súčiniteľa prestupu tepla α pri blanovom vare. Druhá časť bude venovaná modelom pre výpočet Leidenfrostovej teploty T_L . Na výpočty bodových odhadov regresných koeficientov v tejto časti práce sme použili dva nástroje programu Excel a to Excel - Data analysis - Regression a Excel - Solver - GRG nonlinear method. Ostatné výpočty (intervaly spoľahlivosti, koeficienty determinácie, reziduálne súčty štvorcov) boli realizované manuálne v programe Excel za pomoci už spomínanej metodiky (viz. kap. Regresná analýza).

4.1 Súčiniteľ prestupu tepla

4.1.1 Vzorové modely

a) **1.9:** $\alpha = f(Q_i, v, d_{32})$

Prvý vzorový model prevzatý z publikácie [11], zohľadňuje vplyv množstva dopadajúcej vody $Q_i[lm^{-2}s^{-1}]$, priemernej rýchlosti kvapiek $v[ms^{-1}]$ a Sauterovho priemeru kvapiek $d_{32}[m]$ na súčiniteľ prestupu tepla. Má tvar:

$$\alpha = 19, 6Q_i^{0,461} v^{0,261} d_{32}^{-0,208}.$$
(1.9)

Pre zvýšenie presnosti si na základe tohto modelu vytvoríme regresnú funkciu:

$$\alpha = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3}. \tag{1.9 A}$$

Optimalizáciou (viz. kap. 2.5.2) rovnice (1.9 A) sme dostali nasledujúce hodnoty regresných koeficientov a ich intervalové odhady pre $\alpha = 0,05$:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	649,368	$\langle 137, 311; 1161, 424 \rangle$
c_1	0,3164	$\langle 0, 1991; 0, 4338 \rangle$
c_2	0,5515	$\langle 0,\!3256;\!0,\!7773 \rangle$
c_3	0,2398	$\langle 0, 1140; 0, 3657 \rangle$

Tab. 3: Hodnoty regresných koeficientov modelu 1.9 A

Aby sme mohli regresné koeficienty zistiť aj lineárnou regresnou analýzou, musíme rovnicu 1.9 A najskôr transformovať na lineárny tvar, rovnakým spôsobom budeme transformovať aj pre ostatné modely v nasledujúcich častiach práce (lineárne tvary nasledujúcich modelov sa nachádzajú v prílohe):

$$ln(\alpha) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}).$$
(1.9 A LIN)

Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 1.9 A LIN:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	$578,\!439$	$\langle 256, 508; 900, 37 \rangle$
c_1	0,3785	$\langle 0,2986;0,4585 \rangle$
c_2	0,5404	$\langle 0,3587;0,7222 \rangle$
c_3	0,2474	$\langle 0,1219;0,3729 \rangle$

Tab. 4: Hodnoty regresných koeficientov modelu 1.9 A LIN

V nasledujúcej tabuľke a na Obrázku 11 môžeme vidieť porovnanie presnosti variácií tvaru modelu 1.9:

Tab. 5: Hodnoty koeficientu determinácie pre variácie rovnice 1.9

Model	Res^2
1.9	67544
1.9 A	14082
1.9 A LIN	15364

Obr. 11: Porovnanie troch variácii rovnice 1.9

Presnosť prvého vzorového modelu 1.9 je značne limitovaná absenciou členu, ktorý by popisoval vplyv teploty vody. Originálne bolo táto rovnica určená pre teploty vody v rozmedzí $20 - 30^{\circ}C$. Upravená varianta 1.9 A, prispôsobená optimalizáciou regresných koeficientov, je presnejšia (viz. Tabuľka 5 a Obrázok 11) pre celé spektrum teploty vody aj pri absenciu člena, ktorý by popisoval túto teplotu. Samotný rozdiel v presnosti medzi variantou rovnice 1.9 A, kde sa regresné koeficienty počítali optimalizačnou metódou a variantou 1.9 A LIN, kde sa regresné koeficienty počítali pomocou lineárnej regresie, je minimálny a pravdepodobne spôsobený rozdielnym prístupom k určovaniu regresných koeficientov.

b) **4.1:** $\alpha = f(Re, Pr_f, \lambda, d_{32}, T_s, T_\infty)$

Druhý vzorový model prevzatý z [3] je komplexnejší. Zohľadnuje vplyv vlastností sprchového chladenia a vplyv vlastností chladiacej kvapaliny na súčiniteľ prestupu tepla. Má tvar:

$$\alpha \approx c_0 R e_{d_{32}}^{c_1} P r_f^{c_2} \frac{\lambda}{d_{32}} \frac{(T_{sat} - T_{\infty})}{(T_s - T_{\infty})}, \tag{4.1}$$

kde $Re_{d_{32}}$ je Raynoldsove číslo, $Pr_f=\left(\frac{c_p\mu}{\lambda}\right)$ je Prandtlove číslo, $\lambda[Wm^{-1}K^{-1}]$ je súčiniteľ tepelnej vodivosti vody, $d_{32}[m]$ je Sauterov stredný priemer kvapiek, $T_{sat}=100^\circ C$ je teplota saturácie vody, $T_\infty[^\circ C]$ je teplota vody v dostatočnej vzdialenosti od povrchu a $T_s=950^\circ C$ je teplota chladeného povrchu. Do tohto modela vstupujú dve kategórie veličín a to vlastnosti chladiacej kvapaliny $(\rho,\mu,\lambda,c_p,T_{sat},T_\infty)$ a vlastnosti spchového chladenia (d_{32},Q_i) .

Optimalizáciou rovnice 4.1 sme dostali nasledujúce hodnoty regresných koeficientov:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	1,3549	$\langle 0,0619;2,6479 \rangle$
c_1	$0,\!6474$	$\langle 0,4026;0,8922 \rangle$
c_2	-0,0489	$\langle -0,4135;0,3158 \rangle$

Tab. 6: Hodnoty regresných koeficientov modelu 4.1

Následne dostávame nasledujúce bodové odhady a intervaly spoľahlivosti pre rovnicu 4.1 LIN:

Tab. 7: Hodnoty regresných koeficientov modelu 4.1 LIN

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	2,6035	$\langle 1,\!4495;\!3,\!7575 \rangle$
c_1	0,5252	$\langle 0,\!3821;\!0,\!6683 \rangle$
C_2	-0,1730	$\langle -0,\!4502;\!0,\!1042 \rangle$

V nasledujúcej tabuľke a na Obrázku 12 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.1:

Tab. 8: Hodnoty koeficientu determinácie pre variácie rovnice 4.1

Obr. 12: Porovnanie dvoch variácii rovnice 4.1

Druhý vzorový model originálne nedisponoval hodnotami regresných koeficientov. Po určení týchto hodnôt sme dostali dve varianty modelu. Varianta 4.1 bola určená optimalizačne, varianta 4.1 LIN regresne. Model 4.1 je výrazne presnejší ako model 4.1 LIN (viz. Tabuľka 8 a Obrázok 12). Pri oboch variantách nedokážeme na základe 95% intervalov spoľahlivosti potvrdiť nenulovosť regresných koeficientov.

4.1.2 Vlastné modely

- a) $1.9 + 4.1 \text{ A}: \alpha = f(Q_i, v, d_{32}, T_\infty)$
- b) 1.9 + 4.1 B1: $\alpha = f(Q_i, v, d_{32}, Pr_f, \lambda, T_{\infty})$
- c) 1.9 + 4.1 B2: $\alpha = f(Q_i, v, d_{32}, Pr_f, \lambda, T_\infty)$
- d) 1.9 + 4.1 C: $\alpha = f(Q_i, v, d_{32}, T_{\infty})$

Tieto modely sme vytvorili ako kombináciu rovníc 1.9 a 4.1. Toto spojenie bolo motivované snahou vytvoriť rovnicu, ktorá bude čo najpresnejšie popisovať súčiniteľ prestupu tepla α , a bude pri tom najreálenjšie zohľadňovať ako vlastnosti sprchového chladenia, tak vlastnosti chladiacej kvapaliny.

a) **A:** $\alpha = f(Q_i, v, d_{32}, T_{\infty})$

Keď že tvar rovnice 1.9 A popisuje na základe vlastostí sprchového chladenia súčiniteľ prestupu tepla α pomerne presne, nahradíme ním člen $\left(c_0 R_{d_{32}}^{c_1} P r_f^{c_2} \frac{\lambda}{d_{32}}\right)$ v rovnici 4.1 a do mocniny členu $\frac{(T_{sat}-T_{\infty})}{(T_s-T_{\infty})}$ pridáme regresný koeficient. Dostaneme tak tvar:

$$\alpha = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} \left(\frac{T_{sat} - T_{\infty}}{T_s - T_{\infty}} \right)^{c_4}.$$
(4.2)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	910,9624	$\langle 291,0092;1530,916 \rangle$	
c_1	0,3148	$\langle 0,2169;0,4127 \rangle$	
c_2	0,5483	$\langle 0,3594;0,7372 \rangle$	9483
c_3	$0,\!2259$	$\langle 0,1212;0,3306 \rangle$	
c_4	0,1564	$\langle 0,0697;0,2431 \rangle$	

Tab. 9: Hodnoty regresných koeficientov modelu 4.2

Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.2 LIN:

Tab. 10: Hodnoty regresných koeficientov modelu 4.2 LIN

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	827,0391	$\langle 441, 8492; 1212, 229 \rangle$	
c_1	0,3814	$\langle 0,3215;0,4413 \rangle$	
c_2	0,5371	$\langle 0,\!4009;\!0,\!6732 \rangle$	10994
c_3	0,236	$\langle 0, 1418; 0, 3302 \rangle$	
c_4	0,1593	$\langle 0,0936;0,2250 \rangle$	

Na Obrázoku 13 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.2:

Obr. 13: Porovnanie dvoch variácii rovnice 4.2

Prvý vlastný model pre výpočet súčiniteľu prestupu tepla sa v oboch variantách (4.2, 4.2 LIN) vyznačuje vysokou presnosťou predikcie (viz. Tabuľka 17). Ako môžeme vidieť na Obrázku 13, hodnoty vypočítané týmto modelom sa veľmi blížia reálnym hodnotám. Ako môžeme vidieť v stĺpci 95% Interval spoľahlivosti v Tabuľke 9 a 10, 95% Intervaly spoľahlivosti neobsahujú nulu, čo potvrdzuje, že všetky regresné koeficienty pre obe variácie modelu sú nenulové. Samotný rozdiel medzi dvoma varian-

tami je minimálny a pravdepodobne spôsobený rozdielnym prístupom k určovaniu regresných koeficientov.

b) **B1:** $\alpha = f(Q_i, v, d_{32}, Pr_f, \lambda, T_\infty)$

Obdobne ako pri tvorbe prvého vlastného modelu, sme postupovali aj pri tvorbe druhého vlastného modelu. Vzorovou rovnicou 1.9 sme nahradili člen $(c_0 Re_{d_{32}}^{c_1})$ v druhej vzorovej rovnici 4.1 a dostali sme tvar:

$$\alpha = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} P r_f^{c_4} \frac{\lambda}{d_{32}} \left(\frac{T_{sat} - T_{\infty}}{T_s - T_{\infty}} \right).$$
(4.3)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	36374,77	$\langle -6046, 843; 78796, 39 \rangle$	
c_1	0,3106	$\langle 0, 1497; 0, 4716 \rangle$	
c_2	$0,\!4901$	$\langle 0,\!1787;\!0,\!8015 \rangle$	25892
c_3	$1,\!1902$	$\langle 1,013;1,3675 \rangle$	
c_4	-0,6618	$\langle -0,8168;-0,5067 \rangle$	

Tab. 11: Hodnoty regresných koeficientov modelu 4.3

	1 1 /	11 1	• , 1	1, 1 1	1 1	1 O T TNI
Nasledne dostavame	bodove (odhady a	intervaly	spolahlivosti	pre model 4	4.3 LIN:
		•/	./	1	1	

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	36263,95	$\langle 10672, 83; 61855, 07 \rangle$	
c_1	$0,\!379$	$\langle 0,2614;0,4966 \rangle$	
c_2	0,5193	$\langle 0,2520;0,7866 \rangle$	29890
c_3	1,219	$\langle 1,0343;1,4038 \rangle$	
c_4	-0,6883	\langle -0,8157;-0,5610 \rangle	

Tab. 12: Hodnoty regresných koeficientov modelu 4.3 LIN

Na Obrázku 14 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.3: Druhý vlastný model má v oboch variantách nižšiu presnosť ako model 4.2 (viz. Tabuľka 17). Presnosť modelu 4.3 je ilustrovaná na Obrázku 14, kde môžeme vidieť, že hodnoty sú výrazne vychýlenejšie od červenej priamky značiacej ideálnu predikciu. Všetky regresné koeficienty pre variantu 4.3 LIN sú nenulové (viz. Tabuľka 12). Toto tvrdenie neplatí pre variantu 4.3 (viz. Tabuľka 11), kde nulovosť reg. koeficientu c_0 nemôžeme na základe jeho intervalu spoľahlivosti vylúčiť.

Obr. 14: Porovnanie dvoch variácii rovnice 4.3

c) **B2:** $\alpha = f(Q_i, v, d_{32}, Pr_f, \lambda, T_\infty)$

Z modelu 4.3, sme pridaním regresného koeficientu do mocniny členu $\left(\frac{T_{sat}-T_{\infty}}{T_s-T_{\infty}}\right)$ odvodili ďalší vlastný model:

$$\alpha = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} P r_f^{c_4} \frac{\lambda}{d_{32}} \left(\frac{T_{sat} - T_{\infty}}{T_s - T_{\infty}} \right)^{c_5}.$$
(4.4)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	373,4618	$\langle -131, 3979; 878, 3215 \rangle$	
c_1	0,3185	$\langle 0,2246;0,4123 \rangle$	
c_2	0,5689	$\langle 0, 3869; 0, 7508 \rangle$	8200
c_3	1,2370	$\langle 1, 1377; 1, 3364 \rangle$	0299
c_4	0,3852	$\langle 0,1010;0,6695 \rangle$	
c_5	-0,1291	$\langle -0,4167;0,1584 \rangle$	

Tab. 13: Hodnoty regresných koeficientov modelu 4.4

Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.4 LIN: Na Obrázku 15 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.4:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	$434,\!5355$	$\langle 144,5602;724,5108 \rangle$	
c_1	0,3826	(0,3255;0,4396)	
c_2	0,5408	$\langle 0,4110;0,6706 \rangle$	0509
C_3	1,2388	$\langle 1, 1490; 1, 3285 \rangle$	9098
c_4	0,3221	$\langle 0,1016;0,5426 \rangle$	
C_5	-0,0658	$\langle -0,2890;0,1575 \rangle$	

Tab. 14: Hodnoty regresných koeficientov modelu 4.4 LIN

Obr. 15: Porovnanie dvoch variácii rovnice 4.4

Tretí vlastný model vznikol z modelu 4.3 pridaním regresného koeficientu do mocniny člena priamo popisujúceho vplyv teploty vody. Pridaním tohto koeficientu sa zvýšila presnosť v oboch variantách modelu (viz. Tabuľka 17 a Obrázok 15). Tento model poskytuje najpresnejšiu predikciu súčiniteľa prestupu tepla, ale na základe 95% intervalov spoľahlivosti (viz. Tabuľka 13 a 14) nemôžeme vylúčiť nenulovosť regresných koeficientov.

d) **C:**
$$\alpha = f(Q_i, v, d_{32}, T_{\infty})$$

Tento model berie ako základ vzorovú rovnicu 1.9 A, ktorá dobre popisuje vplyv množstva dopadajúcej vody, dopadovej rýchlosti kvapiek a Sauterovho stredného priemeru kvapiek na súčiniteľ prestupu tepla. Vplyv teploty vody zahrnie člen ($T_{sat} - T_{\infty}$), ktorý podchádza zo vzorovej rovnice 4.1. Výsledný tvar modelu je:

$$\alpha = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} (T_{sat} - T_\infty)^{c_4}.$$
(4.5)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti: Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.5 LIN: Na Obrázku 16 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.5: Posledný vlastný model je najednoduchší a obsahuje najmenej vstupných parametrov. Aj tak sa vyznačuje vysokou presnosťou (viz. Tabuľka 17 a Obrázok 16). Ďalej môžme na základe 95% intervalov spoľahlivosti skonštatovať, že regresné ko-

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	$327,\!3057$	$\langle 78, 5975; 576, 0138 \rangle$	
c_1	0,3155	$\langle 0,2178;0,4132 \rangle$	
c_2	0,5486	(0,3602;0,7370)	9444
c_3	0,2273	$\langle 0,1228;0,3317 \rangle$	
c_4	$0,\!1483$	\langle 0,0664;0,2302 \rangle	

Tab. 15: Hodnoty regresných koeficientov modelu 4.5

Tab. 16: Hodnoty regresných koeficientov modelu 4.5 LIN

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	288,209	$\langle 147,2800;429,1376 \rangle$	
c_1	0,3814	$\langle 0,3217;0,4412 \rangle$	
c_2	0,5370	(0,4013;0,6728)	10950
c_3	0,2360	$\langle 0, 1421; 0, 3300 \rangle$	
c_4	0,1515	$\langle 0,0894;0,2135 \rangle$	

Obr. 16: Porovnanie dvoch variácii rovnice 4.5

eficienty pre obe varianty tohto modelu sú nenulové (viz. Tabuľka 15 a 16). Nenulovosť regresných koeficientov, vysoká presnosť predikcie a jednoduchosť robí z modelu 4.5 najvhodnejší vlastný model pre výpočet súčiniteľa prestupu tepla, aj keď presnosťou mierne zaostáva za modelom 4.4. Ako môžeme vidieť na Obrázku 17 a 18, okrem predikcie pre meranie M2 A je model konzistentne presný pre celý rozsah teploty vody. Táto nepresnosť môže spôsobená extrémnou hodnotou množstva dopadajúcej vody pri meraní v M2 ($Q_i = 66, 48[lm^{-2}s^{-1}]$)(viz. Príloha E), keďže väčšina našich meraní, podľa ktorých boli určené regresné koeficienty rovnice má hodnotu $Q_i \in \langle 3, 6; 52, 4 \rangle [lm^{-2}s^{-1}]$ a množstvo dopadajúcej vody má pri predikcií najväčšiu váhu. Táto nepresnosť môže byť tiež spôsobená chybou merania.

Obr. 17: Závislosť presnosti predikcie súčiniteľa prestupu tepla od teploty vody pre rovnicu 4.5 v meranom bode A

Obr. 18: Závislosť presnosti predikcie súčiniteľa prestupu tepla od teploty vody pre rovnicu 4.5 v meranom bode C

Tab. 17: Porovnanie presností vlastných modelov pre výpočet súčiniteľa prestupu tepla

Model	Označenie	Res^2
4.2	А	9483
4.3	B1	25892
4.4	B2	8299
4.5	С	9444
4.2 LIN	А	10994
4.3 LIN	B1	29890
4.4 LIN	B2	9598
4.5 LIN	С	10950

Obr. 19: Porovnanie vlastných modelov pre výpočet súčiniteľa prestupu tepla

4.2 Leidenfrostova teplota

4.2.1 Vzorové modely

a) **1.15:** $T_L = f(Q_i, v, d_{32})$

Prvý vzorový model pre výpočet T_L má rovnaký tvar ako 1.9, zohľadňuje teda vplyv množstva dopadajúcej vody $Q_i[lm^{-2}s^{-1}]$, priemernej rýchlosti kvapiek $v[ms^{-1}]$ a Sauterovho priemeru kvapiek $d_{32}[m]$. Má tvar:

$$T_L = 351 Q_i^{0,111} v^{0,174} d_{32}^{0,006}.$$
 (1.15)

Pre zvýšenie presnosti vytvoríme na základe modelu 1.15 vlastnú variantu, ktorú budeme na základe našich dát optimalizovať:

$$T_L = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3}. \tag{1.15 A}$$

Optimalizáciou rovnice 1.15 A sme dostali nasledujúce hodnoty regresných koeficientov a ich intervalové odhady:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	927,591	$\langle 34,6981;1820,48 \rangle$
c_1	0,3821	$\langle -0,0745;0,1510 \rangle$
c_2	0,1679	$\langle -0,0785;0,4143 \rangle$
c_3	0,0938	$\langle -0,0597;0,2473 \rangle$

Tab. 18: Hodnoty regresných koeficientov modelu 1.15 A

Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 1.15 A LIN: V nasledujúcej tabuľke a na Obrázku 20 môžeme vidieť porovnanie presnosti variácií tvaru modelu 1.15 A:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	932,36	$\langle 333,414;1531,31 \rangle$
c_1	0,02724	$\langle -0,0830;0,1375 \rangle$
c_2	0,1960	$\langle -0,0541;0,4460 \rangle$
C_3	0,1001	$\langle -0,0633;0,2635 \rangle$

Tab. 19: Hodnoty regresných koeficientov modelu 1.15 A LIN

Tab. 20: Hodnoty koeficientu determinácie pre variácie rovnice 1.15

Obr. 20: Porovnanie troch variácii rovnice 1.15

Vzorová rovnica 1.15 bola jej autormi určená len pre teploty vody v intervale $20^{\circ}C$ až $30^{\circ}C$. Preto pri použití dát zo všetkých meraní, pri ktorých boli teploty vody v rozsahu od $12^{\circ}C$ po $75^{\circ}C$, je rovnica nepresná. Presnosť rovnice sa mierne zvýšila dopočítaním vlastných regeresných koeficientov, ale aj v tejto variante zostáva predikcia pomerne nepresná (viz. Tabuľka 20 a Obrázok 20). Pri variantách s mnou dopočítanými regresnými koeficientami na základe 95% intervalov spoľahlivosti nemôžme vylúčiť nenulovosť regresných koeficietov (viz. Tabuľka 18 a 19).

b) **4.6:** $T_L = f(Re, Pr_f, \lambda, d_{32}, T_{\infty})$

Druhý vzorový model je prevzatý z [3]. Obdobne ako model 4.1, aj tento model uvažuje okrem vlastností sprchového chladenia aj vlastosti chladiacej kvapaliny. Vplyv trysky je popísaný Raynoldsovým číslom $Re_{d_{32}}$ a Sauterovým stredným priemerom kvapiek $d_{32}[m]$. Vplyv vlastností chladiacej kvapaliny je zahrnutý v Prandtlovom čísle Pr_f , v súčiniteli tepelnej vodivosti vody $\lambda[Wm^{-1}K^{-1}]$, teplote saturácie

 $T_{sat}=100^\circ C$ a teploty vody v dostatočnej vzdialenosti od chladeného povrchu $T_\infty[^\circ C].$ Tvar modelu je:

$$T_L \approx c_0 R e_{d_{32}}^{c_1} P r_f^{c_2} \frac{\lambda}{d_{32}} (T_{sat} - T_\infty) + T_{sat}.$$
 (4.6)

Optimalizáciou rovnice 4.6 sme dostali nasledujúce hodnoty regresných koeficientov a ich intervalové odhady:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	0,000788	$\langle -0,000461;0,002037 \rangle$
c_1	0,5542	$\langle 0,\!1750;\!0,\!9334 \rangle$
c_2	0,0740	$\langle -0,5482;0,6963 \rangle$

Tab. 21: Hodnoty regresných koeficientov modelu 4.6

Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.6 LIN:

Tab. 22: Hodnoty regresných koeficientov modelu 4.6 LIN

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti
c_0	0,0025	$\langle 0,0006;0,0044 \rangle$
c_1	0,2659	$\langle -0,0241;0,5559 \rangle$
c_2	-0,0799	$\langle -0,6686;0,5087 \rangle$

V nasledujúcej tabuľke a na Obrázku 21 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.6:

Tab. 23: Hodnoty koeficientu determinácie pre variácie rovnice 4.6

Model	Res^2
4.6	72475
4.6 LIN	149428

Druhá vzorová rovnica pre výpočet Leidenfrostovej teploty, analyzujúca aj vplyv teploty vody je oproti prvej vzorovej rovnici presnejšia (viz. Tabuľka 23 a Obrázok 21). Pri oboch variantách tejto rovnice nedokážeme na základe 95% intervalov spoľahlivosti potvrdiť nenulovosť regresných koeficientov (viz. Tabuľka 21 a 22).

Obr. 21: Porovnanie troch variácii rovnice 4.6

4.2.2 Vlastné modely

- a) 1.15 + 4.6 A: $T_L = f(Q_i, v, d_{32}, T_\infty)$
- b) 1.15 + 4.6 B1: $T_L = f(Q_i, v, d_{32}, Pr_f, T_\infty)$
- c) 1.15 + 4.6 B2: $T_L = f(Q_i, v, d_{32}, Pr_f, T_\infty)$
- d) 1.15 + 4.6 C1: $T_L = f(Q_i, v, d_{32}, Pr_f, \lambda, T_\infty)$
- e) 1.15 + 4.6 C2: $T_L = f(Q_i, v, d_{32}, Pr_f, \lambda, T_\infty)$

Obdobne ako pri vytváraní modelov pre súčiniteľ prestupu tepla, vlastné modely pre výpočet T_L sú tvorené ako kombinácia rovníc 1.15 a 4.6. Toto spojenie je motivované snahou vytvoriť model pre výpočet T_L , ktorý bude zohľadnovať ako vlastnosti sprchového chladenia, tak aj vlastnosti chladiacej kvapaliny.

a) **A:** $T_L = f(Q_i, v, d_{32}, T_{\infty})$

Tento model vznikol nahradením člena $c_0 Re_{d_{32}}^{c_1} Pr_f^{c_2} \frac{\lambda}{d_{32}}$ v rovnici 4.6 rovnicou 1.15 A a následným pridaním regresného koeficientu do mocniny $(T_{sat} - T_{\infty})$. Výsledný tvar modelu je:

$$T_L = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} (T_{sat} - T_\infty)^{c_4} + T_{sat}.$$
(4.7)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti:

Tab. 24: Hodnoty regresných koeficientov modelu 4.7

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	384,3742	$\langle 268,7333;500,015 \rangle$	
c_1	0,1059	$\langle 0,0755;0,1363 \rangle$	
c_2	0,1399	$\langle 0,0745;0,2054 \rangle$	1647
<i>C</i> 3	0,0818	$\langle 0,0418;0,1219 \rangle$	
c_4	0,3033	$\langle 0,2689;0,3377 \rangle$	

Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.7 LIN:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	184,3242	$\langle 94,\!8847;\!273,\!7590 \rangle$	
c_1	0,1011	$\langle 0,0378;0,1645 \rangle$	
c_2	0,1742	$\langle 0,0343;0,3140 \rangle$	1687
c_3	0,0924	$\langle 0,0012;0,1836 \rangle$	
c_4	0,3066	$\langle 0,2384;0,3747 \rangle$	

Tab. 25: Hodnoty regresných koeficientov modelu 4.7 LIN

Obr. 22: Porovnanie dvoch variácii rovnice 4.7

Na Obrázku 22 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.7: Prvá vlastná rovnica pre výpočet Leidenfrostovej teploty sa oproti vzorovým rovniciam vyznačuje vysokou presnosťou (viz. Tabuľka 34 a Obrázok 22). Na základe 95% intervalov spoľahlivosti (viz. Tabuľka 24 a 25) dokážeme vyvrátiť nulovosť regresných koeficientov. Vysoká presnosť, nenulovosť regresných koeficientov a nízky počet vstupných parametrov robia az tejto rovnice najvhodnejšiu vlastnú rovnicu pre výpočet Leidenfrostovej teploty, aj napriek faktu, že model 4.9 a model 4.11 dosahujú o niečo vyššiu presnosť. Ako možeme vidieť na Obrázku 23 a 24, presnosť modelu 4.7 je pomerne konzistená na celom rozsahu teploty vody.

Obr. 23: Závislosť presnosti predikcie Leidenfrostovej teploty od teploty vody pre rovnicu 4.7 v meranom bode A

Obr. 24: Závislosť presnosti predikcie Leidenfrostovej teploty od teploty vody pre rovnicu 4.7 v meranom bode C

b) **B1:** $T_L = f(Q_i, v, d_{32}, Pr_f, T_\infty)$

Pri tvorbe druhého vlastného modelu sme člen $c_0 Re_{d_{32}}^{c_1} \frac{\lambda}{d_{32}}$ zo vzorovej rovnice 4.6 nahradili vzorovou rovnicou 1.15 A. Vznikol tak model:

$$T_L = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} Pr_f^{c_4} (T_{sat} - T_\infty) + T_{sat}.$$
(4.8)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti: Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.8 LIN: Na Obrázku 25 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.8: Druhá vlastná rovnica pre výpočet Leidenfrostovej teploty je oproti prvej komplex-

Reg. koeficient Bodový odhad		95% Interval spoľahlivosti	Res^2
c_0	23,3789	$\langle 1,5453;45,2125 \rangle$	
c_1	0,1172	$\langle 0,0114;0,2229 \rangle$	
c_2	0,0852	$\langle -0,1436;0,3140 \rangle$	4680
C_3	0,0465	$\langle -0,0958;0,1890 \rangle$	
c_4	-0,6141	\langle -0,7399;-0,4883 \rangle	

Tab. 26: Hodnoty regresných koeficientov modelu 4.8

Tab. 27: Hodnoty regresných koeficientov modelu 4.8 LIN

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	27,3758	$\langle 9,8566;45,1650 \rangle$	
c_1	$0,\!1127$	$\langle 0,0008;0,2245 \rangle$	
c_2	$0,\!1300$	$\langle -0,1165;0,3765 \rangle$	4989
c_3	0,0666	$\langle -0,0942;0,2274 \rangle$	
c_4	-0,6650	$\langle -0,7877;-0,5422 \rangle$	

Obr. 25: Porovnanie dvoch variácii rovnice 4.8

nejšia, obsahuje viac vstupných parametrov a vplyv teploty vody v nej nefiguruje len priamo ale aj vo forme Prandtlovho čísla. Aj napriek vyššej komplexnosti tento model nepopisuje realitu presne (viz. Tabuľka 34 a Obrázok 25). Na základe 95% intervalov spoľahlivosti (viz. Tabuľka 26 a 27) nedokážeme potvrdiť nenulovosť regresných koeficientov pre obe varianty tejto rovnice. c) **B2:** $T_L = f(Q_i, v, d_{32}, Pr_f, T_\infty)$

Následujúci model odvodíme z modelu 4.21 pridaním regresného koeficientu do mocniny členu $(T_{sat} - T_{\infty})$. Odvodený model má tak tvar:

$$T_L = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} Pr_f^{c_4} (T_{sat} - T_\infty)^{c_5} + T_{sat}.$$
(4.9)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	262,3206	$\langle 36,2896;488,3516 \rangle$	
c_1	0,1058	$\langle 0,0429;0,1686 \rangle$	
c_2	0,1500	$\langle 0,0140;0,2861 \rangle$	1554
c_3	0,0880	$\langle 0,0051;0,1710 \rangle$	1004
c_4	0,1330	$\langle -0,0995;0,3657 \rangle$	
c_5	$0,\!1722$	$\langle -0,0665;0,4110 \rangle$	

Tab. 28: Hodnoty regresných koeficientov modelu 4.9

Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.9 LIN:

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res
c_0	257,0408	$\langle 108, 1655; 405, 916 \rangle$	
c_1	0,1021	$\langle 0,0392;0,1650 \rangle$	
c_2	0,1809	$\langle 0,0416;0,3201 \rangle$	1500

0,0967

0,1411

0.1741

Tab. 29: Hodnoty regresných koeficientov modelu 4.9 LIN

Na Obrázku 26 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.9: Táto rovnica vznikla z 4.8 pridaním regresného koeficientu do mocniny členu (T_{sat} – T_{∞}). Touto zmenou sa výrazne zvýšila presnosť (viz. 34 a Obrázok 26). Na základe 95% intervalov spoľahlivosti ale nedokážeme potvrdiť nenulovosť regresných koeficientov pre obe varianty rovnice (viz. Tabuľka 28 a 29).

d) C1: $T_L = f(Q_i, v, d_{32}, Pr_f, \lambda, T_\infty)$

 c_3

 c_4

 c_5

Pri tvorbe tohto modelu popisujeme vplyv charakteristík sprchového chladenia pomocou vzorovej rovnice 1.15 A, vplyv teploty vody je popísaný pomocou členov $Pr_{f}^{c_{4}}\frac{\lambda}{d_{32}}(T_{sat}-T_{\infty})+T_{sat}$ zo vzorovej rovnice 4.6. Výsledný tvar je:

$$T_L = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} P r_f^{c_4} \frac{\lambda}{d_{32}} (T_{sat} - T_\infty) + T_{sat}.$$
 (4.10)

 $\langle 0,0060;0,1874 \rangle$

-0,0972;0,3795

-0,0597;0,4078

1592

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti: Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.10 LIN: Na Obrázku 27 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.10: Tento vlastný model je podobný modelu 4.8, s tým rozdielom, že v ňom naviac figuruje člen $\frac{\lambda}{d_{32}}$. Presnosťou sú tieto modely na podobnej úrovni (viz. Tabuľka 34 a Obrázok 27). Pri oboch variantách tohto modelu nedokážeme na základe 95% intervalov spoľahlivosti potvrdiť nenulovosť regresných koeficientov (viz. Tabuľka 30 a 31).

Obr. 26: Porovnanie dvoch variácii rovnice 4.9

Tab.	30:	Hodnoty	regresnýc	eh koe	ficientov	modelu	4.10
------	-----	---------	-----------	--------	-----------	--------	------

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	
c_0	32,278	$\langle 1,8452;62,7112 \rangle$	
c_1	$0,\!1172$	$\langle 0,0106;0,2241 \rangle$	
c_2	0,0840	$\langle -0,1469;0,3149 \rangle$	4766
c_3	1,0460	$\langle 0,9022;1,1897 \rangle$	
c_4	-0,5211	$\langle -0,\!6482;\!-0,\!3940 \rangle$	

Tab. 31: Hodnoty regresných koeficientov modelu 4.10 LIN

Reg. koeficient Bodový odhad		95% Interval spoľahlivosti	Res^2
c_0	37,8685	$\langle 13, 1255; 62, 6114 \rangle$	
c_1	0,1128	$\langle -0,0002;0,2257 \rangle$	
c_2	0,1291	$\langle -0,1199;0,3780 \rangle$	5087
C3	1,0660	$\langle 0,9037;1,2284 \rangle$	
c_4	-0,5733	$\langle -0,6972;-0,4493 \rangle$	

e) **C2:** $T_L = f(Q_i, v, d_{32}, Pr_f, \lambda, T_\infty)$

Posledný vlastný model je odvodený z predchádzajúceho modelu 4.10, ktorý je obohatený o regresný koeficient v mocnine členu $(T_{sat} - T_{\infty})$. Výsledný tvar je tak:

$$T_L = c_0 Q_i^{c_1} v^{c_2} d_{32}^{c_3} P r_f^{c_4} \frac{\lambda}{d_{32}} (T_{sat} - T_\infty)^{c_5} + T_{sat}.$$
 (4.11)

Jeho optimalizáciou dostaneme nasledujúce bodové odhady a intervaly sploľahlivosti: Pre regresný výpočet musíme najskôr rovnicu 4.11 transformovať na linéarny tvar: Následne dostávame bodové odhady a intervaly spoľahlivosti pre model 4.11 LIN: Na Obrázku 28 môžeme vidieť porovnanie presnosti variácií tvaru modelu 4.11:

Obr. 27: Porovnanie dvoch variácii rovnice 4.10

Reg. koeficient	Bodový odhad	95% Interval spoľahlivosti	Res^2
c_0	374,6513	(51,4651;697,8374)	
c_1	$0,\!1058$	$\langle 0,0428;0,1687 \rangle$	
c_2	0,1496	$\langle 0,0133;0,2858 \rangle$	1551
c_3	1,0876	$\langle 1,0046;1,1707 \rangle$	1001
c_4	0,2371	$\langle 0,0043;0,4700 \rangle$	
C_5	0,1596	$\langle -0,0794;0,3987 \rangle$	

Tab. 32: Hodnoty regresných koeficientov modelu 4.11

Tab. 33: Hodnoty regresných koeficientov modelu 4.11 LIN

Reg. koeficient	Reg. koeficient Bodový odhad 95%		Res^2
c_0	367, 3693	$\langle 154,7906;579,948 \rangle$	
c_1	0,1021	$\langle 0,0326;0,1649 \rangle$	
c_2	0,1806	$\langle 0,0415;0,3196 \rangle$	1500
c_3	1,0966	$\langle 1,0060;1,1872 \rangle$	1090
c_4	0,2446	$\langle 0,\!0066;\!0,\!4826 \rangle$	
c_5	0,1620	$\langle -0,0714;0,3954 \rangle$	

Posledný vlastný model je odvodený z modelu 4.10, pridaním regresného koeficientu do mocniny členu ($T_{sat} - T_{\infty}$). Tento pridaný regresný koeficient výrazne zvýšil presnosť, tá je na úrovni modelu 4.9 (viz. Tabuľka 34 a Obrázok 28). Nevýhodou oboch variánt tohoto modelu je, že na základe 95% intervalov spoľahlivosti nedokážeme potvrdiť nenulovosť regresných koeficientov (viz. Tabuľka 32 a 33).

Obr. 28: Porovnanie dvoch variácii rovnice 4.11

Obr. 29: Porovnanie vlastných modelov pre výpočet Leidenfrostovej teploty

Model	Označenie	Res^2
4.7	А	1647
4.8	B1	4680
4.9	B2	1554
4.10	C1	4766
4.11	C2	1551
4.7 LIN	А	1687
4.8 LIN	B1	4989
4.9 LIN	B2	1592
4.10 LIN	C1	5087
4.11 LIN	C2	1590

Tab. 34: Porovnanie presností vlastných modelov pre výpočet Leidenfrostovej teploty

5 Porovnanie existujúcich korelácii a vlastných modelov

V úvodnej časti práce som predstavil viaceré existujúce modely pre výpočet Leidenfrostovej teploty súčiniteľa prestupu tepla na základe rôznych vstupných parametrov. V tejto časti práce porovnám dva moje najlepšie modely s vybranými existujúcimi modelmi. Začneme modelmi pre výpočet α .

• Za najvhodnejší vlastný model pre výpočet súčiniteľu prestupu tepla som zvolil 4.5:

$$\alpha = 327, 3057Q_i^{0,3154}v^{0,5486}d_{32}^{0,2273}(T_{sat} - T_{\infty})^{0,1483}$$
(4.5)

Do porovnania ďalej zaradíme vzorový model 1.9:

$$\alpha = 19, 6Q_i^{0,461} v^{0,261} d_{32}^{-0,208} \tag{1.9}$$

Tento model je autormi určený pre teploty vody $20 - 30^{\circ}C$, podľa toho som musel prispôsobiť aj rozsah vstupných dát (vyradiť všetky merania kde $T_{\infty} \notin \langle 20; 30 \rangle^{\circ} C$). Ďalší model v porovnaní je 1.8:

$$\alpha = \frac{\varepsilon \dot{m}_L \Delta h}{(T_s - T_\infty)} \tag{1.8}$$

Do tohto modelu vstupuje hustota dopadajúcej vody \dot{m}_L . Tú som dopočítal z hustoty vody a priemerného objemového toku dopadajúcej kvapaliny ako $\dot{m}_L = Q_i * \rho$. Tento model je platný len pre $\dot{m}_L \in \langle 0, 016; 50, 5 \rangle kgm^{-2}s^{-1}$ a $v \in \langle 0, 6 - 20 \rangle ms^{-1}$, podľa toho som musel upraviť vstupné dáta.

Posledný model do tohto porovnania je 1.10:

$$\alpha = 190 + tanh\left(\frac{\dot{m}_L}{8}\right) \left(140\dot{m}_L \left[1 - \frac{\dot{m}_L \Delta T}{72000}\right] + 3,26\Delta T^2 \left[1 - tanh\left\{\frac{\Delta T}{128}\right\}\right]\right) \tag{1.10}$$

Do tohto modelu tiež vstupuje hustota dopadajúcej vody v nasledujúcom rozmedzí $\dot{m}_L \in \langle 3; 30 \rangle kgm^{-2}s^{-1}$. Teplota vody pre ktorú je tento model vhodný je $T_{\infty} = 18^{\circ}C$. V mojom datasete sa meranie s takouto hodnotou teploty vody nenachádza preto som vybral pozorovania s teplotami vody blízkymi tejto hodnote $(T_{\infty} \in \langle 12, 6; 26, 2 \rangle^{\circ} C)$. V nasledujúcej tabuľke a grafe môžete vidieť porovnanie presností môjho modelu s už existujúcimi modelmi.

Tab. 35: Porovnanie presností modelov pre výpočet súčiniteľa prestupu tepla

Model	Res^2
4.5	9444
1.9	52364
1.8	505393
1.10	670125

Ako môžeme vidieť v Tabuľke 35 a na Obrázku 30, model 4.5 poskytuje najpresnejšiu predikciu súčiniteľa prestupu tepla z porovnávaných modelov. Zároveň je vhodný pre najširší rozsah teploty vody $T_{\infty} \in \langle 12, 6; 78, 5 \rangle [^{\circ}C]$, množstva dopadajúcej vody $Q_i \in \langle 3, 6; 52, 4 \rangle [lm^{-2}s^{-1}]$ a dopadovej rýchlosti kvapiek $v \in \langle 5, 5; 28 \rangle [ms^{-1}]$ z porovnávaných modelov.

Obr. 30: Porovnanie modelov pre výpočet súčiniteľa prestupu tepla

• Za najvhodnejší vlastný model pre výpočet Leidenfrostovej teploty som vybral 4.7:

$$T_L = 384, 3742Q_i^{0,1059}v^{0,1399}d_{32}^{0,0818}(T_{sat} - T_{\infty})^{0,3033} + T_{sat}.$$
 (4.7)

Do porovnania d'alej zaradíme vzorový model 1.15:

$$T_L = 351 Q_i^{0,111} v^{0,174} d_{32}^{0,006} \tag{1.15}$$

Tento model je autormi určený pre teploty vody $20 - 30^{\circ}C$, podľa toho som musel prispôsobiť aj rozsah vstupných dát (vyradiť všetky merania kde $T_{\infty} \notin \langle 20; 30 \rangle^{\circ} C$). Posledný model pre výpočet Leidenfrostovej teploty je model 1.13:

$$T_L = 1400We_s^{0.13} \tag{1.13}$$

Teplota vody pre ktorú je tento model vhodný je $T_{\infty} = 18^{\circ}C$. V mojom datasete sa meranie s takouto hodnotou teploty vody nenachádza preto som vybral pozorovania s teplotami vody blízkymi tejto hodnote ($T_{\infty} \in \langle 12, 6; 26, 2 \rangle^{\circ}C$). V nasledujúcej tabuľke a grafe môžete vidieť porovnanie presností môjho modelu s už existujúcimi modelmi.

Tab. 36: Porovnanie presností modelov pre výpočet Leidenfrostovej teploty

Model	Res^2
4.7	1647
1.15	1892
1.13	28999

Ako môžeme vidieť v Tabuľke 36 a na Obrázku 31, model 4.7 poskytuje najpresnejšiu predikciu Leidenfrostovej teploty z porovnávaných modelov. Zároveň je vhodný pre najširší rozsah teploty vody $T_{\infty} \in \langle 12, 6; 78, 5 \rangle [^{\circ}C]$, množstva dopadajúcej vody $Q_i \in \langle 3, 6; 52, 4 \rangle [lm^{-2}s^{-1}]$ a dopadovej rýchlosti kvapiek $v \in \langle 5, 5; 28 \rangle [ms^{-1}]$ z porovnávaných modelov.

Obr. 31: Porovnanie modelov pre výpočet Leidenfrostovej teploty

Záver

Pre písanie tejto bakalárskej práce bolo v úvode dôležité oboznámiť sa s problematikou obecného prenosu tepla. Následovalo získavanie bližších vedomostí o nútenej konvekcií a druhoch varu, ktoré sa pri sprchovom chladení vyskytujú. Pri písaní úvodnej teoretickej kapitoly o prenose tepla som využil a značne prehĺbil moje znalosti na túto tému získané na hodinách Termomechaniky. Súčasťou prvej kapitoly bolo aj prezentovanie existujúcich korelácií a modelov pre výpočet súčiniteľa prestupu tepla a Leidenfrostovej teploty. Pre napísanie tejto časti práce bolo nutné prejsť množstvo publikácií a vyselektovať relevantné existujúce modely, z ktorých niektoré neskôr poslúžili ako vzor a mierka pre vlastné modely.

Ďalej bolo nutné si zopakovať a prehĺbiť znalosti regresnej analýzy a optimalizácie. V tejto časti práce som sa oboznámil s metódami určovania presností modelov, intervalov spoľahlivosti, aj samotného počítania regresných koeficientov optimalizačnou metódou a metódami lineárnej regresie.

V experimentálnej časti som popísal proces získavania dát vstupujúcich do modelov a ich následnej úpravy do použiteľného tvaru.

Po získaní a úprave dát som začal s tvorbou modelov. Kombináciou prevzatých vzorových modelov som na základe získaných teoretických znalostí vytvoril radu modelov pre predikciu súčiniteľu prestupu tepla a Leidenfrostovej teploty. Presnejšie z vytvorených modelov sú popísané a porovnané v modelovacej časti práce.

Posledná kapitola pozostáva z porovnania mojich najvhodnejších modelov s vybranými existujúcimi modelmi.

Na záver môžem skonštatovať, že sa mi podarilo vytvoriť radu použiteľných modelov pre predikciu súčiniteľa prestupu tepla a Leidenfrostovej teploty. Tieto modely zohľadňujú charakteristiky chladeného povrchu, sprchového chladenia a hlavne pomerne presne popisujú vplyv teploty vody na hľadané parametre. Oproti publikovaným modelom s ktorými som porovnával, disponujú moje modely najširším rozsahom vstupných parametrov. Vďaka tejto vlasnosti sa tak pri ich použití zachováva vysoká presnosť predikcie pre širokú škálu teplôt vody, množstva dopadajúcej vody a iných charakteristík popisujúcich sprchové chladenie.

Literatúra

- F. P. Incropera, Fundamentals of heat and mass transfer. New York: John Wiley & Sons, 6th ed ed., 2007.
- [2] M. Jicha, Prenos tepla a latky. Brno: CERM, 1. vyd ed., 2001.
- [3] M. Chabicovksy, "Faktory ovlivnujici sprchove chlazeni za vysokych teplot," 2016.
- [4] R. Jeschar, E. Specht, and C. Kohler, "Heat transfer during cooling of heated metals with vaporizable liquids." 2010.
- [5] M. Chabicovsky and M. Raudensk, "Experimental investigation of a heat-transfer coefficient," *Materiali In Tehnologije*, vol. 47, no. 3, pp. 395–398, 2013.
- [6] S. C. Yao and T. L. Cox, "A general heat transfer correlation for impacting water sprays on high-temperature surfaces," *Experimental heat transfer*, vol. 15, no. 4, pp. 207–219, 2002.
- [7] M. Raudensky, M. Hnizdil, J. Hwang, S. Lee, and S. Kim, "Influence of the water temperature on the cooling intensity of mist nozzles in continuous casting," *Materiali* in *Tehnologije*, vol. 46, no. 3, pp. 311–315, 2012.
- [8] M. Chabicovsky, M. Raudensky, and M. Hnizdil, "Influence of water temperature on heat transfer coefficient in spray cooling of steel surfaces," *ENGINEERING ME-CHANICS*, vol. 2012, no. 52, pp. 499–505, 2012.
- [9] F. Xu and M. S. Gadala, "Heat transfer behavior in the impingement zone under circular water jet," *International journal of heat and mass transfer*, vol. 49, no. 21, pp. 3785–3799, 2006.
- [10] C. A. Hernandez-Bocanegra, J. I. Minchaca-Mojica, A. Humberto Castillejos E, F. A. Acosta-Gonzalez, X. Zhou, and B. G. Thomas, "Measurement of heat flux in dense air-mist cooling: Part ii the influence of mist characteristics on steady-state heat transfer," vol. 44, pp. 161–173, 2013.
- [11] M. Chabicovsky, P. Kotrbacek, H. Bellerova, J. Kominek, and M. Raudensky, "Spray cooling heat transfer above leidenfrost temperature," *Metals (Basel)*, vol. 10, no. 1270, p. 1270, 2020.
- [12] J. Wendelstorf, K.-H. Spitzer, and R. Wendelstorf, "Spray water cooling heat transfer at high temperatures and liquid mass fluxes," *International journal of heat and mass transfer*, vol. 51, no. 19, pp. 4902–4910, 2008.
- [13] W. Klinzing, J. Rozzi, and I. Mudawar, "Film and transition boiling correlations for quenching of hot surfaces with water sprays," *Journal of Heat Treating*, vol. 9, no. 2, pp. 91–103, 1992.
- [14] J. D. Bernardin and I. Mudawar, "A leidenfrost point model for impinging droplets and sprays," *Journal of Heat Transfer*, vol. 126, no. 2, pp. 272–278, 2004.

- [15] M. Hnizdil, J. Kominek, T.-W. Lee, M. Raudensky, M. Carnogurska, and M. Chabicovsky, "Prediction of leidenfrost temperature in spray cooling for continuous casting and heat treatment processes," *Metals (Basel)*, vol. 10, no. 1551, p. 1551, 2020.
- [16] Z. Karpisek, *Statisticka analyza*. 2008.
- [17] A. Ruckstuhl, "Introduction to nonlinear regression," IDP Institut für Datenanalyse und Prozessdesign. ZHAW Zürcher Hochschule für Angewandte Wissenschaften. stat. ethz. ch/~ stahel/courses/cheming/nlreg10E. pdf, 2010.
- [18] L. S. Lasdon, R. L. Fox, and M. W. Ratner, "Nonlinear optimization using the generalized reduced gradient method," 1973.
- [19] M. Pohanka, "Technical experiment based inverse tasks in mechanics = inverzni ulohy mechaniky s vazbou na technicky experiment," 2006.
- [20] M. Raudensky, "Heat transfer coefficient estimation by inverse conduction algorithm," International Journal of Numerical Methods for Heat and Fluid Flow - INT J NUMER METHOD HEAT FL F, vol. 3, pp. 257–266, 03 1993.
- [21] J. R. Rybicki and I. Mudawar, "Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays," *International journal of heat and mass* transfer, vol. 49, no. 1-2, pp. 5–16, 2006.
- [22] K. A. Estes and I. Mudawar, "Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces," *International journal of heat and mass* transfer, vol. 38, no. 16, pp. 2985–2996, 1995.

Zoznam použitých symbolov

α	súčiniteľ prestupu tepla, $[WK^{-1}m^{-2}]$
α_z	súčiniteľ prestupu tepla žiarením, $[WK^{-1}m^{-2}]$
c_p	merná tepelná kapacita materiálu pri konštantnom tlaku, $[Jkg^{-1}K^{-1}]$
$\dot{d_0}$	priemer trysky, $[m]$
D_{32}	Sauterov stredný priemer kvapiek, $[m]$
ϵ	pomerná emisivita, [–]
L	charakteristický rozmer, $[m]$
λ	súčiniteľ tepelnej vodivosti, $[Wm^{-1}K^{-1}]$
\dot{m}_L	hustota dopadajúcej vody, $[kgm^{-2}s^{-1}]$
μ	dynamická viskozita kvapaliny, $[kgm^{-2}s^{-1}]$
P_f	tlak okolitej kvapaliny, $[Pa]$
P_v	vnútorný tlak bubliny, $[Pa]$
\dot{q}	hustota tepelného toku, $[Wm^{-2}]$
\dot{Q}	teplo generované v materiáli, $[Jm^{-3}]$
Q_i	priemerný objemový tok dopadajúcej kvapaliny, $[m^3m^{-2}s^{-1}]$
ρ	hustota materiálu, $[kgm^{-3}]$
$ ho_a$	hustota vzduchu, $[kgm^{-3}]$
σ	Stefan – Boltzmannova konštanta, $[Wm^{-2}K^{-4}]$
σ	povrchové napätie kvapaliny, $[Nm^{-1}]$
t	$\operatorname{\check{c}as},[s]$
T	teplota, $[K]$
T_L	Leidenfrostova teplota, $[^{\circ}C]$
T_s	teplota povrchu, [° C]
T_{sat}	teplota saturácie, $[^{\circ}C]$
T_{∞}	teplota tekutiny v dostatočnej vzdialenosti od povrchu, $[^\circ C]$
ΔT_e	teplota prehriatia povrchu, $[K]$
∇T	teplotný gradient
u	rýchlosť prúdenia kvapaliny, $[ms^{-1}]$
u_{d_0}	rýchlosť kvapaliny opúšťajúcej ústie trysky, $[ms^{-1}]$
v	kinematická viskozita, $[m^2 s^{-1}]$
v	dopadová rýchlosť kvapiek, $[ms^{-1}]$

Prílohy

Príloha A - Podobnostné čísla

Sú kriteriálne rovnice obsahujúce bezrozmerné čísla používané pre výpočty a aproximácie súčiniteľa prestupu tepla alebo Leidenfrostovej teploty. Pre rôzne aspekty varu a sprchového chladenia sú definované rôzne podobnostné čísla [3].

• Nussletove číslo (*Nu*): Charakterizuje závislosť medzi intenzitou prestupu tepla a teplotným polom v meznej vrstve prúdu tekutiny. Priemerné Nussletove číslo je definované ako:

$$\overline{Nu} = \frac{\alpha L}{\lambda_f},\tag{5.1}$$

kde L[m] je charakteristický rozmer, často sa pužíva Sauterov stredný priemer kvapiek D_{32} , Nusseltove číslo sa potom označuje $\overline{Nu}_{D_{32}}$ [21]. λ_f označuje súčiniteľ prestupu tepla kvapaliny. Keďže je táto hodnota závislá od teploty chladiaceho média, a tá sa s polohou mení, uvažujeme súčiniteľ prestupu tepla pre priemernú teplotu medzi chladeným povrchom a teplotou tekutiny v nekonečnej vzdialenosti od chladeného povrchu.

• Raynoldsove číslo (Re): Udáva vzťah medzi zotrvačnými a viskóznymi silami:

$$Re = \frac{uL}{v},\tag{5.2}$$

kde $u[ms^{-1}]$ je rýchlosť prúdenia kvapaliny, $v[m^2s^{-1}]$ je kinematická viskozita a L[m] je charakterisický rozmer. Pri sprchovom chladení sa namiesto rýchlosti kvapaliny používa priemerný objemový tok dopadajúcej kvapaliny $Q_i[m^3m^{-2}s^{-1}]$ alebo hustota dopadajúcej kvapaliny $\dot{m}_L[kgm^{-2}s^{-1}]$ a ako charakteristický rozmer Sauterov stredný priemer kvapiek D_{32} :

$$Re_{D_{32}} = \frac{\rho Q_i D_{32}}{\mu} = \frac{\dot{m}_L D_{32}}{\mu},\tag{5.3}$$

kde $\mu[kgm^{-2}s^{-1}]$ je dynamická viskozita kvapaliny.

• **Prandtlove číslo (Pr)**: Udáva vzťah medzi kinematickou viskozitou a teplotnou difuzivitou:

$$Pr = \frac{c_p \mu}{\lambda}.\tag{5.4}$$

• Weberove číslo (We): Je pomer medzi zotrvačnými a povrchovými silami. V mechanike tekutín sa používa v prípade, že existuje rozhranie medzi dvoma tekutinami v tvare:

$$We = \frac{\rho u^2 L}{\sigma}.$$
(5.5)

Weberove číslo sa tiež používa v prípade formovania kvapiek pri sprejoch v tvare [22]:

$$We_{d_0} = \frac{\rho_a u_{d_0}^2 d_0}{\sigma},$$
 (5.6)

Kde $d_0[m]$ je priemer trysky, ρ_a je hustota vzduchu, u_{d_0} je rýchlosť kvapaliny opúšťajúcej ústie trysky a σ je povrchové napätie kvapaliny.

Pri popise prenosu tepla pri sprchovom chladení sa Weberove číslo používa v tvare [6]:

$$We_s = \frac{\dot{m}_L^2 D_{32}}{\rho\sigma},\tag{5.7}$$

Príloha B - Parametre pre výpočet množstva dopadajúcej vody

Tab.	37:	M1	- Parametre	pre	výpočet	Q_i
------	-----	----	-------------	-----	---------	-------

Poloha pod tryskou	Plocha okolia $K[m^2]$	Množstvo dopadajúcej vody na okolie K $[ls^{-1}]$
A	0,0001	0,004393
C1	0,0001	0,003943
C2	0,0001	0,003205

Tab. 38: M2 - Parametre pre výpočet Q_i

Poloha pod tryskou	Plocha okolia $K[m^2]$	Množstvo dopadajúcej vody na okolie K $[ls^{-1}]$
A	0,0001	0,006648
C1	0,0001	0,005198
C2	0,0001	0,005279

Tab. 39: F1 - Parametre pre výpočet Q_i

Poloha pod tryskou	Plocha okolia $K[m^2]$	Množstvo dopadajúcej vody na okolie K $[ls^{-1}]$
A	0,0001	0,001499
C1	0,0001	0,000355
C2	0,0001	0,000365

Tab. 40: F2 - Parametre pre výpočet Q_i

Poloha pod tryskou	Plocha okolia $K[m^2]$	Množstvo dopadajúcej vody na okolie K $[ls^{-1}]$
A	0,0001	0,00295
C1	0,0001	0,000699
C2	0,0001	0,000719

Príloha C - Lineárne tvary modelov pre výpočet súčiniteľu prestupu tepla a Leidenfrostovej teploty

$$ln(\alpha) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32})$$
(1.9 A LIN)

$$ln\left(\frac{\alpha d_{32}(T_s - T_{\infty})}{\lambda(T_{sat} - T_{\infty})}\right) = ln(c_0) + c_1 ln\left(\frac{\rho Q_i d_{32}}{\mu}\right) + c_2 ln\left(\frac{c_p \mu}{\lambda}\right)$$
(4.1 LIN)

$$ln(\alpha) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln\left(\frac{T_{sat} - T_{\infty}}{T_s - T_{\infty}}\right)$$
(4.2 LIN)

$$ln\left(\frac{\alpha d_{32}(T_s - T_{\infty})}{\lambda(T_{sat} - T_{\infty})}\right) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln(Pr_f) \quad (4.3 \text{ LIN})$$

$$ln\left(\frac{\alpha d_{32}}{\lambda}\right) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln(Pr_f) + c_5 ln\left(\frac{T_{sat} - T_{\infty}}{T_s - T_{\infty}}\right)$$

$$ln(\alpha) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln(T_s - T_{\infty})$$

$$(4.5 \text{ LIN})$$

$$ln(T_L) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32})$$
(1.15 A LIN)

$$ln\left(\frac{T_L - T_{sat}}{(T_{sat} - T_{\infty})\lambda}\right) = ln(c_0) + c_1 ln\left(\frac{\rho Q_i d_{32}}{\mu}\right) + c_2 ln\left(Pr_f\right)$$
(4.6 LIN)

$$ln(T_L - T_{sat}) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln(T_{sat} - T_{\infty})$$
(4.7 LIN)

$$ln\left(\frac{T_L - T_{sat}}{T_{sat} - T_{\infty}}\right) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln\left(Pr_f\right)$$
(4.8 LIN)

$$ln(T_L - T_{sat}) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln(Pr_f) + c_5 ln(T_{sat} - T_{\infty})$$
(4.9 LIN)

$$ln\left(\frac{(T_L - T_{sat})d_{32}}{(T_{sat} - T_{\infty})\lambda}\right) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln\left(Pr_f\right) \quad (4.10 \text{ LIN})$$

$$ln\left(\frac{(T_L - T_{sat})d_{32}}{(T_{sat} - T_{\infty})\lambda}\right) = ln(c_0) + c_1 ln(Q_i) + c_2 ln(v) + c_3 ln(d_{32}) + c_4 ln\left(Pr_f\right) \quad (4.11 \text{ LIN})$$

Príloha D - Porovnanie vlastností vlastných modelov

Model	Označenie	Res^2	R^2	R_a^2	Vyvrátená nulovosť regresných koeficientov
4.2	А	9483	0,953	0,947	Áno
4.3	B1	25892	0,872	0,838	Nie
4.4	B2	8299	0,959	0,948	Nie
4.5	С	9444	0,953	0,947	Áno
4.2 LIN	А	10994	0,946	0,938	Áno
4.3 LIN	B1	29890	0,853	0,813	Áno
4.4 LIN	B2	9598	0,953	0,940	Nie
4.5 LIN	С	10950	0,946	0,939	Áno

Tab. 41: Porovnanie vlastností vlastných modelov pre výpočet súčiniteľa prestupu tepla

Tab. 42: Porovnanie vlastností vlastných modelov pre výpočet Leidenfrostovej teploty

Model	Označenie	Res^2	R^2	R_a^2	Vyvrátená nulovosť regresných koeficientov
4.7	А	1647	0,850	0,825	Áno
4.8	B1	4680	0,575	$0,\!433$	Nie
4.9	B2	1554	0,859	0,812	Nie
4.10	C1	4766	0,567	$0,\!423$	Nie
4.11	C2	1551	0,859	0,812	Nie
4.7 LIN	А	1687	0,847	0,821	Áno
4.8 LIN	B1	4989	0,547	0,396	Nie
4.9 LIN	B2	1592	0,855	$0,\!807$	Nie
4.10 LIN	C1	5087	0,538	$0,\!384$	Nie
4.11 LIN	C2	1590	$0,\!856$	0,808	Nie

Príloha E - Závislosť súčiniteľa prestupu tepla od množstva dopadajúcej vody pre model 4.5

Obr. 32: Závislosť súčiniteľa prestupu tepla od množstva dopadajúcej vody pre model 4.5

Príloha F - Súbory v programe excel

- Imapkty: Impaktné tlaky a ich prepočet.
- Modely: Zostavenie modelov, výpočet reg. koeficientov a intervalov spoľahlivosti.
- Vplyv: Vplyv parametrov na sprchové chladenie.