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Abstract

The second-order nonlinear processes are nowadays relatively common type of interac-
tions, not only in optical laboratories. For instance second-harmonic and sum- or difference-
frequency generation are widely used wave mixing techniques, especially useful for pro-
ducing laser beams at different frequencies. On the other hand, process of spontaneous
parametric down-conversion has become fundamental tool in almost any quantum-optical
experiment as a source of entangled photon pairs. In this thesis, photonic structures based
mainly on waveguides will be presented as an alternative source of second-order nonlinear
processes with respect to ordinary used bulk crystals.

First, periodically-poled KTP waveguide will be characterized in process of second-har-
monic generation, where quasi-phase-matching is utilized. It will be shown experimentally,
that this structure can support whole set of processes differing in spectral and spatial profiles
as well as in polarizations of interacting fields. The influence of fabrication imperfections on
generated fields will be here also considered.

Then, a sophisticated source of entangled photon pairs based on Kwiat’s design will be
used to generate full set of Bell’s states as a set of maximally entangled two-photon states.
These states will be subjected to complete quantum tomography and non-locality test in
order to experimentally prove their quantum nature.

Next, so-called Bragg reflection waveguides will be presented as a promising source of
entangled photon pairs especially suitable formonolithic integration into compact optical de-
vices. Modal phase-matching technique will be demonstrated as a method to compensate for
dispersion effects. Non-classicality of generated fields will be verified by violation of Bell’s
like inequalities. This experimental study will be performed at standard telecommunication
wavelength 1550 nm to demonstrate practical potential of such devices.

Also standard bulk-oriented source of photon pairs will be investigated. Such sources are
interesting due to their simplicity and they are therefore ideal for comparative studies. Here,
a link between different intensity regimes will be demonstrated, which can be advantageous,
for instance, for quantum communications through lossy channels.

Finally, the luminescence-induced noise of nonlinear BBO crystals will be characterized
both in time and spectral domain. Based on these results, an optimal strategies for filtering
the luminescence will be discussed. The influence of such noise on simple heralded single
photon source will be quantified at the end.
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Abstract in Czech

Nelineární jevy druhého řádu jsou dnes již relativně běžně užívané procesy nejen v op-
tických laboratořích. Například generace druhé harmonické a generace součtové či rozdí-
lové frekvence jsou široce používané techniky vlnového směšování vhodné pro generaci
optických svazků na různých frekvencích. Naproti tomu proces parametrické fluorescence
je základním stavebním kamenem většiny kvantově-optických experimentů jako zdroj en-
tanglovaných fotonových párů. V této práci budou studovány fotonické struktury založené
zejména na vlnovodech jako zdroje nelineárních jevů druhého řádu alternativní k tradičně
používaným objemovým krystalům.

Periodicky pólovaný vlnovod bude charakterizován v procesu generace druhé harmo-
nické frekvence, kde je využita tzv. náhradní podmínka fázového sladění. Bude experimen-
tálně ukázáno, že tyto struktury mohou simultánně generovat celou řadu procesů lišícími se
jak spektrálními a prostorovými vlastnostmi, tak i polarizacemi interagujících polí. Rovněž
bude diskutován vliv nedokonalostí výrobního procesu na vlastnosti generovaných polí.

Dále bude prezentován Kwiatův zdroj kvantově korelovaných (entanglovaných) fotono-
vých párů. Tento zdroj bude použit pro generaci polarizačních Bellových stavů, které jsou
maximálně entanglované dvoufotonové stavy. Tyto stavy pak budou předmětem dalšího stu-
dia. Pomocí metody kvantové tomografie a zejména porušením Bellových nerovností bude
experimentálně ověřeno, že se jedná skutečně o neklasické stavy světla.

Neklasická světelná pole budou rovněž generována pomocí tzv. Braggových vlnovodů,
kde se využívá módového fázového sladění. Tyto struktury jsou výhodné zejména vzhledem
k jejich potenciální možnosti integrace do složitějších optických obvodů. Tyto experimenty
byly navíc provedeny na standardní telekomunikační vlnové délce 1550 nm, což dále doka-
zuje jejich praktický potenciál. Neklasičnost generovaných polí bude i zde experimentálně
prokázána porušením Bellových nerovností.

Studium polí generovaných klasickými objemovými krystaly bude rovněž obsahem této
práce. Díky jejich jednoduchosti jsou ideálními kandidáty pro srovnání. Zde bude sledována
souvislost mezi různými intenzitními režimy generace sestupné parametrické konverze po-
mocí studia prostorových korelací generovaných polí. Tato znalost může být užitečná např.
pro návrh kvantově-informačních protokolů pro komunikaci ztrátovými linkami.

Poslední kapitola bude věnována studiu neparametrických procesů, které představují
šum doprovázející parametrické procesy generované v objemových BBO krystalech. U takto
generovaných polí budou studovány spektrální a časové vlastnosti na jejichž základě bude
navržena optimální strategie pro filtraci tohoto šumu. Na závěr bude kvantifikován vliv ta-
kového šumu na kvalitu jednofotonového zdroje.
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Introduction

Nonlinear process of spontaneous parametric down-conversion is in optical domain the most
common source of correlated photon pairs, as an indispensable ingredient in many quantum-
optics based applications. Until recently, the most setups for this process were based almost
exclusively on nonlinear bulk crystals pumped by intense laser beams.

In recent years, however, more sophisticated photonic devices have become widely used,
especially for their higher conversion efficiencies and ability to modify properties of gener-
ated fields. These sources are usually based on waveguides, which in addition allow for their
integration, and thus for construction of compact optical circuits.

In field of quantum optics, where non-classical properties of photon pairs are highly
utilized, the most applications are based on single photon pairs. However, at single photon
level optical states suffer from losses. Even though a long-distance communications with
single photons have already been performed, the possibility to extend these experiments to
mesoscopic regime, where the states are more robust against losses, is of a great importance.

The Goals of the Thesis
The main goal of this thesis is to study nonlinear photonic devices from the perspective of
generation of non-classical states of light through the process of parametric down-conversion,
also considering practical aspects. Periodically-poled waveguides as well as relatively new
Bragg reflection waveguides are studied as a promising bright sources for integrated plat-
forms. Possible limitations by imperfections of fabrication process are considered as well.
More common bulk crystals are also used to generate more complex entangled states and
fields, whose correlations properties are studied not only at single-photon level, but also in
a mesoscopic domain.

Annotation
Chapter 1 contains basic theoretical introduction into nonlinear optics and photonic de-
vices. This treatment is focused mainly on the second-order nonlinear processes, especially
on second-harmonic generation and spontaneous parametric down-conversion. Special at-
tention is given to the phase-matching as a fundamental criterion in experiments. Finally,
generation in bulk crystals as well as in guided structures is considered.

Chapter 2 describes experimental characterization of periodically-poled KTP waveguide
through the process of second-harmonic generation. The theory of second-harmonic gener-
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ation is further developed in this chapter. Fabrication imperfections are also included into
numerical model. The experimental results are compared to the theory in the second part of
this chapter.

In chapter 3, the phenomenon of quantum entanglement is discussed. First, the theo-
retical description of this system is developed. Basic experimental tools for determination
and characterization of non-classical quantum states are also presented. Next, a set of en-
tangled states is generated experimentally using parametric down-conversion and their non-
classicality is afterwords experimentally verified.

As it is shown in chapter 4, Bragg reflection based waveguide can be utilized instead
of bulk crystals in order to generate entangled photon states. At the beginning, the modal
structure of this waveguide is determined and the phase-matching strategy based on modal
phase-matching is calculated. Finally, the entangled two-photon states are generated and
their non-classicality is experimentally proven.

Chapter 5 shows another potential benefits of parametric down-conversion. It mainly
focuses on spatial correlations in generated fields. It experimentally demonstrates the link
between different intensity regimes, where the generation can be either spontaneous or stim-
ulated.

The final chapter 6 demonstrates the influence of luminescence induced noise on sources
based on parametric down-conversion. The luminescence is characterized in spectral and
time domain. Based on these results, an optimal strategies for minimizing its influence are
suggested. The influence of luminescence on heralded single-photon source is also quantita-
tively estimated.

Finally, this thesis is concluded in the very last chapter, where the most important results
are summarized. This chapter also gives a brief outlook and potential extension of presented
research.

The theses ends with list of author’s publications and relevant references.
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1
Nonlinear Optics

Nonlinear optics is a part of optics studying propagation of strong optical fields through
a media in which they induce the nonlinear response. It is therefore typical to study the de-
pendence of dielectric polarization P on the electric field E.

Although this phenomenon was known long before, the massive interest in nonlinear op-
tics raised shortly after invention of laser by Maiman in 1960. The breakthrough in the field
is usually considered to be the very first observation of second-harmonic generation in 1961
by Franken at al.. The main reason was the fact, that the nonlinear phenomenons require
high optical intensities in order to be generated effectively. The nonlinearity is however not
an attribute of the radiation itself, but of the medium the radiation is propagating through.
The propagating optical field modifies the property of the medium, which can afterwards
modify back the propagating field. Since the properties of dielectricmedium, inwhich the op-
tical field is propagating, is describedwith relation between vector of dielectric polarizationP
and the electric vector E, the nonlinear wave equation has to be derived first in order for any
nonlinear interaction to be characterized.

1.1 Nonlinear Wave Eqation

Thenonlinearwave equation is an equation describing propagation of an optical field through
nonlinear optical medium. Similarly as for the linear wave equation, the full set of Maxwell’s

1



Chapter 1. Nonlinear Optics

equations in differential form has to be used

∇× E+
∂B
∂t

= 0, (1.1a)

∇×H− ∂D
∂t

= j, (1.1b)

∇ · D = ρ, (1.1c)
∇ · B = 0. (1.1d)

The names of the field vectors from these equations and their units are as follows

[E] = Vm−1 . . . electric field,
[H] = Am−1 . . . magnetic intensity,
[D] = Cm−2 . . . electric displacement,
[B] = Wbm−2 . . . magnetic induction,
[j] = Am−2 . . . electric current density,
[ρ] = Cm−1 . . . electric charge density.

Maxwell’s equations represent basic laws of electricity and magnetism and fully describe
the propagation of electromagnetic field in any medium. The first equation (1.1a) represents
Faraday’s law of induction describing the creation of an induced electric field due to the time-
varying magnetic flux. The second equation (1.1b) is generalized Ampere’s law describing
creation of an inducedmagnetic field due to the electric charge flow. The third equation (1.1c)
represents Coulomb’s law describing creation of electric field by the electric charge distri-
bution. And finally, the fourth equation (1.1d) characterizes absence of magnetic charge, or
better, magnetic monopole.

The quantities ρ and j in Maxwell’s equations (1.1b) and (1.1c) are the source quantities,
and can be therefore regarded as sources of electromagnetic fields. The Maxwell’s equations
will be here solved in regions far from the sources, where no free charges or free currents
are present, and therefore

ρ = 0, (1.2a)
j = 0. (1.2b)

Maxwell’s equations as presented create set of coupled differential equations, which in
order to be solved must be supplemented with so-called material relations, describing re-
sponse of the material to the electromagnetic field. Since the optical frequencies are too fast
to affect the magnetic properties, the matter is considered to be non-magnetic in optical part
of the spectrum, and the material relations therefore gain following form

B = µ0H, (1.3a)
D = ε0E+ P, (1.3b)

where ε0 and µ0 are the permittivity and permeability of the vacuum, respectively. Vec-
tor P ([P] = C/m2) denotes already mentioned vector of dielectric polarization. Let it be
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1.1. Nonlinear Wave Equation

noted, that in order to found particular unique solution of Maxwell’s equations, also the ini-
tial and boundary conditions have to be specified.

With such specified material relations, the nonlinear wave equation can be easily derived
from specified Maxwell’s equations (1.1a)–(1.1d). First, the curl operator is to be applied on
the first Maxwell’s equation (1.1a), while interchanging order of time and space derivations

∇×∇× E+
∂

∂t
(∇× B) = 0. (1.4)

Next, the right-hand term ∇ × B is replaced using the second Maxwell’s equation (1.1b),
where material equation (1.3a) was used in order to substitute H for B

∇×∇× E+ µ0
∂2D
∂t2

= 0. (1.5)

Finally, replacing electric displacement vector D from equation (1.3b) the nonlinear wave
equation is obtained

∇×∇× E+ ε0µ0
∂2E
∂t2

= −µ0
∂2P
∂t2

. (1.6)

It is also convenient to express vector of dielectric polarization P as a sum of its linear and
nonlinear parts

P = P(1) + P(NL), (1.7)

where
P(1) = ε0χ

(1)E. (1.8)

Quantity χ(1) denotes the linear susceptibility of the material, where index (1) represents
linear dependence of dielectric polarization on electric field. Now, with the new form of vec-
tor of dielectric polarization P from equation (1.7) together with equation (1.8) the nonlinear
wave equation (1.6) can be rewritten as follows

∇×∇× E+ ε0µ0

(
1 + χ(1)

) ∂2E
∂t2

= −µ0
∂2P(NL)

∂t2
. (1.9)

Next, vector identity for double curl of electric field vector E

∇×∇× E = ∇(∇ · E)−∇2E, (1.10)

can be used in order to obtain evenmore typical form of wave equation. In the case of nonlin-
ear media, the third Maxwell’s equation (1.1c) does not guarantee vanishing of the first term
on the right-hand side of this identity, because of the nonlinear term P(NL) in equation (1.7).
Despite to that, it can be shown1, that for approximation of slowly varying amplitude, this
term is negligible in comparison to other terms, and can be therefore suppressed. The wave
equation thus gets the following form

∇2E− n2

c2
∂2E
∂t2

= µ0
∂2P(NL)

∂t2
, (1.11)
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Chapter 1. Nonlinear Optics

where two new parameters were introduced: c = 1/
√
ε0µ0 is speed of light in vacuum

and n =
√
εr =

√
1 + χ(1) is the refractive index of non-magnetic media. Using defini-

tion of Laplace operator ∆E = ∇2E = (∇ · ∇)E, expected final form of the nonlinear wave
equation can be obtained

∆E− n2

c2
∂2E
∂t2

=
1

ε0c2
∂2P(NL)

∂t2
. (1.12)

This equations contains only electric material constants, the magnetic ones are hidden only
in the speed of light c.

1.2 Nonlinear Processes

The nonlinear wave equation (1.12) derived in previous section represents inhomogeneous
differential equation, where the inhomogeneous term on the right-hand side acts as a source
quantity. Physically, the time-varying vector of dielectric polarization P(NL), induced by ex-
ternal optical field, acts as a source of new electromagnetic radiation even at different fre-
quency then has the original field. This can be understood in such a way, that the second
time derivative represents acceleration of dielectric polarization, which is in general density
of dipole momentum, and represents therefore the charge displacement within the medium,
which if accelerated generates the electromagnetic field.

Mathematically it is advantageous to solve wave equation (1.12) without right-hand side
first. Afterwords, this solution is used for solving inhomogeneous equation by means of
Green’s functionmethod. The physicalmeaning of these solutions are electromagneticwaves
propagating with phase velocity v = c/n

E(r, t) = Eei(k·r−ωt) + c.c., (1.13)

where E denotes its constant amplitude, |k| = (nω)/c its wavenumber and ω its angular
frequency. Expression c.c. stands for the complex conjugate part and will be suppressed
unless specified otherwise.

As for the complete form of nonlinear wave equation with right-hand side (1.12), the so-
lution is expected in the same form as the equation (1.13). The presence of the right-hand
side, as will be shown later, will result in energy coupling between different frequencies
called wave mixing. This consequence is of a grate importance. It means, that unlike in
linear optics, where one of the most essential feature of electromagnetic radiation is, that it
does not change its frequency as it is propagating through the matter, here the energy can
be exchanged between different frequency modes through adequate nonlinear interaction.

In order to better identify individual nonlinear processes, the vector of nonlinear dielec-
tric polarization P(NL) from equation (1.7) can be expressed in infinite Taylor’s series, so
the overall response of the media on propagating optical field P(t) = ε0χE(t) gets expanded
in form of following power series

Pi(t) =

Linear︷ ︸︸ ︷
ε0χ

(1)
ij Ej(t)+

Nonlinear︷ ︸︸ ︷
ε0χ

(2)
ijkEj(t)Ek(t)︸ ︷︷ ︸

2nd order

+ ε0χ
(3)
ijklEj(t)Ek(t)El(t)︸ ︷︷ ︸

3th order

+ · · ·, (1.14)
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P

E

E

E

E
(t
)

χ(1)E(t)

χ(2)E2(t)

χ(3)E3(t)

Figure 1.1: Schematic representation of material response characterized by
the vector of dielectric polarization P(t) on incident optical field E(t) of sinusoidal
running with angular frequency ω. Three different orders are illustrated sepa-
rately: linear responseχ(1)E(t), nonlinear response of second-orderχ(2)E2(t), and
third-order nonlinear response χ(3)E3(t).

where Einstein’s summation rule (summations over repeated indices) was used, and where
quantity χ(i)

∣∣∞
i=2

denotes i-th order of nonlinear susceptibility tensor of (i+ 1)-th rank. Cor-
responding term P(i) = ε0χ

(i) · Ei(t)
∣∣∞
i=2

consequently represents i-th order nonlinear pro-
cess. The graphical representation of nonlinear response of dielectric polarization vectorP(t)
on incident field E(t) as presented in equation (1.14) is for the first three orders depicted in
the figure 1.1.
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ω1

ω2

ω1

ω2

ω3

χ
(2)

Figure 1.2: Schematic representation of second-order nonlinear process as
a three-wave mixing. Fields ω1 and ω2 represents the input fields, while ω3 rep-
resents field created via nonlinear interaction. The value of frequency of created
field depends on particular type of interaction.

Based on properties of general Taylor series, even though the series from equation (1.14)
does not necessary converge, the sequence

{
χ(i)
}∞
i=1

is decreasing (i.e. χ(i) < χ(i+1)). As
a consequence, nonlinear processes of i-th order are stronger (requires less pump powers in
order to be observed) than processes of (i+ 1)-th order. It can be shown2, that second-order
nonlinear processes (characterized by nonlinear susceptibility χ(2)) will be comparable with
the linear response (characterized by linear susceptibility χ(1)) if the external optical field E
is of the order of an atomic field strength Eat. Based on this assumption, sizes of nonlinear
susceptibility of any order can be estimated as χ(i) ≃ χ(1)/Ei−1

at , where Eat ≈ 1011 Vm−1.
This gives a general idea, how much power is required for nonlinear effect to be observed.
Another important property is, that i-th order nonlinear process utilized interaction of i+ 1
electromagnetic waves, so for instance nonlinear process of third-order leads to four-wave
mixing (i.e. interaction of four in general different optical fields).

In order to identify practical consequences of different orders of nonlinear polarization,
each of them should be investigated separately in order to keep the analysis simple. Here in
this thesis however, only nonlinear processes of second-order will be discussed.

1.3 Second-Order Nonlinear Processes

In this section, the most elementary nonlinear effects, processes of second-order will be con-
sidered. The incident optical fieldE(t) consists in this case of two different components with
two generally different angular frequencies ω1 and ω2

E(t) = E1e
−iω1t + E2e

−iω2t, (1.15)

as schematically depicted in the figure 1.2. Taking into account only second-order nonlinear
interaction P (2)(t) = ε0χ

(2)E2(t), following expression for second-order nonlinear polariza-
tion is obtained

P (2)(t) = 2ε0χ
(2) (E1E

∗
1 + E2E

∗
2)+

+ ε0χ
(2)
(
E2

1e
−i2ω1t + E2

2e
−i2ω2t

)
+

+ 2ε0χ
(2)
(
E1E2e

−i(ω1+ω2)t + E1E
∗
2e

−i(ω1−ω2)t
)
. (1.16)
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1.3. Second-Order Nonlinear Processes

In this case the complex conjugate parts were also considered. In derived expression (1.16),
following complex amplitudes can be identified

P (2)(0) = 2ε0χ
(2)
(
|E1|2 + |E2|2

)
. . . optical rectification,

P (2)(2ω1) = ε0χ
(2)E2

1 . . . second-harmonic generation,
P (2)(2ω2) = ε0χ

(2)E2
2 . . . second-harmonic generation,

P (2)(ω1 + ω2) = 2ε0χ
(2)E1E2 . . . sum-frequency generation,

P (2)(ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 . . . difference-frequency generation.

The reason to call the processes second-, sum-, or difference-frequency generation is ob-
vious. The contribution, for instance, with complex amplitude P (2)(2ω1) will according to
nonlinear wave equation (1.12) lead to generation of electromagnetic field with angular fre-
quency 2ω1, which is second-harmonic frequency to the fundamental frequency ω1. On
the other hand, component with corresponding complex amplitude P (2)(0) can not lead to
any electromagnetic radiation, since its second time derivative will vanish. It can however
lead to process called optical rectification, when electrostatic field is generated by the optical
field. Third- and higher-orders of nonlinear interaction can be analysed in a similar way.

Before more detailed analysis will be continued, one more important matter has to be
addressed first. All until now mentioned nonlinear processes are often called parametric.
Parametric here means, that the medium does not contribute to the interaction directly, but
acts only as a parameter. This means, that there is no energy transition between fields and
a matter, because the atoms are not absorbing the fundamental radiation. The excitation can
be expressed only using virtual levels with ultra-short lifetimes. The important consequence
is, that electromagnetic energy in all interacting modes has to be conserved.

In order to describe second-order nonlinear processes in detail, the full vectorial approach
has to be used. Second-order of nonlinear polarization from equation (1.14) can be in its full
form expressed as follows

P
(2)
i (ωn + ωm) = ε0

∑
jk

∑
nm

χ
(2)
ijk(ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm), (1.17)

where indices ijk denote the space coordinates {x, y, z} and indices nm represent two dif-
ferent input fields. As was already shown in equation (1.16), even while focusing only on
limited class of second-order nonlinear processes, there are many representatives. Later in
this chapter only two of them (second-harmonic generation and spontaneous parametric
down-conversion) will be discussed in more details.

1.3.1 Conservation Laws

Nonlinear processes can be seen not only from the perspective of wave mixing, but also
from the perspective of photon interaction. Sum-frequency generation, for instance, can be
therefore understood as a process, where two photons with frequencies ω1, ω2 and wave
vectors k1, k2, respectively are annihilated, while new photon with angular frequency ω3
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ω 2ω

(a)

2h̄ωh̄ω

h̄ω

(b)

Figure 1.3: Schematic representation of pulse pumped second-harmonic gener-
ation: (a) collinear geometry of the process, (b) virtual energy-level transition.

and wave vector k3 is created. For any interaction of this type, a fundamental conservation
laws has to be fulfilled. In this case energy and momentum conservation laws take place

ℏω3 = ℏω1 + ℏω2, (1.18a)
ℏk3 = ℏk1 + ℏk2. (1.18b)

Presented laws lead to already known frequency condition ω3 = ω1 + ω2, which determines
frequency of produced field and a so-called phase-matching condition k3 = k1 + k2, which
as will be shown later determines the efficiency of the process.

1.3.2 Second-Harmonic Generation

Nonlinear process of second-harmonic generation (SHG) is probably the most common non-
linear interaction. As a result of its simplicity from both theoretical and experimental point
of view, together with its practical importance, it has been one of the most studied and
used nonlinear optical phenomenon since the invention of laser. While it was for the first
time observed by Franken at al. in 19613, it was also the first experimental demonstration
of nonlinear interaction using laser source. In this experiment, ruby laser at wavelength
of 694.3 nm was focused into a crystalline quartz plate, where radiation at twice the input
frequency (347.2 nm) was observed using spectrometer. The conversion efficiency of the pro-
cess was about 10−8. Lately, the process of second-harmonic generation reached significant
practical importance. Since it can be, under proper experimental condition, generated with
efficiency close to one, it can be used as an efficient source of laser radiation at various dif-
ferent frequencies.

Process of second-harmonic generation is second-order, three-wave, nonlinear paramet-
ric process. It can be understood as a special case of sum-frequency generation, where
the two input fields are identical. Usually, the term second-harmonic generation is used
only for the geometry, where both incident pump fields are indistinguishable in its frequen-
cies and wave vectors (i.e. collinear geometry). Graphical representation of such process is
schematically depicted in the figure 1.3a.
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1.3. Second-Order Nonlinear Processes

For the case of second-harmonic generation, where ω1 = ω2 = ω and ω3 = 2ω, equa-
tion (1.17) can be rewritten as

Pi(2ω) = ε0
∑
jk

χ
(2)
ijk(2ω, ω, ω)Ej(ω)Ek(ω), (1.19)

which can be also represented in a matrix form as

 P1

P2

P3

 = 2ε0

 d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

 ·


E2
1

E2
2

E2
3

2E2E3

2E1E3

2E1E2


. (1.20)

Tensor dil used in the previous equation was derived from tensor χ(2)
ijk using intrinsic permu-

tation symmetry χ(2)
ijk(ω3, ω1, ω2) = χ

(2)
ikj(ω3, ω2, ω1), which for second-harmonic generation,

where ω1 = ω2, results in χ(2)
ijk = χ

(2)
ikj . Tensor dil can be therefore introduced using following

multi-index notation

jk : {11, 12, 13, 21, 22, 23, 31, 32, 33} → l : {1, 6, 5, 6, 2, 4, 5, 4, 3}.

Finally, the factor 2 in expression (1.20) is used as a historical convention.
In previous paragraph, the intrinsic permutation symmetry was used in order to simplify

the expression. This symmetry simply means, that the order of interacting field in equa-
tion (1.19) does not matter, which is for second-harmonic generation fulfilled automatically,
since both pumping fields are indistinguishable. There are however other symmetries, which
can simplify the expression even further. The most critical one is the inversion symmetry.
If matter possess inversion symmetry, second-order nonlinear susceptibility χ(2) vanishes,
and therefore no second-order nonlinear processes can be generated. The reason this con-
clusion is significant is, that relatively large numbers of crystals possess such a symmetry.
One example can be a glass without any impurities, which as a common material for optical
elements make them therefore robust against second-order nonlinear processes, which are
in field of linear optics considered to be parasitic*.

In previous paragraph, the influence of inversion symmetry on second-order nonlinear
susceptibility was demonstrated. However, large number of other crystal spatial symmetries
can be utilized in order to simplify the form of nonlinear susceptibility tensor even more. As
an example, structure of second-order nonlinear tensor for KTP (KTiOPO4) crystal will be
presented.

KTP crystals are one of commonly used nonlinear crystals, especially for frequency dou-
bling of solid-state lasers such as Nd:YAG, or other neodymium-doped lasers. They form

*Although, third- and higher-orders nonlinear interactions can still occur, they requires much higher optical
intensity for their generation.
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an orthorhombic crystal structure resulting in mm2 symmetry class. Together with Klein-
man symmetry for low-frequency limit of nonresonant media4, second-order nonlinear ten-
sor can be represented by matrix dil as

dil =

 0 0 0 0 d31 0

0 0 0 d32 0 0

d31 d32 d33 0 0 0

 , (1.21)

which contains only three different nonzero elements, andwhich significantly limits the num-
ber of possible interactions (see section 2.3.2 on page 46).

Once the form of second-order nonlinear tensor has been derived, the solution of non-
linear wave equation in such lossless nonlinear medium can be found. Let the pump field Ep

be assumed in the form of a monochromatic plane wave

Ep(z, t) = Epei(kpz−ωt). (1.22)

This relation defines electric field as a complex quantity. Measurable physical quantity can be
obtained as the real part of this complex value. As was already discussed, such an incident
field will generate oscillation of dielectric polarization Ps with doubled frequency due to
second-order nonlinear interaction

Ps(z, t) = Pse
−i2ωt. (1.23)

According to equation (1.19), the amplitude Ps is

Ps = 2ε0deff
(
Epeikpz

)2
= 2ε0deffE2pei2kpz. (1.24)

This oscillating polarization will then lead to the generation of an electromagnetic radiation
with doubled frequency. The quantity deff from equation (1.24) represents effective nonlinear
susceptibility for one particular geometry as a corresponding matrix element from expres-
sion (1.20) as deff = es · dij : epep, where ei is a unit vector in direction of polarization of
wave i and symbol : denotes tensor shortening. The solution of linear wave equation for
optical field generated in such a way will also lead to monochromatic plane wave

Es(z, t) = Esei(ksz−2ωt). (1.25)

It can be however predicted, that nonlinear source term on the right-hand side in equa-
tion (1.12) will cause the amplitude Es to be spatially dependent as a slowly varying function
of z. Substituting electric vectorEs and dielectric polarizationPs in the nonlinear wave equa-
tion (1.12) with the expressions from equations (1.25), (1.23), and (1.24), following equation
describing spatial evolution of generated field is obtained

d2Es
dz2

+ i2ks
dEs
dz

=
−8ω2deff

c2
E2pe−i(ks−2kp)z. (1.26)

Using approximation of slowly varying amplitude∣∣∣∣d2Edz2
∣∣∣∣≪ ∣∣∣∣kdEdz

∣∣∣∣ , (1.27)
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1.3. Second-Order Nonlinear Processes

the second derivative of amplitude Es can be neglected with respect to the first derivative
and final form of differential equation for second-harmonic amplitude Es can be obtained as

dEs
dz

=
i4ω2deff
ksc2

E2pei∆kz. (1.28)

Quantity ∆k = 2kp − ks represents phase mismatch factor, which will play very important
role as will be explained later. Equation (1.28) describes space evolution of second-harmonic
amplitude leading to the energy transfer from the pump field. Also equation for the pump
field amplitude Ep can be derived in the similar way

dEp
dz

=
i2ω2deff
kpc2

EsE∗pe−i∆kz. (1.29)

Non-Depleting Pump Approximation

In order to show a solution for derived equations (1.28) and (1.29), non-depleting pump ap-
proximation will be used. In this approximation the pump amplitude Ep is considered to
be constant. This assumption holds for a low efficient energy transition from pump field
into second-harmonic one. This approximation leads to dzEp = 0 in equation (1.29), so only
equation (1.28) is needed to be considered. To calculate the evolution of second-harmonic
amplitude, the equation (1.28) has to be integrated over the crystal length L in the direction
of propagation z

Es(L) =
i4ω2deffE2p
ksc2

∫ L

0

ei∆kzdz

=
i4ω2deffE2p
ksc2

ei∆kL − 1

i∆k
. (1.30)

For practical use it is necessary to calculate intensity from the amplitude. Since for a linearly
polarized monochromatic plane wave in non-magnetic media, the optical intensity is given
as a time-averaged magnitude of Poynting vector

I = ⟨S⟩ = 2cnε0|E|2, (1.31)

the intensity of second-harmonic can be therefore expressed as

Is =
32nsε0ω

4d2eff|Ep|4

k2sc
3

∣∣∣∣ei∆kL − 1

∆k

∣∣∣∣2 =
=

8nsω
4d2effI

2
pL

2

n2
pk

2
sc

5ε0
sinc2

(
∆kL

2

)
. (1.32)

The influence of the last term sinc2(∆kL/2) will be discussed in the next section. Now
the case of perfect phase-matching, where∆k = 0, and the sinc function is therefore equals
to one will be considered. It will be shown, that such a situation is possible and it corresponds

11 / 104



Chapter 1. Nonlinear Optics

to the most efficient energy transition from the pump field into the second-harmonic one.
The efficiency of second-harmonic generation η can be now calculated as a ratio between
intensities of second-harmonic and fundamental fields

η =
Is
Ip

=
2ω5

k3c6ε0
d2effIpL

2, (1.33)

where relations np = ns = n and ks = 2kp = 2k were used for perfect phase-matching.
As can be excepted, the efficiency of second-harmonic generation is directly proportional

to the length of the crystal L, magnitude of the nonlinear coefficient deff and intensity of in-
cident field Ip. As it will be shown later in this chapter, these dependencies together with
influence of sinc2(∆kL/2) factor play a key role in considering optimal experimental condi-
tions and geometry.

Pump Depletion

Previous analysis did not take into account the depletion of the pump field. Even though
this approach is valid for low efficient processes, for those, whose conversion efficiency
reaches unity is not, because it results in energy conservation law violation. To treat this
case properly, both equations (1.28) with (1.29) has to be solved simultaneously. A perfect
phase-matching will be considered again. It is also convenient to renormalize the complex
amplitude E as follows

Ai =

√
2cniε0
ℏωi

Ei, (1.34)

since the squared amplitudeA2 is then equal to photon flux density ϕ ([ϕ] = photon/(sm2))

ϕi = |Ai|2 =
Ii
ℏωi

. (1.35)

Equations (1.28) and (1.29) can be thus rewritten as
dAp

dz
= i2κAsA∗

p, (1.36a)
dAs

dz
= iκA2

p, (1.36b)

where
κ2 =

ℏω6d2eff
ε0k3c6

(1.37)

is so-called coupling parameter. Obtained equations (1.36a) and (1.36b) have to be solvedwith
appropriate boundary conditions, which for second-harmonic generation of presented geom-
etry are:

(i) no second-harmonic field at the input of the crystal

As(0) = 0 (1.38)

(ii) energy conservation during the interaction

|Ap(z)|2 + 2|As(z)|2 = |Ap(0)|2. (1.39)
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1

2
φp(0)

φp(0)

1 2

φs

φp

ζz

φ

Figure 1.4: Spatial evolution of photon flux of both interacting fields in process of
second-harmonic generation demonstrating photon number conservation ϕp(0) =
ϕp(z) + 2ϕs(z). Dashed lines represent approximation of non-depleted pump.

Considering these two conditions, the solution can be found in the following form

Ap(z) = Ap(0)sech
(√

2κAp(0)z
)
, (1.40a)

As(z) =
1√
2
Ap(0) tanh

(√
2κAp(0)z

)
. (1.40b)

Using equation (1.35), spatial variation of the photon flux density can be calculated as

ϕp(z) = ϕp(0)sech2 (ζz) , (1.41a)

ϕs(z) =
1

2
ϕp(0) tanh2 (ζz) , (1.41b)

where ζ =
√
2κAp(0). The efficiency of second-harmonic generation with depleted pump

field can be then calculated from equation (1.41b) using expression (1.35) as a ratio between
optical intensity of second-harmonic field at the output of the crystal and the pump field at
the input as

η =
Is(L)

Ip(0)
=

ℏωsϕs(L)

ℏωpϕp(0)
= tanh2 (ζL) . (1.42)

As a consequence of these results, all the input pump photons can be converted into only
half as many second-harmonic output photons as shown on plot in the figure 1.4, which is in
agreement with energy conservation law. For high values of product ζL, the efficiency η
approaches unity, where all pump power is transmitted into second-harmonic field. On
the other hand, for low values of product ζL, the approximation tanh(x) ≈ x can be used. In
this approximation the expression (1.42) gets the form of (1.33), derived in the non-depleted
pump power approximation.
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1st pair

2nd pair

(a) (b)

Figure 1.5: (a) Schematic illustration of photon pairs creation in the process
of spontaneous parametric down-conversion. (b) Image taken in real experiment
with BBO nonlinear crystal pumped by fs OPA in UV region.

1.3.3 Spontaneous Parametric Down-Conversion

In previous section, process of second-harmonic generation was discussed. In this sec-
tion, another second-order nonlinear effect, the process of spontaneous parametric down-
conversion (SPDC) or shortly parametric fluorescence will be explored. This process was
for the first time observed by Burnham at al. in ADP crystal using He-Cd laser at 325 nm
in 19705.

Process of parametric down-conversion can be seen from two different perspectives.
From the first perspective, it can be considered as time-reverse process to second-harmonic
generation (or better to the sum-frequency generation). From the second perspective, it can
be described as a special case of parametric amplification (or different-frequency generation)
without the presence of a seeded field, where only vacuum fluctuations are amplified. Both
these approaches are physically identical.

In contrast with the sum-frequency generation, where two photons from pump field are
destroyed, while one photon with doubled frequency is created, here one photon is anni-
hilated and one pair of two photons is created instead (see sketch in the figure 1.5a). For
historical reasons, these photons are called signal and idler. Because the two photon com-
prising one pair originate from one pump photon, they are highly correlated both in space
and time*.

In the case of sum-frequency generation, both frequency ω and wave vector k are deter-
mined from frequencies andwave vectors of input fields, andwhere different combinations of
these frequencies andwave vectors can create the same sum-frequency field. Here in the case
of spontaneous parametric down-conversion however the same one pump field can create
photon pairs with various frequencies and wave vectors. As a consequence, this process is
highly broadband as illustrated in the figure 1.5b.

*In fact, these photons can be correlated in several other degrees of freedom as well.
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1.3. Second-Order Nonlinear Processes

Classical Description of Parametric Fluorescence

In order to describe this process theoretically, similar set of coupled differential equations
has to be derived from wave equation (1.12) in the same manner as in the case of second-
harmonic generation. Since the parametric fluorescence is spontaneous two-photon emis-
sion, the efficiency is relatively low. Pump field amplitude Ep can be therefore considered to
be constant over the interaction*. In this case, following set of coupled equations for gener-
ated amplitudes Es (signal) and Ei (idler) is obtained

dEs
dz

=
2iω2

sdeff
ksc2

EpE∗i ei∆kz, (1.43a)

dEi
dz

=
2iω2

i deff
kic2

EpE∗s ei∆kz, (1.43b)

where∆k = kp − ks − ki. In order to solve this equations, a perfectly phase-matched inter-
action (∆k = 0) will be assumed. Since equations (1.43a) and (1.43b) are formally identical,
also formally same solution is expected. The general solution can be found in the following
form

Ej(z) = α sinh(κz) + β cosh(κz), (1.44)
where

κ2 =
4ω2

sω
2
p

kskpc4
|Ep|2 (1.45)

is again coupling constant for parametric down-conversion and values of integration con-
stants α and β depend on the appropriate boundary conditions, which for the case of spon-
taneous parametric down-conversion require no generated fields at the input of the crys-
tal Es(0) = Ei(0) = 0. The solutions can be therefore written as follows

Es(z) = Es(0) cosh(κz)− iE∗i (0) sinh(κz), (1.46a)
Ei(z) = Ei(0) cosh(κz)− iE∗s (0) sinh(κz). (1.46b)

This solution is valid for any parametric amplification process. For the first sight it may
be surprising as a solution for parametric down-conversion, since with expected boundary
conditions Es(0) = Ei(0) = 0, no output field is generated. The reason for this is, that
down-converted photons are created as amplification of vacuum fluctuations, which can not
be explained using classical approach, and where quantum mechanical apparatus has to be
involved.

Quantum Description of Parametric Fluorescence

Essentially, in order to derive quantum description of spontaneous parametric down-con-
version, the classical pump, signal, and idler fields has to be substituted with operators. This
substitution for the field envelopes can be formally expressed as Ej(z)→ âj(z), where âj(z)

*Here, only so-called low-gain regime is considered, however later also high-gain regime will be introduced,
where the conversion efficiency is much higher, so the pump field is depleting and it thus can not be considered
constant any more (see section 5.4.2 on page 89).
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is annihilation operator and j = s, i. Annihilation and creation operators â†j(z) of the field
have to fulfil commutation relations[

âp(z), â
†
q(z)

]
= δpq, (1.47a)

[âp(z), âq(z)] = 0, (1.47b)

where {p, q} = {s, i}. Using this notation, the photon flux density operator Î(z) can be also
derived as Îj(z) = â†j(z)âj(z), giving the mean numbers of photons per unit area.

It can be shown, that for three-wavemixing of type ℏωp = ℏωs+ℏωi, the time-independent
interaction Hamiltonian has the following form

Ĥ = ℏχ(2)
(
p̂†ŝı̂+ p̂ŝ†ı̂†

)
, (1.48)

where operators p̂, ŝ, ı̂ and p̂†, ŝ†, ı̂† represent annihilation and creation operators for funda-
mental, signal, and idler fields, respectively. If pump field is assumed as a strong coherent
state Ep(t) = Epe−iωpt, the interaction Hamiltonian (1.48) can be rewritten as

Ĥ = ℏχ(2)
(
E∗

p ŝı̂+ Epŝ
†ı̂†
)
. (1.49)

Time evolution of a signal field can be in Heisenberg picture represented via commutator as
dŝ

dt
= − i

ℏ

[
ŝ, Ĥ

]
= −iχ(2)

[
ŝ
(
E∗

P ŝı̂+ Epŝ
†ı̂†
)
−
(
E∗

P ŝı̂+ Epŝ
†ı̂†
)
ŝ
]

= −iχ(2)Epı̂
†. (1.50)

The same expression can be derived in the same way also for the idler field
dı̂

dt
= −iχ(2)Epŝ

†. (1.51)

Since these equations are formally identical to these obtained with classical approach (see
equations (1.43a) and (1.43b)), the solution can be written directly as

ŝ(t) = ŝ(0) cosh(χ(2)Ept)− îı†(0) sinh(χ(2)Ept), (1.52a)
ı̂(t) = ı̂(0) cosh(χ(2)Ept)− iŝ†(0) sinh(χ(2)Ept). (1.52b)

Although as can be seen this solution is formally identical to the one obtained using
classical approach, the difference is hidden in the second term on the right-hand side. Even
if the input fields are in vacuum states, signal and idler photons can be generated due to
the presence of the creation operators. In other words, the classical approach requires for
down-conversion existence of a seeding, however quantum mechanics shows, that sponta-
neous generation of photon pairs can be seeded only by the vacuum fluctuations.

Using this semiclassical approach, average photon numbers for the signal and idler fields
can be calculated. From time dependent first order perturbation results

⟨ns(t)⟩ = ⟨ns(0)⟩ cosh2
(
1

2
G0t

)
+ (1 + ⟨ni(0)⟩) sinh2

(
1

2
G0t

)
, (1.53a)

⟨ni(t)⟩ = ⟨ni(0)⟩ cosh2
(
1

2
G0t

)
+ (1 + ⟨ns(0)⟩) sinh2

(
1

2
G0t

)
, (1.53b)
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where

G0 = 8πdeff

√
cIp(0)

2ε0npn2
sn

2
iλsλi

sin
(
∆kL
2

)
∆kL
2

(1.54)

it can be seen, how is the generation of signal and idler photons driven by the pump field
through the nonlinear polarization evenwithout presence of input fields. Using time to space
transformation t → √nsni(z/c), formula for spatial evolution of phase-matched, sponta-
neously generated down-converted fields can be obtained

⟨ns,i(z)⟩ = sinh2(gz), (1.55)

where the amplification factor g

g = 4πdeff

√
Ip(0)

2ε0cnpnsniλsλi
(1.56)

is the so-called parametric gain.

1.4 Phase Matching

Until now only the case of perfectly phase-matched process, where ∆k is equal to zero
was discussed. Here the amplitude of generated field grows linearly during the propagation
through the nonlinear medium* (see figure 1.4). This is a consequence of all atomic dipoles
inside a nonlinear media oscillating with the same phase, so each component of second-
harmonic field generated by individual dipoles in different parts of the nonlinear medium
interfere constructively and as the result the energy transition from pump filed into second-
harmonic field is the most efficient.

In this section, the influence of the phase mismatch factor ∆k ̸= 0 on the efficiency of
nonlinear interactions, especially on second-harmonic generation will be discussed. As can
be seen from equation (1.32), the intensity of second-harmonic generation I can be written
as

Is = I (max)
s sinc2

(
∆kL

2

)
, (1.57)

where I (max)
s represents maximal intensity generated in the case of perfect phase-matching.

Equation (1.57) is plotted in the figure 1.6, from where it is evident, that the phase-mismatch
significantly reduces the efficiency of second-harmonic generation, or better the maximal
length of nonlinear media. It can be also seen, that for given phase-mismatch∆k, the length
of the crystal has to be reduced in order to maintain the same conversion efficiency. In
other words, for longer crystal, the phase-matching condition is more strict. It is therefore
convenient to define so-called coherence length Lc = π/∆k as an interaction length, where
the conversion efficiency is still high enough. On the contrary if the interaction length L is
longer than the coherence length Lc, the generated field gets out of phase with the source
polarization P(NL), and energy will therefore flow back into the pump field as illustrated in

17 / 104



Chapter 1. Nonlinear Optics
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Figure 1.6: Dependence of conversion efficiency of second-harmonic generation
with non-zero phase mismatch ∆k on phase-mismatch factor (1/2)∆kL

Lc 2Lc

∆k = 0
∆k 6= 0

z

I
s
(z)

Figure 1.7: Evolution of second-harmonic intensity Is for the case of perfect (blue
line) and non-perfect (red line) phase-matching. It can be seen, that for the case
of perfect phase-matching, the intensity grows monotonically (with square of dis-
tance), however for non-perfect phase-matching it oscillates periodically with pe-
riod 2Lc. The graph also contains a phasor representation of an interference of
particular contributions from different positions along the crystal.
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Dispersion
Absorption

ω

n

α

Figure 1.8: Frequency dependent coefficient of absorption α and index of refrac-
tion n. Gray-filled area represents spectral range of anomalous dispersion, which
also corresponds to high absorption.

the figure 1.7. Coherence length Lc for process of second-harmonic generation can be also
rewritten using formula∆k = (2π/λ)(ns−np), where λ is wavelength of fundamental field
in the vacuum and np and ns are refractive indices of fundamental and second-harmonic field,
respectively. Using this formula, coherence length Lc = λ/4(ns − np) is clearly inversely
proportional to material dispersion of nonlinear medium.

Since the factor sinc2 from the equation (1.57) is a consequence of interference between
waves generated in different parts of the nonlinear crystal, in order to achieve perfect phase-
matching, fundamental wave (and therefore also nonlinear polarization P(NL)) has to propa-
gate through the nonlinear media with the same phase shift as second-harmonic wave. Let it
be shown, that for a collinear geometry of second-harmonic generation, the formula ∆k =
kp − 2ks = 0 results in following condition

kp = 2ks

ωpnp(ωp)

c
= 2

ωsns(ωs)

c

∣∣∣∣
ωp=2ωs

np(ωp) = ns(ωs). (1.58)

This condition requires the refractive indices for fundamental and second-harmonic fields to
be identical. This condition however can not be fulfilled in standard material in the spectral
region of normal dispersion, where the index of refraction n increases monotonically with
angular frequency ω (see figure 1.8). The same analysis can be performed for all second-order
nonlinear interactions, and although the final formulas will differ, the conclusion will be still
the same.

There are however several approaches, that can be used in order to achieve perfect phase-
matching. The fist one is to use material in region of anomalous dispersion, where condi-
tion (1.58) can be fulfilled (see figure 1.8). It is well known however, that region of anomalous

*Under the approximation of strong, non-depleted pump field.
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dispersion coincides with the region of high absorption, and therefore most of the gained
radiation would be lost due to the losses. Because of that (and the fact, that it would signifi-
cantly restrict the interaction wavelengths) this technique is not practically used.

The second possibility is to utilized birefringence of anisotropic crystals. It can be shown,
that birefringent materials can fulfil condition (1.58) for different combination of polarization
of interacting fields. Even though this technique possess some disadvantages like a neces-
sity to use anisotropic materials only and the fact, that the geometry of the experiment is
restricted by the phase-matching condition, it is the most common approach in achieving
perfectly phase-matched interactions.

The last approach presented here in this section is called quasi-phase-matching. As can
be suspected, it is not as good as perfect-phase matching, however the monotonic growth
of generated amplitude along the nonlinear crystal can be achieved. The main advantage
of this approach is its versatility. Since the quasi-phase-matching device has to be designed
individually in order to fit each particular interaction, almost any process can be quasi-phase-
matched even using isotropic materials, or combination of identically polarized interacting
fields.

1.4.1 Birefringence

In this paragraph, the phase-matching using birefringence in anisotropic media will be dis-
cussed.

In anisotropic medium, the refractive index (and therefore phase velocity) depends on po-
larization and direction of propagation. Although the polarization may change as the wave
is propagating through the crystal, there exists, in general, two directions, where polar-
ization remains unchanged. These directions are called optical axes. In anisotropic media,
the Maxwell’s equations are typically solved for propagation of monochromatic plane wave
with angular frequency ω. As a result, the Fresnel’s equation is obtained6

n2
xs

2
x

n2 − n2
x

+
n2
ys

2
y

n2 − n2
y

+
n2
zs

2
z

n2 − n2
z

= 0, (1.59)

where n is refractive index in direction of propagation given by unit vector s = {sx, sy, sz}
andnx, ny, nz are the principal refractive indices. This equation represents three-dimensional
surface consisting of two shells, which touch in four points (see the figure 1.9). Optical axes
are then directions joining two of them and passing through the origin. In any random di-
rection of propagation, two different refractive indices for two orthogonally polarized waves
therefore exist as can be also seen from the figure 1.9. This represents a general case of so-
called biaxial crystals with two different optical axes and with normal surface described with
three principal refractive indices nx, ny, and nz . Since the convention of labelling refractive
indices of biaxial crystals is nx < ny < nz , both optical axes lie in xz plane.

In many cases, two of the principal refractive indices are equal. The two principal indices
are called ordinary (no) and extraordinary (ne). In this case the crystal is called uniaxial, with
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Figure 1.9: The normal surface of a biaxial crystal. The blue curves demonstrate
the intersections of two shells with a coordinate planes. The red dash-doted line
represents an optical axis.

the normal surface characterized by following formula

n2
o(s

2
1 + s22)

n2 − n2
o

+
n2
es

2
3

n2 − n2
e

= 0, (1.60)

where n2
o = εx/ε0 = εy/ε0 and n2

e = εz/ε0. The normal surface in this case consists of
one sphere and one ellipsoid, which touch each other on z axis, which is therefore the only
one optical axis. Uniaxial crystals are divided into two groups: (i) positive, where ne > no

and (ii) negative, where ne < no.
For the derivation of phase-matching condition a positive uniaxial crystals will be here

considered. It can be shown7, that value of refractive index of extraordinary wave propagat-
ing in any arbitrary direction given by angle θ, can be calculated using following formula

1

n2
e(θ)

=
cos2 θ
n2
o

+
sin2 θ

n2
e

. (1.61)

Since it is necessary to achieve different refractive indices for all interacting waves, it is
clear, that also different directions of polarization will be involved. The table 1.1 summaries
all possible combinations of direction of polarization for uniaxial crystal, and therefore types
of interaction. Furthermore, also process of Type 0 can be defined as interaction of waves
with the same polarization.

The basic idea for collinear geometry of second-harmonic generation is well depicted in
the figure 1.10, which demonstrate the phase-matching in positive uniaxial crystal. For both
fundamental and second-harmonic field the crystal possess two refractive indices n(p)

o , n(p)
e

and n(s)
o , n(s)

e , respectively. Since in positive crystal no < ne, the pump wave will propagate
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Positive crystal Negative crystal
Pump Signal Idler Pump Signal Idler

Type I o e e e o o
Type II o o e e e o

Table 1.1: Table of interactions types based on directions of polarization of an in-
teracting waves.

no

ne

n(ωp)

n(ωs)

k

θ

(a)

1.7

1.8

1.9

2.0

n

400 500 600 700 800

λ [nm]

n
o

n
e

(b)

Figure 1.10: Demonstration of phase-matching in positive uniaxial crystal.
(a) Optimal direction of propagation represented by angle θ between optical axis
and wave vector k, where ne(ω) = no(2ω). (b) Dispersion of refractive indices of
uniaxial crystal. Dashed line represents a phase-matching of frequency doubling
at 800 nm.

as an extraordinary wave, while the second-harmonic as an ordinary one. Under proper
orientation of the crystal (i.e. angle θ between optical axis and propagation direction), condi-
tion ne(ω, θ) = no(2ω) can be fulfilled, where the angle can be obtained using formula (1.61).
This method is, of course, usable only if dispersion (causing phase mismatch) and birefrin-
gence are in the same order.

Because this technique requires rotating of the crystal, it is known as angle tuning. There
are several drawbacks of this method. First, it requires specific polarization of interacting
waves, second, it needs a particular orientation of the crystal, which can lead to utilization
of lower nonlinear coefficient, and finally, it suffers from phenomenon called walk-off.

In birefringent media, where angle between direction of propagation and optical axis is
neither 0°, nor 90°, the Poynting vector is not parallel with the wave vector (see the fig-
ure 1.11). As a result, the ordinary and extraordinary waves diverge from each other. Walk-
off therefore limits the spatial overlap of interacting fields and in consequence the effective
length of nonlinear crystal.
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Figure 1.11: Illustration of spatial walk-off in uniaxial positive (a) and nega-
tive (b) crystal, where the direction of Poynting vector of the ordinary and of
the extraordinary wave represented by vectors So and Se, respectively is deflected
due to the birefringence of the material by angle ρ = (1/ne)(∂ne/∂θ).

One solution to that is to use materials with strong dependence of extraordinary refrac-
tive index on temperature. Such amethod is called temperature tuning (or non-critical phase-
matching) and is often used, for instance, for crystals inside the cavities of the lasers, where
angle tuning of crystal would cause instability of the resonator.

1.4.2 Quasi-Phase-Matching

Quasi-phase-matching as a technique to synchronize phases of interacting field was for
the first time introduced by Armstrong in 19628. Although it was invented shortly after in-
vention of the laser in 19609 and the first observation of second-harmonic generation in 19613,
it could not be used that time and had to waited until a suitable fabrication methods had been
developed.

As already mentioned, the phase-matching technique utilizing birefringence has several
serious limits. Themost important one is, that it requires anisotropic materials, with orienta-
tion restricted by the phase-matching condition. In this case, since the material is anisotropic
and nonlinear coefficients depends on experimental geometry, usually not the highest non-
linear coefficient is used, which results in lower conversion efficiency. The highest nonlinear
coefficients are usually d33, which can be used only when mixing waves with identical polar-
ization, which is not possible to phase-matched using solely birefringence. Moreover, there
can be materials with nonlinearity higher in orders of magnitude, but with birefringence not
strong enough to compensate for the dispersion, and therefore not able to fulfil the phase-
matching condition. In all these mentioned cases, the quasi-phase-matching can be found as
a suitable solution.

The idea behind the quasi-phase-matching is quite simple. If there exists some natural
phase mismatch ∆k, an additional factorK can be artificially added to compensate the nat-
ural phase mismatch. For three wave mixing the quasi-phased-matching condition can be
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therefore presented as
k3 − k1 − k2 −K = 0, (1.62)

whereK = ∆k = π/Lc. It can be shown, that such a factor can be obtained using so-called
periodically-poled materials, where sign of nonlinear coefficient deff is periodically inverted
along the propagation direction creating a square function

d(z) = deff sign
[
cos
(

2π

ΛPM
z

)]
, (1.63)

where ΛPM = 2Lc represents the period of the modulation and deff is an effective nonlinear
coefficient of non-inverted media.

As known from Fourier analysis, any periodic function can be described in terms of
Fourier series

d(z) = deff

∞∑
m=−∞

d(m)eiK
(m)z, (1.64)

where K(m) = 2πm/ΛPM represents m-th order of periodic modulation
and d(m) = (2/mπ) sin(mπ/2) scales the effective nonlinear coefficient of m-th order d(m)

eff
as d(m)

eff = deff d
(m). Since the nonlinear coefficient is no longer independent on z, the cou-

pled differential equations have to be handle in proper manner. Final form for amplitude of
second-harmonic Es from equation (1.28) can be therefore derived as follows

dEs
dz

=
i4ω2d

(m)
eff

ksc2
E2pei∆k(m)z, (1.65)

where ∆k(m) = 2ks − kp − K(m) is a new phase mismatch factor. As can be seen now,
proper spatial modulation of nonlinear media can lead to vanishing natural phase-mismatch
originating from material dispersion of nonlinear media. The resulting spatial variation of
second-harmonic intensity within the crystal is illustrated in the figure 1.12. Moreover, even
though it is better to achieve quasi-phase matching through the first order of periodic modu-
lation K(1) (since quantity d(m) decreases withm, and therefore reduces effective nonlinear
coefficient), higher-orders of this modulation can be also utilized. In special cases, more
orders can be utilized in the same time, which can lead to a versatile source of nonlinear
processes (see chapter 2 on page 33).

One way, how to introduce such a spatial modulation of nonlinear susceptibility is pro-
cess of periodic poling. With this technique, a non-modulated nonlinear crystal is used.
Using a lithographic process, periodic mask of electrodes is created on the top and bottom
surface. Applying strong electrostatic field in order of kVmm−1, the orientation of ferroelec-
tric domains, and thus the orientation of crystalline axis is reversed in regions under the elec-
trodes, resulting in reversing sign of effective nonlinear coefficient (see the figure 1.13). This
technique is however obviously limited to ferroelectric materials (materials containing spon-
taneous electric polarization, i.e. internal electric dipoles) with reasonablewidths (so the elec-
tric field can penetrate the material as uniformly as possible) and with poling periods limited
by the lithography precision.
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Figure 1.12: Spatial evolution of second-harmonic field generated in the case
of phase-matched (blue line) and quasi-phase-matched (green line) interaction as
well as for phase-mismatched one (red line). It can be seen, that even though
for the quasi-phase-matching the efficiency is lower than for the perfect phase-
matching, a monotonic increase of intensity can be obtained. The phasor represen-
tation of the interactions together with schematic illustration of optimal periodical
poling is also presented.

kV

Figure 1.13: Demonstration of periodic poling technique. Ferroelectric domains
orientation represented with arrows was under grey electrodes reversed by apply-
ing a strong electrostatic field.
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1.4.3 Modal Phase-Matching

Besides these methods, there exist also not that common techniques which usually utilize
some non-standard geometry or other property of the experiment. Phase-matching tech-
niques in waveguides may serve as an example, where the light is propagating in form of
guided modes or better as a combination of guided and radiated modes.

The classical modal phase-matching (MPM) is taking advantage of an effective modal re-
fractive index neff from β = neff(2π/λ0), where β is the propagating constant of particular
mode and (2π/λ0) is the vacuumwavenumber, being dependent not only on the wavelength,
but also on the mode in which the light propagates. Due to this dependence the condi-
tion neff(ω) = neff(2ω) can be fulfilled, thus the phase mismatch eliminated simply by us-
ing different guided modes of the waveguide. However, from this requirement immediately
arises the main drawback of this technique. Different spatial modes have different amplitude
distribution over the transverse plane of the waveguide, which limits the spatial overlap of
the interaction and in consequence lower the overall conversion efficiency, especially when
higher modes have to be involved. Nevertheless, if fundamental mode is used with combina-
tion with one of the lowest mode, the nonlinear interaction can be obtained with reasonably
high efficiency10.

Previous technique uses different guided modes, and it is therefore limited to multi-
modal waveguides only. However, there exists also different modal phase-matching method,
where the phase mismatch gets vanished for combination of guided and radiated modes. This
method is called Cherenkov phase-matching. In this type of phase-matching (for the case
of second-harmonic generation) the fundamental wave propagates as a guided mode, while
the second-harmonic is generated as a radiated one, i.e. it propagates out of the waveguide
core into the cladding or substrate at angle θ determined by the phase velocity match θ =
neff(ω)/neff(2ω). As can be shown11, this can be obtained only if the phase velocity of
the fundamental mode in the core is higher than the phase velocity of the radiated mode
in the cladding. Since this is analogous to the phenomenon of Cherenkov radiation, where
the speed of particle, which emits radiation is larger than the speed of light in the material
the particle is propagating through, it explains the choice of name for this technique. Also
this type of phase-matching has been treated both theoretically12,13 and experimentally14,15.

1.5 Practical Experimental Approach

In previous section, the model based on plane waves and spatially unlimited nonlinear me-
di-um was used. In real experiments however, the dimensions of both interacting fields
together with the nonlinear material itself is usually under some restrictions. Essentially,
there are two main possibilities of experimental implementation*. The first one uses bulk
crystals with finite dimensions pumped by an optical beams, the other one take advantages
of a wave-guiding structures, in which all interacting fields exist in form of guided modes.
Both approaches benefits from some advantage features and suffers from another ones. For
instance, experiments with bulk crystals are much more simple from experimental point

*Here, the nonlinear interactions on boundaries, for instance, were not considered
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Figure 1.14: Illustration of optimal focusing of Gaussian beam into the nonlinear
crystal. 2z0: Rayleigh range, 2w0: beam waist.

of view, both angle and temperature tuning for phase-matching are accessible and non-
collinear geometry can be utilized in order to spatially separate the interacting beams or
fulfil the phase-matching condition.

On the other hand, waveguides can provide much higher conversion efficiency thanks to
usually higher power density and longer interaction length. Also since waveguides from def-
inition supports only collinear interactions, the quasi-phase-matching is usually employed,
even though the modal phase-matching could be in principle utilized. As a consequence,
Type 0 interaction can be used and the highest nonlinear coefficient d33 utilized, which re-
sults in even higher conversion efficiency.

1.5.1 Bulk Crystals

In this paragraph, generation of second-harmonic field inside the bulk crystal using Gaus-
sian beam will be discussed. From beginning, laser sources have been almost exclusively
used as a sources for nonlinear optics. The reason was their high power density, which is
an essential ingredient for efficient parametric generation. Since the lasers produce light in
form of beams, it is straightforward to use them with a bulk crystal as a source of nonlinear
processes.

Because the efficiency of phase-matched second-harmonic generation is directly pro-
portional to the interaction length and inversely proportional to the cross section area of
the interaction

η ≃ d2effL
2Pp

A
, (1.66)

wherePp/A = Ip (comparewith formula (1.33)), long crystal should be used, where the beam
should be tightly focused in order to obtain maximal conversion efficiency. However, as it
is depicted in the figure 1.14, there is a trade-off between these two requirements. With in-
creasing of interaction length, the beam size is increasing also, which results in lowering
the conversion efficiency. In other words, focusing limits the interaction length. As a re-

27 / 104



Chapter 1. Nonlinear Optics

sult, there has to be optimal amount of focusing for given length of the crystal producing
the highest conversion efficiency.

If the crystal length is much shorter than Rayleigh range z0, beam size remains almost
constant and plane-wave model can be adopted. As already shown, optical intensity of
second-harmonic generation for perfectly phase-matched interaction can be express as

|Es(2ω)|2 =
8nε0ω4d

2
effL

2

k2c3
|Ep(ω, r)|4, (1.67)

where pump field amplitude Ep(ω, r) is expressed in form of Gaussian beam

Ep(ω, r) ≃ E0e−(r2/w2
0). (1.68)

Now, the conversion efficiency can be calculated using formula η = Ps(2ω)/Pp(ω), where
P (ω) = (1/2)

√
(ε0/µ0)

∫
|E(ω)|2dr. It can be shown16, that the second-harmonic field is

effectively generated only within the confocal area (Rayleigh range) of the focused beam.
The reason is not only the fact, that the beamwidth is expanding, but also because of angular
spread ofwave vectors, which induces additional phase-mismatch. It can be also shown7, that
the second-harmonic field is generated also in form of Gaussian beam with beam waist and
angular diffraction

√
2 times smaller than the ones of the pump beam.

The final conversion efficiency of second-harmonic generation in the case of so-called
confocal focusing can be found in form16

ηconf. =
128π2ω3d2effL

n2c4
P (ω), (1.69)

where comparing with plane-wave solution from equation (1.33), the linear dependence onL
instead on L2 can be seen.

1.5.2 Waveguides

Although the bulk crystals are still used the most frequently, interest in nonlinear waveg-
uides has been rising rapidly lately. There are several reasons to prefer guiding structures for
nonlinear interactions. From the formula for conversion efficiency of second-harmonic gen-
eration (1.66) it can be seen, that for given pump power nonlinear material with the highest
nonlinearity, or if the material is already given its orientation, in which the highest nonlinear
coefficient is utilized has to be used in order to achieve the highest efficiency of the genera-
tion. Also the longest possible interaction length together with the smallest cross section of
interaction area i.e. the highest power density is required. It can be shown, that all of these
requirements can be very well matched in nonlinear waveguides.

However, even though the nonlinear waveguides may seem to be superior to bulk crys-
tals, they are still not used that often. The reason is their lower variability, since they are
usually designed for one particular application. Also it is more difficult to handle them exper-
imentally. As a result, they are usually used in stand-alone devices like harmonic generators,
OPAs, OPOs, and so on, while in laboratory proof-of-principle experiments, the bulk crys-
tals still plays the key role. Since the waveguides are in general significantly more compact
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with respect to bulk crystals, one more reason for them to become part of the complex stand
alone devices is their ability to be integrated into compact optical circuits, which can nowa-
days consists of almost any optical component.

In order to utilize the most of the potential benefits of the nonlinear waveguides, they are
usually periodically-poled, so highly nonlinearmaterials can be used. In the case of bulk crys-
tals, the material is chosen not only with respect to its nonlinearity, but also to its anisotropy.
There is however a large amount of materials with high nonlinear coefficients, however with
no or to low birefringence to compensate the dispersion causing the phase-mismatch. On
the other hand, even in the material, where the dispersion can be compensated there exist di-
rections with higher nonlinear coefficients. To utilize them requires mixing of optical waves
polarized in the same direction (Type 0 interaction). With periodic poling, any dispersion,
and thus any phase mismatch can be compensated with no need for anisotropy. Therefore,
almost any material in any direction with any combination of interacting polarization can
be used. Table 1.2 summarized some of frequently used nonlinear media and its nonlinear
coefficient in order to compare different materials not only through their nonlinearity, but
their dispersion also.

Furthermore, the probablymost important feature, thatmakeswaveguides one of themost
efficient sources of nonlinear processes is their possibility to reach extremely long interac-
tion lengths. As was already discussed in previous section, the length of bulk crystals is
limited by the pumping beam geometry and it is usually in orders of units of mm. In waveg-
uides, where once the light is coupled in, it can propagate any long distance, limited only by
the internal losses, while keeping its amplitude profile constant as a consequence of exist-
ing in form of superposition of guided modes. The typical length of nonlinear waveguides
vary from application to application. There are such, that are only several millimetres long,
the most common lengths are however in units of cm. Nevertheless, there are also cases,
where the nonlinear waveguide can be several meters long, or even longer. As an example
can serve a weakly doped glass fibers. Although the glass poses inversion symmetry, so
no second-order nonlinear process can be generated there, some impurities can destroy this
symmetry and second-order susceptibility χ(2) therefore does not vanish. As a consequence,
such a fiber can be used as a nonlinear medium. Although, the induced nonlinearity is ex-
tremely low, together with long interaction length and high power density within the core
of the fiber, reasonably high conversion efficiency can be reached.

Moreover, the guided modes are usually well located inside small waveguide cores, with
cross section dimensions typically in units of µm2 resulting in very high power densities and
as a consequence high conversion efficiency again.

Modal Structure of Guided Waves

All previous assumptions were derived based on model of a plane wave. Inside a waveguide,
the electromagnetic field however does not exist in form of plane wave, but in form of guided
modes. Although formally similar results are to be expected, proper mathematical treatment
has to be adopted in order to describe properties of electromagnetic radiation guided inside
of these structures.

29 / 104



Chapter 1. Nonlinear Optics

Nonlinear Refractive indices
Material coefficients at 1064 nm at 532 nm

KTiOPO4 d31 = 1.95 pmV−1 nx = 1.7400 nx = 1.7787
(KTP) d32 = 3.9 pmV−1 ny = 1.7469 nx = 1.7924

d33 = 15.3 pmV−1 nz = 1.8304 nx = 1.8873

LiIO3 d15 = 2.2 pmV−1 no = 1.8571 no = 1.8982
ne = 1.7165 ne = 1.7480

BaB2O4 d22 = 2.22 pmV−1 no = 1.6551 no = 1.6750
(BBO) d31 = 0.16 pmV−1 ne = 1.5426 ne = 1.5555

LiB3O5 d31 = 1.09 pmV−1 nx = 1.5656 nx = 1.5787
(LBO) d32 = 1.17 pmV−1 ny = 1.5905 nx = 1.6065

nz = 1.6055 nx = 1.6212

KH2PO4 d36 = 0.43 pmV−1 no = 1.4938 no = 1.5125
(KDP) ne = 1.4599 ne = 1.4705

ZnGeP2 d21 = 111 pmV−1 no = 3.2324 no = 3.1141
ne = 3.2786 ne = 3.1524

AgGaSe2 d11 = 43 pmV−1 no = 2.7005 no = 2.6140
ne = 2.6759 ne = 2.5824

AgGaS2 d34 = 31 pmV−1 no = 2.4508 no = 2.3954
ne = 2.3966 ne = 2.3421

GaSe d21 = 63 pmV−1 no = 2.9082 no = 2.8340
ne = 2.5676 ne = 2.4599

Table 1.2: Table of frequently used nonlinear materials, sizes of their nonlinear
coefficients, dispersion, and birefringence.

At the beginning of this chapter, nonlinear effects were formally described using nonlin-
ear wave equation with particular form of input field. In the case of waveguides, the very
same approach will be used with the exception, that proper form of interacting field has to
be found first.

Formal solution of waveguides can be done in following manner. First, any component
of guided electromagnetic field propagating along z direction can be expressed in form

E = E(u, v)ei(ωt−βz), (1.70a)
H = H(u, v)ei(ωt−βz), (1.70b)

where β denotes propagating constant, unique quantity for particular mode at frequency ω
and (u, v) is any orthogonal coordinate system. It can be shown17, that the longitudinal
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components of the field must obey scalar Helmholtz wave equation[
∆t + (ω2εµ− β2)

] [ Ez

Hz

]
= 0, (1.71)

where ∆t = ∂2u + ∂2v is transverse component of Laplace operator, and where the homoge-
neous and isotropic media was expected.

Any solution of this equation has to also fulfil the following boundary conditions:

(i) longitudinal component of electric vector E and magnetic intensity H has to be con-
tinuous on boundary of any two media

(ii) longitudinal component of electric vector E has to be zero on surface of a conductor

(iii) ratio between longitudinal components of electric vector E and magnetic intensity H
has to be equal to the surface impedance

(iv) radiation condition lim
r→∞
|E|2 = lim

r→∞
|H|2 = 0 has to be fulfilled.

Any complete solution must include not only guided modes, but also a radiated ones. In
general, the solution for vector of electric field in lossless media can be written in following
form

Et(u, v, z) = CE(r)
t (u, v, z)︸ ︷︷ ︸

radiated modes

+
∑
p

ApE(g)
tp (u, v)e

−iβpz

︸ ︷︷ ︸
guided modes

, (1.72)

where any combination of guided modes in this solution has to obey following orthogonal
relations ∫

Etp · E∗
tqdudv = 0, (1.73a)∫

ez · (Etp ×Htq)dudv = 0, (1.73b)

where indices p, q represents any combination of orthogonal modes and ez is the unit vector
in z direction. As a consequence, any optical field can be in any z plane expressed as a sum
of independent orthogonal modes (superposition property).

Fulfilling this set of boundary conditions leads to a transcendental equation for ω and β,
which if solved yields to dependence β = β(ω) known as a dispersion relation. This relation
thereafter carry information about dispersion characteristics of given mode such as phase
velocity ω/β, group velocity ∂ω/∂β, and group velocity dispersion ∂2ω/∂β2. For dielectric
waveguides with reasonable refractive indices it can be concluded, that at given frequency ω,
only limited number of modes can be excited, and that in any waveguide at least one funda-
mental mode exists.

Helmholtz equation (1.71) can be solved using separation of variables method, where
longitudinal components of the electromagnetic field are expressed as[

Ez

Hz

]
=

[
E(u, v)
H(u, v)

]
e±iβz = U(u)V(v)e±iβz, (1.74)
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where optimal choice of function U(u) and V(v) depends on shape of the particular waveg-
uide. For instance, in the case of rectangular waveguide, the solution will be in form of
harmonic functions U(x) = e±ikxx and V(y) = e±ikyy. On the other hand, for waveguides
with circular symmetry, the cylindrical coordinate system (r, θ, z) can be used and the solu-
tion found in form U(r) = Z

(1),(2)
ν (pr) and V(θ) = e±iνθ, where Z(1),(2)

ν are two independent
solution of Bessel differential equation of ν-th order (i.e. Bessel functions) and p = ω2εµ−β2.

In previous paragraph, the formal analytic solution for homogeneous waveguides was
introduced. However, many structures, especially these used in nonlinear optics are inho-
mogeneous, where [ε, µ] = [ε, µ](r). In this case, a new wave equation for inhomogeneous
matter has to be derived. It can be shown7, that such an equation will have following form

∇×∇× E− ∇µ(r)
µ(r)

×∇× E− ω2ε(r)µ(r)E = 0, (1.75)

where∇· [ε(r)E] = 0. This wave equation can be, however, solved analytically, as expected,
only for limited number of particular dependencies [ε, µ] = [ε, µ](r), (i.e. limited number of
refractive index profiles). For any other cases, a numerical approach has to be adopted.

Numerical Solution of Inhomogeneous Waveguides

Although analytic solution can be found for some simple profiles of index of refraction, for
general case a numerical approach has to be adopted.

In order to solve eigenvalue problems for inhomogeneous waveguides, several numer-
ical methods have been developed. Two most frequently used are finite-elements method
and final-difference method. The first one, method of final-elements can be used for inho-
mogeneous waveguides of any cross section. It is based on numerical solution of full set of
Maxwell’s equations with appropriate boundary conditions. The results are therefore accu-
rate, except of numerical precision. This method is based on splitting transverse profile of
the structure into small parts, where the material can be assumed to be sufficiently homo-
geneous. On the borders, the boundary conditions are used in order to bond the solutions
together.

On the other hand, method of finite-differences uses a full system of three-dimensional
Maxwell’s equations with appropriate boundary conditions, which are solved in temporal
domain. The equations are expressed in linearised form using final-differences. The field
inside the structure is developing in time steps through the space areas with rectangular
shapes. Also here, the accuracy is limited only by the numerical precision.
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2
Second-Harmonic Generation in

Periodically-Poled KTP Waveguide

Periodically-poledKTPwaveguide and its experimental characterizationwill be presented
in this chapter. Simultaneous existence of three different types of nonlinear processes of
second-harmonic generation will be shown, and both, the spatial and spectral properties of
generated fields will be studied. Experimental results will be interpreted using numerical
model based on a scalar finite-elements method, which was adopted in order to calculate
spatial mode profiles, propagation constants, and frequencies of interacting fields. Devel-
oped model will be also used to address the influence of waveguide parameters on second-
harmonic spectra. It will be shown, that there exist correlations between spatial and spectral
properties of coupled modes. In the end, the switching between individual processes using
spatial and spectral filtering will be demonstrated.

In this chapter, the research published in paper by Machulka et al. [18] will be reported.
In this paper one can also findmore details especially about numerical model and also further
references concerning this topic.

2.1 Introduction

The process of second-harmonic generation can be in principal produced in any nonlin-
ear material lacking the inversion symmetry. Phase-matching of interacting fields can be
reached through the birefringence of anisotropic media, or via quasi-phase-matching (QPM)
as suggested by Armstrong8. QPM holds however several advantages, especially allowing
for the highest nonlinear coefficients to be utilized19. The quasi-phase-matching itself is usu-
ally introduced by periodic poling, where dielectric domains inside ferroelectric material are
inverted by intense electrostatic field20,21. As a consequence of inverting dielectric domains,
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also signs of nonlinear susceptibility χ(2) are inverted. Second-order nonlinearity can be
therefore approximated with a dichotomic function, which as a result produces desired ad-
ditional factorK into quasi-phase-matching condition∆k = ks− 2kp−K (see section 1.4.2
on page 23).

Since the dichotomic function is periodic, it can be expanded into series containing also
higher harmonic orders. Even though the nonlinear structure is designed only for the first-
order to be utilized and potential higher-order contributions are usually considered as para-
sitic22, the rich spatial and spectral modal structure can be exploited if several higher-order
harmonics are significant enough23. As a consequence, properties of nonlinear interactions
can be taken under control. In this study, utilization of the first-, the second-, and the third-
order of harmonic modulation will be presented.

Since the efficiency of second-harmonic generation is inversely proportional to the trans-
verse area of the interaction, focusing of the pump beam into the nonlinear mediummay im-
prove the efficiency. Focusing has however some optimal value given by spatial walk-off and
angular spread of wave vectors. Oppose to bulk crystals, the fields inside the waveguides,
which are not affected by the walk-off24, are confined into usually vary small areas resulting
in very high power densities25. Moreover, waveguides can offer much longer phase-matched
interaction length, which results in further increase of the conversion efficiency.

The fundamental difference between bulk crystals and waveguides is however the pres-
ence of guided modes. If the cross section dimensions of the waveguide are big enough
for the structure to be multimodal at employed wavelength, the propagation of not only
the fundamental mode, but also higher modes is supported. In this case, a modal phase-
matching (MPM) relying on phase velocity matching (i.e. modal dispersion) between differ-
ent modes can be utilized together with quasi-phase-matching. Since each mode possess dif-
ferent propagation constant, the phase-matching condition, and therefore efficient second-
harmonic generation, can be reached for several combinations of these spatial modes26–28 at
once. For any of these combinations, certain spatial and also spectral properties of funda-
mental beam are needed.

Here, second-harmonic generation pumped by pulsed laser sourcewill be studied. The sec-
ond-harmonic field is therefore excepted to be polychromatic, with the spectral profile de-
termined by the spectral profile of the fundamental field giving, if considering only energy
conservation relation, formula ∆λs = (

√
2/4)∆λp. To observe signal spectral profile ∆λs,

the width of the pump ∆λp has to be however larger, since the phase-matching conditions
put additional constraints to the nonlinear process.

The differences in both spectral and spatial profiles of interacting fields can be afterwards
useful in tuning a specific nonlinear process. Besides the phase-matching conditions, also
a sufficient spatial overlap of interacting modes is necessary. This disqualifies higher modes,
whose amplitude oscillate quickly in transverse plane of the waveguide. So even though
the higher modes can propagate through the structure, only the lower modes are therefore
expected to be generated. As a consequence, different nonlinear processes caused by different
orders of involved spatial nonlinearity modulation together with different combination of
interacting spatial modes can coexist in periodically-poled nonlinear waveguide together.
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2.2. Theory

This research was motivated by the fact, that waveguides have become more popular
in real applications, since they can be integrated into more complex miniaturized optical
circuits. Because of that, the potential influence of manufacture imperfections on the prop-
erties of generated fields was also investigated. Here presented characterization through
the process of second-harmonic generation can be further used also for the inverse process
of spontaneous parametric down-conversion26,28,29.

2.2 Theory

Both the fundamental and generated second-harmonic fields represented by their electric
field amplitudes Ep and Es, respectively have to inside the waveguide obey nonlinear wave
equation1,30

∇× (∇× Ei) +
←→ε
c2
∂2Ei

∂t2
= −µ0

∂2P(2)

∂t2
, (2.1)

where ∇ is del operator and←→ε denotes tensor of linear permittivity, which is assumed to
have a diagonal form in used Cartesian coordinate system {x, y, z}. Constant c in equa-
tion (2.1) represents the speed of light in vacuum and µ0 is the permeability of vacuum.
Second-order nonlinear polarizationP(2) can be expressed asP(2) = 2ε0

←→
d : EpEp, where

←→
d

represents the third-order nonlinear tensor and symbol : stands for tensor shortening.
Both polychromatic fields can be spectrally decomposed as follows

Ei(x, y, z, t) =
∑
n

∑
m

∫
E (i)nm(z, ωi)e(i)nm(x, y, ωi)e

i(β
(i)
nm(ωi)z−ωit)dω. (2.2)

The normalized amplitudes e(i)nm(x, y, ωi) represent the mode functions and can be found
as a solutions to corresponding Helmholtz equation. More precisely, solving the Helmholtz
equation represents eigenvalue problem, where themode functions act as the eigenfunctions,
while the propagation constants β(i)

nm as the corresponding eigenvalues. The first summation
over n in equation (2.2) represents the summation over two differently polarized modes,
(quasi-) TE and (quasi-) TM31, while the second summation over m runs over all possible
transverse guided modes. Finally, E (i)nm(z, ωi) denotes the envelope of spectral amplitude
of corresponding mode propagating in z direction. The (quasi-) TE means, that the mode
has the electric field vector polarized in direction nearly parallel to the x axis, while for
(quasi-) TM modes the electric field vector is nearly perpendicular to the x axis.

Substituting the decomposed electric fields from equation (2.2) into the nonlinear wave
equation (2.1), a set of nonlinear differential equations for the envelopes E (i)nm is obtained.
Using approximations of slowly varying amplitude and non-depleting pump, following for-
mula for amplitude of second-harmonic field E (s)ak (L, ωs) at the output of the waveguide is
obtained

E (s)ak (L, ωs) = i

(
ωs

β
(s)
ak (ωs)c

)2∑
b,c

∑
l,m

∫
Dabc

klm(ωs, ωp)Γ
abc
klm(L, ωs, ωp)×

× E (p)bl (0, ωp)E (p)cm(0, ωs − ωp)dωp, (2.3)
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where integration over frequencies ωp incorporates all frequency contributions present in
the polychromatic pump field. The coefficientsDabc

klm(ωs, ωp) introduced in equation (2.3) are
defined as

Dabc
klm(ωs, ωp) = dM

∫∫ ←→
d : e(s)∗ak (x, y, ωs)e(p)bl (x, y, ωp)e(p)cm(x, y, ωs − ωp)dxdy. (2.4)

This coefficient representsweakly frequency dependent effective nonlinear coefficient, which
among the polarization properties incorporates also a spatial overlap of all interacting fields.
The coefficient dM in equation (2.4) denotes the amplitude of decomposition of the actual
spatial modulation of nonlinear coefficient into the M -th order of quasi-phase-matching.
As already mentioned, the effective nonlinear coefficient Dabc

klm(ωs, ωp) is usually small if
it incorporates higher-order spatial modes due to a frequent changes in the sigh of their
electric field amplitudes. Finally, the coupling coefficient Γabc

klm(L, ωs, ωp) from equation (2.3)
is defined as

Γabc
klm(L, ωs, ωp) = i

e−i∆βabc
klm(ωs,ωp)L − 1

∆βabc
klm(ωs, ωp)

. (2.5)

It characterize the evolution of generated field along the z axis. The ∆βabc
klm(ωs, ωp) from

equation (2.5) represents the phase mismatch, and therefore determines the efficiency of
the generation. It is defined as follows

∆βabc
klm(ωs, ωp) = β

(s)
ak (ωs)− β(p)

bl (ωp)− β(p)
cm(ωs − ωp)−

2πM

ΛPM
, (2.6)

where the last contribution 2πM/ΛPM originates in theM -th harmonic of periodic modula-
tion of nonlinear coefficient.

2.2.1 Spatial Profiles of Guided Modes

In order to calculate spatial profiles of the field guided by the structure, the profile of re-
fractive index has to be known. This section will therefore contain description and basic
properties of nonlinear element used for this particular research.

PP-KTP-WG Element

The element used in this study was periodically-poled KTP chip fabricated by AdvR Inc. with
about 50 waveguides created on its top surface (for detailed images see figure 2.1).

The KTP (KTiOPO4) nonlinear crystals are commonly used nonlinear materials due to
their high optical quality, broad transparency window, and high damage threshold (for more
detailed description see table 2.1). All here mentioned features together with relatively high
nonlinearity makes them adequate choice for frequency doubling of solid-state lasers, par-
ticularly at low or medium power densities or an optical parametric oscillator for near IR
generation. Moreover, they are suitable especially as an electro-optic modulators or as any
optical waveguide devices.
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Figure 2.1: Periodically-poled KTP waveguide used in this experiment: (a) top
view, (b) front facet of the chip, and (c) schematic sketch of the element with its
dimensions. On both real images, waveguides together with some damages in
the substrate can be identified.

Transparency range 350 nm to 4500 nm
Crystal structure orthorhombic

Point group mm2
Non-linear coefficient d31 = 1.4 pmV−1

d32 = 2.65 pmV−1

d33 = 10.7 pmV−1

Refractive index @ 800 nm nx = 1.75719, ny = 1.84546
@ 400 nm nx = 1.84435, ny = 1.96775

Optical damage threshold 500MWcm−2 @ 1064 nm, 20 ns, 20Hz

Table 2.1: The main optical properties of KTP nonlinear crystals.

In the fabrication process, an ordinary bulk KTP crystal with dimensions 10.5×2×1mm3

was used as a substrate. The substrate was firstly periodically-poled using lithographic tech-
nique as described in the previous chapter (section 1.4.2, page 23). The poling periodwas cho-
sen to fulfil quasi-phase-matching condition for Type II frequency doubling at 800 nm (800 nm
→ 400 nm). The manufacturer considered the optimal value of the poling period for this in-
teraction to be 7.62 µm. After that, the waveguides were formed by Rb+ ion diffusion through
another lithographic mask. The diffused ions locally raise the refractive index and as a con-
sequence form the waveguide with numerical aperture about 0.2.

In the fabrication process, both horizontal and vertical dimensions of the future waveg-
uide are under control. The horizontal dimension is controlled through the mask boundaries
and stays relatively stable due to highly anisotropic ion diffusion in vertical direction. On
the other hand in the vertical dimension, the profile depends on the ion concentration, which
decreases with the distance from the top surface and once it is temporally stable it can be ap-
proximated with the error function32. It can be shown24,32,33, that the refractive index profile
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of waveguide formed with this technique can be approximated with following function

nξ(x, y)|y≥0 = nξ0 +∆nξRect[w](x)Erfc
(y
h

)
,

nξ(x, y)|y<0 = 1, (2.7)

where nξ0 denotes the refractive index of the KTP substrate and ∆nξ is step in refractive
index on the top of the waveguide with respect to undoped material. The values for re-
fractive indices used for later calculations can be found in the table 2.1. Operators Rect[w](x)
and Erfc(y/h) from equation (2.7) represent the rectangular function equal to unity on the in-
terval ⟨−w/2;w/2⟩ and zero elsewhere and the error function of height h, respectively. As
can be seen from formula (2.7), the air is assumed above the waveguide. The index ξ = x, y, z
indicate the anisotropic behaviour of the KTP crystal, which is assume to be oriented in such
a way, that only diagonal elements of linear susceptibility (εx, εy, εz) are nonzero, and where
the crystallographic axes {xc, yc, zc} coincide with used coordinate system {z, x, y}. The re-
fractive indices can be therefore expressed as nξ =

√
εξ .

The dimensions w, h of the waveguide were obtain experimentally using white light cou-
pling inside the waveguide to excite all guided spatial modes. The intensity profile mea-
sured at the output face of the waveguide was then compared with the profile calculated by
the model (see figure 2.2). Based on this comparison, the waveguide dimension w = 5 µm
and h = 10 µm was obtained, which was found in good agreement with values specified by
the manufacturer.

Eqations for Spatial Profiles of Guided Modes

In order for the spatial profiles of guided optical fields to be determined, the electric field
vector is usually used because of its larger magnitude. However, due to the spatial profile of
refractive index, the solution can be found more easily using magnetic field represented by
the vector of magnetic intensity H. Moreover, obtained equations are also symmetrical for
both polarizations in this case.

It can be shown, that magnetic field has to obey appropriate linear wave equation

∇×
(

1
←→ε
×H

)
= − 1

c2
∂2H
∂t2

. (2.8)

The vector of magnetic intensity can be expressed as H(x, y, z, t) = h(x, y, ω)ei(βz−ωt),
where quantityh(x, y, ω) represents magnetic field envelope of particular guidedmode char-
acterized by its frequency ω and propagation constant β. Substituting this expression into
the wave equation (2.8), following set of coupled differential equations for transverse mode
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Figure 2.2: Topo graphs of intensity It = |Et|2 in the transverse plane of
the waveguide in the case of thermal light propagation. Intensity profiles along
both horizontal and vertical slices indicated in the topo graphs are also shown.
(a) Experimental result obtain after white light coupling, (b) theoretical prediction
based on numerical model.

components hx and hy can be obtained

1

εy

∂2hx

∂x2
+

1

εz

∂2hx

∂y2
+

1

εy

∂2hy

∂x∂y
− 1

εz

∂2hy

∂y∂x
−

−
[
∂hy

∂x
− ∂hx

∂y

]
∂

∂y

(
1

εz

)
=

(
β2

εy
− k20

)
hx, (2.9a)

1

εz

∂2hy

∂x2
+

1

εx

∂2hy

∂y2
+

1

εx

∂2hx

∂y∂x
− 1

εz

∂2hx

∂x∂y
+

+

[
∂hy

∂x
− ∂hx

∂y

]
∂

∂x

(
1

εz

)
=

(
β2

εx
− k20

)
hy, (2.9b)

where k0 = ω/c, and where relation hz = i(∂xhx + ∂yhy)/β originating from Maxwell’s
equation ∇H = 0 was considered. The desired electric field amplitudes can be in the end
calculated from Maxwell’s equation as

e(x, y, ω) =
1
←→ε εω

i∇× h(x, y, ω)− βz× h(x, y, ω), (2.10)

39 / 104



Chapter 2. Second-Harmonic Generation in Periodically-Poled KTP Waveguide

where z denotes the unit vector in direction of propagation. It can be show, that the cross
contributions

1

εy

∂2hy

∂x∂y
,

1

εz

∂2hy

∂y∂x
,

[
∂hy

∂x
− ∂hx

∂y

]
∂

∂y

(
1

εz

)
,

1

εx

∂2hx

∂y∂x
,

1

εz

∂2hx

∂x∂y
,

[
∂hy

∂x
− ∂hx

∂y

]
∂

∂x

(
1

εz

)
from equations (2.9a) and (2.9b) can be omitted, since they are usually very small, and thus
does not contribute significantly34. As a consequence, two independent equations for
(quasi-) TE and (quasi-) TM modes are obtained

∂2hx

∂x2
+
εy
εz

∂2hx

∂y2
=
(
β2 − εyk20

)
hx, (2.11a)

εx
εz

∂2hy

∂x2
+
∂2hy

∂y2
=
(
β2 − εxk20

)
hy. (2.11b)

Derived equations (2.11a) and (2.11b) can now be treated independently. These equations
can be however solved analytically only for some certain profiles of permittivity ←→ε 26,31,35.
For real waveguides however, the numerical approach has to be usually used. In order to do
that, several numerical methods has been developed34, nevertheless the finite-element and
finite-difference method34,36 have become the most popular ones among the others. Here,
the finite-element method based on Galerkin method34 has been developed18.

Using developed numerical model, the transverse intensity profiles It(x, y) = |e(x, y)|2
of guided modes characterized by their propagation constants β and angular frequencies ω
were obtained. It was found, that analysed waveguide support approximately 10 modes at
fundamental wavelength 800 nm and more than 40 modes at second-harmonics, i.e. 400nm.
The first few modes for both, fundamental as well as for second harmonics for both the TE
and TM polarizations are displayed in the figure 2.3.

Once having full set of guided modes at both the fundamental as well as at the second-
harmonic frequency, the overall second-harmonic spectra consisting of individual spectral
lines can be calculated. For the calculations, the spatial overlap of interacting modes together
with their propagation constants with respect to the poling period has to be considered.
The resulting spectral profile is depicted in the figure 2.4. Note, that sufficiently broad pump
spectrum together with uniform excitation of fundamental spatial modes is necessary in
order to observe the whole presented spectral profile.

2.2.2 Fabrication Imperfections

In any waveguide produced with a real fabrication technique, the fabrication imperfection
inevitably occur. Generally speaking, any parameter of the waveguide, which is manipulated
during the construction can be affected by the imperfections of the process. The parameters
suffering the most are namely the dimensions of the waveguide and the poling properties.
Since, as was shown, the modal structure, and therefore the phase-matching conditions de-
pend strongly on these parameters, any variations of them will significantly affect the final
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Figure 2.3: Topo graphs of calculated intensity distributions of TE- and
TM-polarized fundamental as well as second-harmonic fields in the trans-
verse plane of the waveguide for the first three spatial modes denoted
as (0,0), (0,1), and (1,0). (a) TE @ 800 nm: It(x, y) = |e(x, y, ωp)|2.
(b) TM @ 800 nm: It(x, y) = |h(x, y, ωp)|2. (c) TE @ 400 nm: It(x, y) =
|e(x, y, ωs)|2. (d) TM @ 400 nm: It(x, y) = |h(x, y, ωs)|2. The white frames in-
dicate the borders of the waveguide with dimension 5×15 µm2, while the upper
horizontal lines represent the boundary between the chip and the air. Note, that
the value 15 µm characterizes the depth of the waveguide given by error func-
tion (2.7) with the parameter h = 10 µm.

spectral profile of generated fields. Because the influence of these modifications on gener-
ated fields is experimentally observable, it was necessary to adopt these variations also into
our numerical model.

The tolerances of fabrication process were obtained directly from the manufacturer and
are summarized in table 2.2. Based on the numerical model, these fluctuations will result in
broadening of the second-harmonic spectra. In order to judge the amount of the spectral
broadening, the dependence of second-harmonic peak spectral shift δλs on each particular
variation was calculated (see plots in the figure 2.5). Calculating spectral profile of generated
field using values of tolerances given by the manufacturer, spectral broadening of individual
peaks corresponding to particular process was obtained. Values of this broadening caused
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Figure 2.4: Theoretical spectral intensity I of the second-harmonic containing
individual spectral lines, which corresponds to individual processes. The solid red
line represents ideal case, where the width of each line is given by the phase-
matching conditions only. The dashed blue line on the other hand represents
broadening caused by fabrication imperfections of a real structure (see text for
more details).

Property Variance Spectral broadening

Width ± 0.1 µm 0.05 nm
Height ± 2.0 µm 0.10 nm

ΛPM ± 0.1 µm 2.00 nm
Duty Ratio 50 % to 75 %

Table 2.2: Table of manufacturing tolerances specified by the manufacturer to-
gether with resulting spectral broadening expected from the numerical model.

by imperfections in the width, height, and poling period were 0.05 nm, 0.1 nm, and 2 nm,
respectively. Fluctuations of the poling period thus represent the main source of observed
spectral broadening of second-harmonic field. In the case of sufficiently broad pump spec-
trum, the differences in values of width w, height h, and poling period ΛPM will lead to sig-
nificant spectral drift of particular lines also causing their broadening, as can be seen from
plots in the figure 2.6.

There are several other variants of broken symmetry of poling. Except the fluctua-
tions itself caused by the imperfect lithographic masks, also the variation in duty ratio is
present. The duty ratio here means the ratio between poled and unpoled layers in a sin-
gle poling period. For the perfect poling the duty ratio 50 % is expected, however because
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Figure 2.5: Spectral shift of second-harmonic peak δλs as a function of
the width w (a), depth h (b), and the poling period ΛPM (c) of the waveguide for
several selected combinations of interacting modes.

of the anisotropic penetration of the electrostatic field through the material during poling,
the layers are formed in wedge shapes with slope depending on the material itself together
with its thickness and the poling period. As can be shown for the case of perfectly sym-
metric poling with duty ratio 50 %, the dichotomic function representing the poling is also
fully symmetrical and the Fourier series therefore contains only odd harmonics37. If how-
ever the poling is not perfectly symmetrical, then also even harmonics of the poling period
will occur (see plots in the figure 2.7). Since the higher harmonics of the poling period can
also be used for fulfilling the quasi-phase-matching (see equation (2.6)), the real duty ratio
of the poling can be estimated observing ratio between processes phase-matched through
the first and the second harmonic of poling. As will be shown later, the imperfection in
the poling duty ratio is the reason for simultaneous coexistence of three different nonlinear
processes in this structure (see section 2.3.2 on page 46).

The imperfect fabrication procedure causes not only the variations in the domain length,
but because of inhomogeneous penetration of electrostatic field, some parts of the chip may
not be poled at all. Moreover, there are several areas on the chip, which are not poled on pur-

43 / 104



Chapter 2. Second-Harmonic Generation in Periodically-Poled KTP Waveguide

392 394 396 398 400 402 404 406

λ [nm]

6 µm

I
[a
rb
.u
.]

5 µm

4 µm

(a) Width

392 394 396 398 400 402 404 406

λ [nm]

11 µm

I
[a
rb
.u
.]

10 µm

9 µm

(b) Depth

Figure 2.6: Second-harmonic spectral intensity I calculated for three different
values of width (a) and depth (b) of the waveguide. Solid lines correspond to ideal
spectral broadening 0.13 nm given by phase-matching condition in 10.5mm long
waveguide including material and waveguide dispersion. Dashed lines then cor-
respond to real spectral broadening expected due to the fabrication imperfections.

pose38. All this causes according to the simulations additional broadening of poling spectra
(see again figure 2.7).

2.3 Experiment

In this section, a basic characterization of periodically-poled KTP waveguide will be intro-
duced by means of experimental demonstration of second-harmonic generation.

2.3.1 Experimental Setup

The experimental realization of second-harmonic generation inside the periodically-poled
KTPwaveguidewas performed using experimental setup sketched in the figure 2.8. As a laser
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Figure 2.7: Fourier analysis of periodic poling. Three upper plots represent
zoomed spectral areas containing the first-, second-, and the third-order of pe-
riodic modulation. Blue curve (’none’) corresponds to perfect poling without
second-order peak. Green curve (’duty’) represents influence of non-symmetrical
duty ratio resulting in presence of even-harmonics of periodic modulation. Im-
pact of variation in domain lengths on poling spectra is shown using the magenta
curve (’var.’). Finally, the red curve (’all’) summaries all imperfections, and repre-
sents thus overall spectral profile of poling, that affects second-harmonic genera-
tion.

source, the mode-locked Ti:Sapphire oscillator Mira (Coherent) was used, producing pulses
with duration about 100 fs at 87MHz repetition rate with central wavelength 800 nm and
spectral width 10 nm.

First, the laser beam was attenuated using combination of half-wave plate (HWP) and
linear polarizer (LP) to about 20mW. Also the central wavelength could be shifted by tilting
the interference filter (FI) with bandwidth 3 nm in the pump beam. The second half-wave
plate was used to control the polarization of the pump. The position and spatial profile of
prepared pump beamwasmonitoredwith the CCD camera, as they are the crucial parameters
for ideal coupling of the pump beam into the waveguide.

Finally, the pump beam was coupled inside the waveguide using 10× microscope ob-
jective (Olympus). The KTP chip itself was placed on the Peltier element with the feedback
loop allowing to thermally stabilize the structure, since the thermal drift also shifts the phase-
matching condition about 1 nm per 25 ◦C (see figure 2.9a). Both the KTP chip and the micro-
scope objectives were placed on precise XYZ linear stages with 20 nm resolution allowing for
the precise positioning of the objectives with respect to both the beam and the waveguide
(see figure 2.9b).
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Figure 2.8: Sketch of the experimental setup for second-harmonic generation in
periodically-poled KTP waveguide. FI: interference filter, HWP: half-wave plate,
LP: linear polarizer, O: microscope objective, CCD: CCD camera, WG: KTP waveg-
uide, DB: dichroic beamsplitter, FE: edge filter, FN: neutral density filter, and D: de-
tector.

Both, the residual pump together with the generated second-harmonic were decoupled
and collimated using 20× objective with higher numerical aperture and separated using
dichroic beamsplitter (DB). After passing through the linear polarizer (LP) and set of edge (FE)
and neutral density filters (FN), the signal was analysed using the CCD camera, power me-
ter, or the spectrometer. As for the spectrometer, the PC2000 (OceanOptics) with resolu-
tion 0.1 nm and Triax 320 (Jobin-Yvon) with resolution about 0.06 nm were used.

2.3.2 Individual Processes

Looking at the nonlinear coefficient matrix dij for chosen orientation of the KTP chip (see
equation (1.21) in section 1.3.2 on page 10), three different processes can occur if appropriate
phase-matching conditions are satisfied

Py = 2d32EyEz, (2.12a)
Pz = d32EyEy + d33EzEz. (2.12b)

The schematic illustration of these processes is depicted in the figure 2.10.
The first process described with equation (2.12a) represents Type II interaction, where

both TE and TM polarization components of the pump are present, and where the second
harmonic field is generated with TE polarization. The second equation (2.12b) represents
combination of Type I and Type 0 processes, where Type I is generated by TE polarization,
while Type 0 by TM polarization of fundamental field, and where both generate TM po-
larized second-harmonic field. As a consequence, with proper polarization manipulation
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(a) Detail image of KTPwaveguide sitting on a Peltier element, together
with two coupling objectives.

(b) Detail image of whole platform containing three precise linear XYZ
stages for two coupling objectives and the element itself.

Figure 2.9: Detail images depicting mount of the nonlinear waveguide on the op-
tical table.

of the pump field together with proper polarization projection of the signal field, any of
these processes can be observed in such a material if appropriate phase-matching is satis-
fied. The final efficiency of the generation is then controlled via quasi-phase-matching, and
therefore via poling period ΛPM or through its higher harmonics.

The experimental evidence of presence of all three mentioned processes is clear from
the graphs in the figure 2.11, where power oscillations of generated field depending on di-
rection of linear polarization of the pump are depicted for two orthogonal orientations of
linear polarizer after the waveguide. From these oscillations all three processes can be eas-
ily identified. The final summary is shown in table 2.3, where all relevant parameters are
revealed. From this table it can be seen, that despite of utilizing the lower nonlinear coeffi-
cient, the most effective process is Type II process due to the most optimal poling period.
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Figure 2.10: Schematic representation of three different nonlinear processes,
which may occur in the waveguide if proper polarizations are involved and ap-
propriate phase-matching conditions satisfied.
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Figure 2.11: The power of second-harmonic measured after passing through
the linear polarizer transmitting TE (a) and TM (b) polarization as it depends
on angle of polarization α, where α = 0° corresponds to the TE-polarization,
while α = 90° corresponds to the TM-polarization.

Process Λ
(opt.)
PM [µm] deff [pmV−1] η [W−1 cm−2]

Type 0 TM + TM→ TM 3.08 d33 = 10.7 2.83 ± 0.06
Type I TE + TE→ TM 1.83 d32 = 2.65 4.44 ± 0.12
Type II TE + TM→ TE 7.80 d32 = 2.65 4.78 ± 0.03

Table 2.3: Summary of processes of different types together with their opti-
mal poling periods Λ

(opt.)
PM , effective nonlinear coefficients deff1, and experimen-

tal conversion efficiencies η calculated according to formula η = PSHGP
−1
in L−2,

where PSHG (Pin) represents power of outgoing SH (coupled incident pump) and L
is the length of the waveguide25.
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In the next section, the further analysis will be therefore concentrated on this process
only. This process is also interesting from the point of view of the reversed process of para-
metric down-conversion. In this case two photons with orthogonal polarizations are gener-
ated and can be thus separated using polarizing beamsplitter.

2.4 Properties of Second-Harmonic Field Generated in
Type II Process

The modal structure of the waveguide was found in a good agreement with the numerical
analysis. The waveguide at fundamental frequency supports three different spatial modes
for TE and five modes for TM polarization. As expected, the number of supported modes at
second harmonic is much higher due to the fact, that the effective dimensions of the waveg-
uide (i.e. the ratio between waveguide dimensions and wavelength) are doubled. The first
three spatial modes for both TE- and TM-polarized fundamental as well as for the second-
harmonic field are depicted in the figure 2.12. The selection of typical experimentally ob-
served processes are depicted in the figure 2.13. As can be seen, the spatial profiles differ
from these obtained from the numerical analysis (see figure 2.3), especially due to the imper-
fections in waveguide fabrication and non-ideal coupling of the fundamental mode.

As can be seen from figure 2.4, if the pump spectrum is wide enough or more fundamental
modes are excited simultaneously, more individual nonlinear processes can be generated
in the same time, resulting in broad second-harmonic spectra and modal structure. Since
the spectra belonging to individual processes are relatively close to each other, but also wide
overall, only spectral filtering is not sufficient to distinguish and separate them. Nevertheless,
after spectral filtering, when only several individual processes are observed, a spatial filtering
can be use in order to isolate only one particular nonlinear process.

By spatial filtering, the excitation of only specific fundamental modes is meant. It can
be shown17, that for the rectangular waveguide illuminated with plane wave, the higher
order modes can be excited simply by tilting the incident wave. For chosen experimental
configuration, tilting the incident beam would be however rather difficult, so the proper
excitation of desired spatial modes was technically accomplish bymisaligning the waveguide
with respect to both the coupling objective and the pump beam, while monitoring the spatial
profile of coupled mode on the CCD camera. Even though this technique leads to excitation
of proper spatial mode, it also reduces the coupling efficiency, especially for higher modes.
The overall coupling efficiency, additionally affected also by poor quality of the waveguide,
was in the case of a single mode excitation only about 20 %.

Combining the spectral filtering of generated second harmonic field and careful align-
ment of the pump beam together with selecting only small part of pumping spectrum by
tilting the interference filter, several spectral lines from expected spectra were observed.
Their central wavelengths λs, spectral widths∆λs, as well as the relative powers P are sum-
marized in table 2.4, where the comparison with the theoretical model is also presented.
The differences between the theoretical data and the experimental results can be explained
by the difficulties in reaching the efficient coupling of the pump mode.
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Figure 2.12: Measured topo graphs of spatial intensity profile It(x, y) in trans-
verse plane of the waveguide for the first three modes (0,0), (0,1), and (1,0)
for (a) TE- and (b) TM-polarized pump and (c) TE-polarized second-harmonic field.
The red and blue lines represent the intensity profile along the horizontal and ver-
tical direction, respectively.
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Figure 2.13: Measured topo graphs of spatial intensity profile It(x, y) in
transverse plane of the waveguide of TE- and TM-polarized pump and TE-
polarized second-harmonic together with experimental spectral profiles of gen-
erated second-harmonic field for three different combination of interacting spatial
modes. (a): (0,0) + (0,0) → (0,0), (b): (0,1) + (0,1) → (0,1), and (c): (1,0) + (0,1) →
(1,0).
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Modes λexps λthrs ∆λexps P exp P thr

(TE + TM→ TE) [nm] [nm] [nm] [arb.u.] [arb.u.]

00 + 00→ 00 398.3 398.6 0.8 1.00 1.00
00 + 00→ 01 394.2 394.4 0.9 0.65 0.81
10 + 00→ 10 398.8 399.5 0.6 0.42 0.78
01 + 01→ 00 402.8 403.0 0.8 0.38 0.43
10 + 01→ 10 401.1 401.9 0.9 0.35 0.42
01 + 01→ 01 398.7 397.1 0.6 0.32 0.18

Table 2.4: Individual processes of second-harmonic generation identified in
the waveguide. Experimentally measured central wavelengths λexps , spectral
widths ∆λexps , and relative power P exp are presented together with central wave-
lengths λthrs and relative power P thr obtained from the numerical model.

These results however documents the capability of controlling spatial and spectral prop-
erties of generated second-harmonic field. Moreover, if the analysed waveguide would be
used in opposite process of parametric down-conversion, the signal and idler fields will be
composed of contributions from different spatial modes, for instance (0, 0)→ (1, 0) + (1, 0)
and (0, 0) → (0, 1) + (0, 1). Therefore, by generating photon pairs using two different pro-
cesses, photon pairs in modal spatial profile superposition state could be generated. This
allows to generate entanglement of the two photon state in their spatial profile degree of
freedom39.

2.5 Summary

In this particular research activity, the experimental characterization of second-harmonic
generation in periodically-poled KTP waveguide was addressed. In order to interpret the ex-
perimental data, numerical model based on the finite-elements method was developed. It
was theoretically predicted and experimentally demonstrated, that three different types of
nonlinear interaction, Type 0, Type I, and Type II can be generated simultaneously utilizing
different orders of periodic modulation of the nonlinearity.

It was also shown, that due to the broad spatial and spectral structure of the fundamental
mode, the second-harmonic field is generated also in spectrally wide range with rich modal
structure. After that, the possibility of selecting only one particular interaction using spatial
and spectral filtering of the pump together with spectral filtering of the second-harmonic
field was presented. Finally, the experimental results were compared and found in a very
good agreement with developed theoretical model.

Further to that, the imperfection during the fabrication was considered and adopted into
the numerical model. The analysedwaveguidewas proven to be a versatile device for second-
harmonic generation and it can be also promising source for generation of entangled photon
pairs in process of spontaneous parametric down-conversion.

52 / 104



3
Quantum Entanglement

Quantum entanglement is phenomenon describing a very specific type of correlations.
These mean, that two or more particles can not be described independently by their indi-
vidual quantum states, but a single quantum state for whole physical system has to be used
instead. Even though the therm entanglement mostly describes correlation in a single phys-
ical property of set of different particles, this type of correlation can exists also between
different degrees of freedom (i.e. physical properties) of a single particle.

In this chapter, basic experimental tools for determination and characterization of non-
classical quantum states will be presented. This study was performed by the author at
the University of Insubria in Como, Italy and published in paper by Sciarrino et al. [40].

3.1 Introduction

Quantum entangled states has become useful not only for testing fundamentals laws of quan-
tum mechanics, but also for their practical value in many real applications. For instance in
quantum optics the entangled states can be used for quantum computing41,42, quantum com-
munications41,43,44, quantum metrology45, or ghost imaging46,47.

For most of these applications, high quality of entangled states is required. Photonic
entanglement itself can be in principle carried by any property that characterizes light (po-
larization, orbital angular momentum, frequency, or momentum), or even by a combination
of them48. However, the polarization entanglement is the most popular one due to availabil-
ity of optical elements manipulating the polarization states and also due to the simplicity of
its generation.

53



Chapter 3. Quantum Entanglement
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Figure 3.1: Source of entangled photon pairs based on Type II nonlinear interac-
tion. Black arrows indicates direction of polarization49. Propagation directions of
signal and idler photons forming entanglement in polarization are depicted using
green lines.

3.2 Theory

In this section, the theoretical background covering quantum entanglement will be pre-
sented. Also Bell’s inequalities and quantum tomography technique as a tool to experimen-
tally characterize given quantum state will be mentioned.

3.2.1 Source of Entangled Photon Pairs

In order to demonstrate the effect of quantum correlations, the source of entangled photon
pairs based on spontaneous parametric down-conversion (SPDC) will be used.

This source is schematically illustrated in the figure 3.1. In process of SPDC, single funda-
mental photons split into a photon pairs in the nonlinear crystal with second-order nonlin-
earity χ(2). Due to 3D geometry, the phase-matching condition can be fulfilled for number-
less combinations of directions (see figure 1.5b on page 14). As a consequence, the photons
are emitted in a cone shape and are spatially correlated in such a way, that two photons from
one pair lie on the opposite side of the cone with respect to the cone axis.

In the case of Type II interaction, where generated photons have orthogonal polarizations,
the cones for each polarization are spatially displaced due to the birefringence of the non-
linear material*. For historical reason, photons emitted in these directions and originating
from one pair are called signal and idler. As can be seen from figure 3.1, the cones overlap in
two directions, where photons from both cones can be detected. Generated state is in these
directions due to this overlap in coherent superposition of both contributions and can be
described with following quantum state

|ψ⟩ = 1√
2
(|H⟩s|V ⟩i + |V ⟩s|H⟩i) . (3.1)

*Anisotropic material is assumed to fulfil phase-matching condition.
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3.2.2 EPR Paradox and Bell’s Ineqalities

In the 1935 A. Einstein, B. Podolsky, and N. Rosen (EPR) published their famous paper, where
thought experiment similar to following was presented50. Let the entangled photons from
source mentioned in the previous paragraph propagate through the space. Each of them
has the same probability to have H or V polarization. If however the polarization state
of one of them is measured, the polarization state of the second one is know in that very
moment (the wave function describing the quantum state collapses). This happens even
though the state was random an instant ago, no matter how far it is from the first one.

Einstein and the others considered this behaviour impossible since it violates the local
realism stating, that all physical quantities have to have a pre-existing value for any possible
measurement before the measurement is done, and that an object is influenced directly only
by its surroundings, and therefore no action on one system can change the physical reality of
spatially separated object. The authors therefore concluded, that the description of quantum
state with a single wave function can not be complete, and thus some hidden variables must
exist in order to determine results of all possible experiments in advance.

As an answer to the EPR paradox, 30 years later physicist J.S. Bell demonstrated, that no
physical theory of local hidden variables can ever reproduce all of the predictions of quan-
tum mechanics, that are consistent with experimental results51. He also introduced a set of
inequalities, whichmay bemeasured experimentally, andwhose violation contradicts the va-
lidity of local realism or any local hidden variables model. As a consequence, if any physical
system is found to violate these inequalities, it has to be described using quantummechanical
apparatus and can not be described classically. The Bell’s inequalities can therefore serve to
distinguish, whether the system is ’classical’ or ’quantum’.

3.2.3 CHSH Ineqality

The Bell’s inequalities can be used directly to prove, whether the hidden variables model
is valid for given system or not and as a consequence, whether the system is in classical
or a quantum state. The experiment however requires statistical analysis of a large num-
ber of measurements of an entangled system. From experimental point of view it is much
more convenient to use another, Clauser-Horne-Shimony-Holt (CHSH) inequality, which
also provides the information about non-classicality of given system52.

In order to obtain the CHSH inequality, let there be an operator S defined as

S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′), (3.2)

where a, a′ and b, b′ represent settings on two detectors (observable) and E(i, j) experimen-
tally obtained correlations for corresponding settings. For sake of this analysis, two-particle
system will be assumed. It can be shown52,53, that for any classical system or any system,
which can be described by a local hidden variables model, the quantity S from equation (3.2)
has to satisfy following inequality

|⟨S⟩LHV| ≤ 2. (3.3)
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Figure 3.2: Schematic illustration of two channel Bell test. Each photon from
single photon pair produced by source (S) is sent into one channel consisting of
polarizing beamsplitter (PBS) and two detectors (D1) and (D2). During experiment,
the beamsplitter PBS can be rotated by angle θ. In the experiment transmitted
and reflected photons are detected with detectors D with overall coincidence rates
registered by coincidence logic (CL).

Equation (3.3) is the expected Clauser-Horne-Shomony-Holt inequality, which if violated
proves, that the system is in quantum state and can not be described classically.

It should be noted, that no all quantum states violate inequality (3.3). It is therefore
necessary, however not sufficient condition for the CHSH inequality violation. In order for
this inequality to be violated, the projections of quantum state (i.e. the settings a, a′ and b, b′)
has to be set properly. Moreover, also the amount of the CHSH inequality violation depends
on these settings.

In order to illustrate violation of CHSH inequality, two channel Bell test of an entangled
state |ψ⟩ from equation (3.1) produced by presented source based on SPDC will be demon-
strated. For this demonstration, the scheme depicted in the figure 3.2 will be considered.
Since the entanglement is encoded into the polarization degree of freedom, polarization pro-
jection measurements will be performed. In order to obtain quantity S, four different pro-
jection measurements will be done and four correlation functionsE(i, j) from equation (3.2)
will be calculated from a coincidence measurements C(θi, θj) as

E(θi, θj) =
C(θi, θj) + C(θ⊥i , θ

⊥
j )− C(θ⊥i , θj)− C(θi, θ⊥j )

C(θi, θj) + C(θ⊥i , θ
⊥
j ) + C(θ⊥i , θj) + C(θi, θ⊥j )

, (3.4)

whereC(θi, θj) represents the coincidence rates if signal and idler are projected into angles θi
and θj , respectively andwhere angle θ denotes projection angle in {H, V } basis. θ = 0° repre-
sents horizontal, while θ = 45° diagonal polarization. Symbol θ⊥ then represents orthogonal
output of polarizer with respect to setting θ.

In the end, four coincidence measurements for four correlation functions, therefore six-
teen measurements overall, has to be performed. As can be shown54, the maximal violation is
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obtained for following settings: θa = 0°, θa′ = 45°, θb = 22.5°, and θb′ = −22.5°. Since in this
basis the greatest violation is observed, these angles are sometimes called Bell test angles. As
can be shown, this two photon Bell test of quantum state |ψ⟩ from equation (3.1) will result
in |⟨S⟩| = 2

√
2 ≃ 2.828 > 2, which violates the CHSH inequality with the highest possible

value.

3.2.4 Quantum State Tomography

For practical applications, which are taking advantages of quantum nature of entangled sys-
tems, it is usually necessary to build a source of some particular quantum state. In real
experiments the entanglement also degrades by decoherence and dissipation processes re-
sulting from unavoidable coupling with the environment55. For these reasons the ability to
characterize the input state is important. Even though the Bell’s inequalities can be used
to distinguish, whether the state is entangled or not, in real experiments this is usually not
sufficient information.

In order to fully characterize any general quantum state, the density matrix represented
by linear density operator

ρ̂ =
∑
i

pi|ψi⟩⟨ψi| (3.5)

has to be determined. Here, set of states |ψi⟩ represents any arbitrary basis and pi are prob-
abilities, that investigated system is in corresponding state |ψi⟩. Since the density matrix
is rather complex and describe studied system completely, different quantities like purity
or fidelity can be derived in order to characterize some specific property of given quantum
state.

Density matrix ρ̂ can be reconstructed by measuring a complete set of observables. This
technique is called quantum state tomography and it is a fundamental tool to explore the prop-
erties of particular quantum state56.

Quantum Tomography of Two-Qubit State

Technique of quantum state tomography is based on Born’s statistical rule, which determine
probability, that a measurement Ei performed on quantum system will give particular result

P (Ei|ρ̂) = Tr(Eiρ̂). (3.6)

Having a statistical set of the same measurement Ei, quantity P (Ei|ρ̂) can be substituted by
this histogram. The density matrix can be therefore obtained by linear inversion according
to following schematic notation

Eiρ̂ = pi (3.7)
ρ̂ = E−1

i pi. (3.8)

This can be however performed only when the measurements Ei are tomographically com-
plete, i.e. corresponding operators form a basis in equivalent Hilbert space.
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In case of generally mixed two qubit state, sixteen linearly independent measurements
overall (four measurements for each qubit) are necessary to determine the density matrix ρ̂.
Although this number of measurements is sufficient, the complete set of measurements
consists of six different projections per qubit, and therefore 36 measurements overall57. In
this case of over-complete polarization tomography, the density matrix is over-determined,
which can afterwards improve the accuracy of the experiment and provide a better sensing
of the quantum state.

Maximum Likelihood Estimation

Using linear inversion as described above has however one great drawback. The density
matrix ρ̂ is by the definition positive definite, Hermitian, and with a unit trace. Neverthe-
less, due to an experimental imperfections, a negative eigenvalues (i.e. probabilities) can be
obtained, for instance, which obviously represents a non-physical solution.

As an answer to this issue a Maximum Likelihood Estimation (MLE) can be used. It is
a method, that estimates the parameters of given statistical model when applied to experi-
mental data. In this case, the MLE method finds a physical density matrix, which most-likely
produces the measured data by maximizing the likelihood (i.e. the probability) of the ob-
tained density matrix to correspond to the experimental data. Practical implementation of
such a method is therefore based on some iterative techniques58.

3.3 Experiment

In this section, experimental generation and characterization of entangled quantum states
will be presented. Investigated states were generated using continuous wave (CW) laser
at 266 nm with long coherence time, pumping a Kwiat’s source based on two Type I crystals.
Even though the preparation of polarization entangled state was in this spectral region al-
ready demonstrated using femtosecond pumping59, with CW pumping the standard Type II
phase-matching60 is difficult to adopt due to several dispersion effects of nonlinear crystals61.

In this configuration, the full set of so-called Bell’s states with polarization entanglement
was generated. These states are defined as a maximally entangled quantum states of two
qubits. Assuming the most simple examples of two-photon qubits, following set of Bell’s
states is typically introduced

|Φ+⟩ = 1√
2
(|H⟩|H⟩+ |V ⟩|V ⟩), (3.9a)

|Φ−⟩ = 1√
2
(|H⟩|H⟩ − |V ⟩|V ⟩), (3.9b)

|Ψ+⟩ = 1√
2
(|H⟩|V ⟩+ |V ⟩|H⟩), (3.9c)

|Ψ−⟩ = 1√
2
(|H⟩|V ⟩ − |V ⟩|H⟩), (3.9d)

where H and V correspond to the horizontal and vertical polarizations, respectively.
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Figure 3.3: Sketch of experimental setup used for generating full set of Bell’s
states and for their future analysis through a standard quantum tomography tech-
nique and non-locality test. HWP: half-wave plate, L: positive lens, KWS: Kwiat’s
source, QWP: quarter-wave plate, PBS: polarizing beamsplitter, FI : interference
filter, and D: detector.

3.3.1 Experimental Setup

Experimental setup depicted in the figure 3.3 consisted of three different parts: the laser
source, state preparation, and state detection part. The two symmetrical detection parts op-
erating on signal and idler photons will be for the future reference called Alice’s and Bob’s
detection blocks, respectively, as it is typical in quantum information processing experi-
ments.

As the source, the MBD-266 (Coherent) doubling unit pumped by Verdi V-2 (Coherent)
laser was used. This unit emitting in UV region at 266 nm produced vertically polarized light
with typical power about 150mW and coherence time nearly 0.2 µs.

The most simple source of polarization entangled photon pairs would be a single Type II
nonlinear crystal. Here however more sophisticated source based on Kwiat’s design62 was
used for its versatility.

3.3.2 Kwiat’s Source

Kwiat’s source is composed of two thin nonlinear crystals of Type I with orthogonally ori-
ented optical axes as it is shown in the figure 3.4. As a result, when it is pumped by verti-
cal (horizontal) polarization, only the first (second) crystal generates one single SPDC cone
with polarization orthogonal to the pump. If the crystals are however pumped by diagonal
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D

VH

#1 #2

Figure 3.4: Schematic illustration of Kwiat’s source based on two identical Type I
nonlinear crystals with perpendicular optical axes. The crystals are oriented in
such a way, that their optical axes together with the pump beam define the ver-
tical and horizontal plane, respectively. Labels D, H, and V represent diagonal,
horizontal, and vertical polarizations, respectively.

|Φ+⟩ |Φ−⟩ |Ψ+⟩ |Ψ−⟩

δ 0° 0° 0° 0°
γ 45° −45° 45° −45°

HWP out out in in

Table 3.1: Kwiat’s source settings for generating particular Bell’s state. Param-
eters δ and γ corresponds to these from equation (3.10).

polarization, both crystals will generate with the same probability orthogonally polarized
and spatially overlapped cones. Important point is, that as long as the emitted spatial modes
are indistinguishable (the crystals are thin enough with respect to the coherence length of
the pump and to the collecting aperture), these particular processes are coherent. As a result,
the photons are created in state

|ϕ⟩ = cos γ|HH⟩+ sin γeiδ|V V ⟩, (3.10)

where angle γ represents direction of polarization of the pump and additional phase factor δ
is determined by the phase-matching together with the thickness of the crystals and can be
adjusted by controlling relative phase shift between orthogonally polarized components.

From a general state described by formula (3.10) and produced by a Kwiat’s source, the full
set of Bell’s states can be obtained by tailoring parameters γ and δ according to table 3.1,
where ’HWP in’ means inserting an additional half-wave plate into one arm in order to
swap H and V polarizations.

In this particular case the BBO crystals with length 0.5mmwere used, while two portions
of generated cones were spatially selected symmetrically with respect to the cone axis using
two irises in order to obtain spectrally degenerate photon pairs (ωs = ωi).
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Figure 3.5: Coincidence fringe patterns measured with fixed half-wave plate
orientation for Alice (|H⟩, |V ⟩, |+⟩, and |−⟩), while rotating Bob’s wave plate.
Themeasurements lasted 10 s for each point and accidental coincidences were sub-
tracted. Error bars were estimated assuming Poisson distribution of coincidence
counts.

3.3.3 Source Optimization

In order to obtain maximally bright source, the pump beam was focused using lens with
focal distance 50 cm so the beam waist lied in the plane together with the irises63. Next,
the source was adjusted to generate state |Φ+⟩. Now if the signal photon is detected by Al-
ice with horizontal polarization |H⟩, while the coincidences with Bob are measured after
projecting the idler photon into specific polarization state |ψ⟩ = cos θ|H⟩+ sin θ|V ⟩, the co-
incidence rate (i.e coincidence probability) as function of θ should be ideally characterized
by formula P (|H⟩, |ψ⟩) = cos2 θ. Alternatively, if signal photon is by Alice detected with
vertical polarization |V ⟩, with the same projection done by Bob, the coincidence probabil-
ity should follow formula P (|V ⟩, |ψ⟩) = sin2 θ. Both expressions derived for coincidence
probabilities were experimentally verified by measuring the coincidence rate depending on
half-wave plate rotation angle α = θ/2 on Bob’s side, while keeping fixed the projection
into |H⟩ and |V ⟩ states on Alice’s side, respectively. The outcome in form of coincidence
fringes is depicted on plots in the figure 3.5a.

In order to quantify the results, the visibility of fringe pattern can be calculated as

V =
Cmax − Cmin

Cmax + Cmin
, (3.11)

where Cmax and Cmin are the maximal and minimal coincidence rates, respectively. Experi-
mentally obtained values V = 1.00± 0.01 (for both cases) were found in a very good agree-
ment with the theoretical prediction.

The coherence of contributions |HH⟩ and |V V ⟩ can be determined in the same manner
with the only difference, that the signal photons on Alice’s side is projected into the di-
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agonal |+⟩ and anti-diagonal |−⟩ states. As can be shown, since the diagonal and anti-
diagonal states can be expressed as |+⟩ = 1/

√
2(|H⟩ + |V ⟩) and |+⟩ = 1/

√
2(|H⟩ − |V ⟩),

respectively, the coincidence probability for diagonal and anti-diagonal projections with
polarization state |ψ⟩ = cos θ|H⟩ + sin θ|V ⟩ is determined by formulas P (|+⟩, |ψ⟩) =
cos2 θ − π/4 and P (|−⟩, |ψ⟩) = sin2 θ − π/4, respectively. On the other hand, if the con-
tributions |HH⟩ and |V V ⟩ are in incoherent superposition, the coincidence rates should be
constant as P (|+⟩, |ψ⟩) = P (|−⟩, |ψ⟩) = 1/2, and the visibility will therefore be zero. For
the experimental results see again figure 3.5b, where phase shift of π/4 between P (|H⟩, |ψ⟩)
[P (|V ⟩, |ψ⟩)] and P (|+⟩, |ψ⟩) [P (|−⟩, |ψ⟩)] can be seen. Also, the obtained visibilities V =
0.95± 0.01 are in good agreement with the theoretical predictions.

All presented data were corrected by subtracting accidental coincidences. The rate of
accidental coincidences was estimated using formula

Nacc = 2NANBτ, (3.12)

whereNA andNB are single rates of signal and idler, respectively and τ = 2.8 ns is the coin-
cidence window. Factor 2 represents the fact, that each channel can initiate the acquisition.

3.4 Results

This section will be devoted to main results gained from the experiment. Density matrices
of generated states obtained by means of quantum tomography will be presented together
with value the of CHSH operator.

3.4.1 Polarization Measurement

Polarization tomography is in general set of polarization projections into different bases.
With apparatus used in detection part of the setup (see figure 3.3) consisting of quarter-
wave plate (QWP), half-wave plate (HWP), and a polarizing beamsplitter (PBS), the projec-
tion of incident photon into three different linearly dependent bases {|H⟩, |V ⟩}, {|+⟩, |−⟩},
and {|R⟩, |L⟩}, where |R⟩ = 1/

√
2(|H⟩ − i|V ⟩) and |L⟩ = 1/

√
2(|H⟩+ i|V ⟩) was possible.

Table 3.2 contains settings for each wave plates in order for the particular projection |ψ⟩ to
be achieved, where meaning of angles α and β are graphically illustrated in the figure 3.6.
The polarizing beamsplitter is oriented in such way, that the detector measures horizontal
projection of manipulated state.

3.4.2 Quantum State Tomography

In this section, polarization quantum tomography of two-qubit state will be used in order to
fully characterize prepared quantum states. Source manipulation leading to optimal genera-
tion will be also presented.
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|ψ⟩ α β

|H⟩ 0° 0°
|V ⟩ 0° 45°
|+⟩ 45° 22.5°
|−⟩ 45° −22.5°
|R⟩ 0° −22.5°
|L⟩ 0° 22.5°

Table 3.2: List of settings for
quarter- and half-wave plates re-
sulting in projection into state |ψ⟩.
Angles α and β represent rota-
tion of wave plates’ axes and are
schematically illustrated in the fig-
ure 3.6.

QWP HWP PBS DET

α β

Figure 3.6: Schematic represen-
tation of single projector as an es-
sential part for polarization tomog-
raphy. QWP: quarter-wave plate,
HWP: half-wave plate, PBS: polar-
izing beamsplitter, and DET: detec-
tor. α and β represent angle of ro-
tation.

State Preparation

Without any optimization, the Kwiat’s source generates general states |ψ⟩ = cos γ|HH⟩ +
sin γeiδ|V V ⟩. In order to obtain maximally entangled state, contributions from both crys-
tals have to be balanced by pumping the crystals with polarization diagonal with respect to
the crystals’ axes. This was achieved by rotating the vertical polarization of laser beam with
a half-wave plate placed in the pump in front of the Kwiat’s source. Using this wave plate,
switching between |Φ+⟩ and |Φ−⟩ was also possible by setting the pump polarization to be
diagonal or anti-diagonal.

In order to set exponential factor eiδ three different strategies can be adopted. In all cases,
relative phase between horizontal and vertical component is controlled. The first way is to
tilt the nonlinear crystals themselves. This would however change the phase-matching, and
therefore the opening angle of output cones. Similar effect only without affecting the phase-
matching can be achieved by tilting a quarter-wave plate in pump beam in front of the non-
linear crystals. The last option adopted here uses an additional quarter-wave plate placed in
a signal path (therefore after the nonlinear crystals) with the main axes oriented in horizon-
tal and vertical directions. In this case it does not change the polarization state, however by
its tilting, the phase shift between H and V contributions can be introduced continuously,
and the desired factor δ therefore adjusted as needed.

With this procedure, two Bell’s states |Φ+⟩ and |Φ−⟩ can be generated. In order to gener-
ate the second two, additional half-wave plate rotated by 45° was used in idler arm to swapH
and V polarizations. In the end, a full set of Bell’s states as defined in equations (3.9a)–(3.9d)
could be generated.

63 / 104



Chapter 3. Quantum Entanglement

|Φ+⟩ |Φ−⟩ |Ψ+⟩ |Ψ−⟩

P 0.951 ± 0.003 0.9700 ± 0.0008 0.968 ± 0.002 0.962 ± 0.002
F 0.947 ± 0.006 0.946 ± 0.002 0.955 ± 0.004 0.951 ± 0.005
C 0.946 ± 0.006 0.944 ± 0.002 0.955 ± 0.004 0.952 ± 0.005

Table 3.3: Measured values of purity (P), fidelity (F), and concurrence (C) for all
prepared Bell’s states. The errors were obtained from statistical analysis.

State Characterization

In order to fully characterize generated states, the density matrix was reconstructed from
overcomplete quantum tomography measurement using maximum likelihood estimation56.
For better understanding of the quality of generated quantum states, parameters purity, fi-
delity, and concurrence can be used.

Purity (P) is defined as a trace of density matrix square P = Tr [ρ2]. It can be proved, that
for pure states P = 1, while for mixed states 0 ≤ P < 1. It should be mentioned, that all
Bell’s states are pure states.

Fidelity (F) characterizes the overlap of generated state with the target state. For pure
target states, the fidelity can be calculated as F = ⟨ψ|ρ|ψ⟩, where ρ is density matrix of
generated state and |ψ⟩ is the target state. It can be also proved, that if fidelity withmaximally
entangled state is more than 1/2, the investigated state is also entangled.

Concurrence (C) can be used as a measure of entanglement, since it is increasing function
of the amount of the entanglement64. It takes values from 0 to 1, as for C = 0 the state is
fully separable, while for C = 1, the state if maximally entangled.

To estimate experimental errors, a statistical Monte Carlo method was used to simu-
late 50 random measurements with uncertainty given by the shot noise (as it can be con-
sidered as a dominant source of uncertainty for this measurements), thus following Poisson
distribution. From these simulations, the experimental errors were calculated as a standard
deviations of simulated quantities.

Reconstructed density matrices of prepared states are plotted in the figure 3.7. The values
of their purity, fidelity (with corresponded Bell’s state), and concurrence are then summa-
rized in the table 3.3.

Under described experimental condition, full set of Bell’s states with high average values
of purity P = 0.95, fidelity F = 0.96, and concurrenceC = 0.95was successfully generated.

3.4.3 Entanglement Verification of Generated States

The motivation was to show, that quantum states violate Bell’s inequalities. In order to do
that, four Bell’s states were prepared using Kwiat’s source. To verify quality of generated
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Figure 3.7: Reconstructed density matrices of prepared states. The first two
columns represent real and imaginary parts of density matrices for experimentally
reconstructed Bell’s states |Φ±⟩ and |Ψ±⟩. The third column represents real parts
of target states whose imaginary parts are always zero, and are thus not presented.
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states, quantum tomography was used. In this section it will be show, that these states will
violate CHSH inequality52 defied by formulas (3.2) and (3.4).

The final CHSH operator ⟨S⟩ was calculated for both, the raw data without subtracting
accidental coincidences as well as for data with the subtraction. Obtained value of CHSH
operator for raw data was ⟨S⟩ = 2.678± 0.014, while for data with accidental coincidences
subtracted it was ⟨S⟩ = 2.731± 0.014. Using simple formula (⟨S⟩−2)/∆⟨S⟩, it can be seen,
that such a value violate the CHSH inequality by more than 48 standard deviations.

3.5 Summary

In this chapter, generation of four Bell’s states using Kwiat’s source based on two thin Type I
crystals with CW pumping was presented. In order to characterize generated states, po-
larization quantum tomography using maximum likelihood estimation was adopted. From
derived density matrices a quantitative measures purity, fidelity, and concurrence were cal-
culated. The obtained quantum states were proven to have very high purity, fidelity, as well
as the concurrence and were found to be suitable for non-locality test by CHSH inequality
violation.
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4
Bragg Reflection Waveguide

Quantum optics, or quantum physics in general, has already become well established with
high potential benefits for many optical fields like computation, information processing, or
metrology. Even though a majority of experiments taking advantages of quantummechanics
are built only as a prove-of-principle demonstrations in laboratories, a step towards a real
world can be expected as soon as a easily handle devices for generation, manipulation, and
analysis of quantum states will be regularly available.

In this chapter, a gallium arsenide based Bragg reflection waveguide formed by two Bragg
reflectors on both sides of a core will be studied. These structures can be used as a source of
second-order nonlinear interactions. It will be shown, that two completely different types of
spatial modes can propagate through this device. The first type is guided by a total internal
reflection while the second one is guided by a Bragg reflection instead. It will be demon-
strated, that a perfect phase-matching can be achieved due to modal dispersion properties of
this waveguide if the interacting fields propagate as these two modes respectively. Finally,
an experimental generation of non-classical quantum states will be presented.

Research presented in this chapter was realized by the author at the Institute of Photonic
Sciences in Castelldefels (Barcelona), Spain in collaborationwith group of prof. Juan P. Torres
and published in paper by Vallés et al. [65].

4.1 Introduction

As was shown in previous chapter, bulk crystals can be well fitting laboratory sources of
non-classical states. On the other hand, when similar source would be requested for real
practical application, design based on bulk optics will hardly be the optimal choice. One
of the most advantage strategy in this case would be represented by integrated optical cir-
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cuits based on waveguide structures. This is because they well respond to the requirements
of practical applications such high generation efficiency and versatility, compactness, and
solidness of the overall design. High efficiency of the source is important in order to reduce
power requirements, and therefore for a low power consumption pumping diode lasers to
be integrated on the very same chip. The versatility can be advantageous for generation of
various types of different quantum states. Finally, the solid and compact design can allow
for the device to be used as a standalone, easily handled black-box device without the need
for constant maintenance.

As it was already stated, a periodically-poled waveguides can be used as an efficient
source with huge potential for integration. However, Bragg reflection waveguides (BRWs)
based on gallium arsenide (GaAs) open the possibility to take advantage of well mastered
GaAs growth technologies. From the nonlinear optics point of view, the advantages are es-
pecially high nonlinear coefficients (d36 = 170 pmV−166), large transparency window in IR
region (from 0.9 µm to 17 µm), and high optical damage threshold. The most beneficial ad-
vantage is however mature fabrication technology, which can be adopted in order for various
different elements including pump laser67 to be fabricated on the very same chip.

Even though GaAs possess high nonlinear coefficient, it also suffers from large disper-
sion, which makes it difficult to achieve a phase-matching. Although a range of different
approaches was used in order to fulfil the phase-matching condition10,68–73, only technique
exploiting modal dispersion properties of the waveguide leaves the structure still suitable for
later monolithic integration. The modal phase-matching technique used for this structure is
taking advantage of two different spatial modes being supported, where the effective refrac-
tive index for spatial mode guided by the Bragg reflection is lower than effective index of
conventional mode based on total internal reflection (TIR). Therefore, the effective refractive
index of TIR mode on long wavelength can be equal to the one of BRWmode on short wave-
length, so as a consequence the exact phase-matching can be tailored via proper design of
the structure.

In recent years, various nonlinear processes have been observed experimentally in GaAs-
based BRWs, such second-harmonic generation74,75, sum-frequency generation76, and even
spontaneous parametric down-conversion77. It is evident though, that together with also
demonstrated diode laser source based on BRW, which emits light directly in form of spatial
Bragg mode67, GaAs-based BRWs possess high potential in creating monolithic integrated
devices. Another advantage, that also pushes these devices towards a real applications is
the possibility to operate them in infrared spectral region, especially at 1550 nm, which is
the dominant spectral region for long-distance telecommunications. Therefore, a standard
communication networks and elements can be used in order to distribute or manipulate gen-
erated fields.

4.2 Theory

In this section, the introduction into theory behind BRWwill be presented. It will be demon-
strated, how it is possible to confine optical fields to these structures and how to fulfil phase-
matching condition for different guided modes.
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Figure 4.1: Schematic illustration of Bragg reflection waveguide based on two
symmetrical Bragg reflectors made of two periodically alternating layers separated
with a core layer. The whole structure is grown on a substrate by a chemical vapor
deposition technique and etched to form a ridge.

4.2.1 Material and Design

Bragg reflection waveguides (BRWs) stand in general for any waveguide, where the light is
confined within some restricted region by the Bragg reflection and not by the total internal
reflection (TIR) as it is in the case of conventional waveguides. Even though these structures
can be designed in various shapes, a planar slab design will be here considered. Additionally,
a structure in form of ridge can be created by etching from planar slab device as illustrated
in the figure 4.1. As can be seen from the figure, the core of the waveguide, where the most
of the field energy is concentrated, is sandwiched in two symmetrical Bragg reflectors made
of periodically alternating layers with different refractive indices. The whole waveguide is
grown on a substrate which defines the length of thewaveguide, andwhich can be afterwards
etched to form a ridge of particular width and depth.

Naturally, the modal structure will depend on the material, respectively on the refractive
indices of all layers and their thickness. As for the material, the BRW was based on layers of
AlxGa1−xAs. Changing the alloy composition index x, layers with different refractive indices
can be created. Concerning the layout, there exist several typical designs, like quarter-wave
BRWs (QW-BRWs)78 or matching-layer BRWs (ML-BRWs)79. The first one, the QW-BRWs
have cladding layers of thickness of one quarter of the wavenumber of guided wave, which
provides the most rapid field decay in the claddings80, and therefore the highest confinement
in the core. Since the quarter-wave condition puts restrictions over the waveguide design,
the QW-BRWs can suffer from lower efficiency in nonlinear interactions due to smaller spa-
tial overlap. The solution to that is to separate the core from the Bragg’s mirrors with addi-
tional layer called matching layer, which can be under a special circumstances understood
as a part of the core.

Let it be known, that due to the presence of layers with different refractive indices, a con-
ventional spatial mode based on total internal reflection can be also guided through the struc-
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Figure 4.2: Schematic illustration of slab Bragg reflection waveguide used for
derivation of transverse mode profile of Bragg mode.

ture. From this perspective it is important to understand the meaning of the term ’core’. Core
here means the single layer (or combination of multiple layers) between two Bragg’s reflec-
tors, not a layer surrounded by medium of lower refractive index as it is usually understood
when conventional waveguides are considered. The coexistence of Bragg modes and modes
based on total internal reflection will become important, when the phase-matching of non-
linear interaction will be investigated.

For the case of nonlinear interaction, the waveguide has to be designed not only to fulfil
the phase-matching through modal dispersion by manipulating the material itself and its
layout, but also to ensure high spatial overlap. Even though the design, especially with
use of matching layers, can be straightforward, in reality it is usually product of numerical
optimization with respect to the efficiency of nonlinear interaction, where the fabrication
limitations and imperfections have to be taken into account.

4.2.2 Spatial Profile of Guided Mode

In order to obtain transverse field distribution for Bragg reflection waveguide, let us consider
a slab structure schematically depicted in the figure 4.2 made of core of the width wc with
refractive index nc sandwiched in two identical periodic Bragg reflector consisting of two
thin layers of widths w1 and w2 and refractive indices n1 and n2, respectively. Periodicity of
the structure can be expressed as n(x) = n(x+ iΛ), where x ∈ ⟨−∞;−dw/2⟩ ∪ ⟨dw/2;∞⟩,
Λ = w1 + w2 is the period and i is a natural number.

The propagation of field inside such structure can be formally described with plane wave
reflected by a Bragg reflections at the interface x = ±wc/2, where for well guided modes,
the incident angle θmust satisfy Bragg conditionmλ = 2Λ cos(θ), where λ is the wavelength
and m is a natural number. To derive a spatial distribution of the electromagnetic field,
TE mode will be considered.

Guided mode is assumed to propagate along z axis through an infinite medium (x, z ∈
⟨−∞;∞⟩) symmetrical along y axis (∂y = 0). In this case, the only componentEy of electric

70 / 104



4.2. Theory

vector E can be expressed as

Ey(x, z, t) =

[C1 cos(kcx) + C2 sin(kcx)] ei(ωt−βz) |x| ≤ wc

2
,

EK

(
|x| − wc

2

)
e−iK(|x|−wc

2
)ei(ωt−βz) |x| > wc

2
,

(4.1)

whereEK(x)e
±iKx is Bloch wave function of electric field in the layered medium with Bloch

wave vector K given by periodicity of the cladding and EK(x) is periodic with period Λ7.
Parameter kc from the equation (4.1) denotes the wave vector in the core and ω and β are
the angular frequency and propagation constant of guidedmode. Finally, the parametersC1,2

are constant and determine, whether the mode is odd or even.
The overall solution can be obtained simply by matching particular solutions from equa-

tion (4.1) to be continuous on the boundaries together with their first derivative ∂xEy. Final
mode condition (i.e. dispersion relation) for TE wave is therefore

ik1x

(
e
iKΛ+

k1x
k2x

e
iKΛ+

k2x
k1x

)
=

{
−kc tan (kcwc) for even modes,
kc cot (kcwc) for odd modes,

(4.2)

where kix = {[(ω/c)ni]
2 − β}1/2 are the transverse wave vectors in two layers of Bragg

mirror.
Considering a quarter-wave layered stack it is ensured, that a confined propagation is

obtained. This is due to the fact, that Bragg reflectors create a stop-bands in energy, where
the solution is complex with Bloch vector in following form

K =
mπ

Λ
± iK, (4.3)

where parameter m denotes m-th order of forbidden band, while imaginary part K ensures
evanescent exponential decay of Bragg mode envelope.

The final solution for one particular design of Bragg waveguide with finite number of
layers in Bragg stacks is depicted in the figure 4.3, where high confinement of the filed in
the core as well as the exponential decay in the cladding can be identified. For real structures
the number of layers is always limited to some small number. This however results only in
non-unity reflectivity of the Bragg mirrors, and it does not affect the intensity distribution
in the waveguide or propagation constants of guided modes.

4.2.3 Principle of Phase-Matching

GaAs is a cubic crystal with symmetry class 43m. Since it is optically isotropic the usual
birefringence technique can not be therefore used in order to phase-match nonlinear pro-
cesses. Several different techniques of phase-matching have been however adopted so far to
fulfil the phase-matching. Except of quasi-phase-matching techniques68,70,71, also methods
offering full exact phase-matching like form-birefringence method69 or technique of modal
phase-matching10 have been utilized. The disadvantages of these methods are, that the re-
sulting elements are not suitable for further integration.
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Figure 4.3: Numerically calculated distribution of electric field vector E of
a Bragg mode in transverse plane of real Bragg reflection waveguide character-
ized by spatial profile of refractive indices also depicted in the plot. The core of
the waveguide is highlighted with grey filing.

In contrast to that, a technique presented here represents an exact phase-matching uti-
lizing strong modal dispersion properties of propagating modes. The main feature respon-
sible for modal phase-matching in BRWs is, that Bragg modes possess effective modal in-
dices neff = β/k0 much lower than the ones of conventional modes based on total internal
reflection. This fact can for properly designed structure lead to situation, where effective
modal index of Bragg mode at shorter wavelengths (2ω) is equal to TIR mode at longer
wavelength (ω). The complete analytic description of such modal phase-matching will not be
introduced here though, since it requires usually numerical solution of dispersion relations
of both Bragg and TIR modes simultaneously81.

4.3 Experiment

In this section, generation of entangled photon pairs in AlxGa1−x BRW will be studied us-
ing spontaneous parametric down-conversion (SPDC) at typical telecommunication wave-
length 1550 nm. Although the SPDC process was already observed as well, no further steps
towards synthesizing more complex non-classical quantum states were taken and only in-
tensity correlation measurements were done77.

In order to generate SPDC we first decided to create a spatial field distribution in form of
Bragg mode using spatial light modulator (SLM) and couple it into the BRW structure. Ac-
cording to phase-matching condition, the down-converted photons should be created in form
of conventional TIR mode. By measuring violation of Bell’s inequalities, the quantumness of
generated states can be demonstrated.
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Figure 4.4: Sketch of an experimental setup used in the first stage of the experi-
ment with generation of Bragg mode. HWP: half-wave plate, LP: linear polarizer,
NDF: neutral density filter, SFBE: spatial filter with beam expander, SLM: spa-
tial light modulator, FL: Fourier lens, EP: eyepiece, TL: tube lens, OB: micro-
scope objective, NFSP: near-field scanning probe, BRW: Bragg reflection waveg-
uide, DM: dichroic mirror, CCD: CCD camera, BS: beamsplitter, D: detector, and
Spec.: spectrometer.

4.3.1 Experimental Setup I

The experimental setup used in this stage of experiment is depicted in the figure 4.4. As
a source, tunable semiconductor laser with external cavity DLX 110 (Toptica Photonics) was
used in CW regime. The laser beam passed through the optical attenuator consisting of half-
wave plate (HWP) and linear polarizer (LP) and additional HWP for setting optimal pump
power and polarization. Next, the beam was spatially filtered and expanded by a beam ex-
pander (SFBF) for optimal performance of the spatial light modulator (SLM) PPM X8267 (Ha-
mamatsu). The hologram from SLM was reconstructed with a Fourier lens (FL) in its focal
plane. Since the reconstructed mode is approximately thousand times bigger with respect
to the BRW’s dimensions, it had to be resized down to the desired size using home-made
microscope consisting of eyepieces (EP), tube lens (TL), and microscope objective (OB).

After that, the mode could be either coupled into the waveguide or analysed with near-
field scanning probe (Veeco) in order to check its intensity distribution. Both the waveguide
and the probe were placed on precise 3-axis linear stage NanoCube P-611.3S (Physical In-
strumente) with sub-nm resolution to precisely position the waveguide in the beam or to
make fine three-dimensional scan of the mode (see figure 4.5). If the mode was coupled into
the structure, the decoupled pump was monitored with CCD camera to check the coupling.

Mode Preparation and Reconstruction

The spatial light modulator (SLM) in phase modulation regime was used in order to cre-
ate a desired light intensity distribution of the Bragg mode, which was to be coupled into
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Figure 4.5: Photo of themain part of the experimental setup showing positioning
of Bragg waveguide with scanning probe as well as mode preparation stage (labels
correspond to those from figure 4.4). At this moment, the waveguide is removed
and the probe is used to scan profile of the pump beam prepared for coupling.

the waveguide. The SLM modulates the phase distribution according to displayed hologram.
The hologram was afterwards reconstructed with the Fourier lens.

Even though the calculation of the optimal hologram should be relatively straightfor-
ward, if the real parameters of the SLM like resolution, range, phase shift, etc. are taken
into account, it appeared to be much more difficult. Finally the hologram depicted in the fig-
ure 4.6 was found to be optimal choice, also from the diffraction efficiency point of view.
The reconstruction of the mode was performed using a simple Fourier lens and the resulting
intensity distributions can be seen in the figure 4.7, where both first diffraction orders are
depicted.

Pump Mode Coupling

Together with the mode preparation, this was the most challenging part of the experiment
due to the fact, that the typical size of the fine features of desired mode was about 300 nm,
which was in order of diffraction limit for pump wavelength 775 nm. Also, since the recon-
structed mode was approximately 1000 times larger than the structure, the size had to be
reduced accordingly.

To sufficiently reduce the mode dimensions together with maintaining high spatial fre-
quencies of the mode, the infinity corrected microscope was build. The microscope con-
sisted of single lens eyepiece, tube lens, and 100× microscope objective (Nikon). Using tube
lenses of different focal lengths a different magnification was achieved as M = ftl/fob. It
was however found, that especially due to the limited aperture of the microscope objective,
the optimal magnification was possible to achieve only at expenses of high quality reduction
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Figure 4.6: Phase hologram projected on spatial light modulator (SLM) in order
to generate desired Bragg mode. The hologram was created as a blazed diffraction
grating covered with two circular aperture mask.

1mm

(a) +1 Diffraction order

1mm

(b) -1 Diffraction order

Figure 4.7: The reconstruction of hologram projected on spatial light modula-
tor (SLM) using Fourier lens (FL) in its focal plane. Both fist diffraction orders
are shown, however due to the blazed grating the intensity of minus first one is
significantly lower. The images were captured with CCD camera.
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Figure 4.8: Demonstration of resizing of reconstructed hologram with home
made microscope under two different magnification. (a) Size approximately twice
larger with respect to the waveguide. (b) Size of the mode which fits the require-
ments, however its shape is significantly corrupted due to the limited aperture of
the microscope objective.

Figure 4.9: Intensity distribution of light inside the waveguide after coupling
a Bragg mode (see figure 4.8b). High intensity confinement in the core can be
identified in the centre of the image together with a side lobs significantly weaker
due to the non-optimal profile of coupled mode.

together with high losses. Theminimal obtained size of the mode was about 4 µm, which was
still twice bigger than the structure itself. Figure 4.8 shows intensity profiles of both modes
measured using scanning probe with aperture 50 nm connected to a single photon detector.

Even though the intensity profile of the Bragg mode of correct size was already corrupted
due to the limited aperture of the microscope objective, it was coupled into the waveguide.
The light decoupled from the structure using another microscope objective and captured by
CCD camera can be seen in the figure 4.9. In this figure, the centre core with high power
confinement together with side lobs can be identified. The coupling efficiency was however
critically low, with pump power limited by the SLM damage threshold, in order to perform
any nonlinear experiment.
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Figure 4.10: Schematic sketch of an experimental setup used in the second at-
tempt with using Gaussian pump mode instead of the Bragg mode. HWP: half-
wave plate, LP: linear polarizer, OB: microscope objective, BRW: Bragg reflection
waveguide, DM: dichroic mirror, F1 and F2: band-pass and long-pass interference
filters, DL: birefringence delay line, BS: beamsplitter, and D: detector.

4.3.2 Experimental Setup II

Due to the difficulties in coupling Bragg mode into the structure, different BRW element
based on matching-layer design was used. Because of that, it was possible to use Gaussian
mode as a pump directly. This resulted in more efficient coupling together with higher fi-
nal conversion efficiency, even though the spatial overlap of Gaussian and Bragg modes is
only 20 %.

The waveguide itself consisted of 500 nm wide core surrounded by two 375 nm wide
matching layer, sandwiched by Bragg reflectors82. The structure was afterwards etched to
form a ridge with dimensions w×d×l = 4.4 µm×3.6 µm×1.2mm. The overall layout was
designed to fulfil Type II phase-matching at 775 nm (775 nm→1550 nm).

Since due to the fabrication imperfections, both the dimensions as well as the aluminium
concentrationsmay vary, the devicewas first characterized in the process of second-harmonic
generation in order to check for the proper phase-matchingwavelength. After that, an exper-
imental setup depicted in the figure 4.10 was used for generation of entangled two photon
states83 and later for obtaining the CHSH inequality violation52. The setup was rebuild as
shown in the figure 4.10. Since the Gaussian mode from the laser was used directly, the SLM
with Fourier lens was removed. The pump power was about 6.5mW.

Decoupled SPDC signal was first separated from the residual pump using set of dichroic
mirrors (DM) and interference filters (IF). The quality of entanglement was reduced as a con-
sequence of using Type II process, where both generated photons have orthogonal polariza-
tion. They can be therefore distinguished by their arrival time and also by their spectra84. In
order to compensate for that, a birefringence delay line (DL) and band pass filter (F1) were
used.

With 50/50 beamsplitter, Bell’s state |Ψ+⟩ = (1/
√
2)(|H⟩|V ⟩ + |V ⟩|H⟩), where |H⟩

and |V ⟩ denotes horizontal and vertical polarization states, respectivelywas generated in 50 %
cases, when both photons propagated to different output of the beamsplitter. This was per-
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formed by measuring in coincidences only (post-selection technique). The quality of entan-
glement was measured using Bell’s like CHSH inequality violation. The detectors used for
this measurements were InGaAs single-photon counter modules ID201 (IDQuantique).

4.4 Results

First, the correlations in polarizations were verified. In this case, when signal is projected
into horizontal polarization for instance, a coincidence rate of idler photon projected into
state |θ2⟩ = cos θ2|H⟩+sin θ2|V ⟩ should form a fringes described by formula P (|H⟩, |θ2⟩) =
cos2 θ2. Experimentally obtained visibilities of coincidence fringes for two different settings
of signal projection |θ1⟩ were V (θ1 = 0°) = 98 % and V (θ1 = 45°) = 91 % with subtraction
of accidental coincidences. The accidental coincidence rate was measured experimentally
by introducing additional delay to the trigger of one detector, thus measuring accidental
correlation of physically uncorrelated events.

The CHSH inequality violation test was performed exactly as described in chapter 3.
Themaximum violation (S = 2

√
2) should be obtained for signal and idler photons projected

into states characterized by angles θ1 = 0°, θ′1 = −45° and θ2 = 22.5°, θ′2 = 67.5°. Exper-
imentally obtained Bell factor S was 2.61± 0.16, which proved, that the generated photon
pairs were quantum correlated by violation the CHSH inequality by more than 3 standard
deviations.

4.5 Summary

It was shown, that Bragg reflection waveguides can serve as an alternative to more conve-
nient nonlinear devices such a PP-KTP or PP-LN. It was demonstrated both theoretically
and experimentally, that it is possible to achieve exact phase-match between spatial modes
guided by a total internal reflection and Bragg reflection, respectively. Due to hight nonlin-
ear coefficient of GaAs, this device is more than suitable for nonlinear optics. Using already
well developed fabrication techniques, similar devices may be easily integrated into more
complex structures including laser sources. It was also mentioned, that manipulating its
dimensions together with aluminium concentration, the parameters of the waveguide such
a group velocity dispersion can be tailored.

Finally, the generation of polarization-entangled photon pairs in process of spontaneous
parametric down-conversion in Braggwaveguide based onmatching layer designwas demon-
strated. The non-classicality of generated quantum state was verified by violating Bell’s like
CHSH inequality.

It is however clear that further technological development is needed in order to achieve
better performance of this device and overcome currently more conventionally used devices.
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5
Spatial Correlations in Spontaneous

Parametric Down-Conversion

Photons pairs generated by spontaneous parametric down-conversion are due to its nature
correlated in several degrees of freedom. These correlations are responsible for the non-
classical behaviour of generated fields. It is however important to stress out, that these cor-
relations exist only between two photons from a single pair, not between any successive
sets.

In this chapter, the spatial correlations of optical fields generated by parametric down-
conversion in bulk crystal will be characterized in far-field. The attention will be given es-
pecially to spatial correlations and their evolution when moving from regime with single-
photon rates of generated down-conversion to regime where macroscopic fields are gener-
ated. It will be demonstrated, that spatial correlation functions measured at single-photon
level correspond in the same experimental setup to speckle pattern formed at high intensity
regime, since both these effects have the same quantum origin.

This experiment was performed by the author at the University of Insubria in Como, Italy
under the supervision of prof. Maria Bondani and published in paper by Machulka et al. [85].

5.1 Introduction

The process of (spontaneous) parametric down-conversion [(S)PDC] in nonlinear media has
become awell established source of optical fields possessing both spatial and spectral correla-
tions86 as well as correlations in photon numbers87,88 and time5,89,90. Correlations in intensity
and time result from the fact, that photons are generated in pairs, even though the nature
of this process is completely probabilistic and the pairs are generated randomly. Correla-
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tions in momentum and frequency result, on the other hand, from momentum and energy
conservation laws, respectively.

The existence of spatial correlations between photons generated in SPDC process has al-
ready been well known and also experimentally verified several times using either scanned
single-photon detectors63,91,92 or intensified CCD cameras (iCCD)88,93. These experiments
were however performed in low-gain regime at single-photon level containing mostly one
photon per time only. The aim of these measurements was to determine the size of correlated
areas.

On the other hand, if the PDC process is generated with extremely intense pump (high-
gain regime)94,95, the process becomes stimulated by itself. This leads to formation of speckle
pattern as a consequence of partial coherence of successively generated photons. Both,
the low-gain regime and the high-gain regime can be understood as two opposite sides of
the same coin, since they both originate in the same nonlinear interaction. While in the low-
gain regime the field is well described by highly non-classical multi-mode Fock states with
completely random phases, in the high-gain regime the generated field can be characterized
by classical multi-mode thermal state with well defined phase properties96. It is therefore
interesting to study the coherence properties simultaneously in both regimes.

5.2 Theory

In this section, a basic theoretical treatment of both regimes will be presented. In low-gain
regime the coherence areas will be defined, while in hi-gain regime the formation of charac-
teristic speckle pattern will be discussed.

5.2.1 Coherence Areas

In ideal case, when the SPDC process in nonlinear medium of infinite dimensions is pumped
with a monochromatic plane-wave, the down-converted fields are generated in the form of
monochromatic plane waves with frequencies ωs and ωi for signal and idler wave, respec-
tively. These frequencies are determined by the energy conservation law, while the propa-
gation directions of these two waves are restricted by the phase-matching condition (i.e by
the momentum conservation law). This means, that if the signal photon is detected, the fre-
quency and emission direction (position) of the idler photon is determined exactly with no
uncertainty.

However, in the case of finite crystal and beamdimensions and nonmonochromatic pump,
the correlations in spatial positions are blurred due to the uncertainties in frequencies and
wave vectors of interacting fields. First, the finite length of the crystal and width of the pump
beam result in imperfect phase-matching, where a momentum mismatch of wave vectors is
tolerated to some extent. Second, the finite spectral width of the pump allows for more re-
laxed energy conservation. As a consequence, light emitted to any direction is no longer
monochromatic, and if the signal photon is detected in one particular emission direction,
the corresponding idler photon can be located in the so-called coherence area defined by

80 / 104



5.2. Theory

i

S

I

φs

φi

ξs

ξi

δξi

S… signal photon
I … idler photon

Degenerate
frequency

Correlation
area

Figure 5.1: Schematic illustration of coherence area in transverse plane with po-
lar coordinate system (ξ, ϕ). Relative position of idler photon (I) with respect to
the signal one (S) is determined by perfect phase-matching condition, while the un-
certainties in both directions (δξ, δϕ) forming the coherence area are consequences
of finite dimensions of crystal and pump beam together with finite spectral width
of the pump.

a finite angles in radial (ξ) and azimuthal (ϕ) directions. It is essentially an area in detection
plane defined usually as a FWHM of appropriate cross-correlation function, where the prob-
ability of occurrence of corresponding photon from a pair is sufficiently high. The graphical
representation of such coherence area is schematically illustrated in the figure 5.1, where
the uncertainties in both the radial and the azimuthal directions are depicted. Moreover, al-
though the pump beam is spatially coherent, the down-converted fields generated in different
directions are statistically uncorrelated. Also as there is no phase relation between different
photon pair emission, the phases of signal and idler fields are also completely random97.

Coherence area defined above is given by the fourth-order cross-correlation function (pho-
ton coincidence probability) Γ(4)

si
97,98. Since the correlation function Γ is usually smooth one

peak function, it can be quantitatively described by its widths in both radial and azimuthal
directions ∆Γsi,ξ and ∆Γsi,ϕ, respectively.

It was already shown both theoretically97,99,100 aswell as demonstrated experimentally86,101,
that it is possible to tailor coherence areas by pump beam properties. It can be shown, that in
the radial direction, the width of the correlation function is determined mainly by the spec-
tral profile of the pump and by the length of the crystal, while in the azimuthal direction
the correlation function size is modulated especially by the transverse profile of the pump
beam. Going into more details, the crystal length together with the finite spectral width
of the pump affect the radial width through the imperfect phase-matching in longitudinal
direction. As can be shown, the radial width of coherence area increases with increase of
pump spectral width and decrease of crystal length.

On the other hand, width of the coherence area in the azimuthal direction is dominantly
determined by the spatial profile of the pump beam. As can be shown, the size of coherence
area in the azimuthal direction is increasing with decrease of the pump beam size. Reason,
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why the radial width is not significantly affected by the width of the pump beam is, that for
commonly used crystals with typical length in units of millimetres, the phase-matching con-
ditions in longitudinal direction are much more restricting than these in the transverse (ra-
dial) direction86.

5.2.2 Speckle Pattern

Due to the fact that the SPDC process is spontaneous (i.e. stimulated by vacuum fluctuations),
the overall efficiency is rather low (typically about 10−10). Adopting combination of standard
laser source with common nonlinear crystal, the generated fields are extremely weak, con-
taining low mean number of photons per one spatio-temporal mode. In this case the SPDC
belongs to a linear region with parametric gain g ≪ 1*.

On the other hand in hi-gain regime (g ≫ 1), the number of photons generated in each
mode grows according to equation (1.55) rapidly with sinh2(gz). Every coherence area is
then therefore filled with large number of photons, thus forming a macroscopic field. As
a consequence, the intensity profile in transverse plain resembles speckle pattern formed by
partially coherent light scattered off a rough surface. Although the physical origin of both
phenomena is completely different, the term speckle pattern is here also used. Individual
speckle is thus created by stimulated parametric conversion initiated by spontaneous gener-
ation at the very beginning of the crystal.

Since the stimulated conversion was initiated by a pair of correlated photons, the final
speckle pattern therefore has to preserve these correlations. For each speckle with approx-
imate dimension of a coherence area there exists a symmetrical one located in area cor-
responding to phase-conjugated mode with ideally the same number of photons (the cor-
responding speckles are therefore correlated also in photon numbers), while the number of
speckles roughly coincide with number of degrees of freedom, i.e. number of spatio-temporal
modes. The corresponding speckles propagate behind the crystal symmetrically with respect
to the pump beam in direction restricted by the phase-matching, while their sizes are deter-
mined mainly by the size of coherence area, thus by the phase mismatch and partially by
the gain-controlled stimulation of the conversion.

It was already theoretically predicted and experimentally demonstrated94 and it will be
here demonstrated as well, that size of the speckles is determined not only by the pump
beam diameter as it is in the case of coherence areas, but also by a gain factor, thus by
the pump power. This dependence stems from the fact, that in high-gain regime, the photons
are produced closer to the centre of the beam, which effectively reduces the amplification
area with respect to pump beam profile. Due to the inverse dependence of coherence area on
the pump beam profile, the speckles are therefore slightly larger than the coherence areas.

In order to analyse the speckle pattern, the correlation functions have to be adopted as
well. To experimentally estimate the size of the speckles, an intensity autocorrelation func-
tion Γαα, where α = s, i can be adopted101. On the other hand, the spatial cross-correlation
function Γαβ , where {α, β} = {s, i}, and which has origin in momentum entanglement of
twin beams can be used to compare spatial correlations between couples of phase-conjugate

*g = 1 represents situation, where both spontaneous and stimulated contributions are in equilibrium.
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modes in low- and high-gain regimes. Let it be noted, that an autocorrelation function in
the case of low-gain regimes is identically equal to zero, since there usually exists no more
than one photon per each mode.

While for the low-gain regime a perturbation approach can be adopted93,102, the com-
plete theoretical treatment of the high-gain regime requires a stationary, plane-wave pump
approximation in order for the analytic description of the output state to be expressed96.
However, for scope of this analysis the definition of the intensity correlation functions is
sufficient.

If generated field is detected by CCD-like device, the intensity (i.e. number of photo-
electrons) detected by one pixel at position r can be written as Iα(r), whereα = s, i represent
signal or idler region. The variance ∆Iα(r), which represent fluctuations around the mean
value, can be therefore defined as ∆Iα(r) = Iα(r)− ⟨Iα⟩, where ⟨Iα⟩ = (1/N)

∑N
x=1 Iα(x),

and where the summation is performed over all N pixels. The intensity spatial correlation
functions can be therefore defined as

Γαβ(∆r) = ⟨∆Iα(r)∆Iβ(r+∆r)⟩, (5.1)
where ⟨·⟩ denotes statistical averaging over all symmetrical pixel pairs.

5.3 Experiment

This section will be devoted to the experimental characterization of PDC process in both
regimes. Special attention will be given to the iCCD camera as a unique detector capable of
operating in both regimes thanks to its high dynamic range.

5.3.1 Experimental Setup

In order to study both intensity regimes simultaneously, an experimental setup schematically
depicted in the figure 5.2 was designed. Presented experimental setup allowed to investigate
both intensity regimes simply by changing the power of the pump together with an acquisi-
tion parameters of the detector.

As a source, a third-harmonic of picosecond pulsed mode-locked Nd:YLF laser (High-Q
Laser) at wavelength 349 nm with repetition rate about 500Hz was used. First, a telescope
with negative lens (Galilean type, GT) was used in order to reduce beam width and ensure
good collimation of the beam. Second, the pump power was adjusted using attenuator (Att.)
consisting of a single half wave plate and linear polarizer. Available power for this experi-
ment ranged from 20 µW giving small number of photon pairs in generated field (low-gain
regime) up to 50mW, where speckle pattern occurs (high-gain regime). Finally, the UV
beam pumped 8mm long BBO crystal with cut angle θ = 37° designed for Type I phase-
matching. Down-converted photon pairs at frequency degeneracy were therefore emitted
into a cone with half opening angle 11.9°. One part of the cone layer (signal beam) was
captured by the iCCD camera (DH734, Andor) directly, while the second, corresponding
part (idler beam) was deflected to the camera by highly reflective dielectric mirror. The cam-
era was placed 38.5 cm behind the crystal ensuring the far-field condition and was equipped
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Figure 5.2: Schematic sketch of an experimental setup for measuring spatial cor-
relations in field generated in process of (S)PDC. GT: Galilean telescope consisting
of positive and negative lens, Att.: optical attenuator including half-wave plate and
linear polarizer, BBO: BBO crystal, F1 and F2: long-pass and band-pass interference
filters, respectively, and iCCD: iCCD camera.

with two interference filters. One long-pass edge filter F1 to filter out a scattered pump
and one band-pass filter F2 with 40 nm bandwidth centred at 710 nm to determine (reduce)
the width of the cone layer.

As a consequence, the image on the camera has a shape of two strips, one for the signal
part of the cone layer and one for the idler one. On each camera frame, two virtual regions
of interest (ROIs) can be thus defines in order to identify to which part of cone layer the par-
ticular detection event belongs. Let it be pointed out, that due to the reflection on the mir-
ror, the idler strip is horizontally flipped. Since the second filter F2 was relatively wide and
not perfectly centered at degenerate frequency, slightly asymmetric non-degenerate photon
pairs were detected. The camera was triggered by the synchronization logical pulse from
the laser with detection window set to 5 ns to ensure that (S)PDC from a single pump pulse
only was detected and to minimize the thermal noise and spurious ambient light. In order to
minimize the thermal noise, the CCD chip was cooled down to −20 ◦C. During the experi-
ment, the pump power and pump beam size weremonitored using powermeter and scanning
knife-edge technique, respectively. The pump beam was found to be slightly elliptical with
excentricity of about 1.22.

5.3.2 iCCD Camera

The iCCD stands for intensified charge coupled device. Essentially, it is standard CCD chip
equipped with an image intensifier. The whole device consists of several main parts. The im-
age intensifier, CCD chip, cooling, and some control electronic. The electronic allows for
a precise synchronization of the camera and for reading out the data from the CCD chip
which can be done under various different settings usually representing a trade-off between
speed and performance (especially noise level). The thermoelectric cooling (two-stage Peltier
element) can significantly reduce the thermal noise of the CCD chip. The lowest achievable
temperature without additional water cooling is about 40 ◦C below the ambient temperature,
thus about −20 ◦C in standard laboratory environment. The CCD chip was a standard sci-

84 / 104



5.3. Experiment

U1 U2 U3

W PC MCP PS F CCD

Figure 5.3: Schematic illustration of an iCCD image intensifier. W: glass window,
PC: photocathode, MCP: micro-channel plate, PS: phosphor screen, F: fiber optics
tapered bundle, and CCD: CCD chip. Typical voltage levels are: U1 ∼ 100Vpp,
U2 ∼ 1 kVpp, and U3 ∼ 10 kVpp.

entific CCD chip with resolution 1024×1024 px2 of size 13×13 µm2, therefore with the total
active area of 13.3×13.3mm2. The most important part is however image intensifier which
is responsible for the single-photon sensitivity of this device.

The intensifier schematically depicted in the figure 5.3 consists of three parts, the trans-
mission photocathode, micro-channel plate (MCP), and a phosphor screen. The photocathode
made of some photosensitive compound (usually alkali metals with very lowwork functions)
coated upon a glass window if struck by light emits a photo-electron. The material of photo-
cathode is responsible for the spectral sensitivity and quantum efficiency of the camera. In
the case of this particular device, the overal quantum efficiency reaches maximum of 27 %
at 500 nm.

Emitted photo-electron is then accelerated towards an MCP made of small parallel tubes
with diameter in units of µm and tilted at small angle with respect to the plate, ensuring
the electrons will hit the walls of the tube. Each of these tubes serves as a continuous-
dynode electron multiplier, in which the multiplication of electrons through the secondary
emission takes place under the presence of strong electric field. The amplification, usually
of several orders of magnitude, depends on the electric field strength and can be controlled
via so-called MCP gain. The important feature of the MCP is the possibility to be closed by
removing the electric field, and thus gating the detection. This feature has strong positive
impact on noise performance of the camera. After that, the amplified electron stream hits
the phosphor screen, where it causes light flash (i.e. the electrons are converted back to light).

These flashes are coupled into a fiber array and decoupled on the CCD chip (can be done
also with a bulk optics), where they are detected in a standard way. Due to the amplifica-
tion, the iCCD in this regime can serve as a multi-channel device, where each pixel acts as
a binary detector with single-photon sensitivity. Because the MCP plate provides the spatial
resolution, the spatial information about detection events on photocathode is transmitted to
the CCD chip. However, since for technological reasons the contrast transfer is not perfect,
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a single detection event is usually distributed over several pixels on CCD chip, thus effec-
tively reducing its resolution. Because of that, the pixels can be physically grouped together
during readout without losing spatial resolution, which not only improve readout rate, but
also the dynamic range. Product of this grouping (or binning) is called super-pixel (s-px).

5.4 Results

In this section, results obtained in both regimes will be presented. In the low-gain regime
the size of coherence areas will be determined, while in the hi-gain regime dependence of
sizes of speckles on pump power and beam properties will be evaluated.

5.4.1 Single-Photon Regime

First, a coherence area in single-photon regime characterized by the intensity cross-correla-
tion functionΓ(4)

si in the transverse plane wasmeasured. During this measurements, theMCP
gain of the camera was set to its maximum value to provide single photon sensitivity. Hard-
ware binning 8×8 was used in order to speed up the acquisition. Other acquisition param-
eters were adjusted to provide optimal trade-off between the speed of the acquisition and
the noise level. The attenuator was adjusted so that the number of detected events was much
lower than number of super-pixels, so all detection events could be spatially distinguishable.
It was found that optimal photon rate is about 30–50 photons on average per frame (i.e. both
signal and idler), which corresponds to pump powerP ≃ 20 µW. This ensured the probability
of one photon being detected in one super-pixel to be much lower than unity, consequently
neglecting probability of two or more photons falling into the same super-pixel.

The typical readout image from the camera can be seen in the figure 5.4, where the single
shot frame (5.4a) is presented together with an accumulated image (5.4b) to demonstrate in-
tensity distribution over the active area of the camera. Under such intensity regime, the cam-
era serves as a photon number resolving detector for signal and idler separately. However,
since the number of detection event per frame is relatively low, a long sequence of frames (of
the order of 105) has to be acquired for purposes of statistical processing. This is the reason,
why any speed up in acquisition is important, since such typical measurement can last up
to 15 or more hours, in which the data might be corrupted by instability of the laser.

Figure 5.4a shows a typical read-out frame from the camera. In order to calculate corre-
lation function, it is necessary to pre-process it first to identify particular detection events
with their location. The pre-processing usually consists of removing a background (mainly
thermal and readout noise) and applying the first threshold to separate individual detec-
tion events. After that, a special algorithms usually used for identification multiple stars
in astronomical images103 can be adopted in order to identify exact location of detection
events, which are usually spread over more super-pixels or eventually to distinguish and
separate two close, partially overlapping detections. Finally, the second threshold is ap-
plied to separate real photon events from the noise. This final step is important, since
it determines the trade-off between quantum efficiency and the noise level. Essentially,
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S I N

(a) Single frame

S I N

(b) Accumulated frame

Figure 5.4: Typical single readout image from the iCCD camera without any
pre-processing (a) and image formed as an accumulation of individual detec-
tion events (single readout frames) after pre-processing (b). Regions of inter-
est (ROIs) S, I , and N denotes signal, idler, and noise areas, respectively, where
the noise ROI is used for simultaneous dark count monitoring.

the higher the threshold is, the lower is the quantum efficiency but the number of false
detection events (i.e. noise) also.

Now, the list of positions of detection events is obtained. It however contains not only
photon pairs, but broken pairs and noise events, too. This ’signal-to-noise’ ratio can be in
principle improved applying some a priori information about the coherence areas, in order
to avoid such combinations, that can not be definitely correlated. However, if no a priori
assumption is made, all possible combinations of detection events in signal and idler ROIs
have to be taken into account. Each frame is therefore processed as follows: For both x and y
coordinates of each detection from signal ROI, a respective x and y coordinate of all detection
events from idler ROI is plottedwith appropriate normalization as it is schematically depicted
in the figure 5.5. The plots of each frames are afterwards accumulated into single image. This
procedure can be for horizontal coordinates in transverse plane mathematically described
with following formula

Γx(xs, xi) =
N∑
p=1

Mp∑
m=1

Lp∑
l=1

δ(x(pm)
s − xs)δ(x(pl)i − xi), (5.2)

where the first summation over p summarize results from all N frames and the second and
third summations counts particular signal (m) and idler (l) detection events, up toMp and Lp

in p-th frame for signal and idler, respectively. For the vertical direction, the formula can
be derived in the same manner86,88. The majority of the combinations however does not
possess any correlations at all and they are therefore distributed uniformly across the plot
surface creating a bias level. If sufficient number of frames (or detection events) is evaluated,
the correlation pattern can be identified on top of homogeneous background if the ’signal-
to-noise ratio’ is sufficiently high.
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Figure 5.5: Schematic illustration of simulation of image processing at single-
photon level, where one million frames (1000×1000 px2), each with 50 detection
events, were created with uncertainty of 25 px in radial and 75 px in azimuthal di-
rection following Gaussian distribution. (a) the transverse plane of detection with
individual detection events. (b) and (c) cross-correlation function Γsi in radial and
azimuthal direction for one particular frame (a), respectively. (d) and (e) resulting
correlogram in radial and azimuthal direction, respectively as an accumulation of
individual results (b) and (c), respectively.
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The experimental results are plotted in the figure 5.6. On the left-hand side images, there
are depicted cross-correlation functions in radial Γsi,ξ and azimuthal Γsi,ϕ directions, respec-
tively, where characteristic diagonal pattern can be easily identified. As a quantitative mea-
sure of size of the coherence area i.e. the width in corresponding direction, a slice∆Γ through
the correlation function Γ can be used. They are depicted on the right-hand side together
with a Gaussian fit. From this fit the width (FWHM) of spatial correlation function can be ob-
tained. Evaluated sizes of coherence areas in both radial and azimuthal directions were∆Γξ

= 490± 52 µm and ∆Γϕ = 710± 52 µm, respectively. From this results it can be seen, that
the coherence area is elliptical with higher uncertainty in azimuthal direction.

Using processing technique presented here, the quantum detection efficiency can be eas-
ily determined from covariance of the signal and idler photon counts as well104. The values
obtained for signal (8.5 %) and idler (7.2 %) differ due to non-unity reflectivity of used mirror
and Fresnel reflection at the output face of the crystal and are both relatively low due to
the non-optimal spectra with respect to sensitivity of the photocathode. It should be noted,
that these values represent detection efficiency including losses of all components behind
the crystal (e.g. transitivity of the interference filters).

5.4.2 High-Gain Regime

By increasing the power to 50mW the high-gain regime with visible speckle pattern in gen-
erated field was reached (it can be obtained for pump power above 20mW). Typical single
shot readout image from the iCCD camera in this regime is displayed in the figure 5.7.

In this regime, when each pixel of camera detects high number of photons, the single-
photon sensitivity is no longer necessary. Because of that, the MCP gain of the camera was
reduced to prevent the sensor from saturating. Due to this possibility to tailor the sensitiv-
ity of the camera from single-photon level to classical regime with high number of detected
photons, the identical detector could be used in both regimes with no need for realignment.
The setupwas therefore kept the same and only by rotating a single wave-plate and by chang-
ing the acquisition parameters of the camera it was possible to switch between these two
regimes. This guaranteed that the results from both experiments would be consistent.

Even though the speckle sizes are larger than coherence areas, lower binning of 4×4 was
used, since lower number of frames (typically 1000) is necessary for processing, and slower
acquisition rate is therefore possible. Higher spatial resolution also resulted in smoother
profiles. Finally, the measurements were taken under different experimental conditions with
different pump powers and beam diameters.

The processing involved direct computation of auto and cross-correlation functions from
measured data (after subtraction of the background consisted dominantly of thermal and
readout noise of the CCD chip) according to formula (5.1), where each single shot frame
provide a different ensemble of realizations for the statistical averaging. The correlation
functions were however calculated only for 100 points, randomly selected in the fringe pat-
terns close to the frequency degeneracy. This approach gives better results (signal-to-noise
ratio) with respect to calculating correlation functions from the whole image, since only
small parts of the frame are covered with light. These correlation functions were afterwards
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Figure 5.6: Results of measurement of coherence area in low-gain regime. Left-
hand side images show accumulated results of single image processing revealing
spatial correlations in radial (a) and azimuthal (c) directions as a diagonal feature.
Right-hand side images represent cross section of the diagonal in perpendicular
direction together with a Gaussian fit for both radial (b) and azimuthal (d) direc-
tions. FWHM of the Gaussian fit is considered as a width of the coherence area.
Different orientation of the diagonal in comparison with figure 5.5 is caused by
reflection on the mirror and can be corrected by appropriate transformation88.
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Figure 5.7: Single shot image from iCCD in high-gain regime (P = 45mW)
showing typical speckle pattern as a consequence of partial internal coherence in
each of spatially and intensity correlated phase-conjugate modes.
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Figure 5.8: Dependence of radial (a) and azimuthal (b) widths of auto and cross-
correlation functions on pump power P . Upper dashed magenta lines repre-
sent width of cross-correlation functions measured in low-gain regime, cyan ones
the standard deviation of that measurements. Bottom dashed green lines repre-
sent size of one super-pixel, thus showing aminimal width of correlation functions
caused by the pixel structure of the detector.

quantitatively characterized by their horizontal (radial) and vertical (azimuthal) widths∆Γx

and ∆Γy (∆Γξ and ∆Γϕ).
The results for the dependence of correlation function on the pump power are plotted

in the figure 5.8. As can be seen, in region from 30mW to 50mW the widths of correla-
tion functions, thus the sizes of individual speckles are relatively stable. Below this power
the width of autocorrelation function drops down, while the width of cross-correlation func-
tion remains unchanged. This is due to the fact, that while the internal coherence of emitted
fields originates from stimulated nonlinear process105, the coherence between photons of
twin beams arises from initial simultaneous creation. Therefore, if the pump field is not suf-
ficiently intense, the probability of stimulated emission is reduced, resulting in lower internal
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coherence, thus lower width of autocorrelation function. Below pump power level of 20mW
the width of autocorrelation function corresponds to dimension of the super-pixel, therefore
representing only discrete pixel structure of the detector.

The second effect evident in the data in the figures 5.8 is systematically larger cross-
correlation with respect to the autocorrelation. The explanation may be the fact, that al-
though the camera was placed relatively far from the crystal (38.5 cm), it might still not be
enough to reach exact far-field condition. This could be solved using Fourier lens in 2f con-
figuration to perform Fourier transform of output fields and artificially moving the detector
into the true far-field.

The most important is however the correspondence between width of intensity corre-
lation function in high-gain regime and width of coherence area obtained at single-photon
regime indicated in plots in the figures 5.8 with dashed magenta lines. This coincidence
can be considered as an experimental evidence, that correlation function measured in both
regimes represent the same physical phenomenon.

Next, the dependence of correlation function on pump beam diameter was investigated.
Our experimental observation proved, that the radial profile of both autocorrelation and
cross-correlation functions ∆Γξ do not significantly depend on pump beam diameter. Nev-
ertheless, in the azimuthal direction both correlation functions follow roughly hyperbolic
dependence, as was expected. Since these results are consistent with theory developed for
single-photon regime, it further links both regimes and serves as an additional confirmation,
that coherence areas and speckles originates from the same nonlinear effect.

5.5 Summary

The very same experimental setup was used in order to demonstrate transition between low-
gain regime characteristic by low number of photons per mode and high-gain regime, where
the partial coherence macroscopic fields in each mode causes formation of typical speckle
pattern. It was found, that the cross-correlation functions are in both regimes almost identi-
cal, since they both originate from the same non-linear phenomenon.

In contrast to the cross-correlation functions, which represent internal coherence be-
tween generated fields (signal and idler) and are given by spontaneous emission, the coher-
ence in each field (signal or idler itself) represented by the autocorrelation function is caused
by the stimulated process. Because of that the width of the autocorrelation functions drops
down for low pump powers and is zero in low-gain regime.

Finally, the dependencies of intensity auto and cross-correlation functions on pump power
and beam diameter in high-gain regime were investigated. It was found, that the dependen-
cies follow behaviour expected from the theoretical model developed for single-photon level,
confirming the correspondence between both regimes.
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6
Luminescence of Nonlinear Materials

The non-parametric luminescence of BBO crystals will be studied in this chapter as
a source of non-removable noise inevitably accompanying process of spontaneous paramet-
ric down-conversion. The problem of luminescence of nonlinear crystals will be addressed
through time-resolved spectroscopy. Both spectral and temporal properties of generated
field will be analysed in order to propose optimal strategy for potential filtering of the lu-
minescence. By filtering out the luminescence, the signal-to-noise ratio in the experiment
involving parametric down-conversion can be improved. Finally, the impact of luminescence
noise on a single-photon source based on spontaneous parametric down-conversion will be
estimated.

This research was highly motivated by our needs. Most of experiments performed in our
laboratories use parametric down-conversion and the noise level is crucial for obtaining high
quality results. This investigation was published in paper by Machulka et al. [106], where
one can also find additional information.

6.1 Introduction

In previous chapters it was shown, that the process of parametric down-conversion (SPDC)
in nonlinear media is well established source of optical fields correlated in many degrees of
freedom.

Independently on the application, the success of any operation on correlated photons
is achieved if and only if the two used photons originate from the same pair. This pro-
cess however suffers from an inherent source of noise, the non-parametric luminescence
of the medium itself, generated by the very same pump beam. Since both the SPDC and
the luminescence are superimposed, it makes it complicated, if even possible, to separate
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them from each other. Such non-removable noise will have consequently impact on qual-
ity of prepared single-photon state. In quantum cryptography, it can for instance lead even
to security breach90. In quantum metrology, on the other hand, it can negatively influence
the precision of the required measurement107.

The scope of our study was to investigate spectral and temporal properties of lumines-
cence, which can be afterwards used for effective filtering and also to roughly investigate its
influence on typical single-photon source. As a nonlinear medium, β-BaB2O4 (BBO) crys-
tals were used, since they are prominent material often used in nonlinear optics especially
in UV region108,109, where the problem with luminescence is dominant. Moreover, the BBO
crystals are also frequently used to build second- and third-harmonics generators or para-
metric amplifiers, so the BBO induced luminescence may get to the experimental setup from
the pumping laser system, even though no BBO crystal is used in the main setup.

This problem can be solved by shifting towards longer pump wavelengths, where as will
be shown later the luminescence is no longer present. Nevertheless, in some situations
the use of shorter pump wavelength is crucial as have been demonstrated several times40,59.
One example of great importance of using pump in UV region is to reach maximum detection
efficiency of detector at about 550 nm110, which is among others important in quantum key
distribution, where it guarantees security of the protocol111,112.

Luminescence of BBO material has been already discussed in some papers113–115. These
publications however focus on thermally stimulated luminescence113,114 or impurities in BBO
powders only115.

6.2 Experiment

This section will contain information regarding the setup used for experimental character-
ization of the luminescence. Detailed description of a streak camera as a very fast detector
will be given.

6.2.1 Experimental Setup

Used experimental setup is depicted in the figure 6.1. This setup was designed to simu-
late typical configuration used for common photon pairs generation, and therefore analyse
the luminescence as it would contribute to the signal.

As a laser source, an optical parametric amplifier (OPA) pumped by amplified femtosec-
ond Ti:Sapphire oscillator was used. The OPA generated pump beam with typical power
about 100mW, repetition rate 1 kHz, and pulse duration less than 150 fs with central wave-
length ranging from 240 nm to 300 nm. Additional advantage in using OPA was presence of
second beam at double wavelength (with respect to the output one) and the possibility to use
it as a seed for stimulated generation, which significantly simplified the alignment.

At the beginning, the pump beam passed through neutral density filter (NDF) and half-
wave plate (HWP) allowing to set required pump power and polarization. After that, beam
impinged BBO crystal, where it induced both the SPDC and the luminescence. The BBO
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Figure 6.1: Sketch of the experimental setup for time-resolved spectroscopy.
NDF: neutral density filter, HWP: half-wave plate, BBO: BBO crystal, LP: linear
polarizer, FC: fiber coupler.

crystal was mounted on a rotation stage allowing for the crystal to be oriented in such a way,
that spectrally-degenerate Type I component of SPDC was always emitted in the direction
of a fixed fiber coupler. Here, the seeded generation was used to help with this alignment
for different pump wavelengths. The fiber coupler was equipped with linear polarizer (LP)
allowing for the polarization analysis of the signal to be performed. Finally, the collected
light was sent to a detector via multi-mode optical fiber.

As a detector, two different devices were used. First, the signal was analysed with simple,
but high sensitive grating spectrometer QE65Pro (Ocean Optics) and after alignment check
and preliminary spectral analysis, the signal was analysed with a streak camera (Hama-
matsu). The streak camera itself was equipped with Czerny-Turner spectrograph, where
the signal was spectrally decomposed in horizontal direction, while in vertical direction, it
was separated in time by the streak tube itself. Consequently, the image with spectral res-
olution in horizontal and time resolution in vertical axis was captured. Typical record of
the signal from streak camera is depicted in the figure 6.2, where both parametric and non-
parametric processes can be identified.

6.2.2 Streak Camera

Streak camera is apparatus capable of monitoring ultra-fast modulation of optical intensity
up to hundreds of femtoseconds by transforming the time profile of the pulse into the spatial
profile. As the CCD (as a final part of detection chain) is in general two dimensional detec-
tor, it provides simultaneous information about two different components, time and spatial
profile (however only in one dimension) of the incident pump pulse. In our case the streak
camera is equipped with monochromator, where the remaining spatial profile is transformed
into the spectral profile, resulting in spectrometer with time resolution.

Essentially, the streak camera is very similar to the iCCD camera and in some sense it
is also similar to a monochromator also. In default configuration it consists of a streak tube
responsible for the time resolution and standard CCD chip (see figure 6.3 for schematic il-
lustration). The light that impinges the camera through adjustable slit strikes the photocath-
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Figure 6.2: Typical readout image from streak camera in one particular timewin-
dow (10 µs). Red rectangles represent regions of interest, where signal belonging
to SPDC and luminescence, respectively can be identified.
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Figure 6.3: Schematic illustration of operation of the streak camera with-
out monochromator. (a) Input pulse time profile. (b) Schematic sketch of
the streak camera. SL: time slit, PC: photocathode, MS: accelerating mesh elec-
trode, ST: streak tube, and MPC: micro-channel plate, phosphor screen, and CCD
chip. (c) Final image on CCD chip, corresponding to input (a).

ode, which is responsible for the spectral sensitivity and quantum efficiency of the camera.
The width of this slit determines the width of the instrument function, therefore the resolu-
tion of the streak camera in the time domain.

Emitted photo-electrons are accelerated through the streak tube with pair of large elec-
trodes capable of generating variable electric field in direction perpendicular to the propa-
gation of the photo-electrons. This electric field, if applied, deflects the electrons from lin-
ear direction, where the deflection depends on applied voltage. Since the voltage rumps up
quickly after arrival of the optical pulse, the photo-electrons corresponding to the begin-
ning of the optical pulse are deflected less than the ones corresponding to the pulse tail.
The photo-electrons afterwards hit the phosphor screen, where they cause an optical flash,
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which is detected by standard CCD chip. The stream of photo-electrons can be, as in our
case, amplified by micro-channel plate (MCP) resulting in single-photon sensitivity.

6.3 Results

Using experimental apparatus described above, the spectral and temporal properties of light
generated in the nonlinear crystal were obtained for various settings of pump polarization,
power, and wavelength. Some measurements were performed also with different crystals. If
not mentioned otherwise, the pump wavelength was set to 267 nm as a common wavelength
in UV region (the fourth harmonic of Nd:YAG and the third harmonic of Ti:Sapphire laser)
at a maximal power (about 100mW) and used nonlinear crystal was 8×8×5mm3 BBO crys-
tal (Eksma) with cut angle 48°, with front surface oriented perpendicularly with respect to
incident beam (emission angle about 4°).

6.3.1 Combined Measurements

This section will summarize spectral and time properties of both generated fields, the SPDC
and the luminescence, while the later measurements will focus only on the luminescence.

Time-Integrated Spectral Profiles

At the beginning, the spectral profiles of both parametric and non-parametric processes were
analysed with no time resolution using a simple grating spectrometer. The scope of this
analysis was to identify spectral profiles belonging to each parametric and non-parametric
processes, and thus find an optimal spectral setting for the streak camera for further mea-
surements. The resulted spectral profiles are depicted in the figure 6.4. First, the pump polar-
ization satisfying the phase-matching condition was used. In this configuration, a spectral
profile with two features was observed with grating spectrometer. After that, the polar-
ization was rotated using half-wave plate (HWP) so the phase-matching condition was no
longer fulfilled. In this case, the peak corresponding to SPDC disappeared and only lumi-
nescence remained. Finally, the polarization was rotated back and linear polarizer (LP) was
inserted in front of the fiber coupler (FC) to prevent linearly polarized SPDC signal from
entering. Also in this case SPDC was filtered out, however the luminescence was reduced
to only about a half, since its polarization is mixed. From this results it can be stated, that
a significant spectral overlap exists between these two processes at this particular pump
wavelength (267 nm).

Time-Resolved Measurements

Using streak camera, one can obtain time resolved spectral profiles as shown in the figure 6.2.
The camera itself can operate in several time windows ranging from ms to ns, from which
two (10 ns and 10 µs) were found the most suitable. In order to separate the SPDC and lumi-
nescence on the output image for processing, two region of interest (ROIs) were defined, as
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Figure 6.4: Combined time-integrated spectra measured with QE65Pro spec-
trometer under different experimental conditions: Both SPDC and luminescence
signals (blue line), SPDC turned off by rotating the half-wave plate (red line), and
SPDC is blocked from entering the coupler by linear polarizer (green line).
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Figure 6.5: Spectral (a) and temporal (b) profiles of combined signal captured
with streak camera in operate mode (as the one depicted in the figure 6.2). Data
are obtained after appropriate integration over full image (blue curve), region of
interest corresponding to SPDC signal (red line) and luminescence (green line).

schematically shown in the figure 6.2. Figure 6.5 displays spectral and temporal properties
of separated as well as combined processes according to appropriate ROI.

6.3.2 Spectral Properties

During previous analysis, a spectral overlap between SPDC and luminescence at one partic-
ular wavelength was shown. To complete the analysis, the spectral profile of luminescence
as it depends on pumpwavelength and power was also investigated (see figure 6.6). Based on
these results it can be stated, that spectral profiles of luminescence does not depend on nei-
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Figure 6.6: Renormalized luminescence spectra as a function of pump wave-
length (at maximal power of 100mW) (a) and power (with pump wave-
length 267 nm) (b).

ther the pumpwavelength, nor the pomp power. Presented profiles have asymmetrical shape
with maxima at about 430 nm. Since the SPDC (degenerate frequency) is emitted always at
double wavelength with respect to the pump, it can be concluded, that in experimentally
accessible spectral range from 240 nm to 290 nm, the luminescence will be always superim-
posed to the SPDC with maximal overlap at pump wavelength at approximately 215 nm.

From the perspective of luminescence and SPDC separation and thus noise reduction,
there are two possibles strategies. The first one is to shift pump wavelength towards longer
wavelengths until the spectral overlap is negligible. The second one is to use long pass edge
or interference filter to cut off as much luminescence as possible. As the first option might
not be optimal, if even accessible, from an experimental point of view (source and optical
elements availability, detector quantum efficiency, etc.), the second one is usually widely
used even though the luminescence can not be filtered completely and despite the fact, that
each filter also introduce additional losses to the system due to its non-unitary transmittance.

It can be therefore concluded, that no spectral filtering in this region can be used to
eliminate the luminescence as a noise for SPDC based single photon sources, as it can only
reduce its intensity to some extent, while introducing a signal losses at the same time.

6.3.3 Temporal Properties

While the photons in parametric processes are emitted almost instantaneously as the pump
pulse is propagating through the crystal, the non-parametric processes are typically delayed
with long exponential decay. This difference is caused by the fact that in parametric process,
the transition is described by electron transitions through the virtual energy levels, whereas
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Figure 6.7: Exponential fit of data measured in short (a) and long (b) time win-
dow showing decay processes characterized by their time constants τ1, τ2, and τ3
together with the instantaneous SPDC emission having the time duration of in-
strument response function (IRF).

in non-parametric processes the luminescence is product of electronic relaxation from ex-
cited real energy levels.

This effect of different decay times was already evident from time resolved measurements
depicted in the figure 6.5, where sharp peak corresponding to the SPDC with width of in-
strument response function together with long time emission with characteristic exponential
decay time can be identified. The typical exponential decay time is characterized by its time
constant τ , a time period, in which the intensity falls to 1/e of its initial value. This constant
can be obtained from experimental data by fitting the exponential function I(t) = I0e

−τt on
the data. In the case of multi-exponential decay, the fitting function gets form

I(t) =
∑

I
(i)
0 e−τit. (6.1)

Using two different time windows, three different processes with three different decay
times were identified (see figure 6.7). The first decay process was observed having short
decay time τ1 = 0.73 ns, while others two have decay times in order of µs, τ2 = 1.85 µs
and τ3 = 9.95 µs, all obtained with relative error about 7 %.

Aswell as for the spectral profiles, also a time properties were analysed for different pump
wavelengths and powers. From obtained results no dependence of time decay constants on
pumpwavelength or pump power was observed. As an example, the figures 6.8 and 6.9, show
decay processes for decay time τ2 as a function of pump wavelength and power, respectively.

Also here as well as in the case of spectral properties, an optimal strategy for noise reduc-
tion based on timing can be discussed. The signal is usually detected in a time interval called
detection window. Using detection window short enough one may be able to sufficiently
reduce the non-parametric processes. However, the detection windows are rarely shorter
than units of ns, and therefore the fastest decay process with decay time τ1 would not be
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Figure 6.8: Decay processes as a function of pumpwavelength. Both exponential
fits (a) and derived time constants (b) are presented. In figure (a) the dots represent
acquired data, while the lines represent analytic exponential fit.
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Figure 6.9: Decay processes as a function of pump power. Both exponential
fits (a) and derived time constants (b) are presented. In the figure (a) the dots
represent acquired data, while the lines represent analytic exponential fit.
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Eksma 48° Eksma 50° Caston 37° Caston 48°
8×8×5mm3 8×8×5mm3 10×8×8mm3 8×8×6mm3

τ2 = 1.71 µs τ2 = 1.88 µs τ2 = 1.06 µs τ2 = 1.09 µs

Table 6.1: Table of crystals used for purposes of presented study specified by
their manufacturer, cut angle and dimensions (w×h×l) together with resulting
decay time τ2.

significantly affected. Other drawback of such gating is necessity to reduce repetition rate
of the laser (not detection, but the laser itself) to allow the luminescence to extinguish before
new detection window is opened. This would, if considering the longest decay process char-
acterized with decay time τ3, allows for the repetition rate of the experiment to be maximally
about 100 kHz. Finally, this strategy is suitable for pulse laser sources only.

6.3.4 Different Crystals

So far the results obtained by measuring only one crystal were presented. It can be however
suspected, that they may vary in some extent if different crystal would be used. To cover
this issue, some of performed measurements were therefore repeated with different crystals
of two manufacturers, Eksma and Caston. The results for all used crystals are listed in the ta-
ble 6.1. As can be seen Eksma crystals possess a little bit longer decay times τ2, which can be
seen as a advantage from the perspective of time gating. Concerning the spectral properties,
the results showed no significant differences.

6.3.5 Intensity Properties

Based on previous analysis it was stated, that neither spatial filtering nor time gating can be
utilized in order to sufficiently reduce the luminescence induced noise from the SPDC signal,
and thus a non-negligible amount of luminescence remains superimposed to the signal. In
this section, the influence of such noise will be quantified using simple model of heralded
single photon source based on SPDC5,23,116,117.

Assuming an ideal heralded single photon source, the signal photon can be found in
pure Fock state |1⟩⟨1| every time, the heralding (idler) photon is detected. However, due to
the presence of luminescence induced noise, the signal photon will be generated in a mixed
state characterized by a density matrix ρ̂

ρ̂ =
1

N
(p0|0⟩⟨0|+ p1|1⟩⟨1|+ p2|2⟩⟨2|) , (6.2)

where N = p0 + p1 + p2 represents the normalization factor. The first vacuum term |0⟩⟨0|
describes the situation, when a luminescence photon in idler mode is detected without being
accompanied by any photon in signalmode, and thus causes a false heralding. The probability
of this scenario can be expressed as p0 = pl(1− ps), where pl and ps denotes probabilities of
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Experimental condition Cs Cl SNR F

(i) no filtering 2.225 1.343 1.657 0.624
(ii) spectral filtering 2.176 0.489 4.450 0.820
(iii) spectral & time filtering 2.077 0.024 86.572 0.989

Table 6.2: Measured values of SPDC and luminescence counts (in units of 1010)
under various spectral filtering and time gating. Resulting calculation of SNR and
fidelity F is also presented.

generation luminescence and SPDC photons, respectively. The desired second term appears
with success probability p1 = ps(1−pl). The last term |2⟩⟨2| characterizes a situation, where
both SPDC and luminescence photons being generated in signal mode simultaneously with
probability p2 = pspl.

Let it be noted, that due to low conversion efficiency of SPDC the probability of more
than one photon pair to be generated in one detection window was neglected. Also, since
the luminescence photon rate is of the same order or lower than the generation rate of SPDC,
the probability of simultaneous generation of two luminescence photons in a single detection
window could thus be also neglected.

The quality of generated quantum state is usually expressed using the fidelity quantity F ,
which for our case takes a form

F =
p1

p0 + p1 + p2
=

ps(1− pl)
ps(1− pl) + pl

. (6.3)

As it was already demonstrated, the SPDC and luminescence intensity can be obtained sepa-
rately via integrating over appropriate regions of interest. Doing so an SPDC-to-luminescence
count ratio or signal-to-noise ratio SNR can be determined as

SNR =
Cs

Cl

=
ps
pl
, (6.4)

where Cs and Cl denotes SPDC and luminescence counts, respectively. Using equation 6.4,
the fidelity can be now expressed in term of SNR as

F =
SNR− Ps

SNR + 1− Ps

≈ SNR

SNR + 1
, (6.5)

where the last approximation holds for low generation probabilities.
To calculate value of fidelity, three different scenarios were chosen: (i) no spectral filtering

or time gating, (ii) spectral filtering only by a long-pass edge filter with cut-off edge at 460 nm,
and (iii) both spectral filtering and time gating, where both spectral filtering and time gating
were chosen to provide the best possible SNR. In all cases, an experimentally obtained SNR
were used and values of fidelity were calculated according to formula (6.5). The results are
summarized in the table 6.2. As can be seen, without any filtering the fidelity, and therefore
the quality of single photon source is significantly reduced. Only when both spectral and
temporal filtering were adopted, the fidelity approaches its theoretical limit F = 1. With
spectral filtering alone, about half of this improvement can be achieved.
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6.4 Summary

In this chapter, an experimental study of luminescence induced noise of nonlinear BBO crys-
tals in SPDC-based single photon sources was presented. It was shown, that non-negligible
spectral overlap exists between luminescence and SPDC signal for pump wavelength from
region from 240 nm to 290 nm resulting in impossibility to spectrally separate the SPDC from
the luminescence. It was also shown, that polarization projection can not be utilized neither
in order to purify the source.

After that, a temporal characteristics of luminescence has been measured. It was found,
that there exist fast (ns) and slow (µs) decay processes, whereas only the slow ones could
be removed by typical time gating. Different behaviour of different crystals from different
manufacturers was also studied.

The last section of this research was denoted to simple quantitative characterization of
single photon source quality through its fidelity with desired state. It was shown, that only
both spectral filtering together with time gating can remove the luminescence induced noise
to the extent, where the fidelity reaches unity.
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Conclusion

In this thesis, the second-order nonlinear phenomena have been studied. It was shown,
that modern photonic devices based on guiding structures have a great potential as a fu-
ture replacement of commonly used bulk crystals. This statement is justified due to their
higher conversion efficiencies and possibility of monolithic integration into more complex
photonic circuits. Generation of correlated photon pairs in bulk sources by parametric down-
conversion was demonstrated experimentally several times in this thesis. These pairs were
used to synthesize more complex entangled states, which were afterwords used to demon-
strate non-classicality of these states. Another application of generated pairs was to study
the connection between different intensity regimes, which can be eventually beneficial for
future development in field of quantum communications.

The nonlinear phenomena were introduced in chapter 1, where the nonlinear wave equa-
tion was derived. This equation was afterwards used to derive coupled differential equations
for two second-order nonlinear processes, the process of second-harmonic generation and
spontaneous parametric down-conversion. Influence of phase-mismatch factor in obtained
equations was thoroughly discussed and several approaches for its compensation were ad-
dressed. Finally, a real experimental techniques involving bulk crystals and waveguides were
studied.

In chapter 2, the experimental characterization of second-harmonic generation in period-
ically-poled KTP waveguide was presented. It was experimentally demonstrated, that three
different types of nonlinear interactions can be generated simultaneously utilizing different
orders of periodic nonlinearity modulation. It was also shown, that due to broad spectrum of
pulsed pump, the second-harmonic field is generated with rich spectral and spatial structure.
However, the possibility to select only one particular interactionwas also demonstrated. Fur-
ther to that, the imperfection during the fabrication was considered. Analysed waveguide
was in the end found to be a versatile source of second-order nonlinear precesses.

In the next chapter 3, a special type of quantum correlations, so-called quantum entan-
glement, was introduced. In the first theoretical part, Bell’s like inequalities were discussed
together with quantum tomography as an experimental tools to characterize particular state
and distinguish, whether the state is classical or quantum. The second part was afterwords
devoted to experimental generation and characterization of full set of maximally entangled
Bell’s states using Kwiat’s source. Density matrices of generated states were then determined
using polarization tomography and their quantumness was verified by violation of Bell’s like
CHSH inequality.
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In chapter 4, generation of non-classical states in AlGaAs based Bragg reflection waveg-
uide was studied. It was shown, that these structures posses many advantages with respect
not only to common bulk crystals, but also to periodically-poled materials. The main advan-
tages are extremely high nonlinearity leading to high conversion efficiency and therefore
bright sources, and their great potential for further integration, which benefits from mature
AlGaAs growth technologies. Even though the material is isotropic, a modal phase-matching
between two different guided modes was demonstrated. After that, the quantumness of gen-
erated field was again verified by CHSH inequality violation.

Chapter 5 showed connection between different intensity regimes of parametric down-
conversion generated in ordinary bulk BBO crystal. Here, the spatial correlations proper-
ties were studied in fields generated under two different conditions. First, the crystal was
pumped by laser beam with such intensity, that generated fields consisted of individual pho-
ton pairs. In this case, the spatial correlations are demonstrated by existence of so-called cor-
relation areas. Next, the pump power was increased to generate macroscopic fields, where
the same phenomenon is manifested by creating typical speckle pattern. Using detector with
very large dynamic range, the very same experimental setup was used in both cases. Since
the cross-correlation functions in both regimes were found almost identical, it was proven,
that they both originate from the same non-linear phenomenon. Also the dependencies of
intensity autocorrelation and cross-correlation functions on pump power and beam diameter
in high-gain regime were investigated. It was found, that these dependencies follow the be-
haviour expected from the theoretical model developed for single-photon level, which links
both regimes even further.

In the next chapter 6, the experimental study of non-parametric process of luminescence
induced noise of nonlinear BBO crystals was presented. Non-negligible spectral overlap
with signal generated by parametric down-conversion was demonstrated at wavelengths
typical for our experiments. After that, the temporal characteristics of the luminescencewere
measured, giving their typical time constants. Based on these measurements, an optimal
strategy for filtering off the luminescence was discussed. It was shown, that due to fast
decay, neither time gating, if available, is sufficient to remove this source of noise. Because
of that, the influence of such noise on a simple single photon source based on parametric
down-conversion was quantified. It was shown how different filtering strategies affect final
fidelity with respect to the ideal single photon state.

Outlook

Regarding the future work, we will continue in experiments involving parametric down-
conversion. The special attention will be given to spatial and spectral correlations of gener-
ated fields. We are especially interested in high intensity regime with typical speckle pat-
tern. Currently, we are working on experiments exploring so-called x-waves as a product
of spectral decomposition of generated fields by a dispersive element. We are also trying to
reproduce some standard quantum-optical experiments with intense fields such as exploring
quantum correlations of tripartite systems, for instance.
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Conclusion in Czech

V této práci byly studovány nelineární jevy druhého řádu. Jak bylo ukázáno, moderní
fotonické struktury mají velký potenciál nahradit běžně používané objemové krystaly. Toto
tvrzení je podloženo jejich vyššími konverzními účinnostmi a možnostmi jejich integrace do
složitějších optických obvodů. Byla zde několikrát experimentálně demonstrována generace
korelovaných fotonových párů. Tyto páry byly následně použity pro syntézu složitějších
entanglovaných stavů, jejichž neklasičnost byla rovněž experimentálně potvrzena. Generace
korelovaných optických polí v procesu sestupné konverze v klasickém objemovém krystalu
byla studována z pohledu souvislosti různých intenzitních režimů.

Základní úvod do nelineární optiky, zejména do nelineárních jevů druhého řádu, byl ob-
sahem kapitoly 1. Z nelineární vlnové rovnice byly odvozeny vázané diferenciální rovnice
popisující vývoj interagujících polí pro procesy generace druhé harmonické a parametrické
sestupné frekvenční konverze. Na těchto příkladech byl demonstrován vliv fázového faktoru,
na účinnosti těchto procesů. Dále byla ukázána některá řešení, jak tento fázový člen minima-
lizovat a tím docílit fázového sladění. Následně byly prezentovány vlastní experimenty pro
generaci nelineárních jevů s využitím jak objemových krystalů, tak vlnovodných struktur.

Kapitola 2 obsahovala experimentální charakterizaci periodicky pólovaného vlnovodu
promocí procesu generace druhé harmonické frekvence. Bylo experimentálně ukázáno, že
takováto struktura může díky vyšším harmonickým frekvencím periodického pólovaní ge-
nerovat všechny tři kombinace interagujících polarizací. Dále bylo ukázáno, že díky širokému
spektru pulzního čerpacího pole bylo možné generovat celou škálu jednotlivých procesů li-
šících se jak spektrálními, tak módovými profily interagujících polí. Nicméně bylo demon-
strováno, že vhodnou filtrací je možné tyto procesy izolovat. Na závěr byl rovněž diskutován
vliv nedokonalostí výrobního procesu na vlastnosti generovaných polí. Celkově bylo uká-
záno, že periodicky pólované vlnovody jsou vhodným zdrojem nelineárních procesů nejen
díky jejich vysoké konverzní účinnosti, ale i značné univerzálnosti.

Kapitola 3 se věnovala entanglementu jako specifickému typu kvantových korelací. První
část byla věnována teoretickému rozboru. Dále byly zavedeny Bellovy nerovnosti, které lze
použít jako kritérium neklasičnosti, tj. rozlišení, nalézá-li se zkoumaný systém v klasickém
či kvantovém stavu. Mimo to byla prezentována metoda kvantové tomografie založená na
metodě maximální věrohodnosti jakožto experimentální nástroj pro kompletní analýzu stu-
dovaného stavu. Druhá část byla věnována vlastnímu experimentu věnujícímu se generaci
kompletní sady Bellových stavů jakožto maximálně entanglovaných dvojfotonových stavů
světla. Pro jejich generaci by využit Kwiatův zdroj. Pomocí polarizační kvantové tomografie
byly získány matice hustoty generovaných stavů, jejichž neklasičnost byla experimentálně
demonstrována porušením Bellových nerovností.
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Generace neklasických stavů světla byla obsahem i následující kapitoly 4. Zde byl však
použit tzv. Braggův vlnovod. Nejdříve byl studován prostorový profil vedeného módu a dis-
kutovány hlavní výhody takovýchto struktur z nichž nejdůležitější je vysoká konverzní účin-
nost a značný potenciál pro integraci do monolitických optických čipů, zejména díky pokro-
čilým výrobním technologiím. Dále byl prezentován způsob fázového sladění v takovýchto
izotropních polovodičových materiálech založený na interakci různých vedených módů. Na-
konec byla demonstrována jejich schopnost generovat neklasické stavy světla, což bylo ově-
řeno opět pomocí porušení Bellových nerovností.

Kapitola 5 popisuje spojitost mezi různými intenzitními režimy sestupné parametrické
konverze generované v klasických objemových BBO krystalech. Konkrétně byly studovány
prostorové korelace generovaných polí v režimu nízkého a vysokého zisku, tj. pro slabé
a silné čerpání. V prvním režimu slabého čerpání byla generovaná pole tvořena jednotlivými
fotony, zatímco v druhém silným makroskopickým polem s typickou strukturou koherenční
zrnitosti. Díky detektoru s vysokým dynamický rozsahem bylo možné v obou režimech po-
užít totéž experimentální uspořádání. Fakt, že vzájemné korelační funkce jsou v obou reži-
mech prakticky totožné lze brát jako potvrzení toho, že chování v obou režimech je řízeno
stejným nelineárním procesem. Dále bylo zkoumáno chování korelačních funkcí v závislosti
na parametrech čerpacího svazku. Vzhledem k tomu, že i tyto závislosti kopírovaly předpo-
vědi učiněné pro režim nízkého zisku, lze i to chápat jako další potvrzení souvislosti mezi
jednotlivými režimy.

Následující kapitola 6 byla věnována neparametrické luminiscenci, jakožto zdroji neod-
stranitelného šumu doprovázejícího sestupnou parametrickou konverzi. Na námi typicky po-
užívaných vlnových délkách byl ukázán nezanedbatelný spektrální překryv obou procesů.
Studiem časových charakteristik luminiscence bylo následně ukázáno, že ani pomocí detekce
v časově omezených oknech není možné tento šum zcela odstranit. Na základě získaných vý-
sledků pak byla diskutována optimální strategie pro maximální odstínění tohoto parazitního
jevu. Vzhledem k tomu, že luminiscenci lze odstínit jen částečně, byl vytvořen jednoduchý
model pro kvantitativní analýzu vlivu takového šumu na přesnost generace jednofotonových
stavů.

xx



List of Author’s Publications

The First Author
• R. Machulka, J. Svozilík, J. Soubusta, J. Peřina, Jr., and O. Haderka: “Spatial and spectral

properties of fields generated by pulsed second-harmonic generation in a periodically poled
potassiumtitanyl-phosphate waveguide”. Physical Review A 87, 013836 (2013).

• R. Machulka, J. Svozilík, J. Soubusta, J. Peřina, Jr., and O. Haderka: “Spatial and spec-
tral properties of second harmonic generation in a periodically poled KTP waveguide” in
“Wave and Quantum Aspects of Contemporary Optics”. Proceedings of SPIE 8697,
86972 (2013).

• R. Machulka, O. Haderka, J. Peřina, Jr., M. Lamperti, A. Allevi, and M. Bondani: “Spa-
tial properties of twin-beam correlations at low- to high-intensity transition”. Optics
Express 22, 11, 13374–13379 (2014).

• R. Machulka, K. Lemr, O. Haderka, M. Lamperti, A. Allevi, and M. Bondani: “Lumi-
nescence-induced noise in single photon sources based on BBO crystals”. Journal of
Physics B: Atomic Molecular and Optical Physics 47, 21, 215501 (2014).

Co-Author
• F. Sciarrino, G. Vallone, G. Milani, A. Avela, J. Galinis, R. Machulka,
A.M. Perego, K.Y. Spasibko, A. Allevi, and M. Bondani: “High degree of entanglement
and nonlocality of a two photon state generated at 532 nm”. European Physics Jour-
nal: Special Topics 199, 1, 111–125 (2011).

• A. Valles, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B.J. Bijlani,
A.S. Helmy, and J.P. Torres: “Generation of polarization-entangled photon pairs in Bragg
reflection waveguide”. Optics Express 21, 9, 10841–10849 (2013).

• A. Allevi, M. Lamperti, M. Bondani, J. Peřina, Jr., V. Michálek, O. Haderka, and R. Ma-
chulka: “Characterizing the nonclassicality ofmesoscopic optical twin-beam states”. Phys-
ical Review A 88, 6, 063807 (2013).

• M. Lamperti, A. Allevi, M. Bondani, R. Machulka, V. Michálek, O. Haderka, and J. Pe-
řina, Jr: “Optimal sub-Poissonian light generation from twin beams by photon-number
resolving detectors”. Journal of the Optical Society of America B: Optical Phys-
ics 31, 1, 20–25 (2014).

xxi



• M. Lamperti, A. Allevi, M. Bondani, R. Machulka, V. Michálek, O. Haderka, and J. Pe-
řina, Jr.: “Generation of sub-Poissonian non-Gaussian states from multimode twin beams
by photon-number-resolving detectors”. International Journal ofQuantum Infor-
mation 12, 1461017 (2014).

• A. Allevi, M. Lamperti, O. Jedrkiewicz, J. Galinis,R.Machulka, O. Haderka, J. Peřina, Jr.,
and M. Bondani: “Spatio-spectral characterization of twin-beam states of light for quan-
tum state engineering”. International Journal of Quantum Information 12, 7,
1560027 (2015).

xxii



References

1. R. W. Boyd: “Nonlinear optics” (Elsevier Science, 2008).
2. R. W. Boyd: “Topical review: Order-of-magnitude estimates of the nonlinear optical sus-

ceptibility”. Journal of Modern Optics 46, 367–378 (1999).
3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich: “Generation of optical har-

monics”. Physical Review Letters 7, 118–119 (1961).
4. D. A. Kleinman: “Nonlinear dielectric polarization in optical media”. Physical Review

126, 1977–1979 (1962).
5. D. C. Burnham, and D. L. Weinberg: “Observation of simultaneity in parametric produc-

tion of optical photon pairs”. Physical Review Letters 25, 84–87 (1970).
6. P. Malý: “Optika” (Karolinum, 2008).
7. A. Yariv, and P. Yeh: “Optical waves in crystals: Propagation and control of laser radia-

tion” (Wiley, 2002).
8. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan: “Interactions between

light waves in a nonlinear dielectric”. Physical Review 127, 1918–1939 (1962).
9. T. H. Maiman: “Stimulated optical radiation in ruby”. Nature 187, 493–494 (1960).
10. K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. D. Rossi, M. Calligaro, V. Ortiz, and

V. Berger: “Second-harmonic generation through optimized modal phase matching in
semiconductor waveguides”. Applied Physics Letters 83, 620–622 (2003).

11. R. L. Sutherland: “Handbook of nonlinear optics” (Taylor & Francis, 2003).
12. K. Chikuma, and S. Umegaki: “Characteristics of optical second harmonic generation due

to Čerenkov radiation type phasematching”. Journal of Optical Society of America
B 7, 768–775 (1990).

13. M. J. Li, M. de Micheli, Q. He, and D. B. Ostrowsky: “Čerenkov configuration second har-
monic generation in proton-exchanged lithium niobate guides”. IEEE Journal ofQuan-
tum Electronics 26, 1384–1393 (1990).

14. O. Sugihara, S. Kunioka, Y. Nonaka, R. Aizawa, Y. Koike, T. Kinoshita, and K. Sasaki:
“Second-harmonic generation by Cerenkov-type phasematching in a poled polymerwaveg-
uide”. Journal of Applied Physics 70, 7249–7252 (1991).

15. V. Vaičaitis: “Cherenkov-type phase matching in bulk KDP crystal”. Optics Communi-
cations 209, 485–490 (2002).

xxiii



16. G. D. Boyd, andD. A. Kleinman: “Parametric interaction of focused gaussian light beams”.
Journal of Applied Physics 39, 3597–3639 (1968).

17. C. Yeh, and F. Shimabukuro: “The essence of dielectric waveguides” (Springer, 2008).
18. R. Machulka, J. Svozilík, J. Soubusta, J. Jan Peřina, and O. Haderka: “Spatial and spec-

tral properties of fields generated by pulsed second-harmonic generation in a periodi-
cally poled potassium-titanyl-phosphate waveguide”. Physical Review A 87, 013836–9
(2013).

19. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer: “Quasi-phase-matched second
harmonic generation: tuning and tolerances”. IEEE Journal ofQuantum Electronics
28, 2631–2654 (1992).

20. M. M. Fejer, G. A. Magel, and E. J. Lim: “Quasi-phase-matched interactions in lithium
niobate”. in Proceedings SPIE: Nonlinear optical properties of materials (eds H. R. Schloss-
berg, and R. V. Wick) 1148 (1989), 213–224.

21. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe: “First-order quasi-phase matched
LiNbO3 waveguide periodically poled by applying an external field for efficient blue
second-harmonic generation”. Applied Physics Letters 62, 435–436 (1993).

22. N. E. Yu, S. Kurimura, and K. Kitamura: “Higher-order quasi-phase matched second har-
monic generation in periodically poled MgO-doped stoichiometric LiTaO3”. Journal of
Korean Physical Society 47, 636–639 (2005).

23. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. L. Migdall: “A versatile waveguide source
of photon pairs for chip-scale quantum information processing”. Optics Express 17,
6727–6740 (2009).

24. M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein: “Characterization of optical
waveguides in KTiOPO4 by second harmonic spectroscopy”. Journal ofApplied Physics
76, 4999–5006 (1994).

25. C. M. Kaleva, M. Munro, T. D. Roberts, T. Chang, and P. Battle: “Type II sum frequency
generation in KTP waveguides: a technique for pre and post screening”. in Proceedings
SPIE: Nonlinear frequency generation and conversion: Materials,devices,and applications
VII (ed P. E. Powers) 6875 (2008), 68751–8.

26. A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn: “Spatial
modes in waveguided parametric down-conversion”. Physical Review A 80, 033829–7
(2009).

27. M. Karpinski, C. Radzewicz, and K. Banaszek: “Experimental characterization of three-
wave mixing in a multimode nonlinear KTiOPO4 waveguide”.Applied Physics Letters
94 (2009).

28. P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn: “Direct measurement of the
spatial-spectral structure of waveguided parametric down-conversion”. Physical Review
Letters 103, 233901–4 (2009).

29. K. Banaszek, A. B. U’Ren, and I. A. Walmsley: “Generation of correlated photons in con-
trolled spatial modes by downconversion in nonlinear waveguides”. Optics Letters 26,
1367–1369 (2001).

xxiv



30. L. Mandel, and E. Wolf: “Optical coherence and quantum optics” (Cambridge University
Press, 1995).

31. A. W. Snyder, and J. Love: “Optical waveguide theory” (Springer, 1983).
32. J. D. Bierlein, A. Ferretti, L. H. Brixner, andW. Y. Hsu: “Fabrication and characterization

of optical waveguides in KTiOPO4”. Applied Physics Letters 50, 1216–1218 (1987).
33. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigel-

son: “Second harmonic generation and accurate index of refraction measurements in flux-
grown KTiOPO4”. Applied Optics 26, 2390–2394 (1987).

34. K. Kawano, and T. Kitoh: “Introduction to optical waveguide analysis: Solving Maxwell’s
equation and the Schrödinger equation” (Wiley, 2004).

35. I. Rubinstein, and L. Rubinstein: “Partial differential equations in classical mathematical
physics” (Cambridge University Press, 1998).

36. J. Jin: “Thefinite elementmethod in electromagnetics” (JohnWiley& Sons Canada,Limited,
2003).

37. A. B. Fallahkhair, K. S. Li, and T. E. Murphy: “Vector finite difference modesolver for
anisotropic dielectric waveguides”. Journal of Lightwave Technology 26, 1423–1431
(2008).

38. N.-E. Yu, J.-H. Ro, H.-K. Kim, M. Cha, I. Hatanaka, K. Nakamura, and H. Ito: “High
order quasi-phase-matched second harmonic generations in periodically poled lithium
niobate”. Journal of Korean Physical Society 35, 1384–1386 (1999).

39. M. F. Saleh, B. E. A. Saleh, and M. C. Teich: “Modal,spectral,and polarization entangle-
ment in guided-wave parametric down-conversion”. Physical Review A 79, 053842–10
(2009).

40. F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego,
K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni: “High degree of entanglement
and nonlocality of a two-photon state generated at 532 nm”. The European Physical
Journal 199. Special Topics, 111–125 (2011).

41. M. A. Nielsen, and I. L. Chuang: “Quantum information and quantum computation”
(Cambridge University Press, 2011).

42. H. J. Briegel, and R. Raussendorf: “Persistent entanglement in arrays of interacting par-
ticles”. Physical Review Letters 86, 910–913 (2001).

43. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello: “Distributed quantum compu-
tation over noisy channels”. Physical Review A 59, 4249–4254 (1999).

44. D. Bouwmeester, A. K. Ekert, and A. Zeilinger: “The physics of quantum information:
quantum cryptography,quantum teleportation,quantum computation” (Springer Pub-
lishing Company, 2010).

45. V. Giovannetti, S. Lloyd, and L. Maccone: “Advances in quantum metrology”. Nature
Photonics 5, 222–229 (2011).

xxv



46. T. B. Pittman, Y. H. Shih, D. V. Strekalov, andA. V. Sergienko: “Optical imaging bymeans
of two-photon quantum entanglement”. Physical Review A 52, 3429–3432 (1995).

47. M. I. Kolobov: “Quantum Imaging” (Springer New York, 2007).
48. E. Nagali, F. Sciarrino, F. D. Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santam-

ato: “Quantum information transfer from spin to orbital angular momentum of photons”.
Physical Review Letters 103, 013601–4 (2009).

49. A. Migdall: “Polarization directions of noncollinear phase-matched optical parametric
downconversion output”. Journal of the Optical Society of America B 14, 1093–
1098 (1997).

50. A. Einstein, B. Podolsky, and N. Rosen: “Can quantum-mechanical description of phys-
ical reality be considered complete?” Physical Review 47, 777–780 (1935).

51. J. S. Bell: “On the Einstein-Podolsky-Rosen paradox”. Physics 1, 195–200 (1964).
52. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt: “Proposed experiment to test local

hidden-variable theories”. Physical Review Letters 23, 880–884 (1969).
53. M. Genovese: “Research on hidden variable theories: A review of recent progresses”. Physics

Reports 413, 319–396 (2005).
54. M. Dušek: “Koncepční otázky kvantové teorie” (Univerzita Palackého, 2002).
55. W.H. Zurek: “Decoherence and the transition from quantum to classical”. Physics Today

44, 36–44 (1991).
56. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White: “Measurement of qubits”.

Physical Review A 64, 052312–15 (2001).
57. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J.

Pryde, and A. G. White: “Demonstration of a simple entangling optical gate and its use
in Bell-state analysis”. Physical Review Letters 95, 210504–4 (2005).

58. J. Řeháček, Z. Hradil, and M. Ježek: “Iterative algorithm for reconstruction of entangled
states”. Physical Review A 63, 040303–4 (2001).

59. Y. Nambu, K. Usami, Y. Tsuda, K.Matsumoto, andK. Nakamura: “Generation of polarization-
entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses”.
Physical Review A 66, 033816–10 (2002).

60. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih: “New
high-intensity source of polarization-entangled photon pairs”. Physical Review Let-
ters 75, 4337–4341 (1995).

61. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan: “Handbook of nonlinear optical
crystals” (Springer,Berlin, 1991).

62. P. G. Kwiat, E.Waks, A. G.White, I. Appelbaum, and P. H. Eberhard: “Ultrabright source
of polarization-entangled photons”. Physical Review A 60, 773–776 (1999).

63. C. H. Monken, P. H. R. Souto, and S. Pádua: “Transfer of angular spectrum and image
formation in spontaneous parametric down-conversion”. Physical Review A 57, 3123–
3126 (1998).

xxvi



64. T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro, and F. Verstraete:
“Maximal entanglement versus entropy for mixed quantum states”. Physical Review
A 67, 022110–12 (2003).

65. A. Vallés, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani,
A. S. Helmy, and J. P. Torres: “Generation of polarization-entangled photon pairs in a
Bragg reflection waveguide”. Optics Express 21, 10841–10849 (2013).

66. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito: “Absolute scale of second-order
nonlinear-optical coefficients”. Journal of the Optical Society of America B 14,
2268–2294 (1997).

67. B. J. Bijlani, and A. S. Helmy: “Bragg reflection waveguide diode lasers”.Optics Letters
34, 3734–3736 (2009).

68. J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T.
Kennedy, and W. Sibbett: “Modulation of the second-order nonlinear tensor components
in multiple-quantum-well structures”. IEEE Journal of Selected Topics inQuantum
Electronics 4, 695–700 (1998).

69. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle: “Phase matching using an
isotropic nonlinear optical material”. Nature 391, 463–466 (1998).

70. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. James S. Harris: “MBE growth of antiphase
GaAs films using GaAs/Ge/GaAs heteroepitaxy”. Journal of Crystal Growth 201-
202, 187–193 (1999).

71. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R.
Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, et al.: “Quasi phase matching
in GaAs–AlAs superlattice waveguides through bandgap tuning by use of quantum-well
intermixing”. Optics Letters 25, 1370–1372 (2000).

72. R. Haidar, N. Forget, and E. Rosencher: “Optical parametric oscillation in microcavi-
ties based on isotropic semiconductors: a theoretical study”. IEEE Journal ofQuantum
Electronics 39, 569–576 (2003).

73. D. Faccio, F. Bragheri, andM. Cherchi: “Optical Bloch-mode-induced quasi phase match-
ing of quadratic interactions in one-dimensional photonic crystals”. Journal of the Op-
tical Society of America B 21, 296–301 (2004).

74. A. S. Helmy, B. Bijlani, and P. Abolghasem: “Phase matching in monolithic Bragg re-
flection waveguides”. Optics Letters 32, 2399–2401 (2007).

75. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy: “Continuous-wave
second harmonic generation in Bragg reflection waveguides”. Optics Express 17, 9460–
9467 (2009).

76. J.-B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy: “Difference-frequency
generation in AlGaAs Bragg reflection waveguides”. Optics Letters 35, 2334–2336
(2010).

77. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs: “Monolithic
source of photon pairs”. Physical Review Letters 108, 153605–5 (2012).

xxvii



78. B. R. West, and A. S. Helmy: “Properties of the quarter-wave Bragg reflection waveguide:
theory”. Journal of the Optical Society of America B 23, 1207–1220 (2006).

79. P. Abolghasem, J.-B. Han, D. Kang, B. J. Bijlani, and A. S. Helmy: “Monolithic photonics
using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides”.
IEEE Journal of Selected Topics in Quantum Electronics 18, 812–825 (2012).

80. P. Yeh, and A. Yariv: “Bragg reflection waveguides”. Optics Communications 19, 427–
430 (1976).

81. A. S. Helmy: “Phasematching using Bragg reflection waveguides formonolithic nonlinear
optics applications”. Optics Express 14, 1243–1252 (2006).

82. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy: “Highly efficient
second-harmonic generation in monolithic matching layer enhanced AlGaAs Bragg re-
flection waveguides”. IEEE Photonics Technology Letters 21, 1462–1464 (2009).

83. N. Gisin: “Bell’s inequality holds for all non-product states”. Physics Letters A 154,
201–202 (1991).

84. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe: “Gen-
eration of maximally-polarization-entangled photons on a chip”. Physical Review A
85, 013838–6 (2012).

85. R. Machulka, O. Haderka, J. Jan Peřina, M. Lamperti, A. Allevi, andM. Bondani: “Spatial
properties of twin-beam correlations at low-to high-intensity transition”.Optics Express
22, 13374–13379 (2014).

86. M. Hamar, J. Peřina, O. Haderka, and V. Michálek: “Transverse coherence of photon
pairs generated in spontaneous parametric down-conversion”. Physical Review A 81,
043827–10 (2010).

87. O. Haderka, J. Jan Peřina, M. Hamar, and J. Peřina: “Direct measurement and reconstruc-
tion of nonclassical features of twin beams generated in spontaneous parametric down-
conversion”. Physical Review A 71, 033815–5 (2005).

88. O. Haderka, J. Jan Peřina, and M. Hamar: “Simple direct measurement of nonclassi-
cal joint signal-idler photon-number statistics and the correlation area of twin photon
beams”. Journal ofOptics B:Quantumand SemiclassicalOptics 7, 572–576 (2005).

89. C. K. Hong, Z. Y. Ou, and L. Mandel: “Measurement of subpicosecond time intervals
between two photons by interference”. Physical Review Letters 59, 2044–2046 (1987).

90. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders: “Limitations on practical quan-
tum cryptography”. Physical Review Letters 85, 1330–1333 (2000).

91. A. A. Malygin, A. N. Penin, and A. V. Sergienko: “Spatiotemporal grouping of photons in
spontaneous parametric scattering of light”. Doklady Akademii Nauk SSSR 281, 308–
313 (1985).

92. G. Molina-Terriza, S. Minardi, Y. Deyanova, C. I. Osorio, M. Hendrych, and J. P. Torres:
“Control of the shape of the spatial mode function of photons generated in noncollinear
spontaneous parametric down-conversion”. Physical Review A 72, 065802–4 (2005).

xxviii



93. B. Jost, A. Sergienko, A. Abouraddy, B. Saleh, and M. Teich: “Spatial correlations of
spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD
camera”. Optics Express 3, 81–88 (1998).

94. O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. D.
Trapani: “Detection of sub-shot-noise spatial correlation in high-gain parametric down
conversion”. Physical Review Letters 93, 243601–4 (2004).

95. M. Bondani, A. Allevi, and A. Andreoni: “Ghost imaging by intense multimode twin
beam”. The European Physical Journal 203. Special Topics, 151–161 (2012).

96. E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato: “Simultaneous near-field and far-
field spatial quantum correlations in the high-gain regime of parametric down-conversion”.
Physical Review A 69, 023802–19 (2004).

97. A. Joobeur, B. E. A. Saleh, and M. C. Teich: “Spatiotemporal coherence properties of
entangled light beams generated by parametric down-conversion”. Physical Review A
50, 3349–3361 (1994).

98. A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich: “Coherence properties of en-
tangled light beams generated by parametric down-conversion: Theory and experiment”.
Physical Review A 53, 4360–4371 (1996).

99. T. P. Grayson, and G. A. Barbosa: “Spatial properties of spontaneous parametric down-
conversion and their effect on induced coherence without induced emission”. Physical
Review A 49, 2948–2961 (1994).

100. O. Steuernagel, and H. Rabitz: “Spontaneous parametric down-conversion for an arbi-
trary monochromatic pump beam”. Optics Communications 154, 285–289 (1998).

101. G. Brida, A. Meda, M. Genovese, E. Predazzi, and I. Ruo-Berchera: “Systematic study
of the PDC speckle structure for quantum imaging applications”. Journal of Modern
Optics 56, 201–208 (2009).

102. A. Mosset, F. Devaux, G. Fanjoux, and E. Lantz: “Direct experimental characterization
of the Bose-Einstein distribution of spatial fluctuations of spontaneous parametric down-
conversion”. The European Physical Journal D: Atomic, Molecular, Optical and
Plasma Physics 28, 447–451 (2004).

103. T.Wang, Y. Qiu, H. Cai, and J. Deng: “A fast onboard star-extraction algorithm optimized
for the SVOM visible telescope”. Science in China: Series G: Physics, Mechanics &
Astronomy 53, 51–55 (2009).

104. J. Jan Peřina, O. Haderka, V. Michálek, and M. Hamar: “Absolute detector calibration
using twin beams”. Optics Letters 37, 2475–2477 (2012).

105. X. Y. Zou, L. J. Wang, and L. Mandel: “Induced coherence and indistinguishability in
optical interference”. Physical Review Letters 67, 318–321 (1991).

106. R.Machulka, K. Lemr, O. Haderka,M. Lamperti, A. Allevi, andM. Bondani: “Luminescence-
induced noise in single photon sources based on BBO crystals”. Journal of Physics B:
Atomic, Molecular and Optical Physics 47, 215501–7 (2014).

xxix



107. F. Sciarrino, C. Vitelli, F. D. Martini, R. Glasser, H. Cable, and J. P. Dowling: “Exper-
imental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier
for quantum lithography”. Physical Review A 77, 012324–5 (2008).

108. C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You: “A new-type ultraviolet SHG crys-
tal β-BaB2O4”. Scientia Sinica Series B: Chemical Biological Agricultutural
Medical & Earth sciencies 28, 235–243 (1985).

109. G. C. Bhar, S. Das, and U. Chatterjee: “Evaluation of beta barium borate crystal for
nonlinear devices”. Applied Optics 28, 202–204 (1989).

110. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov: “Invited Review Article: Single-
photon sources and detectors”. Review of Scientific Instruments 82 (2011).

111. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani: “Device-independent
security of quantum cryptography against collective attacks”. Physical Review Let-
ters 98, 230501–4 (2007).

112. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman: “One-
sided device-independent quantum key distribution: Security,feasibility,and the connec-
tion with steering”. Physical Review A 85, 010301–5 (2012).

113. Sangeeta, and S. C. Sabharwal: “Thermally stimulated luminescence from alkaline earth
borates”. Journal of Luminescence 104, 267–271 (2003).

114. Sangeeta, and S. C. Sabharwal: “Kinetics of thermally stimulated luminescence from al-
kaline earth borates”. Journal of Luminescence 109, 69–74 (2004).

115. C. V. Reddy, C. R. Krishna, T. R. Rao, D. V. Sathish, P. Rao, and R. V. S. S. N. Ravikumar:
“Synthesis and optical properties of Co2+ and Ni2+ ions doped β-BaB2O4 nanopowders”.
Journal of Luminescence 132, 2325–2329 (2012).

116. P. Walther, M. Aspelmeyer, and A. Zeilinger: “Heralded generation of multiphoton en-
tanglement”. Physical Review A 75, 012313–5 (2007).

117. M. Hunault, H. Takesue, O. Tadanaga, Y. Nishida, and M. Asobe: “Generation of time-
bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically
poled LiNbO3 waveguide”. Optics Letters 35, 1239–1241 (2010).

xxx


	Abstract
	Abstract in Czech
	Introduction
	Nonlinear Optics
	Nonlinear Wave Equation
	Nonlinear Processes
	Second-Order Nonlinear Processes
	Conservation Laws
	Second-Harmonic Generation
	Spontaneous Parametric Down-Conversion

	Phase Matching
	Birefringence
	Quasi-Phase-Matching
	Modal Phase-Matching

	Practical Experimental Approach
	Bulk Crystals
	Waveguides


	Second-Harmonic Generation in Periodically-Poled KTP Waveguide
	Introduction
	Theory
	Spatial Profiles of Guided Modes
	Fabrication Imperfections

	Experiment
	Experimental Setup
	Individual Processes

	Properties of Second-Harmonic Field Generated in Type II Process
	Summary

	Quantum Entanglement
	Introduction
	Theory
	Source of Entangled Photon Pairs
	EPR Paradox and Bell's Inequalities
	CHSH Inequality
	Quantum State Tomography

	Experiment
	Experimental Setup
	Kwiat's Source
	Source Optimization

	Results
	Polarization Measurement
	Quantum State Tomography
	Entanglement Verification of Generated States

	Summary

	Bragg Reflection Waveguide
	Introduction
	Theory
	Material and Design
	Spatial Profile of Guided Mode
	Principle of Phase-Matching

	Experiment
	Experimental Setup I
	Experimental Setup II

	Results
	Summary

	Spatial Correlations in Spontaneous Parametric Down-Conversion
	Introduction
	Theory
	Coherence Areas
	Speckle Pattern

	Experiment
	Experimental Setup
	iCCD Camera

	Results
	Single-Photon Regime
	High-Gain Regime

	Summary

	Luminescence of Nonlinear Materials
	Introduction
	Experiment
	Experimental Setup
	Streak Camera

	Results
	Combined Measurements
	Spectral Properties
	Temporal Properties
	Different Crystals
	Intensity Properties

	Summary

	Conclusion
	Conclusion in Czech
	List of Author's Publications
	References

