
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

OF L I F E S C I E N C E S P R A G U E

M a s t e r ' s T h e s i s

E n d - t o - e n d d y n a m i c b a n d w i d t h r e s o u r c e a l l o c a t i o n i n

S D N

Author

Arpana Shanta

© 2024 CULS Prague

1 | P a g e

CZECH UNIVERSITY OF LIFE SCIENCES P R A G U E

Faculty of Economics and Management

DIPLOMA

Thesis title

End-to-end dynamic bandwidth resource allocation in SDN

Objectives of thesis

The thesis aims to investigate if SDN can deliver standard Quality of service (QoS) to specific hosts. The
research will establish that an End-to-end bandwidth guarantee between hosts should be possible with
QoS in SDN.
To attain a high level of QoS, the following functions ought to be applied:

1. Guaranteed prioritized traffic on the configured fixed limits.
2. By providing necessary bandwidth resources and improving utilization of the underlying infrastructure.
3. Bandwidth guarantee for various services between hosts.
4. Reducing the packet loss rate of QoS flows will increase the performance.

Methodology

The theoretical part of the work is based on the study and analysis of professional and scientific information
sources.

Building a QoS routing mechanism within an SDN-based core transport network to assure QoS in terms of
packet loss, delay, jitter, and bandwidth. An experiment will also be conducted to assess the suggested QoS
model's performance. As a result of the thesis, a proper theoretical technique will be developed to obtain
QoS, and suitable tests will be selected and performed to demonstrate that QoS can be achieved with SDN.

In this network emulation, OpenFlow will be used as the standard communication interface between the
control and forwarding layers of an SDN network. Open vSwitch (OVS) will also be used to interconnect
different virtual machines within a host and virtual machines across the network. To create a realistic virtual
network with a networking component, the Mininet network emulation tool will be used.

Based on the synthesis of knowledge of the theoretical part and evaluation of the results of the practical
part, the conclusions of the work will be formulated.

Official document • Czech University of life Sciences Prague • Kamýcká 129,165 00 Praha - Suchdol

2 | P a g e

The proposed extent of the thesis

50-60 pages

Keywords

Quality of Service (QoS), Software Defined Networking (SDN), Mininet, Wireshark, Bandwidth

Recommended information sources

Aljawad, Ahmed & Shah, Purav & Gemikonakh, Orhan & Trestian, Ramona. (2018). Policy-based QoS
Management Framework for Software-Defined Networks. 1-6.10.1109/ISNCC.2018.8530994.

A. V. Akella and K. Xiong, "Quality of Service (QoS)-Guaranteed Network Resource Allocation via Software
Defined Networking (SDN)," 2014 IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing, 2014, pp. 7-13, doi: 10.1109/DASC.2014.11.

H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, "OpenQoS: An OpenFlow controller design for
multimedia delivery with end-to-end quality of service over software-defined networks," in Proc.
Signal Inf. Process. Assoc. Summit Conf., pp. 1-8, Dec. 2012.

J.M.Boley, E.S. Jung, and R.Kettimuthu, "Adaptive QoS for data transfers using software-defined
networking." 2016 IEEE International Conference on Advanced Networks and Telecommunications
Systems (ANTS), IEEE, pp. 1-6, 2016.

K. Greene, (2009), "TRIO: Software-defined networking. MIT Technology Review, March/April 2009"
http://www2.technologyreview.com/article/412194/trl0-software-defined-networking/

M. Jarschel, F. Wamser, T. Hohn, T. Zinner and P. Tran -Gia ," SDN-Based Application-Aware Networking on
the Example of YouTube Video Streaming," In the Proceedings of the Second European Workshop on
Software Defined Networks (EWSDN), pp. 87-92, Berlin, Germany, Oct. 2013.

N. Thazin, K. M. Nwe and Y. Ishibashi, "End-to-End Dynamic Bandwidth Resource Allocation Based on QoS
Demand in SDN," 2019 25th Asia-Pacific Conference on Communications (APCC), 2019, pp. 244-249,
doi:10.1109/APCC47188.2019.9026511.

P. Goransson, and B. Chuck. "Software-Defined Networks A Comprehensive Approach." In IEEE
Communication Surveys & Tutorials, pp. 7-17, 2014.

P. Jha, "End-to-end Quality-of-Service in Software Defined Networking" by University of Dublin, Trinity
College," no. September, thesis, 2017.

S. U. Baek, C. H. Park, E. Kim and D. Shin, "Implementation and verification of QoS priority over
software-defined networking," In Proceeding of the International Conference on Internet Computing
(ICOMP). The Steering Committee of the World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2016.

Offioal document • Czech University of Life Sciences Prague • Kamycka 129,16S 00 Praha - Suchdol

3 | P a g e

http://www2.technologyreview.com/article/412194/trl0-software-defined-networking/

Expected date of thesis defence

2022/23 SS - FEM

The Diploma Thesis Supervisor

Ing. Martin Lukas, Ph.D.

Supervising department

Department of Information Technolog

Advisor of thesis

Ing. Tomáš Vokoun

Electronic approval: 14.11. 2022

doc. Ing. Jiří Vaněk, Ph.D.

Head of department

Electronic approval: 28.11.2022

doc. Ing. Tomáš Šubrt, Ph.D.

Dean

Official document • Czech University of Ufe Sciences Prague • Kamýcká 129.165 00 Praha - Suchdol

4I P ag e

Declaration

I announce that I have worked on my master's thesis entitled "Comprehensive evaluation of

software-defined network deployment using the OpenFlow protocol" and have used only the

references listed at the end of the thesis. I declare that this thesis does not breach any person's

copyrights.

In Prague on 31.03.2024

5 | P a g e

Acknowledgment

I extend my sincerest gratitude to my master's thesis supervisor, Ing. Martin Lukas, Ph.D.,

and consultant Ing. Tomas Vokoun, for their unwavering guidance and invaluable insights

throughout the development of this thesis. Their expertise and continuous support were

pivotal in the successful completion of this work.

My heartfelt appreciation also goes to Goutam Kumar Saha, whose encouragement and

motivation played a crucial role during my thesis journey. Your assistance and support were

indispensable, and I am deeply grateful for having you by my side throughout this process.

Most importantly, I owe my deepest gratitude to my parents. You not only brought me into

this world but also nurtured me with your teachings, blessings, and unconditional love. Your

faith in me and your endless support have been my cornerstone in every step of my life. I

stand here today because of you, and for that, I am eternally thankful.

6 | P a g e

End-to-end dynamic bandwidth resource allocation in SDN

Abstract

This thesis presents a detailed exploration into enhancing network efficiency and

performance through Quality of Service (QoS)-based traffic engineering within Software

Defined Networking (SDN). At its core, the research seeks to address the growing demands

on network infrastructure by deploying dynamic bandwidth allocation, prioritized flow

management, and innovative routing strategies to facilitate high-priority traffic handling.

Leveraging the centralized control and flexibility of SDN, the study introduces an

architecture capable of dynamically responding to network conditions, thereby improving

congestion management and throughput. Through a comprehensive comparative analysis

with traditional and multipath routing methodologies, supported by simulations in an

emulated SDN environment, the effectiveness of the proposed approach is validated. Results

underscore significant improvements in critical network performance metrics, such as

throughput, delay, jitter, and packet loss, indicating a substantial potential for enhanced

network performance and QoS fulfilment.

Keywords:

Software Defined Networking (SDN), Quality of Service (QoS), Dynamic Bandwidth

Allocation, Network Performance Metrics, Traffic Engineering, Congestion Management,

Flow Management, SDN Controllers, Open vSwitch (OVS), Network Simulation, Routing

Strategies, VoIP Traffic, TCP and UDP Traffic, Network Efficiency, Emulated Networking

Environments.

7 | P a g e

Alokace dynamické šířky pásma z bodu na bod v SDN

Abstrakt

Tato diplomová práce představuje podrobné zkoumání zvyšování efektivity a výkonnosti sítě

prostřednictvím inženýrství provozu založeného na Kvalitě služeb (QoS) v rámci Software

Defined Networking (SDN). Ve své podstatě se výzkum snaží řešit rostoucí požadavky na

síťovou infrastrukturu nasazením dynamické alokace šířky pásma, prioritního řízení toků a

inovativních strategií směrování za účelem usnadnění zpracování provozu s vysokou

prioritou. Využíváním centralizovaného řízení a flexibilitu SDN, studie představuje

architekturu schopnou dynamicky reagovat na podmínky v síti, čímž se zlepšuje řízení zácpy

a propustnost. Prostřednictvím komplexní komparativní analýzy s tradičními a multipath

metodami směrování, podporované simulacemi v emulovaném prostředí SDN, je potvrzena

účinnost navrhovaného přístupu. Výsledky zdůrazňují významné zlepšení v kritických

metrikách výkonnosti sítě, jako jsou propustnost, zpoždění, jitter a ztráta paketů, což

naznačuje značný potenciál pro zvýšenou výkonnost sítě a splnění QoS.

Klíčová slova:

Software Defined Networking (SDN), Kvalita služby (QoS), Dynamická alokace šířky

pásma, Metriky výkonnosti sítě, Inženýrství provozu, Řízení zácpy, Řízení toků, Kontroléry

SDN, Open vSwitch (OVS), Simulace sítě, Strategie směrování, VoIP provoz, TCP a UDP

provoz, Efektivita sítě, Emulované síťové prostředí.

8 | P a g e

Table of content

1. Introduction 12

2. Objectives and Methodology 13

2.1. Objectives 13

2.2 Methodology 13

3. Literature Review 14

3.1 Traditional network 14

3.2 Software-defined network- a new paradigm 14

3.3 OpenFlow 20

3.4 Quality of Service (QoS) 23

3.5 QoS Measurement Parameters 24

3.6 QoS Provisioning in Traditional Network 25

3.7 QoS Provisioning in Software-Defined Networking 28

3.7.1 Queues 30

3.7.2 OVSDB 30

3.7.3 Linux Traffic Control 31

3.7.4 Hierarchical Token Bucket (HTB) 32

3.7.5 Meter Tables 34

4. Practical part (Design and Implementation) 35

4.1 The Proposed End-To-End QoS Implementation 35

4.2 Flow Requirements 35

4.3 Flow Priority 35

4.4 Queue Implementation 36

4.5 Ryu Libraries 36

4.6 OpenFlow Protocol and Controller 36

4.7 Traffic Generator and Measurement Tools 38

4.8 Distributed Internet Traffic Generator (DITG) 38

4.9 Implementation with Mininet 39

4.10 Experimental test 40

9 | P a g e

4.10.1 Test 1: Without activating the QoS feature on the controller 43

4.10.2 Test 2: With QoS feature on the controller 45

5. Result and Discussion 49

5.1 QoS in SDN (end-to-end bandwidth guarrantee) 55

5.1.1 Analysis 57

5.1.2 Result 59

6. Conclusion 60

7. References 61

List of figures

Figure 1: SDN layer relation with OSI model (own work) 15
Figure 2: OpenFlow Architecture (own work) 20
Figure 3: Flowchart detailing packet flow through an OpenFlow switch (4) (10) 22
Figure 4: Sample HTB Class Hierarchy (26) 32
Figure 5: Simple Network Topology 39
Figure 6 Simple topology for QoS testing 42
Figure 7: Parameter configuration file 43
Figure 8: Controller showing QoS status 44
Figure 9: UDP server log showing amount of data transferred without QoS 44
Figure 10: TCP traffic log without QoS 44
Figure 11: VoIP server log without QoS 45
Figure 12: QoS setup on the same topology 45
Figure 13: Configuration file to enable QoS with bandwidth set for each queue 46
Figure 14: Controller showing queue settings applied on switch ports 47
Figure 15: Controller output showing 3 different queue setup for incoming traffic 47
Figure 16: Switch dump-flows output showing action set for queue 48
Figure 17: Simple TCP traffic test 49
Figure 18: TCP traffic dump-flows 49
Figure 19: TCP traffic test - dump-ports 50
Figure 20: Bi-directional TCP test 51
Figure 21: Bi-directional TCP test-dump-flows 51
Figure 22: Bi-directional TCP test-dump-ports 52
Figure 23: UDP traffic test 52
Figure 24: UDP traffic test - dump-flows 53
Figure 25: UDP traffic test-dump-ports 53
Figure 26: VoIP parallel test 54
Figure 27: Parallel VoIP test-dump-flows 54
Figure 28: Parallel VoIP test-dump-ports 54
Figure 29 UDP Server log with QoS 55
Figure 30: TCP server log with QoS 56
Figure 31:VoIP server log with QoS 56

10 | P a g e

List of tables

Table 1: Advantages of SDN 15
Table 2: Disadvantages of SDN 16
Table 3: QoS Related Features in Different OpenFlow Versions (19) 29
Table 4: OpenFLow Protocol messages and corresponding API of R Y U 37
Table 5: Traffic transfer statistics without QoS 57
Table 6: Traffic transfer statistics with QoS 58

11 | P a g e

1. Introduction

In the realm of network engineering, Quality of Service (QoS) emerges as a pivotal element

for augmenting the delivery and reliability of digital communication systems. As networks

grow increasingly complex, accommodating a spectrum of services from Voice over IP

(VoIP) to high-definition video streaming, the demand for advanced network management

strategies is undeniable. This thesis ventures into the implementation of QoS within the

dynamic landscape of Software-Defined Networking (SDN), emphasizing the strategic

deployment of Open vSwitch (OVS) queues for precise network traffic management, aimed

at sustaining high performance across diverse application requirements.

The research outlines an orchestrated approach to QoS in SDN through the creation of

specialized OVS queues, each crafted to manage distinct types of network traffic such as

TCP, UDP, and VoIP. These queues effectively distribute resources, akin to service lines in a

complex service ecosystem, prioritizing customer satisfaction at various service echelons.

The analogy drawn between service lines and network traffic management illustrates how

SDN's dynamic bandwidth allocation and traffic prioritization can substantially uplift the

quality of network services.

At the core of this exploration is the formulation and implementation of an advanced traffic

classification system. This system is designed to accurately identify and sort incoming traffic,

guiding it towards the appropriate queue based on specific characteristics. Such a mechanism

is vital for ensuring that each type of traffic receives adequate bandwidth and priority,

thereby optimizing overall network performance.

Through empirical testing and simulations in a controlled SDN setting, the study rigorously

assesses the efficiency of the proposed QoS strategies. Although specific findings are not

discussed, the research framework and methodologies applied reflect a comprehensive

evaluation of how QoS mechanisms within SDN can potentially refine critical network

performance metrics.

This thesis explores QoS in SDN, enriching both theory and practice for network

professionals. It links concepts to applications, showing how QoS transforms network

management. The study advances a more streamlined, resilient, and user-focused network

ecosystem, highlighting QoS's key role in network engineering.

12 | P a g e

. Objectives and Methodology
2.1. Objectives

The thesis aims to investigate if SDN can deliver standard Quality of service (QoS) to

specific hosts. The research will establish that an End-to-end bandwidth guarantee between

hosts should be possible with QoS in SDN.

To attain a high level of QoS, the following functions ought to be applied:

1. Guaranteed prioritized traffic on the configured fixed limits.

2. By providing necessary bandwidth resources and improving utilization of the underlying

infrastructure.

3. Bandwidth guarantee for various services between hosts.

4. Reducing the packet loss rate of QoS flows will increase performance.

2.2 Methodology

The theoretical part of the work is based on the study and analysis of professional and

scientific information sources.

Building a QoS routing mechanism within an SDN-based core transport network to assure

QoS in terms of packet loss, delay, jitter, and bandwidth. An experiment will also be

conducted to assess the suggested QoS model's performance. As a result of the thesis, a

proper theoretical technique will be developed to obtain QoS, and suitable tests will be

selected and performed to demonstrate that QoS can be achieved with SDN.

In this network emulation, OpenFlow will be used as the standard communication interface

between the control and forwarding layers of an SDN network. Open vSwitch (OVS) will

also be used to interconnect different virtual machines within a host and virtual machines

across the network. To create a realistic virtual network with a networking component, the

Mininet network emulation tool will be used.

Based on the synthesis of knowledge of the theoretical part and evaluation of the results of

the practical part, the conclusions of the work will be formulated.

13 | P a g e

3. Literature Review

3.1 Traditional network

In traditional networks, various interconnected devices exchange data. Within these devices,

such as switches and routers, both the control plane, which determines what to do with

incoming packets, and the forwarding plane, which actually moves the packets along their

path, are housed within the same hardware unit. This means the decision-making capabilities

and the data transmission functions coexist in a single device.

3.2 Software-defined network- a new paradigm

In the early 2000s, rising traffic volumes and the need for more dependable and efficient

networks led operators to seek better ways to manage tasks like directing traffic, a practice

known as traffic engineering. Traditional methods for routing and traffic control, while

straightforward, were no longer sufficient. This led to the emergence of Software-Defined

Networking (SDN), a sophisticated approach that revolutionized network technology.

One of the key features that distinguishes SDN and contributes to its popularity is its capacity

to make networks programmable. This is achieved by separating the control plane,

responsible for network decision-making, from the data plane, which handles the actual

traffic forwarding - a contrast to conventional network devices where these two planes are

integrated (1). Software-Defined Networking (SDN) has emerged as a potent alternative in

the networking realm.

Software-Defined Networking (SDN) presents a solution to various issues faced in traditional

networking. It addresses challenges such as scaling networks, surging traffic demands, and

complexities in network troubleshooting. SDN also overcomes the rigidity of older systems

by introducing programmability to network management. With SDN, network operators can

manage, track, and monitor network devices through software applications, thereby

enhancing network reliability (2)

Centralized Architecture

The transformative idea of programmable networks is at the heart of Software-Defined

Networking's (SDN) innovation. SDN's architecture supports modern network needs through

its dynamic, manageable, and highly adaptable framework, fostering novel ways to design

14 | P a g e

and manage networks (3). The specific architecture of SDN will be thoroughly discussed in

the subsequent sections of the document.

SDN layers in OSI Model

OSI Layer of traditional SDN architecture
network layer

Application
Layer

Presentation
Layer

Session Layer

Transport layer

Network Layer

Data Link

Physical layer

Figure 1: SDN layer relation with OSI model (own work)

In figure 2, The comparison between SDN layers and the traditional OSI model reveals that

in SDN, the data link layer and the physical layer correspond to the data plane, also known as

the infrastructure layer.

The SDN control plane performs functions analogous to the OSI model's transport and

network layers, while the OSI model's top three layers equate to the SDN's application layer,

or management layer. Although SDN is application-centric, it doesn't merely fit within the

OSI's application layer; rather, it's a distinct network architecture with separate, clearly

defined layers.

Characteristics of SDN architecture

Following are some characteristics of SDN architecture:

Table 1: Advantages of SDN

15 | P a g e

Characteristics Advantage

Programmability

Agile

Centrally controlled

Programmable

configuration

Open-standard-based

and vendor-neutral

Network control can be directly programmable as it is

decoupled from the forwarding functions.

It enables the network administrator to dynamically adjust

traffic flow on the network to meet the network demand. This

process can also become intelligent by implementing

machine learning algorithms on the application and controller

layer.

In software-based controllers, the network features can be

consolidated with a global network vision. This controller is

considered to be a single logical switch to the program and

policy engines.

Because the SDN programs do not depend on proprietary

software, network administrators can write their programs to

configure, manage, secure, and optimize network resources.

Because the SDN programs are automated and dynamic this

can be done very quickly as well.

SDN is developed and implemented by the network

community and is initiated by many volunteer sources. SDN

simplifies the architecture and function of the network by

introducing Open Standards, as it is not vendor-specific

equipment and protocols. (4)

Table 2: Disadvantages of SDN

Characteristics Disadvantages

Centralized control Without redundancy, the single controller is a

single point of failure. If the controller becomes

not functional, the whole network will be

affected.

Single point of control With the controller being the single point of

control, all the updates happen from the

controller hence it might be the bottleneck of the

1 6 | P a g e

network. Pushing every small update to all the

NEs from the controller might end up in huge

overhead.

Components of SDN

Data Plane: In the 2014 Open Networking Foundation (ONF) paper, the infrastructure layer

of the SDN architecture is defined as comprising various network elements. This layer

typically includes different infrastructure nodes that support SDN protocols, which are tasked

with transporting and processing data packets under the guidance of instructions from the

SDN control plane.

The SDN controller communicates decisions and actions through the Data-Controller Plane

Interface (D-CPI) to infrastructure nodes. D-CPI specifies the method of communication and

direction-taking from the control plane to the controller. This process enables network

elements within the data or forwarding plane to implement necessary modifications, aligning

with user or network requirements. The exchange of information between the controller and

the data plane encompasses control instructions, routing policies, and resource

configurations, ensuring coherent network operation and management (1).

Data plane resources serve as the manifestations of physical network elements and their

functionalities. Essentially, the data plane consists of a network of nodes capable of

manipulating traffic through actions such as consuming, producing, storing, dropping, or

forwarding it. Network Elements (NEs), interconnected by links, act as the interface of the

network, connecting clients and other nodes through external data plane ports. Highlighting

an SDN advantage, it's noteworthy that a single controller has the capacity to manage

multiple data planes, enhancing network flexibility and control efficiency (1).

The data plane supports a variety of models, including: (5)

- Protocols like IPv4, IPv6, and Ethernet for packet forwarding.

- Optical and circuit switching with technologies like MPLS.

- Wireless integrations, detailing flows, and handovers.

- L T E and advanced packet core for high-speed mobile data. (6).

17 | P a g e

Networking elements (Forwarding plane): The foundational layer of SDN architecture

consists of Network Elements (NEs), which include traditional hardware such as switches

and routers. These NEs are designed to support programmable interfaces like OpenFlow,

enabling them to integrate seamlessly with the dynamic and flexible nature of SDN

environments, (see section 3.2). These devices within the SDN architecture can either be

physical hardware switches, offering high performance and greater bandwidth, or software-

based switches, such as Open vSwitch (see section 3.2) While hardware switches excel in

delivering robust performance, software switches stand out for their adaptability, providing

the needed flexibility to accommodate rapid changes in network conditions (7).

Southbound interface: The southbound interface enables SDN controllers to communicate

with forwarding devices, sending packet instructions, and managing alarms via protocols like

SNMP and OpenFlow. Another key protocol in this setup is OVSDB, which aids in the

detailed management of network elements (8).

Control Plane: The SDN controller represents the control plane, functioning as the "brain"

of the SDN architecture. Operating on dedicated hardware or servers, this software layer is

positioned above the data or infrastructure layer. Its main role is to direct the forwarding

plane, processing information from and sending instructions to it regarding packet routing

and handling. Communication with the data plane is facilitated through southbound

interfaces. In complex networks, multiple software controllers may collaborate or operate

within a group, managing control information across various clusters of Network Elements

(NEs) (4).

Having just one controller in a network introduces a single point of failure, posing a risk to

the entire network's stability. If this lone controller fails or becomes non-functional, it can

halt the operation of the entire network. To mitigate this issue, networks can be designed with

multiple controllers, enhancing redundancy and reliability. A network operator can design

controller setup by following:

1. Centralized - A network configuration can include a single, centralized controller that

maintains a comprehensive, global view of the network. This model simplifies

network management by centralizing decision-making and control. Such a setup is

particularly suited for small to medium-sized networks, where the ease of managing

the network through a centralized point outweighs the risks of a single point of

failure.

18 | P a g e

2. Distributed- A setup with multiple controllers in the network introduces redundancy,

resiliency, and improved performance. These controllers may independently manage

the entire network or specific segments of it. They communicate with each other upon

receiving a packet to establish an end-to-end route beyond their individual domains,

enhancing the network's overall efficiency and fault tolerance.

Centralized SDN architecture is most common, with controllers designed for high

concurrency using several threads. This setup suits most networks, excluding large-scale ones

like data centers, by utilizing multi-core systems. Additionally, application isolation in these

controllers improves resiliency.

Network Operating System: The networking operating system, often referred to as the SDN

controller, powers the foundational services necessary for network operation. Essential

services provided include topology management, inventory and statistics service, and host

tracking. These services together maintain a topological graph detailing the interconnections

between Network Elements (NEs), facilitating efficient network management and operation.

Switches can be instructed to use Link Layer Discovery Protocol (LLDP) packets to ascertain

the location and positioning of nodes within the network, thereby mapping out the network

topology. Additionally, specialized packets can be deployed to retrieve various details about

the Network Elements (NEs), such as their OpenFlow version, capacity, and capabilities. A

statistics service can further collect data regarding the incoming and outgoing traffic on

specific interfaces, flow counters, and flow table information. Moreover, a host tracker can

identify any NE within the network by intercepting traffic flows and utilizing the IP or M A C

addresses of the hosts, often in coordination with the virtual machine platform (7).

Application-controller plane interface (A-CPI): In the southbound architecture, the

Application-Controller Plane Interface (A-CPI) allows SDN network applications to integrate

with the SDN controller. A key role of A-CPI is to offer a simplified abstraction of the

network infrastructure to higher layers, often presenting the underlying network as a single

large switch to applications. For effective interaction between applications and the controller,

native plugins running alongside controllers may be necessary. These interactions are

facilitated through a programming language-based API, enabling applications to use directive

API calls to manage network behaviour and gather network data.

19 | P a g e

SDN Application: SDN network applications are empowered to dictate network behaviour,

enforce network policies, and carry out a range of network functions. Network administrators

have the capability to develop network programs tailored to their organization's specific

needs and requirements. SDN facilitates this by offering a programmable abstraction layer,

thereby enabling customizable and flexible network management (7).

3.3 OpenFlow

OpenFlow, the key communication protocol for SDN, catalysed its development and is

standardized by the Open Networking Foundation (ONF) (1). The Open Networking

Foundation (ONF), a user-operated organization, established OpenFlow as the inaugural

standard communication interface for SDN. ONF's specifications detail the interaction and

communication methods between the control and forwarding layers in an SDN architecture.

Being an open-source initiative, ONF promotes and supports the development of various

SDN applications by its user community, driving the evolution and maturation of SDN

technology.

Architecture of OpenFlow

In figure 4, The architecture of an OpenFlow network primarily consists of OpenFlow-

compatible switches and a controller. OpenFlow switches evolve the concept of the

traditional Ethernet switch by segregating the data plane from the control plane, a separation

achieved through a flow table mechanism. Communication between these switches and the

SDN controller occurs over a secure channel, ensuring that control messages are transmitted

securely within the network infrastructure (4).

OpenFlow Architecture

SDN Controller

I
OpenFlow Protocol

OpenFlow Client

IP src/dst, MAC
src/dst. Transport
src/dst, VLAN, e t c .

Port

1

Port

2

Port

N

Port

1

Port

2

Port

N

Forward to port(s]
Forward to the controller
Modify header fields
D ro p

I Packets, Bytes, Duration |

Figure 2: OpenFlow Architecture (own work)

20 I P a g e

OpenFlow transforms data plane network elements into straightforward devices capable of

processing packets solely based on the directives from the controller. It enables a centralized

control model, distinguishing it from other interfaces like ForCES (Forwarding and Control

Element Separation), which supports distributing logic across one, several, or all network

elements for more flexibility in control. The primary goal of the OpenFlow protocol is to

consolidate control plane functionalities, offering centralized network management and

decision-making capabilities. (9).

The architecture of the OpenFlow protocol is built around three main components:

- The Data Plane, composed of OpenFlow switches, is responsible for forwarding

packets based on rules set by the controller.

The Control Plane is formed by the OpenFlow controller, which dictates the

behaviour of the switches, managing the flow of data across the network.

- A Secure Channel serves as the communication link between the OpenFlow switches

and the controller, ensuring that the data exchanged is protected. (6)

OpenFlow Switch

An OpenFlow switch comprises a flow table and a group table, with the possibility of having

multiple flow tables. These tables play crucial roles in packet lookup and forwarding.

Communication between the switch and the controller is secured through one or more secure

channels. Utilizing the OpenFlow switch protocol, the controller can manage the switch by

altering flow data within the flow tables, including adding, deleting, or updating entries. Such

modifications can be made proactively or in response to incoming packets.

Each flow table contains several entries, equipped with matching fields, counters, and

specific instructions for action. If an incoming packet matches these fields, the switch

executes the corresponding instructions. Additionally, the switch features group tables, which

comprise group entries associated with action buckets based on group types. Actions on

packets are processed through these buckets, offering nuanced packet management before

forwarding. (3) (4).

21 | P a g e

Incoming packet

• Start at table 0

Table miss flow entry exists?

• To process table missed
packet

• To interact with a controller

No
i

Packet Drop

Yes
Update counters and

Execute Instructions:
Update action set

Update packet/match set fields

Update metadata

Yes

Yes

Go to table N?

• For pipeline
processing

No

Packet

forward

Outgoing

packet

Figure 3: Flowchart detailing packet flow through an OpenFlow switch (4) (10)

OpenFlow Channel

The channel interface links OpenFlow switches to the SDN controller, enabling a single

controller to connect with multiple switches and vice versa. This arrangement enhances

redundancy and supports network load management. Connection initiation is switch-driven,

based on configured host and port settings. After establishing a connection, two-way

communication between the switch and controller is possible. OpenFlow protocol facilitates

three main communication types: control-to-switch, asynchronous, and symmetric, each

encompassing various specific interactions (7). Messages to switches are typically sent by the

centralized controller, which may or may not receive confirmation from the switches

depending on the scenario. Switches can send asynchronous messages without prior requests

from the controller. Symmetric messages, allowing communication from either direction

without specific prompts, ensure that either side can initiate communication whenever

necessary (11).

22 I P a g e

Open vSwitch

This switch supports the OpenFlow protocol and functions as a multilayer device, capable of

operating at layers 2, 3, and 4. It facilitates the connection of virtual machines within a single

host as well as across different hosts via networks. Additionally, it can be utilized in

dedicated switching hardware, making it a crucial component of an SDN solution.

Compatible with multiple platforms, including Linux and FreeBSD, an Open vSwitch can be

configured either locally or remotely (12).

OpenFlow Protocol

OpenFlow is a pivotal network communication protocol central to Software-Defined

Networking (SDN), facilitating centralized network management from the SDN controller. It

serves as the primary conduit between the control plane and the data plane, outlining the

structure of control messages transmitted via a secure channel from the controller to

OpenFlow switches. For effective communication, both the controller and the switch must

understand and generate messages in the specific format prescribed by the OpenFlow

protocol.

The OpenFlow protocol, integral to the OpenFlow specification, is essential for both the

control plane and the switches within the OpenFlow framework. It establishes the guidelines

for switch operations, which are activated under specific network traffic conditions. These

conditions might include the traffic's origin port, IP or M A C addresses, or adherence to

certain security protocols. The protocol's directives, known as flows, are catalogued in the

switch's flow table. Both the network's controller and the switch itself can generate these flow

entries. A controller has the capability to distribute a flow entry to one or several switches

throughout the network. In instances where a switch encounters a packet that does not match

any existing flow table entry, it forwards a detailed message about the packet to the

controller. The controller then responds with an appropriate flow entry for the packet, thereby

enabling control over the network's operation. Many in the field consider the OpenFlow

protocol a pioneering standard within the Software-Defined Networking (SDN) arena (13).

3.4 Quality of Service (QoS)

In the realm of Software-Defined Networking (SDN), the quest for ensuring Quality of

Service (QoS) is a vibrant field of exploration that has captured the attention of scholars far

23 | P a g e

and wide. While the term "QoS" lacks a universally accepted definition, it sprang from the

domain of telecommunications to capture essential aspects of how data is transmitted across

networks. This chapter delves into the foundational idea of QoS within network systems and

highlights several notable studies that have contributed to our understanding of QoS in the

context of SDN. Additionally, this section introduces a structured classification of various

applications alongside their specific QoS needs, offering readers a comprehensive overview

of how diverse requirements drive the evolution of network services and management.

Understanding Quality of Service

The pursuit of Quality of Service (QoS) stands as a dynamic and critical area of study within

Software-Defined Networking (SDN), engaging researchers globally. Although the concept

of QoS does not have a single, widely accepted definition, its origins in the

telecommunications field emphasize the crucial elements involved in the transmission of data

over networks. This section explores the fundamental principles of QoS in networking

systems, spotlighting key research contributions that have enriched our comprehension of

QoS in the SDN landscape. Moreover, it presents a systematic categorization of different

applications and their unique QoS demands, providing a detailed view of the diverse

requirements that shape the development and management of network services. (14)

QoS Across Applications

Quality of Service (QoS) has expanded its reach, stretching from the core of the network all

the way to the application layer, to guarantee that the particular requirements of various

applications are in sync with network attributes such as bandwidth and latency. This strategy

is pivotal in enabling networks to accommodate real-time applications, providing consistent

and predictable performance essential for activities ranging from video streaming to online

gaming. By aligning the demands of applications with the capabilities of the network, this

advanced approach to QoS significantly improves the reliability and efficiency of digital

services universally. (14)

3.5 QoS Measurement Parameters

The proposed Quality of Transmission (QT) approach is evaluated against three existing

methods: conventional shortest path routing, multipath routing, and Hedera in a fat tree

topology, focusing on QoS performance metrics. The key QoS parameters are (14):

24 | P a g e

I. Throughput: The success rate of message delivery across the network, measured in

bits or bytes per second. Higher rates denote improved throughput.

II. Delay: The time duration for data to traverse from source to destination, usually in

milliseconds. While the ITU-T recommends (ITU-T Rec. G.161 (06/2004) (15) a max

one-way delay of 400 ms for overall network design, interactive applications should

aim for less than 150 ms to preserve user experience. This study concentrates on

transmission delay.

III. Jitter: The variability in packet arrival times, leading to potential packet loss and

network congestion. It's the variation in delay between successive packets.

IV. Packet Loss: The occurrence of packets not reaching their intended endpoint, often

caused by congestion or transmission errors.

The QT approach is anticipated to outperform the compared methods in throughput and

packet loss reduction by ensuring efficient end-to-end bandwidth resource allocation.

Additionally, its delay estimation module within the QoS routing framework aims to

minimize delays for flows demanding low latency, thereby offering enhanced QoS for

various traffic types.

3.6 QoS Provisioning in Traditional Network

In traditional network settings, managing Quality of Service (QoS) is essential for

maintaining optimal performance across various applications, each with its unique demands

for network resources. Achieving QoS involves strategies that manage how data travels

through the network and how much bandwidth is available for different types of traffic.

Here's a breakdown of the main strategies and technologies used:

1. Resource Reservation: This method involves setting aside network bandwidth for

specific data flows, such as a video streaming session, based on the application's QoS

requirements. It ensures that these flows receive the necessary resources according to

a bandwidth management policy.

2. Prioritization: In this approach, network traffic is sorted into categories, with

resources allocated based on their importance. Critical data flows receive preferential

treatment, ensuring they meet their QoS demands.

25 | P a g e

Applications may have diverse QoS needs, and several protocols and algorithms have been

developed to address these requirements:

1. ReSerVation Protocol (RSVP): This protocol allows for the reservation of network

resources by having the receiver send a request. RSVP ensures bandwidth, timing, and

buffer needs are met by maintaining a temporary reservation state that needs regular

renewal. (10)

2. Differentiated Services (DiffServ): DiffServ simplifies traffic management by classifying

flows into a few categories and assigning each a specific treatment. It uses parts of the IP

header to identify and prioritize traffic, facilitating service quality without per-flow

management. (16)

3. Multi-Protocol Label Switching (MPLS): MPLS enhances data forwarding and

bandwidth management by using labels in packet headers to direct traffic flows through

the network.

4. Subnet Bandwidth Management (SBM): S B M focuses on the data link layer, offering a

way to organize and prioritize traffic in IEEE 802 networks. (17)

5. These methods and protocols provide the foundation for delivering tailored QoS in

network environments, accommodating the varied requirements of different applications

and ensuring optimal performance.

Ethernet (802.3) vs SDH/PDH

Ethernet (IEEE 802.3) and Synchronous Digital Hierarchy (SDH) / Plesiochronous Digital

Hierarchy (PDH) are both standards for data communication, but they serve different

purposes and are used in distinct contexts within the realm of telecommunications and

networking. Here's a comparative overview (18):

Origin and Purpose:

1. Ethernet (802.3): Developed originally for local area networks (LANs), Ethernet has

become the most widely used method for connecting devices in wired networks. Its

26 | P a g e

simplicity, flexibility, and scalability have led to its dominance in both enterprise and

home networking.

2. SDH/PDH: These are standards for telecommunication networks that are used to

transmit large volumes of data over digital transport networks. PDH was developed

first, and SDH was designed to succeed and improve upon PDH. Both are primarily

used in the backbone of telecommunications networks to deliver high-speed data and

voice services.

Technology and Operation:

1. Ethernet uses a range of technologies and protocols to enable devices to communicate

over a network. It operates primarily at the physical and data link layers of the OSI

model, providing services including framing, addressing, and error detection. Ethernet

is known for its use of the Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) method for controlling access to the network medium, although this is

less relevant with the advent of full-duplex and switched Ethernet.

2. SDH/PDH operates by aggregating multiple digital signals into higher-level frames,

allowing for the synchronous transmission of data across optical fiber networks. SDH

and PDH differ in how they handle synchronization and data rates; SDH provides a

more flexible and reliable framework for data transmission by allowing for easier

multiplexing and offering better error correction and network management

capabilities.

Speed and Scalability:

1. Ethernet offers a wide range of speeds, from 10 Mbps (10BASE-T) up to 400 Gbps in

the latest standards, catering to various needs and network sizes. Ethernet networks

are highly scalable, with the ability to connect thousands of devices within a network.

2. SDH/PDH systems were designed to support high-speed telecommunications, with

PDH supporting up to 140 Mbps and SDH going much higher, up to 40 Gbps and

beyond. SDH, in particular, is designed for large-scale telecommunications networks,

offering high levels of flexibility and scalability.

Applications:

27 | P a g e

1. Ethernet is predominantly used in LANs, metropolitan area networks (MANs), and as

part of Internet infrastructure. Its versatility makes it suitable for a wide range of

applications, from office networks to industrial environments and data centers.

2. SDH/PDH is used in wide area networks (WANs), particularly in the backbone of

telecommunications networks. SDH is also used in large enterprise networks and for

connecting Internet service providers (ISPs) because of its reliability and high

capacity.

3.7 QoS Provisioning in Software-Defined Networking

In Software-Defined Networking (SDN), traditional QoS mechanisms like IntServ and

DiffServ face scalability challenges in larger networks. This difficulty stems from managing

resources and traffic efficiently across distributed networks, where protocols operate on

various devices such as routers and switches. Configuring these devices and updating policies

to support diverse services becomes complex, especially with the need to maintain state and

adapt to evolving needs using limited commands on standard hardware. As networks grow

and requirements become more intricate, manual configuration adjustments become

cumbersome, highlighting the limitations of traditional network management in meeting the

dynamic demands of modern networks.

QoS Support in Different Versions of OpenFlow

Since its inception, OpenFlow has acknowledged the importance of Quality of Service (QoS),

albeit with initial limitations. With each update, OpenFlow has enhanced its QoS capabilities.

Here's a brief overview of how OpenFlow's approach to QoS evolved through its versions

(19):

- OpenFlow 1.0 to 1.1: These early versions introduced support for queues that could specify

minimum rates, laying the groundwork for basic QoS functionality.

- OpenFlow 1.2 and later: Starting from version 1.2, OpenFlow expanded its queue

capabilities to include both minimum and maximum rates, providing more control over

bandwidth allocation.

28 | P a g e

OpenFlow queues have gained widespread acceptance and are now supported by many

software switch platforms, like OVS (Open vSwitch) and CPqD Of

SoftSwitch (20), as well as by hardware from vendors such as HP and Pica8. This broad

support underscores OpenFlow's role in enabling QoS across diverse network environments.

Table 3: QoS Related Features in Different OpenFlow Versions (19)

OpenFlow Specific Features

1.0 Enqueue action, minimum rate property for queues and new header

fields

1.1 More control over V L A and MPLS

1.2 Maximum rate property for queues and controller query queues from

switches

1.3 Introducing the meter table, rate-limiting and rate monitoring feature

1.4 Introducing several monitoring features

1.5 Replacing meter action to meter instruction

OpenFlow version 1.3 introduced meter tables, marking a significant step forward in

achieving more refined Quality of Service (QoS) control in OpenFlow networks. While

queues help manage the rate at which traffic exits a network (egress rate), meter tables offer

the ability to monitor and control the rate at which traffic enters a network (ingress rate).

Essentially, queues and meter tables work together, each handling a different aspect of traffic

flow, making them complementary tools for network administrators.

Moreover, OpenFlow switches gained the capability to interact with the Type of Service

(ToS) bits in the IP header. This field is crucial for identifying packets as part of a flow entry,

allowing for more precise management of network traffic.

Together, these features empower network administrators to implement sophisticated QoS

strategies in their networks, ensuring that traffic is efficiently managed to meet various

service quality requirements.

29 I P a g e

3.7.1 Queues

OpenFlow initially introduced basic rate-limiting queues in version 1.0 and expanded this to

include both minimum and maximum rate limits in version 1.2. While OpenFlow specifies

how to use queues for traffic management, it doesn't manage the queues directly. Instead,

queue management tasks like creation, deletion, and modification are handled by external

protocols: OF-Config for general OpenFlow switch configuration and OVSDB for Open

vSwitch configurations. Additionally, OpenFlow controllers can oversee queue operations by

querying switch statistics, enabling precise control over network traffic to meet Quality of

Service (QoS) goals. (21)

3.7.2 OVSDB

OVSDB, along with OF-Config, plays a crucial role in managing switch operations beyond

routing, such as tunnel setup, port status monitoring, and QoS configuration. It uses a variety

of tables within Open vSwitch for managing flows, ports, and QoS settings (21). Unique to

OVSDB, QoS and queue tables can be adjusted regardless of their link to ports, where ports

can optionally be linked to QoS settings. This setup allows for detailed traffic management,

including directing specific flows to designated queues using the OpenFlow "set queue"

action, effectively controlling traffic flow rates on the network. This system underlines the

intricate ways in which OpenFlow and OVS manage network operations and traffic.

The OpenFlow specification outlines two key properties related to queues that help manage

data flow rates within a network (22):

1. Min Rate: This is the minimum data rate guaranteed for a queue. When set, the switch

ensures this rate by prioritizing traffic to fulfil the specified minimum. If multiple

queues on a single port collectively exceed the port's capacity, their rates are adjusted

downward proportionally to maintain fairness.

2. Max Rate: Represents the upper limit of data rate a queue can handle. Should the flow

rate surpass this maximum, the switch will take measures, such as delaying or

dropping packets, to adhere to this limit.

30 | P a g e

Although these principles are set forth by OpenFlow, the actual implementation is dependent

on the hardware and software of the switch itself. For instance, Open vSwitch, a popular

software-based switch running on Linux, employs the Linux Kernel's Traffic Control (TC)

system to enforce these queue management rules. This allows for flexible and efficient

management of network traffic, ensuring that data flows are regulated according to

predefined minimum and maximum rates.

3.7.3 Linux Traffic Control

Linux Traffic Control (TC) is a powerful tool within the Linux Kernel for managing how data

moves through a network. It's designed to optimize network performance and ensure Quality

of Service (QoS) through various means (23):

1. Traffic Shaping: This feature helps control the speed of data flow, ensuring that traffic

is evenly distributed over time, which helps prevent sudden spikes that could

overwhelm the network.

2. Scheduling: TC can prioritize certain packets over others, ensuring that more critical

data is transmitted first. This is particularly useful during large data transfers to

maintain stable network performance.

3. Policing: TC can enforce network policies at the point where data enters the network,

helping to ensure that traffic complies with predefined rules.

4. Dropping: It can also drop data packets that exceed the available bandwidth, either as

they enter (ingress) or leave (egress) the network, to prevent congestion.

TC utilizes queuing disciplines (Qdiscs), classes, and filters to accomplish these tasks. Qdiscs

manage how packets are queued for transmission, with simple ones acting as basic FIFO

(First In, First Out) queues. More complex arrangements, involving classes and filters, allow

for sophisticated management techniques like hierarchical queuing.

In the context of Open vSwitch (OVS), two advanced queuing disciplines, Hierarchical

Token Bucket (HTB) (18) and Hierarchical Fair Service Curve (HFSC) (23), enable detailed

31 | P a g e

bandwidth management and the ability to "borrow" bandwidth as needed. For this thesis,

HTB will be the focus for exploring queue management strategies.

3.7.4 Hierarchical Token Bucket (HTB)

The Hierarchical Token Bucket (HTB) is a sophisticated queuing discipline that improves

upon the older Class-Based Queuing (CBQ) by offering finer control over network

bandwidth. It uses a multi-level token system where tokens, representing bandwidth units, are

generated at a fixed rate. Packets need a token to be transmitted, ensuring a regulated flow of

traffic. HTB supports multiple classes, each with its own token bucket, allowing for detailed

management of different traffic types. This structure enables precise bandwidth allocation

and prioritization across a network. (25)

Figure 4: Sample HTB Class Hierarchy (26)

Figure 6 demonstrates a simple HTB hierarchy for solving the following problem:

"Two customers A and B are connected to the internet via the same connection. We need to

allocate 40Kbps and 60 Kbps to A and B respectively. As bandwidth needs to be subdivided

into 30Kbps for WWW and 10Kbps for other applications. Any unused bandwidth should be

shared among the two customers. " (27)

In a scenario where 40Kbps is allocated to a user, A , specifically for W W W traffic, any

bandwidth not used by A can be redirected to handle other traffic types, as long as the total

usage doesn't surpass 40Kbps. Should A's total demand fall below this threshold, the

remaining bandwidth could be allocated to another user, B. However, OpenFlow Queue's

design limits hierarchy to just two levels, meaning a root class can have children, but those

child classes cannot have their own sub-classes.

32 | P a g e

Key properties of HTB classes include (23):

a. Rate: The maximum guaranteed bandwidth for a class and its children, similar to a

Committed Information Rate (CIR).

b. Ceil rate: The absolute maximum bandwidth a class is permitted to use.

c. Priority: Determines the order in which classes access any available extra bandwidth. A

lower priority number means higher priority, but this doesn't impact the guaranteed rates of

other classes.

In Open vSwitch (OVS), the vovs-vsctr command is used for queue creation. This command

logs the queue in the OVSDB and applies it through Linux's Traffic Control (TC) system,

ensuring the specified bandwidth management rules are enforced. An example of creating

QoS and queues in an OVS port is shown below:

ovs-vsctl — set port sl-ethl qos = @newqos id = @newqos create qos type = linux-htb

other-config:max-rate = 1000000000 queues = 0 = @qO,l = @ql,2 = @q2 - \

—id = @q0 create queue other-config: max-rate = 10000000 —

—id = @ql create queue other-config:max-rate = 30000000 —

—id = @q2 create queue other-config:max-rate = 60000000

The above script demonstrates the process of setting up Quality of Service (QoS) and

associated queues for the port vethL on switch v s l \ This setup involves creating new entries

in both the Queue and QoS tables within the Open vSwitch Database (OVSDB). Following

these additions, OVSDB establishes a link between the newly created QoS entry and the

"ethL entry in the Port table. As a result, the vethL port is configured to operate under the

defined QoS rules.

During this configuration process, the switch utilizes the Linux Traffic Control (TC)

application to automatically generate the required qdiscs (queueing disciplines) and classes in

the system's background. This ensures that the traffic passing through vethL is managed

according to the specified QoS parameters, effectively applying the defined bandwidth and

priority rules to manage network traffic efficiently.

33 | P a g e

3.7.5 Meter Tables

Introduced in OpenFlow 1.3, meter tables brought a novel approach to monitoring and

managing network flow rates. Unlike queues that manage the rate of outgoing traffic (egress),

meter tables are designed to oversee incoming traffic (ingress) rates at the flow level (11).

Here's a simplified overview:

a. Functionality: Meter tables contain entries for individual flows, allowing for the precise

control of their rates. These meters are linked with flow entries rather than ports, enabling the

implementation of various QoS strategies, such as rate-limiting. When combined with per-

port queues, they can support complex QoS frameworks like DiffServ.

b. Operation: Flows specified to pass through a meter are subject to rate measurements and

actions based on those rates, facilitated by Meter Bands. Developers have the flexibility to

determine which flows should be metered, and while a flow can pass through several meters

sequentially, it cannot be attached to multiple meters simultaneously.

c. Components:

I. Meter Identifier: A unique 32-bit number identifying the meter.

II. Meter Band: The component that executes actions based on the flow rate, such as

dropping packets or modifying DSCP values for traffic exceeding predefined rates.

III. Counters: Used for gathering statistical data on packet processing by the meter.

IV. Meter Bands: With options for dropping excessive traffic or remarking DSCP

values, meter bands enforce the desired traffic handling actions. When traffic

exceeds the defined rate, the appropriate band's actions are triggered to manage the

flow according to set QoS policies. (11)

This mechanism of meter tables and meter bands offers a powerful tool for managing

network traffic, ensuring efficient and prioritized data flow across the network. (28)

34 I P a g e

4. Practical part (Design and Implementation)

4.1 The Proposed End-To-End QoS Implementation

The proposed end-to-end Quality of Service (QoS) strategy aims to focus on the utilization of

Open vSwitch (OVS) queues to achieve Quality of Service (QoS) within a software-defined

networking environment. This approach involves the creation of distinct queues for different

types of traffic, each with specifically allocated bandwidth parameters to ensure optimal

network performance and resource allocation. Upon the arrival of network traffic, a key

process is the identification of the traffic type, which then dictates the appropriate queue

placement. This methodology is pivotal in managing network congestion and ensuring that

varying traffic demands are met with the requisite priority and bandwidth, thereby enhancing

the overall efficiency and reliability of the network infrastructure.

4.2 Flow Requirements

Each network flow requires specific performance metrics like bandwidth, delay, or low error

rates. For example, video streams need paths with sufficient capacity. To ensure these needs

are met, resources may be allocated exclusively to certain flows, a key concept in Quality of

Service (QoS).

The SDN controller, as the central decision-maker, manages all network flows by using

network topology to guide forwarding decisions based on each flow's unique needs. It

maintains a database of flow requirements and reserved resources to ensure continuous QoS

for every flow, effectively keeping track of allocated paths to prevent service interruptions.

4.3 Flow Priority

In networks, traffic priorities vary based on Quality of Service (QoS) needs. An SDN

controller manages this by assigning different priorities to flows, using either a priority field

in flow rules or dynamic policy adjustments. High-priority traffic is crucial to maintain QoS,

but network capacity limits may require prioritizing certain flows during congestion.

Priorities typically range from 1 (highest) to 16, ensuring critical services remain high quality

even in congested scenarios by determining which flows to reroute first.

35 | P a g e

4.4 Queue Implementation

This section covers configuring queues on switch interfaces to enhance Quality of Service

(QoS) by categorizing traffic into three priority levels. High-priority queues cater to essential

traffic needing more bandwidth, while lower-priority ones manage less critical traffic. There's

a distinction between Soft QoS, providing flexible bandwidth without guarantees, and Hard

QoS, which secures bandwidth with strict policies, potentially denying flows, if necessary,

bandwidth isn't available to maintain quality.

Switch ports use three priority queues—high, medium, and low—to organize incoming traffic

based on QoS needs. Services needing low latency, like voice and video, go into high-priority

queues. The SDN controller dynamically reroutes flows to ease bottlenecks, ensuring top

QoS demands are met first, optimizing network use and maintaining quality.

4.5 Ryu Libraries

Ryu, a prominent SDN framework, offers a wide array of libraries and supports a variety of

southbound protocols essential for network management and configuration. Among these

protocols, Ryu extends its functionality to include the Open vSwitch Database Management

Protocol (OVSDB), OF-Config, NETCONF, as well as Sflow and Netflow or network traffic

analysis through packet sampling and aggregation techniques. Additionally, Ryu incorporates

support for several third-party protocols, enhancing its versatility and application scope.

Key third-party libraries integrated into Ryu include the Open vSwitch Python binding,

which facilitates interaction with Open vSwitch, the Oslo configuration library for managing

configuration files, and a Python library designed for NETCONF clients, enabling efficient

network configuration. Moreover, Ryu's packet library stands out as a particularly powerful

tool, allowing network developers to dissect, analyse, and construct packets for a range of

protocols such as V L A N and MPLS. This comprehensive support for diverse protocols and

libraries empowers network developers to effectively manage and tailor network behaviour to

meet specific requirements.

4.6 OpenFlow Protocol and Controller

Within the Ryu framework, an integral component is its built-in controller that interfaces with

the OpenFlow (OF) protocol, a key southbound protocol Ryu supports. The framework's

compatibility spans from the initial OpenFlow version 1.0 up to the more recent version 1.4,

36 | P a g e

showcasing Ryu's commitment to staying current with OpenFlow advancements. A concise

overview of the OpenFlow protocol messages alongside the

Table 4: OpenFLow Protocol messages and corresponding API of R Y U

Controller to switch

message

Asynchronous message Symmetric message Structures

• Handshake

• switch-config

• flow-table-config

modify/read state

• queue-config

• packet-out,

barrier

• role-request

• Packet-in

• flow-removed

port-status

• Error.

• Hello

• Echo-Request

& Reply

• Error

experimenter

• Flow-

match

• send_msg API

and packet

builder APIs

• set_ev_cls API

and packet

parser APIs

• Both Send and

Event APIs

corresponding APIs offered by the Ryu controller is provided in Table 7, illustrating the

framework's extensive support capabilities.

The architecture of Ryu positions the OpenFlow controller as a central element that acts as an

internal source of events, capable of orchestrating switch management and handling various

network events efficiently. Moreover, Ryu is equipped with a specialized library for encoding

and decoding OpenFlow protocol messages. This library not only simplifies the interaction

between the controller and network devices but also enhances the Ryu framework's ability to

manage complex network configurations and operations seamlessly.

To launch a custom network topology in Mininet utilizing a specific topology file, the

following command structure can be used. This example demonstrates how to initiate

Mininet with a topology defined in a file named simple_topo.py, where the topology is

identified within the file as mytopo:

The command used to launch a custom network topology is this:

37 I P a g e

Sudo mn --custom /simplejtopo.py —topo mytopo —controller =remote, ip=, port= 5589

Here's a breakdown of the command components:

-custom simple_topo.py specifies the path and name of the file containing the topology

definition. This tells Mininet where to find the custom topology settings.

-topo mytopo indicates the name of the topology as defined within the simple_topo.py file.

This is the identifier for Mininet to understand which topology layout to implement from the

file.

By combining these options, we're instructing Mininet to create a network based on the

custom topology defined in simple_topo.py, ensuring each host has a unique M A C address

for clear network traffic routing and identification.

4.7 Traffic Generator and Measurement Tools

In our academic study, while absolute measurement precision isn't crucial, we've selected

tools precise enough to demonstrate general trends and specific behaviours under different

Quality of Service (QoS) settings. These tools are:

1. iPerf: Used to measure the maximum bandwidth that IP networks can achieve. It generates

TCP and UDP traffic to assess throughput between network endpoints. (29)

2. Wireshark: A network protocol analyser that captures and lets users browse traffic on a

network. It's essential for troubleshooting and understanding traffic flow. (30)

3. DITG (Distributed Internet Traffic Generator): Generates various traffic patterns, including

TCP, UDP, and ICMP. Designed for network performance testing, it can simulate multiple

flows, aiding in complex QoS analyses. (31)

These tools collectively enable detailed monitoring and analysis of network performance,

helping researchers to study the effects of various QoS configurations on traffic patterns and

network efficiency.

4.8 Distributed Internet Traffic Generator (DITG)

The Distributed Internet Traffic Generator (D-ITG) is crucial for generating network traffic in

our experiments, simulating real-world conditions by accurately replicating network flow

traces. Unlike alternatives like TCPreplay (32) and TCPopera (33), D-ITG supports multiple

38 I P age

flows and easy modifications to flow properties, along with advanced network metric

measurement and recording capabilities. It also offers an analytical model-based generation

mode for realistic network workload simulations (31), although this feature wasn't used in our

current tests. D-ITG's versatility and depth in traffic simulation and analysis make it the

preferred choice, enabling both trace-based and complex model-based traffic pattern

generation.

4.9 Implementation with Mininet

In the development of the testbed for this research, the Ryu framework is employed as the

Software-Defined Networking (SDN) controller, functioning from a dedicated host computer

to facilitate interaction with the emulated network topology through a TCP connection. This

network topology, created using Mininet, is a key component of the experimental setup,

designed to examine various networking theories and practices. To guarantee the

reproducibility of the experimental environment—a critical factor for validating research

findings and supporting subsequent studies—the versions of Ryu, Mininet, and the OpenFlow

protocol utilized in this setup are meticulously recorded in Table 5.

Table 5: Testbed requirements

No Name Specification

1 Operating System Ubuntu 16.04 LTS (64 bits)

2 Ryu controller [Ryu] Version 4.30

3 Mininet Emulator [Mininet] Version 2.2.1

4 OpenFlow Protocol [OpenFlow] Version 1.3

h2 "3

Figure 5: Simple Network Topology (own work)

39 I P a g e

The network topology for this testbed, as visualized in Figure 8, comprises a singular

switch (si) interconnected with four host computers (hi, h2, h3, h4), forming a basic

yet versatile framework for conducting network experiments. This topology is

instantiated through a Mininet script, detailing the configuration of the host nodes and

the switch, along with the connections between them. Such a setup not only simplifies

the network structure but also provides a foundational platform for analysing network

behaviours, testing the effectiveness of QoS strategies, and exploring the dynamics of

traffic management under the SDN paradigm. By executing this script within Mininet,

the simulated network is brought to life, offering a controlled environment to undertake

comprehensive assessments of network performance and the efficacy of SDN-

controlled routing and traffic prioritization.

4.10 Experimental test

A. TCP traffic test (Simple Topology and 14 switch application)

TCP traffic test performed from host h i to host h4 in a Software-Defined Networking (SDN)

environment, using tools like iPerf and Open vSwitch (OVS) with OpenFlow 13 protocols.

The primary goal is to generate TCP traffic from hi (the sender) to h4 (the receiver) to

measure the bandwidth from h i to h4 in a network simulated using Mininet. In the given

topology, there is a switch (si) with four connected hosts (hi, h2, h3, h4).

The iPerf tool is used to test the network bandwidth between two points. Initially, iPerf in

server mode is started on h4 using the command Mperf -s\ Subsequently, the iPerf client is

initiated on h i with the command Mperf -c h4\ establishing a TCP connection to the server

on h4 and beginning the traffic flow for testing.

Bidirectional TCP traffic test

This test is conducted between host h i and host h4 in a Software-Defined Network (SDN)

setup, utilizing Mininet to emulate the network, iPerf for generating and measuring the

traffic, and Open vSwitch (OVS) with OpenFlow for network management.

The objective of the TCP traffic test was to assess the handling of bidirectional traffic in an

SDN environment using Mininet, iPerf, and OVS with OpenFlow. Simultaneously measuring

traffic from host h i to h4 and back, the test aimed to reflect real-world conditions. The setup

40 | P a g e

involved a network topology with a switch and four hosts to initiate and analyze TCP flows,

focusing on bandwidth and network management efficiency.

B. UDP traffic test

UDP traffic test between host h i and host h4 within an emulated network environment using

Mininet, with the Open vSwitch (OVS) and OpenFlow protocols for network control. The

analysis will explain how UDP traffic testing is conducted and how it can measure network

performance metrics such as bandwidth, latency, jitter, and packet loss.

Unlike TCP, UDP is a connectionless protocol and allows for flexibility in packet

transmission, including control over packet sizes and transmission rates. In the context of

network testing, UDP is used to analyze the network's capability to handle streaming media

where packet loss can be tolerated to a certain extent, but bandwidth, latency, and jitter are

critical.

The iPerf command Mperf -u -c h4 -b 10m" on h i initiates a UDP traffic test to h4,

specifying a bandwidth limit of 10 Mbps. The N-iT option indicates that the test is for U D P , N -

c h4N specifies the connection to host h4, and N-b 10nT sets the target bandwidth to 10 Mbps.

C. VoIP traffic test

Voice over IP (VoIP) traffic test in a simulated network environment, specifically designed to

evaluate the performance of UDP streaming, characteristic of VoIP calls. Using Mininet for

network emulation, the iPerf tool for traffic generation and measurement, and Open vSwitch

(OVS) with OpenFlow for network control, the testing examines both single and multiple

VoIP calls.

Creating the Topology and Controller Setup:

1. Topology Initialization: The network topology is created with the command Nsudo mn --

controller=remote,ip=127.0.0.1 --mac -switch=ovsk,protocols=OpenFlowl3

topo=single,4\ This establishes a network with one switch fovslO and four hosts 0hl-h4N),

using OpenFlow protocol version 13 for SDN control.

2. R Y U Controller: The R Y U controller is started using "ryu-manager 14_switch.py\ which

loads a custom Layer 4 switching application to manage traffic flows based on SDN policies.

VoIP Traffic Testing:

41 | P a g e

1. Single 64Kbps VoIP Call Test:

- Server Setup: The iPerf UDP server is initiated on host h4 with settings that simulate a

VoIP call 0~server ~udp -len 300 --tos 184 -fk --interval 5V). The TOS (Type of Service)

field is set to 184 to prioritize the traffic as voice.

- Client Setup: On host h i , the iPerf UDP client is configured to connect to h4 (N-c

10.1.1.4) with options f-udp -len 300 -bandwidth 67000 -dualtest -tradeoff -tos 184

-fk -interval 5 -time 60 -listenport 5002v) reflecting a single VoIP call for 60 seconds.

2. Multiple Parallel VoIP Calls Test:

- Server Setup for Parallel Calls: The iPerf server on h4 is set to handle multiple streams

simultaneously f— parallel 4V), indicating multiple VoIP calls.

- Client Setup for Parallel Calls: Host h i runs a similar iPerf command as the single call test

but designed to establish multiple streams in parallel.

D. QoS using SDN (end-to-end bandwidth guarantee)

Quality of Service (QoS) is achieved in SDN through the implementation of OVS

(OpenVSwitch) Queues. This method is aimed at ensuring Quality of Service for TCP, UDP,

and VoIP traffic. The goal is to allocate dedicated bandwidth for each type of traffic as

follows:

I. TCP = 3 Mbps

II. UDP = 1 Mbps

III. VoIP = 1 Mbps

Figure 6 Simple topology for QoS testing.

In this setup, a simple tree topology is utilized, where the bandwidth of the links connecting

the switches is specified to be 5 Mbps.

42 | P a g e

4.10.1 Test 1: Without activating the QoS feature on the controller.

Initially, the focus is on observing the network behavior when traffic is generated from hi to

h2 without enabling the Quality of Service (QoS) feature on the controller. The experiment

involves generating a specified amount of traffic from hi directed towards h2.

I. TCP = auto

II. UDP = 6 Mbps

III. VoIP = 670 Kbps (10 calls, 67 Kbps per call)

Problem Statement: Given the bandwidth limitations between the switches, a scenario arises

where some traffic must be discarded due to congestion. As a result, it is expected to observe

the dropping of traffic, which could include TCP, UDP, or VoIP types. Consequently,

congestion within the switch ring leads to traffic being discarded.

For a demonstration of the issue, the Mininet topology is initiated without enabling the

Quality of Service (QoS) functionality on the controller. The controller application,

developed using the Ryu app vsimple_switch_13\ is started with QoS functionality turned

off. This is achieved by setting vQoS = (T in the parameter file, named 'param.conf.

•Example Conf F i le

[DEFAULT]

l ink bandwidth « 5
qos « 6

fkbps
voip bandwidth i = ieee
tcp bandwidth - 3000
udp bandwidth • ieee

Figure 7: Parameter configuration file

Within the topology file, it is configured to automatically initiate the traffic test upon starting

the topology. This setup ensures that TCP, UDP, and VoIP traffic generation commences for

a duration of 60 seconds immediately after the topology is launched. Once the controller

starts, it will show the configured bandwidth between switches and if the QoS function is

enabled or not.

With TCP traffic generation set to automatic, it will attempt to push as much traffic as

possible through the network. Additionally, UDP traffic is specified to push 6 Mbps, and

similarly, VoIP traffic is configured to attempt 670 Kbps, both striving to reach their

specified bandwidth limits.

43 | P a g e

port s i e t h l queue 5000000
port s i eth2 queue 5000000

port s2 e t h l queue 5000000
port s2 eth2 queue 5000000

port S3 e t h l queue 5000000
port S3 eth2 queue 5000000

loading app app.py
loading app ryu.controller.ofp handler
in s t a n t i a t i n g app ryu.controller.ofp handler of OFPHandler
ins t a n t i a t i n g app app.py of QoSSwitch
<oslo config.cfg.ConfigOpts object a{ 0x7fIfb2122390>
Application starts with [wiiamhillJiBtl PORT Bandwidth 5000000
applyqos called with: dpid 1 portspeed 5000000
Applied the Link Speed with Default Queue switch 1,
Applied the Link Speed with Default Queue switch 1
apply qos called with: dpid 2 portspeed 5000000
Applied the Link Speed with Default Queue switch 2,
Applied the Link Speed with Default Queue switch 2
apply qos called with: dpid 3 portspeed 5000000
Applied the Link Speed with Default Queue switch 3
Applied the Link Speed with Default Queue switch 3,

Figure 8: Controller showing QoS status

After the test concludes, examining the server logs will reveal the amount of traffic that

successfully reached the other host.

First, the focus is on reviewing the server log for UDP traffic to assess how much of it was

successfully transmitted to the other host.

Server l i s t e n i n g on UDP port leeoe
Receiving 1476 byte datagrams
UDP b u f f e r swe: 268 K8yte (d e f a u l t)

31 l o c a l 192 168 1.2 port 16666 connected with 192.168.1 1 port 45265
ID) I n t e r v a l T r a n s f e r Bandwidth J i t t e r L o s t / T o t a l
3] 0 0 16.6 sec 4.99 MBytes 4.19 Hbits/sec 6.664 as 415/ 3976 (lev
3) 6.6 18.6 sec 8 datagrams received out-of order
3) íe.e 28.6 sec 5.76 MBytes 4.78 H b i t j / s e c 6.713 as 989/ 5852 <20\>
3) 26.6 36.6 sec 5.72 MBytes 4.86 Mbits/sec 6.716 as 1828/ 5187 I26\)
3] 36.6 46.6 sec 5.73 MBytes 4.81 Mbits/sec 6.721 as 1682/ 5696 <26\)
3] 46.6 56.6 sec 5.72 MBytes 4.86 Mbits/sec 8.669 as 1633/ 5111 (20%)
3) 56.6 66.6 sec 5.72 MBytes 4.86 Mbits/sec 8.689 as 1618/ 5699 <26\)
3] 6.6 62.3 sec 34.9 MBytes { •G Mbits/sec 8.691 as 5716/38613 <19\)
3) 0.0 62.3 sec 9 datagrams received out-of order

Figure 9: UDP server log showing amount of data transferred without QoS

Despite attempting to transfer 5.70 Mbps of UDP traffic across a link with a bandwidth limit

of 5 Mbps, only 4.70 Mbps of the traffic successfully reached its destination, indicating that

the UDP traffic occupies the majority of the available bandwidth.

Next, attention is turned to examining the server log for TCP traffic to understand how much

of it managed to traverse to the other host.

S e r v e r l i s t e n i n g on TCP port 5861
TCP window s l i e : 85.3 KByte (d e f a u l t)

[4] l o c a l 192 168
[ID] I n t e r v a l
[4] 0.0 16.e sec
[41 16.6 26.8 sec
[4) 28.6 30.0 sec
1 4] 38.6 46.8 sec
I 4] 48.6 56.8 sec
1 4] 58.6 60 0 sec
[4] 60.0 76.8 sec
I 4] 6.6 72.2 sec

1.2 port 5061 connected w i t h 192.168.1.1 port 57558
T r a n s f e r
321 KBytes

38.2 KBytes
0.08 Bytes
0.08 Bytes
0.00 Bytes
0.00 Bytes
281 KBytes
896 KBytes

Bandwidth
263 K b i t s / s e c

31.3 K b i t s / s e c
0.80 b i t s / s e c
0.00 b i t s / s e c
e.ee b i t s / s e c
0.80 b i t s / s e c

231 K b i t s / s e c
102 K b i t s / s e c ,

Figure 10: TCP traffic log without QoS

Given that UDP traffic has already consumed the majority of the available bandwidth on the

link, TCP traffic was restricted to achieving only 102 Kbits/sec.

44 I P a g e

Following is the server log from VoIP.

1 101 server nepori;
1 ml 0.0 60.8 sec 491 KBytes 66.1 Kbits/sec 0.363 as 4/ 1676 <e.24\>
[181 0.0-60.8 sec 4 datagrams received out-of order
1 14] Server Report:

4 datagrams

1 14] 9.0-60.8 sec 491 KBytes 66.1 Kbits/sec 0.462 as 2/ 1676 (0.\2\)
1 14] 0.0-68.8 sec 2 datagrams received out-of order
1 6] Server Report:

2 datagrams

1 6] 0.0-60.8 sec 498 KBytes 66.1 Kbits/sec 0.355 as 27 1676 <©.12\l
1 8] Server Report:
1 8] 0.0-60.8 sec 491 KBytes 66.1 Kbits/sec 0.733 as 3/ 1676 40.18%)
1 8] 0.0-60.8 sec 3 datagrams received out-of order
1 4] Server Report:

3 datagrams

I 4] 0.0-60.8 sec 491 KBytes 66.1 Kbits/sec 0.970 as 4/ 1676 <0.24\)
1 4] 0.0-60.8 sec 4 datagrams received out-of order
1 12] Server Report:

4 datagrams

1 12] 0.0-60.8 sec 491 KBytes 66.1 Kbits/sec 1.426 as 4/ 1676 10.24V)
1 12] 0.0 60.8 sec 4 datagrams received out-of order
1 18] Server Report:
1 18] 0.0-60.8 sec 491 KBytes 66.1 Kbits/sec 0.884 as 1/ 1676 <0.06\>
1 18] 0.0-60.8 sec 3 datagrams received out-of order
1 28] Server Report:
1 28] 0.0-60.8 sec 491 KBytes 66.1 Kbits/sec 0.397 as 2/ 1677 (0.12%)
[28] 0.0-60.8 sec 2 datagrams received out-of order
1 33] Server Report:
1 33] 0.0 60.8 sec 491 KBytes 166.1 Kbits/sec 1.796 as 4/ 1677 (0.24%)
[33] 0.0 60.8 sec 4 datsgraas received out-of order

Figure 11: VoIP server log without QoS

VoIP traffic managed to secure only 66.1 Kbits/sec out of the 5 Mbps link bandwidth,

underscoring the absence of quality-of-service (QoS) mechanisms in the network.

In the subsequent test, the intention is to implement QoS, wherein bandwidth will be

specifically allocated for each type of service to ensure more equitable distribution of

network resources.

4.10.2 Test 2: With QoS feature on the controller.

For the implementation of Quality of Service (QoS), bandwidth allocation for each service

type is specified as follows:

I. TCP = 3 Mbps

II. UDP = 1 Mbps

III. VoIP = 1 Mbps

TCP - 1 MBPS

U D P - 3 MBPS

VOIP = 1 MBPS

Figure 12: QoS setup on the same topology

This specific bandwidth per service has been taken as a random number by considering the

link bandwidth of 5 Mbps between the switches. The total bandwidth of the various services

matches the link bandwidth which will be measured after the test if the specific services has

45 I P a g e

achieved this assigned bandwidth or not. This number can be varied upon the requirements

and the available minimum link bandwidth of the network infrastructure.

The controller is programmed with specific logic to implement Quality of Service (QoS)

effectively:

1. OVS queues are utilized to manage QoS, allowing for differentiated handling of

traffic types.

2. Queues are established for each type of traffic, with specific bandwidth allocations

defined for each queue to ensure that each service type is accorded the necessary

resources.

3. Traffic classification mechanisms are put in place to identify incoming traffic types.

This enables the system to direct each traffic type to its designated queue based on the

classification, ensuring that traffic is managed according to the classification.

•Example Conf File

[DEFAULT]

link bandwidth = 5
qos - 1|

#kbps
voip bandwidth = 10GO
tcp bandwidth = 3066
udp bandwidth - 1666

Figure 13: Configuration file to enable QoS with bandwidth set for each queue

Upon activating the Quality of Service (QoS) features, the same test will be repeated to

observe the impact of QoS on network performance. The parameter file is updated to include

the specified bandwidth allocations for each traffic type, ensuring that the network adheres to

these settings during the test to effectively manage and prioritize traffic according to the

newly implemented QoS policies.

As the controller initiates, it displays the settings of the Queues, including the configured

bandwidth allocations for each. Additionally, it indicates whether the QoS feature is

activated, providing clear visibility into the operational status of QoS mechanisms within the

network. This information is crucial for verifying that the network is prepared to manage

traffic according to the predefined QoS parameters.

46 | P a g e

apply qos called with
Applied the Qos switch 2,

0666'. nin-rate': '•'}
Applied the Qos switch 2,
3996996'. 'nin-rate': 6)
apply qos called with: dpid
Applied the Qos switch 3,
3006906'. 'nin-rate': '6')
Applied the Qos switch 3,
3606006", 'nin-rate': '6')

loading app app.py
loading app ryu.controller.ofp handler
instantiating app app.py of OoSSwitch
<oslo config.cfg.ConfigOpts object at 6x7fca46663518>
Application starts with QoS Enabled 1 PORT Bandwidth 5066606 VOIP 1606666 TCP 3606606
instantiating app ryu.controller.ofp handler of OFPHandler
apply qos calledwith^dpid 1 portspeed 5600060
Applied the^^^^^H^|. port slethl queue I ('max-rate': 1060066

min-rate': "6"), {'max-rate': '1666666', 'mm - rate': "6')
Applied the Qos switch 1, port sl-eth2 queue I{'max• rate': 1060666

nin-rate': '6'>, {'sax-rate': ' 1696666', 'mn-rate' - o')
dpid 2 portspeed 5600060

port s2-ethl queue [{ max•rate': 1060060
{' M X - rate': ' 1666966', ' mi n - rate': ' 6'}

port s2-eth2 queue I{'max •rate': '1060060
{ ' M X - rate': ' 1606666', 'nin-rate': 0'}
3 portspeed 5606060

port s3 ethl queue |{'max•rate": 1060990
{ ' M X - rate": ' 1666666', "nin-rate': '6')

port s3-eth2 queue |{ max - rate': 1969990
(' M X - rate': ' 1669066', 'nln- rate': 0)1

•All rate': 1 Is* 600 >. (aax rate'
-in rate': lest 600). { ' H I rate'

-in rate': ' IM 600 >. (aax rate"
-in rate': 1661 eoo), {'tax rate'

-in rate': '16* 000), ('aax rate"
-in rate': 160< 660), (aax rate'

Figure 14: Controller showing queue settings applied on switch ports

In the following output table, it is observed that the controller is effectively distinguishing

between various types of traffic and allocating them to the appropriate Queue designated for

each traffic type. This demonstrates the controller's capability to classify incoming traffic and

manage it according to the established QoS policies, ensuring that each traffic type is

processed within its allocated bandwidth constraints for optimal network performance.

Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming
Incoming

UOP T r a f f
VOIP T r a f
TCP T r a f f
VOIP T r a f
VOIP T r a f
VOIP T r a f
UOP T r a f f
VOIP T r a f
VOIP T r a f
VOIP T r a f
OOP T r a f f
VOIP T r a f
VOIP T r a f
VOIP T r a f
UOP T r a f f
vo i :
TCP T » .
VOIP T r a f
VOIP T r a f
VOIP T r a f
UOP T r a f f
VOIP T r a f
VOIP T r a f
VOIP T r a f
ICMP T r a f
TCP T r a f f
VOIP T r a f
ICMP T r a f
TCP T r a f f
ICMP T r a f
TCP T r a f f

f i c
f l c I.
f i c 1.

f lc 1.
fic

i c 1. s e t t i n g i n t o Queue 2
f i c l a s e t t i n g i n to Queue O
i c i n s w i t c h 1, s e t t i n g i n t o Queue 1

s e t t i n g i n t o Queue O
s e t t i n g i n t o Queue O
set t i ng i n t o Queue O

i c X, s e t t i n g i n t o Queue 2
f i c 1. s e t t i n g i n t o Queue 0

s e 1 1 i n g i n t o Queue O
s e t t i n g i n t o Queue G

i c 1, s e t t i n g i n t o Queue 2
f i c l a s e t t i n g i n t o Queue 0

s e t t i n g i n to Queue ©
s e t t i n g i n t o Queue 8

s e t t i n g i n t o Queue 2
s e t t i n g i n t o Queue O

s w i t c h 3, s e t t i n g i n t o Queue 1
set 1 1ng i n to Queue 6
s e t t i n g i n t o Queue 6
s e t t i n g i n t o Queue ©

s e t t i n g i n t o Queue 2
s e t t i n g i n t o Queue 6
s e t t i n g i n to Oueue 0
s e t t i n g i n t o Queue 6

f l c I n s w i t c h 3. s e t t i n g i n t o Queue 1
i c i n s w i t c h 3. s e t t i n g i n t o Oueue 1
f i c 3. s e t t i n g i n t o Oueue 6
f l c i n s w i t c h 1, s e t t i n g i n t o Queue 1
i c In s w i t c h 1. s e t t i n g i n t o Oueue 1
f i c I n s w i t c h 2. s e t t i n g i n to Queue 1
i c i n s w i t c h 2. s e t t i n g i n t o Oueue 1

f i c
f i c

f i c 3
f i c 3
f i c 3
i c 3,
f i c
f i c
f i c

Figure 15: Controller output showing 3 different queue setup for incoming traffic

The controller establishes three distinct Queues to manage the diverse traffic types within the

network, adhering to the predefined Quality of Service (QoS) policies. Specifically:

I. VoIP traffic = Queue 0

II. TCP traffic = Queue 1

III. UDP traffic = Queue 2

The controller functions to identify incoming traffic, classify it according to its type, and

subsequently place it in the designated Queue. This process ensures that each traffic type is

managed and prioritized appropriately, in line with established Quality of Service (QoS)

guidelines.

47 I P a g e

The actions undertaken by the switch can be verified by inspecting the flow entries within the

switch, known as dump flows. To review the dump flows of switch s2, the following

command is executed: Nsudo ovs-ofctl dump-flows s2\ This command provides a detailed

overview of the flow entries managed by the switch, illustrating how traffic is being

classified, routed, and prioritized according to the QoS policies implemented by the

controller.

sudo ovs-ofctl -O OpenFlowl3 dump-flows s2

cookie=8x6, tJurat ion=91 - 1 4 . table-6, n packets-1675. n bytes=572650. priontj 1 .udp.nw 5re = 192 16B 1.1. nw
dst-192.168.1.2,tp src=45579,tp rfst=5065 actions-set queue:9.output:2
cookie-6x9, duratlon-91.497s, table-6, n packets-1677. n bytes-573534, priority-1.udp.nw src-192.168.1.1,nw

dst-192.168.1.2.tp src=34621.tp dst=5605 actions-set queue:©,output:2
cookie=6KO, durational 497s, table-6. n packet5-16630. n bytes-38163828, priority-1,tcp,nw src-192.168.1.1.

nw dst=192.168.1.2,tp src=57610,tp dst=5001 actions^set queue:1.output:2
cookie-0x9, duratlon-91.497s, table-6. n packets-1677. n bytes-573534. priority-l.udp.nw src-192.168.1.1.nw

dst-192.168.1.2,tp src-42761.tp dst-5005 actions-set queue:6,output:2
cookle-8x8, duration-91.497s, table-0, n packets-1676, n bytes-573192, priority-l.udp.nw src-192.168.1.1,nw

dst-192.168.1.2,tp src-38224,tp dst-5885 actions-set queue:0,output:2
cookie-8x6, duration-91.497s, table-0, n packets-1677, n bytes-573534, priority-l.udp.nw src-192.168.1.1,nw

dst-192.168.1.2.tp src=58138,tp dst-5885 actions-set queue:0,output:2
cookie-6x8, duration-91.498s, table-8, n packets-1677, n bytes-573534. priority-l.udp.nw src-192.168.1.1.nw

dst-192.168.1.2,tp src=36928.tp dst=5605 actions-set queue:8,output:2
cookle=6x6, duration-91.496s, table-8, n packets-1677, n bytes-573534, priority-l.udp.nw src-192.168.1.1,nw

dst-192.168.1.2.tp src=45084,tp dst-5885 actions-set queue:6,output:2
cookie=9x6, duration-91.496s. table-6. n packets-1677. n bytes-573534. priority-l.udp.nw src-192.168,1.1.nw

dst»192.168.1.2.tp src-48425.tp dst-5885 actions-set queue:0.out put:2
cookie=8x6. duration=91.498s, table-8. n packets-1677, n bytes-573534. priority-l.udp.nw src=192.168.1.1.nw

dst-192.168.1.2,tp src-54158,tp dst-5885 actions-set queue:0.output:2
cookie=8x8, duration=91.488s, table-8, n packets=39621, n bytes=46298952, priority-l.udp.nw src-192.168.1.1,

nw dst=192.168.1.2,tp src-51569,tp dst-lQ806 act ions=^H^^H< out put; 2
cookie-8x8, durational.459s, table-8, n packet5-13542, n bytes*1678264, priority-1,tcp.nw src-192.168.1.2,n

1 dst-192.168.1.1,tp src=5801.tp dst-57618 actions-set queue:1.output:1
cookle-8x6, durational 460s, table-8, n packets-8, n byteske, priority-l.udp.nw src-192.168.1.2,nw dst-192.

168.1.1.tp src-5865,tp dst-45579 actions-set queue:6,output:1
cookie=8x8, duration=3l.466s, table-6, n packets-6, n bytes-8, priority-l.udp.nw src-192.168.1.2.nw dst-192.

168.1.1,tp src-5885,tp dst-36224 actions-set queue:6.output:1
cookie=6x8. duration=31.467s, table-6, n packets=8, n bytes-6, priority-l.udp.nw src-192.168.1.2.nw dst-192.

168.1.1,tp src=5605,tp dst-56138 actions-set queue:6,output:l
eookie-8x8, duration-31.4685, table-6. n paekets-8. n bytes=8, priority-l.udp.nw src-192.168.1.2.nw dst-192.

168.1.1.tp src=5885.tp dst-42761 actions-set queue:6,output:!

Figure 16: Switch dump-flows output showing action set for queue

In the flow entries for switch s2, an additional field specifies actions, such as sactions=set

queue:2\ which is contingent upon the type of incoming traffic. In the provided example,

where the traffic is TCP, the flow entry indicates that the action taken is to direct this traffic

to queue 2. This illustrates the switch's adherence to the controller's instructions for

classifying and queuing traffic based on its type, ensuring that each traffic flow is handled

according to the designated QoS policy.

After the completion of the 60-second test, the server logs are examined to verify the

effectiveness of the Quality of Service (QoS) mechanisms. These logs provide essential

insights into whether the traffic was appropriately classified and queued, and if the predefined

bandwidth allocations for each type of traffic were adhered to, thereby determining the QoS's

operational success.

48 | P a g e

5. Result and Discussion

TCP traffic test (Simple Topology and 14 switch application)

The observation of traffic through iPerf s output highlights a successful connection between

h i and h4, showcasing a data transfer rate at the level of gigabits per second (Gbps). This

high transfer rate signifies the efficient bandwidth performance for data sent from h i to h4. In

contrast, the traffic returning from h4 to h i presents a significantly lower rate, aligning with

the expected behaviour of TCP acknowledgment packets. These acknowledgments,

inherently smaller than the outbound data packets, illustrate the asymmetrical nature of TCP

traffic flow within the network.

mininet> h i iperf -c h4

Client connecting to 10.0.6.4, TCP port 5001
TCP window size: 391 KByte (default)

[3] l o c a l 18.6.9.1 port 47668 connected with 18.8.8.4 port 5881
[ID] Interval Transfer Bandwidth
t 31 8.8-18.8 sec 3.90 GBytes 3.35 Gbits/sec

Figure 17: Simple TCP traffic test

The flow analysis conducted with OVS using the ^sudo ovs-ofctl -O OpenFlowl3 dump-

flows sV command, the flow entries in the OpenFlow switch (si) are inspected. This reveals

the details of each flow, such as source and destination IP addresses, transport layer ports,

and associated actions (like output port for forwarding). These details are crucial for

understanding how the SDN controller is managing the network flows.

testetest:-/om_code/iiiu«t_topoi sixto ovs-ofctl -0 OpenFlovB dump-flows s i
cookie=8x8, duration=737.573s, table=9, n packets=4, n bytes=392, priority=l,ic«p,nw src=18.8.8.1,nv dst=18.B.8.2 act ions>output:* si-eth2*
cookie=8x8, duration=737.498s, t a b l e d , n packets=4, n bytes=392, priority=l,ic«p,nw src=18.8.8.2,irw dst=18.8.8.1 actions=output:"sl-ethl"
cookie=8x9, durations,343s, t a b l e d , n packets=92318, n bytes=4191615164, priority»l,tcp,w src«16.6.9.1,w dst=18.8.8.4,tp src=47668,tp dst=5881 actions=output:"sl-et

h4"
cookie=8x9, durations.328s, t a b l e d , n packets=76718, n bytes=5962868, priority=l,tcp,nw src=16.8.8.4,irw dst=18.8.8.1,tp src=5881,tp dst=47668 actions=output:"sl-ethl"
cookie=8x8, duration=785.238s, table=8, n packets=32, n bytes=2888, priority=6 actions=COHTR0LLER:65535

Figure 18: TCP traffic dump-flows

Port Analysis within the Open vSwitch (OVS) framework is facilitated by the ^sudo ovs-ofctl

-O OpenFlowl3 dump-ports sV provides statistics about the switch ports. The analysis by

ports shows that:

- For forward traffic, h i transmits and portl of the switch receives this traffic. It is then

transmitted out of port4 to h4.

49 I P a g e

- For acknowledgment traffic, h4 is the transmitter, and the acknowledgment packets are

received by port4, then transmitted out of portl back to h i .

t e s t @ t e s t : - / o w n _ c o d e / « i n i n « t _ t o p > $ sudo ovs -ofct l -0 0penFlowl3 dump-ports s i
OFPST PORT reply (0F1.3) <xid=8x2): 5 ports

port LOCAL: rx pkts=8. bytes=9. drop=24. errs=B, frame=8. over=6, crc=6
tx pkts=*8, bytes=8. drop=6. errs=6, coU=6
duration=1678.288s

port "s l -e th4" : rx pkts=76729, bytes=5e64318, drop=6, e r rs -6 . frame=9, over=6, c rc -6
tx pkts=92372, bytes=4191621387. drop=8. errs=6. coll=8
du ration=1878.436s

port " s l - e t h l " : rx pkts=92343, bytes=4191617192. drop=6, errs=6. frame=6, over=6. crc=6
tx pkts=76769, bytes=S86946S, drop=6, errs=6, coU=8
du rat ion=1878.463s

port "s l -e th2" : rx pkts=21, bytes=1718, drop=9, errs=8, frame=8, over=8, crc=6
tx pkts=68, bytes=6719, drop=6. errs=6. coll=8
duratiorv=1878.488s

port "s l -e th3" : rx pkts=14, bytes=1136. drop=6, errs=0, frame=6. over=6, crc=6
tx pkts=55. bytes=6277. drop=6. errs=6, coll=e
duration=1878.4S6s

Figure 19: TCP traffic test - dump-ports

The observed high throughput rate from h i to h4 suggests that the network is capable of

handling high-bandwidth applications. The efficient routing of acknowledgments also

indicates that the controller and switch configuration can effectively manage two-way

communication.

The findings from the TCP traffic test between h i and h4 shed light on the asymmetric nature

of TCP traffic, where there's a notable imbalance between the high volume of data transfer in

one direction and the minimal volume of acknowledgments in the opposite direction.

Recognizing this pattern is vital for effective network planning, ensuring that the

infrastructure is robust enough to support peak demands without succumbing to congestion.

The successful management of high bandwidth demands and the strategic flow routing

underscore the efficacy of the SDN controller in orchestrating network traffic. The

application of iPerf and OVS commands throughout the test offers comprehensive insights

into network performance and the Quality of Service (QoS) achievable. This information

proves invaluable for network administrators and researchers aiming to fine-tune network

configurations to meet the performance needs of diverse applications, highlighting the crucial

role of detailed network behavior understanding in optimizing network capacity and

functionality.

Bidirectional TCP traffic test

The iPerf test output presents data for two intervals, revealing the nature of traffic flow

between h i and h4, alongside the acknowledgments sent in the opposite direction. This

demonstrates a significant transfer rate from h i to h4, with 1.92 GBytes of data transmitted at

a velocity of 1.65 Gbits/sec. Conversely, the return path from h4 to h i sees a diminished rate,

50 | P a g e

with 693 MBytes transferred at 575 Mbits/sec. Such asymmetry is emblematic of TCP traffic,

where the bulk of data moves predominantly in one direction, while the acknowledgments,

being considerably smaller, constitute a lesser volume of traffic in the return direction.

mininet> hi iperf -c h4 -d

Server listening on TCP port 5091
TCP window size: 85.3 KByte (default)

Client connecting to 10.9.9.4, TCP port 5991
TCP window size: 493 KByte (default)

[5] local 19.9.9.1 port 47749 connected with 19.9.9.4 port 5991
[4] local 19.9.9.1 port 5901 connected with 19.9.9.4 port 69956
[ID] Interval Transfer Bandwidth
[5] 0.0-19.0 sec 1.92 GBytes 1.65 Gbits/sec
t 4] 0.0-10.1 sec 693 MBytes 575 Mbits/sec

Figure 20: Bi-directional TCP test

The flow entries within the OVS switch (si) are conducted through the command ^sudo ovs-

ofctl -O OpenFlowl3 dump-flows sV, we examine the flow entries in the OVS switch (si).

These entries contain match conditions (such as IP addresses and TCP ports) and actions

(such as the output port) for each flow. The dump shows multiple flows with source and

destination IP addresses corresponding to h i and h4, and transport layer ports that are

involved in the TCP communication.

testetest: •• /o*«i code/iimnttt op c S SLXJO ovs-ofctl -0 0penFlowl3 dunp-flows si
cookie=8x9, duration=173B.995s. table=9, n packets=4. n bytes=392, pr io r i t y= l , i c »p ,nw sre=18.8.8.1,nw dst=18.8.9.2 actions=output:"sl-eth2"
cookie=8x9, duration»1738.829s, table-9. n packets-4. n bytes-392, pr io r i t y= l , i c »p ,nw src«18.9.8.2,nw dst=19.8.8.1 actions-output:"sl-ethl"
cookie=8x8, duration=1826.674s, table=9, n packets-92318, n bytes=4191615164, priority*!.,tcp,nw src=18.9.8.1,nw dst=18.8.9.4,tp src=47668,tp dst=5991 actions=output:"sl-

BtM"
cookie=8x9. duration=1826,659s, table=9, n packets=76718, n bytes=5962868, priority=l,tcp,nw src=18.9.8.4,nw dst=18.8.8.1,tp src=5981,tp dst=47668 actions=output:"sl-eth

cookie=6x8, duration=79.4585

i=79.483s, table=6. n pa£ket5=47833, n bytes=2669019722, pr:

(-79.472s, table=8, n packets-46685, n bytes-3875954, prior:

-OlB.e.O.l.nw dst=18.9.e.4,tp src=47748,tp dst=5881 I

I packet5=13356, n bytes=7278298B8, priority=l,tcp,i
c=19.8.9.4,nw dst=18.l :=5991,tp dst=47749 < is=output:"sl-ethl"

in^79.423s, table=8, n packets=3921, n bytes=259122, priority=l,tcp,i
in=1786.S69s, table=6, n packets=41, n bytes=2726, pnonty=9 action!

c-18.9.8.4,nw dst=19.8.9.1,tp src=69856,tp dst=5B91 actions=Output:"sl-eth

LS .B . l .nwdst «19.8 .9 .4 , tp src*5981,tp dst=68956 actions-output:"sl-eth4"

Figure 21: Bi-directional TCP test-dump-flows

Port statistics on the switch s i are scrutinized using the command ^sudo ovs-ofctl -O

OpenFlowl3 dump-ports sV is used to inspect the port statistics on the switch s i . The output

indicates the number of packets and bytes received (rx) and transmitted (tx) on each port. For

instance, Notably, the statistics reveal the data traffic transmitted and received by portl and

port4, which correspond to h i and h4, respectively. These statistics are crucial for identifying

how the network load is distributed across the switch's ports.

51 | P a g e

I •ininet_topc'$ sudo o v s - o f c t l - 0 0 p e n F l o w l 3 d u m p - p o r t s s i 1
OFPST P ORI r e p l y (O ř i . 3) (x i d = 8 x 2) : 5 p o r t s

p o r t LOCAL: r x p k t s = 8 , byteS"*8. d r o p « 2 7 , e r r s » 8 , f rame=6. ove r=8 . c r c = 6
t x p k t s = 6 , b y t e s = 6 , drop=8, e r r s = 6 , c o l l = 6
d u r a t i o n = 1 8 4 3 . 4 8 5 s

p o r t • s l - e t b 4 - : r x p k t s = 1 3 6 6 9 2 . b y t e s = 7 3 5 9 6 8 4 9 2 , d rop=8, e r r s = 8 .
t x p k t s = 1 4 3 3 3 1 , b y t e s = 6 2 5 1 9 6 8 5 e 9 . drop=6. e r r s = 8 . c o l l = 8
d u r a t i o n = l B 4 3 . 5 5 3 s

f rame=8, ove r=8 , c rc=8

p o r t " s l - e t h l " : r x p k t s « 1 4 3 3 9 8 . b y t e s = 6 2 5 1 8 9 6 1 6 4 , d r o p - 8 , e r r s - 8 ,
t x p k t s = 1 3 6 7 3 5 , b y t e s = 7 3 5 9 6 5 8 5 7 . d rop=8. e r r s = 8 , c o l l = 6
d u r a t i o n « 1 8 4 3 . 5 8 6 s

f r a a e > 6 , o v e r * 0 , c rc=8

p o r t " s l - e t h 2 " : r x p k t s = 2 2 , b y t e s = 1 7 8 8 , d rop=8 , e r r s = 8 , f rame=6,
t x p k t s = 6 2 . b y t e s = 6 8 5 9 . drop=8. e r r s = 6 . C 0 l l = 8
d u r a t i o n - 1 8 4 3 . 6 8 5 s

ove r=8 , c rc=6

p o r t " S l - e t h 3 " : r x p k t s = 1 5 . b y t e s = 1 2 8 6 , drop=8. e r r s = 8 . f rame=8,
t x p k t s = 5 7 , b y t e s = 6 4 1 7 , drop=8, e r r s = 8 , c o l l = 8
d u r a t i o r v = 1 8 4 3 . 5 1 7 s

- •

over=8 , c rc=8

Figure 22: Bi-directional TCP test-dump-ports

The results from the iPerf and OVS commands give a clear picture of the network's capability

to handle simultaneous bidirectional TCP traffic. The data transmission rates indicate how

efficiently the network can handle the load, and the OVS statistics can help in identifying any

bottlenecks or performance issues at the switch level.

This bidirectional test provides a holistic view of the network's performance, showing how

the SDN controller and switch manage traffic in both directions. The information gleaned

from this test can be used to optimize the network's configuration for better handling of

simultaneous data flows, which is critical in environments where multiple services rely on the

network's transport capabilities.

UDP traffic test

The iPerf test results show that the sender (hi) has sent data to the receiver (h4) at the

specified bandwidth, transferring a total of 11.9 MBytes of data at a bandwidth of 10.0

Mbits/sec. This outcome verifies the network's throughput under controlled conditions, where

8504 datagrams have been sent with no reported packet loss or out-of-order delivery, which

is critical for UDP performance analysis.

c l i e n t c o n n e c t i n g t o 1 6 . 0 . 9 . 4 , UDP p o r t 5 6 0 1
S e n d i n g 1 4 7 0 b y t e d a t a g r a m s , I P G t a r g e t : 1 1 7 6 . 0 0 u s (k a l m a n a d j u s t)
JDP b u f f e r s i z e : 2 0 8 K B y t e (d e f a u l t)

I 3] l o c a l 1 0 . 0 . 0 . 1 p o r t 5 4 8 7 9 c o n n e c t e d w i t h 1 0 . 0 . 9 . 4 p o r t 5 0 0 1
[I D] I n t e r v a l T r a n s f e r B a n d w i d t h
[3] 9 . 9 - 1 0 . 0 s e c 1 1 . 9 M B y t e s 1 0 . 9 M b i t s / s e c
[3] S e n t 8 5 9 4 d a t a g r a m s
[3 1 S e r v e r R e p o r t :
[3] 9 . 0 - 1 0 . 0 s e c 1 1 . 9 M B y t e s 1 0 . 0 M b i t s / s e c 0 . 9 0 1 ms 6 / 8 5 6 4 (6%)
t 3] 0 . 0 0 0 0 - 9 . 9 9 3 5 s e c 6 d a t a g r a m s r e c e i v e d o u t - o f - o r d e r

Figure 23: UDP traffic test

The inspection of flow entries within the switch, conducted through the ^sudo ovs-ofctl -O

OpenFlowl3 dump-flows sV, the flow entries in the switch are examined to observe how the

SDN controller has managed the UDP traffic. The output reveals match conditions that

52 I P a g e

identify the UDP traffic between h i and h4, including the source and destination IP addresses

and ports, with actions that direct the traffic to the appropriate output ports of the switch.

duration=2182.478s
d u r a t i o n s 182.462s
duration=1399.247s

duration=1399.232s

duration-443.8565,

duration-443.845s,

duration-443.823s.

S sudo o v s - o f c t l -0 0penFlowl3 dump-flows s i
, table=6, n packets=4, n bytes=392, priority=l , icmp,nw src=lS.6.6.1,nw dst=18.9.8.2 actions=output:"sl -ett i2"
, table=8, n packets=4, n bytes=392, pr ior i ty=l , icnp,nw src=19.6.6.2,nw dst=19.9.6.1 act ions=output:*sl -ethl*
. table=6, n packets=92318, n bytes=4191615164, pr ior i ty=l , tCp,nw src=19.8.8.1,nw dst=19.9.6.4,tp sre=47668,tp dst=5661 act ions=output :"s l -

, table=6, n packets=76719, n byte5=5862868. pr ior i ty=l , tcp.nw src=18.8.8.4,nw dst=19.9.6-1, tp src=S981,tp dst=47668 act ions=output:"Sl -eth

table=9, n packets=47933, n bytes=2969819722, pr ior i ty=l , tcp .nw src=16.6.9. l ,nw dst=18.6.9.4,tp src=47749,tp dst=S981 act ions=output:"Sl -e

t a b l e - 9 , n packets-46665, n bytes-367S9S4, p r i o r i t y l . t c p . n w 5rc -16.8.6.4,nw d s t - 1 8 . 9 . 8 . 1 , t p M l S — l . t p dst-47748 a c t i o n s - o u t p u t : " s l - e t h l

table=9, n packets=13356, n bytes=727829989, pr ior i ty=l , tcp,nw src=19.9.6.4,nw dst=19.9.9.1,tp src=66956,tp dst=5891 act ions=output :"s l -et

table=9, n packets=3921, n bytes=259122, pr ior i ty=l , tcp ,nw src=16.8.9. l ,nw dst=16.0.9.4, tp s r c - S e e i , t p dst=66956 act ions=output : "s l -e th4 -

table=9, n packets=8594, n bytes=1285B64B, priority=l.udp,nw src=16.8.9. l ,nw dst=16.6.9.4,tp src=54879.tp dst=5991 act ions=output:"s l -eth4

table=9. n packets=9, n bytes=6, priority=l ,udp.nw src=16.9.9.4,nw dst=16.6.9.1.tp src=5991,tp dst=54876 act ions=output :"s l -ethl*
;, table=6, n packets=48, n bytes=5988, pr ior ity=6 actions=C0NTR0LLER:65535

Figure 24: UDP traffic test - dump-flows

The execution of 'sudo ovs-ofctl -O OpenFlowl3 dump-ports si' offers a detailed analysis

of port statistics within the switch, showing the number of packets and bytes sent and

received on each port, which is useful for determining the effectiveness of the network's data

handling capabilities and identifying any potential congestion or issues at the port level.

test@test:-/own_coc*e/«ini.net_to|i % sudo o v s - o f c t l - 0 0 p e n F l o w l 3 dump p o r t s s i
OFPST PORT r e p l y (0 F 1 . 3) (x i d = 6 x 2) : 5 p o r t s

p o r t LOCAL: r x p k t s = 6 , b y t e s = 6 , d r o p = 2 8 , e r r s = 0 . f r a » e = d , o v e r = 6 , c r c = 6
t x p k t s = 6 , b y t e s = 9 , d r o p = 6 , e r r s - 6 , c o l l - 6

du r a t l o n = 2 2 1 4 . 3 2 6 s

p o r t " s l - e t b 4 " : r x p k t s = 1 3 6 6 9 6 , b y t e s = 7 3 5 9 6 2 1 5 8 , drop=6, errs=9, frame=6, over=6, c r c ^ J
t x p k t s = 1 5 1 8 4 6 , b y t e s = 6 2 6 4 7 6 6 4 2 6 , d r o p = 6 , e r r s = 6 , c o l l = 6
d u r a t i o r > = 2 2 1 4 . 4 7 4 s

p o r t " s l - e t h l " : r x p k t s « 1 5 1 8 8 7 , bytes=626475S6e8, drop=6, errs=6, fra«e=e, over=6, crc=6
t x p k t s = 1 3 6 7 4 6 . b y t e s = 7 3 5 9 6 7 7 2 6 , d r o p = 6 . e r r s = 6 . c o l l = 6
d u r a t i o n - 2 2 1 4 . 5 6 1 s

p o r t " S l - e t h 2 " : r x pkt5 i=22, b y t e s = 1 7 8 6 , d r o p = 8 , e r r s = 6 , f rame=B, o v e r = 8 , c r c = 6
t x p k t s = 6 5 , b y t e s = 7 2 8 2 , d r o p = 6 , e r r s = 6 . c o l l = 6
duratloo-2214.S26s

p o r t " s l - e t h 3 " : r x p k t s = 1 5 , b y t e s = 1 2 8 6 , d r o p = 8 , e r r s = 6 , f rame=6, o v e r = 6 , c r c = 0
t x p k t s = 6 8 , b y t e s = 6 7 6 8 , d r o p = 8 , e r r s = 8 , c o l l = 9
d u r a t i o n = 2 2 1 4 . 4 3 8 s

Figure 25: UDP traffic test-dump-ports

The combination of iPerf and OVS tools allows for an in-depth analysis of the network's

performance. By observing metrics such as jitter (variation in latency), packet loss, and the

consistency of bandwidth, network administrators can evaluate the Quality of Service (QoS)

provided by the network and adjust configurations to optimize performance for UDP traffic.

This UDP traffic test provides an evaluation of the network's ability to handle datagrams

efficiently and effectively, offering insights for network tuning to improve streaming quality.

The findings can be leveraged to fine-tune the network's performance to ensure high-quality

service delivery for real-time applications that depend on UDP transmission.

VoIP traffic test

iPerf UDP test outputs show the iPerf client (hi) connecting to the iPerf server (h4).

53 | P a g e

The bandwidth achieved is consistent with the specified target for a VoIP call (64 Kbps), and

the performance metrics are recorded for intervals of 5 seconds over a 60-second test

duration.

m i n i n e t > h i i p e r f - c 1 G . 1 . 1 . 4 - - u d p - - t e n 3 0 8 - - b a n d w i d t h 6 7 9 0 G - - d u a l t e s t - - t r a d e
o f f - - t o s 184 - f k - - i n t e r v a l 5 - - t i m e 6 0 - - l i s t e n p o r t 5 0 0 2 - - p a r a l l e l 4

S e r v e r l i s t e n i n g on UDP p o r t 50G2
R e c e i v i n g 1 4 7 0 b y t e d a t a g r a m s
UDP b u f f e r s i z e : 2 0 8 K B y t e (d e f a u l t)

C l i e n t c o n n e c t i n g t o 1 8 . 1 . 1 . 4 , UDP p o r t 5 0 0 1
S e n d i n g 3 0 8 b y t e d a t a g r a m s , I P G t a r g e t : 3 5 8 2 8 . 9 8 u s (k a l m a n a d j u s t)
UDP b u f f e r s i z e : 2 8 8 K B y t e (d e f a u l t)

r e c v a c k f a i l e d : R e s o u r c e t e m p o r a r i l y u n a v a i l a b l e
r e c v a c k f a i l e d : R e s o u r c e t e m p o r a r i l y u n a v a i l a b l e
r e c v a c k f a i l e d : R e s o u r c e t e m p o r a r i l y u n a v a i l a b l e
r e c v a c k f a i l e d : R e s o u r c e t e m p o r a r i l y u n a v a i l a b l e
t 5] l o c a l 1 8 . 0 . 0 . 1 p o r t 6 0 5 7 9 c o n n e c t e d w i t h 1 0 . 1 . 1 . 4 p o r t 5 0 0 1 (s e r v e r v e r s i o n
i s o l d)
t 3] l o c a l 1 0 . 0 . 0 . 1 p o r t 3 3 7 2 4 c o n n e c t e d w i t h 1 0 . 1 . 1 . 4 p o r t 5 0 0 1 (s e r v e r v e r s i o n
i s o l d)
[7] l o c a l 1 0 . 0 . 8 . 1 p o r t 5 5 3 8 7 c o n n e c t e d w i t h 1 8 . 1 . 1 . 4 p o r t 5 8 8 1 (s e r v e r v e r s i o n
i s o l d)
[6] l o c a l 1 0 . 0 . 0 . 1 p o r t 4 7 5 7 2 c o n n e c t e d w i t h 1 0 . 1 . 1 . 4 p o r t 5 0 0 1 (s e r v e r v e r s i o n
i s o l d)
[I D] I n t e r v a l T r a n s f e r B a n d w i d t h
[5] 0 . 8 - 5 . 8 s e c 3 8 . 8 K B y t e s 5 8 . 4 K b i t s / s e c
I 3] 8 . 8 - 5 . 8 s e c 3 8 . 8 K B y t e s 5 8 . 4 K b i t s / s e c
1 7] 8 . 8 - 5 . 8 s e c 3 8 . 8 K B y t e s 5 8 . 4 K b i t s / s e c
1 6] 8 . 8 - 5 . 8 s e c 3 8 . 8 K B y t e s 5 8 . 4 K b i t s / s e c
ISUM] 0 . 0 - 5 . 0 s e c 123 K B y t e s 2 0 2 K b i t s / s e c
[5] 5 . 0 - 1 8 . 8 s e c 4 1 . 8 K B y t e s 6 7 . 2 K b i t s / s e c
[3] 5 . 8 - 1 8 . 8 s e c 4 1 . 8 K B y t e s 6 7 . 2 K b i t s / s e c
[7] 5 . 8 - 1 8 . 8 s e c 4 1 . 8 K B y t e s 6 7 . 2 K b i t s / s e c
t 6] 5 . 8 - 1 8 . 8 s e c 4 1 . 8 K B y t e s 6 7 . 2 K b i t s / s e c
[SUM] 5 . 8 - 1 0 . 0 s e c 1 6 4 K B y t e s 2 6 9 K b i t s / s e c

Figure 26: VoIP parallel test

The examination of OVS flows and ports is conducted through the 'sudo ovs-ofctl -O

OpenFlowl3 dump-flows si' and 'sudo ovs-ofctl' -O OpenFlowl3 dump-ports si'

commands, the flow entries and port statistics in the switch si are inspected to observe how

the SDN controller manages the VoIP traffic, including packet counts, bytes transferred, and

any packet drops.

test@tcst:-/own_ccxJe/«ininet_topo$ sudo o v s - o f c t l - 0 0 p e n F l o w l 3 d u m p - p o r t s s i
OFPST PORT r e p l y (0 F 1 . 3) <x id=8x2) : 5 p o r t s

p o r t LOCAL: rx p k t s = 0 , by tes=6 , drop=93, e r r s = 6 , f r a m e - 8 . over=6, c rc=6
t x p k t s = 6 , by tes=6 , drop=6, e r r s = 8 , c o l l = 6
d u r a t i o n = 3 5 3 7 . 8 2 8 s

p o r t " s l - e t M " : rx pkts=136696, bytes=735962158, drop=6, e r r s = 6 . f rame=6, over=8, c rc=8
t x pk ts=151915, bytes=6264764232, drop=9, e r r s = 6 . c o l l = 6
d u r a t ion=3537.976s

p o r t " s l - e t h l " : rx pkts=151878, bytes=6264758454, drop=0, e r r s = 8 , f rame=8, over=8, crc=6
t x pkts=136753, by tes=735968956, drop=6, e r r s = 6 , c o l l = 6
d u r a t i o n = 3 5 3 8 . 6 0 3 s

p o r t " s l - e t t . 2 " : rx p k t s = 2 3 . by tes=1858, drop=6, e r r s = 8 , f r a « e = 8 , over=8 , c r c - - 6
t x p k t s = 1 3 9 , by tes=19938, drop=0, e r r s = 0 , c o l l = 0
d u r a t i o n = 3 5 3 8 . 0 2 9 s

p o r t " s l - e t h S " : rx pk ts=16 , by tes=1276, drop=8. e r r s = 6 , f r a « e = 8 , over=8 , c rc=6
t x pk ts=134 , by tes=19496, drop=0, e r r s = 0 . c o l l = 8
d u r a t i o n = 3 5 3 7 . 9 4 1 s

Figure 27: Parallel VoIP test-dump-flows

cookie=6x6, dun
cookie=8x8, dun
cookie=8x8, dun
cookie=8x8, dun
cookie=9x8, dun
cookie=8x8, dun
cookie=8x8, dun
c o o k l e » 8 x 8 , dun
cookie=9x6, dur;
cookie=8x8, dun
cookie=8x8, dur;

tion=3428.463s, I
tion=3428.387s,
tion=2716.232s, '
tion=2716.217s,
tion=1769.841s, '
tir>n=1769.a30s,
tion=1769.B88s,
tion=17&8.981s,
tior»=1473.733s,
tlon-1463.719s,
tion=3476.127s, '

ivs -ofct l -0 0penFVowl3 dump-flows s i
n packets=4, n bytes=392, priority=l,icmp,nw src=18.8.8.1,nw dst=18.9.8.2 actions=output:"sl-eth2"
n packets-4, n bytes-392, p r i o r i t y - l . i c B p . ™ * s r c - 1 8 . 8 . 8 . 2 , f » w dst -18.8.8.1 actions-output: " s l - e t h l "
n packets=92318, n bytes=4191615164, priority=l,tcp,nw src=18.8.8.1,nw dst=18.8.9.4,tp src=47668,tp dst=5881 actions=output:"sl-eth4"
n packets=76718, n bytes=S862868, priority=l,tcp,nw src=19.8.8.4,nw dst=18.8.8.1,tp src=5891,tp dst=476S6 actions=output:"sl -ethl '
n packets=47933, n bytes=2868ei9722, priority=l,tcp,nw src=18.8.8.1.nw dst=18.8.9.4,tp src=47748,tp dst=5881 act ions=output :"s l -etW
n packets=46685, n bytes=38759S4, priority=l,tcp,nw src=19.8.8.4,nw dst=18.8.9. l , tp src=5991,tp dst=47749 actions=output:"sl -ethl '
n packets=13356. n bytes=727829988, priority=l.tcp.nw src=18.8.8.4.nw dst=18.8.9. l , tp src=60956,tp dst=5991 actions=output:"sl -ethl-
n packets-3921. n bytes-259122, p r i o r i t y l . t c p . n w src-19.9.8.1,nw dst -18.8 .8 .4 , tp src-5881,tp dst-68856 actions==output:"sl-eth4"
n packets=B594, n bytes=128S8848. priority=l.udp,nw src=19.9.8.1,nw dst=16.8.8.4,tp src=54979,tp dst=5991 actions=output:"sl-eth4"
n packets-8, n bytes-8, pr iority- l .udp.nw s r c » 1 8 . 8 . 8 . 4 , n w d s t - 1 8 . 8 . 8 . l , t p src"5881,tp dst-54878 act ions-output:"s l -ethl*
n packets=113, n bytes=8774, prionty=8 actions=CONTROLLER:65535

Figure 28: Parallel VoIP test-dump-ports

54 I P a g e

The iPerf tests demonstrate a consistent bandwidth close to the target of 64 Kbps for single

VoIP calls and appropriately scaled for multiple calls. The OVS statistics indicate the

efficiency of the network in handling VoIP traffic, with minimal or no packet loss. Type of

Service (TOS) setting and UDP test parameters simulate VoIP traffic, allowing for the

assessment of QoS, crucial for real-time communication applications. The message

"Resource temporarily unavailable" suggests a potential limitation in handling the traffic,

indicating the need for further network configuration or capacity scaling.

The VoIP traffic test using iPerf and OVS in an SDN environment with Mininet provides

valuable insights into the network's ability to support real-time communication services like

VoIP. The test demonstrates the network's capacity to maintain the specified bandwidth and

QoS, ensuring the efficient transmission of voice data. The findings can guide network

engineers in optimizing the network for VoIP applications, ensuring adequate resource

allocation and prioritization for high-quality voice services.

5.1 QoS in SDN (end-to-end bandwidth guarrantee)

Upon completion of the 60-second test, the server logs can be examined to verify the

effectiveness of the Quality of Service (QoS) implementation. This examination helps to

confirm whether the QoS mechanisms functioned as intended, ensuring that traffic was

managed according to the predefined priorities and bandwidth allocations.

UDP server log:

Server listening on UDP port 10066
Receiving 1476 byte datagrams
UDP buffer size: 268 KByte (default)

(3] local 192.168.1.2 port 16666 connected with 192.168.1.1 port 51569
I ID] Interval Transfer Bandwidth J itter lost/Total Datagrams
(3] 8.8 - 1 6 . 6 sec 1.16 MBytes 973 Kbits/sec 19.289 as 8/ 827 10.97V)
[3] 8.8 - 1 6 . 6 sec 8 datagrams received out-of-order
(3) 19.9-28.8 sec 1.16 MBytes 973 Kbits/sec 1.912 as 2383/ 3218 (74\l
(3] 28.9-39.9 sec 1.16 MBytes 973 Kbits/sec 2.S41 as 4277/ 5184 (84\)
(3] 38.8-49.9 sec 1.16 MBytes 971 Kbits/sec 2.385 as 4272/ 5898 (84\)
(3] 49.9-59.9 sec 1.16 MBytes 973 Kbits/sec 1.392 as 4278/ 5195 (84\)
I 31 5 6 . 6 -66 . 6 sec 1.16 MBytes 973 Kbits/sec 8.892 as 4275/ 5162 (84\)
j 3] 69.8-79.9 sec 1.16 MBytes 73 Kbits/sec 9.933 as 4277/ 5194 (64%)
I 3] 6 . 6 -72.1 sec 8.36 MBytes a W J . M I M g B 1.236 as 24656/36611 (81M
[3) 6 .9-72.1 sec 9 datagrams received out-of-order

Figure 29 UDP Server log with QoS

The UDP server managed to transfer only 972 Kbit/sec out of the 6Mbps traffic generated,

due to the bandwidth limit for UDP traffic set at 1Mbps. This resulted in 81% of the traffic

being dropped and only 19% successfully transmitted, demonstrating the effectiveness of the

Quality of Service (QoS) settings in enforcing bandwidth constraints and ensuring that the

network's QoS for UDP traffic functions as intended.

55 | P a g e

TCP server log:

S e r v e r l i s t e n i n g on TCP p o r t 5691
TCP window s i z e : 85.3 KByte (d e f a u l t)

4] l o c a l 192 168 1.2 p o r t 5061 c o n n e c t e d w i t h
10) I n t e r v a l T r a n s f e r Bandwidth
4] 0 0 10 0 sec 3.43 MBytes 2.88 M b l t s / s e c
4) 19.el 28 0 sec 3.42 MBytes 2.87 M b l t s / s e c
4] 20.0 30 0 sec 3.42 MBytes 2.87 M b l t s / s e c
4] 30.0-40 0 sec 488 KBytes 480 K b i t s / s e c
4] 40.0 SO 0 sec 4.97 MBytes 4. 17 M b l t s / s e c
4] 58.9-68 0 sec 3.34 M8ytes 2.81 M b l t s / s e c
4] 69.9 79 0 sec 4.89 MBytes 4.19 M b l t s / s e c
4] 79.9 89 0 sec 3.42 MBytes 2.87 M b l t s / s e c
4] 88.8 98 0 sec 3.42 MBytes S7 M b i t s / s c c
4] 9.9-95 4 sec 32.6 MBytes j

Figure 30: TCP server log with QoS

TCP traffic achieved a rate of approximately 2.97 Mbit/sec, aligning closely with the 3Mbps

bandwidth allocation set by the Quality of Service (QoS) configurations. Prior to enabling

QoS, TCP traffic was limited to a mere 100 Kbit/sec. Activating the QoS feature on the

system effectively guarantees a bandwidth of 3Mbps for TCP traffic, showcasing the QoS's

capability to prioritize and allocate network resources to meet predefined performance

standards.

VoIP server log:

1 «81 40 0 50 0 sec 81 7 KBytes b7 .0 K b i t s ' i c e
1 4] 4 0 0 50 0 sec 11 7 KBytes 67.8 K b i t s / s e c
1 521 4 0 e 50 0 sec 81 7 KBytes 67.9 K b I t s / s e c
1 »J1 40 u 50 0 sec 11 7 KBytes 67.8 K b i t s / s e c
(SUM] 40 0 50 0 sec 817 KBytes 679 K b i t s / s e c
I 971 M 0 50 0 sec 1 1 7 KBytes 67.8 K b i t s / s e c
I 721 M 0 50 0 sec 81 7 KBytes 67.9 K b i t s / s e c
I 73] 4U u 50 G sec 11 7 KBytes 67.8 K b i t s / s e c
I 771 II 0 50 0 sec SI 7 KBytes 67.9 K b i t s / s e c
1 791 4 0 0 50 0 sec •1 7 KBytes 67.9 K b i t s / s e c
(87] M 0 50 0 sec 81 7 KBytes 67.9 K b i t s / s e c
1 88) 40 0 50 0 sec SI 7 KBytes 67.9 K b i t s / s e c
1 891 10 0 50 Ö sec 1 I 7 KBytes 67.9 K b i t s / s e c
1 951 40 0 50 0 sec 31 7 KBytes 67.9 K b i t s / s e c
1 78] 4 0 0 50 0 sec t] 7 KBytes 67.9 K b i t s / s e c
(SUM] M 0 50 0 sec 817 KBytes 679 K b i t s / s e c
1181] 4 0 0 50 0 sec 31 7 KBytes 67.9 K b i t s / s e c
1 182] 40 0 50 0 sec 81 7 KBytes 67.9 K b i t s / s e c
1 691 40 0 50 0 sec 81 7 KBytes 67.9 K b i t s / s e c
I 75) 4 0 1 50 0 sec 81 ; KBytes 67 .9 K b i t s / s e c
1 83] 10 0 50 0 sec 81 7 KBytes 67.9 K b i t s / s e c
1 84] 4M CI 50 0 sec M 7 KBytes 67.9 K b i t s / s e c
(35] 4 0 • 50 8 sec 81 7 KBytes 67.9 K b i t s / s e c
1 85] H 0 50 0 sec SI 7 KBytes 67.9 K b i t s / s e c
I 461 4 0 0 50 0 sec 81 7 KBytes 67 .9 K b i t s / s e c
I 451 4 0 0 50 0 sec 81 7 KBytes 67.9 K b i t s / s e c
1 51] 40 0 50 0 sec SI 7 KBytes 67.9 K b i t s / s e c
1 8] 10 0 50 0 sec 1 1 7 KBytes 67.9 K b i t s / s e c
1 92] M 0 50 0 sec 81 7 KBytes 67.0 K b i t s / s e c
1 96] 40 0 50 0 sec 11 7 KBytes 67.9 K b i t s / s e c
[761 4 0 I 50 0 sec 81 7 KBytes 67.9 K b i t s / s e c
1 621 10 0 50 0 sec 11 7 KBytes 67.9 Kb i t s / s e c

Figure 31:VoIP server log with QoS

The VoIP server log indicates that with QoS enabled, the full 670 Kbit/sec traffic, as per the

allocated bandwidth for this traffic type, is consistently maintained between the hosts. This

ensures that all 10 calls reach the client end successfully, a feat that was unachievable without

the implementation of QoS. This demonstrates the effectiveness of QoS in enforcing

bandwidth allocations specifically for VoIP traffic, thereby ensuring reliable and

uninterrupted communication.

56 I P a g e

5.1.1 Analysis

UDP Traffic test without QoS:

Table 5: Traffic transfer statistics without QoS

Timestamp

Transfer

(Mbytes)

Bandwidth

(Mbits/sec)

Jitter

(ms)

Lost/Total

(Datagrams) Percent

0-10 4,99 4,19 0,664 415/3976 0,2

11-20 5,70 4,78 0,713 989 / 5052 0,2

21-30 5,72 4,80 0,710 1028/5107 0,2

31-40 5,73 4,81 0,721 1002/500 0,2

41-50 5,72 4,80 0,669 1033/5111 0,2

51-60 5,72 4,80 0,689 1018/5099 0,2

UDP without QoS

6,20

6.00

4,80

4,60

4,40

0-10 11-20 21-30 31-40 41-50 51-60

Timestamp (seconds)

» Transfer (Mbytes) » Loss

57 I P a g e

UDP traffic test with QoS:

Table 6: Traffic transfer statistics with QoS

Timestamp

Transfer

(Mbytes)

Bandwidth

(Mbits/sec)

Jitter

(ms)

Lost/Total

(Datagrams) Percent

0-10 1,16 0,973 1,912 2383/3210 0,74

11-20 1,16 0,973 2,541 4277/5104 0,84

21-30 1,16 0,973 2,385 4272 / 5098 0,84

31-40 1,16 0,973 1,392 4278/5105 0,84

41-50 1,16 0,973 0,892 4277/5104 0,84

51-60 1,16 0,973 0,933 4277/5104 0,84

UDP with QoS

1.40

1.20

-5T I.""

TD
C

CD 0,40

0,20

0,00

0-10 11-20 21-30 31-40 41-50 51-60

Timestamp (seconds)

1 Transfer (Mbytes) • Loss

58 I P a g e

5.1.2 Result

The research employs Open vSwitch (OVS) queues as a fundamental component for Quality

of Service (QoS) management within network environments. Each queue represents a distinct

handling mechanism akin to different service lines at a bustling establishment, such as those

designated for regular customers, VIP patrons, and elderly individuals. By analogy, specific

queues are established to cater to various network traffic types, including Transmission

Control Protocol (TCP) for web browsing, User Datagram Protocol (UDP) for video

streaming, and Voice over Internet Protocol (VoIP) for voice communication. Each queue is

allocated a predetermined bandwidth, mirroring the distribution of resources to different

customer lines. As incoming network traffic traverses the infrastructure, it undergoes traffic

analysis to discern its type. Subsequently, the traffic is routed to the appropriate queue based

on its classification, ensuring that each type receives tailored treatment commensurate with

its requirements. This method optimizes network performance and enhances the quality of

service experienced by users, thus constituting a critical aspect of network management in

contemporary environments.

59 | P a g e

6. Conclusion

The culmination of this research in Software-Defined Networking (SDN) with a focus on

Quality of Service (QoS) through dynamic bandwidth allocation presents an in-depth

investigation into enhancing network traffic management and resource optimization. The

main aim was to demonstrate the feasibility of implementing end-to-end bandwidth

guarantees between hosts within an SDN framework, ensuring elevated levels of QoS for

varied traffic types including TCP, UDP, and VoIP. The methodology adopted involved

integrating Open vSwitch (OVS) queues to manage network flows dynamically, tailoring

bandwidth allocation, and prioritizing traffic to meet the distinct demands of these diverse

services.

Through these testing, a comparative analysis between traditional and multipath routing

methods underscored the advantages of the proposed SDN-based QoS framework. It was

noted that by strategically utilizing OVS queues and effectively categorizing traffic, the

network was able to adapt to changing conditions, effectively mitigate congestion, and

enhance throughput. This meticulous management of traffic flows ensured that high-priority

services, like VoIP, received the necessary bandwidth even under heavy network load, thus

proving the hypothesis that SDN can indeed provide dedicated QoS to specific hosts.

In summary, the findings from this thesis highlight the capacity of SDN to overhaul network

management approaches towards a resilient, and user-focused networking environment. The

significance of this research transcends theoretical discussion, offering practical insights for

network administrators and architects to develop and refine future SDN frameworks. As

digital communication networks grow and transform, the strategies and knowledge gained

from this study are poised to significantly influence the development of next-generation

network technologies, ensuring they are well-equipped to accommodate the growing

demands of contemporary applications and services.

60 | P a g e

7. References

1. Open Networking Foundation. "Soßware-Defined Networking (SDN) Definition"
[Online] Available at: https://opennetworking.org/sdn-definition/. (Accessed date: 06.
November 2023).

2. Taha, A. Software-Defined Networking and its Security. Master's Thesis. Aalto: Aalto
University, School of Electrical Engineering, 2014.

3. Feamster, N . , Rexford, J. and Zegura, E. "The Road to SDN: An Intellectual History
of Programmable Networks. " A C M SIGCOMM Computer Communication Review,
2014. Available at: https://doi.org/10.1145/2602204.2602219. (Accesses date: 15
December 2023)

4. Braun, W., and Menth, M . "Sofiware-Defined Networking Using OpenFlow:
Protocols, Applications and Architectural Design Choices", 2014.
DOI: 10.3390/660203022014.

5. Shin, M . , Nam, K., and Kim, H. , "Sofiware-defined networking (SDN): A reference
architecture and open APIs", 2012. DOI: 10.1109/ICTC.2012.6386859.

6. Rekha, P. M . and Dakshayini, M . , "A Study of Software Defined Networking with
OpenFlow", 2015. DOI: 10.5120/21694-4798

7. Sarkar, T. K., "SDN testbed-based evolution of flow processing-aware controller
placement." Master's Thesis. Supervisor: Prof. Dr. Holger Karl University of
Paderborn, 2017.

8. Pfaff, B. Davie, Ed. VMware., "The Open vSwitch Database Management Protocol. "
IETF. Available from: https://tools.ietf.org/html/rfc7047 ISSN: 2070-1721 (Accessed
date: 06 November 2023)

9. Lara, A. , "Using Software-Defined Networking to Improve Campus, Transport and
Future Internet Architectures (Dissertation)." Supervision of Professor Byrav
Ramamurthy. Lincoln, Nebraska: December 2015. Available from:
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1109&context=computers
cidiss. (Accessed date: 15. January 2024).

61 | P a g e

https://opennetworking.org/sdn-definition/
https://doi.org/10.1145/2602204.2602219
https://tools.ietf.org/html/rfc7047
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1109&context=computers

10. L . Zhang, S. Berson, S. Herzog, S. Jamin, RFC 2205, "Resource ReSerVation
Protocol (RSVP) - Version 1 Functional Specification (1997)". Available at:
www.ietf.org/rfc/rfc2205.txt (Accessed date: 27. January 2024)

11. Open Networking Foundation, "OpenFlow Switch Specification". [Online]. Available
at: https://www.open- networking.org/wp-content/uploads/.../ OpenFlow-spec-
v 1.3.3.pdf. (accessed 20 December 2024).

12. A Linux Foundation Collaborative Project. "What is open vswitch?" Available at:
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/ (accessed 20 December
2024).

13. Aljunaid, H. A . M . , Warip, M . B. N . M . , Ahmad, R. B., Anuar, S.M., Ibrahim, Z.,
Khairunizam, W., Razlan, M . Z. and Bakar, A . S., "Software Defined Networks
Security: Link Failure Analysis in SDN" [Online]. IOP Conference Series: Materials
Science and Engineering, 2019. Available from:
https://www.researchgate.net/publication/334097438_Software_Defined_Networks_S
ecurity_Link_Failure_Analysis_in_SDN. (Accessed date: 20. February 2024). DOI:
10.1088/1757-899X/557/1/012039.

14. Karakus, Murat & Durresi, Arjan. (2016), "Quality of Service (QoS) in Software
Defined Networking (SDN): A survey. Journal of Network and Computer
Applications." 80. 10.1016/j.jnca.2016.12.019.

15. ITU-T Recommendation G.164 (1988), "ECHO SUPPRESSORS" International
telephone connections and circuits Apparatus associated with long-distance telephone
circuits.

16. S. Blake, D. Black, M . Carlson, E. Davies, Z. Wang, and W. Weiss. "An Architecture
for Differentiated Services. RFC 2475 (Informational)." Updated by RFC 3260.
Internet Engineering Task Force, 1998. Available at:
http://www.ietf.org/rfc/rfc2475.txt. (Accessed date: 15 February 2024)

17. R. Yavatkar, D. Hoffman, Y . Bernet, F. Baker and M . Speer, "SEM (Subnet
Bandwidth Manager): A Protocol for RSVP-based Admission Control over IEEE 802-
style networks. " RFC 2814 (2000): 1-60.

62 I P a g e

http://www.ietf.org/rfc/rfc2205.txt
https://www.open-
http://networking.org/wp-content/uploads/
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
https://www.researchgate.net/publication/334097438_Software_Defined_Networks_S
http://www.ietf.org/rfc/rfc2475.txt

18. Fernandes, Roulien & Alberti, Antonio. (2011). "Ethernet-over-SDH: Technologies
Review and Performance Evaluation. " Revista Telecomunicacoes.

19. Moeyersons, Jerico & Maenhaut, Pieter-Jan & De Turck, Filip & Volckaert, Bruno.
(2020). "Pluggable SDN framework for managing heterogeneous SDN networks."
International Journal of Network Management. 30. 10.1002/nem.2087.

20. Dezfouli, Behnam & Esmaeelzadeh, Vahid & Sheth, Jaykumar & Radi, Marjan.
(2018). "A Review of Software-Defined WLANs: Architectures and Central Control
Mechanisms. IEEE Communications Surveys & Tutorials." PP. 1-1.
10.1109/COMST.2018.2868692.

21. Open vSwitch, 'Production Quality, Multilayer Open Virtual Switch." [Online].
Available at: http://openvswitch.org/support/ (Accessed date: 12 December 2023)

22. S. J. Vaughan-Nichols, " OpenFlow: The next generation of the network ?," IEEE
Computer 44 (8) (2011) 13-15. Available at: http://dblp.unitrier.de/db/jo- urnals/
computer /computer44.html#Vaughan-Nicholsl 1 (Accessed date: 20 December 2023)

23. D. G. Balan and D. A . Potorac, "Linux HTB queuing discipline implementations,"
IEEE First International Conference on Networked Digital Technologies, Ostrava,
Czech Republic, pp. 122-126, Jul. 2009.

24.1. Stoica, H. Zhang and T. S. E. Ng, "A hierarchical fair service curve algorithm for
link-sharing, real-time, and priority services," in IEEE/ACM Transactions on
Networking, vol. 8, no. 2, pp. 185-199, Apr. 2000.

25. Raussi, Petra & Kokkoniemi-Tarkkanen, Heli & Ahola, Kimmo & Heikkinen, Antti
& Uitto, Mikko. (2023). "Prioritizing protection communication in a 5G slice:
Evaluating HTB traffic shaping and UL bitrate adaptation for enhanced reliability. "
The Journal of Engineering. 2023. 10.1049/tje2.12309.

26. devik and Don Cohen, "HTB Linux queuing discipline manual"
https://mirror.unpad.ac.id/orari/library/library-sw-hw/linux-l/bandwidth-
manager/htb/docs/HTB%20manual.htm (Accessed date: 12 January 2024)

63 I P a g e

http://openvswitch.org/support/
http://dblp.unitrier.de/db/jo-
https://mirror.unpad.ac.id/orari/library/library-sw-hw/linux-l/bandwidth-

27. Jha, Pradeep, "End-to-End Quality of Service in Software Defined Networking"
Available at: https://publications.scss.tcd.ie/theses/diss/2017/TCD-SCSS-
DISSERTATION-2017-040.pdf (Accessed date: 15 January 2024)

28. Krishna, H. , van Adrichem, N . , & Kuipers, F. (2016). "Providing Bandwidth
Guarantees with OpenFlow. " In 2016 Symposium on Communications and Vehicular
Technologies (SCVT) (pp. 1-6). IEEE. https://doi.org/10.1109/SCVT.2016.7797664

29. The Energy Sciences Network (ESnet) "iperf: A TCP, UDP, and SCTP network
bandwidth measurement tool", Abailable at: http://iperf.sourceforge.net. (Accessed
date: 10 March 2024)

30. Wireshark Foundation. "Network protocol analyzer" [Online]. Available at:
https://www.wireshark.org/ (Accessed date: 14 February 2024)

31. S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, "D-ITG distributed
internet traffic generator," In Proceeding of 1st International Conference on
Quantitative Evaluation of System (QEST). IEEE, pp. 316- 317, Jan. 2004.

32. Fred Klassen and AppNeta, "Tcpreplay - Pcap editing and replaying utilities"
Available from: https://tcpreplay.appneta.com/ (Accessed date: 15 March 2024)

33. S. S. Hong and S. F. Wu, "On interactive Internet traffic replay," Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 3858 LNCS, pp. 247-264, 2006.

64 I P a g e

https://publications.scss.tcd.ie/theses/diss/2017/TCD-SCSS-
https://doi.org/10.1109/SCVT.2016.7797664
http://iperf.sourceforge.net
https://www.wireshark.org/
https://tcpreplay.appneta.com/

