
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

INTERNET OF THINGS DEVICE BASED ON ZIGBEE AND 6LOWPAN
INTERNET OF THINGS ZAŘÍZENÍ S PODPOROU ZIGBEE A 6LOWPAN

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

Be. DÁVID HALÁSZ

Ing. PETR MUSIL

BRNO 2016

Zadánidiplomové práce/18445/2015/xhalas06

Vysoké učení technické v Brně - Fakulta informačních technologií

Ústav počítačové grafiky a multimédií Akademický rok 2015/2016

Zadání diplomové práce
Řešitel: Halász Dávid, Bc.
Obor: Počítačové a vestavěné systémy
Téma: Internet of Things zařízení s podporou ZigBee a 6L0WPAN

Internet of Things Device Based on ZigBee and 6L0WPAN

Kategorie: Vestavěné systémy

Pokyny:
1. Prostudujte dostupnou literaturu týkající se fenoménu Internetu věcí (Internet of

Things - IoT).
2. Seznamte se s používanými komunikačními rozhraními a protokoly využitými v IoT.

Zaměřte se na rozhraní ZigBee a protokol 6 L 0 W P A N .

3. Seznamte se s tematikou C!oud computingu
4. Navrhněte zařízení spadající do kategorie IoT.
5. Zařízení realizujte a otestujte.
6. Vytvořte webovu aplikaci v cloud prostředí pro správu IoT zařízení.
7. Zhodnoťte výsledky práce a diskutujte případné pokračování práce.

Literatura:
• Dle pokynů vedoucího

Při obhajobě semestrální části projektu je požadováno:
• Body 1 až 3 zadání

Podrobné závazné pokyny pro vypracování diplomové práce naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technická zpráva diplomové práce musí obsahovat formulaci cíle, charakteristiku současného stavu,
teoretická a odborná východiska řešených problémů a specifikaci etap, které byly vyřešeny v rámci dřívějších
projektů (30 až 4 0 % celkového rozsahu technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické
zprávy, úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou
uloženy na standardním nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do
písemné zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: Musil Petr, Ing., UPGM FIT VUT

Datum zadání: 1. listopadu 2015
Datum odevzdání: 25. května 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
Fakulta informačních technologií

Ústav počítačové grafiky a multimédii
&1S66 Brno, Božetěchova 2

doc. Dr. Ing. Jan Černocký
vedoucí ústavu

http://www.fit.vutbr.cz/info/szz/

A b s t r a c t
Internet of Things is the latest phenomenon in the computing industry. Even if it has not
been completely defined yet, we are already surrounded by various devices connected to the
Internet. Th is thesis project focuses on low cost and low-power wireless solutions and on
the on-line backend behind the architecture. A t the same time the present work also deals
wi th C l o u d Comput ing which can provide a highly scalable runtime environment for this
backend without bui lding an infrastructure. To handle the huge amount of data collected
by bill ions of devices, B i g D a t a services could be used i n the same cloud space. The project
is a collection of the theoretical background of the Internet of Things; so as a result, it
provides the reader w i t h an overview of the concept. It also provides a walktrough of the
design, implementat ion and testing process of a complex agricul tural Internet of Things
solution.

A b s t r a k t
Internet věcí je nejnovější t rend v p o č í t a č o v é m p r ů m y s l u . I když j e š t ě nebyl zcela j a s n ě
definován, jsme již obklopeni r ů z n ý m i za ř ízen ími p ř i p o j e n ý m i k internetu. Tato d ip lomová
p ráce se zaměřu je na n í zkonák ladová a ú s p o r n á b e z d r á t o v á řešení a na on-line backend
v p o z a d í t é t o architektury. Zároveň se tato p r á c e zabývá C l o u d Comput ingem, k t e r ý je
schopen poskytnout vysoce šká lova te lné p r o s t ř e d í pro b ě h tohoto backendu bez b u d o v á n í
infrastruktury. A b y bylo m o ž n é z v l á d n o u t ob rovská m n o ž s t v í dat p o s k y t n u t ý c h mil iar
dami zař ízeními , dalo by se využ í t s lužeb B i g D a t a v tom s t e jném p r o s t ř e d í cloudu. Projekt
shrnuje teore t ické p o z a d í konceptu Internetu věcí na zák ladě d o s t u p n ý c h m a t e r i á l ů . Výsled
kem v ý z k u m u je p ř eh l ed konceptu, k t e r ý poskytuje popis procesu n á v r h u , implementace
a t e s tován í komplexn ího zemědě l ského řešení pro internet věcí.

K e y w o r d s
Internet of Things, Wireless L o w Power Networking, Bluetooth L o w Energy, ZigBee, 6 L 0 W -

P A N , C o A P , M Q T T , C l o u d Comput ing , B i g Data , SensorTag, Ardu ino , Raspberry P i ,
Sensors, Containers, Web Appl ica t ions

K l í č o v á slova
Internet věcí, B e z d r á t o v é ú s p o r n é sí tě , Bluetooth L o w Energy, ZigBee, 6 L 0 W P A N , C o A P ,
M Q T T , C l o u d Comput ing , B i g Data , SensorTag, Ardu ino , Raspberry P i , Senzory, Konte
jnery, W e b o v é aplikace

Reference
H A L Ä S Z , D a v i d . Internet of Things Device Based on ZigBee and 6L0WPAN. Brno , 2016.
Master 's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology. Super
visor M u s i l Petr .

Internet of Things Device Based on ZigBee and 6L0WPAN

D e c l a r a t i o n
Hereby I declare, that this thesis has been wri t ten by myself under the supervision of
Ing. Pe t r M u s i l . I have included al l the sources and publications that were used to write
this thesis.

D a v i d Haläsz
M a y 23, 2016

© D a v i d Halasz, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty

of Information Technology. The thesis is protected by copyright law and its use without

author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 2

2 Internet of Things 3
2.1 The IoT concept 3
2.2 Technical overview 3
2.3 Reference architecture 4

3 Connectivity 6
3.1 Bluetooth L o w Energy 6
3.2 I E E E 802.15.4 9
3.3 Messaging protocols 13

4 Server side 16
4.1 C l o u d Comput ing 16
4.2 B i g D a t a 17

5 Design and Implementation 20
5.1 Embedded device 21
5.2 Border router 24
5.3 Backend 26
5.4 Web applicat ion 32
5.5 Deployment 37

6 Testing and verification 38
6.1 Automated tests 38

6.2 Funct ional tests 39

7 Conclusion 41

Bibl iography 42

Appendices 44

Lis t of Appendices 45

A C D content 46

B M a n u a l 47

L

Chapter 1

Introduction

The concept of the Internet of Things (or shortly IoT) was first drawn up by K e v i n Ashton .
He defined it as "a global network of R F I D and other sensors" []. However, the concept
d id not have any technological background at that t ime. After the rapid growth of the
smartphone industry, the hardware manufacturers have started to invest in developing
low-power microprocessors and wireless network adapters to maximize battery life. These
technologies have made a solid ground not just for smartphones wi th higher computat ion
power, but for various other devices too. Even though an IoT architecture has not been
standardized yet, various manufacturers are already developing their own product palettes.

The thesis tries to summarize the main aspects of an IoT ecosystem. Based on these as
pects, it provides an overview of the design and the implementation process of a production-
ready sensor network. The main goal of this design was to provide a scalable backend
infrastructure for a theoretically unl imi ted number of sensing devices.

The concept of the IoT as well as an overview of a possible architecture are discussed
in the second chapter. The th i rd chapter introduces the protocols that can be used to
achieve wireless connectivity among devices. Higher-level protocols for data collection and
transmission are also presented i n this chapter. The fourth chapter is going to present the
server-side, i.e. the on-line infrastructure behind the IoT. In the fifth chapter, the design
and the implementat ion process of a complete IoT system is presented. The testing and
verification of this design is described i n the s ix th chapter. The last part w i l l summarize
the findings and provide a conclusion and a reflection.

2

Chapter 2

Internet of Things

This chapter introduces the reader to the concept of the Internet of Things. It describes a
mapping between the physical and the v i r tua l devices and specifies a reference architecture.

2.1 The IoT concept

The term Internet of Things (IoT) is more of a concept than a well specified set of tech
nologies. "It can be perceived as a far-reaching vision w i th technological and societal
implications. F r o m the perspective of technical standardization, the IoT can be viewed as
a global infrastructure for the information society, enabling advanced services by intercon
necting things based on existing and evolving interoperable information and communicat ion
technologies. Through the exploitat ion of identification, data capture, processing and com
municat ion capabilities, the IoT makes full use of "things" to offer services to a l l kinds of
applications, whilst ensuring that security and privacy requirements are fulfilled." [13] It
opens a new dimension into the information and the communicat ion technologies by allow
ing any object from the physical world to communicate through a v i r tua l communicat ion
channel (e.g. the Internet).

According to the specification published by the International Telecommunication Union ,
a " th ing" can be any physical or v i r tua l object possessing static or dynamic information.
These objects "are capable of being identified and integrated into communicat ion networks"
[13]. Devices existing i n the physical world "are capable of being sensed, actuated and
connected" [13], while v i r tua l objects "are capable of being stored, processed and accessed"
[13].

2.2 Technical overview

" A physical thing may be represented i n the information world v ia one or more v i r tua l
things (mapping), but a v i r tua l thing can also exist without any associated physical thing."
[13] A s it has already been described above, a physical object is any k ind of object existing in
the physical world. However, it requires an interface which is capable to communicate w i th
other devices. It can optionally have addi t ional abilities, such as sensing, actuation, data
capture, data storage and data processing. Th is device can collect information and forward
it to other devices v i a its communicat ion interface or it can receive information from other
devices. Based on this information, it can execute various operations. The communicat ion

3

between the devices can be realized i n three ways or w i t h their combinations. These modes
include either direct communicat ion or through a network wi th or without a gateway.

Physical world Information world

/ G O
o

• DO
o

o

:-:z:z:z

o

o

o

o
o

o

o
o o

•
•
o

o

device

gateway

physical thing

virtual thing

mapping

a

<—v communication via gateway

b

^—•>• communication without gateway

C —V direct communication

Figure 2.1: Technical overview of the IoT [13]

"The IoT applications include various kinds of applications, e.g., "intelligent transporta
t ion systems", "smart gr id" , "e-health" or "smart home". The applications can be based on
proprietary applicat ion platforms, but can also be buil t upon common service/applicat ion
support platform(s) providing generic enabling capabilities, such as authentication, device
management, charging and accounting." [13]

Based on the behavior of the device, it can be categorized as data-carrying, data-
capturing, sensing and actuating or general device. If a device provides indirect connection
between a physical th ing and the network, it is a data-carrying device. A data-capturing
device can get into contact w i th physical things through a data-carrying device or v ia
a data carrier. Detecting, measuring and digi ta l iz ing information can be done through
a sensing device. Th i s device can also be an actuating device, that is able to convert the
recieved information into operations. "General devices include equipment and appliances for
different IoT applicat ion domains, such as industr ia l machines, home electrical appliances
and smartphones." [13]

2.3 Reference architecture

Al tough the IoT has not been precisely defined yet, there are mult iple reference architec
tures available. Most of these architectures were designed by profit-oriented companies to
promote their products. The defined models may be different in details, however, the main
concepts are very similar.

Devices capable of communicat ion can form a communicat ion network that can provide
interconnectivity among the devices. E a c h device requires to be uniqely identified i n this
interconnected network. The used identification (addressing) method has to tolerate a huge
amount of devices. A d d i n g new devices to the network has to be autonomous s imilar ly to
the reconfiguration of the network i f a device disconnects. Even though most of the net
working does not require any human interaction, a management interface to customize the
network is necessary. The network should also provide a gateway service that is responsible

4

Communication networks

Sensing/actuating
device

Physical thing

Data capturing
device

Data carrying
device

Data
carrier

Physical
thing

Physical
thing

Figure 2.2: Types of devices and their relationship w i t h physical things [13]

for the connectivity to the Internet. The higher-level protocols used for the data transfer
should be opt imized for transferring smal l amounts of information. Th is can mean a classi
cal request-response communicat ion model as well as a more specialized publish-subscribe
model. Transferring data to the Internet can be done through these protocols, however, it
is also possible by using a specialized A P I that is implemented on both sides.

The received information requires storage and analyt ical services on the server-side. This
can be managed by a middleware implementing the same A P I or a high-level communicat ion
protocol as on the client-side. The information sent back from the Internet to the devices is
generated by a backend service. User interaction is possible through a web-based interface
which can provide access to the stored data and an abi l i ty to configure the reactions of
the backend service. Other clients, e.g. mobile phones or tablets may gain access to this
interface too i f the backend provides an A P I .

The entire architecture requires some security considerations. O n the level of network
ing, it is necessary to secure the l ink among devices by encrypting the data transmission and
verifying the integrity of any data received. The gateway service requires authentication
and authorizat ion of both sides while keeping the transferred data i n an encrypted form.
The server-side services require s imilar features to prevent an unauthorized use.

5

Chapter 3

Connectivity

To realize the mapping of a physical device to the v i r tua l world, it is necessary to have some
k ind of connection. It is possible to use conventional computer networking technologies,
however, this is not suitable for use w i t h low-power devices. Th is chapter w i l l introduce
wireless networking solutions and specialized communicat ion protocols which have been
designed for such devices.

3.1 Bluetooth Low Energy

In order to provide a wireless alternative to the RS-232 cable connection, Bluetooth was
developed by Ericsson i n 1994. [] It operates i n the unlicensed 2.4 G H z I S M band and
uses master-slave communicat ion wi th a packet based protocol.

In 2006 N o k i a introduced [15] a low-power wireless technology called Wibree w i t h a
minimized amount of differences from Bluetooth . In 2010 Wibree was intruduced by the
Bluetooth 4.0 specification as Bluetooth L o w Energy [] (B L E , but also marketed as
Bluetooth Smart) . It is an opt imized version of the Bluetooth for low cost and low-power
solutions. The smartphone and the tablet industry adopted the technology very quickly
and they invested a lot into the software support i n a l l their available platforms.

Due to the fact that it is a completely different implementation, it is not compatible
wi th the classical (B R / E D R) Bluetooth . It comes in two versions [14]:

• Bluetooth Smart - it can communicate w i th B L E devices only

• Bluetooth Smart Ready - it can communicate w i th both B R / E D R and B L E devices

Protocol stack

The Physical Layer (P H Y) is responsible for the data modula t ion/demodula t ion on the
level of electromagnetic waves. It divides the 2.4 G H z I S M band into 40 channels. 3 channels
out of those 40 are dedicated advertising channels to set up connections and broadcasting.
It uses a technique called frequency hopping spread spectrum to switch between channels
for each connection. The m a x i m u m throughput is l imi ted by the 1 M b / s fixed modulat ion
rate i n the used Gaussian Frequency Shift Keying.

The L i n k Layer (LL) handles a l l the t iming, addressing, encryption, checksum gener
ation and verification. To avoid software stack overloading wi th the most computat ional ly
expensive tasks, the L L is usually implemented i n the hardware. The only required software

(i

Application (APP)

Generic Access Profile
(GAP)

Generic Attribute Profile
(GATT)

Host
Security Manager Protocol

(SMP)
Attribute Protocol

(ATT)

Logical Link Control and Adaptation Protocol
(L2CAP)

Host Controller Interface
(HCl)

Controller
Link Layer (LL)

LE Physical Layer (PHY)

Figure 3.1: The protocol stack of Bluetooth L o w Energy [14]

implemented part is the l ink state that can be master and slave or advertiser and scanner.
If an active connection is not present, a smaller device can advertise itself to a scanner that
usually possesses more computat ional power. W h e n a connection is established, the scanner
device switches itself to the master and the advertiser to the slave mode. This asymmetrical
implementation allows the microcontroller-based low-power devices to connect to devices
wi th higher computat ional capacity.

The connectivity between the host device and the Bluetooth controller is ensured by the
serial Host Controller Interface (H C I) . The existence of the interface allows different
configurations for devices w i th different computat ional capabilities and power requirements.
Pract ical ly, this means U S B Bluetooth adapters, adapters directly connected to a micro
controller w i th a serial interface, but it is also possible to integrate an adapter into a single
package and produce a System-on-Chip (SoC).

Packet encapsulation, mult iplexing, fragmentation and recombination is provided by
the Logical L i n k Contro l and Adaptat ion Protocol (L 2 C A P) s imilar ly to T C P . It is
responsible for routing the At tr ibute Protocol (A T T) that is a client-server protocol for
data exchange. Moreover, it is responsible for the Security Manager Protocol (S M P)
that can provide encryption and pair ing services. Since Bluetooth version 4.1, it also
provides user-defined channels to transfer bigger amounts of data w i t h low-latency.

Generic Access Profile is used for device advertising, discovery and connection in i
t ia t ion. It implements the master-slave analogy defined on lower levels. The analogy is
extended wi th different roles, operation modes, procedures, security features and addi t ional
G A P data formats. A discoverable device periodical ly sends out advertising data unt i l it
receives a response from an observing device. If both devices agree on the connection pa
rameters, a dedicated bidirect ional connection can be established. O n the other hand, an
observing device listens for broadcasts. If it the announcement from the desired device, it
w i l l answer correspondingly. Th is feature can also be used for broadcasting smaller amounts
of useful data to mult iple devices.

7

Broadcast
(GAP)

Connected
(GATT)

After the dedicated bidirectional connection is established, the Generic At tr ibute
Profile (G A T T) can be used for data transfer. It defines a hierarchical structure of
Services and Characteristics and this feature is inherited i n a l l higher-level G A T T -
based profiles. A service is pract ical ly a group of various characteristics identified by a
unique identificator (U U I D) . A single characteristic can be analogically interpreted as a
data structure known from structural programming languages.

Mesh networking is not supported directly, but it can be implemented on a higher level
by connecting mult iple central devices together. A peripheral device can connect to a
central one and the data can be passed through mult iple central devices, i.e. extending the
operational range and increasing the number of the connected devices. There are various
proof-of-concept solutions implementing this scheme and the Bluetooth Smart Mesh study
group is currently specifying a standard.

The theoretical m a x i m u m of the throughput is l imi ted by the fixed 1 M b / s modulat ion
rate, but the real throughput is significantly lower. L o w cost microcontrollers can only pro
cess or generate a few data packets at the same time. Different power saving considerations
can also l imi t the available bandwidth . A s i n any other wireless solutions, the operating
range depends on different circumstances. However, the protocol was designed to operate
on a very short-range. In a best-case scenario the transmission speed is around 10 k B / s
and the operating range is between 2 and 5 meters.

Gateway device

Connect ing Blue tooth L o w Energy devices to a classical computer network requires a gate
way device that has two types of interface. Because of the popular i ty of the Bluetooth
protocol in different consumer electronic devices, even a smartphone or a tablet can pro
vide this interconnection. T h i s can really simplify the interoperabili ty of various devices in
a household and it also allows to control these devices v ia the Internet.

8

3.2 I E E E 802.15.4

The I E E E 802.15.4 standard [] specifies the Phys ica l Layer and M e d i a Access Con t ro l of
the low-rate wireless personal area network (L R - W P A N) . It was defined i n 2003 and it
is currently being maintained by the I E E E 802.15 working group. It is not a complete
networking specification, but it is used as a basis by higher-level standards, e.g. ZigBee,
M i W i , W i r e l e s s H A R T and 6 L 0 W P A N .

A s the table below shows, 802.15.4 can operate i n mult iple frequency domains. A s a
result of the chosen modula t ion technique, each domain has a different transmission speed.
The number of the available channels is l imi ted by the 5 M H z interval among the carrier
frequencies, however, a channel has only 2 M H z bandwidth . The same frequency usage of
mult iple devices is coordinated by Carr ier Sense M u l t i p l e Access w i th Col l i s ion Detect ion
(C S M A - C D) which does not allow a device to transmit when the line is busy.

P H Y (M H z) Frequency band (M H z) Modu la t i on B i t rate (kb/s) Channels
~868 868 - 868.6 B P S K 20 1

915 902 - 928 B P S K 40 10
2450 2400 - 2483,5 O - Q P S K 250 16

Table 3.1: Available frequencies in I E E E 802.15.4 []

Devices implementing the 802.15.4 standard can communicate w i th each other in two
different topologies: star and peer-to-peer. The star topology means mult iple devices con
necting to one central device (coordinator). Th is allows asymmetrical protocol implemen
tat ion by reducing the functionality of the non-central devices. W h i l e the latter one allows
a device to communicate w i th any other accessible device, peer-to-peer topology can be
used on a higher level as the basis of the mesh networking.

Star Peer-to-Peer

PAN coordinator

Figure 3.3: Available topologies i n 802.15.4 []

9

The M A C layer defines frames as its basic transmission unit w i th a m a x i m u m length
of 127 bytes. Addressing can be done by using short 16-bit PAN-speci f ic addresses or
long 64-bit globally unique addresses. Those might be mixed in a M A C header. Four
types of frames are available to keep the protocol complexity as low as possible: beacon,
data, acknowledgement and M A C command. The coordinator can optionally allow the
use of superframes which consist of 16 equally divided slots bounded by beacon frames.
The beacon frames are used for synchronization, P A N identification and the structural
description of a given superframe. A t the end of the frame the last seven slots might be
dedicated for specific applicat ion.

Network
Device

Network
Device

Coordinator Network
Device

Beacon

Network
Device

Acknowledgment

Acknowledgment

Communication to a coordinator
in a beacon-enabled network

Communication to a coordinator
in a nonbeacon-enabled network

Acknowledgment

Communication from a coordinator
in a beacon-enabled network

Communication from a coordinator
in a nonbeacon-enabled network

Figure 3.4: Communica t ion modes i n I E E E 802.15.4 [2]

The protocol provides some rel iabil i ty by using acknowledgement frames after receiving
a data frame or a M A C command frame. If an acknowledgement frame is not sent back, the
sender can choose either to retry or to terminate the transmission. The integrity of each
frame is protected by a 16-bit Cyc l i c Redundancy Check (C R C) . If a bit error is detected,
the receiver can force the sender to retry by not returning an acknowledgement frame. Basic
security functionalities are also implemented i n the form of Access Con t ro l Lis ts (A C L) and
symmetric key cryptography. However, these require addi t ional support from higher layers
which are not part of this standard.

3.2.1 Z i g B e e

ZigBee [] is a low-power, short-range wireless L R - W P A N standard published by the
ZigBee Al l iance . It was formed by hundreds of member companies in 2002. It was designed
and opt imized for a battery-powered applicat ion where a device spends most of its time
i n power-saving mode. It provides tools to connect thousands of devices together by using
various networking topologies. Th is means, it is ideal for distr ibuted sensor networks or
home automation.

The ZigBee protocol is based on the I E E E 802.15.4 standard, i.e. the P H Y and M A C
layers are identical w i th the layers alredy described i n the previous chapter. However, it
uses a sl ightly different terminology for the device roles:

ZigBee name 802.15.4 name F u l l function device Reduced function device
Coordinator P A N Coordinator yes no
Router Coordinator yes no
E n d Device Device yes yes

Table 3.2: The terminological differences between ZigBee and I E E E 802.15.4 device roles

10

O n the top of the previously mentioned P H Y and M A C layers, the Network Layer is
responsible for the data transmission. It also provides network management functionalities
for the P A N coordinator, e.g. connecting and disconnecting devices, assigning network
addresses and organizing the topology. The star topology was inherited from the 802.15.4,
but on the top of the peer-to-peer topology new ones were implemented: tree, clustered tree
and mesh. E a c h of the three new topologies can extend the operating range by allowing
data to travel through mult iple devices up to the destination. The coordinator can add
or remove devices from the network at any t ime without supervision, i.e. the network is
self-forming and self-healing. [18]

Star Clustered tree

Tree Mesh

O Router o End device Coordinator

Figure 3.5: Available topologies i n ZigBee

Device management is done by ZigBee Device Objects (Z D O) , which are responsible for
device discovery, operating mode settings and security services. The App l i ca t ion Support
Sublayer (A P S) provides advanced networking functionalities such as address mapping,
fragmentation and reliable data transport. Vendor-specific services can be implemented by
using the function primitives from the App l i ca t i on Framework. These three sublayers form
the App l i ca t i on Layer (A P L) of the protocol.

ZigBee Gateway

To connect a ZigBee network to a different type of a network (e.g. to the Internet), a
ZigBee Gateway is required. B y using this device, it is possible to convert ZigBee packets
to I P packets and forward them through t radi t ional computer networks. It is also possible
to connect two non-overlapping ZigBee networks by using a gateway i n each network and
connect them together w i th an Ethernet cable.

11

3.2.2 6 L o W P A N

6 L 0 W P A N is a standard that allows transmission of I P v 6 packets through I E E E 802.15.4

low-power wireless personal area networks. It is maintained by the Internet Engineering
Task Force (I E T F) . The concept has originated from the idea that "the Internet Pro toco l
should and could be applied even to the smallest devices" [16].

Due to the fact that I P v 6 packets have a m a x i m u m length of 1280 bytes and the 802.15.4

M A C frames can be only 127 bytes long, an adaptat ion layer has been implemented. To
minimize the packet size, it compresses I P v 6 and U D P headers. Th is would be impossible
in case of using I P v 4 . Header compression is not enough to fit an entire packet into the
frame, therefore, low-level fragmentation and reassembly has been implemented i n this
layer. There is also an optional support for mesh addressing that can be used when a
packet has to travel through mult iple devices i n a mesh network.

Source Route-over Destination

Application Layer Application Layer Application Layer Application Layer

Transport Layer Transport Layer Transport Layer Transport Layer

Network Layer Network Layer Network Layer Network Layer

Data Link Layer Data Link Layer Data Link Layer Data Link Layer

Physical Layer Physical Layer Physical Layer Physical Layer Physical Layer Physical Layer

Source Mesh-under Destination

Application Layer Application Layer Application Layer Application Layer

Transport Layer Transport Layer Transport Layer Transport Layer

Network Layer Network Layer Network Layer Network Layer

Data Link Layer Data Lir.k Layer Data Lir.r; Layar Data Link Layer

Physical Layer Physical Layer Physical Layer Physical Layer

Figure 3.6: Rou t ing modes in 6 L 0 W P A N

Rout ing i n 6 L 0 W P A N networks can be done in two ways: either on the adaptat ion
layer level by using the mesh-under or on the I P v 6 level by using the route-over approach.
In case of using mesh-under routing, fragmentation w i l l be preserved during hops and the
packets w i l l be reassembled only at their final destination. T h i s can result in a higher
chance of packet loss. B u t on the other hand, it allows faster packet forwarding. If the
routing is left to the I P v 6 layer, a l l the fragmented frames w i l l be reassembled at each hop
and fragmented again before the transmission. Th is requires more computat ional capacity
from a l l of the intermediate devices and the use of a higher-level mesh rout ing protocol.
W h e n the mesh-under routing is not used, it can be omit ted from the stack. Th is way, the
code complexity can be singnificantly reduced.

Border router

In order to connect a 6 L 0 W P A N network to an other IP-based network, an intermediate
device (i.e. a bridge) is required. Th is device is called the Border or Edge Router . It is
also responsible for the Neighbor Discovery (N D) , address resolution and duplicate address
detection. The number of border routers i n a network is not l imi ted to one. Therefore, it is
possible to increase the redundancy by connecting more of them into the same 6 L 0 W P A N

network.

12

3.2.3 Thread

According to its specification, "the Thread stack is an open standard for reliable, cost-
effective, low-power, wireless D 2 D (device-to-device) communicat ion. It is designed specif
ical ly for Connected Home applications where IP-based networking is desired and a variety
of appl icat ion layers can be used on the stack". It provides a simple but robust solution to
operate a highly scalable network of battery-powered embedded devices. It is implemented
on the top of 6 L 0 W P A N and I E E E 802.15.4. [11]

The mesh-under rout ing provided by 6 L 0 W P A N is impl ic i t ly disabled and the protocol
uses the Rou t ing Information Pro toco l (RIP) i n router-over mode. Even though it uses
different naming convention for mesh nodes, the role of each device remains the same.
The end devices are called Sleepy E n d devices and the P A N coordinators are Routers or
Router-eligible E n d Devices if not acting as a router. Network discovery is carried out by
using extended Mesh L i n k Establishment (M L E) messages, which are sent among nodes
wi th single-hop unicast or multicast. Unfortunately, the Thread is a proprietary solution
and its detailed specification is available only to the members of the Thread Group.

3.3 Messaging protocols

3.3.1 C o A P

The Constrained App l i ca t ion Pro toco l is a U D P - b a s e d applicat ion layer machine to machine
transfer protocol defined i n R F C 7252. It was specifically created to be used in low-power
microcontroller-based devices. These devices usually communicate through wireless per
sonal area networks. The ma in idea behind the protocol was to provide H T T P - l i k e features
while keeping the message overhead of the protocol as smal l as possible. Th is packet size
reduction allows l imi t ing the use of packet fragmentation. A s the Hyper text Transmission
Pro toco l (H T T P) , C o A P also has a request-response architecture w i th sending different
types (G E T , P O S T , P U T , D E L E T E) of requests to a Uni fo rm Resource Identifier (URI) .
It supports the content-type header known from H T T P , which allows the interchange of the
information by using popular formats such as J S O N or X M L . These similarities between
the two protocols allow the mapping of C o A P packets into H T T P and vice versa. []

V
(2b)

T
(2b)

TKL
(4b)

Code (8b) Message ID (16b)

Token (if any, TKL bytes) ...

Options (if any) ...

11111111 Payload (if any) ...

Figure 3.7: C o A P packet structure

13

The communicat ion model is reversed compared to the most common protocols. The
server is running on the end-devices and the client usually has more computat ional power.
This k ind of solution allows embedded devices to consume less electricity, by let t ing them
sleep un t i l a C o A P request arrives. Because a l l the H T T P request methods are available, it
is possible to implement a R E S T - l i k e behavior on a microcontroller. The C o R e specification
describes a l ink ing format, which can be used by clients for service discovery. The server
side has to implement a response to G E T requests on the /.well-known/core U R I , where
al l the available resources should be listed. Resource filtering is also possible by appending
keywords to the U R I similar ly to a G E T query i n H T T P . Discovering services on multiple
devices at the same time can be done using multicast. [1]

3.3.2 M Q T T

I B M ' s M Q Telemetry Transport (M Q T T) protocol is a T C P - b a s e d lightweight publish-
subscribe protocol. It was designed for collecting and dis t r ibut ing smal l amounts of data
among mult iple devices. It promises smal l code footprint which allows to operate in envi
ronments w i t h l imi ted network bandwidth . The rel iabi l i ty of the protocol is guaranteed by
the T C P , but M Q T T also provides three different layers of Qua l i ty of Service.

Figure 3.8: M Q T T communicat ion model

The central unit of the protocol is a broker device which allows mult iple clients to
subscribe for topics. These clients can also push messages about a given topic to the
broker. Later the broker w i l l distribute the information to the subscribers of the given
topic. The topics can be organized hierarchically. B y subscribing to a higher-level topic,
the client w i l l also receive a l l the messages from a l l the subtopics. If a broker receives a
message which is set as retained, it w i l l store the message i n its memory and resend it to
any newly connected client who has subscribed to the topic of the message. Clients can
also set messages as wills which are stored s imilar ly to the retained messages. However,
they w i l l be sent in that case the given client disconnects abnormally. [6]

14

3.3.3 H T T P / 2

H T T P was not designed for use i n constrained systems. However, since version 2.0, it is not
a text-based protocol anymore. Thanks to the header compression support, the probabil i ty
of packet fragmentation has been minimized. These features have made H T T P / 2 into a
suitable alternative i n the Internet of Things to the previously described protocols. It is
s t i l l using the request-response communicat ion model, however, now it is possible to achieve
bidirectional communicat ion while opening just a single socket. [4] The popular i ty of the
protocol has resulted i n a lot of community-driven IoT solutions.

A s an extension to the previous version of the protocol, the Representational State
Transfer (R E S T) specification has become the architectural standard of any App l i ca t i on
Programming Interface available through a network. Its main concept is that web applica
tions can be interpreted as state machines where requests and responses are the transitions
between states. W h e n a client is using a web application, it usually executes operations
on an element or on a collection of elements of the same type. The operations can be
categorized based on the future changes of the collection or the element. These categories
are analogous to H T T P request types. [10] For example a to retrieve a collection of users,
a client should send a GET request to the /users U R L . To update the phone number of
the second user, a PUT request containing the new phone number has to be made wi th
the /users/2 U R L . The architecture is not a standard, it is just a set of suggestions how
to design web applications.

3.3.4 WebSocket

WebSockets are capable of bidirect ional communicat ion while using a single T C P connec
t ion. It is described i n the R F C 6455 and standardized by W 3 C . The intention behind the
protocol was to allow the web browser to send and receive smal l amounts of information
without continuously opening new connections to a web server. A WebSocket connection
is ini t ia ted w i t h a handshake, which has to begin wi th an H T T P request w i th the Upgrade:

websocket and Connection: Upgrade headers. These headers were originally implemented
to support upgrading to a newer version of H T T P without opening a new connection. If
the WebSocket is supported by the server, it responds w i t h the same headers and the com
municat ion channel can switch to bidirectional mode. The communicat ion itself is realized
by using data frames. These frames have smal l overhead, therefore, they can be used to
periodically send smal l amounts of data.

15

Chapter 4

Server side

Because of the l imi ted resources, the information gained from embedded devices needs to
be stored and processed using external services. This chapter describes a modern way of
provisioning a backend required for these services and introduces modern data storing and
processing technologies.

4.1 Cloud Computing

C l o u d Comput ing is a way of providing services rather than a technology. It can also be
referred to as on-demand computing. It is an approach to provide computing, storage, net
working and other services on-demand from a shared pool of resources. These resources can
be distr ibuted among mult iple customers. Based on the service ut i l iza t ion of the customer's
request, it is also possible to dynamical ly redistribute them. The whole implementat ion is
hidden on the customer's side and it only receives a simple management screen wi th the
min imum number of options. Pract ical ly, s imilar ly to electricity, C l o u d Compu t ing is a pay

as you use model for computing services.

Cloud Client

A

Application SaaS

Runtime execution environment PaaS

Computing, Storage, Networking laaS

Figure 4.1: C l o u d computing layers

16

Depending on the availability, C l o u d Comput ing has three different deployment models.
Firs t ly , a private c loud is restricted to use wi th in a single organization for security reasons.
However, it can be hosted both internally or externally outside the organization. Secondly,
public clouds are available for mult iple customers through a public infrastructure (i.e.
the Internet). A n d lastly, a hybrid c loud can allow the use of both the public and the
private clouds at the same time as a compromise, e.g. when a company wants to allow their
customers to use a part of its internal cloud-based services. C l o u d Compu t ing can be also
divided into three different service models: infrastructure, platform and software.

4.1.1 Infrastructure as a Service

Infrastructure as a Service (IaaS) offers an abstraction over the basic cloud services such as
computers, storage and networking. This abstraction completely hides the infrastructural
details, so the customer does not have to care about the security, the backups, the location
and other details. Computers are usually offered as v i r tua l machines through multiple
hypervisors connected to a pool , i.e. thousands of machines can be provisioned in seconds
wi th a single click on a user interface. Software defined v i r tua l networks can provide
connection among those machines. The networks provide v i r tua l networking devices such
as load balancers, firewalls, gateways or V P N services. Storage services can be both file or
object storage, but it is also possible to provide raw block storage as addi t ional disks for
existing v i r tua l machines.

4.1.2 Platform as a Service

Pla t form as a Service (PaaS) offers development and runtime environment to the applicat ion
developers. The platform relies on an infrastructure that is not necessarily provided by the
same vendor and is completely hidden from the customer. The runtime environment can
support mult iple languages by providing a standard interface. O n the other hand, it can
also provide a container-based runtime environment that is able to simplify the deployment
of an applicat ion on both sides. Containers offer a v i r tual iza t ion technology on the level
of the operating system by bundl ing the applicat ion and its runtime dependencies into a
single image file. F inal ly , the deployed applicat ion can be handled by a user interface where
the customer can set scaling parameters and order addi t ional higher-level services.

4.1.3 Software as a Service

The Software as a Service (SaaS) model offers end-user applications running in the cloud
environment. It usually runs on the top of the PaaS model which can be outsourced
to an external provider. The palette of the available applications can vary by the given
provider, for example databases, data analytics services, e-mail and collaboration, customer
relationship management, content management and others.

4.2 B i g Data

Nowadays more and more information is being collected from the world around us. Due to
this, the need to store and process more and more information is rapidly growing. " M u c h
of this data explosion is the result of a dramatic increase in devices located at the periphery
of the network including embedded sensors, smartphones, and tablet computers. A l l of this
data creates new opportunities to "extract more value" i n human genomics, healthcare,

17

oil and gas, search, surveillance, finance, and many other areas." [17] This huge amount
of data has already exceeded the l imits of the relational database management systems
(R D B M S) and it requires special care. The term B i g D a t a refers to a set of technologies
which can collect, store and process huge amounts of data. Compared wi th conventional
databases, these technologies are based on massive parallel ism and they are highly scalable.
This allows them to run distr ibuted on hundreds or thousands of machines.

D a t a Sources Content Format D a t a Stores D a t a Staging D a t a Processing
Web & Social
Machine
Sensing
Transactions
IoT

Structured
Semi-structured
Unstructured

Document-oriented
Column-oriented
Graph-based
Key-Value

Cleaning
Normal iza t ion
Transform

Ba tch
Rea l time

Table 4.1: B i g D a t a classification [17]

4.2.1 MapReduce

MapReduce is a programming model published by Google i n 2004. It has been designed for
massively parallel data processing on large clusters. It was inspired by the map and reduce
functions known from functional programming languages. "Users specify a map function
that processes a key/value pair to generate a set of intermediate key/value pairs, and a
reduce function that merges a l l intermediate values associated wi th the same intermediate
key." [8]

Input Splitting Mapping

Sue, 1
Ben, 1

Johny, 1
Sue Ben Johny

Sue, 1
Ben, 1

Johny, 1
Sue Ben Johny

Sue, 1
Ben, 1

Johny, 1

Sue, 1
Ben, 1

Johny, 1

Mapping Shuffling Reducing Output

Sue Ben Johny
Reed Redd Johny

Sue Reed Ben

Reed, 1
Reed, 1
Johny, 1

Sue Ben Johny
Reed Redd Johny

Sue Reed Ben
Reed Reed Johny »•

Reed, 1
Reed, 1
Johny, 1

Sue Ben Johny
Reed Redd Johny

Sue Reed Ben
Reed Reed Johny

Reed, 1
Reed, 1
Johny, 1

Sue Ben Johny
Reed Redd Johny

Sue Reed Ben

Reed, 1
Reed, 1
Johny, 1

Sue, 1
Reed, 1
Ben, 1

Sue Reed Ben
Sue, 1
Reed, 1
Ben, 1

Sue Reed Ben
Sue, 1
Reed, 1
Ben, 1

Sue, 1
Reed, 1
Ben, 1

Ben, 1
Ben, 1 Ben, 2 Ben, 1
Ben, 1 Ben, 2

Reed, 1
Reed, 1
Reed, 1

Reed, 1
Reed, 1
Reed, 1

Reed,3
Reed, 1
Reed, 1
Reed, 1

Reed,3
Reed, 1
Reed, 1
Reed, 1

Sue, 1
Sue, 1 Sue, 2 Sue, 1
Sue, 1 Sue, 2

Johny, 1
Johny, 1

*- Johny 2 Johny, 1
Johny, 1 Johny 2

Ben, 2
Reed, 3
Sue, 2

Johny, 2

Figure 4.2: A n example of MapReduce execution wi th word count calculation

The execution model can vary according to the implementation. However, it can be
divided into a few basic steps. F i rs t , the input is split to N pieces where the size of a piece
can be specified as an optional parameter. Those pieces are sent as inputs to the map
function running on the cluster's nodes. The next step is called shuffling and it generates
a set of lists grouped by keys. Those keys are passed to the reduce function which results
in a new key-value pair based on the input . Lastly, the results are collected and returned
as output. [8]

18

4.2.2 N o S Q L

N o S Q L is an umbrella term covering database management systems that are not based
on the relational algebra. These systems do not usually use S Q L as their query language
and do not provide A C I D (Atomici ty, Consistency, Isolation, Durabi l i ty) behavior. Thei r
significance is reflected i n B i g D a t a applications where the usage of t radi t ional database
management systems is not suitable. To handle huge amounts of data, N o S Q L databases
are usually highly scalable and easily distributable among mult iple machines.

The simplest N o S Q L database type is the Key-Va lue store. Technically, it is an
associative array. These systems usually store their data i n memory, so the query t ime can
be really fast. A more complex database is the document store, an indexed collection of
documents which can be implemented as separated Key-Va lue stores. Thei r implementat ion
is very close to the relational databases. However, instead of using foreign keys and joins,
the data is usually duplicated. Object databases are very similar to document stores,
but they are suitable for storing objects known from the Object Oriented Programming
(O O P) . G r a p h databases are based on the graph theory and they are suitable when
the relationship among data is the most important aspect. They can be interpreted as
an opt imized way of storing mult iple many-to-many relations known from the relational
databases. In that case, if it is not enough to store the data i n one type of database and
to prevent the usage of mult iple database systems together, M u l t i m o d e l databases are
available. M u l t i m o d e l databases can combine the advantages of various database systems
in one applicat ion, e.g. a graph database on the top of a document store.

4.2.3 Time series database

Time series databases are suitable for storing huge amounts of numerical values, such as
stock prices, energy consumption or temperature. Because of the nature of this data,
this approach requires completely different data processing and storing techniques. The
incoming data is arr iving in short t ime periods, therefore it is necessary to have an advanced
buffering. Processing the data requires much simpler operations than i n other databases,
but the amount of data to be processed i n a single request is much bigger. The t ime series are
stored wi th a mult idimensional Key-Va lue strategy and they are indexed wi th timestamps.
Scalabil i ty has to be solved wi th high precision t iming and clock synchronization among
mult iple nodes of a database cluster.

19

Chapter 5

Design and Implementation

The original intention of the thesis was to create an agricul tural sensor network. D a t a such
as soil moisture, temperature and luminosi ty are possible to measure wi th various sensors
and these sensors can be s imply integrated into a single device. Such a device has to operate
without any human intervention for a whole growing season for example on a wheat field.
In order to cover a bigger area, it is necessary to have mult iple devices that are able to
communicate wirelessly w i th each other. Th is implicates that the devices should be based
on a battery-powered microcontroller w i th a low-power wireless networking interface. The
information gained from the sensors needs to be forwarded to the Internet by using one or
more gateway devices. A s it has been already mentioned earlier i n the work, a gateway
device has to provide two types of networking interfaces. Th is part icular case would require
a 3 G U S B modem connected to a single board computer.

O n the server-side, the incoming data has to be stored and processed. Depending on
the frequency, the type and the purpose of the data, it has to always be stored in the most
opt imal way. The numerical values measured by the sensors w i l l form the majori ty of the
traffic. The information w i l l arrive i n even intervals, which makes it ideal for t ime series
databases. Information about the state, the layout and the health of the sensor network
should also be stored. However, this k ind of information does not change very often and it
structured i n a more complex way. Based on the number of nodes, and on the used wireless
technology it can either be stored in a relational database or i n a graph-document mul t i -
model store. The entry point to the server-side infrastructure has to dist inguish between
the two types of data and save them into the corresponding database. In agriculture there
is no need for real-time data analytics, however, the received data s t i l l needs to be analysed.
Based on the results, future decisions can be made. This might be easily done by using a
job queue wi th background workers. Furthermore, a web applicat ion and/or R E S T A P I is
required to allow user interaction.

The whole system has to be scalable and redundant while keeping it cost-effective.
Having such a complex backend just for one sensor network is economically not viable.
However, it can be provided ctS cl Software ctS cl Service solution for mult iple customers.
A l l the required services are available through cloud computing providers, which makes the
service ideal for the cloud ecosystem.

20

5.1 Embedded device

A l l bigger semiconductor manufacturing companies provide devices wi th low-power wireless
networking capabilities. The 6 L 0 W P A N protocol has been chosen as the communicat ion
basis for the thesis. The reason is that it is an open standard. Moreover it provides true
Internet connection for the devices by using IPv6 . The A R M C o r t e x - M 3 based CC2650
from Texas Instruments has been selected as the target platform for the thesis. It was
designed for low-power sensor networks. Moreover, it supports both 802.15.4-based wireless
networking and Bluetooth L o w Energy. Texas Instruments also distributes this chip i n an
evaluation ki t named S i m p l e L i n k ™ Bluetooth S m a r t ® / M u l t i - S t a n d a r d SensorTag.
This device already has 10 integrated sensors and a wireless antenna; it runs from a 3 V coin-
cell battery. It provides a S K I N connector as well , which allows the hardware developers
to connect addi t ional devices to the unused pins of the microcontroller.

Figure 5.1: S imp leL ink™ Bluetooth S m a r t ® / M u l t i - S t a n d a r d SensorTag [12]

The SensorTag supports measuring luminosi ty and temperature without any hardware
or software modifications. O n the other hand, measuring the soil moisture requires some
external components. The S K I N connector provides access to G P I O pins wi th A D / D A
converters and 1.2V between the V D D and G N D . A transistor-based analog soil moisture
sensor, however, requires at least 3.3V to operate. Th is is possible only by connecting the
V C C of the moisture sensor to an external battery. In high moisture environments, e.g.
on rice fields, this solution can dra in the battery very quickly. To reduce the unnecessary
power consumption caused by the sensor, the V C C p in could be controlled by a transistor
connected to a second G P I O p in . Th is way the microcontroller can tu rn on or off the
sensor on demand. A s a proof of concept, the moisture sensor was interfaced through the
pin headers of the Debugger DevPack connected to the S K I N connector of the SensorTag.
A s a result, this el iminated the need of a custom printed circuit at the very beginning of
the development phase.

21

Based on the manufacturer recommendation, the C o n t i k i operating system has been
chosen as the base software running on CC2650 . The whole codebase is available for down
loading and modification v i a G i t H u b and it also contains a few of examples dedicated to
the SensorTag. The cc26xx-web-demo implements a C o A P server, and an M Q T T client
exposes a l l the available sensors through a 6 L 0 W P A N network. This was an ideal starting
point to carry out an experiment w i th both the hardware and the software. To reduce the
amount of t ransmit ted data, C o A P has been chosen as the default messaging protocol for
the whole design. 6 L 0 W P A N provides compression only for U D P headers, which makes
the T C P - b a s e d M Q T T highly vulnerable to fragmentation. After removing the unneces
sary parts from the demo code, the reading of the analog p in was implemented as a new
protothread. The code was compiled wi th G C C and successfully flashed onto the device.

Q2

R1
100

Ô ON/OFF

PAD 1

Q1

R2
100

Ô SIG

PAD 2

Figure 5.2: Schematic of the soil moisture sensor w i th the Q2 switching transistor

The border router was planned to be a Raspberry P i 3 wi th an external 802.15.4 adapter.
In the first experiment, the adapter was an A t m e l AT86RF233-based transceiver connected
through SPI . There is software support for the transceiver, but the given kernel module
needs to be activated in the L i n u x device tree configuration. After activating the device as
a standard L i n u x networking interface, the packet sniffer was able to catch some packets
arr iving from the SensorTag. Unfortunately, the networking subsystem of the kernel has no
support for the 802.15.4 coordinator mode, which would be necessary for an border router.

The second experiment was based on the documentation available for the SensorTag.
A U S B dongle based on CC2531 low-power wireless microcontroller was connected to the
Raspberry P i 3. Th is device can operate i n mult iple modes based on the used firmware. It
has been programmed to provide a serial-to-radio interface for the thesis. The firmware was
available direct ly from the manufacturer and in binary format only. O n the software side,
the 61br project of Cet ic was used for routing and neighbor discovery. 61br can connect
a serial device to a networking interface i n bridge, router or gateway mode. It is also an
open source project supported by Con t ik i . A web interface is available i n order to ease the
monitor ing and configuration process. It was planned to extend the web interface wi th a
R E S T A P I for more robust configuration through the Internet; however, the CC2531 had
a hardware issue and it was not suitable for data transmission. O n the online forums of
Texas Instruments, mult iple users reported the same problem and the only solution was to
replace the dongle. Because of the slow replacement process provided by the manufacturer,
the 6 L 0 W P A N as a wireless communicat ion solution was discarded.

22

Because of the lack of the functioning hardware, none of the I E E E 802.15.4-based so
lutions were realisable i n t ime. Therefore, it was necessary to discard some of the aims
of the thesis and pay more attention on the parts which are not dependent on the used
wireless solution. The mesh networking part of the design was abandoned. Instead of
6 L 0 W P A N , Blue tooth L o w Energy has been chosen to substitute the wireless networking.
The SensorTag also supports Bluetooth L o w Energy and ZigBee, however, the software
stack for both protocols is compatible w i th the compiler provided by the manufacturer.
Unfortunately, the freely available version of this compiler has a 32 K B code size l imi t .

Therefore, the design was transferred to an A r d u i n o 101 instead of using the SensorTag
further. Th is board has an Intel Cur ie x86-compatible core and a Bluetooth L o w Energy
radio wi th integrated antenna. The Cur ie is capable of running the Zephyr IoT operating
system, but it does not have support for Bluetooth L o w Energy. O n the other hand,
the Ardu ino has its own high level hybr id C / C + + programming language wi th a l l the
required (well documented) libraries. To overcome the lack of the integrated battery, a
U S B powerbank was temporari ly used to power the device.

Figure 5.3: Ardu ino 101 []

Due to the fact that Ardu ino 101 runs on 3.3V, the soil moisture sensor can be pow
ered direct ly from an analog p in . To measure the temperature and luminosity, an L M 3 5
analog temperature sensor and a photodiode was also connected to the board. The above
mentioned high level programming language provides an easy access to these analog pins.
Even though there are 6 analog input pins available on the board, they share only a single
analog-to-digital converter. To prevent the distortions among the three measurements, the
documentation of the board has been analyzed and a wrapper has been created around the
analogRead() function.

23

int multipleAnalogRead(int pin) {

// Charge up the capacitor in the ADC

int value = analogRead(pin);

// Wait for the capacitor

delay (1 0) ;

// Read the desired value

value = analogRead(pin);

// Wait for the capacitor

delay (1 0) ;

return value;

}

Lis t ing 5.1: The wrapper function used for reading the sensor values

The Bluetooth L o w Energy l ibrary implements a scoreboard, where the services and
characteristics can be attached using the add Attribute () method of the BLEPeripheral data
structure. To make the measured sensor values available wirelessly, it is enough to write
the measured values periodical ly to the characteristics on the scoreboard. A Temperature
characteristic is available in the Envi ronmenta l Sensing Service, however, the other two
sensors are not compatible w i th this profile. To keep the design as simple as possible, the
moisture was mapped into the H u m i d i t y and the luminosi ty into the Pressure characteristic
in the same profile.

5.2 Border router

A s the design of the end device was altered, the roles of the border router changed along wi th
it. Moreover, the routing and discovery features required by the 6 L 0 W P A N specification
had become obsolete. The only requirement from the border router was to read the data
from the available Bluetooth devices and forward them to the backend. This solution,
however, would have changed the entire design and this was undesirable. In order to avoid
any changes i n the backend, it was necessary to implement a compat ibi l i ty layer. Th is layer
should be responsible for s imulat ing an I P v 6 network of sensor modules accessible by the
backend.

The Raspberry P i 3 provides an integrated Bluetooth L o w Energy radio wi th a l l the
required software support. M u l t i p l e experiments w i th various programming libraries were
conducted. The goal of these experiments was to find a suitable Bluetooth L o w Energy and
a C o A P l ibrary that are compatible w i th each other. Due to the fact that the Bluetooth
L o w Energy is a relatively new technology, it was assumed that most of the high-level
libraries have not adopted it yet. The problem wi th C o A P is that the server part is usually
implemented i n microcontrollers and most of the libraries are opt imized for low-level use
only. However, a high level solution was more desirable. The best results were achieved
wi th the two Node .JS libraries: noble and node-coap.

24

The compat ibi l i ty layer was designed to run as a daemon and it basically behaves as
a proxy between the end devices and the backend. Firs t ly , it is responsible for providing
information about itself and the connected devices. Th is feature is realized by using a C o A P
server which responds to the G E T /device request. The response is encoded as a J S O N
object and it contains information about the router and the discovered sensors along wi th
the topology of the network. Ge t t ing information about the sensors is also possible by using
multicast, however, processing multicast responses wi th a distr ibuted backend architecture
is a complicated task. Secondly, it is constantly pol l ing for available Bluetooth L o w Energy
devices. If a new one appears, the compat ibi l i ty layer tries to init iate a connection.

After a new device gets connected, the compat ibi l i ty layer w i l l request for the E n v i
ronmental Sensing Service and for the Temperature, H u m i d i t y and Pressure characteristics
described earlier. If the desired service or the characteristics are not available, it w i l l retry
the discovery two more times. If the th i rd retry also fails, the deamon blacklists the M A C
address of the given device and it w i l l ignore it un t i l the program gets restarted. Th is black
list ing has been implemented in order to prevent a connection to Bluetooth L o w Energy
devices other than the designed sensors. However, this is not a security feature and it is not
enough to prevent the connection of harmful devices to the border router. O n the other
hand, if the services and the characteristics of the device meet the criteria, the daemon w i l l
start the C o A P emulation.

Figure 5.4: The border router daemon between the network interfaces

25

The emulation starts w i th generating a new IPv6 address for the network interface,
which is reachable by the backend. This address is generated s imilar ly to the l ink- local
IPv6 addresses, but it is based on the Blue tooth M A C address of the device. O n the
newly created address, a C o A P server is started on the default U D P port (i.e. 5683). This
single port solution is sustainable even i f mult iple devices are available because each one is
listening on a different addresses. The uniqueness of the M A C addresses guarantees that
two C o A P servers would never listen on the same address. If the device disconnects, the
C o A P server is stopped and the IPv6 address is released.

A s it has been mentioned earlier, the C o A P server was implemented by using the node-
coap l ibrary. The implementat ion is just one callback function, which is called when a
request has been made. O n l y G E T requests are allowed, i.e. i n case of any other type of
request the server w i l l return a 404 Not Found error. The same error is returned i f the client
tries to access an unavailable U R L A client can read a measured value by sending a G E T
wi th the corresponding U R L To keep the payload size as low as possible, the response is not
preconverted to A S C I I . The l ibrary does not implement the C o R e specification required for
service discovery. Therefore, to have the highest compat ibi l i ty w i th the original design, the
response for the G E T / .wel l -known/core and G E T /sensors requests was hardcoded
into the server. Th is workaround, however, does not support query filtering. It is not
expected that the clients w i l l need to use this service bacuse of the low number of resources.

U R I Descript ion Content Format Encoding

/ Banner text / p la in A S C I I
/ .well-known/core Lis t of a l l services applicat ion/l ink-format A S C I I
/ device Device information applicat ion/json A S C I I
/ sensors Lis t of a l l sensors applicat ion/l ink-format A S C I I
/ sernsor / temperature Temperature N / A B ina ry
/ sernsor / moisture Soi l moisture N / A B ina ry
/ sernsor/ luminosity Luminos i ty N / A B ina ry

Table 5.1: V a l i d U R I s in the C o A P server w i th their specifications

5.3 Backend

It is obvious that the backend and the border router(s) require the abi l i ty to communicate
wi th each other. For security considerations, it is not recommended to connect a border
router to the Internet w i t h a public IP address. However, the backend requires the abi l i ty
to init iate a C o A P connection as a client. Th is requires a tunneled l ink between the two
endpoints, which can be realised wi th various V i r t u a l Pr ivate Networking (V P N) solutions.
The most popular Infrastructure as a Service providers offer V P N functionality i n their
Software Defined Networking stack. It is also possible to run a V P N server on a v i r tua l
machine, however, in this case scalabili ty might be a problem.

26

5.3.1 Device discovery

To collect sensor data from a network, it is necessary to discover the available border
routers first. One possible solution is to use IPv6 multicast, however, this is not a scalable
solution and it would be not opt imal for a larger number of routers. Software defined
networking solutions usually provide a high-level A P I to retrieve a list of a l l available
devices. Unfortunately this A P I is not always available and it is not standardized, i.e. each
vendor implements it differently. The best way to overcome this problem is to temporari ly
establish a T C P connection between a newly connected border router and the backend.
The backend needs to listen on a T C P socket for incoming connections and the border
router should init iate a connection after it is started. Thanks to the three way handshake
implemented in T C P , the connection can be immediately closed after it is established.

require 'sinatra/base'

class Broker < Sinatra::Base

post ' / ' do

token = request.env['HTTP_X_AUTH_TOKEN']

ip = request.env [REMOTE_ADDR']

The find_by! returns with an error i f not

network = Network.find_by!(:token => token)

Do nothing i f the router i s already in the

network.routers.find_or_create_by!(:address

The border router expects t h i s response

'OK '

end

Allow running only from Rack

run! i f a p p _ f i l e == $0
end

Lis t ing 5.2: The source code of the H T T P server

This service has been implemented using the Sinatra l ibrary as an H T T P server.
It listens on IPv6 only, i.e. it immediately detects the remote address of the connect
ing border router. The server answers only to P O S T requests containing a token i n the
XAUTHTOKEN header. This token is used to identify the network which the border
router belongs to. If an incoming request contains a val id token, the server w i l l t ry to save
it into the database. To prevent possible duplicate entries, a test for an existing router has
been implemented. The database abstraction has been realized by using the Act iveRe-
cord l ibrary. This l ibrary also provides callback functions, which can be ini t ia ted upon
various database events. In this case, after a new router is saved, an after_create callback
is responsible to init iate the service discovery process.

f ound

database

= > ip)

27

5.3.2 Service discovery

A s mentioned earlier, the border router provides a service for retrieving the network topol
ogy. This has been implemented by using a C o A P server, therefore, the backend requires a
C o A P client to discover sensing devices. Because of the l imitat ions of the border router, a
received topology w i l l be just a one-dimensional list of addresses, i.e. a star topology. A s
the architecture allows the dynamic connection and disconnection of sensing devices, the
discovery process needs to be repeated periodically. It is also desirable to have control over
the frequency of the repetit ion. To support an unl imi ted number of border routers, the
service needs to be implemented i n a scalable way.

The service discovery has been implemented i n Ruby language using the coap gem.
After a successfull request, the retrieved J S O N is parsed into an array of addresses. This
array is iterated over and each unstored address is saved into the database. For scalabili ty
support, the discovery has been implemented as a worker process using the Sidekiq gem.
This gem implements a thread pool controlled by an asyncronous job queue. This queue
is realized in a database, therefore, it might be available to mult iple Sidekiq instances
running on different machines. New tasks are created by the device discovery service and
the periodical repetit ion has been realized by scheduling a job recursively from itself. If a
worker fails for some reasons, it is automatical ly restarted after a given amount of t ime.
After a given number of restarts, the job is moved to the dead job queue and the database
record for the given router is removed. This technique allows the removal of temporari ly
unavailable routers and a l l the sensors connected to i t . If the router becames available again,
the device discovery service automatical ly recreates its database record and schedules a new
task for its service discovery.

class DiscoveryWorker < ApplicationWorker

def perform(id)

router = Router.find(id)

result = c l i e n t . g e t (' / d e v i c e ' , router.address)

raise unless result.mcode == [2, 5] # Wrong status code

JSON.parse(result.payload).each do |address|

router.sensors.find_or_create_by!(:address => address)

end

Reschedule the job based on the frequency

self.class.perform_in(router.frequency.minutes, router.id)

end

Remove unavailable routers

sidekiq_retries_exhausted do Ijob, _|

Router.destroy(job ['args '] . f i r s t)

end

end

Lis t ing 5.3: The source code of the service discovery worker

28

5.3.3 Data collection

In agriculture, sensor networks are usually placed in uninhabited areas. W h i l e bui lding their
infrastructure, Internet Service Providers d id not handle the coverage of such areas wi th
the highest priority. This means that an Internet connection on the fields w i l l not always
guarantee high speed and low latency. These networks are usually cellular, which means
that an increased number of border routers w i th separate Internet connections would s t i l l
share the same cell . Col lec t ing data by using the multicast feature of the C o A P would put
a high load on the Internet connection i n even intervals. O n the other hand, as mentioned
before, it is problematic to implement a scalable multicast client. To prevent high loads on
a l imi ted Internet connection, the best solution is to request the data from the sensors one
by one i n an iterative way.

The data collection service has been implemented by using the same Sidekiq and coap
gems as it has already been done for the service discovery. There are many similarities
between the two workers, however, this one is started w i t h three arguments instead of a
table row identifier. The three arguments are the address of the sensing device, the network
identifier and the update frequency. The service first requires to retrieve the list of sensors
attached to a connected device. Th is has been realized by sending a GET /sensors C o A P
request to the device. The result is encoded in the l ink format described by the C o R E
specification and it is parsed into a Key-Va lue pair of sensors and U R I s . B y sending G E T
requests to these URIs , the sensing device returns wi th the actually measured value of the
corresponding sensor. These returned values first require a binary conversion and after that
they can be stored i n the database. To prevent data loss, the measured sensor values are
indexed by the address of the sensing device. Th is way i f the sensing device is deleted from
the database, its measured values w i l l be not lost. If the device reconnects to the network,
the device discovery w i l l recreate its database record. Because the address of the device is
not changing, the measured sensor values w i l l be immediately available for this previously
deleted device. For periodical task repetit ion and to remove unavailable sensing devices,
the same strategy has been used as the one described at the service discovery.

def parse_link(address, l i n k)

Iterate through each record in the l i n k format

CoRE::Link.parse_multiple(link).map do |measurement|

key = measurement.rt.to_sym

result = client.get(measurement.uri, address)

return [key, - 1] unless result.mcode == [2, 5]

Conversion from binary to 2-bit l i t t l e - e n d i a n

value = result.payload.unpack('S< ').first
[key, value]

end.to_h

end

Lis t ing 5.4: Pars ing the data received from a sensing device

29

5.3.4 Data storage

Based on the previously designed services, it is clear that one type of database is not suitable
for storing a l l the required information. Therefore, the data needs to dis tr ibuted among
mult iple database engines based on various factors. To select the best engine for each data
type, a simple analysis based on three factors has been done. The first factor was the
frequency of the incoming data. Secondly the dynamical i ty of the data has been analyzed,
i.e. how often the stored data w i l l have to be changed. The th i rd factor was the size and
the complexity.

The stored user data, i.e. e-mail addresses, passwords and user settings are not chang
ing very often. Network-specific information (together w i th the list of the available routers
and/or the sensing devices) are also rather static than dynamic. The best solution for
this k ind of data is to use a t radi t ional S Q L database. B y using an object-relational map
ping library, the database connection can be completely hidden from the backend services.
Therefore, any k ind of database system can be used unt i l it meets the S Q L specification
and it is supported by the object-relational mapper. Even i f the scalabili ty of a relational
database is not ideal, cloud-based database services overcame this issue.

User

ID
Name
E-Mail
Password
Current login
Current IP
Last login
Last IP
Created at
Updated at

Sensor

ID
Name
Address
Variant
Frequency
Created at
Updated at

2 .
Network

ID
Name
Location
Description
Token
Created at
Updated ad

Router

- e x

ID
Name
Address
Frequency
Created at
Updated at

Figure 5.5: Enti ty-relat ionship diagram for the data stored i n S Q L

30

The content of the job queue is constantly changing and the periodical ly ar r iv ing tasks
have just a short lifetime. To prevent mult iple workers from executing the same task, it
is necessary to provide atomic operations on the queue. Because of the scalabili ty of the
worker-based architecture, the database needs to handle a lot of input /ou tput operations.
A n in-memory Key-Va lue database is ideal for this k ind of data. The Sidekiq and sidetiq
gems providing the job queue system have support only for Redis. Because no other data
needs to be stored this way, there was no reason to use a different solution.

Values measured by the sensing devices are numerical and they arrive periodically.
Except of some k ind of system failure, there is no need for data deletion. They can be stored
in a relational store i n a smal l volume, however, the ideal solution is to use a time series
database. After analysing mult iple products, In f luxDB has been chosen as the database
for the thesis. The reason behind this is the support for continuous queries. A continuous
query is a caching tool for downsampling the incoming data in real t ime. It is running in
the backround on a set of data and its output is a smaller dataset. The query language of
the In f luxDB is very similar to S Q L . It is accessible through a R E S T A P I , therefore, any
programming language can interface wi th i t . The stored data is organized in measurements,
which have points indexed by timestamps. The points store the measured values in fields
and addi t ional metadata i n tags, which are always indexed.

> SELECT * FROM s e n s o r d a t a WHERE l u m i n o s i t y > 50

name: s e n s o r d a t a

t ime
1462561728602991028
1462561728613079196
1462561728638329865
1462561728648150175
1462561728672268086
1462561728689305491
1462561728719109120
1462561728750523264
1462561728764148585
1462561728770810814
1462561728792137920
1462561728798299518
1462561728805453284
1462561728805453394

l u m i n o s i t y
53
98
90
88
65
91
66
83
96
72
84
83
87
78

m o i s t u r e
35
25
29
25
31
58
13
33
88
33

2
51
81
40

network
10

3
10
10

3
10

5
5

10
5

10
5
5

10

addre
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb

ss
2
1
2
2
1
2
8
6
2
6
2
8
6
2

t e m p e r a t u r e
10
17

6
23

1
1
6

23
1
9
6

11
23

5

L i s t ing 5.5: In f luxDB query showing points w i th luminosi ty higher than 50

The received information from a l l the sensing devices, ar r iv ing from different networks,
can be stored in a single measurement. A single point can store a l l the three measured
values i n three different fields. Because the database is schema-free, it is possible to append
new fields to the points in the future. To distinguish among sensing devices, the address of
each sensing device i n has to be stored as a tag. To facilitate the queries for sensor values in
a whole network, the network identifier has also been stored in the same way. To cache the
hourly, dai ly and weekly statistics; continuous queries have been used. After filtering the
measurements generated by a continuous query, the web interface can immediately visualize
data without put t ing a high load on the database.

31

It is not important to store network topologies i n a database, however, doing so can be
useful for future optimizations. Based on the stored topology, the load on the cr i t ica l parts
of a mesh network can be reduced. This can be done either by adjusting the scheduling of
the data collection tasks or by balancing the C o A P requests among mult iple border routers.
A network topology is technically a graph structure, therefore, the best way to store it is
to use a graph database. Because the sensors are already stored i n another database, for
a node it is enough to save the identifier of each sensor point ing to this database. If the
data from the relational database needs to be transferred to a document store, it is more
sufficient to use a mul t imodel graph-document database.

Because of the chosen wireless technology among sensing devices, it was not possible to
establish mesh-like topologies. The hop count between a sensing device and a border router
is constantly one. Due to the fact that the list of the devices in a network is already stored
in an S Q L database, it is inevitable to have information about which sensing device belongs
to which border router. In the special case of the flat topology provided by the Bluetooth
L o w Energy, an one-to-many relationship can loslessly describe the topology. Therefore, it
has been chosen to not use a graph database. However, it is possible to add it any t ime in
the future.

Da ta Frequency Dynamica l i ty St ructura l complexity O p t i m a l database
User
Network
Sensor
Measurement
Tasks
Topology

Low
Low
Low
H i g h
M e d i u m
Low

Almos t static
Almos t static
Almos t static
Static
Dynamic
Almos t static

Complex
Complex
Complex
Simple
Complex
G r a p h

S Q L
S Q L or Document
S Q L or Document
T ime series
Key-Value
Graph

Table 5.2: Analys is of the data to be stored

5.4 Web application

Unlike the previously described backend services, the web applicat ion needs to be publ ic ly
available. Securing the availabil i ty by a private network can increase the security, however,
it is not a comfortable solution from the perspective of the user. Us ing the same private
network for the sensors and the web applicat ion might cause security issues. The web has
become an applicat ion platform because of its high availabil i ty and its universal nature. The
H T T P S protocol provides asymmetric encryption and host val idat ion features. Together
wi th an authentication system it is as strong as the private network solution.

To increase the availabil i ty of the application, it is possible to export its services in
the form of a R E S T A P I . This way it is possible to implement native frontends i n the
future. Desktop computers, tablets and smartphones can have their own user interface
locally available and only the data would be requested through the network. It is also
possible to implement the web applicat ion as a client of the R E S T A P I . This can be done
by using a client-side model-view-viewmodel (M V V M) framework, such as Angu la r JS or
React. Do ing so would require the browser to load the frontend just once and after that it
would behave as a previously described native client. These distr ibuted implementations
would be ideal for the service, however, they are not covered i n this thesis.

32

The web applicat ion requires to support the following core features:

• Authenticate users based on the entered name and password

• Author ize users to access networks and other resources

• L is t , add, edit and delete sensor networks

• Display the list of border routers connected to a network

• Display the list of sensing devices connected to a border router or to a network

• Visual ize the topology of a network or a single border router

• Provide various views of the data measured by sensors

It is obvious that the backend requires the abi l i ty to retrieve data from mult iple databases
at the same time. The data stored i n the S Q L can be mapped into objects using an object-
relational mapper library. This l ibrary can be easily extended wi th a connection to other
databases. Because the data in the t ime series database from the perspective of the web
application is read only, there is no need for using locks or any other synchronization tech
niques. However, the database used for background jobs is writable by both the workers
and the web applicat ion. Fortunately, it already implements an advanced locking system
for concurrent data access.

The implementat ion of the web applicat ion has been done using the R u b y on Rai l s
framework. This framework provides a l l the required tools to create web-based applica
tions by following the model-view-controller design pattern. It is well documented and
uses various generators, that help the new developers to adopt the framework easier. Its
modular design allows to par t ia l ly share the codebase of an applicat ion wi th other mod
ules. To reduce code duplicity, the previously described broker and backend workers were
implemented i n the same codebase sharing a l l the required dependencies. Star t ing multiple
services from a single codebase w i l l guarantee their compatibil i ty.

The model part is realized by the same Act iveRecord object-relational mapper as in
the one used in the backend. Thanks to the model and migrat ion generators, the database
schema has been generated automatically. Accessing the t ime series measured by the sensing
devices required some additions both to the Sensor model and to its migrat ion. The con
nection to the t ime series database has been realized by using the innuxdb-rails rubygem,
which is an abstraction over a R E S T A P I client. F i r s t it was necessary to have a process for
setting up the database i n In f luxDB. N o other model than the Sensor is using this database,
therefore, the database creation and the continuous query setup has been added to its mi
gration. Because migrations in Rai l s are two-way executable, it was also necessary to define
the deletion of this In f luxDB database. Storing new time series data has been implemented
by using the write_point method of the InfluxDB:.-Rails, client object. Th is method needs
to be called wi th a measurement name, and wi th a hash of tags and values. The name of
the measurement is a constant string and it has been hardcoded into the model . The tags
are based on the current sensor, i.e. they can be generated from the instance variables of
the given record. Ret r ieving data from the In f luxDB required to create a query builder
similar to the one used in Act iveRecord . Th is query builder is parametrizable by a hash,
which is converted to a WHERE cause during runtime.

33

User authentication has been implemented by using the devise rubygem. The User

model and migrat ion has been created by using a predefined generator provided by this gem.
To add the custom fields to the model, it was necessary to edit the generated migrat ion
before synchronizing it w i th the database schema. Devise has support among others for
external authentication providers, token-based authentication and password reset service.
If there is a need for it i n the applicat ion, these services can be turned on i n the future.
After a user is authenticated, its context is stored as a session variable. B y default, Rai ls
serializes session variables i n an encrypted form into cookies. This solution is not an ideal
one, however, the latest version of Rai ls does not have support for session variables stored
in a database yet. If this issue w i l l be fixed i n the future, the redis-rails gem can be used
wi th Redis as session store. To prevent collisions w i th the job queue used by Sidekiq, it is
not necessary to use a different database, just a different namespace.

User authorizat ion does not require any special implementation, because only one user
can have access to a network. Therefore, it is safe to rely on the has_many and belongs_to

helpers when retrieving data for a single user. However, this can be changed i n the future
by adding a new table for many-to-many relationship handling between the networks and
the users. Th is architecture would require an advanced role based access control solution
using access control lists (A C L) .

M e t h o d U R I Pa t te rn Controller A c t i o n
G E T / networks Networks index
P O S T / networks Networks create
G E T / networks / id Networks show
P A T C H / networks / id Networks update
D E L E T E / networks / i d Networks destroy
G E T / networks / id/routers Routers index
G E T / networks / id / rou te rs / : id Routers show
P A T C H / networks / id / rou te rs / : id Routers update
D E L E T E / networks / id / rou te rs / : id Routers destroy
G E T / networks / i d / sensors Sensors index
G E T / networks / id /sensors/ : id Sensors show
P A T C H / networks / id /sensors/ : id Sensors update
D E L E T E / networks / id /sensors/ : id Sensors destroy
G E T / networks / i d / routers /: id/sensors Sensors index
G E T / networks / i d / routers/:id/sensors / id Sensors show
P A T C H / networks / i d / routers/:id/sensors / id Sensors update
D E L E T E / networks / i d / routers/:id/sensors / id Sensors destroy

Table 5.3: R E S T f u l routes implemented i n the appl icat ion

A n incoming H T T P request is being processed by a chain of function calls, the Rack
middleware. A t the end of this middleware, an instance method of a controller is called.
The controller and the method selection are done by a router, which stores its configuration
in config/routes.rb. It supports a special feature called resourceful routing, which specifies
Create, Read, Update and Delete (C R U D) routes for a given controller. Based on the
specifications of the web applicat ion, a l l the routes can be specified as resourceful. After
creating the required routes, the controllers have been generated using a generator. To
respond to a l l specified routes, the controller methods have been adjusted to handle nested
routes as well.

34

The frontend part has been implemented by using ActionView templates and partials.
A l l the templates have been wri t ten i n the slim H T M L templat ing language. Th is language
simlifies the code readabili ty by using indentation instead of opening and closing tags in
the H T M L . A s any other Act ionView-compat ib le template engine, s l im also allows to d i
rectly inject ruby code into the templates. Because a l l the required data had already been
generated by the controllers, only displaying the data was necessary to be implemented in
Ruby.

To speed up the page load, a l l the C S S an JavaScript files have been concatenated
into a single file using the Rai ls Asset Pipel ine . The concatenated file in product ion is
automatical ly minified by shortening variable names and removing whitespace. This way
while a web browser is loading the application, only two extra H T T P connections are
established.

Because a web browser window is dependent on the screen resolution of the given devices,
it was necessary to design the user interface to support mult iple screen widths. Th is can be
realized by scripting the layout rendering or by using a responsive stylesheet. In C S S , the
responsiveness can be implemented by encapsulating style definitions into ©media queries.
These queries can te l l the browser to use or discard their encapsulated content based on their
parameters, such as screen wid th or aspect ratio. These queries can be wri t ten manually
based on the requirements. However, it is easier to use a predefined grid system.

Logo Log out

Sidebar Main content

Logo Menu

Sidebar content

Main content

Standard Mobile

Figure 5.6: User interface mockup for standard and mobile layout

For a unified look and feel on the user interface, the Pa t t e rnF ly framework has been
used. It is a customized version of the Bootstrap framework extended w i t h a collection of
user experience design patterns. These patterns have been used to construct the frontend
based on the mockup. For reusability, the common elements, such as navigation bar and
sidebar have been implemented i n separate templates. The top level layout is responsible
for cal l ing those templates and rendering them into a single page.

35

After a successfull login, a user is able to access a l l of his available resources. Displaying
the list of available networks has been implemented as a responsive table where the user
can see the basic properties of his networks. The details of each network are available
by cl icking on the corresponding button, as well as the screen for edit ing or deleting it.
There is also an option to add new networks to the list by submit t ing a form. The routers
available i n a network are accessible by selecting a part icular network in the sidebar on
routers page. S imi la r ly to networks, routers can be displayed i n tables. B u t because they
are generated by the workers, there is no option for adding new routers. The list of sensors
can be displayed both for a whole network or for a given router. To be able to select a
router or a network, the accordions design pattern has been implemented into the sidebar.
The sensors can be displayed i n a table view and also i n a topology graph implemented by
using the d3 l ibrary.

101 6-07.--1 12:41:00 2016-35-11 12:44:00 2016-05-1112:47:00 2016-051112:50: 2016-05-11 12:56:00

Last clay (hour ly ave rage) Last wee< (dai ly ave rage)

2016-05-10 17:00:00 2016-05-10 23:00:00 2016-05-11 05:00:00 2016-05-1111:0 2016-05-06 02:00:00 2016-05-08 02:00:00 7016-05-10 02:00:00

Last w e e k (hou r l y a v e r a g e

2016-05-05 07:00:00 2016-05-06 00 00:00 2016-05-06 17:00:00 2016-05-07 10:00:00 2016-05-08 05:00:00 2016-05-08 20:00:00 2016-05-09 13:00:00 2016-0510 06:00:00 2016-0510 23:00:00

Figure 5.7: D a t a visual izat ion charts displaying randomly generated data

For visual izing t ime series data, Pa t t e rnF ly suggests the c3.js chart rendering library.
It is based on d3 and also has its own stylesheet definitions available i n Pa t te rnFly . It can
visualize data from a J S O N object i n different chart types. However, from the aspect of the
thesis, the line chart w i th t ime series is the most relevant. The stored t ime series could be
visualized for any sensing device, for mult iple devices connected to the same border router
and for a l l the sensors connected to a network. Thanks to the continuous queries provided
by In f luxDB, it is possible to render daily, weekly and monthly views for the measured
values.

36

5.5 Deployment

To ensure that a l l the dependencies are available, it has been decided to bu i ld the backend
applications as containers. This way the only required dependency to be able to run a
service is the runtime for the chosen container format. A s the currently most popular
container management system is Docker, it has been chosen to be used for deployment.
Because a l l the backend services share a single codebase, it was obvious to bu i ld them
into a single container image. It is not recommended to start mult iple services from a
single container, however; by using different parameters, a single image can be started as a
different container. Th is way running a container requires an extra argument, which is the
specific command for start ing the given service. Because the bundler rubygem has been
used for dependency management, it is also possible to deploy the services to a P la t form

Service solution or to start it locally.

n
o

OJ
IQ
ÍD

bundle exec bin/sidekiq

bundle exec bin/rails s

bundle exec bin/rackup broker.ru

bundle exec bin/rackup sidekiq.ru

Service Discovery
Data col lection

Web Appl icat ion

Device Discovery

Worker Monitoring

n
o

Figure 5.8: The container image wi th a l l the possible instances

The configuration parameters of each service can be specified by using environment
variables i n both the container and the non-container mode. Because of the large number
of configuration parameters, it is recommended to use a container orchestration tool , such
as docker-compose or Kubernetes. To scale the worker service, it is enough to increase the
number of running containers of that type. Containers running a web server, however,
require a load balancing reverse proxy which is responsible for dis t r ibut ing the requests
among the instances. The databases also can be started from a container environment,
however, it is better to rely on external cloud-based databases. A s described earlier, these
databases are automatical ly scaling on demand. Mos t of the cloud providers offer private
networking solutions wi th the possibil i ty of connecting external devices. Th i s is usually
realized by V P N , however, it can be different for each provider. Therefore, the realization
of the private network between a border router and the backend varies by platform.

37

http://broker.ru
http://sidekiq.ru

Chapter 6

Testing and verification

To verify the functionality of the designed system, mult iple tests have been conducted. This
chapter describes the testing process and evaluates its results.

6.1 Automated tests

The backend code has been developed by using the Test Dr iven Development (T D D)
methodology. Before implementing any k ind of functionality, tests had been wri t ten based
on the specifications. After creating the tests, the implementat ion was done i n smal l iter
ative steps. These steps always ended wi th running the corresponding tests. B y doing so
there is a guarantee that i f the tests are correct then the code w i l l meet the specifications.
To facilitate the testing process, the RSpec framework has been used for test automation.
This framework provides a Doma in Specific Language (D S L) for a behavior-driven way
of wr i t ing tests. Th is means that a l l the test cases and their generated report are easily
readable. To make sure that the tests cover a l l the implemented features, the simplecov
code coverage analyzer was used.

context 'new
u
address' do

l et(:sensor) { Sensor.find_by(:address => address) }

i t 'saves
u
the

u
new

u
database

u
record' do

expect do

subject.perform(router.id)

end.to change(Router, :count).by (1)
end

i t ' s t o r e s
u
t h e

u
a d d r e s s

u
i n

u
t h e

u
n e w

u
r e c o r d ' do

subject.perform(router.id)

expect(sensor.persisted?).to be_truthy

end

end

Lis t ing 6.1: RSpec test for creating new records in the service discovery

Tests have been added to the methods and callbacks defined in models, except the Users

model which had no methods and its functionality is implemented i n an external gem. Rai l s
has its own tests for Act iveRecord functionalities, therefore, testing the validations and

38

the relationship declarations were not necessary. Most of the controller tests have been
automatical ly generated wi th the controllers. However, these tests were not prepared to
handle nested routes and therefore required some modifications. Since the codebase is small
enough to easily go through a l l the renderable pages wi th every possible combinat ion of
the environment, the views have not been tested wi th automated code. Backend services,
i.e. the device discovery server and the background workers have been also covered wi th
tests. The only exception from these are the callbacks for handling the exhausted retries
in Sidekiq. Testing these callbacks would have caused an extreme slow-down of the testing
process. Altogether there are 99 tests available and at the end a l l of them have passed.
The coverage analyzer analyzed 848 lines of code, from which 835 have been covered wi th
tests. Therefore the coverage of a l l the tests against the codebase is 98.47 %.

6.2 Functional tests

It is not possible to completely cover a l l the implemented services wi th automated tests
and the sensing devices are not even testable this way. Therefore, a functional testing
environment has been created to verify the whole realized product. Two Ardu ino 101 devices
were interfaced wi th soil moisture, temperature and luminosi ty sensors and programmed as
sensing devices. The sensors have been placed around a flower pot containing an Afr ican
violet except for the moisture sensors, which were pushed into the soil . T h e border router
software was installed on a Raspberry P i 3 and as a control group it was also started from
a v i r tua l machine. This way it was possible to simulate a network containing two border
routers and two sensing devices wi th three-three sensors.

Sensors Plant Sensors

Moisture Moisture

Arduino 101
with BLE

Temperature Temperature
Arduino 101

with BLE

Luminosity • Luminosity

Virtualized
Border router

Raspberry Pi
Border router

Network bridge

Load balancer

Sidekiq Sidekiq
Device

Discovery
Web

Application
Web

Application

P P P
Redis InfluxDB SQL

Container

Virtual machine

Figure 6.1: Testing environment

39

The backend was deployed as a set of containers on a v i r tua l machine providing the
Docker runtime. To automatize the start of a l l the required containers, the docker-
compose container orchestration tool was used. To test the scalabili ty of some services,
two-two instances of the Rai l s appl icat ion and the Sidekiq were started. Ex te rna l services
which are usually available through cloud providers were not started as containers. These
services include a l l the three database systems and the load balancing reverse proxy. They
were set up on the v i r tua l machine by using the default package manager. The private net
work which allows the backend to connect to the border routers was simulated by bridging
al l physical and v i r tua l network interfaces into a single local network.

This system was up and running for around 33 hours without any intervention. The
frequency of the data collection was set to 60 seconds and each task ran for 150 millisec
onds in average. Therefore, the estimated number of stored records was around 3450 for
the two sensing devices. A s the actual number of records in the database reached 3500,
it could be stated that the testing of data collection was successful. A l l the data has been
exported into a C S V file that is available on the attached C D .

To verify the fault-tolerance of the border router, bo th sensing devices have been ran
domly restarted mult iple times. B y analyzing the generated logs, it has been verified that
upon a reconnection, the C o A P simulation had been restarted. This fault tolerance has
also been verified i n the backend. F i rs t the device was disconnected for a longer t ime than
the measurement period which caused Sidekiq to retry the data collection task related to
this device. Th is functionality has been verified by analyzing the database and the graph
provided by the Sidekiq Web U I . A similar experiment has been conducted wi th the border
router, which has been verified wi th the same technique.

The verification of the sensors has been done by comparing the measured values wi th
reference data. There were some slight differences between the values measured by the two
sensing devices, this is because of the quali ty of the used sensors. The luminosi ty values
have been compared wi th the sunset and the sunrise t ime related to the geographic location
of the system. Unfortunately, no external data about the soil moisture was available. O n
the other hand, comparing the measured data wi th the watering t ime made it possible to
verify the correctness of the soil moisture sensors. Us ing the available room thermostat, the
temperature around the plant has been configured to 20 °C. In order to not measure just a
static value, the window above the plant was opened three times. Th i s caused a change in
the t ime series data according to the outdoor temperature.

Luminosity [%] Moisture [%] Temperature [°C]

Figure 6.2: G r a p h of measured values wi th the external events

40

Chapter 7

Conclusion

The goal of this thesis was to summarize the theory behind the terms Internet of Things

and Cloud Computing and based on this summary to design and implement a system of
sensing devices wi th a backend infrastructure. These goals have been fulfilled and verified
by both an automated and a functional testing.

Because the IoT has not been standardized yet, the palette of IoT devices may vary ac
cording to the vendor. Generally, an IoT device is an embedded device wi th communicat ion
capabilities. Despite the fact that the used communicat ion technologies can be different,
the pioneers are the short-range solutions that can provide wireless personal area networks.
Thanks to C l o u d Comput ing , it is not necessary to care about the details of the on-line
infrastructure. The backend applicat ion and the user interface can be deployed to a PaaS
service and the service w i l l take care of a l l the infrastructural matters. The huge amount
of data collected by IoT devices can be processed by using B i g D a t a techniques.

Due to the fact that the original mesh-network design was not functional, it had to be
altered during the implementat ion phase. The used wireless protocol was changed and the
border router has become responsible for the s imulat ion of the originally designed mesh
network. Thanks to this simulation, the wireless network behind the border router has not
changed from the point of view of the backend. This means that no changes had to be made
in the backend. E a c h backend service was designed to be scalable by using techniques like
load balancing and asynchronous task queueing. Even though the design was tested only
on a smal l scale, it should work s imilar ly w i th a larger number of devices.

In the future there are some cases that would be worth research. Firs t ly , it would be
good to find an alternative wireless communicat ion protocol that supports mesh networking.
A precisely installed grid of sensing devices could also serve as a navigation system for a
harvesting and planting machine or a sprayer. Another step to improve the project might be
a system that is able to make decisions based on the collected values, control the watering
or execute other agricul tural processes. Since this t ime the access to the tools and the
length of the thesis was l imited, it was not possible to implement a l l the ideas. However, in
the future it would be feasible to use new sensor types to measure for example soil nutr i t ion
levels or barometric pressure. It is also possible to achieve a higher measurement precision
by automatical ly comparing the values provided by mult iple neighboring devices. A n other
aspect of some future developments might be the use of more advanced data visualizat ion
techniques, such as heatmaps or 3D histograms.

41

Bibliography

[1] Constrained R E S T f u l Environments (C o R E) L i n k Format . R F C 6690, R F C Edi to r ,
August 2012.

[2] Wireless M e d i u m Access Cont ro l (M A C) and Phys ica l Layer (P H Y) Specifications for
Low-Rate Wireless Personal A r e a Networks (L R - W P A N s) , October 2013. I E E E
802.15.4.

[3] The Constrained App l i ca t i on Pro toco l (C o A P) . R F C 7252, R F C Edi to r , June 2014.

[4] Hyper text Transfer P ro toco l Version 2 (H T T P / 2) . R F C 7540, R F C Edi to r , M a y
2015.

[5] K e v i n Ash ton . Tha t 'Internet of Things ' Th ing . RFID Journal, June 2009.

[6] A n d r e w Banks and R a h u l Gup ta . M Q T T Version 3.1.1.
h t t p : / / d o c s . o a s i s - o p e n . o r g / m q t t / m q t t / v 3 . 1 . l / o s / m q t t - v 3 . 1 . 1 - o s . h t m l , 4
2012.

[7] Blue tooth S I G . Bluetooth .
h t t p s : / / w w w . b l u e t o o t h . c o m / w h a t - i s - b l u e t o o t h - t e c h n o l o g y / b l u e t o o t h . [cit.
2016-05-13].

[8] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified D a t a Processing on
Large Clusters. In Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, OSDI '04 , pages 10-10, Berkeley, C A ,
U S A , 2004. U S E N I X Associat ion.

[9] Sigma Electronica. A r d u i n o 101. [online]
h t t p : / / w w w . s i g m a e l e c t r o n i c a . n e t / a r d u i n o - p - 2 4 8 6 . h t m l . [cit. 2016-05-12].

[10] R o y Thomas Fie ld ing . Architectural Styles and the Design of Network-based Software

Architectures. P h D thesis, Univers i ty of California, Irvine, 2000.

[11] Thread Group . Thread Stack Fundamentals. h t t p : / / t h r e a d g r o u p . O r g / P o r t a l s / 0 /
d o c u m e n t s / w h i t e p a p e r s / T h r e a d ° / 0 2 0 S t a c k ° / 0 2 0 F u n d a m e n t a l s _ v 2 _ p u b l i c .pdf , Ju ly
2015.

[12] Texas Instruments. S imp leL ink™ mult i-s tandard CC2650 Sensor T a g ™ kit reference
design, [online] http://www .ti .com/tool/TIDC-CC2650STK-SENS0RTAG. [cit.
2016-05-12].

[13] I T U - T . Overview of the Internet of things.
h t t p : / / h a n d l e . i t u . i n t / l l . 1 0 0 2 / 1 0 0 0 / 1 1 5 5 9 , June 2012.

42

http://docs.oasis-open.org/mqtt/mqtt/v3.1.l/os/mqtt-v3.1.1-os.html
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth
http://www.sigmaelectronica.net/arduino-p-2486.html
http://threadgroup.Org/Portals/0/
http://www.ti.com/tool/TIDC-CC2650STK-SENS0RTAG
http://handle.itu.int/ll.1002/1000/11559

[14] A k i b a & Robert Davidson K e v i n Townsend, Carles Cuf i . Getting Started with

Bluetooth Low Energy. O ' R e i l l y M e d i a , 2014.

[15] John Kooker . Bluetooth , zigbee, and wibree: A comparison of wpan technologies,
2008.

[16] Geoff Mul l i gan . The 6 L 0 W P A N Archi tecture. In Proceedings of the J^th Workshop on

Embedded Networked Sensors, EmNet s '07, pages 78-82, New York , N Y , U S A , 2007.
A C M .

[17] C a r l W . Olofson Richard L . Vi l l a r s , Ma t thew Eastwood. B i g Da ta : W h a t is it and
W h y Y o u Should Care. Technical report, June 2011.

[18] ZigBee Wireless Networks and Transceivers. Shahin Farahani. Newnes, 2008.

43

Appendices

44

List of Appendices

A C D content

B M a n u a l

Appendix A

C D content

Directories:

• csv - measured values i n C S V format

• img - photos of the testing environment

• pdf - P D F version of the thesis

• src - source code files

— arduino - source files for the sensing device

— backend - shared codebase for a l l backend services

— latex - files required for bui ld ing this document

— router - software for the border router

46

Appendix B

Manual

A r d u i n o

For compil ing the provided source code, the latest version (1.6.8) of the A r d u i n o I D E
is required. Because it is wr i t ten i n Java, it can run on any operating system which
has support for the Java V i r t u a l Machine. However, on Windows it is possible that the
U S B programming interface requires some extra drivers. W h e n instal l ing the I D E wi th
administrative right using the included installer, these drivers are automatical ly installed.
To have support for Intel Cur ie core on the Ardu ino 101, it is necessary to download the
compiler using the Board Manager located under the Tools menu. Because of the required
Blue tooth L o w Energy support, the code can be flashed only to Ardu ino 101 and Genuino
101 devices.

Border router

The border router requires a Raspberry P i 3 w i th the Raspbian Jessie operating system
installed. The dependencies can be installed by running the following commands i n the
directory of the border router:

> sudo apt-get i n s t a l l -y c u r l

> c u r l -sL https://deb.nodesource.eom/setup_4.x | sudo -E bash -

> sudo apt-get i n s t a l l -y nodejs libbluetooth-dev bluetooth \

bluez libbluetooth-dev libudev-dev pi-bluetooth

> npm i n s t a l l —unsafe-perm

The router needs to started as root and it is necessary to set up an IPv6 connection.
B o t h the backend and the router are required to have an IPv6 address from the bbbb::/64

subnet. If the network is set up and a device discovery web server is available, the router
can be started wi th the following command:

> sudo node index.js <interface > <URL> <token>

47

https://deb.nodesource.eom/setup_4.x

Backend

Start ing the backend requires a Linux-based operating system running on x86_64 archi
tecture. To start a l l the backend services, it is necessary to instal l the Docker (>= 1.11.1)
and docker-compose (>= 1.6.2) packages. The instal lat ion of these packages is described
on the website 1 of the project. The container can be buil t by running the docker build .
command, however, it is necessary to set up a database environment. There is a docker-
compose.yml file available, which allows the automated setup of the backend together w i th
the required databases. It can be executed by running the docker compose up command
from the directory of the backend. After the databases are up and running, it is necessary
to create the tables and generate some random testing data. Th is can be ini t ia ted by run
ning the docker-compose run -rm web bundle exec rake db:migrate db:seed command. If
this command finishes, the services w i l l be available on the following U R L s :

• http://localhost:3000 - Rai ls web applicat ion

• http://localhost:4000 - device discovery

. http://localhost:5000 - Sidekiq Web U I

To keep the generated data visible, the backend worker has been commented out i n the
compose file. T h i s was necessary because the addresses of the routers and sensing devices
are not accessible and Sidekiq would invalidate them in a short t ime. However, it can be
re-enabled by uncommenting the marked lines i n the compose file.

x

https://docs.docker.com/

18

http://localhost:3000
http://localhost:4000
http://localhost:5000
https://docs.docker.com/

