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Annotation

ZELENKA, Štěpán. Quantum chaos on graphs. Hradec Králové: University of Hradec
Kralove, Faculty of Science, Department of Physics, 2023. 52 p.

The thesis deals with the issue of quantum graphs, exploring their properties and chaotic
behavior. The reader is first introduced to various branches and methods of investigating
quantum chaos. Following that are chapters dedicated to the theory of random matri-
ces and quantum graphs, describing the models utilized in the sixth chapter. A chapter
of the thesis is also devoted to the problem of finding function roots. The final chap-
ter examines the statistical properties of selected random matrices and quantum graphs.
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Práce pojednává o problematice kvantových grafů, zabývá se jejich vlastnostmi a chaotickým
chováním. Nejdříve je čtenář seznámem s různými odvětvími a metodami zkoumání kvan-
tového chaosu. Následují kapitoly věnované teorii náhodných matic a kvantovým grafům,
popisující modely využívaný v šesté kapitole. Část práce je také věnovaná problematice
hledání kořenů funkce. V poslední kapitole jsou zkoumány statistické vlastnosti vybraných
náhodných matic a kvantových grafů.
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Introduction

The study of quantum chaos has emerged as a captivating field, unraveling the intricate
interplay between classical chaos and quantum mechanics. In this thesis, we will use quan-
tum graphs as a model to study quantum graphs, as proposed by Kottos and Smilansky
in [1]. This methodology is based on the Bohigas-Giannoni-Schmit (BGS) conjecture [2],
which states that some statistical properties of a chaotic spectra can be predicted by certain
random matrices. This conjecture is supported by a vast host of numerical studies.

The goal of this thesis is to give the reader a brief introduction to the issue of quan-
tum chaos on graphs and the study of their properties. Specifically, the nearest neighbor
distribution (NND) will be studied for selected random matrices and quantum graphs, illus-
trating their relationship, which will then serve as a numerical proof of the BGS conjecture.
The thesis will also provide an exploration of random matrices, with a particular emphasis
on the Gaussian Ensemble. This investigation aims to deepen the understanding of the
BGS conjecture.
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Chapter 1

Quantum chaos

1.1 Classical chaos
In physics and mathematics, chaos theory describes the behavior of nonlinear dynamic
systems, meaning systems that evolve over time and the response of the system is not
proportional to the magnitude of the input. Under certain conditions, these systems may
exhibit an effect referred to as deterministic chaos. One of its main characteristic is its
sensitivity to initial conditions of the system. As a result of this sensitivity, the behavior
of these systems may appear chaotic and random, despite the fact that the model of the
system is deterministic in the sense that it is completely defined and does not include any
random variables. An example of such system is a double pendulum; the position of the
pendulum after a certain amount of time may be completely different for a set of nearly
identical initial conditions, displaying the chaotic, yet deterministic (can be described by a
set of coupled ordinary differential equations), behavior [3].

Understanding chaotic behavior in physical systems is of great importance in several
fields of science and engineering. In physics, chaotic behavior is a ubiquitous phenomenon
that can be found in a wide range of systems, from classical mechanics to quantum me-
chanics. Chaotic behavior can occur in systems as diverse as the weather, the motion of
planets, the behavior of fluids, and the dynamics of electronic circuits. By understanding
the chaotic behavior of these systems, scientists and engineers can gain insights into their
fundamental properties and develop more accurate models to predict their behavior.

In addition, understanding chaotic behavior is important for the design and control of
complex systems. Chaotic behavior can lead to unexpected and unpredictable outcomes in
engineering systems such as aircraft, bridges, and power grids. Therefore, engineers must
be able to predict and control the behavior of these systems to ensure their safety and
reliability.

Moreover, the study of chaotic behavior has led to the development of new mathemat-
ical tools and concepts that have found applications in fields such as cryptography, data
compression, and image processing. The importance of understanding chaotic behavior in
physical systems is thus far-reaching and has implications for many areas of science and
engineering.

9



1.2 Quantum chaos
When we begin to study chaotic systems in terms of quantum mechanics, we start seeing
certain differences. According to the Heisenberg’s uncertainty principle, it is impossible to
measure certain pairs of physical quantities of a particle, such as position and momentum,
with arbitrary precision.[4] This means that quantum systems are not deterministic, in
contrast to classical systems. In quantum mechanics, the state of a system is given by
the wave function and the Schrödinger equation describes its evolution over time. The
Schrödinger equation is a linear partial differential equation, meaning that the evolution of
a quantum system is governed by a linear equation, which results in a linear transformation
of the wave function describing the system. Therefore, the evolution of quantum systems
is fundamentally different from that of classical systems, where nonlinearity can lead to
chaotic behavior. However, when the system has a large number of degrees of freedom or
when it is subject to external perturbations, it may exhibit chaotic behavior.[5]

The relationship between classical and quantum chaos is in part described by the corre-
spondence principle. It is a fundamental concept in physics that states that in the limit of
large quantum numbers, the behavior of quantum systems should be consistent with classi-
cal mechanics. This principle implies that classical mechanics is a special case of quantum
mechanics and that classical behavior can emerge from quantum behavior.

In the context of chaos theory, the correspondence principle suggests that classical
chaotic behavior should have a quantum mechanical counterpart. This is known as quan-
tum chaos and the primary question that it seeks to answer is: What is the relationship
between quantum mechanics and quantum chaos? However, the relationship between classi-
cal and quantum chaos is not straightforward. While classical chaotic behavior arises from
nonlinearity, quantum mechanics is a linear theory. Therefore, quantum chaos cannot be
fully understood as a simple extension of classical chaos. Instead, the study of quantum
chaos involves finding ways in which classical and quantum mechanics are related. [6]

Despite the challenges, the study of quantum chaos is an important area of research with
numerous applications. For example, quantum chaos has been used to study the behavior of
complex systems in condensed matter physics, as well as to develop new quantum computing
algorithms. It has also shed light on the nature of the correspondence principle and the
relationship between classical and quantum mechanics.

1.3 Methods
To bring answers to the basic question of quantum chaos, several approaches have been
employed.

1.3.1 Semiclassical quantization

Semiclassical quantization is a powerful tool in the study of quantum chaos, and has been
applied to a wide range of physical systems, from atoms and molecules to black holes and
cosmology.

The semiclassical approximation is based on the idea that, in the limit of large quantum
numbers, the quantum dynamics of a system approach the classical dynamics. This means
that we can use classical mechanics to obtain an approximate expression for the energy
levels of a quantum system, by expanding the wave function in powers of Planck’s constant
and then using classical mechanics to determine the coefficients of the expansion.
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The method was first developed by Michael Berry in the late 1970s, and has since been
widely applied in the study of quantum chaos. One of the key applications of semiclassical
quantization is in the study of the spectral statistics of chaotic systems. The spectral
statistics describe the distribution of energy levels of a quantum system, and can reveal
important information about the underlying classical dynamics.

The semiclassical approximation has also been used to study other properties of chaotic
systems, such as quantum transport, quantum localization, and quantum chaos in cosmol-
ogy. In recent years, the method has been combined with other techniques, such as Random
Matrix Theory (RMT) and the theory of wave chaos, to provide even deeper insights into
the behavior of complex quantum systems. [7]

1.3.2 Quantum scars

The study of scars and periodic orbits is a powerful tool for understanding the relationship
between classical and quantum mechanics in chaotic systems. Periodic orbits are closed
trajectories in the phase space of a classical system that repeat themselves after a certain
period of time. In a chaotic system, periodic orbits can be unstable, meaning that small
perturbations can cause the trajectory to diverge from the original path. The concept
of scars refers to a peculiar phenomenon where certain quantum states are concentrated
around periodic orbits that are classically unstable.

The study of scars and periodic orbits was initiated by Eric Heller and his colleagues in
the early 1990s. They found that the wave functions of certain quantum systems exhibit
striking patterns that are correlated with the unstable periodic orbits of the corresponding
classical systems. These patterns, which they dubbed scars, represent a deviation from the
random distribution of wave functions that is characteristic of chaotic systems.

Scars arise due to the interference of wave functions that are associated with different
periodic orbits. When the phase differences between these wave functions are carefully
chosen, they can add up constructively to produce a coherent, localized state that is centered
around the unstable periodic orbit. The resulting scar is a manifestation of the classical
motion of the system in the quantum realm.

The distribution of scars in a quantum system can provide valuable information about
the underlying classical dynamics. For example, the number and location of scars can reveal
the presence of periodic orbits and the degree of chaos in the system. In particular, systems
with weak chaos tend to have more isolated scars, while systems with strong chaos have
scars that are more widely distributed.

The study of scars and periodic orbits has led to numerous advances in our under-
standing of the interplay between classical and quantum mechanics in chaotic systems.
It has provided insight into the fundamental limits of quantum mechanics, the nature of
decoherence, and the emergence of classical behavior from quantum systems. Moreover,
the identification of scars has important applications in a wide range of fields, including
quantum computing, mesoscopic physics, and chemical dynamics. [8]

1.3.3 Entanglement entropy

Entanglement entropy is a method used in the study of quantum chaos that involves analyz-
ing the amount of entanglement between different parts of a quantum system. Entanglement
is a quantum mechanical phenomenon in which the properties of two or more particles be-
come intertwined, even when they are separated by a large distance. This means that the
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Figure 1.1: Typical scarred eigenstates of the (Bunimovich) stadium. The figure shows
the probability density for three different eigenstates. The scars, referring the regions of
concentrated probability density, are generated by (unstable) periodic orbits, two of which
are illustrated.[9]

state of one particle cannot be described independently of the other, and the properties of
the particles are said to be "entangled".

In the context of quantum chaos, entanglement entropy is a measure of the amount
of entanglement between different parts of a quantum system. It is defined as the von
Neumann entropy of the reduced density matrix of a subsystem of the full system. The von
Neumann entropy is a measure of the amount of information contained in a quantum state,
and it is related to the amount of uncertainty that exists about the state of the system.

In chaotic quantum systems, the entanglement entropy grows rapidly as the size of the
subsystem increases. This is due to the fact that chaotic systems are highly entangled, with
the entanglement between different parts of the system spreading rapidly throughout the
entire system. This rapid growth of entanglement entropy is a signature of chaotic behavior
in quantum systems.

The study of entanglement entropy in quantum chaotic systems has led to a better
understanding of the relationship between chaos and entanglement in quantum mechanics.
It has also been used to investigate the properties of black holes and their relationship to
quantum chaos.

One of the key insights gained from the study of entanglement entropy is the concept of
"quantum chaos versus thermalization". Thermalization is the process by which a system
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reaches thermal equilibrium with its environment. In quantum mechanics, it is related
to the concept of decoherence, which is the loss of coherence between different parts of a
quantum system due to its interaction with the environment.

In chaotic quantum systems, it was initially thought that the rapid growth of entan-
glement entropy would lead to thermalization, as the system becomes more and more en-
tangled with its environment. However, recent studies have shown that this is not always
the case, and that some quantum systems can exhibit "quantum chaos" without reaching
thermal equilibrium. This has important implications for the study of quantum many-body
systems and the behavior of black holes. [10]

Overall, the study of entanglement entropy in quantum chaotic systems has provided a
powerful tool for understanding the complex behavior of these systems. It has led to new
insights into the relationship between chaos and entanglement in quantum mechanics, and
has opened up new avenues of research in areas such as black hole physics and quantum
information theory.

1.3.4 Spreading of wave packets

Another characteristic of quantum systems is the spreading of wave packets. In a quantum
system, the motion of a particle is described by a wave function. When the wave function is
spread out, it indicates that the particle is delocalized and has a high probability of being
found in many different locations. Conversely, when the wave function is localized, the
particle is more likely to be found in a specific location. In chaotic quantum systems, the
spreading of wave packets is rapid and follows a specific pattern. This is known as quantum
revivals, where the wave function spreads out and then recoheres periodically. The time
scale of the revivals is related to the classical dynamics of the system. In regular quantum
systems, the wave function spreads out more slowly and does not exhibit quantum revivals.

By analyzing the spreading of wave packets in a quantum system, we can identify
whether the corresponding classical system exhibits chaotic or regular behavior. This
method has been used to study a wide range of physical systems, including billiards, quan-
tum dots, and atoms in strong electromagnetic fields. [11]

1.3.5 Spectral statistics

Eigenvalue statistics in quantum systems have been studied extensively in the field of quan-
tum chaos. One of the key observations in this area is that the statistical behavior of
eigenvalues can be used to determine the chaotic behavior of the system. This is because
the eigenvalues of a quantum system are related to the energy levels of the system, and the
energy levels of a chaotic system are known to exhibit a specific statistical behavior.

The study of eigenvalue statistics in quantum systems can be traced back to the work
of Eugene Wigner in the 1950s. Wigner was interested in the statistical behavior of the
eigenvalues of large matrices that arise in the study of nuclear physics. He observed that
the eigenvalues of these matrices exhibit a semicircular distribution in the limit of large
matrix size. This result, known as Wigner’s semicircle law, is now considered one of the
fundamental results in RMT.

In quantum chaos, the focus is on the statistical behavior of the eigenvalues of Hamil-
tonian that describe the evolution of quantum systems over time. In chaotic systems, the
eigenvalues of the Hamiltonian exhibit a statistical behavior that is different from that of
non-chaotic systems. Specifically, the eigenvalues of chaotic systems exhibit a distribution
that is similar to that of the eigenvalues of random matrices.
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The statistical behavior of eigenvalues in quantum systems has many important appli-
cations. For example, it can be used to understand the spectral properties of disordered
systems, such as amorphous materials or glasses. It can also be used to understand the be-
havior of quantum systems in the presence of external perturbations or noise. In addition,
the statistical behavior of eigenvalues has important applications in quantum computing
and quantum information theory. [12]

In later chapters, the focus will be on this method, specifically the nearest-neighbor
level spacing distribution of random matrices and quantum systems.
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Chapter 2

Random matrix theory

In RMT, a random matrix is a matrix in which some or all values are random variables.
Random matrices become useful when we want to statistically describe a complex physical
or mathematical system, where we replace the deterministic matrices with random matrices
and then calculate averages and other statistical properties.

2.1 Gaussian Ensemble
The Gaussian Ensemble is a class of random matrices that plays an important role in
RMT and its applications to physics, mathematics, and other fields. The ensemble consists
of matrices whose elements are independent and identically distributed (i.i.d.) Gaussian
random variables, with zero mean and variance depending on the specific symmetry class
of the ensemble.

The Gaussian Ensembles are characterized by the probability density function (PDF) of
the matrix elements. The three most commonly studied ensembles are the real symmetric
Gaussian Orthogonal Ensemble (GOE), the complex Hermitian Gaussian Unitary Ensemble
(GUE), and the quaternion self-dual Gaussian Symplectic Ensemble (GSE). In GOE, the
matrix elements are real and symmetric. Its distribution is invariant under orthogonal
conjugation, meaning

𝐻 → 𝑊 𝑇𝐻𝑊

where W is any real orthogonal matrix of order N. The PDF for the matrix elements is
given by:

𝑃GOE(𝑋) ∝ exp

(︂
−𝑁

4
Tr𝑋2

)︂
,

where 𝑁 is the dimension of the matrix, Tr denotes the trace of the matrix, i.e., the sum
of its diagonal elements, and 𝑋 is an 𝑁 ×𝑁 matrix.

In GUE, the matrix elements are complex and Hermitian (the matrix is equal to its
conjugate transpose). Its distribution is invariant under unitary conjugation, meaning

𝐻 → 𝑈−1𝐻𝑈.

The PDF for the matrix elements is given by:

𝑃GUE(𝑋) ∝ exp

(︂
−𝑁

2
Tr𝑋2

)︂
.
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In GSE, the matrix elements are quaternion self-dual, meaning that the matrix is equal
to its conjugate transpose up to a sign. Its distribution is invariant under conjugation by
the symplectic group, meaning

𝐻 → 𝑊 𝑇𝐻𝑊,

where 𝑊 is any symplectic matrix of order N and 𝑊 𝑇 is its transpose. A symplectic matrix
is a 2𝑛× 2𝑛 matrix with real entries that satisfies the condition

𝑊 𝑇Ω𝑊 = Ω,

where Ω is a fixed 2𝑛 × 2𝑛 invertible, skew-symmetric matrix. The PDF for the matrix
elements is given by:

𝑃GSE(𝑋) ∝ exp

(︂
−𝑁

4
Tr𝑋2 +

𝑁

8
Tr𝑋4

)︂
.

[13]
Note that the Gaussian Ensembles are denoted by their Dyson index, 𝛽 = 1 for GOE,

𝛽 = 2 for GUE, and 𝛽 = 4 for GSE. This index counts the number of real components per
matrix element.

2.2 Wigner’s semicircle law
Wigner’s semicircle law is a fundamental result in RMT that describes the distribution of
eigenvalues in large random matrices. Specifically, it states that the normalized eigenvalue
density of a large, symmetric or Hermitian matrix with independent, identically distributed
entries will converge to a semicircle distribution as the size of the matrix goes to infinity.

More precisely, suppose we have an 𝑁 × 𝑁 real symmetric matrix 𝐴 whose entries
above the diagonal are independent random variables with mean zero and variance 1/𝑁 ,
and whose diagonal entries are independent random variables with mean zero and variance
2/𝑁 . Then, as 𝑁 becomes large, the density of the eigenvalues of 𝐴 converges to the
semicircle density

2

𝜋𝑅2

√︀
𝑅2 − 𝑥2, if −𝑅 ≤ 𝑥 ≤ 𝑅,

where 𝑅 =
√
2𝑁 is the radius of the semicircle. In other words, the probability that an

eigenvalue of 𝐴 falls in the interval [𝑎, 𝑏] is given by the area under the semicircle between
𝑎 and 𝑏, divided by the total area of the semicircle. Then suppose we are interested in the
distribution of a single arbitrary eigenvalue 𝐸1 of a Gaussian Ensemble with Dyson index
𝛽 as 𝑁 → ∞, then Wigner’s semicircle is

lim
𝑁→∞

√︀
𝛽𝑁𝜌(

√︀
𝛽𝑁𝐸1) = 𝜎√2(𝐸1), (2.1)

where 𝜌 is the PDF of the distribution and 𝜎 is the standard deviation of the Wigner
semicircle distribution. The semicircle law holds for a wide variety of ensembles of random
matrices, including the Gaussian orthogonal, unitary, and symplectic ensembles. [14]

2.3 Wigner’s surmise
Wigner’s surmise is a key result in RMT that describes the distribution of spacings between
adjacent eigenvalues of certain random matrices. In particular, the surmise provides a
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formula for the PDF of the NND of ensembles of random matrices that exhibit certain
types of symmetries, such as orthogonal, unitary, or symplectic symmetry. The surmise
was first proposed by Eugene Wigner in 1951, based on numerical evidence from studies of
the spectra of heavy nuclei. It states that the NND can be approximated by a function that
has a characteristic shape, depending on the symmetry class of the ensemble. The surmise
for the NND of GOE is given by a semi-circular function [12]

𝑃1(𝑠) =
𝜋

2
𝑠 exp

(︁
−𝜋

4
𝑠2
)︁
. (2.2)

The surmise for the GUE is given by a function that is quadratic at small spacings and has
a long tail at large spacings. [14]

𝑃2(𝑠) =
32

𝜋2
𝑠2 exp

(︂
− 4

𝜋
𝑠2
)︂
. (2.3)

For GSE, the PDF approaches a modified Wigner surmise, known as the Dyson surmise
[15]

𝑃4(𝑠) =
218

36𝜋3
𝑠4 exp

(︂
− 64

9𝜋
𝑠2
)︂
. (2.4)

Here, 𝑠 is the normalized spacing between adjacent eigenvalues, i.e. 𝑠 = 𝑆/𝐷, where 𝑆 is the
difference between two neighbouring eigenvalues and 𝐷 is the average spacing. The Wigner
surmise and Dyson surmise are normalized such that the integral over all possible spacings
equals one. The surmise has since been verified in many other contexts, both theoretically
and experimentally, and is now widely used as a tool for analyzing the spectral properties
of complex systems in physics, mathematics, and other fields.

2.4 Unfolding
When studying the spacings of eigenvalues of a random matrix, we have to take into ac-
count the fact that the eigenvalues are not distributed uniformly, but rather according to
Wigner’s semicircle law, as described above. So in order to study the behavior of spacings
asymptotically, we need to unfold the eigenvalues. The unfolded eigenvalues will then be
distributed uniformly, with mean spacing one. Only after this operation, the NND will
follow the Wigner’s surmise.

Suppose we have an order sequence of energies (eigenvalues) which form the spectral
function

𝑆(𝐸) =

𝑁∑︁
𝑛=1

𝜎(𝐸 − 𝐸𝑛),

where 𝜎 is the Dirac delta function. To perform the unfolding, we will use the average level
staircase function

𝜂(𝐸) =

∫︁ −∞

𝐸
𝑆(𝐸′)𝑑𝐸′,

where 𝐸 is an eigenvalue. This tells us how many eigenvalues of all the eigenvalues are less
than 𝐸. It is then decomposed into a smooth part 𝜉(𝐸) and a fluctuating part 𝜂fl(𝐸),

𝜂(𝐸) = 𝜉(𝐸) + 𝜂fl(𝐸).
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The smooth part is given by the cumulative mean level density,

𝜉(𝐸) =

∫︁ −∞

𝐸
𝑅1(𝐸

′)𝑑𝐸′,

where 𝑅1 is the mean level density, which refers to the average density of energy levels or
eigenvalues of a quantum system over a certain range. The unfolded sequence of eigenvalues
is then given by

𝜉𝑖 = 𝜉(𝐸𝑖),

where the index 𝑖 labels the eigenvalues in the sequence. [16]
Now, to find the scaling factor for the unfolding, we will use Wigner’s semicircle law.

Note that the equation (2.1) implies that 𝐸1√
𝛽𝑁

tends to a semicircle distribution with radius
√
2 as 𝑁 gets large. Or in other form, 𝐸1 tends to a distribution with radius

√
2𝛽𝑁 . Let

Λ𝑁,𝛽[𝑎; 𝑏] be the number of eigenvalues in the interval [𝑎; 𝑏] of an 𝑁×𝑁 Gaussian Ensemble
with Dyson index 𝛽, then

lim
𝑁→∞

Λ𝑁,𝛽[𝑎; 𝑏]
𝑝−→ 𝑁

∫︁ 𝑏

𝑎
𝜎√2𝛽𝑁 (𝑡)𝑑𝑡,

where 𝑝−→ denotes convergence in probability. This means that as 𝑁 approaches infinity, the
probability that Λ𝑁,𝛽[𝑎; 𝑏] deviates from the expected value 𝑁

∫︀ 𝑏
𝑎 𝜎√2𝛽𝑁 (𝑡)𝑑𝑡 goes to zero.

We can then find a closed form expression for the integral

𝜌√2𝛽𝑁 (𝑡) =
𝑁𝛽 arcsin(

√
2𝑡

2
√
𝑁𝛽

) +
𝑡
√

2𝑁𝛽−𝑡2

2

𝜋𝛽
.

Now we define the mean cumulative spectral density

𝜉𝑁,𝛽(𝐸) = 𝑁

∫︁ 𝐸

−2𝛽𝑁
𝜌√2𝛽𝑁 (𝑡)𝑑𝑡

and the closed form expression is

𝜉𝑁,𝛽(𝐸) =
𝑁

2
+

𝑁𝛽 arcsin
√
2𝐸

2
√
𝑁
√
𝛽
+

𝐸
√

2𝑁𝛽−𝐸2

2

𝜋𝛽
.

Thus we get

𝜉𝑁,𝛽(𝐸) =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝐸 ≤

√
−2𝛽𝑁

𝑁
2 + 1

𝜋𝛽 (𝑁𝛽 arcsin(
√
2𝐸

2
√
𝑁𝛽

) +
𝐸
√

2𝛽𝑁−𝐸2

2 ) for 𝐸 ∈ (
√
−2𝛽𝑁,

√
2𝛽𝑁)

1 for 𝐸 ≥
√
2𝛽𝑁.

(2.5)

We can now get the unfolded sequence

𝜉𝑖 = 𝜉𝑁,𝛽(𝐸𝑖),

which will have a mean equal to one. [17]
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Chapter 3

Quantum graphs

Quantum graph is a metric graph equipped with a differential operator, which we call
Hamiltonian, and a set of some vertex conditions (which are described below). Quantum
graphs arise naturally as simplified models in various areas of mathematics, physics, chem-
istry and engineering, when one studies propagation of waves of various nature through
quasi-one-dimensional system, for example quantum wires, photonic crystals and the free-
electron theory of conjugated molecules. Quantum graphs also play a role of simplified
models for studying quantum chaos.

Figure 3.1: A graph.

3.1 Describing the model

A graph Γ consists of a set of vertices 𝒱 = {𝜈𝑖} and a set of edges ℰ = {𝑒𝑗} connecting
the vertices. The edges are undirected. We will use the notation 𝐸 := |ℰ| and 𝑉 := |𝒱|
for the number of edges and vertices. The edges are of a finite length 𝑙𝑗 > 0 and can be
parameterized by the intervals (0, 𝑙𝑗). This metric graph becomes a quantum one after
being equipped with a differential operator and some vertex conditions. This operator is
called the Hamiltonian ℋ which acts as a negative second derivative on each edge

𝑓(𝑥) → −𝑑2𝑓

𝑑𝑥2
, (3.1)
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where 𝑥 is the coordinate x along an edge. For the definition of an operator to be complete,
we need to describe its domain. The domain of operator ℋ are functions from the Sobolev
space 𝐻2(𝑒) on each edge 𝑒. These are functions for which the first and the second derivative
exist and both the components of these function on each edge and their first and second
derivatives are quadratically integrable, meaning∫︁ 𝑙𝑗

0
|𝑓𝑗(𝑥)|2𝑑𝑥,

∫︁ 𝑙𝑗

0
|𝑓 ′

𝑗(𝑥)|2𝑑𝑥 and

∫︁ 𝑙𝑗

0
|𝑓 ′′

𝑗 (𝑥)|2𝑑𝑥

are finite. The next condition is that the function satisfies the vertex conditions. Some of
the most common vertex conditions are: [18]

• Dirichlet condition – we impose a condition on all edges in a given vertex 𝜈

𝑓𝑗(𝜈) = 0.

This means that in this vertex, the graph is disconnected.

• Neumann condition – we impose a condition on all edges in a given vertex 𝜈

𝑓 ′
𝑗(𝜈) = 0.

This also means that the graph is disconnected.

• 𝛿-condition – function in a given vertex satisfies the conditions

𝑓𝑖(𝜈) = 𝑓𝑗(𝜈) = 𝑓(𝜈),

where 𝑖, 𝑗 ∈ {1, ..., 𝑑(𝜈)}, 𝑑(𝜈) being the degree of a vertex 𝜈.

𝑑(𝜈)∑︁
𝑗=1

𝑓 ′
𝑗(𝜈) = 𝛼𝑓(𝜈).

This means that functions in the given vertex are continuous and the sum of outgoing
derivatives is equal to 𝛼-multiple of the function value, constant 𝛼 is a real number.

• Standard condition – the condition is the same as the 𝛿 condition (functions in a
given vertex are continuous), but the value of 𝛼 is zero, meaning the sum of outgoing
derivatives is zero.

𝑑(𝜈)∑︁
𝑗=1

𝑓 ′
𝑗(𝜈) = 0.

3.2 Finding the secular determinant
If we want to study the NND of eigenvalues, we first need to derive the equation for the
eigenvalues (the energy levels). In quantum mechanics, we can measure the energy of
a physical system by performing a measurement of the Hamiltonian operator, which we
defined in the equation (3.1). The equation for the energies is

𝐻𝑓(𝑥) = 𝐸𝑓(𝑥).
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After substituting our Hamiltonian and 𝐸 = 𝑘2, we get

− 𝑑2

𝑑𝑥2
𝑓(𝑥) = 𝑘2𝑓(𝑥).

To solve this homogeneous differential equation with constant coefficients, we will substitute
𝑓(𝑥) = 𝑒𝜆𝑥, where 𝜆 is a complex constant. Plugging this into the previous equation, we
get

(𝜆2 + 𝑘2)𝑒𝜆𝑥 = 0.

From this, we get 𝜆 = ±𝑖𝑘. The general solution of the equation is

𝑓(𝑥) = 𝑎𝑒𝑖𝑘𝑥 + 𝑏𝑒−𝑖𝑘𝑥.

Using De Moivre’s formula we get

𝑓(𝑥) = 𝐴 cos(𝑘𝑥) +𝐵 sin(𝑘𝑥), (3.2)

where 𝐴 a 𝐵 are new complex constants. The derivative is

𝑓 ′(𝑥) = −𝐴𝑘 sin(𝑘𝑥) +𝐵𝑘 cos(𝑘𝑥). (3.3)

This is where the solution starts to become specific depending on the graph we are working
with.

First, we need to parameterize the edges as in which vertex the edge starts (𝑥 = 0)
and where the edge ends (𝑥 = 𝑙𝑗 , where 𝑙𝑗 is the length of edge 𝑒𝑗). Then, we evaluate
the vertex conditions at each vertex, substituting the general solution, which will yield us
one or more equations. After doing this for every vertex, we will end up with a system of
equations, which can be written as

𝑀𝐴 = 0, (3.4)

where A is a column vector of the complex constants and M is the system of equations
rewritten as a matrix. This system has a non-trivial solution only if the determinant of
matrix 𝑀 is zero. From this condition, we can find the values for 𝑘 and then the energy
levels from 𝐸 = 𝑘2.[19]

As a lot of these conditions do not have an analytical solution, a numerical one is
required. The operation is simple – find roots of a real function. To check that our root-
finding solution is precise enough and we are not loosing too much roots, we will use Weyl’s
law. The equation

𝑁(𝑎, 𝑏) =
L

𝜋
(𝑏− 𝑎) +𝑂(1) (3.5)

gives us an approximate number of roots in a given interval. L is the sum of edge lengths
and 𝑂(1) is the error. The meaning behind 𝑂(1) is that the error should be limited by
constants, implying that it should not rise when increasing the size of the interval (𝑎, 𝑏). It
should be noted that this approximation works only for large intervals. [18]
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Chapter 4

Numerical methods for finding
roots

In this chapter, we will discuss the importance of numerical methods for finding roots.
This will be very useful later on, because doing the NND for quantum graphs involves a
lot of root-finding. The content of this chapter will be mainly devoted to two methods
– the bisection method and Brent’s method. The last section will also contain a simple
comparison of their speed and reliability.

4.1 Introduction
The task of finding a root or roots of a function is very simple in principle, as it only involves
solving an equation

𝑓(𝑥) = 0.

The equation we are solving for can be either one-dimensional or have 𝑁 dimensions.
Finding roots in 𝑁 dimensions proves to be significantly more challenging than in one
dimension. The main difference is that in in 𝑁 dimensions, is it not possible to bracket
(or trap) a root between two bracketing values, because in 𝑁 dimensions, there is not a
certainty that the root is there until you have found it. The functions we will be working
with in the following chapter are all one-dimensional.

The general idea behind root-finding algorithms is iteration. The routine, with each
iteration, applies the chosen algorithm, which refines an initial estimate of the root. The
algorithm iteratively improves the solution, until a certain level of accuracy has been met.
These algorithms exhibit differences in terms of their speed and certainty in reaching the
solution. The rate of convergence refers to the speed or efficiency at which an algorithm
approaches the true root of a function as the number of iterations increases. It provides
a quantitative measure of how quickly the approximations generated by the algorithm
converge to the actual root. Unfortunately, the ones that are sure to converge are also
the ones making the slowest progress when finding a root, so there is always a trade-off
between speed and certainty of finding a solution. [20] We will now examine some root-
finding routines.
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4.2 Bisection method
The bisection method is one of the methods that cannot fail; it will always find a root, if
the root is there. A root is bracketed in the interval (𝑎, 𝑏) if 𝑓(𝑎)𝑓(𝑏) < 0. Then, as per the
intermediate value theorem (IVT), if the function is continuous, one or more roots must lie
in that interval. [21] It is important to note that this applies only to continuous functions.
Let us take a function

𝑓(𝑥) =
1

𝑥

for example. If we would take an interval (−1, 1), then 𝑓(−1)𝑓(1) > 0, but the root is not
there, only singularity.

The bisection method is known for its linear convergence rate. This means that with
each iteration, the bisection method approximately halves the interval that contains the
root. The error between the approximation and the true root reduces by a factor of ap-
proximately 1/2 in each iteration. Mathematically, the convergence rate can be expressed
as 𝑂(1/2𝑘), where 𝑘 is the number of iterations. The workings of this algorithm can be
seen in this Python implementation:

def bisection(f, a, b):
# Set the tolerance
tolerance = 10 ** -10

# Check if the interval is within the tolerance
if abs(a - b) < tolerance:

return (a + b) / 2

# Calculate the midpoint of the interval
midpoint = (b - a) / 2

# Determine which half of the interval to continue with
if f(a + midpoint) * f(b) < 0:

return bisection(f, a + midpoint, b)
else:

return bisection(f, a, b - midpoint)

In principle, this implementation is very straightforward. It halves the interval by either
adding to the lower bound or subtracting from the upper bound. It then recursively con-
tinues until the solution is very close to the actual root. The only precondition for finding
a solution is that 𝑎 < 𝑏 and (𝑎, 𝑏) contains a root. Also, the root remains bracketed for the
entire duration of the evaluation. The maximum number 𝑛 of iterations needed to achieve
a required tolerance 𝜖 is

𝑛 = log2
𝜖0
𝜖
,

where 𝜖0 is the size of the initial bracketing interval. This is the main motivation for using
the bisection method, as no other method can guarantee a better worst case scenario.[22]
Its average performance under standard standard assumptions is, however, sub-optimal,
resulting in other methods usually being a better choice. [23]
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4.3 Secant method
Many root-finding techniques employ the concept of interpolation to approximate the root
of a function. Interpolation involves utilizing the last computed approximate values of
the root to construct a polynomial of low degree that matches the function’s values at
those approximations. The root of this polynomial is then determined and used as a new
approximation of the root of the function, and the process continues iteratively. [20]

The secant method is based on interpolating the function using two values, resulting in
a polynomial of degree one, which approximates the function’s graph as a line. This is an
example of linear interpolation. This involves defining an auxiliary function that operates
on the most recently computed approximations of a root, producing a new approximation
as the output. This method is very similar to Newton’s method, which is also an iterative
method, but to use Newton’s method, one must know the derivative of the function. This
is, in our case, a deal breaker, because the functions we will be working with tend to be
very large and computing their derivative is practically impossible. The basic idea of the
Secant method is using a succession of roots of secant lines to better approximate a root of
a function 𝑓 . The method is defined by the recurrence relation

𝑥𝑛 = 𝑥𝑛−1 − 𝑓(𝑥𝑛 − 1)
𝑥𝑛−1 − 𝑥𝑛−2

𝑓(𝑥𝑛−1)− 𝑓(𝑥𝑛−2)
.

This formula requires two initial values 𝑥0 and 𝑥1, ideally chosen as close to the root as
possible. [20] This method can be implemented in Python as show in in the following code
snippet.

tolerance = 1e-10

# The auxiliary function that defines Secant method
def find_next_x(f, x0, x1):

return x1 - (f(x1) * (x1 - x0) / f(x1) - f(x0))

def secant(f, x0, x1, number_of_iterations):
if abs(x0 - x1) < tolerance:

return x0

# The method stops after a certain number of iterations
# when it did not converge
if number_of_iterations > 100:

print("Failed to converge")
return None

x2 = find_next_x(f, x0, x1)
return secant(f, x1, x2, number_of_iterations + 1)

Note that this and also the previous implementations use recursion. Same result can be
achieved with iteration by introducing a while loop. The choice is based only on personal
preference and readability.

The secant method has a convergence rate that is typically faster than linear but slower
than quadratic. It converges at a rate close to the golden ratio, approximately 1.618, which
is slower than the quadratic convergence seen in methods like Newton’s method. The error
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between the approximation and the true root reduces by a factor close to the golden ratio in
each iteration. Mathematically, the convergence rate can be expressed as 𝑂( (1+

√
5)

2𝑘
), where

𝑘 is the number of iterations. The secant method also has the advantage of requiring only
one function evaluation every iteration, which can make a huge difference when dealing
with large functions. The disadvantage is that this method is not very robust. Unlike the
bisection method, it does not require the root to remain bracket, indicating it may not
always converge. [20]

4.4 Brent’s method
Brent’s method is a hybrid root-finding algorithm that combines the advantages of several
techniques, including the robustness of the bisection method and the superlinear conver-
gence of the secant method and inverse quadratic interpolation. The key idea behind Brent’s
method is to dynamically select the most appropriate root-finding algorithm at each iter-
ation, based on the behavior of the function and the convergence progress. It does this
by bracketing the root and using the inverse quadratic interpolation to estimate the next
root. While linear interpolation uses two points to estimate the function, inverse quadratic
interpolation uses three points to fit an inverse quadratic function (where 𝑥 is a quadratic
function of 𝑦). Then, its value at 𝑦 = 0 is taken as the next estimate of the root 𝑥. [24]

The implementation can be seen in the source code for the library scipy.optimize. [25].
In short, it attempts the inverse quadratic interpolation if possible. If not, it will fallback
to the Secant method and if that decision would also not lead to a better estimate, it uses
the bisection method as its last resort. This guarantees a linear convergence rate in the
worst case scenario, but superlinear convergence rate on average. Brent also claims that
this method will always converge as long as the values of the function are computable within
a given region containing a root. [24]

We will now compare the difference in speed of the bisection method and Brent’s method,
specifically their SciPy [25] implementations. To do this, we will find roots of three distinct
functions for the interval (0, 105) first using the bisection method and then Brent’s method.
Then, we will compare the time it took them to find all the roots in the given interval. The
result can be seen in Table 4.1. It is clear that Brent’s method is faster than bisection,
although not by a large margin. The difference is more noticeable with more complex (as
in the opposite of simple) functions, which is the kind of functions we will be dealing with.
It should also be noted that the number of found roots for each function was the same for
both methods. For sin(𝑥), it was 31 831, which is also the actual number of roots for this
function in this interval, as per an equation 𝑁 = 105

𝜋 . For the other two functions, it was
379 403 and 767 698 respectively.

Method 𝑓1 𝑓2 𝑓3
Bisection 80.6 s 599 s 1622 s

Brent’s method 79.8 s 547 s 1349 s

Table 4.1: Results of a root-finding methods benchmark. The interval for each benchmark
was (0, 105). 𝑓1 : 𝑠𝑖𝑛(𝑥), 𝑓2 : det(𝑀) 𝑜𝑓 (5.4), 𝑓3 : (5.2).
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Chapter 5

Nearest-neighbor distribution for
certain graphs

In this chapter, we will do the NND for the Gaussian Ensembles (GOE, GUE and GSE).
After that, the NND will be done for three quantum graphs, comparing the results with
that from RMT. Most of the work here will be done in Python, with some parts using
Wolfram Mathematica. The code for this chapter can be found on my GitHub repository:
https://github.com/stepazel/QuantumChaos.

5.1 Gaussian Ensembles
To do the NND for the Gaussian Ensembles, we first need to sample the corresponding
matrices. For that, we used Python library scikit-rmt by Alejandro Santorum (available
at https://github.com/AlejandroSantorum/scikit-rmt), which has the algorithms for
sampling GOE, GUE and GSE already implemented.

We start with checking that the Wigner’s semicircle law holds. As shown in the figures
below, for 𝑛 = 2, where 𝑛 are the dimensions of the matrix, the eigenvalues distribution
shape is far from looking like a semicircle. By increasing the size of the matrix, we see the
shape begin to take form of a semicircle, which is in correspondence with the law, which
holds for 𝑛 → ∞. The difference between the larger dimensions is not as significant as for
the smaller dimensions.

Now, we will perform the NND for GOE, but first, we will show why the unfolding
procedure is needed. The NND will be done for matrices of size 2 and 50. We will also plot
function (2.2), which is the Wigner’s surmise for GOE. To perform the NND, we sample the
GOE matrix, compute its eigenvalues, sort them and then get the individual differences.
We also need to normalize the spacings and we do that by multiplying every value by 1

𝑠 ,
where 𝑠 is the arithmetic mean of the spacings. For the smaller matrix, we see a clear
agreement between Wigner’s surmise and the NND. But when we go ahead and try do the
same for a larger matrix, we start seeing a slight difference as the spacings tend to be on
the smaller side (a shift to the left). The difference gets bigger for larger dimensions. So,
in order to get rid of this shift and start examining larger matrices, we need to perform
the unfolding procedure. To do this, we simply map the function (2.5) onto every value. It
should be also noted that after the unfolding, 𝑠 is equal to one, so normalizing the spacings
is not needed.
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Figure 5.1: Semicircle law check. We clearly see that for larger dimensions, the distribution
of eigenvalues takes on the semicircle shape.

Now that we know the unfolding is very much mandatory for larger dimensions, we
can safely go ahead and do the NND for 𝑛 = 1000. We will do this for all three matrices
from the Gaussian Ensemble. The procedure stays the same, the only thing changing is
the matrix sampled and the function plotted. For GOE, GUE and GSE we will plot (2.2),
(2.3) and (2.4) respectively.

In Figure 5.4, we can see that for all of the matrices from the Gaussian Ensemble, even
for larger dimensions, the Wigner’s surmise holds.

27



Figure 5.2: The spacings’ size is shifted to the left for larger matrices.

Figure 5.3: After the unfolding is done, an agreement with the Wigner’s surmise is seen.
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Figure 5.4: The NND for the Gaussian ensemble.
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5.2 Star graph with Dirichlet conditions
Now, we will move on to some quantum graphs. We will start with a star graph that has
Dirichlet condition imposed on every vertex. We parameterize the edges so that every edge
starts on the outer vertex and they all end on the inner vertex. Because the Dirichlet
conditions basically disconnect the edges, the graph should display a Poisson distribution
similar to the distribution of random numbers, as seen in [18].

Figure 5.5: A star graph.

The Dirichlet condition gives
𝑓𝑗(𝑥) = 0

for each vertex. The equation (3.2) for the outer vertices is

𝑓𝑗(0) = 𝐴𝑗 ,

which gives us 𝐴𝑗 = 0. We then get

𝑓𝑗(𝑥) = 𝐵𝑗 sin(𝑘𝑥).

So, each edge gives us two equations; for the outer vertex it’s 𝑓𝑗(0) = 0 and for the inner
it’s 𝑓𝑗(𝑥) = 𝐵𝑗 sin(𝑘𝑥). Rewriting this system of equations as a matrix gives us⎛⎜⎜⎜⎝

sin(𝑘𝜈1) 0 . . . 0
0 sin(𝑘𝜈2) . . . 0
...

... . . . ...
0 0 . . . sin(𝑘𝜈𝑗)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝐵1

𝐵2
...
𝐵𝑗

⎞⎟⎟⎟⎠ = 0, (5.1)

where 𝜈𝑗 are edge lengths. The determinant of the first matrix is

det𝑀 =
∏︁
𝑗

sin(𝑘𝜈𝑗). (5.2)

Now, before numerically finding the roots of this equation, we have to take into account
two variables: the number of edges and their lengths. Neither of these can be chosen
arbitrarily. For the edge lengths, we will impose two requirements:
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Figure 5.6: The NND for a star graph with six edges whose lengths are rationally dependent.
The lengths are (1, 2, 3, 4, 5, 6); a trivial example.

1. The edge lengths should be rationally independent. [18]

2. One edge length shouldn’t be significantly greater than the others.

Our strategy to satisfy the first requirement will be choosing constants (𝜋, e) and some
numbers of our choice (e.g. 1.923) such that their ratios are far from rational numbers with
small numerator and denominator. Lastly, we will apply functions like the square root or
the natural logarithm. The demonstration of what happens with the result when we do not
have a set of edge lengths that are rationally independent can be seen in Figure 5.6.

The second requirement is, at first glance, not very helpful, because the description
significantly greater is very subjective. Is five significantly greater than one in the context
of a quantum graph, or is it only greater? To put this requirement into context, let’s plot
the NND for a star graph with six edges, where one edge length is the cube of another. We
can see the result in Figure 5.7. We can see a pattern where one spacing between the roots
is repeating. This is greatly distorting the final result.

For this certain graph, a higher number of edges leads to better results, which is shown
in Figure 5.8. The difference is less significant when we get to higher number of edges.

Now, will all these requirements in mind, we can go ahead and compose a suitable star
graph. It will have 12 edges and edge lengths as follows:

(𝜋, e,
√
2, ln 2, 1.98712,

√
5,
√
e, ln 5,

√
𝜋, 0.97127,

√
3, ln 3, ln𝜋, 1.52321, 0.86127).

We can now substitute these values into the equation (5.2) and find roots of this equation.
But first, before plotting the results, we will consult Weyl’s law to see how many roots are we
loosing. To do this, we simply find roots for some intervals, which are getting bigger in size.
The important thing is that the number of lost roots does not rise dramatically with larger
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Figure 5.7: The edge lengths for this graph were (𝜋, e,
√
5, 𝜋3).

intervals. For this graph, we will find roots for intervals [0, 2000], [0, 4000], [0, 6000], [0, 8000].
Then, to find the number of lost roots, we will rearrange the equation (3.5) to give us the
error as the difference between the approximate number of roots and the real number of
roots like this

L

𝜋
(𝑏− 𝑎)−𝑁(𝑎, 𝑏) = 𝑂(1).

Interval size 2000 4000 6000 8000
Number of roots 15207 30562 45938 61268

Difference from Weyl’s law 423 698 953 1253

Table 5.1: Results of Weyl’s law for a star graph with Dirichlet conditions.

As we see in table Table 5.1, the results are not optimal. It seems like our root finding
solution is missing a number of roots. A good thing is that this number does not rise
drastically when increasing the size of the interval. Let us look at the histogram for the
graph’s NND.

The result in Figure 5.9 is what we expected; the NND has a distribution very similar to
that of random numbers (i.e. Poisson distribution). This is also the result that Berkolaiko
and Kuchment got in [18]. We can also see that our solution loses roots which are very
close to another and the spacing between them approaches zero. Naturally, one would seek
an improvement in increasing the resolution of the root-finding solution as in decreasing
the size of the interval which a chosen root-finding algorithm takes as an input. But, after
a certain threshold (i.e. a certain interval size), decreasing the interval size does not yield
any better results. For this graph, a bisection method was used. Although there are other
methods that converge faster, the bisection method was chosen because it’s very robust and
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Figure 5.8: By increasing the number of edges from four to six, we achieve a better result.
Edge lengths for the first graph are (𝜋, e,

√
5, 2.5). For the second graph, we appended

(ln 5,
√
𝜋).
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Figure 5.9: The NND histogram for star graph with Dirichlet con-
ditions. The result is for 106 roots and 12 edges with lengths
(𝜋, e,

√
2, ln 2, 1.98712,

√
5,
√
e, ln 5,

√
𝜋, 0.97127,

√
3, ln 3, ln𝜋, 1.52321, 0.86127).

in a given interval, it always finds a root (if the interval has one). Also, the equation we
are solving (determinant of the (5.1) matrix) for is fairly simple, so speed is not an issue
here. This is because the root-finding algorithm needs to evaluate the function a certain
number of times to find the root and this evaluation takes significantly more time for more
complex functions.

5.3 Star graph with Standard and Dirichlet conditions
We will continue with a star graph that has Dirichlet conditions imposed on its outer
vertices and Standard condition on its center vertex. We parameterize the edges same as
before, with 𝑥 = 𝜈𝑗 in the center vertex. The Dirichlet conditions gives

𝑓𝑗(𝑥) = 0

for each outer vertex. The standard condition gives

𝑓1(𝜈1) = 𝑓2(𝜈2) = · · · = 𝑓𝑗(𝜈𝑗),

−𝑓 ′
1(𝜈1)− 𝑓 ′

2(𝜈2)− . . .− 𝑓 ′
𝑗(𝜈𝑗) = 0.

(5.3)
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From the Dirichlet condition, we get

𝐴𝑗 cos(0) +𝐵𝑗 sin(0) = 0,

which gives us
𝑓𝑗(𝑥) = 𝐵𝑗 sin(𝑘𝑥),

𝑓 ′
𝑗(𝑥) = 𝑘𝐵𝑗 cos(𝑘𝑥).

Plugging in this result into (5.3), rewriting this system of equations as matrix and diving
the last row by −𝑘 gives us⎛⎜⎜⎜⎜⎜⎝

sin(𝑘𝜈1) − sin(𝑘𝜈2) 0 . . . 0
sin(𝑘𝜈1) 0 − sin(𝑘𝜈3) . . . 0

...
...

... . . . ...
sin(𝑘𝜈1) 0 0 . . . sin(𝑘𝜈𝑗)
cos(𝑘𝜈1) cos(𝑘𝜈2) . . . cos(𝑘𝜈𝑗−1) cos(𝑘𝜈𝑗)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝐵1

𝐵2
...
𝐵𝑗

⎞⎟⎟⎟⎠ = 0. (5.4)

The determinant of the first matrix in (5.4) is a sum of cos(𝑘𝜈𝑗) for each edge multiplied
by sines of the remaining edge lengths. For a star graph with three edges, it would look
like this:

cos(𝑘𝜈1) sin(𝑘𝜈2) sin(𝑘𝜈3) + cos(𝑘𝜈2) sin(𝑘𝜈3) sin(𝑘𝜈1) + cos(𝑘𝜈3) sin(𝑘𝜈1) sin(𝑘𝜈2).

Our graph will have six edges, or seven vertices respectively. The edge lengths are

(𝜋, e,
√
2,
√
3,
√
e, 1.2754).

These numbers follow the same requirements as in the graph with only Dirichlet conditions,
although the number of edges is not as important. Also, for this graph, we will use Brent’s
method. It is generally considered one of the best root-finding algorithms. For this function
(and for many others), it is also faster then the previously used bisection method. We can

Interval size 4000 8000 12000 16000 20000
Number of roots 15176 30353 45529 60707 75885

Difference from Weyl’s law 1.3 1.7 3 2.4 1.7

Table 5.2: Results of Weyl’s law for a star graph with Dirichlet conditions on outer vertices
and a Standard condition on the center vertex.

now use Weyl’s law to find out how many roots are we losing. We will find roots in intervals
[0, 4000], [0, 8000], [0, 12000], [0, 16000] and [0, 20000]. As we can see in Table 5.2, the
result is very satisfying. We are loosing a very small number in roots, meaning we have got
a very high-quality result.

In Figure 5.10, the NND almost, but not quite resembles GOE’s distribution. The
distribution is skewed to the right, indicating spacings of slightly larger size are more
prevalent than needed to fit in the GOE’s distribution. But overall, this results shows a
decent correlation with the characteristic of a random matrix, implying this specific star
graph demonstrates chaotic behavior.
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Figure 5.10: The NND for a star graph with 6 edges, Dirichlet conditions on the outer
vertices and Standard condition on the center vertex. The result is for 107 roots.
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Figure 5.11: Complete graph with 5 vertices.

5.4 Complete graph with Standard conditions
In graph theory, complete graph is a graph in which all the vertices are connected with
each other. A complete graph with 𝑛 vertices is denoted by 𝐾𝑛 and has 𝑛(𝑛−1)

2 edges. We
will do the NND for 𝐾5 with Standard condition on every vertex.

The edges are all labeled by starting in a vertex A, labeling the outer edges counter-
clockwise and continuing with the inner edges. The result can be seen in Figure 5.11. We
will then parameterize the edges. The procedure has a similar counterclockwise motion.
The result is in Table 5.3.

1 2 3 4 5 6 7 8 9 10
A 0 𝐿5 0 𝐿9

B 𝐿1 0 0 𝐿10

C 𝐿2 0 𝐿6 0
D 𝐿3 0 𝐿7 0
E 𝐿4 0 𝐿8 0

Table 5.3: The parameterization of a K5 graph. 𝐿𝑗 is the edge’s length.

We will be finding the secular determinant of a 20×20 matrix. This is because the Stan-
dard condition gives four equations for each vertex. For vertex A, with our parameterization
in place, the Standard condition gives

𝑓1(0) = 𝑓5(𝐿5) = 𝑓6(0) = 𝑓9(𝐿9),

𝑓 ′
1(0)− 𝑓 ′

5(𝐿5) + 𝑓 ′
6(0)− 𝑓 ′

9(𝐿9) = 0.
(5.5)
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After substituting (3.2) and (3.3) into (5.5), we get

𝐴1 cos(0) +𝐵1 sin(0)−𝐴5 cos(𝑘𝐿5)−𝐵5 sin(𝑘𝐿5) = 0,

𝐴1 cos(0) +𝐵1 sin(0)−𝐴6 cos(𝑘𝐿6)−𝐵6 sin(𝑘𝐿6) = 0,

𝐴1 cos(0) +𝐵1 sin(0)−𝐴9 cos(𝑘𝐿9)−𝐵9 sin(𝑘𝐿9) = 0,

−𝑘𝐴1 sin(0) + 𝑘𝐵1 cos(0) + 𝑘𝐴5 sin(𝑘𝐿5)− 𝑘𝐵5 cos(𝑘𝐿5)−
−𝑘𝐴6 sin(0) + 𝑘𝐵6 cos(0) + 𝑘𝐵9 sin(𝑘𝐿9)− 𝑘𝐵9 cos(𝑘𝐿9) = 0,

which make up first four rows of our desired matrix. Similar procedure can be employed
with the remaining vertices. We will then rewrite the system of equations as (3.4) and find
the determinant of 𝑀 . Because of the dimensions of this matrix, analytical solution is not
very suitable. We will use Wolfram Mathematica instead of Python for this task, because
Mathematica’s solution proved to be much faster. The edge lengths for this graph are

(𝜋, e,
√
2,
√︀

(3),
√
𝑒, 1.2654, 0.5,

4
√
2, 𝜋2, e3).

Because the determinant of this matrix is a very long function, finding its roots is a lot
slower, because the evaluation of this function is much more complex and time-consuming.
Because of this, our histogram will not be as smooth as the previous ones.

There differences from Weyl’s law in Table 5.4 are negative, as opposed to the previous
results. This implies that we are actually finding roots that are not there. This may
be a result of the function values being very small (e.g. 10−200) and the root-finding
algorithm interprets this as a root. Also, when analyzing the found roots, it was not
uncommon to see two or more roots that are exactly one iteration step away, for example
roots 1.005, 1.01, 1.015, which also indicates a fault in the root-finding solution. However,
even after decreasing the tolerance to 10−250, the result is still the same.

In Figure 5.12, we can see a similarity with GOE’s distribution, but it is still not quite
right. Spacings in size between 0 and 1/2 are a little more prevalent then the ones with size
in between 1/2 and 3/2. There is also a disagreement with Weyl’s law, as seen in Table 5.4.

Interval size 25 50 75 100 125
Number of roots 183 371 559 750 939

Difference from Weyl’s law -25 -57 -88 -121 -153

Table 5.4: Results of Weyl’s law for a K5 graph with Standard conditions.
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Figure 5.12: The NND for a K5 graph with edge lengths
(𝜋, e,

√
2,
√
3,
√
𝑒, 1.2654, 4

√
2, 𝜋2, e3). The result is for 105 roots.
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Conclusion

In the first chapter, we introduced and defined the basics of the issue of Quantum chaos and
the methods that are associated with its study. In the next two chapters, we defined the
concepts and models used in finding the NND of random matrices and quantum graphs. In
the fourth chapter, we dealt with the issue of finding roots to justify the choice of a suitable
root-finding algorithm for our needs.

In the last chapter, we have shown that Wigner’s semicircle law (2.1) holds. We then
computed the NND of the unfolded spectra of GOE, GUE and GSE. This result strongly
aligns with the theoretical predictions given by Wigner’s surmise in (2.2), (2.3) and (2.4).

We then moved on to computing the NND for certain quantum graphs. The result for
the star graph with Dirichlet conditions imposed on its every vertex is in a fairly decent
agreement with the prediction, although a considerable amount of roots was lost. Also,
in this section, the motivation for choosing the optimal set of edge lengths for a quantum
graph was demonstrated.

The star graph, characterized by Dirichlet conditions on its outer vertices and a Stan-
dard condition on its central vertex, exhibits a NND that closely resembles the distribution
of the GOE, but with a noticeable shift to the right. Despite this deviation, the analysis
remains credible since virtually no roots are lost in the process. This finding suggests that
the combination of Dirichlet and Standard conditions induces interesting spectral behav-
ior, where the Standard condition in the center vertex virtually connected the otherwise
disconnected vertices, which leads to a more chaotic characteristics of its spectra.

The investigation of the NND for a K5 graph with Standard conditions on every vertex
has yielded intriguing findings, although the result falls short of being deemed optimal.
While the NND displays some similarities to the distribution observed in the GOE, it
does not perfectly match GOE’s characteristic shape. Specifically, the peak of the distri-
bution does not attain its expected height, indicating a certain degree of deviation from
GOE-like behavior. Moreover, the application of our root-finding solution introduced some
distortions in the analysis. The solution identified more roots than anticipated (as seen
in Table 5.4, leading to an altered NND. Further investigations and refinements of the
root-finding method are necessary to obtain more accurate and robust results.
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Appendix A

Code Listings

from numpy import pi, e

def goe(x):
return (pi / 2) * x * (e ** ((-pi / 4) * x ** 2))

def gue(x):
return (32 / pi ** 2) * x ** 2 * (e ** ((-4 / pi) * x ** 2))

def gse(x):
return ((2 ** 18) / (3 ** 6 * pi ** 3)) * x ** 4 * (

e ** ((-64 / (9 * pi)) * x ** 2))

def poisson(x):
return e ** (-x)

def normalize_root(root: float, edge_lengths_sum: float) -> float:
return (root * edge_lengths_sum) / pi

Listing A.1: Python file containing the functions for GOE, GUE, GSE and Poisson distri-
butions. Also, a function to normalize the roots of a quantum graph is included.
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import numpy as np
import matplotlib.pyplot as plt
from skrmt.ensemble import GaussianEnsemble

labels = {
1: "GOE",
2: "GUE",
4: "GSE",

}

beta = 1
n = 1000
reps = 100_000

eigenvalues = []
for r in range(reps):

matrix = GaussianEnsemble(beta=beta, n=n,
use_tridiagonal=True).matrix

sorted_eigen_values = np.sort(np.linalg.eigvalsh(matrix))
eigenvalues.extend(sorted_eigen_values)
if r % 10_000 == 0:

print(r)

plt.title(f'{labels[beta]} n={n} eigenvalues')
plt.hist(eigenvalues, bins=200, density=True)
plt.savefig(f'{labels[beta]} n={n} eigenvalues')
plt.show()
Listing A.2: Python script to compute the eigenvalues of a matrix in the Gaussian ensemble
and display them as a histogram.
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from typing import Callable
from scipy.optimize import root_scalar
import time

tol = 1e-12

def find_roots(func: Callable, number_of_roots: int, precision=400,
method: str = 'brentq') -> list:

roots = []
i = 0
tic = time.perf_counter()
percentage = 0

while len(roots) < number_of_roots:
a = i / precision
b = a + 1 / precision
interval = [a, b]

if func(a) * func(b) > 0:
i += 1
continue

result = root_scalar(func, bracket=interval, xtol=tol,
method=method)

if result.converged and result.root not in roots:
roots.append(result.root)

i += 1
if len(roots) % (number_of_roots / 100) == 0 and len(

roots) != 0:
print(f"{percentage}% completed")
percentage += 1

toc = time.perf_counter()
print(f"Elapsed time {toc - tic:0.4f} seconds")
print(f"Ending was at {i / precision}")
return roots

Listing A.3: Python function to find a given number of roots of an arbitrary function.
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from sympy import Matrix
from sympy.parsing.mathematica import parse_mathematica
from sympy import lambdify
from sympy import sympify
from sympy import Symbol
from numpy import pi, e

def convert_to_mathematica_matrix(matrix: Matrix) -> str:
""" Converts sympy matrix into a string that can be pasted into Mathematica input. """
matrix_str = str(matrix.tolist())
return matrix_str \

.replace('[', '{') \

.replace(']', '}') \

.replace('cos', 'Cos') \

.replace('sin', 'Sin') \

.replace('(', '[') \

.replace(')', ']')

def get_func_from_mathematica(file_name: str):
with open(file_name, 'r') as file:

content = file.read()

expr_str = parse_mathematica(content)

# Convert the string to a sympy expression
expr = sympify(expr_str)

# Define the variables
k = Symbol('k')
# Use lambdify to create a function that can be evaluated numerically
subbed_expr = expr.subs({'pi': pi, 'e': e})
func = lambdify(k, subbed_expr, 'numpy')
return func

Listing A.4: Python file with a function that converts a Python matrix to a Mathematica
matrix, which can then be pasted into Mathematica program. The second function does
the opposite.
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import time
import numpy as np
from skrmt.ensemble import GaussianEnsemble
import matplotlib.pyplot as plt
from distributions import goe, gue, gse
from unfolding import F

functions = {
1: ("GOE", goe),
2: ("GUE", gue),
4: ("GSE", gse),

}

beta = 1
n = 1000
reps = 1000
spacings = []

tic = time.perf_counter()
for r in range(reps):

matrix = GaussianEnsemble(beta=beta, n=n,
use_tridiagonal=True).matrix

sorted_eigen_values = np.sort(np.linalg.eigvalsh(matrix))
unfolded_values = [F(eigenvalue, n, beta) for eigenvalue in

sorted_eigen_values]
spacings.extend(np.diff(unfolded_values))

mean = np.mean(spacings)
normalized_spacings = list(map(lambda s: s / mean, spacings))
print(mean)
toc = time.perf_counter()
print(f'Elapsed time: {toc - tic:0.4f} seconds')

np.save(f"{functions[beta][0]}{n}x{n} unfolded and normalized",
normalized_spacings)

plt.hist(spacings, bins=100, density=True)
x = np.arange(0, 5, 0.05)
plt.plot(x, functions[beta][1](x), label=functions[beta][0])
plt.legend()
plt.xlabel("Normalized spacings of eigenvalues")
plt.ylabel("Frequency")
plt.xlim(xmin=0, xmax=5)
plt.title(f'Histogram for {functions[beta][0]} matrix n={n}')
plt.savefig(functions[beta][0])
plt.show()
Listing A.5: Python file that computes the NND for a matrix in the Guassian ensemble.
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from sympy import symbols, integrate, sqrt, pi
import numpy as np

t = symbols("t")
N, Îš = symbols("N Îš", positive=True)
ÏČ = 2 / (pi * (2 * Îš * N)) * sqrt((2 * Îš * N) - t ** 2)
ÎŻ_N_Îš = integrate(N * ÏČ, t)

Îż = symbols("Îż")
F_Îż = ÎŻ_N_Îš.subs(t, Îż) - ÎŻ_N_Îš.subs(t, -sqrt(2 * Îš * N))

def F(eig, size, beta):
if eig <= -np.sqrt(2 * beta * size):

return 0
if eig >= np.sqrt(2 * beta * size):

return size
else:

return float(F_Îż.subs(Îš, beta).subs(N, size).subs(Îż, eig).evalf())
Listing A.6: Python file with an unfolding function F. Taken from [17].
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