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quantum chaos. Fol lowing that are chapters dedicated to the theory of random matr i ­
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Introduction 

The study of quantum chaos has emerged as a captivating field, unraveling the intricate 
interplay between classical chaos and quantum mechanics. In this thesis, we w i l l use quan­
t u m graphs as a model to study quantum graphs, as proposed by Kot tos and Smilansky 
in [1]. Th is methodology is based on the Bohigas-Giannoni-Schmit ( B G S ) conjecture [2], 
which states that some statistical properties of a chaotic spectra can be predicted by certain 
random matrices. This conjecture is supported by a vast host of numerical studies. 

The goal of this thesis is to give the reader a brief int roduct ion to the issue of quan­
t u m chaos on graphs and the study of their properties. Specifically, the nearest neighbor 
dis tr ibut ion ( N N D ) w i l l be studied for selected random matrices and quantum graphs, il lus­
t ra t ing their relationship, which w i l l then serve as a numerical proof of the B G S conjecture. 
The thesis w i l l also provide an exploration of random matrices, w i th a part icular emphasis 
on the Gaussian Ensemble. Th is investigation aims to deepen the understanding of the 
B G S conjecture. 
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Chapter 1 

Quantum chaos 

1.1 Classical chaos 

In physics and mathematics, chaos theory describes the behavior of nonlinear dynamic 
systems, meaning systems that evolve over t ime and the response of the system is not 
proport ional to the magnitude of the input . Under certain conditions, these systems may 
exhibit an effect referred to as deterministic chaos. One of its main characteristic is its 
sensitivity to in i t i a l conditions of the system. A s a result of this sensitivity, the behavior 
of these systems may appear chaotic and random, despite the fact that the model of the 
system is deterministic i n the sense that it is completely defined and does not include any 
random variables. A n example of such system is a double pendulum; the posit ion of the 
pendulum after a certain amount of t ime may be completely different for a set of nearly 
identical in i t i a l conditions, displaying the chaotic, yet deterministic (can be described by a 
set of coupled ordinary differential equations), behavior [3]. 

Understanding chaotic behavior in physical systems is of great importance in several 
fields of science and engineering. In physics, chaotic behavior is a ubiquitous phenomenon 
that can be found i n a wide range of systems, from classical mechanics to quantum me­
chanics. Chaot ic behavior can occur in systems as diverse as the weather, the mot ion of 
planets, the behavior of fluids, and the dynamics of electronic circuits. B y understanding 
the chaotic behavior of these systems, scientists and engineers can gain insights into their 
fundamental properties and develop more accurate models to predict their behavior. 

In addit ion, understanding chaotic behavior is important for the design and control of 
complex systems. Chaot ic behavior can lead to unexpected and unpredictable outcomes in 
engineering systems such as aircraft, bridges, and power grids. Therefore, engineers must 
be able to predict and control the behavior of these systems to ensure their safety and 
reliability. 

Moreover, the study of chaotic behavior has led to the development of new mathemat­
ical tools and concepts that have found applications i n fields such as cryptography, data 
compression, and image processing. The importance of understanding chaotic behavior in 
physical systems is thus far-reaching and has implications for many areas of science and 
engineering. 
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1.2 Quantum chaos 

W h e n we begin to study chaotic systems i n terms of quantum mechanics, we start seeing 
certain differences. Accord ing to the Heisenberg's uncertainty principle, it is impossible to 
measure certain pairs of physical quantities of a particle, such as posit ion and momentum, 
wi th arbi t rary precision. [4] This means that quantum systems are not deterministic, in 
contrast to classical systems. In quantum mechanics, the state of a system is given by 
the wave function and the Schrodinger equation describes its evolution over t ime. The 
Schrodinger equation is a linear par t ia l differential equation, meaning that the evolution of 
a quantum system is governed by a linear equation, which results i n a linear transformation 
of the wave function describing the system. Therefore, the evolution of quantum systems 
is fundamentally different from that of classical systems, where nonlinearity can lead to 
chaotic behavior. However, when the system has a large number of degrees of freedom or 
when it is subject to external perturbations, it may exhibit chaotic behavior. [5] 

The relationship between classical and quantum chaos is in part described by the corre­
spondence principle. It is a fundamental concept in physics that states that in the l imi t of 
large quantum numbers, the behavior of quantum systems should be consistent w i th classi­
cal mechanics. Th is principle implies that classical mechanics is a special case of quantum 
mechanics and that classical behavior can emerge from quantum behavior. 

In the context of chaos theory, the correspondence principle suggests that classical 
chaotic behavior should have a quantum mechanical counterpart. Th is is known as quan­
t u m chaos and the pr imary question that it seeks to answer is: What is the relationship 
between quantum mechanics and quantum chaos? However, the relationship between classi­
cal and quantum chaos is not straightforward. W h i l e classical chaotic behavior arises from 
nonlinearity, quantum mechanics is a linear theory. Therefore, quantum chaos cannot be 
fully understood as a simple extension of classical chaos. Instead, the study of quantum 
chaos involves finding ways in which classical and quantum mechanics are related. [6] 

Despite the challenges, the study of quantum chaos is an important area of research wi th 
numerous applications. For example, quantum chaos has been used to study the behavior of 
complex systems i n condensed matter physics, as well as to develop new quantum computing 
algorithms. It has also shed light on the nature of the correspondence principle and the 
relationship between classical and quantum mechanics. 

1.3 Methods 

To br ing answers to the basic question of quantum chaos, several approaches have been 
employed. 

1.3.1 Semiclass ical quant i za t ion 

Semiclassical quantization is a powerful tool i n the study of quantum chaos, and has been 
applied to a wide range of physical systems, from atoms and molecules to black holes and 
cosmology. 

The semiclassical approximat ion is based on the idea that, i n the l imi t of large quantum 
numbers, the quantum dynamics of a system approach the classical dynamics. Th is means 
that we can use classical mechanics to obtain an approximate expression for the energy 
levels of a quantum system, by expanding the wave function in powers of Planck 's constant 
and then using classical mechanics to determine the coefficients of the expansion. 
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The method was first developed by Michae l Ber ry i n the late 1970s, and has since been 
widely applied i n the study of quantum chaos. One of the key applications of semiclassical 
quantization is i n the study of the spectral statistics of chaotic systems. The spectral 
statistics describe the dis t r ibut ion of energy levels of a quantum system, and can reveal 
important information about the underlying classical dynamics. 

The semiclassical approximat ion has also been used to study other properties of chaotic 
systems, such as quantum transport, quantum localizat ion, and quantum chaos i n cosmol­
ogy. In recent years, the method has been combined wi th other techniques, such as R a n d o m 
M a t r i x Theory ( R M T ) and the theory of wave chaos, to provide even deeper insights into 
the behavior of complex quantum systems. [7] 

1.3.2 Q u a n t u m scars 

The study of scars and periodic orbits is a powerful tool for understanding the relationship 
between classical and quantum mechanics i n chaotic systems. Per iodic orbits are closed 
trajectories in the phase space of a classical system that repeat themselves after a certain 
period of t ime. In a chaotic system, periodic orbits can be unstable, meaning that small 
perturbations can cause the trajectory to diverge from the original path. The concept 
of scars refers to a peculiar phenomenon where certain quantum states are concentrated 
around periodic orbits that are classically unstable. 

The study of scars and periodic orbits was ini t ia ted by E r i c Heller and his colleagues in 
the early 1990s. They found that the wave functions of certain quantum systems exhibit 
s t r iking patterns that are correlated wi th the unstable periodic orbits of the corresponding 
classical systems. These patterns, which they dubbed scars, represent a deviat ion from the 
random dis t r ibut ion of wave functions that is characteristic of chaotic systems. 

Scars arise due to the interference of wave functions that are associated w i t h different 
periodic orbits. W h e n the phase differences between these wave functions are carefully 
chosen, they can add up constructively to produce a coherent, localized state that is centered 
around the unstable periodic orbit . The resulting scar is a manifestation of the classical 
mot ion of the system in the quantum realm. 

The dis t r ibut ion of scars in a quantum system can provide valuable information about 
the underlying classical dynamics. For example, the number and location of scars can reveal 
the presence of periodic orbits and the degree of chaos in the system. In particular, systems 
wi th weak chaos tend to have more isolated scars, while systems wi th strong chaos have 
scars that are more widely distr ibuted. 

The study of scars and periodic orbits has led to numerous advances i n our under­
standing of the interplay between classical and quantum mechanics in chaotic systems. 
It has provided insight into the fundamental l imits of quantum mechanics, the nature of 
decoherence, and the emergence of classical behavior from quantum systems. Moreover, 
the identification of scars has important applications i n a wide range of fields, including 
quantum computing, mesoscopic physics, and chemical dynamics. [8] 

1.3.3 E n t a n g l e m e n t en tropy 

Entanglement entropy is a method used i n the study of quantum chaos that involves analyz­
ing the amount of entanglement between different parts of a quantum system. Entanglement 
is a quantum mechanical phenomenon i n which the properties of two or more particles be­
come intertwined, even when they are separated by a large distance. This means that the 
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Figure 1.1: T y p i c a l scarred eigenstates of the (Bunimovich) s tadium. The figure shows 
the probabi l i ty density for three different eigenstates. The scars, referring the regions of 
concentrated probabil i ty density, are generated by (unstable) periodic orbits, two of which 
are i l lustrated. [9] 

state of one particle cannot be described independently of the other, and the properties of 
the particles are said to be "entangled". 

In the context of quantum chaos, entanglement entropy is a measure of the amount 
of entanglement between different parts of a quantum system. It is defined as the von 
Neumann entropy of the reduced density mat r ix of a subsystem of the full system. The von 
Neumann entropy is a measure of the amount of information contained i n a quantum state, 
and it is related to the amount of uncertainty that exists about the state of the system. 

In chaotic quantum systems, the entanglement entropy grows rapidly as the size of the 
subsystem increases. Th is is due to the fact that chaotic systems are highly entangled, w i th 
the entanglement between different parts of the system spreading rapidly throughout the 
entire system. This rapid growth of entanglement entropy is a signature of chaotic behavior 
in quantum systems. 

The study of entanglement entropy i n quantum chaotic systems has led to a better 
understanding of the relationship between chaos and entanglement i n quantum mechanics. 
It has also been used to investigate the properties of black holes and their relationship to 
quantum chaos. 

One of the key insights gained from the study of entanglement entropy is the concept of 
"quantum chaos versus thermalization". Thermal iza t ion is the process by which a system 
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reaches thermal equi l ibr ium w i t h its environment. In quantum mechanics, it is related 
to the concept of decoherence, which is the loss of coherence between different parts of a 
quantum system due to its interaction wi th the environment. 

In chaotic quantum systems, it was in i t ia l ly thought that the rapid growth of entan­
glement entropy would lead to thermalizat ion, as the system becomes more and more en­
tangled wi th its environment. However, recent studies have shown that this is not always 
the case, and that some quantum systems can exhibit "quantum chaos" without reaching 
thermal equi l ibr ium. This has important implications for the study of quantum many-body 
systems and the behavior of black holes. [10] 

Overal l , the study of entanglement entropy i n quantum chaotic systems has provided a 
powerful tool for understanding the complex behavior of these systems. It has led to new 
insights into the relationship between chaos and entanglement i n quantum mechanics, and 
has opened up new avenues of research in areas such as black hole physics and quantum 
information theory. 

1.3.4 S p r e a d i n g of wave packets 

Another characteristic of quantum systems is the spreading of wave packets. In a quantum 
system, the motion of a particle is described by a wave function. W h e n the wave function is 
spread out, it indicates that the particle is delocalized and has a high probabi l i ty of being 
found i n many different locations. Conversely, when the wave function is localized, the 
particle is more l ikely to be found in a specific location. In chaotic quantum systems, the 
spreading of wave packets is rapid and follows a specific pattern. Th is is known as quantum 
revivals, where the wave function spreads out and then recoheres periodically. The time 
scale of the revivals is related to the classical dynamics of the system. In regular quantum 
systems, the wave function spreads out more slowly and does not exhibit quantum revivals. 

B y analyzing the spreading of wave packets in a quantum system, we can identify 
whether the corresponding classical system exhibits chaotic or regular behavior. This 
method has been used to study a wide range of physical systems, including bil l iards, quan­
t u m dots, and atoms in strong electromagnetic fields. [11] 

1.3.5 S p e c t r a l statistics 

Eigenvalue statistics in quantum systems have been studied extensively i n the field of quan­
t u m chaos. One of the key observations in this area is that the statist ical behavior of 
eigenvalues can be used to determine the chaotic behavior of the system. This is because 
the eigenvalues of a quantum system are related to the energy levels of the system, and the 
energy levels of a chaotic system are known to exhibit a specific statist ical behavior. 

The study of eigenvalue statistics in quantum systems can be traced back to the work 
of Eugene Wigner i n the 1950s. Wigner was interested i n the statist ical behavior of the 
eigenvalues of large matrices that arise i n the study of nuclear physics. He observed that 
the eigenvalues of these matrices exhibit a semicircular dis t r ibut ion in the l imi t of large 
matr ix size. Th is result, known as Wigner ' s semicircle law, is now considered one of the 
fundamental results i n R M T . 

In quantum chaos, the focus is on the statist ical behavior of the eigenvalues of H a m i l -
tonian that describe the evolution of quantum systems over t ime. In chaotic systems, the 
eigenvalues of the Hami l ton ian exhibit a statist ical behavior that is different from that of 
non-chaotic systems. Specifically, the eigenvalues of chaotic systems exhibit a dis t r ibut ion 
that is s imilar to that of the eigenvalues of random matrices. 
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The statist ical behavior of eigenvalues in quantum systems has many important appli­
cations. For example, it can be used to understand the spectral properties of disordered 
systems, such as amorphous materials or glasses. It can also be used to understand the be­
havior of quantum systems i n the presence of external perturbations or noise. In addit ion, 
the statist ical behavior of eigenvalues has important applications i n quantum computing 
and quantum information theory. [12] 

In later chapters, the focus w i l l be on this method, specifically the nearest-neighbor 
level spacing dis t r ibut ion of random matrices and quantum systems. 
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Chapter 2 

Random matrix theory 

In R M T , a random mat r ix is a mat r ix i n which some or a l l values are random variables. 
R a n d o m matrices become useful when we want to statist ically describe a complex physical 
or mathematical system, where we replace the deterministic matrices w i th random matrices 
and then calculate averages and other statist ical properties. 

2.1 Gaussian Ensemble 

The Gaussian Ensemble is a class of random matrices that plays an important role in 
R M T and its applications to physics, mathematics, and other fields. The ensemble consists 
of matrices whose elements are independent and identically distr ibuted (i.i.d.) Gaussian 
random variables, w i th zero mean and variance depending on the specific symmetry class 
of the ensemble. 

The Gaussian Ensembles are characterized by the probabil i ty density function ( P D F ) of 
the matr ix elements. The three most commonly studied ensembles are the real symmetric 
Gaussian Orthogonal Ensemble ( G O E ) , the complex Hermi t ian Gaussian Un i t a ry Ensemble 
( G U E ) , and the quaternion self-dual Gaussian Symplectic Ensemble ( G S E ) . In G O E , the 
matr ix elements are real and symmetric. Its dis t r ibut ion is invariant under orthogonal 
conjugation, meaning 

H ->• WTHW 

where W is any real orthogonal mat r ix of order N . The P D F for the mat r ix elements is 
given by: 

-PgoePO o c exp 

where iV is the dimension of the matr ix , T r denotes the trace of the matr ix , i.e., the sum 
of its diagonal elements, and X is an iV x iV matr ix . 

In G U E , the mat r ix elements are complex and Hermi t ian (the mat r ix is equal to its 
conjugate transpose). Its dis t r ibut ion is invariant under uni tary conjugation, meaning 

H ->• U^HU. 

The P D F for the matr ix elements is given by: 

P g u e P O o c exp 
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In G S E , the mat r ix elements are quaternion self-dual, meaning that the mat r ix is equal 
to its conjugate transpose up to a sign. Its d is t r ibut ion is invariant under conjugation by 
the symplectic group, meaning 

H -)• WTHW, 

where W is any symplectic matr ix of order N and WT is its transpose. A symplectic mat r ix 
is a 2n x 2n mat r ix wi th real entries that satisfies the condit ion 

w T n w = n, 

where f2 is a fixed 2n x 2n invertible, skew-symmetric matr ix . The P D F for the matr ix 
elements is given by: 

PGSE(X) oc exp (- jTTX2 + y T V A 4 ) • 

[13] 
Note that the Gaussian Ensembles are denoted by their Dyson index, ß = 1 for G O E , 

ß = 2 for G U E , and ß = 4 for G S E . This index counts the number of real components per 
matr ix element. 

2.2 Wigner's semicircle law 

Wigner 's semicircle law is a fundamental result in R M T that describes the d is t r ibut ion of 
eigenvalues in large random matrices. Specifically, it states that the normalized eigenvalue 
density of a large, symmetric or Hermi t i an matr ix wi th independent, identically distr ibuted 
entries w i l l converge to a semicircle dis t r ibut ion as the size of the matr ix goes to infinity. 

More precisely, suppose we have an N x N real symmetric mat r ix A whose entries 
above the diagonal are independent random variables w i t h mean zero and variance 1/N, 
and whose diagonal entries are independent random variables w i th mean zero and variance 
2/N. Then , as iV becomes large, the density of the eigenvalues of A converges to the 
semicircle density 

—,\/R2-x2,if - R < x < R , 
nRz 

where R = \ / 2 i V is the radius of the semicircle. In other words, the probabil i ty that an 
eigenvalue of A falls in the interval [a, b] is given by the area under the semicircle between 
a and 6, d ivided by the to ta l area of the semicircle. Then suppose we are interested i n the 
dis tr ibut ion of a single arbi trary eigenvalue E\ of a Gaussian Ensemble wi th Dyson index 
(5 as N —>• oo, then Wigner ' s semicircle is 

l i m y/pNp{y/PNEi) = a / ^ i ) , (2.1) 

where p is the P D F of the dis t r ibut ion and a is the standard deviat ion of the Wigner 
semicircle dis t r ibut ion. The semicircle law holds for a wide variety of ensembles of random 
matrices, including the Gaussian orthogonal, unitary, and symplectic ensembles. [14] 

2.3 Wigner's surmise 

Wigner 's surmise is a key result i n R M T that describes the dis t r ibut ion of spacings between 
adjacent eigenvalues of certain random matrices. In particular, the surmise provides a 
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formula for the P D F of the N N D of ensembles of random matrices that exhibit certain 
types of symmetries, such as orthogonal, unitary, or symplectic symmetry. The surmise 
was first proposed by Eugene Wigner in 1951, based on numerical evidence from studies of 
the spectra of heavy nuclei. It states that the N N D can be approximated by a function that 
has a characteristic shape, depending on the symmetry class of the ensemble. The surmise 
for the N N D of G O E is given by a semi-circular function [12] 

P 1 ( , ) = | , e x p ( - p ) . (2.2) 

The surmise for the G U E is given by a function that is quadratic at smal l spacings and has 
a long ta i l at large spacings. [14] 

32 / 4 \ 
P 2 ( s ) = ^ s 2 e x p s2 . (2.3) 

1TZ \ IT J 

For G S E , the P D F approaches a modified Wigner surmise, known as the Dyson surmise 
[15] 

P 4 ( S ) = J ^ e x p ( - ^ ) . (2.4) 

Here, s is the normalized spacing between adjacent eigenvalues, i.e. s = S/D, where S is the 
difference between two neighbouring eigenvalues and D is the average spacing. The Wigner 
surmise and Dyson surmise are normalized such that the integral over a l l possible spacings 
equals one. The surmise has since been verified i n many other contexts, bo th theoretically 
and experimentally, and is now widely used as a tool for analyzing the spectral properties 
of complex systems i n physics, mathematics, and other fields. 

2.4 Unfolding 

W h e n studying the spacings of eigenvalues of a random matr ix , we have to take into ac­
count the fact that the eigenvalues are not distr ibuted uniformly, but rather according to 
Wigner ' s semicircle law, as described above. So in order to study the behavior of spacings 
asymptotically, we need to unfold the eigenvalues. The unfolded eigenvalues w i l l then be 
distr ibuted uniformly, w i th mean spacing one. O n l y after this operation, the N N D w i l l 
follow the Wigner 's surmise. 

Suppose we have an order sequence of energies (eigenvalues) which form the spectral 
function 

N 
S(E) = Y/*(E-En), 

n=l 
where a is the Di rac delta function. To perform the unfolding, we w i l l use the average level 
staircase function 

r—oo 
V(E) = / S(E')dE', 

JE 

where E is an eigenvalue. This tells us how many eigenvalues of a l l the eigenvalues are less 
than E. It is then decomposed into a smooth part £(E) and a fluctuating part rfa(E), 

r]{E) = £{E) + m{E). 
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The smooth part is given by the cumulative mean level density, 

r — OO 
£(E) = / R ^ d E ' , 

JE 

where R\ is the mean level density, which refers to the average density of energy levels or 
eigenvalues of a quantum system over a certain range. The unfolded sequence of eigenvalues 
is then given by 

& = £ ( £ i ) . 

where the index i labels the eigenvalues in the sequence. [16] 
Now, to find the scaling factor for the unfolding, we w i l l use Wigner ' s semicircle law. 

Note that the equation (2.1) implies that ^ = tends to a semicircle dis t r ibut ion w i t h radius 

\[2 as N gets large. O r in other form, E\ tends to a dis t r ibut ion wi th radius *j2f3N. Let 
Ajv a[a; b] be the number of eigenvalues in the interval [a; b] of an iV x iV Gaussian Ensemble 
wi th Dyson index f3, then 

l i m ANp[a;b] A N / cr^sN^dt, 
N^oo JA 

where —> denotes convergence i n probabili ty. Th is means that as iV approaches infinity, the 
probabil i ty that A ^ f a ; ^ deviates from the expected value N ay/23N(t)dt goes to zero. 
We can then find a closed form expression for the integral 

i Y / 3 a r c s i n ( ^ ) + ^ ^ 
Py/2PN\t) — 7T/3 

Now we define the mean cumulative spectral density 

cE 

-2/3 N 

and the closed form expression is 

/

E 
PvWN(t)dt 

-20N 

,T NB arcsin ^ E + g v g j ^ E g 

M m = T + -p 

Thus we get 

( 0 for E < 

f + ^ ( A T / 3 a r c s i n ( ^ ) + E ^ z ^ L ) fc £ e ( f f V , # J V ) (2.5) 

1 for E > V2fiN-

We can now get the unfolded sequence 

which w i l l have a mean equal to one. [17] 18 



Chapter 3 

Quantum graphs 

Quantum graph is a metric graph equipped wi th a differential operator, which we cal l 
Hamil tonian , and a set of some vertex conditions (which are described below). Quan tum 
graphs arise natural ly as simplified models i n various areas of mathematics, physics, chem­
istry and engineering, when one studies propagation of waves of various nature through 
quasi-one-dimensional system, for example quantum wires, photonic crystals and the free-
electron theory of conjugated molecules. Quan tum graphs also play a role of simplified 
models for s tudying quantum chaos. 

3.1 Describing the model 

A graph F consists of a set of vertices V = and a set of edges £ = {ej} connecting 
the vertices. The edges are undirected. We w i l l use the notat ion E := \£\ and V := | V | 
for the number of edges and vertices. The edges are of a finite length lj > 0 and can be 
parameterized by the intervals ( 0 , ^ ) . Th is metric graph becomes a quantum one after 
being equipped wi th a differential operator and some vertex conditions. Th is operator is 
called the Hami l ton ian % which acts as a negative second derivative on each edge 

Figure 3.1: A graph. 
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where x is the coordinate x along an edge. For the definition of an operator to be complete, 
we need to describe its domain. The domain of operator % are functions from the Sobolev 
space H2(e) on each edge e. These are functions for which the first and the second derivative 
exist and both the components of these function on each edge and their first and second 
derivatives are quadratical ly integrable, meaning 

\fj(x)\2dx, f 3\f'(x)\2dx and f'\f"(x)\2dx 

are finite. The next condit ion is that the function satisfies the vertex conditions. Some of 
the most common vertex conditions are: [18] 

• Dir ichlet condit ion - we impose a condit ion on a l l edges i n a given vertex v 

/ » = o. 

This means that i n this vertex, the graph is disconnected. 

• Neumann condit ion - we impose a condit ion on a l l edges i n a given vertex v 

fjly) = o-

This also means that the graph is disconnected. 

• (^-condition - function i n a given vertex satisfies the conditions 

fi{u) = / » = /(I /) , 

where i,j G { 1 , d ( u ) } , d(v) being the degree of a vertex v. 

d(u) 

i = i 

This means that functions i n the given vertex are continuous and the sum of outgoing 
derivatives is equal to a-mult iple of the function value, constant a is a real number. 

• Standard condit ion - the condit ion is the same as the S condit ion (functions in a 
given vertex are continuous), but the value of a is zero, meaning the sum of outgoing 
derivatives is zero. 

d(u) 

3.2 Finding the secular determinant 

If we want to study the N N D of eigenvalues, we first need to derive the equation for the 
eigenvalues (the energy levels). In quantum mechanics, we can measure the energy of 
a physical system by performing a measurement of the Hami l ton ian operator, which we 
defined in the equation (3.1). The equation for the energies is 

Hf(x) = Ef(x). 
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After substi tut ing our Hami l ton ian and E = k2, we get 

" ^ / ( x ) = fc2/(x)-

To solve this homogeneous differential equation wi th constant coefficients, we w i l l substitute 
f(x) = eXx, where A is a complex constant. P lugging this into the previous equation, we 
get 

( A 2 + k2)eXx = 0. 

F rom this, we get A = ±ik. The general solution of the equation is 

f(x) = aeikx + be~ikx. 

Using De Moivre ' s formula we get 

f(x) = Acos(kx) + Bsm(kx), (3.2) 

where A a B are new complex constants. The derivative is 

f'(x) = —Aks'm(kx) + Bkcos(kx). (3-3) 

This is where the solution starts to become specific depending on the graph we are working 
wi th . 

Firs t , we need to parameterize the edges as i n which vertex the edge starts (x = 0) 
and where the edge ends (x = lj, where lj is the length of edge ej). Then, we evaluate 
the vertex conditions at each vertex, substi tut ing the general solution, which w i l l yield us 
one or more equations. After doing this for every vertex, we w i l l end up wi th a system of 
equations, which can be wr i t ten as 

MA = 0, (3.4) 

where A is a column vector of the complex constants and M is the system of equations 
rewritten as a matr ix . This system has a non- t r iv ia l solution only i f the determinant of 
matr ix M is zero. F r o m this condit ion, we can find the values for k and then the energy 
levels from E = A;2.[19] 

A s a lot of these conditions do not have an analyt ical solution, a numerical one is 
required. The operation is simple - find roots of a real function. To check that our root-
finding solution is precise enough and we are not loosing too much roots, we w i l l use Weyl 's 
law. The equation 

N(a,b) = -(b-a) + 0(l) (3.5) 
7T 

gives us an approximate number of roots i n a given interval. L is the sum of edge lengths 
and O ( l ) is the error. The meaning behind O ( l ) is that the error should be l imi ted by 
constants, imply ing that it should not rise when increasing the size of the interval (a, b). It 
should be noted that this approximat ion works only for large intervals. [18] 
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Chapter 4 

Numerical methods for finding 
roots 

In this chapter, we w i l l discuss the importance of numerical methods for finding roots. 
Th is w i l l be very useful later on, because doing the N N D for quantum graphs involves a 
lot of root-finding. The content of this chapter w i l l be mainly devoted to two methods 
- the bisection method and Brent 's method. The last section w i l l also contain a simple 
comparison of their speed and reliability. 

4.1 Introduction 

The task of finding a root or roots of a function is very simple i n principle, as it only involves 
solving an equation 

f(x) = 0. 

The equation we are solving for can be either one-dimensional or have iV dimensions. 
F i n d i n g roots i n iV dimensions proves to be significantly more challenging than i n one 
dimension. The main difference is that i n i n iV dimensions, is it not possible to bracket 
(or trap) a root between two bracketing values, because i n N dimensions, there is not a 
certainty that the root is there unt i l you have found i t . The functions we w i l l be working 
wi th in the following chapter are a l l one-dimensional. 

The general idea behind root-finding algorithms is i teration. The routine, w i th each 
iteration, applies the chosen algori thm, which refines an in i t i a l estimate of the root. The 
algori thm iteratively improves the solution, un t i l a certain level of accuracy has been met. 
These algorithms exhibit differences in terms of their speed and certainty i n reaching the 
solution. The rate of convergence refers to the speed or efficiency at which an algori thm 
approaches the true root of a function as the number of iterations increases. It provides 
a quantitative measure of how quickly the approximations generated by the a lgori thm 
converge to the actual root. Unfortunately, the ones that are sure to converge are also 
the ones making the slowest progress when finding a root, so there is always a trade-off 
between speed and certainty of finding a solution. [20] We w i l l now examine some root-
finding routines. 
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4.2 Bisection method 

The bisection method is one of the methods that cannot fail; it w i l l always find a root, i f 
the root is there. A root is bracketed in the interval (a, b) i f / ( a ) / ( 6 ) < 0. Then , as per the 
intermediate value theorem ( I V T ) , if the function is continuous, one or more roots must lie 
in that interval. [21] It is important to note that this applies only to continuous functions. 
Let us take a function 

/ ( * ) = ~ x 

for example. If we would take an interval (—1,1), then / (—1)/(1) > 0, but the root is not 
there, only singularity. 

The bisection method is known for its linear convergence rate. Th is means that w i th 
each iteration, the bisection method approximately halves the interval that contains the 
root. The error between the approximat ion and the true root reduces by a factor of ap­
proximately 1/2 i n each i teration. Mathemat ical ly , the convergence rate can be expressed 
as 0 ( l / 2 f c ) , where k is the number of iterations. The workings of this a lgori thm can be 
seen in this P y t h o n implementation: 

def bisection(f, a, b): 
# Set the tolerance 
tolerance = 10 ** -10 

# Check if the i n t e r v a l is within the tolerance 
i f abs(a - b) < tolerance: 

return (a + b) / 2 

# Calculate the midpoint of the i n t e r v a l 
midpoint = (b - a) / 2 

# Determine which half of the i n t e r v a l to continue with 
i f f ( a + midpoint) * f(b) < 0: 

return bisection(f, a + midpoint, b) 
else: 

return bisection(f, a, b - midpoint) 

In principle, this implementat ion is very straightforward. It halves the interval by either 
adding to the lower bound or subtracting from the upper bound. It then recursively con­
tinues un t i l the solution is very close to the actual root. The only precondition for finding 
a solution is that a < b and (a, 6) contains a root. Also , the root remains bracketed for the 
entire durat ion of the evaluation. The m a x i m u m number n of iterations needed to achieve 
a required tolerance e is 

n = l o g 2 —, 

where eo is the size of the in i t i a l bracketing interval. Th is is the main motivat ion for using 
the bisection method, as no other method can guarantee a better worst case scenario. [22] 
Its average performance under standard standard assumptions is, however, sub-optimal, 
resulting i n other methods usually being a better choice. [23] 
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4.3 Secant method 

M a n y root-finding techniques employ the concept of interpolation to approximate the root 
of a function. Interpolation involves u t i l iz ing the last computed approximate values of 
the root to construct a polynomia l of low degree that matches the function's values at 
those approximations. The root of this po lynomia l is then determined and used as a new 
approximation of the root of the function, and the process continues iteratively. [20] 

The secant method is based on interpolating the function using two values, resulting in 
a po lynomia l of degree one, which approximates the function's graph as a line. This is an 
example of linear interpolation. This involves defining an auxi l iary function that operates 
on the most recently computed approximations of a root, producing a new approximation 
as the output. Th is method is very similar to Newton's method, which is also an iterative 
method, but to use Newton's method, one must know the derivative of the function. This 
is, in our case, a deal breaker, because the functions we w i l l be working w i t h tend to be 
very large and computing their derivative is pract ical ly impossible. The basic idea of the 
Secant method is using a succession of roots of secant lines to better approximate a root of 
a function / . The method is defined by the recurrence relation 

This formula requires two in i t i a l values XQ and x\, ideally chosen as close to the root as 
possible. [20] This method can be implemented in P y t h o n as show in i n the following code 
snippet. 

tolerance = le-10 

# The a u x i l i a r y function that defines Secant method 
def find_next_x(f, xO, xl) : 

return x l - (f(xl) * (xl - xO) / f ( x l ) - f(x0)) 

def secant(f, xO, x l , number_of_iterations): 
i f abs(xO - xl) < tolerance: 

return xO 

# The method stops after a certain number of i t e r a t i o n s 
# when it did not converge 
i f number_of_iterations > 100: 

prin t ( " F a i l e d to converge") 
return None 

x2 = find_next_x(f, xO, xl) 
return secant(f, x l , x2, number_of_iterations + 1) 

Note that this and also the previous implementations use recursion. Same result can be 
achieved wi th i teration by introducing a while loop. The choice is based only on personal 
preference and readability. 

The secant method has a convergence rate that is typical ly faster than linear but slower 
than quadratic. It converges at a rate close to the golden ratio, approximately 1.618, which 
is slower than the quadratic convergence seen in methods like Newton's method. The error 
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between the approximation and the true root reduces by a factor close to the golden ratio in 
each iteration. Mathematical ly , the convergence rate can be expressed as 0 ( ^ - j p — ) , where 
k is the number of iterations. The secant method also has the advantage of requiring only 
one function evaluation every i teration, which can make a huge difference when dealing 
wi th large functions. The disadvantage is that this method is not very robust. Unl ike the 
bisection method, it does not require the root to remain bracket, indicat ing it may not 
always converge. [20] 

4.4 Brent's method 

Brent 's method is a hybr id root-finding algori thm that combines the advantages of several 
techniques, including the robustness of the bisection method and the superlinear conver­
gence of the secant method and inverse quadratic interpolation. The key idea behind Brent 's 
method is to dynamical ly select the most appropriate root-finding algori thm at each iter­
ation, based on the behavior of the function and the convergence progress. It does this 
by bracketing the root and using the inverse quadratic interpolation to estimate the next 
root. W h i l e linear interpolation uses two points to estimate the function, inverse quadratic 
interpolation uses three points to fit an inverse quadratic function (where x is a quadratic 
function of y). Then , its value at y = 0 is taken as the next estimate of the root x. [24] 

The implementat ion can be seen in the source code for the l ibrary scipy.optimize. [25]. 
In short, it attempts the inverse quadratic interpolation if possible. If not, it w i l l fallback 
to the Secant method and if that decision would also not lead to a better estimate, it uses 
the bisection method as its last resort. This guarantees a linear convergence rate i n the 
worst case scenario, but superlinear convergence rate on average. Brent also claims that 
this method w i l l always converge as long as the values of the function are computable wi th in 
a given region containing a root. [24] 

We w i l l now compare the difference in speed of the bisection method and Brent 's method, 
specifically their S c i P y [25] implementations. To do this, we w i l l find roots of three distinct 
functions for the interval (0,10 5 ) first using the bisection method and then Brent 's method. 
Then , we w i l l compare the t ime it took them to find a l l the roots in the given interval. The 
result can be seen i n Table 4.1. It is clear that Brent 's method is faster than bisection, 
although not by a large margin. The difference is more noticeable wi th more complex (as 
in the opposite of simple) functions, which is the k ind of functions we w i l l be dealing wi th . 
It should also be noted that the number of found roots for each function was the same for 
both methods. For sin(x), it was 31 831, which is also the actual number of roots for this 
function i n this interval, as per an equation iV = — . For the other two functions, it was 
379 403 and 767 698 respectively. 

M e t h o d fi h h 
Bisect ion 80.6 s 599 s 1622 s 

Brent 's method 79.8 s 547 s 1349 s 

Table 4.1: Results of a root-finding methods benchmark. The interval for each benchmark 
was (0 ,10 5 ) . h • sin(x),f2 : d e t ( M ) of (5.4), / 3 : (5.2). 
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Chapter 5 

Nearest-neighbor distribution for 
certain graphs 

In this chapter, we w i l l do the N N D for the Gaussian Ensembles ( G O E , G U E and G S E ) . 
After that, the N N D w i l l be done for three quantum graphs, comparing the results w i th 
that from R M T . Most of the work here w i l l be done i n Py thon , w i th some parts using 
Wolfram Mathemat ica . The code for this chapter can be found on my G i t H u b repository: 
h t t p s : / / g i t h u b . c o m / s t e p a z e l / Q u a n t u m C h a o s . 

5.1 Gaussian Ensembles 

To do the N N D for the Gaussian Ensembles, we first need to sample the corresponding 
matrices. For that, we used P y t h o n l ibrary scikit-rmt by Alejandro Santorum (available 
at h t t p s : / / g i t h u b . c o m / A l e j a n d r o S a n t o r u m / s c i k i t - r m t ) , which has the algorithms for 
sampling G O E , G U E and G S E already implemented. 

We start w i t h checking that the Wigner ' s semicircle law holds. A s shown i n the figures 
below, for n = 2, where n are the dimensions of the matr ix , the eigenvalues dis t r ibut ion 
shape is far from looking like a semicircle. B y increasing the size of the matr ix , we see the 
shape begin to take form of a semicircle, which is in correspondence wi th the law, which 
holds for n —> oo. The difference between the larger dimensions is not as significant as for 
the smaller dimensions. 

Now, we w i l l perform the N N D for G O E , but first, we w i l l show why the unfolding 
procedure is needed. The N N D w i l l be done for matrices of size 2 and 50. We w i l l also plot 
function (2.2), which is the Wigner ' s surmise for G O E . To perform the N N D , we sample the 
G O E matr ix , compute its eigenvalues, sort them and then get the ind iv idua l differences. 
We also need to normalize the spacings and we do that by mul t ip ly ing every value by | , 
where s is the ari thmetic mean of the spacings. For the smaller matr ix , we see a clear 
agreement between Wigner ' s surmise and the N N D . B u t when we go ahead and t ry do the 
same for a larger matr ix , we start seeing a slight difference as the spacings tend to be on 
the smaller side (a shift to the left). The difference gets bigger for larger dimensions. So, 
i n order to get r i d of this shift and start examining larger matrices, we need to perform 
the unfolding procedure. To do this, we s imply map the function (2.5) onto every value. It 
should be also noted that after the unfolding, s is equal to one, so normal iz ing the spacings 
is not needed. 
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GOE n=2 eigenvalues GOE n=50 eigenvalues 

-2 C 

GOE n=200 eigenvalues GOE n=1000 eigenvalues 

Figure 5.1: Semicircle law check. We clearly see that for larger dimensions, the dis t r ibut ion 
of eigenvalues takes on the semicircle shape. 

Now that we know the unfolding is very much mandatory for larger dimensions, we 
can safely go ahead and do the N N D for n = 1000. We w i l l do this for a l l three matrices 
from the Gaussian Ensemble. The procedure stays the same, the only th ing changing is 
the mat r ix sampled and the function plotted. For G O E , G U E and G S E we w i l l plot (2.2), 
(2.3) and (2.4) respectively. 

In Figure 5.4, we can see that for a l l of the matrices from the Gaussian Ensemble, even 
for larger dimensions, the Wigner ' s surmise holds. 
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Histogram for GOE matrix n-2 Histogram for GOE matrix n-50 

Normalized spacings of eigenvalues Normalized spacings of eigenvalues 

Figure 5.2: The spacings' size is shifted to the left for larger matrices. 

Histogram for GOE matrix n-50 

0 1 2 3 4 5 
Normalized spacings of eigenvalues 

Figure 5.3: After the unfolding is done, an agreement wi th the Wigner 's surmise is seen. 
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Histogram for GOE matrix n=1000 

Normalized spacings of eigenvalues 

Histogram for GUE matrix n=1000 

Normalized spacings of eigenvalues 

Histogram for GSE matrix n=1000 

Normalized spacings of eigenvalues 

Figure 5.4: The N N D for the Gaussian ensemble. 
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5.2 Star graph with Dirichlet conditions 

Now, we w i l l move on to some quantum graphs. We w i l l start w i th a star graph that has 
Dirichlet condit ion imposed on every vertex. We parameterize the edges so that every edge 
starts on the outer vertex and they a l l end on the inner vertex. Because the Dirichlet 
conditions basically disconnect the edges, the graph should display a Poisson dis t r ibut ion 
similar to the dis t r ibut ion of random numbers, as seen in [18]. 

Figure 5.5: A star graph. 

The Dir ichlet condit ion gives 
fj(x) = 0 

for each vertex. The equation (3.2) for the outer vertices is 

fj(0) = Aj, 

which gives us Aj = 0. We then get 

fj(x) = Bj s'm(kx). 

So, each edge gives us two equations; for the outer vertex it 's fj(0) = 0 and for the inner 
it 's fj(x) = Bj sm(kx). Rewr i t ing this system of equations as a mat r ix gives us 

{s'm(kvi) 0 
0 sin(/ci^) 

0 \ 

0 

fBA 
Bo 

(5.1) 

s'm(kvj) J \BjJ 

where Vj are edge lengths. The determinant of the first mat r ix is 

d e t M = JJs in( /c i / j ) . (5.2) 

Now, before numerically finding the roots of this equation, we have to take into account 
two variables: the number of edges and their lengths. Neither of these can be chosen 
arbitrarily. For the edge lengths, we w i l l impose two requirements: 
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Histogram for a Dirichlet star graph with 4 rationally dependent edges 

Poisson 

4 -

Figure 5.6: The N N D for a star graph wi th six edges whose lengths are rat ional ly dependent. 
The lengths are (1, 2, 3,4, 5,6); a t r i v i a l example. 

1. The edge lengths should be rat ional ly independent. [18] 

2. One edge length shouldn't be significantly greater than the others. 

Our strategy to satisfy the first requirement w i l l be choosing constants (TT, e) and some 
numbers of our choice (e.g. 1.923) such that their ratios are far from rat ional numbers wi th 
small numerator and denominator. Last ly, we w i l l apply functions like the square root or 
the natural logari thm. The demonstration of what happens w i t h the result when we do not 
have a set of edge lengths that are rat ional ly independent can be seen i n Figure 5.6. 

The second requirement is, at first glance, not very helpful, because the description 
significantly greater is very subjective. Is five significantly greater than one i n the context 
of a quantum graph, or is it only greater? To put this requirement into context, let's plot 
the N N D for a star graph w i t h six edges, where one edge length is the cube of another. We 
can see the result i n Figure 5.7. We can see a pattern where one spacing between the roots 
is repeating. This is greatly distort ing the final result. 

For this certain graph, a higher number of edges leads to better results, which is shown 
in Figure 5.8. The difference is less significant when we get to higher number of edges. 

Now, w i l l a l l these requirements i n mind , we can go ahead and compose a suitable star 
graph. It w i l l have 12 edges and edge lengths as follows: 

(tt, e, y/2, In 2,1.98712, y/E, y/e, In5, VTT, 0.97127, In 3, In TT, 1.52321, 0.86127). 

We can now substitute these values into the equation (5.2) and find roots of this equation. 
B u t first, before plot t ing the results, we w i l l consult Weyl 's law to see how many roots are we 
loosing. To do this, we s imply find roots for some intervals, which are getting bigger i n size. 
The important th ing is that the number of lost roots does not rise dramatical ly wi th larger 
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Histogram for a Dirichlet star graph with one greater edge length 

2 3 4 5 6 
Normal ized nearest-neighbor spacings 

Figure 5.7: The edge lengths for this graph were {IT, e, v 5 ; tt3)-

intervals. For this graph, we w i l l find roots for intervals [0, 2000], [0,4000], [0, 6000], [0, 8000]. 
Then , to find the number of lost roots, we w i l l rearrange the equation (3.5) to give us the 
error as the difference between the approximate number of roots and the real number of 
roots like this 

-(b-a)-N(a,b) = O(l). 
7T 

Interval size 2000 4000 6000 8000 
Number of roots 15207 30562 45938 61268 

Difference from Weyl 's law 423 698 953 1253 

Table 5.1: Results of Weyl 's law for a star graph wi th Dir ichlet conditions. 

A s we see i n table Table 5.1, the results are not opt imal . It seems like our root finding 
solution is missing a number of roots. A good th ing is that this number does not rise 
drastically when increasing the size of the interval. Let us look at the histogram for the 
graph's N N D . 

The result in Figure 5.9 is what we expected; the N N D has a dis t r ibut ion very similar to 
that of random numbers (i.e. Poisson dis tr ibut ion) . Th is is also the result that Berkolaiko 
and Kuchment got in [18]. We can also see that our solution loses roots which are very 
close to another and the spacing between them approaches zero. Natural ly, one would seek 
an improvement in increasing the resolution of the root-finding solution as i n decreasing 
the size of the interval which a chosen root-finding algori thm takes as an input . B u t , after 
a certain threshold (i.e. a certain interval size), decreasing the interval size does not yield 
any better results. For this graph, a bisection method was used. A l though there are other 
methods that converge faster, the bisection method was chosen because it 's very robust and 
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Histogram for a Dirichlet star graph with 4 edges 

Normal ized nearest-neighbor spacings 

Histogram for a Dirichlet star graph with 6 edges 

1.0 

C 3 

0 -5 
aj 
Z! 

0.4 

0 2 

C 0 
2 3 4 5 6 

Normal ized nearest-neighbor spacings 

Figure 5.8: B y increasing the number of edges from four to six, we achieve a better result. 
Edge lengths for the first graph are (TT, e, \ / 5 , 2.5). For the second graph, we appended 
( l n 5 , V F ) . 
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Histogram for a Di rich let star graph 

Normalized nearest-neighbor spacings 

Figure 5.9: The N N D histogram for star graph wi th Dirichlet con­
ditions. The result is for 10 6 roots and 12 edges wi th lengths 
(vr, e, y/2, In 2,1.98712, y/E, y/e, In 5, y/if, 0.97127, y/3, In3, In vr, 1.52321, 0.86127). 

in a given interval, it always finds a root (if the interval has one). Also , the equation we 
are solving (determinant of the (5.1) matr ix) for is fairly simple, so speed is not an issue 
here. Th is is because the root-finding a lgor i thm needs to evaluate the function a certain 
number of times to find the root and this evaluation takes significantly more t ime for more 
complex functions. 

5.3 Star graph with Standard and Dirichlet conditions 
We w i l l continue wi th a star graph that has Dirichlet conditions imposed on its outer 
vertices and Standard condi t ion on its center vertex. We parameterize the edges same as 
before, w i th x = Vj i n the center vertex. The Dir ichlet conditions gives 

fj(x) = 0 

for each outer vertex. The standard condit ion gives 

A M = fzto) = ••• = fj{vj), 

- / l ^ l ) - / 2 ^ 2 ) - . . . - / ' ( ^ ) = 0 . 1 • ' 
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From the Dirichlet condit ion, we get 

Aj cos(O) + Bj sin(O) = 0, 

which gives us 

fj(x) = Bj sin(A;x), 

fj(x) = kBj cos(kx). 
Plugging i n this result into (5.3), rewri t ing this system of equations as mat r ix and div ing 
the last row by —A: gives us 

/ sin(A;^i) 
sm(kvi) 

sm(kvi) 
\cos(kvi) 

The determinant of the first mat r ix i n (5.4) is a sum of cos(kvj) for each edge mult ipl ied 
by sines of the remaining edge lengths. For a star graph wi th three edges, it would look 
like this: 

cos(fc^i) sin(A;i/2) sin.(ki^) + cos(/ci^) sin.(ki^) s'm(kvi) + cosftvs) s'm(kvi) sin(/ci^). 

Our graph w i l l have six edges, or seven vertices respectively. The edge lengths are 

(vr,e,\ /2, V3, V e , 1.2754). 

These numbers follow the same requirements as i n the graph wi th only Dir ichlet conditions, 
although the number of edges is not as important . A l so , for this graph, we w i l l use Brent 's 
method. It is generally considered one of the best root-finding algorithms. For this function 
(and for many others), it is also faster then the previously used bisection method. We can 

Interval size 4000 8000 12000 16000 20000 
Number of roots 15176 30353 45529 60707 75885 

Difference from Weyl 's law 1.3 1.7 3 2.4 1.7 

Table 5.2: Results of Weyl 's law for a star graph wi th Dir ichlet conditions on outer vertices 
and a Standard condit ion on the center vertex. 

now use Weyl 's law to find out how many roots are we losing. We w i l l find roots i n intervals 
[0, 4000], [0, 8000], [0, 12000], [0, 16000] and [0, 20000]. A s we can see i n Table 5.2, the 
result is very satisfying. We are loosing a very smal l number i n roots, meaning we have got 
a very high-quality result. 

In Figure 5.10, the N N D almost, but not quite resembles G O E ' s dis t r ibut ion. The 
dis tr ibut ion is skewed to the right, indicat ing spacings of slightly larger size are more 
prevalent than needed to fit in the G O E ' s dis t r ibut ion. B u t overall, this results shows a 
decent correlation w i t h the characteristic of a random matr ix , imply ing this specific star 
graph demonstrates chaotic behavior. 
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sin(/ci^) 
0 

0 
COS (k V<i) 

0 

cos(kuj 

0 
0 

s'm(kvj 
COs(klSj) ) 

(Bx\ 
B2 

(5.4) 



Histogram for a di rich let-standard graph 
o.e h " 

Normalized nearest-neighbor spacings 

Figure 5.10: The N N D for a star graph w i t h 6 edges, Dirichlet conditions on the outer 
vertices and Standard condit ion on the center vertex. The result is for 10 7 roots. 
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Figure 5.11: Complete graph wi th 5 vertices. 

5.4 Complete graph with Standard conditions 

In graph theory, complete graph is a graph i n which a l l the vertices are connected wi th 
each other. A complete graph wi th n vertices is denoted by Kn and has n ( n ~ 1 ) edges. We 
w i l l do the N N D for K§ w i th Standard condit ion on every vertex. 

The edges are a l l labeled by starting i n a vertex A , labeling the outer edges counter­
clockwise and continuing wi th the inner edges. The result can be seen i n Figure 5.11. We 
w i l l then parameterize the edges. The procedure has a s imilar counterclockwise motion. 
The result is in Table 5.3. 

1 2 3 4 5 6 7 8 9 10 
A 0 0 
B Li 0 0 £ i o 
C 0 u 0 
D L3 

0 L 7 0 
E u 0 L8 

0 

Table 5.3: The parameterization of a K 5 graph. Lj is the edge's length. 

We w i l l be finding the secular determinant of a 20 x 20 matr ix . Th is is because the Stan­
dard condit ion gives four equations for each vertex. For vertex A , w i th our parameterization 
in place, the Standard condit ion gives 

/ l ( 0 ) = / 5 ( L 5 ) = /6(0) = /g (Lg) J 
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After substi tut ing (3.2) and (3.3) into (5.5), we get 

A1 cos(O) + B1 sin(O) - A5 cos(/cL 5 ) - B5 sin(kL5) = 0, 

A1 cos(0) + B1 sin(0) - A6 cos(/cL 6 ) - B6 s'm(kL6) = 0, 

A1 cos(0) + B1 sin(0) - A9 cos(/cL 9 ) - B9 s'm(kL9) = 0, 

-kAi sin(0) + kBi cos(O) + /c^45 s'm(kL5) - kB5 c o s ( / c L 5 ) -

—kAe sin(O) + kB$ cos(O) + kBg s'm(kLg) — kBg cos(kLg) = 0, 

which make up first four rows of our desired matr ix . Simi lar procedure can be employed 
wi th the remaining vertices. We w i l l then rewrite the system of equations as (3.4) and find 
the determinant of M. Because of the dimensions of this matr ix , analyt ical solution is not 
very suitable. We w i l l use Wolfram Mathemat ica instead of P y t h o n for this task, because 
Mathematica 's solution proved to be much faster. The edge lengths for this graph are 

(vr, e, y/2, y/{3), y/e, 1.2654, 0.5, #2, vr 2, e 3 ) . 

Because the determinant of this mat r ix is a very long function, finding its roots is a lot 
slower, because the evaluation of this function is much more complex and time-consuming. 
Because of this, our histogram w i l l not be as smooth as the previous ones. 

There differences from Weyl 's law i n Table 5.4 are negative, as opposed to the previous 
results. Th is implies that we are actually finding roots that are not there. Th is may 
be a result of the function values being very smal l (e.g. 10 - 2 0 0 ) and the root-finding 
algori thm interprets this as a root. A l so , when analyzing the found roots, it was not 
uncommon to see two or more roots that are exactly one i teration step away, for example 
roots 1.005,1.01,1.015, which also indicates a fault i n the root-finding solution. However, 
even after decreasing the tolerance to 10 - 2 5 0 , the result is s t i l l the same. 

In Figure 5.12, we can see a s imilar i ty w i th G O E ' s dis tr ibut ion, but it is s t i l l not quite 
right. Spacings in size between 0 and 1/2 are a l i t t le more prevalent then the ones wi th size 
in between 1/2 and 3/2. There is also a disagreement w i th Weyl ' s law, as seen i n Table 5.4. 

Interval size 25 50 75 100 125 
Number of roots 183 371 559 750 939 

Difference from Weyl 's law -25 -57 -88 -121 -153 

Table 5.4: Results of Weyl ' s law for a K 5 graph wi th Standard conditions. 
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Histogram for a K5 graph 

Normalized nearest-neighbor spacings 

Figure 5.12: The N N D for a K 5 graph w i t h edge lengths 
(vr, e, y/2, y/3, y/e, 1.2654, $2, vr 2, e 3 ) . The result is for 10 5 roots. 
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Conclusion 

In the first chapter, we introduced and defined the basics of the issue of Quan tum chaos and 
the methods that are associated wi th its study. In the next two chapters, we defined the 
concepts and models used in finding the N N D of random matrices and quantum graphs. In 
the fourth chapter, we dealt w i th the issue of finding roots to justify the choice of a suitable 
root-finding algori thm for our needs. 

In the last chapter, we have shown that Wigner ' s semicircle law (2.1) holds. We then 
computed the N N D of the unfolded spectra of G O E , G U E and G S E . Th i s result strongly 
aligns wi th the theoretical predictions given by Wigner ' s surmise i n (2.2), (2.3) and (2.4). 

We then moved on to computing the N N D for certain quantum graphs. The result for 
the star graph wi th Dir ichlet conditions imposed on its every vertex is in a fairly decent 
agreement wi th the prediction, al though a considerable amount of roots was lost. A l so , 
in this section, the motivat ion for choosing the opt imal set of edge lengths for a quantum 
graph was demonstrated. 

The star graph, characterized by Dir ichlet conditions on its outer vertices and a Stan­
dard condit ion on its central vertex, exhibits a N N D that closely resembles the dis t r ibut ion 
of the G O E , but w i th a noticeable shift to the right. Despite this deviation, the analysis 
remains credible since v i r tua l ly no roots are lost in the process. Th is finding suggests that 
the combination of Dir ichlet and Standard conditions induces interesting spectral behav­
ior, where the Standard condi t ion i n the center vertex v i r tua l ly connected the otherwise 
disconnected vertices, which leads to a more chaotic characteristics of its spectra. 

The investigation of the N N D for a K 5 graph wi th Standard conditions on every vertex 
has yielded intr iguing findings, al though the result falls short of being deemed opt imal . 
W h i l e the N N D displays some similarities to the dis t r ibut ion observed in the G O E , it 
does not perfectly match G O E ' s characteristic shape. Specifically, the peak of the distr i­
but ion does not a t ta in its expected height, indicat ing a certain degree of deviation from 
G O E - l i k e behavior. Moreover, the appl icat ion of our root-finding solution introduced some 
distortions in the analysis. The solution identified more roots than anticipated (as seen 
in Table 5.4, leading to an altered N N D . Further investigations and refinements of the 
root-finding method are necessary to obtain more accurate and robust results. 
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Appendix A 

Code Listings 

from numpy import p i , e 

def goe(x): 
return (pi / 2) * x * (e ** ((-pi / 4) * x ** 2)) 

def gue(x): 
return (32 / p i ** 2) * x ** 2 * (e ** ((-4 / pi) * x ** 2)) 

def gse(x): 
return ((2 ** 18) / (3 ** 6 * p i ** 3)) * x ** 4 * ( 

e ** ((-64 / (9 * pi)) * x ** 2)) 

def poisson(x): 
return e ** (-x) 

def normalize_root(root: f l o a t , edge_lengths_sum: float) -> f l o a t : 
return (root * edge_lengths_sum) / p i 

Lis t ing A . l : P y t h o n file containing the functions for G O E , G U E , G S E and Poisson distr i­
butions. Also , a function to normalize the roots of a quantum graph is included. 
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import numpy as np 
import matplotlib.pyplot as p i t 
from skrmt.ensemble import GaussianEnsemble 

labels = { 
1: "GOE 
2: "GUE 
4: "GSE 

} 

beta = 1 
n = 1000 
reps = 100_000 

eigenvalues = [] 
for r i n range(reps): 

matrix = GaussianEnsemble(beta=beta, n=n, 
use_tridiagonal=True).matrix 

sorted_eigen_values = np.sort(np.linalg.eigvalsh(matrix)) 
eigenvalues.extend(sorted_eigen_values) 
i f r */. 10_000 == 0: 

print(r) 

p i t . t i t l e (f ' {labels [beta]} n={n} eigenvalues') 
pit.hist(eigenvalues, bins=200, density=True) 
p i t . savefig(f ' {labels [beta]} n={n]- eigenvalues') 
pit.show() 
Lis t ing A . 2 : P y t h o n script to compute the eigenvalues of a matr ix i n the Gaussian ensemble 
and display them histogram. 
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from typing import Callable 
from scipy.optimize import root_scalar 
import time 

t o l = le-12 

def find_roots(func: Callable, number_of_roots: i n t , precision=400, 
method: s t r = 'brentq') -> l i s t : 

roots = [] 
i = 0 
t i c = time.perf_counter() 
percentage = 0 

while len(roots) < number_of_roots: 
a = i / precision 
b = a + 1 / precision 
interval = [a, b] 

i f func(a) * func(b) > 0: 
i += 1 
continue 

result = root_scalar(func, bracket=interval, xtol=tol, 
method=method) 

i f result.converged and result.root not i n roots: 
roots.append(result.root) 

i += 1 
i f len(roots) % (number_of_roots / 100) == 0 and len( 

roots) != 0: 
print(f"{percentage} 0/, completed") 
percentage += 1 

toe = time.perf_counter() 
print(f"Elapsed time {toe - tic:0.4f]- seconds") 
print(f"Ending was at {i / precision]-") 
return roots 

Lis t ing A . 3 : P y t h o n function to find a given number of roots of an arbi trary function. 
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from sympy import Matrix 
from sympy.parsing.mathematica import parse_mathematica 
from sympy import lambdify 
from sympy import sympify 
from sympy import Symbol 
from numpy import p i , e 

def convert_to_mathematica_matrix(matrix: Matrix) -> s t r : 
Converts sympy matrix into a string that can be pasted into Mathematica input. 

matrix_str = s t r ( m a t r i x . t o l i s t O ) 
return matrix_str \ 

.replace('[', '{') \ 

.replace('] 1, '}') \ 

.replace('cos', 'Cos') \ 

.replace('sin', 'Sin') \ 

.replace('(', ' [') \ 

.replace(')', ']') 

def get_func_from_mathematica(file_name: s t r ) : 
with open(file_name, 1r') as f i l e : 

content = file.read() 

expr_str = parse_mathematica(content) 

# Convert the string to a sympy expression 
expr = sympify(expr_str) 

# Define the variables 
k = Symbol('k') 
# Use lambdify to create a function that can be evaluated numerically 
subbed_expr = expr.subs({'pi': p i , 'e': e}) 
func = lambdify(k, subbed_expr, 'numpy') 
return func 

Lis t ing A . 4 : P y t h o n file w i th a function that converts a P y t h o n mat r ix to a Mathemat ica 
matr ix , which can then be pasted into Mathemat ica program. The second function does 
the opposite. 
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import time 
import numpy as np 
from skrmt.ensemble import GaussianEnsemble 
import matplotlib.pyplot as p i t 
from distributions import goe, gue, gse 
from unfolding import F 

functions = { 
1: ("GOE", goe), 
2: ("GUE", gue), 
4: ("GSE", gse), 

} 

beta = 1 
n = 1000 
reps = 1000 
spacings = [] 

t i c = time.perf_counter() 
for r i n range(reps): 

matrix = GaussianEnsemble(beta=beta, n=n, 
use_tridiagonal=True).matrix 

sorted_eigen_values = np.sort(np.linalg.eigvalsh(matrix)) 
unfolded_values = [F(eigenvalue, n, beta) for eigenvalue i n 

sorted_eigen_values] 
spacings.extend(np.diff(unfolded_values)) 

mean = np.mean(spacings) 
normalized_spacings = list(map(lambda s: s / mean, spacings)) 
print(mean) 
toe = time.perf_counter() 
print (f ' Elapsed time: {toe - tic:0.4f]- seconds') 

np.save(f"{functions[beta][0]Mn}x{n} unfolded and normalized", 
normalized_spacings) 

pit.hist(spacings, bins=100, density=True) 
x = np.arange(0, 5, 0.05) 
pit.plot(x, functions[beta][1](x), label=functions[beta][0]) 
pit.legend() 
pit.xlabel("Normalized spacings of eigenvalues") 
pit.ylabel("Frequency") 
pit.xlim(xmin=0, xmax=5) 
pit.title(f'Histogram for {functions [beta] [0]} matrix n={n>') 
pit.savefig(functions[beta][0]) 
pit.show() 

Lis t ing A . 5 : P y t h o n file that computes the N N D for a mat r ix i n the Guassian 
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from sympy import symbols, integrate, sqrt, p i 
import numpy as np 

t = symbols("t") 
N, Is = symbols("N Is", positive=True) 
IC = 2 / (pi * (2 * Is * N)) * sqrt((2 * Is * N) - t ** 2) 
!Z_N_ls = integrate(N * IC, t) 

Iz = symbols("Iz") 
F_Iz = lZ_N_ls.subs(t, Iz) - lZ_N_ls.subs(t, -sqrt(2 * Is * N)) 

def F(eig, size, beta): 
i f eig <= -np.sqrt(2 * beta * size): 

return 0 
i f eig >= np.sqrt(2 * beta * size): 

return size 
else: 

return float(F_Iz.subs(Is, beta).subs(N, size).subs(Iz, eig).evalf()) 
Lis t ing A . 6 : P y t h o n file w i t h an unfolding function F . Taken from [17]. 
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