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ABSTRACT 

Bulge testing is an experimental technique that involves the use of numerical and analytical 
approaches to characterize the mechanical properties of thin films. This thesis addresses 
some limitations found in the classical models that describe the behavior of thin films 
subjected to this test. This required the development of new models and numerical strategies 
in orderto determine several mechanical properties of monolayer and bilayer thin films under 
different structural conditions, such as elasticity, plasticity, and fracture. By combining finite 
element analysis and classical analytical solutions, different methodologies for calculating the 
elastic properties (E and v), residual stresses, yield stress, and fracture toughness were 
proposed and validated. The mechanical properties of silicon nitride, aluminum, and gold 
films were characterized using load-deflection experimental data obtained from bulging 
measurements. The determined properties showed reasonable agreement with materials of 
known properties, which validated that the proposed methods in this work can be useful for 
estimating the mechanical properties of freestanding thin films. 

KEYWORDS: Bulge test, thin fi lm, finite element analysis, load-deflection, elastic properties, 
yield stress, fracture toughness 



ABSTRAKT 

Testování tenkých filmů pomocí "Bulge testu" je experimentální technika která zahrnuje 
použití numerických a analytických přístupů k charakterizaci mechanických vlastností tenkých 
vrstev. Tato práce se zabývá některými omezeními nalezenými v klasických modelech, které 
popisují chování tenkých vrstev podrobených tomuto testu. Za tímto účelem byly vyvinuty 
nové modely a numerické strategie pro stanovení různých mechanických vlastností 
jednovrstvých a dvouvrstvých tenkých vrstev za odlišných strukturních podmínek, jako je 
elasticita, plasticita a lom. Kombinací metody konečných prvků a klasických analytických 
řešení byly navrženy a ověřeny různé metodiky pro výpočet elastických vlastností (E a v), 
zbytkových napětí, meze kluzu a lomové houževnatosti. Mechanické vlastnosti fi lmů z nitridu 
křemíku, hliníku a zlata byly charakterizovány pomocí experimentálních dat o zatížení-
průhybu získaných z měření. Stanovené vlastnosti vykazovaly uspokojivou shodu s což 
potvrdilo, že metody navržené v této práci mohou být užitečné pro odhad mechanických 
vlastností se známými materiálovými vlastnostmi tenkých vrstev. 

KLÍČOVÁ SLOVA: Bulge, tenký fi lm, analýza metodou konečných prvků, elastické vlastnosti, 
mez kluzu, Lomová houževnatost 
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Chapter 1. Introduction 

1.1 M o t i v a t i o n a n d C o n t e x t 

In the last few decades, the engineering applications of modern technology have led to the 
miniaturization of mechanical elements made up of materials wi th unique properties (see Figure 1.1), 

particularly thin films (Prins et al. 1996; Mitzi, 2001; Green, 2007; Mattevi et al., 2011; Eom & Trolier-
McKinstry, 2012). In the development of several engineering fields such as microelectronics 

(integrated circuits), microelectromechanical systems (MEMS), nano-devices, coating applications, 
biomedical devices, thin films are applied (Ezhilvalavan & Tseng, 1999; Fu et al., 2004; Charitidis, 

2010). During the manufacturing process or its application, the mechanical loading conditions on the 

films can play a crucial role in lifetime prediction. The thickness of a thin fi lm can vary from the 
nanometric scale to the micrometric scale, it means that failure mechanisms due to the microstructure 

can be affected by the size effect. Thereby, it is crucial to understand the microstructure and 
mechanical properties to ensure reliability and lifetime, since these present different properties from 

bulk materials. 

Thin films manufacturing (chemical vapor deposition, physical vapor deposition, micromachining, and 
others) involves demanding instrumentation to achieve dimensional and mechanical conditions which 

should be controlled depending on the industrial applications; for this purpose, different materials 
such as metals are used, for example, semiconductors and dielectric materials (Ohring, 2001; Setter 
et al., 2006; Charitidis, 2010). However, evaluating the mechanical properties is a difficult task since 
the materials in small dimensions restrict the implementation of standardized tests appropriate for 
bulk specimens. 

Figure 1.1. SEM sketch of a micro-gear Guo et al. (2009) 

Several experimental techniques to determine the mechanical properties of thin films have been 
developed; among them deflection techniques, nanoindentation, diffraction-based techniques, 

Raman spectroscopy, etc. (Mitchell et al., 2003; Poelma et al., 2011). The relative advantages and 



disadvantages of all the methods and techniques mentioned have been discussed in the literature 
(Nix, 1989; Huang et a l v 2007; Zhang et a l v 2015). Nevertheless, some mechanical tests are 

highlighted; one of these is the bulge testing, a deflection technique that has been well-accepted to 
characterize the mechanical properties of thin films. The advantages of this technique are given by its 

easy experimental implementation, monitoring of the transverse loading over the f i lm, and the use of 
simplified analytical models dependent on the maximum deflection resulting from the bulged process. 

On the other hand, some disadvantages can be mentioned as uncertainties in the computation of 

mechanical properties and constant calculations since its values differ among authors. 

The bulge testing technique is based on applying gas or liquid pressure to deflect a membrane with 
the aim to produce a bulged region (Sheng et al. 2017; Lu et al., 2013) as shown in Figure 1.2. The 

relation between pressure and curvature of the membrane is called load-deflection dependence. It 
was described by Beams (1959) in 1959 in one of the first models performed for a semi-spherical 

membrane made with gold and silver. However, the models exhibited several limitations in identifying 
properties that were contrasted and analyzed numerically via finite element analysis by Small & Nix 

(1992). Tabata et al. (1989) reported an analytical model for rectangular films, but Vlassak & Nix (1992) 
developed new expressions obtained from the energy minimization technique to describe the bulge 
test in rectangular and square membranes. They showed that Young's modulus and residual stress 
can be obtained by applying least-square regression with experimental data in a simple way. Also, 
Poisson's ratio was determined from two different membranes with a sufficiently large aspect ratio 
between them. The constants involved in the mathematical models are computed by analytical 
solutions (Tabata et al., 1989; Vlassak & Nix, 1992) and finite element approximations (Pan et al., 

1990). These solutions provided a reliable basis for determining elastic properties f rom load-deflection 
curves since the properties obtained analytically can be inaccurate by selecting input parameters. 
Maier-Schneider et al. (1995) confirmed the results obtained by Pan et al. (1990), showing that some 
parameters determined analytically were not computed accurately, which led to higher differences 
between experimental and calculated curves. Both approaches (i.e. analytical and numerical) 
presented advantages and limitations for the characterization of elastic properties using bulge testing. 
But, according to the bulging theory, the Load-deflection model shows that Young's modulus and 

Poisson's ratio are coupled, which means that different pairs of solutions (E and v) satisfy the 
experimental results with great exactness. It indicates that in a traditional bulge testing analysis, only 

a combination of these two elastic properties could be determined; therefore, there is not a unique 

solution to solve the problem. This can be verified from the analytical Equation by the number of 
independent parameters involved if both elastic parameters are unknown. In this sense, there is an 
opportunity to improve the current elastic-plastic models or the methodology for characterizing 

mechanical properties (Maier-Schneider et al., 1995, Xiang et al., 2005, Schweitzer & Goken 2007). 

This means to calculate other mechanical parameters evidenced in the plasticity (Xiang & Vlassak, 
2006; Nicola et al., 2006), buckling (Mei et al., 2007; Ghanem et al., 2017), and fracture (Merle & 

Goken, 2011; Preifs et al., 2017). 

Analytical solutions are more suitable for evaluating properties by their simplicity; however, the 

development of new models was interrupted by the expansion of finite element solutions in the last 
decades. Finite Element Method (FEM) is a powerful tool that has been widely applied in engineering, 

which allows performing parametric studies with great accuracy. In the case of bulge tests, several 



studies have shown its applications in the analysis of thin films (Mitchell et al., 2003; Xiang, et al., 
2005; Paul & Gaspar 2007; Yanfei, et al., 2017). The disadvantage of using FEM is the time-demand in 

the computations and the scalability for a high number of experiments that will need to be 
reproduced. 

The simulation of the bulge testing by finite element analysis appears to be that is not a difficult task 

by the conditions of the bulging problem since the geometry of the thin films usually are regular, which 
allows reducing the size of the models by the symmetries. This reduction positively impacts the 

calculations because the number of elements is minimized considerably. Additionally, the boundary 
conditions are delimited to applying fixed support, residual stress, and internal pressure. The 

determination of the elastic properties is carried out through a reversal engineering process, which 
means that the bulging experiments are reproduced in the simulations or these are determines by 

equations, as in the case of analytical solutions. Many authors developed FEM simulations in their 
studies (Pan et al., 1990; Maier-Schneider et al.,1995; Santos et al., 2010; Shafqat et al, 2018; Rontu 

et al.; 2018), but the procedure details are not precisely described, which is not a guarantee of 

obtaining unique solutions for the problem. As discussed before, different combinations of E and v 
can reproduce the same load-deflection curve since the bulging analysis is a mechanically coupled 
problem. However. The challenge is to determine the pair of elastic parameter that satisfies the 
kinematic of the f i lm, which is experimentally characterized. 

Figure 1.2. (a) Bulge test setup, (b) Circular Bulged membrane. This image was taken and modified 
from Elahi etal. (2019) 

The present thesis focuses on consolidating several numerical methods to determine the mechanical 

properties of thin films by applying bulge testing, analytical solutions, and finite element analysis. The 

following main topics were developed in this thesis: 

• Two different numerical approaches are presented and assessed to estimate a set of 
optimal solutions for the elastic properties (E and v), which can be computed using two 

thin films with different geometries (square and rectangular) or using each experimental 
data set by separated. 

• For square thin films, equations to represent the equi-biaxial stress state (central point) 

for freestanding square thin films were developed, applied, and validated with 



experimental data. In order to validate the applicability of the proposed equations, 
numerical and experimental data were presented for the linear elastic analysis, and two 

examples were developed to characterize elastoplastic behavior (bilinear and nonlinear) 
f rom load-deflection curves. 

• Calculations of the fracture toughness were carried in pre-cracked thin films applying 

solutions based on sub modeling of finite element analysis. The problem was divided into 
two stages; the first stage was developing the numerical model on the whole film without 

pre-crack (elasto-plastic analysis), and the second stage was performed on a fi lm portion 
that included the pre-crack (sub-modeling stage). Three different notches (rounded, 

sharp, and V-sharp) were applied to calculate the stress intensity factor around the crack 

tip using path independent J-integral. 

• A methodology to detect plasticity and estimate the yield stress from bulge testing using 
finite element analysis was developed. The methods to determine the plasticity 

parameters are based on the load-deflection relation that presents a linear behavior in 
the elastic regime when scaled with the displacement parameter. The plastic deformation 

induces nonlinear effects that allow determining the elastic limit of the f i lm, as 
demonstrated in our research. 

• For the Bi-layer thin films, the calculations of the elastic and plastic properties were 
developed to understand the effects of the substrate over the second deposited thin f i lm. 
Again, bulging experimental data were used as input parameters. 

1.2 T h i n f i l m s m a n u f a c t u r i n g 

The development of new technologies in the last years and the high demands by the 
applications from industries of semiconductors, micro-electromechanical systems (MEMS), surface 
engineering, microelectronics have boosted the advance of new materials in the shape of thin films as 
well the understanding of its behavior in micro-scale, and nanoscale. The thin films can be defined as 
structures made of solid layers of a material which presents in one direction a thin thickness (micro 
and nano) in comparison with the other directions that can be in orders of magnitude of millimeters. 

There are different processes for manufacturing these structures onto substrates; these produce films 

with thickness from a few microns until atomic scale (Leskela & Ritala, 2002; Huang et al. 2004; Puma 
et al., 2008). A critical characteristic of the thin films is the difference in the physical properties 

between three-dimensional (bulk shape) and (thin fi lm shape) two-dimensional states of matter, for 

example, the variation in the conductivity, changes in thermodynamic properties, or the chemical 
reactivity, which can be in function of the thickness. 

In this section, preparation techniques of thin films are discussed and divided into three main 

processes, as follows: chemical vapor deposition (CVD), physical vapor deposition (PVD), and 

micromaching. 

1.2.1 Chemical vapor deposition (CVD) 

Thin films obtained by Chemical Vapor Deposition (CVD) are manufactured from a chemical reaction 

between a substrate and a gas or by two gases, as shown in the scheme of Figure 1.3. In this process, 



two typical chemical reactions are produced, which are oxidation or nitridation. As a result of these 

processes, the thermo-physical-chemical conditions determine the final membrane properties (Puma 

et al. 2008; Kim et a l v 2011; Liu et al., 2015). 

Figure 1.3. (a) Schematic of a typical CVD system with a horizontal tube reactor, (b) Higher magnification SEM 
micrograph of Sn02 thin film, showing each individual particle is less than 30 nm Liu et al. (2005). (c) Cross-

sectional view of Sn02 sensor Liu et al. (2005). 

The technique is based on the deposition of chemical reactants in the vapor phase on the surface of a 
thermal heated solid substrate to achieve the continuous growth of a solid membrane. By using a CVD 
process; amorphous, poly- or single crystalline or epitaxial thin films can be deposited respectively 
(Obraztsov et al.,2007; Wang et al., 2014) 

In low pressure (lower than 1 bar), there are obtained films with a low density of defects and uniform 
thickness. In the case of Plasma Enhanced, the deposition rate at low-temperature increases caused 
by the reaction with plasma. Both processes yield materials wi th an amorphous structure (Puma et 
al. 2008; Larsen, 2015). 

Figure 1.3a shows characteristic equipment used in the CVD process, which is composed of a chemical 
precursor source (gas, liquid or solid), a gas transport line, a thin fi lm growth chamber, a gas 

dispersion shower, a substrate (wafer); as well as different thermomechanical devices as valves, 

vacuum pumps, mass flow controller (MFC), a chemical trapping equipment and other elements 
(Morosanu, 2016). 

Thin films produced by CVD are extensively studied due to a considerable number of applications and 
properties; for example, materials as t i tanium aluminum nitride (TiAIN material, see Das et al., 2017) 

presents opt imum hardness, wear resistance, higher corrosion strength, low thermal expansion and 

high conductivity in the shape of the thin f i lm. Important materials as Graphene and others applied 
in solar cells are obtained via CVD. In the semiconductor industry, CVD processes are used to 

synthesize 2D materials. 

1.2.2 Physical vapor deposition (PVD) 

Physical Vapor Deposition (PVD) is a technique to synthesize thin films (material in layers) using an 
intense energy input into a pure solid material to form a vapor that can be condensed in layers on a 



substrate in ultra-high vacuum (UHV). UHV refers to pressures that are on the order of 1 x 10-8 Torr 
or less. Vacuum is one of the essential parts in the fabrication process of thin films by PVD. Different 

PVD processes are commonly used, as sputter deposition, arc vapor deposition, vacuum evaporation, 
and ion plating (Hagerty, 2016; Gao et al., 2015). 

In PVD processes, atoms or molecules are ejected from a target material (solid or liquid) through 

bombarded energetic particles. Figure 1.4a illustrates a schematic drawing of a sputtering system 
inside a vacuum chamber connected with the exterior by electrodes. Typically, the chamber walls act 

as an anode, whereas a target, made of the material to be deposited (see figures 1.4b and 1.4c), is 

connected to the negative terminal of a power supply and serves as the cathode (Reichelt & Jiang, 
1990). The object to be coated (the substrate) is placed in front of the target. The substrate can be 

biased or at a floating potential. An inert working gas such as Argon is introduced into the chamber to 

form plasma. The Ions of the active gas are accelerated towards the target by the electric field 
between the electrodes (Mattox, 2010). 

(a) 

Vacuum pumps 

Figure 1.4. (a) Schematic of a typical PVD system with a horizontal tube reactor. Images (b) and (c) obtained 
by Gao et al. (2015) evidence SEM micrographs of the deposited material. 

1.2.3 Micromachining 

Micromachining is a technique used to manufacture and modify thin films utilizing ultrafast lasers. 

These are employed to perform high precision surface micromachining and 3D internal structural 
modification in different dimensional scales (Giorleo et al., 2016; Pecholt et al., 2008). Figure 1.5a 

illustrates a scheme of the process of surface micromachining. 

Ultrahigh laser intensity is able to produce localized material ablation in ultrashort timescale 

modifying the superficial and internal shape of a structure composed of thin layers. In principle, 

micromachining deals with adding layers onto a wafer surface that is marked to carry out a sacrificial 
etch step to release a miniaturized functional device that becomes a freestanding structure. In the 

process, the laser removes material through the thickness of the films minimizing the thermal impact 
on the sacrificial layers, the substrate, and adjacent films (Giorleo et al. 2016; Laconte et al. 2004). 

Due to the short t ime that the laser is applied, the heat accumulated in the substrate is proportional 
to the irradiation t ime. 



Figure 1.5. (a) Schematic surface micromachining process steps, (b) Single and cumulative laser cycle profiles 
tests Giorleo et al. (2016). (c) SEM view of an array of 10 Im wide cantilevers built in ON Laconte et al. (2004) 

The irradiation t ime of the laser can be controlled employing a fast beam motion which can be applied 
either in continuous wave (CW) or pulsed mode. A broad spectrum of materials can be processed by 

surface micromachining as polymers, glasses, ceramics, metals, and alloys used as either structural, 
sacrificial or electrical (conductive and insulative). Two examples are shown in Figure 1.5b and 1.5c. 
Some processing requirements are necessary for the application of micromachining; these are; 
material processing compatibility, mechanical integrity between layers, and etch selectivity. Different 
surface or bulk micro-machining processes are mainly based on lithography, chemical or plasma 
etching, printing, and molding (Under et al., 1992; Kim & Meng, 2015). 

1.3 M a n u f a c t u r i n g a d v a n t a g e s o f t h e t h i n f i l m s 

Thin films in comparison in comparison with bulk materials, present some unique advantages, for 
instance: 

• Electrical properties such as ferroelectric, piezoelectric, and magnetostrictive can be modified 
at the nanoscale since the coupling mechanisms can be controlled through the dimensions. 

• Thin films can be deposited to create composites materials with the advantage of avoiding 

interface losses as in the bulk form. 

• Thin films can be created by combining different structures with crystal lattices very similar, 
which generates composite films with superlattices. The development of these structures 

helps to understand the physical coupling at the atomic scale (electro-mechanical, thermo-

mechanical, magneto-electrical, among others.) 

• Thin films allow a better comprehension of the optical effects of the materials by the 

dimensional control of the manufacturing process. 

• Properties such as ruggedness, durability, and excellent electronic properties are one of the 
best advantages of thin films. 



1.4 T h i n F i lm Cha rac te r i za t i on by m e c h a n i c a l t e s t i n g 

In the structural design of micro- or nano-devices, the material properties represent a fundamental 
issue for describing the behavior of these small-scale structures. During the last decades, different 

experimental techniques have been developed with the aim to characterize the mechanical properties 
of thin films, which are briefly explained in this section. 

1.4.1 Bulge testing 

The bulge testing is a technique used to calculate some mechanical properties of thin films, such as 
Young's modulus, Poisson's ratio, residual stresses, fracture toughness, creep, among other properties 

(Xiang, & Vlassak, 2006; Zhou et al, 2008; Merle & Gbken, 2011; Yanfei et al., 2017). In principle, it 
consists in applying a uniform pressure over one side of a freestanding thin fi lm window which causes 

a deflection outwards represented by non-uniform curvature as depicted in Figure 1.6a. The relation 
of both physical quantities is commonly called in the literature as load-deflection relation which is 

governed by the residual stresses and the elasticity, as shown in Figure 1.6b. 

Circular and rectangular membranes (particular aspect ratio) have been extensively employed in the 

bulge test applications since the bulged films present an approximated curvature similar to the 
curvature of a hemispherical cap (Rontu et al., 2018) and an infinite cylinder (Marandi et al., 2017). 
Therefore, the stresses and strains are calculated on the maximum deflection point ( w 0 ) with 

simplified equations. Applications on square thin films are not popular since simplified models for 

stresses and strains are not available, and their computations have been determined through finite 
element analysis. 
Bulge testing was described and reported as an experimental method by Beams (1959), which is 
considered as one of pioneer's work done in the mechanical properties identification of thin films (gold 
and silver). Nevertheless, in the beginning, the bulge test presented some limitations due to the 
problems associated with the sample processing, handling, and data analysis as discussed by Xiang et 
al. (2005), nevertheless with all this, it is considered as one of the earliest micromechanical tests 
(Tabata et al., 1989; Vlassak and Nix, 1992; Maier-Schneider et al., 1995). 

All technical difficulties were overcome through time by using sophisticated equipment with which 
high accuracy measurements can be obtained currently (Min et al., 2017; Shafqat et al., 2018). In 

Figure 1.7 is illustrated a typical scheme of the necessary elements to carry out bulge testing. Almost 

Figure 1.6. (a) Bulge testing scheme, (b) load deflection curve 



all bulge test apparatus is designed with the following principal elements; a sample holder, a pressure 
system, a deflection measurement system, and a data acquisition system (Tabata al., 1989; Xiang et 

al., 2005; Walmsley et al., 2007). The pressure system is controlled by an actuator or a control valve 
that introduces liquid or gas in a pressure chamber to get a differential pressure over the thin f i lm. 

Additionally, optical methods are the most commonly used techniques to quantify membrane 
deflections. Deflections are measured by interferometric systems that use He/Ne laser as a light 

source to determine through a single-mode optical Newton interference fringes detected by a CCD 

camera as illustrated in the displacement field in Figure 1.7 (Walmsley et al., 2007). Other techniques 
use systems based on high-resolution optical profi lometry (Ghazi & Kysar, 2016, Shafqat et al., 2018), 

among others (Schweitzer & Göken, 2007; Vucetic et al., 2011; Min et al., 2017). Additionally, in Figure 
1.7, there are presented typical experimental curves of load-deflection. 

Fringes detected by a CCD camera Typ ica l load-def lec t ion curve 

Norma l i zed m a x i m u m def lec t ion 

Stepper Motor Control Signal Data Acquisition Martins et al (2009) 
(Displacement Rate Control) & Motor Control 

Figure 1.7. Typical apparatus used for bulge testing (modified scheme from original reported by Xiang et al. 
(2005)). Images included were taken from works published by Walmsley et al., (2007), Martins et al. (2009) 

and Lu et al. (2013). 

In most cases, Silicon nitride (Si3Nx) is coated and used as the main substrate, and it is a thin material 

layer deposited on top or bottom of the Si wafer. In Figure 1.8a, there are described the basic steps 

for producing a freestanding thin film of Si3Nx. In the last step, Si wafer is anisotropically back etched 
through its thickness to obtain a typical window in the sample, as shown in figures 1.8b and 1.8c. To 

produce multilayer thin films are applied the same procedures, only that the deposition is carried out 
with different materials. 



(a) 

Film deposited 

Thin film 

/ Window etch \ 

Figure 1.8. (a) Steps for manufacturing a freestanding thin film, (b) Rectangular window in a silicon wafer, image 
provided by Peckys et al. (2009). (c) Square window in a silicon wafer, image provided by Martins et al. (2009). 

Freestanding thin films are prepared to apply standard procedures (Ghazi & Kysar, 2016) of deposition 

(see section 1.2) that are applied over Silicon wafers with (100) orientation usually (Xiang et al. 2005). 
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Figure 1.9. (a) Finite element simulation of bulge test for a bilayer circular film, image obtained by Marandi et 
al. (2017) (b) Displacement field obtained by finite element analysis that illustrates a deflection of 2.68um for a 
quarter of a bilayer square membrane (1.2mm) under a pressure 6894 Pa (image taken from Orthner et al., 
2010) 

Finite element method (FEM) has been extensively used to characterize mechanical properties of bulk 

materials, but in bulge testing (thin films see Figure 1.9) the analysis has been focused on the 
validation of the analytical models and experiments (Vlassak & Nix, 1992, Maier-Schneider et al. 1995, 

Xiang et al. 2005). It means that finite element analysis is carried out with the identified properties, 
this have led to realizing simplified correlations among the numerical and experimental results 

(Orthner et al., 2010; Zhang et al., 2015; Sheng et al., 2017). The identification of mechanical 
properties by FEM is not an easy task since the calculations require iterative procedures that should 

satisfy the experiments if the properties are unknown. Another relevant aspect that has been ignored 

in thin films bulging problem is the elastic coupling between Young's modulus and Poisson's ratio. 
Since one of these parameters should be known traditionally, this point is considered a limitation for 

the numerical and theoretical analysis. 



1.4.2 Nano and micro indentation 

Nanoindentation and micro-indentation are techniques used to determine elastoplastic and t ime-

dependent mechanical properties in small material volumes, in bulk form, and in thin films (Xu & 

Rowcliffe, 2004). The principle of the technique is to perform a penetration depth on the material with 
a marker by means of a controlled load (see the scheme of Figure 1.10a). When the load is removed 

gradually, the load-displacement relation exhibits the stiffness of the material. The applied forces can 
have an order of magnitude in micro or nano newton and displacements in micro, nano, or angstrom. 
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Figure 1.10. (a) Scheme of indentation process (loading and unloading), (b) Typical graph of indentation 
process, (c) Atomic force microscopy image of height cross-sectional (image modified and taken of Moharrami 

& Bull (2014) (d) Height of the demarked lines in the image c (graph taken from Moharrami & Bull (2014). 

During the loading application, the material undergoes both elastic and plastic deformations as 
illustrated in the schemes of figures 1.10a and 1.10b. The penetration of the material is made with an 

instrument called indenter (tip) that can support the applied loads without remaining with permanent 

strains. The indenter can have different geometries as pyramidal (Berkovich or Vickers, see Figure 
1,10c and l,10d), spherical, conical, and cylindrical (Diez-Pascual et al., 2015). The indentation tests 
present some advantages with respect to the traditional tests done in bulk materials since they allow 

in situ testing of mechanical properties (Haggag, 1993; Deuschle et al., 2008; Prevost et al. 2011). In 

addition, the relative simplicity of the experimental setup, which is based mainly in an indenter, 
position control, load and displacements sensors, and a data acquisition system can be considered a 

favorable point in the implementation. Different approaches have been applied to analyze the 

mechanical properties of the load-displacement measurements (Doerner & Nix 1986, Pharr et al., 
1992). Several models have been proposed to determine the substrate effects for deriving the film 
properties from the experimental data. However, Oliver & Pharr (1992) published the most used 

method, which is considered a standard procedure for determining the hardness and elastic modulus; 

this work was originally based on the research done by Doerner & Nix (1986). The theory considers 



that the maximum loading point of the curve is used to determine the hardness, and the elastic 
property is computed from the unloading curve. The hardness ( H ) is defined as the mean pressure 

under the indenter (Huang & Pelegri, 2006) 

P (1.1) 
U max 

c 

where is the maximum load and curvature of the membrane and Ac is the projected contact 

area of the indenter tip with the material. The contact area is calculated from the geometry of the 

tip, which can be pyramidal, spherical, conical, or cylindrical. To determine the elastic properties, the 

initial slope (dP/dh) of the unloading curve (labelled as elastic slope in Figure 1.10b) is used for the 

calculations. Since the unloading only relates to the elastic response of the system, which is composed 

of contributions from the indenter, f i lm, and substrate. If the frame compliance is taken into account, 

the reduced modulus Er can be calculated as (Doerner & Nix, 1986, Pharr et al., 1992) 

4n (1.2) 
2jA 

In which S = dP/dh is the contact stiffness. This parameter reflects elastic response of the system and 

it can be wri t ten in general form as 

Er =f(EnEf, Es,Vi,vf,vs,h,t), (1.3) 

where subscripts i,f,s refer to indenter, f i lm and substrate, respectively. Different assumptions have 
been proposed to distribute the reduced modulus among elastic contributions done by the indenter, 
f i lm, and substrate with the aim to extract the elastic modulus of the thin f i lm. A wide review of 
literature that shows different considerations and analytical formulas was detailed by Wei et al. 
(2009). 

(a) (b) 
Experiment Simulat ion Experiment Simulat ion 

Figure 1.11. Comparison of real indentation experiments with simulations performed by FEM. (a) Image taken 
and modified from Eidel (2011) (simulation results show the height compared with a SEM image of the 

experiment), (a) Image taken and modified from Reuber et al. (2014) (simulation results show In-plane lattice 
rotation compared with the experiment done by Kysar et al. (2010). 

Finite element simulation is an appreciable method to describe indentation problem as it has been 
reported in different papers (Gan et al., 1996; Kysar et al., 2010, Eidel, 2011; Reuber et al. 2014) in the 

last two decades. FEM has been conducted for different purposes as to study substrate effects on the 
measurement of the mechanical properties of thin films (Xu & Rowcliffe, 2004), to investigate the 



complex stress and strain fields produced by indenter tip (Marchiori et al, 2016), and to identify the 
mechanical properties of the thin films among others (Alaboodi & Hussain, 2017). Figure 1.11 shows 

a comparison of real indentation experiments with simulations performed by FEM depending on the numerical 
approach these approximations can be close to the real mechanical behavior of the indentation. 

Indentation presents some limitations as other methodologies applied in the mechanical properties 
identification, as is the case of the bulge test. Poisson's ratios of the thin film and substrate are not 

explicitly given (unknown) in the majority of cases, and these are chosen from the properties of the 

bulk materials. Therefore, a combination of methods has been implemented to overcome this 
difficulty (Huang & Pelegri, 2006; Alaboodi & Hussain, 2017). 

1.4.3 Micropillar compression test 

Micropillar compression test is a technique based on the compression of a micro non-cylindrical 
column that is submitted to controlled loads used to investigate the mechanical behaviour of materials 

in the micro scale (Bei et al., 2008; Xiao et al. 2017), in Figure 1.12a is illustrated a basic scheme of the 

test. The size of the micropillar presents a significant role in the stress distributions, and therefore 
the length should be well defined to avoid bending effects. For other applications, the size of the 
diameter is reduced to improve the yield effects, and flow stresses (Dimiduk et al. 2005; Shan et al. 
2008) since the area decreasing produces higher stresses. 

The main element for the test is the fabrication of the micropillars; Uchic et al. (2002) introduced a 
process applying focused ion beam (FIB) milling, and this has been implemented and improved during 
the last few years (Grieveson et al 2012; Xiao et al. 2017). One example of a micropillar produced by 
a FIB process is illustrated in Figure 1.12b. For the force application on the micropillar, traditional 

nanoindentation devices are used for this purpose. With controlled forces, nominal homogeneous 
stress states can be developed through the pillar. This is considered an advantage versus to the 
nanoindentation test since the sharp indenter tip generates nonuniform stress states. This technique 
has opened up different study routes for the understanding mechanical behaviour of single-crystal 
metals, nanocrystalline materials, metallic alloys, and multilayer composites. 

Figure 1.12. (a) Scheme of a micropillar compression tests based on the image provided by Wang et al. (2016) 
(Finite element model of the micropillar and bulk base), (b) Deformed micropillars of Cu-Fe thin films (image 
obtained from Wang et al. (2016)). (c) Distribution of principal strains simulated for the Figure 1.12b (Image 

taken from Wang et al. (2016)). 



Finite element models have been developed to simulate micropillar compression tests in order to 

obtain characteristic information about the material behaviour as well the distribution of strain 

gradients inside the micropillars as shown in Figure 1.12c (Wang et al., 2016). 

1.5 Bu lge t e s t i n g : F u n d a m e n t a l t h e o r y 

From pressure and maximum displacements measurements determined in the bulge test, it is possible 
to estimate stresses and strains localized in the maximum deflection zone. The beam theory, and plate 

and shell theories are commonly used to relate the applied pressure with the maximum deflection w 0 

measured. For this purpose, let's consider a thin fi lm (rectangular geometry 2ax2b, where a>b; 
circular geometry r) pre-stressed by residual stress <xr and made of an isotropic elastic material that 
fulfills a linear stress-strain relationship. Under pressure P, the shape of the fi lm is defined by the 

bulged surface. In those conditions, a classical analytical solution that relates the maximum deflection 

w 0 and pressure P was established in the following way (Beams, 1959; Tabata et al. 1989; Maier-
Schneider et al. 1995; Xiang et al. 2005) 

at , Et , (1.4) 
P = Cl^Tw0 + C2(v,a/b) — wl 

a a 

Where Cl and C2(v,a/b) are constants that depend on the geometry and material parameters, 
represent the residual stress induced in the deposition process, t the thickness, and E Young's 
modulus. Different models and numerical estimations have been proposed for both Cl and C2(v,a/b) 
constants as described by Vlassak & Nix (1992), Maier-Schneider et al. (1995), Xiang et al. (2005), 

Schweitzer & Goken (2007) among other studies. From the theory analytical expressions have been 
proposed for both constants, which can be generalized by the following expression 

C2(v,a/b) = (a+/3v)/(l-v), (1.5) 

Equation (1.5) depends on Poisson's ratio v ; where a and p are parameters to be determined, 
different authors have proposed different constants for known geometries (Mitchell et al., 2003; 

Xiang, et al., 2005) and others have determined these with finite element analysis (Pan et al., 1990; 

Maier-Schneider et al. 1995). In the particular case of rectangular films, there are three cases to 
consider: square films, rectangular films with aspect ratio b<4a , and infinite long thin films b>4a. 
Vlassak and Nix (1992) demonstrated experimentally that the rectangular thin films with aspect ratio 

b>4a present the behavior of an infinite fi lm along the length. In Table 1.1 are listed the values 

assumed by several authors for square thin films and rectangular films with infinite long at the in­
direction. The reported values show a discrepancy between constants, demonstrating that there is no 

unique solution in determining the elastic properties. This coincides with a discussion wri t ten by 

Delfani (2018) for circular films subjected to the bulge test; In his paper also there are listed some 
constants (including his contribution), other constants were reported by Mitchell et al. (2003). 

Table 1.1. Values of constants Cl and C2(v,a/b) determined by several authors 
Square th in Film Rectangular thin f i lm b>4a References 

Q C2(v,a/b) Q C2(v,a/b) 

3.044 1.473-0.4 v 1.61 0.75-0.442 v Tabata et al. (1989) 



3.41 1.981-0.585 v — — Pan et al. (1990) 
3.393 1/(0.8-0.062 v ) 3 2 4/3(1+ v) Vlassak&Nix (1992) 
3.45 1.994-0.54 v — — Maier-Schneider et al. 

(1995) 
3.42 1.91(1-0.207 v) — — Bonnotte et al. (1997) 
3.56 2.03-0.568 v 2.1 1.994-0.54 v Youssef (2011) 

In the real applications, experimental data obtained for w 0 and p are adjusted by the least-square 

regression method to calculate <x r, E and some cases v (Karimi et al., 1997; Martins et al., 2009; 

Huang et al., 2018). In other situations, the deflection and pressure data are used to estimate Cx and 

C2(y,a/b) constants. Beyond that, in the bulging problem, the coupling between Young's modulus and 

Poisson's ratio has been neglected in the load-deflection analysis. One of the parameters is usually 

fixed to estimate the other elastic property, as demonstrated by Tinoco et al. (2018). To overcome 

these challenges, The combination of the analytical model wi th finite element analysis shows that 

both elastic parameters could be determined with better accuracy. 

The load-deflection model shown in Equation (1.4), also can be used to determine the elastic limits in 

the bulging problem; for example, if Equation (1.4) is divided by w 0 , it is possible to obtain the 

following linear relationship that permits define where the nonlinear effects introduced in the bulging 

process start, Equation (1.4) is reorganized as follows 

Y = Cl — j - + C 2 (v , a/b) — X, 
a a 

Where Y = P/w0 and X = w*. To establish an elastic limit during the bulge test, Equation (1.6) should 

satisfy the linear relation. If there is deviation with respect to the linear part, it indicates that nonlinear 

material effects are introduced in localized regions of the f i lm. Deviations will define the pressure 

limit in which plasticity effects are introduced in the bulged membrane. For the material description 

of a bulged membrane, stresses and strains can be determined in the location of the maximum 

deflection, which is dependent on the curvature formed by the bulged fi lm (Shih et al., 2003; Xiang et 

al., 2005; Neggers et al., 2012). From equilibrium equations determined by Hill (1950), the stresses are 

simplified on the maximum deflection at x-direction as 

XX . 7 

where is the curvature of the bulged thin f i lm. The curvatures are related to deflection produced 

by the bulging effec which depends on the final geometry after deformed. Strains can be determined 

from the definition (Ventsel & Krauthammer, 2001) as follows 

du l(dwA (1-8) 
1 - 4 - S - u> ax 2\ ax 

Where s0x is the initial strain and u is the displacement field at the x-direct ion. Equations (1.7) and 

(1.8) have been applied for thin films with rectangular and circular shapes. For rectangular membranes 

with aspect ratio b>4a wi th size of 2ax2b at x-y plane, the stress and strain are calculated with 



the following simplification; when the fi lm is deflected, its shape is assumed to be a cylindrical 

structure, allowing the curvature estimation. Therefore, stress and strain are computed as 

P(a 2+w 2) 

and 

(« 2 + % 2 ) 
2awn 

2w0t 

arcs in 
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Ka 2 + w 2 j 

(1.9) 

(1.10) 

The stress state at the maximum deflection point is equi-biaxial very; these are described by Marandi 
et al. (2017) and Sheng et al. (2017). Circular thin films are very adequated for bulge testing since the 
spherical cap model allows to simplify the analysis; in the case of w<s.a the stress-strain relations are 
calculated as 

a • 
Pa 

4wt 

2w 2  

3a 

(1.11) 

The equations shown for calculating elastic parameters are advantageous in the characterization 
process of thin films. But, when the materials present hyperelastic behavior, other theoretical models 
should be considered to complement analytical models used for bulge testing, for example, neo-
Hookean, Arruda-Boyce, Gent, and Fung models (Sheng et al., 2017). 

Thin films can be made multilayer, which means that each layer can be of different materials. The 
calculations for this configuration depend on the relation between the thickness and the material. 

However, equation (1.4) satisfies the kinematic and static conditions generated over the composite 
f i lm, only if its behavior is in the linear regime. A simple formula is expressed to relate the Young biaxial 
modulus of each layer wi th the global elasticity of the composite thin fi lm (Shojaei and Karimi, 1998; 

Martins et al., 2008; Lau et al., 2012) as follows 

- - t - L - t (1-12) 
Ec=El± + E2^ + ... + En^, 

t t t 

Where Ec =Ec/(l-vc) is the global composite Young modulus, and f = X / , ' s t n e t o t a ' multilayer 
thickness. Equation (1.12) also can be expressed in terms of the residual stresses ar. Several authors 

have applied the multilayer models for mechanical characterization of thin films by bulge test (Small 
et al., 1994; Martins et al., 2008; Marandi et al.,2017). However, in multilayer thin films, the 

manufacturing process affects the determination of mechanical properties since when an additional 
layer is deposited, the interfacial stresses deform and modify the stress distribution inside these 

(Zhang, 2008). This concept was introduced by Stoney (1909) which developed the first equation for 

assessing the stresses in a thin fi lm fabricated on a substrate (bilayer configuration), Stoney's equation 
is represented by the curvature as 

(1.13) 



Where ff is the force of the deposited fi lm on the substrate, Es = Ej(l-vs) is the substrate's biaxial 
elastic modulus, hs is the thickness of the substrate. Equation (1.13) is rewritten considering the 

residual stress cr r ( / ) of the f i lm, which is reorganized as 

_kE h 2 (1-14) 

Equation (1.11) is assumed on the following considerations, which were summarized by Freund & 

Suresh (2003); (a) thicknesses are small compared with the lateral dimensions; (b) the deposited thin 
fi lm thickness is much lower than the substrate thickness; (c) the substrate is considered a 

homogeneous material, isotropic, and elastic; (d) the edge effect is invariant in the substrate which 

means that is not debonding effect considered; (e) Stresses along the thickness are neglected; and (f) 
the strains and rotations are considered infinitesimally small. Considering that the assumptions 

mentioned above present limitations in the Stoney model's applicability, several authors developed 
different models to include other mechanical effects in the interaction between the substrate and the 

deposited f i lm. Chou et al. (2011) describe analytical models that represent extensions of Stoney's 
model. 

1.6 E x p e r i m e n t a l s e t u p f o r bu lge t e s t i n g 

For the experiments, bulge test equipment was constructed in-house for testing thin films as shown 

in Figure 1.13a. The test specimens are commercially available silicon nitride (Si3N<i). For the 

experiments, membranes of Si3N4 monolayer of 2x2 mm and 3.5x1.5 mm were used. 

Figure 1.13. (a) Experimental setup for bulge testing, (b) scheme of the bulge test apparatus, (c) Image 
of the thin film (SiaINU) and Si frame, section A-A. (d) reconstructed displacement field of bulged thin 

films. 



Having thicknesses of 500/im and lOOnm for square and rectangular membranes, respectively. These 

were bonded along its periphery to a supporting Si frame that acts as sample holder as illustrated in 

Figure 1.13b and labeled as section A-A (see Figure 1.13c). The principle of the test is to apply a 

differential pressure on a free-standing membrane and to measure the membrane shape in the form of 

a displacement field for each pressure increment. 

The differential pressure is applied using an industrial-grade piston that presses the air by a computer-

controlled syringe pump. Pressure is measured by the pressure transmitter with a maximal error of 

60Pa connected to a data acquisition system. The shape of the membrane is measured using an 

interferometric system (Twyman-Green interferometer) in which the light source is a fiber-coupled 

HeNe laser with wave-length of 633nm. The beam is split into a measuring beam reflecting off the 

measured sample and a reference beam reflecting off a reference mirror wi th high surface flatness of 

A/10. The measuring beam interferes with the planar reference beam at the interferometer's output, 

forming interference fringes projected onto the camera sensor using an objective (Nikon 50mm f/1.4 

NIKKOR G). Interference signals captured on each camera pixel are then used to establish the 

displacement field of the z position of the thin f i lm. The number of x-y points for which the z position 

is measured depends on the membrane size and geometry but usually exceeds 40000. For the 

experiment, 10 -15 measurements per second of membrane shape and pressure are stored. In Figure 

1.13b the scheme of the experimental setup is shown. Figure 1.13d represents the reconstructed 

shape of experimentally measured deformed membranes. It demonstrates that an interferometric 

configuration permits a precise capture of the whole shape of the membrane. The testing device is also 

equipped with sensors to measure ambient temperature, pressure, and humidity to calculate the air 

refractive index. Constructed bulge test apparatus is described in detail in Holzer et al. (2017a). 

Working principles, theory and applications of bulge testing can be found e.g. in Yang et al. (2008). 

1.7 S t a t e m e n t o f t h e p r o b l e m 

Thin-film manufacturing involves demanding instrumentation to achieve dimensional and mechanical 
conditions, which should be controlled for industrial applications, especially those related to 

microelectronics (ultra-large-scale integrated circuits), microelectromechanical systems (MEMS), 

nano-devices, coating applications, biomedical devices, among others (Gunda et al., 2017). Therefore, 
the knowledge of the mechanical properties is essential for the field of miniaturization, especially if 

these will be subjected repeatedly to deformations by bending, folding, rolling, twisting, stretching, 
thermal cycling, and compression stresses. Furthermore, the importance of their characterization lies 

in understanding the influence of the mechanical properties to improve the reliability in engineering 
applications. 

The assessment of mechanical properties in thin films is considered a difficult task since the small 
dimensions do not allow the use of well-known standardized tests, which means applying 

appropriated testing methods for bulk specimens. Furthermore, the residual stresses in thin films will 
influence the uniaxial tests (traditional test for bulk materials) doing that the characterization of the 



material presents a dependency of this parameter. This factor demonstrates that the mechanical 
properties depend on its manufacturing process (thermal growing, vapor deposition, etc.). Therefore, 

determining their properties leads to experimental challenges to guarantee the reliability in the 
dimensional scales, micro, and nano in some cases (Xiang et al., 2005; Xiang & Vlassak et al., 2006). 

There are two types of prepared thin fi lm specimens; those as-deposited on substrates and others in 

freestanding conditions (removed substrate). Both present advantages and disadvantages depending 
on the experimental approach used to extract its intrinsical properties (Kraft & Volkert, 2001; Gunda 

et al., 2017; Matějka et al., 2020). For this purpose, several experimental techniques have been 
developed to determine several properties of thin films as nanoindentation, diffraction-based 

techniques, Raman spectroscopy, deflection techniques, among others (Mitchell et al., 2003; Poelma 
et al., 2011). The relative advantages of all the methods mentioned have been discussed in the 

literature (Nix, 1989; Huang et al., 2007; Zhang et al., 2015), highlighting the benefit of one of the 
methods for easy implementation called the bulge testing. This technique is considered one of the 

most promising methods for characterizing the mechanical properties of thin films since analytical 

models allow the calculation of mechanical parameters using experimental data. Bulge testing is a 
well-known technique for studying several mechanical properties of thin films (Lin et al., 2014) in 
which are the residual stresses, Young's modulus, Poisson ratio, fracture toughness, among other 
properties (Mitchell et al., 2003; Wei et al., 2009; Orthner et al. 2010; Merle & Goken, 2014; Tinoco 

et al., 2020). Their implementation is considered a practical process since, compared with different 
techniques, there are less sophisticated technical procedures to be adopted. 

The bulge test technique is based on applying gas pressure to deflect a membrane and produce a 
bulged region (Lu et al., 2013; Sheng et al., 2017). The relation between pressure and curvature of the 
membrane is called load-deflection dependence. This relation is used to characterize mechanical 

properties under specific controlled conditions. The effects of the applied pressure, which are 
reflected in the kinematics of the f i lm, and these are depending on its intrinsic properties; such as the 
geometry, the material properties, and the residual stresses (Beams, 1959); Small & Nix, 1992, Lee et 
al., 2007; Min et al., 2017; Tinoco et al., 2019). The variation of these parameters influences the 

kinematics of a bulged f i lm; it refers to the changes in the displacement field, strains, and curvatures 

by the loading increments as detailed in one of the earliest works developed by Hill (1950). 

In the bulging process, stress-strain distributions are developed over the stretched surface, and their 
calculations are estimated on the maximum deflection point with the classical equations (Vlassak & 

Nix, 1992; Xiang et al., 2005; Huang, 2007; Lu et al. 2013; Tinoco et al., 2018a). For these 

computations, two types of specimen geometries are preferred: i) circular ones treated within a 
spherical cap model (Small & Nix, 1992; Schalko et al., 2011; Zhang, 2016); ii) Rectangular films with 
aspect ratio 1/4 are the most used since the curvatures are approximated by a cylindrical profile (Xiang 

et al., 2005; Javed et al., 2016; Shafqat et al., 2018). For both geometries, the stresses are predicted 

at the location of maximum deflection, which depends on pressure and their local curvatures (Chang 
et al., 2009); this means that quasi-static (pressure) and kinematic (deflection field) parameters should 

be previously known. One of the first models performed for a spherical membrane (Beams, 1959) 
described these aspects. However, Beams (1959) model exhibited several limitations in identifying 

properties, which was corroborated numerically via finite element analysis by Small and Nix (1992), 



posteriorly. Zhang (2016) reviewed theoretical models for clamped circular plates and membranes; 
he presented several models with different assumptions to predict the bulging problem. Zhang (2016) 

demonstrated that other analytical approximations violate, in some cases, the clamped boundary 
conditions. Therefore, fourth-order models were derived, and the analytical solutions consider the 

Poisson's ratio as a variable and not as constant. 

For rectangular films, Tabata et al. (1989) reported an analytical model, but Vlassak and Nix (1992) 
developed expressions obtained from the energy minimization technique to describe the bulge test in 

rectangular and square membranes. They showed that Young's modulus and residual stress could be 
obtained by applying least-square regression with experimental data in a simple way. Also, Poisson's 

ratio was determined from two different membranes with a sufficiently large aspect ratio between 
them. Constants involved in the models were computed by analytical solutions (Tabata et al.,1989; 

Vlassak and Nix, 1992) and finite element approximations (Pan et al., 1990). This procedure provided 
a reliable basis for determining elastic properties from load-deflection curves since these obtained 

analytically were inaccurate. Later, Maier-Schneider et al. (1995) confirmed Pan et al. (1990) results, 

showing that some parameters obtained analytically were not computed accurately, which led to 
more significant differences between experimental and calculated curves. Furthermore, Maier-
Schneider et al. (1995) presented a kinematic analytical model for the deflected surface as an 
extended model by Timoshenko and Woinowsky-Krieger (1959), which depends on the maximum 

displacement only. The proposed kinematic model was not used in direct applications to determine 
mechanical properties, but in this thesis, the computations of curvatures and strains were applied to 
estimate the stress field using Maier-Schneider et al. (1995) model since this model bring a better 
approximation. However, the deflection models are used in other problems related to plates and 
membranes, as is the case of Zheng et al. (2015) that presented a new deflection shape function that 
predicts the deflection profiles of Capacitive micromachined ultrasonic transducers (CMUTs) for 
rectangular membranes. The predictions profiles showed excellent agreements with finite element 
analysis results. But, in bulge testing, the deflection models have been limited since for rectangular 

membranes, the deflection shape is very approximated to a cylindrical shape considering the 
membranes with an aspect ratio higher than 1:4. 

In the case of square thin films, there are no reported, neither validated numerically and 

experimentally analytical models, intending to estimate the stresses and strains since the curvature 

computations have not been made available for these films. However, experimental evaluations have 
been reported for their determination (Chang et al., 2009; Neggers et al., 2014). The lack of an 
adequate deflection field presents a limitation for estimating properties since these depend directly 

on the stresses developed by the bulging effect. Furthermore, the curvatures have not been 

predefined in square thin films since the kinematic description of the bulged surface cannot be 
approximated with a regular shape. Nevertheless, the approximations often do not meet all 

requirements of a real bulged thin f i lm. Neggers et al. (2012a) mentioned that discrepancies in the 

results shown by different authors are attributed to erroneous considerations of the curvatures. For 
square films, the geometry of the bulged surface deflection is more complicated than a simple 
cylindrical shape, as in the case of rectangular films. Neggers et al. (2012b) demonstrated the errors 

by calculating the local curvature maps at the boundaries through Digital Image Correlation (DIC) 

technique. It means that the validity of the bulging equations is subjected to specific regions inside 



the deflected surface. One question can be proposed for this challenge: how to approximate the 

curvatures in a bulged square thin film? 

It is well known that analytical models are more suitable if we take into account their simplicity in the 
evaluation of elastic properties, but the development of new analytical tools was stopped by the 

advantages of finite element solutions in the last decades. Both approaches (i.e. analytical and 
numerical) present advantages and limitations in the characterization process of elastic properties 

using bulge tests. Therefore, there is an excellent possibility of improving the analysis to determine 
properties using analytical and numerical tools. This thesis focuses on developing tools for 

determining the mechanical properties of thin films using bulge testing from a numerical and 
experimental approach. 

1.8 A i m s o f t h e thes is 

The objective of this thesis is to contribute towards the characterization of mechanical properties of 
thin films by the numerical modeling of mechanical tests. It implies developing new models to describe 

the mechanical behavior of monolayer and bilayer thin films in different scales and mechanical 
conditions that include elasticity, plasticity, and fracture. Bulge testing is a well-known technique in 
mechanical properties identification, however, some challenges have been found in the literature 
review of theoretical models developed in the last few years, since these are limited and simplified by 
the film geometry, the plasticity effects, and interaction between layers. 

The properties of the materials in form of thin fi lm are significantly different from these properties 
determined in bulk form, however, other materials can only be manufactured in this way. Therefore, 

new methodologies that permit to characterize these films is a topic that is in discussion and 
developing, currently. Additionally, some experimental tests carried out on thin films have shown 
difficult correlation between numerical models and experimental observations in some cases. To 
overcome these challenges, in the literature are found approaches that include theoretical models, 
numerical models and experiments. However, main effort is focused on the development of numerical 

and analytical tools. In this thesis not only elastic-monolayer thin films are studied but also bi-layer 

structures are in focus. Important issue is also identification of plasticity based on bulge test. 

1.9 Thesis o u t l i n e 

In this thesis, the chapters are organized and described as follows: 

Chapter two is based on a consolidation of a methodology to determine both elastic 
parameters (Young's modulus and Poisson's ratio) of silicon nitride (SÍ3N4) films using bulge 
tests, analytical solutions, and finite element analysis. A numerical approach is presented, 
which permits estimating a unique pair of solutions (E and v) using two thin films with 
different geometries, In the chapter is shown an study case using square and rectangular thin 
films. 

In chapter three, a numerical approach is presented for identifying the elastic properties of 
thin films. With one monolayer thin f i lm, the main contribution of this chapter corresponds to 



determining the Young's modulus and the Poisson's ratio. Experimental data and finite 

element solutions of commercial silicon nitrate (Si3N4) films were compared using the 

properties. 

Chapter four discusses constitutive models based on an analytical solution for the 
displacement field for calculating the stresses and strains in bulged films. In the validation 
process, practical applications were proposed to characterize elastoplastic material models 
using bulge tests and analytical approximations. Using the proposed deflection field, the 
curvatures are computed locally in linear and nonlinear material states. A finite element 
analysis was used to validate the presented models. 

Chapter five presents two study cases, one involving the finite element analysis of a 
freestanding Au thin f i lm, and the other examining the characterization of plastic parameters 
in an Al thin f i lm. Both cases were subjected to bulging tests. In the first case, the gold films 
were analysed to determine their elastoplastic properties and fracture toughness. The 
problem was divided into two stages; the first stage was developing the numerical model on 
the whole fi lm without pre-crack (elasto-plastic analysis). The second stage involved a portion 
of the film that included pre-crack (sub-modeling). By using path independent J-integral, three 
different notches (rounded, sharp, and V-sharp) were used to calculate the stress intensity 
factor around the crack tip. In the second study case, an Al thin fi lm was used as the study 
sample. It was subjected to cycling loading, which meant that different levels of pressure were 
applied during loading and unloading. With this methodology, it is possible to determine the 
elastic limit, yield stress, and other mechanical parameters involved in the bulge test. 

Chapter six describes a numerical methodology based on the combination of finite element 
analysis and classical analytical equations to estimate the elastic properties of a deposited thin 
fi lm over a known substrate, which configures a bilayer thin films application. Finite element 
modeling was conducted for bi-layer (Si3N4/AI) membranes to compute its elastic parameters 
(Young's modulus and Poisson's ratio) and the residual stresses in each f i lm. The 
determination of the residual stresses is the main contribution of this chapter since the 
conventional analytical models are restricted to the calculation of a global residual stress. This 
difficult to perform simulations due to that this parameter is an input condition. 



Chapter 2. Determination of the elastic properties 
using an experimental-numerical approach with two 

different bulged thin films 

This chapter describes the computation of Young's modulus and Poisson's ratio using a numerical 
methodology (FEM and analytical equations) that combined with two independent experiments of 

bulge testing is possible to determine both parameters. Experimental tests were conducted on 

rectangular and square thin films in order to determine their unique elasticity constants. The 
numerical calculations were carried out by a finite element analysis and the classical identification 

method (analytical equations). 

2 .1 F in i te e l e m e n t m o d e l l i n g o f bu lge t e s t f o r f r e e s t a n d i n g t h i n f i l m s 

This section describes a numerical model for simulation of the bulge test of thin films utilizing a finite 

element analysis. The advantage of carrying out simulations is the parametric conditions that can 
reproduce the experimental tests when the mechanical properties are modified. Another advantage 
consists in the measurement and comparison of the displacement field not only of the central point 
(maximum deflection) as considered by the analytical model presented in equation (1.4). It relates the 
pressure with the maximum displacement only in one degree of freedom. For this reason, finite 
element analysis is considered as a powerful tool to predict load-deflection dependency of the whole 
measured deformed surface, as several works have already demonstrated (Tabata et al.,1989; Pan et 
al., 1990; Gan et al., 1996) till nowadays (Orthner et al., 2010; Zhang et al., 2016). 

Figure 2.1. (a) Thin film model with extension, (b) Residual stress application, (c) boundaries r, and r. 

Let's consider a rectangular membrane of width 2a and length 2b (a >b) defined by the surface 0.f 

as illustrated in Figure 2.1a, where 0.f is the surface under investigation (thin fi lm). With the aim to 
apply realistic boundary conditions, an additional surface is created with an extension of thickness 

S = 2Aa, where /te(0.01,0.02) joined at the external boundary Tf <zQ.f. The solution process is 

performed in two stages; the first one is based on the applications of residual stress or , and the 
second one is the application of pressure levels. The geometric extension 8 acts as a virtual boundary 
and it was defined to permit that ar deforms the thin fi lm in the first stage of solution. In Figure 2.1b, 



the application of an isotropic residual stress or on the boundary r / composed by the faces 
B\/i = l,...,A is shown. 

In the second stage, f^is highly pre-stressed by ar effects, which in turn acts as a displacement 

constraint by the deformations caused on Qh. It does not present any considerable influence on Qf 

since is pre-stressed constantly in the entire domain. In this stage, a pressure load on the pre-stressed 

membrane Clf as well as displacement restrictions (clamped) on r 4 are strictly imposed (see Figure 
2.1c). 

In the numerical model, a geometric nonlinearity is considered, i.e. large deformations are included, 

indicating that the membrane stiffness can change with the increment of load-deflection. 
Nevertheless, the membrane material is assumed to be homogeneous and linear. Tetrahedral 

elements with six nodes by face are imposed as finite elements in the model. It is important to mention 
that experimental tests are conducted with the bulge test apparatus described in Section 2.2. wi th the 

aim to verify the effectiveness of the procedure developed in this study. 

Figure 2.2. (a) Rectangular thin film with extension S . (b) Whole set including sample holder (Si substrate), 
(c) Transversal section of thin film with the silicon substrate. 

In order to verify the numerical model proposed (model with the extension S), finite element 
solutions were obtained with ANSYS 16.1. In addition, a comparison was performed with traditional 
modeling that includes the thin fi lm adhered to a Si substrate, which acts as the sample holder in the 

bulge test. Traditional bulge test simulations include the substrate in the model since this supposes a 

more realistic analysis. However, it is more time-consuming from a computational point of view 
because more finite elements are necessary, and the computational cost increases in the full model. 

Figure 2.2a shows the simplified model (model wi th the extension S ), and Figure 2.2b represents the 

full 3D model, which includes the Si substrate. A transversal section is shown in Figure 2.2c. Elastic 
constants Cn = \65.1GPa, C 1 2 = 63.9GPa and CM =19.6GPa, of the Si substrate are taken from Hirth 
et al., (1983). Elastic moduli in individual directions EiQ0 =l30GPa, EUQ=llOGPa and Em =l8SGPa 
were calculated from these constants. For the whole model, the following dimensions define the 

experimental tests la = h = 6mm and k = 2mm. The following sizes described the thin f i lm: a=lmm and 
b=lmm. Boundary conditions are established as clamped (bonded surface) in the bottom part of the 

substrate. 

Both simulations (full and simplified) are shown and compared in Figure 2.3a, in which the left axis is 
the pressure, and the right axis is the relative error of the maximum displacement between both 

models. Continuous line represents the relative error of the maximum displacements in the full and 
simplified model. Triangles represent the maximum displacement of the central zone in relation to the 



applied pressure. The following properties were considered in Figure 2.3a: E = 230GPa, crr = \65MPa 
and v = 0.26 to validate and compare the proposed numerical models. From Figure 2.3a, it is evident 

that at low pressure, the errors reach maxima of 1.33 % and the error takes lowest values (below 
0.6%) at the highest pressures. It indicates that both models presented a good correlation in the load-

deflection curve, however, its effects are more visible in the first part of the curve where the residual 
stress dominates. In conclusion, we can highlight that the simplified model is acceptable to simulate 

bulge testing of thin films with the proposed modeling methodology. 

Three numerical models were used to analyze the effects of the virtual boundary (extension s ) in the 

simplified model applying the following properties E = 2COGPa, ar = l50MPa and v = 0.25 for all 
models. The value S is determined as a percentage of the larger side (a > b) of the pressured surface 

of the membrane; we suggest taking values between 0.25% to 2% since the errors are less than 0.4 % 
in the maximum relative deflection. Figure 2.3b illustrates a convergence analysis that evaluates the 

proposed simple model's relative error (maximum deflection) in Section 2.2. 

a) b) 
10,5-, 1 , 

Wmax \jim] S [%] 

Figure 2.3. (a) Comparison between the model with extension and model with the substrate, (b) Convergence 
of the maximum relative deflection ( 5 = 0.25%) vs percentage of extension of the virtual boundary. 

Thin films with ratios a/b = l, a/b = 2 and a/b = 3 were taken as numerical samples to assess the 
effects of the extension s on the convergence of the maximum deflection. These values were 

established because films used for experimental tests (in this study) are in this range. It can be seen 

from Figure 2.3b that all studied membranes presented convergence or trend to zero when the 
extension 8 is 0.25%. Maximum errors between 0.25% and 1.4% are observed for 8 = 4 %. 8 values 

lower than 2% show that there are relative errors lower than 0.4%, and therefore the proposed 
modeling shows numerical stability. In our study, <5 = 0.25was used for the finite element 

computations. It can be concluded that the presence of a virtual boundary does not affect the 
displacement solutions. 



2.2 N u m e r i c a l a p p r o a c h f o r d e t e r m i n i n g e las t ic p r o p e r t i e s us ing t w o t h i n 
f i l m samp les 

The best two set of solutions ( E and v ) are selected. The chosen criterion is the relative error of the 

maximum displacement between the curves P (w^)^ » P (w^)^. Then, wi th all parameters 

estimated (Ei,ar,CUFEM)), C2(v ;),V7 = l ,2. Equation (1.4) can be completed. Then, parameters a,p are 

calculated in the following way: 

v 2 C 2 ( v , ) ( l - v , ) - v , C 2 ( v 2 ) ( l - v 2 ) C 2 ( v 2 ) ( l - v 2 ) - C 2 ( v , ) ( l - v , ) (2.1) 
v2 - v, ' v2 - V, 

Using a and p constants, we can establish a function for C2(v) that defines its values for any known 

v. However, the determination of v is implicit inside the numerical procedures. Thus, an error 

function ep(E,v) is constructed with equation (1.4) and experimental data (Pexp,wexp) to correlate 

these with parametric values established by (E,v). This error function should be used to find optimal 

values of (E,v). For example, the following expression defines it as: 

ep(E,v) = J^ 
Pc*n- p<y> E>w«*n) 

p 

(2.2) 
In, 

where 

P(v, E, w e x p ( = CI(FEM) +1 —— I -
a 4 

The result of equation (2.2) is an error surface where the minimum errors should be located where a 

set of E and v agree precisely with the experimental measurements. According to previous 

exploratory data analysis done in our study, it was found that a linear approximation can define the 

set of optimal solutions for E and v as described in the step 6. We will find a set of parameters that 

approximate the analytical equation and the finite element model until this step. This step 

demonstrates that the elastic coupling exists between both parameters in the solutions, which means 

that these depend on each other. To compute a unique solution, the following linear function should 

be extracted as follows: 

vk=mEk+b,\fk = \,...,p. (2.4) 

where Ek,vk is a set of values that satisfies the condition of m i n U ( £ » | ~ 0 or ep (Ek, vk) « 0. These 

values belong to a linear function which is shown in Equation (2.4). If it is computed for two different 

geometries i and j, the intersections (ram\epm(E,v)\r^min\epU)(E,v)\,\/i * j) of the linear functions 

extracted from epW(E,v) and ep(j)(E,v) will define an optimal solution (E,v) which is the objective 

of the step 7. 



step 1 

Finite Element Model 
- Geometric and mechanical parameters 
- Extension S (0.1-2)% 
- boundary conditions 

To determine the constant Ci(^fjvf) 
variating EFSM^{FEM) ^FEM 
with FEM data and EL]. 1. 

step 2 V 
HTo estimate the residual stress tXT. 
using C±(FSM) and experimental data, 
with Eq. 1. 

step 3 ± 1 
To obtain a set o f parameters 
Ei. f.'t, Vz = 1,2 with the Hnitc Llemem 
Model {using <7T } which satisfy that 

Experimental Bulge Tests 
Geometry A 
Geometry EJ 

step 4 

To determine C^(ui),Vi = 1 , 2 parameters 
associated with each i? j ,V j = 1,2 
by means of Eq. 1. 

To calculate a and £f for the assumed model 

1 step 6 

To evaluate the function & p to establish a 
linear function min\ep{E,v)\ 

ř step 7 

Two different geometries i and /o f ttiin films define 
a space solution where intersection 

min \e„(E, v)\( n min \ep(E, v)\} Vi / j 
defines ait optimal sol ulion u)* 

Figure 2.4. Numerical approach to determine both elastic parameter of both thin film geometries (rectangular 
and square) 

2.3 Ef fects o f Young ' s m o d u l u s , Po isson 's r a t i o , res idua l s t ress a n d o n 
l o a d - d e f l e c t i o n r e l a t i o n 

Numerical analysis by finite elements has been directed to comprehend better the mechanical 

parameters involved in the bulge test. In Figure 2.5, different curves are obtained for different values 

of residual stresses, Young's modulus, and Poisson's ratio. The aim was to examine the effect of these 

parameters on the load-deflection curve defined by the pressure (p ) and maximum deflection ( ) 

for a film of 2x2 mm and 500 nm of thickness. From the Figure 2.5a, it is seen that when the residual 

stress increases, the maximum displacements decrease for the same pressure level. According to 

equation (1.4), or determines the linear part in the relation Piw^)- The following elastic properties 

were used as part of input parameters in the finite element model, E = 2lOGPa and v = 0.26. Figure 

2.5b illustrates the changes produced by the variations of Young's modulus in the relation Piyv^) in 

a fi lm with cr = l65MPa and v = 0.26. It is analyzed that when Young's modulus varies between 

250GPa to 250GPa, wimx exhibits changes in the region that it is not influenced by the residual stress 

(i.e. nonlinear region of Piw^)) as mentioned before. It means that there is a limit value of pressure 

under which the mechanical behavior is negligibly influenced by the elastic constants. Specifically, the 

limit value is defined by the delimitation of the linear relation at low pressures states (internal 

pressures <ar) as highlighted in Figure 2.5b with the black arrow. 



Figure 2.5. Influence of (a) residual stress, (b) Young's modulus, (c) Poisson's ratio on load-deflection curves. 

It is evident from equation (1.4), that the cubic part of the displacements is governed by the elastic 
parameters C2(v) and E . This result shows that in an estimation of the elastic parameters, ar present 

higher effect compared with the influence o f £ . We can observe the same behavior in Figure 2.5c 
when v is varied, however, in the figure the scale of both axis is augmented in a particular region 

m̂ax e(17,24)wm and P e (6, lO)kPa. It points out that the elastic parameters E and v are coupled 
together since the effects on the curve are the same. If both parameters were modified in a way that 
the curve remains fixed, we observe that there are different pairs of E and v that satisfy the same 

solution. This is verified and explained in the next sections. 

It was concluded that to conduct a parameter identification [or,E and v ) , the easy way to determine 
cr. is by means of equation (1.4), since to fit the first stage of the ^(w m x ) curve will demand more t ime 

with an iterative process performed by finite element computations. This can be solved simply with 

one iteration adjusting the experimental data in equation (1.4), as we proposed in the numerical 
approach in Section 2.3. However, according to the theory established in the bulge analysis, the 

relation between a-r and Cx is intrinsic. So, it should be necessary to know at least Cx constant. In the 
literature, there are estimated values for Cx constant as shown by Tabata et al. (1989), Maier-

Schneider et al. (1995), Paul & Gaspar (2007) among others. In our case, the value of Cx is calculated 
using a set of simulations with input parameters known, for this case, we created a database of 20 

samples. It indicates that the same number of Piw^) curves were adjusted in equation (1.4) by least-

square regression obtaining the value Cx =3.373±0.003. 



Table 2.1. Prediction of C{ and OT with finite element data-square membrane 2x2mm 

I n p u t p a r a m e t e r s - F E M 

m o d e l 

P r e d i c t i o n s a n d r e l a t i v e e r r o r s 

P o i s s o n ' 

s r a t i o 

V 

E 
[GPa] 
F E M 

® r 
[MPa] 

F E M 

(C' = 3 . 3 7 3 , i n 

E q . (D) 

* 

a -a , , 
r rip) 

°r 
[%} 

Gr(p) 
[Q =3.45, 
i n E q . ( 1 ) ) 

<Tr 

[%] 

0 . 2 5 1 7 0 1 5 0 1 5 0 . 2 9 0 . 1 9 1 4 6 . 9 4 2 . 0 4 

0 . 2 5 2 0 0 1 4 5 1 4 5 . 3 4 0 . 2 3 1 4 2 . 1 0 2 . 0 0 

0 . 2 0 1 0 0 1 2 0 1 1 9 . 4 7 0 . 4 4 1 1 6 . 8 0 2 . 6 6 

0 . 2 6 2 3 0 1 6 5 1 6 5 . 1 7 0 . 1 0 1 6 1 . 4 9 2 . 1 2 

0 . 3 3 0 0 1 3 5 1 3 5 . 4 7 0 . 3 4 1 3 2 . 4 5 1 . 8 8 

0 . 1 8 2 5 0 1 4 5 1 4 4 . 9 7 0 . 0 2 1 4 1 . 7 3 2 . 2 5 

0 . 1 5 3 5 0 1 8 0 1 8 0 0 1 7 6 . 0 7 2 . 1 8 

I t i s i m p o r t a n t t o m e n t i o n t h a t a l l c a l c u l a t i o n s w e r e d o n e f o r a f i l m o f 2x2 mm a n d 500 nm o f t h i c k n e s s 

b e c a u s e t h e s e d i m e n s i o n s w e r e u s e d i n t h e e x p e r i m e n t s . T h e c o r r e c t i o n o f Cx i s n e c e s s a r y s i n c e f o r 

t h e s i m u l a t i o n s t h e v a l u e o f or w i l l c o r r e s p o n d w i t h t h e r e s u l t s o f f i n i t e e l e m e n t m o d e l . I t g u a r a n t e e s 

t h e b e s t - f i t i n t h e s i m u l a t i o n s a n d t h e e x p e r i m e n t a l d a t a i n t h e l i n e a r p a r t . 

T o v a l i d a t e o u r c o n s i d e r a t i o n s , a s e t o f p r e d i c t i o n s f o r cr. a r e l i s t e d i n T a b l e 2.1 u s i n g f i n i t e e l e m e n t 

( F E M ) d a t a a s i n p u t k n o w n p a r a m e t e r s a n d l e a s t - s q u a r e f i t t i n g i n e q u a t i o n (1.4). T h e p r e d i c t i o n s 

c o m p u t e d w i t h Q =3.373 a r e c o m p a r e d w i t h p r e d i c t i o n s d o n e w i t h Cx =3.45 c o n s t a n t w h i c h w a s 

p r o p o s e d b y M a i e r - S c h n e i d e r e t a l . (1995) t h a t i s t h e m o s t u s e d v a l u e i n t h e l i t e r a t u r e . I n T a b l e 2.1, 
f i r s t t h r e e c o l u m n s c o r r e s p o n d t o i n p u t p a r a m e t e r s u s e d i n e a c h s i m u l a t i o n t o o b t a i n c u r v e s 

P(wrrw)FEM w ' t h t h e a ' m t o e s t a b l i s h a d a t a b a s e a s r e f e r e n c e m e a s u r e m e n t s . F r o m e q u a t i o n (1.4), 
C* = 3.373 o r Cj = 3.45, <JHp) a n d crr(p) w e r e c o m p u t e d t o p r e d i c t t h e f i n i t e e l e m e n t i n p u t v a l u e s f o r 

cr.. I n c o l u m n s 5 a n d 7 , t h e f o l l o w i n g r e l a t i v e e r r o r s (crr a n d p r e d i c t i o n s ) 0.19+0.16% a n d 2.16+0.25 
% w e r e d e t e r m i n e d w i t h t h e p r e d i c t i o n s cr*ip) a n d cr. ( p ). I t i s n e c e s s a r y t o n o t e t h a t t o a p p r o x i m a t e 

cr. w i t h e q u a t i o n (1.4) w i l l a s s u r e b e s t - f i t s i n c e a n e s t i m a t i o n f r o m f i n i t e e l e m e n t c o m p u t a t i o n s w i l l 

d e m a n d m o r e t i m e b y t h e r e q u i r e d i t e r a t i o n s . 

2.4 Resu l ts : Young ' s m o d u l u s a n d Poisson 's r a t i o o f S i3N4 t h i n f i l m s w i t h 

t w o g e o m e t r i e s ( square a n d r e c t a n g u l a r ) 

I n t h i s s e c t i o n , t h e r e s u l t s o b t a i n e d b y a p p l i c a t i o n t h e n u m e r i c a l a p p r o a c h d e s c r i b e d i n a b o v e s e c t i o n 

a r e s h o w n . T h i n f i l m s w e r e t e s t e d e x p e r i m e n t a l l y a c c o r d i n g t o t h e e x p e r i m e n t a l s e t u p d e s c r i b e d i n 

S e c t i o n 1.6 ( s e e C h a p t e r 1) w i t h t h e a i m t o d e t e r m i n e t h e e l a s t i c p r o p e r t i e s o f Si3N4 m e m b r a n e s . T w o 

d i f f e r e n t s a m p l e s w i t h d i m e n s i o n s 2x2 mm a n d 3 . 5 x l . 5 m m w i t h t h i c k n e s s e s o f 500 nm a n d 100 nm 

w e r e s e l e c t e d f o r t h e e x p e r i m e n t s . T w o d i f f e r e n t s p e c i m e n g e o m e t r i e s a r e r e q u i r e d f o r t h e 

i m p l e m e n t a t i o n o f t h e i d e n t i f i c a t i o n m e t h o d o f e l a s t i c p r o p e r t i e s . F i v e s p e c i m e n s o f e a c h f i l m w e r e 

t e s t e d a n d t h e e x p e r i m e n t a l d a t a w e r e u s e d i n t h e a n a l y s i s . 



Table 2.2. Set of parameters that satisfy the experimental data for P(w ) curves 

Set l Set 2 
Membrane S Í 3 N 4 EFm[MPa] VFEM c2 

EFm[MPa] VFEM c2 

2x 2mm 240 0.24 2.781 211 0.35 2.445 
3.5 x 1.5mm 235 0.27 1.435 222 0.35 1.519 

The residual stress is the first computed parameter in the identification process, applying the steps 1 

and 2 as described in Section 2.2 (see Figure 2.2). Parameters C{ and cr. were determined for the 
square and rectangular films as follows: Cls =3.373, ClR-2.08, arS-\66+2MPa and 

orR = Y15±\5MPa. Subscripts S and R refer to the square and rectangular thin films. Then, according 

to the step 3, we used two sets of parameters £ .̂,v.V/ = l,2 (see Table 2.2) which satisfy the 
experimental data. These were obtained from the finite element computations by means of iterative 

calculations. Each load-deflection curve Piw^) was used to estimate C2 wi th equation (1.4), all 
determined data are listed in Table 2.2. 

The variables listed in Table 2.2 are required for numerical approximations (explained in Section 2.2) 
necessary to determine the parameters a and p from Equation (2.1). For determination of C2 the 
following models were used: C2S = (1.9690-0.4594i/)/(l-v) and C1R = ( l . 2513-0 .7527v ) / ( l - v ) . 
Several studies have accepted this approximation applying different values for a and p (Maier-
Schneider et al., 1995; Paul & Gaspar, 2007; Martins et al. 2009). 

b) [%] 

E |MPa] 

280 0.2 
0451 

c) 

• JI­

M S 

Minimum linear c P 

— í i j V , 2 x 2mm 
nas SisNi 3.5 x 1.5mm 

• Intersection point: 
E = 2-xi.2MÍÍ>!i,v = ri 261.1 \ 

200 210 220 Z3C 24ff 250 260 

C. IMl'a 

Figure 2.6. (a) Error for square thin film, (b) Error for rectangular thin film, (c) Minimum linear error for 
rectangular and square thin film. 



Applying step 6, error functions ep{E,v) were constructed using experimental data and all known 
parameters necessary for the determination of equation (2.2), these are plotted in Figure 2.6a and 

2.7b. Basically, both figures evidence that there are pairs of E and v that satisfy equation (1.4) 
numerically. It indicates that both elastic parameters can generate the same load-deflection curves 

and therefore there is not a unique solution as demonstrated b y e p ( £ > ) . The reason of testing both 
specimens (square and rectangular) is to find unique optimal values o f f and i/that satisfy the behavior 

of both membranes. 

It is observed that the minimum values converge to a linear function such that 

m i n \eAE,v) \~0,V{E,v} evk = mEk +b,Vk=l,.... and therefore these are constructed and illustrated 

in Figure 2.6c. It is analyzed that both linear functions extracted from Figure 2.6a and 2.6b are 
intersected in a point in which E = 236.22GPa and v = 0.264is a common solution for both geometries. 

Grey bands represent confidence intervals of 95% defined from the experiments and numerical 
computations. Simulations were carried out to validate that the found properties satisfy both 

experiments (square and rectangular) and these are represented in Figure 2.7a and 2.7b. It is observed 
that the elastic properties provide solutions of Piw^) which agree accurately for both membranes. 

Further, the relative errors between the experimental and numerical displacement fields were 
calculated and mapped (inset in Figure 2.7). For example, for the square membrane, the error of less 
than 3 % was observed; in the rectangular case, the error in the central region was less than 4%, 
reaching 6% on membrane boundaries. It can be concluded that the obtained elastic properties are in 

a fairly good agreement with values reported in the literature, typically 200-260 GPa (Vlassak & Nix, 
1992; Karimi et al., 1997; Edwards et al., 2004; Boe et al., 2009; Tinoco et al., 2018a). 
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Figure 2.7. Comparison between Piw^) experimental and numerical curves, (a) Square membrane, (b) 
Rectangular membrane. 



Chapter 3. Determination of the elastic properties using 
an experimental-numerical approach with one bulged 

thin film 

This chapter describes how the elastic coupling conditions of Young's modulus and Poisson's ratio can 

be used for determining both elastic parameters combining finite element analysis (FEA) with the 
classical identification method. The presented approach is based on the mapping of both elastic 

properties with the aim to use only one geometry (one thin film) since, in the chapter, two thin-fi lm 
geometries were necessary (rectangular and square) to compute these properties. In addition, in this 

chapter, there are compared two FEA strategies to solve bulge testing problems, this is because the 
methods presented in chapter two were not validated using traditional methods of simulating it. 

3.1 F in i te e l e m e n t m o d e l i n g o f f r e e s t a n d i n g t h i n f i l m s s u b m i t t e d t o bu lge 
t e s t 

This section describes a comparison between the FEM model developed in Section 2.1 and the 
traditional way to simulate bulge testing, which has already been implemented in several works 
(Tabata et al., 1989; Pan et al., 1990; Orthner et al., 2010; Zhang et al., 2015). The main idea is to carry 

out simulations with both methods which are illustrated in Figure 3.1. The first modeling method is 
based on considering constant residual stress, this implies that is necessary to impose the residual 
stress over the whole thin f i lm. Let's consider a rectangular f i lm of size 2ax2b (a<b) delimited by 
the volume Q 7 as illustrated in Figure 3.1a, where Th represents its boundary. In the first method 
of simulation, residual stress ex. is applied to each finite element contained within Yh . 

Figure 3.1. (a) Bulge test, thin-film section A-A. (b) Thin-film model with extension, called FEM I model, 
(c) Residual stress application at the boundaries, called FEM II model. 

The method is a traditional way to impose residual stress on a freestanding fi lm that has been 

deposited over a substrate and has a window. The majority of the studies have reported on this 

method that simulates the bulging tests (Orthner et al., 2010; Neggers et al., 2014; Zhang et al., 2015; 



Shafqat et al., 2018). During the same stage of preprocessing of the model (imposing residual stresses), 

the pressure is applied over the surface of the f i lm. 

The second method of simulation considers the etching process of the substrate (window creation) in 
which the residual stresses <Jr are redistributed after this process. Therefore, residual stresses are 

imposed at the fi lm boundaries Tf to recreate the two stages of manufacturing, as described in Figure 
3.1b. The second approach is considered more realistic in the application of boundary conditions on a 

freestanding fi lm according to its manufacturing process. The majority of authors that applied FEA to 
reproduce the bulge test not discussed the details of their models. This is due to the simplicity of the 

geometry and the parameters involved (pressure and displacement constraint). There are several 
factors to consider in bulging modeling by FEA, such as the manufacturing process that involves an 

etching process after the deposition of materials on the substrate, as mentioned before. (Ohring, 

2001; Setter e ta l . , 2006). 

Let's consider a rectangular membrane of width a and length b defined by the surface Q r as illustrated 
in Figure 3.1b, where Qf is the surface under investigation (thin fi lm). With the aim to apply realistic 

boundary conditions, an additional surface is created with an extension with thickness 8 = 2Aa, where 
X e (0.01,0.02) joined at the external boundary r / c Q / (blue boundary), joined at the external 
boundary r ^ c Q , (red boundary). The solution process is performed in two stages; the first one is 
based on the applications of residual stress and the second one is the application of pressure levels. 
The geometric extension $ acts as a virtual boundary which was defined to permit deformations on 
the thin fi lm in the first stage of the solution. The application of constant residual stresses at the 

boundary composed of blue faces is illustrated in Figure 3.1b. In the section 2.1 are detailed the 
numerical procedures that should be carried out to solve a simulation of bulging test by means of 
finite element analysis. In the numerical model a geometric nonlinearity is taken into account for both 
methodologies described in Figure 3.1a and Figure 3.1b. In other words, it means that large 
deformations can be incorporated, indicating that membrane stiffness can change with increasing 
load-deflection. In order to distinguish the FEA models presented, these will be referred to as FEM I 

(model shown in Figure 3.1a) and FEM II (model shown in Figure 3.1b). 

For all f inite element models, tetrahedral elements with six nodes by face were imposed, which are 

named SOLID95 in the ANSYS database. The thin-fi lm material is assumed as isotropic and 

homogeneous. Finite element simulations presented in this section were calculated with ANSYS® 19 
on an ASUS® ROG Strix GL553VE (Intel Core (TM) i7-7700HQ CPU @ 2.8 GHz, 16 GB RAM) notebook 
which ran in Windows 10 environment. 

3.2 N u m e r i c a l a p p r o a c h f o r d e t e r m i n i n g e las t ic p r o p e r t i e s us ing o n e t h i n 
f i l m s a m p l e 

In this section is presented a sequential numerical procedure that permit through several steps to 

compute Young's modulus and Poisson's ratio of a thin fi lm under bulging test. A f low diagram is used 
to explain the procedure. It consists of a set of 10 steps that permit obtaining both parameters 

combining finite element analysis wi th the classical analytical solution (see Equation 1.5). Initially, a 



finite element model wi th the required geometric dimensions should be performed including its 

boundary conditions which are considered clamped in the external domain Th a C\ of the thin fi lm as 

illustrated in Figure 3.1b. Modeling the bulge test by finite element analysis is well-established practice 

(Orthner et al., 2010; Sheng et al., 2017; Shafqat et al., 2018). As long as mechanical parameters are 

known, numerical analysis is not a complex engineering problem since geometry is very simple and 

simplified. However, for analysis, large deformations must be considered since the thickness can be 

very thin, even on a nanometric scale. 

1. Step 

Initial Finite Element Model 
- Geometric and mechanical parameters 
- Boundary conditions 

2. Step 
To determine the constant CUFEM' 
variating ^ K M ^ r i f E W ) ^ ™ 
vith FEM data and Eq. 1. 

Thin f i lm 

Sisubstrat* / t t t t t t t t j 

Pressure 

p= 
7777777777 

Y 3. Step To estimate the residual stress (TR 

u s i n g C ^ s M j , experimental data^, 
and Eq. 1. 

1 4. Step 
To obtain a set of parameters 
Ei, Vi, Vi = 1,2 with the Finite Element 
Model (using 0> ) until that P — WQ 
curve (experimental) is adjusted. 

7. Step 

To evaluate the fallowing error function: 
ej,{E,v) = Y%=i faxpti) -•P(C3(u)1B1w«I1(>-))/J,r«p(j)|/n 
applying mapping of E, v 

8. Step I 
Tn approximate minimum error as a 
linear function such as: 
mvi 4- b \Ei, Vi € min \ep(E. v) \ 
astic parameters determined 

9. Step 

5. Step 

To determine C2(/i)V'i = 1,2 parameters 
associated with each E-^v^.^i — 1.2 
by means of Eq. 1. 

6 Step 

To caleulatc a and 0 for the assumed model 

c, 2(/0 l-Vi Ui,C 2 ( / i )Vt = 1,2 

To simulate i — 1 , k finite element models to compute the index: 

where f j is a region in which z e (0.35,0.65)2a and 9 € (0.35,0,65)26 

10. Step 

Optimal values . are chosen in 

min |ec| 

Figure 3.2. Sequential procedure for estimating Young's modulus and Poisson's ratio. 

Large deformations mean that the stiffness changes with the level of input load. Following the 

proposed method, the first three steps deal wi th the estimation of Cl and <Jr parameters from the 

finite element model and experimental data. Knowing that Cl is dependent on the residual stress 

crr as described in Mitchell et al. (2003). In other words, if a set of output data are computed from 

the solutions determined by the finite element model, then, m data are created with input 

parameters known ( E ; . ,CT \ ,V ; .V / = 1,2,.m ), it is possible to determine C1 adjusting those output data 

in Equation 1.5. Posteriorly, Cl is used to compute the residual stress ex. using the experimental 

data for any Young's modulus chosen in Equation 1.5. For Young's modulus value, a value similar to 

materials wi th analogous mechanical characteristics is recommended, since the true solution is not 

this initial value. 



In steps 4, 5, and 6; the main objective is to establish a model for constant, this is determined only 

from the simulations. C2(v) = (a+/3v)/(l-v) is presented here as a parametric equation, however, it 

should be noted that different values of of a and p have been calculated with numerical and 

analytical approximations, as outlined by Mitchell et al. (2003). Other methods for determining the 

Poisson's ratio have been explored by Tabata & Tsuchiya (1996). In our case, we propose numerical 

estimations obtaining a set of two parameters Ei and v . ,V/ = l ,2 that satisfy the load-deflection 

curve obtained experimentally. The v ( . ,Vi =1 ,2 values can be fixed as a set of values to determine the 

corresponding Young's modulus as demonstrated in Chapter 2. Then, wi th all parameters determined 

(Ei, a r , Ct) and experimental data, C 2 ( 0 is obtained with both Poisson's ratios found. In this way, the 

correlated Young moduli are found by choosing the Poisson ratio values as extreme values. So, 

parameters a,p are calculated as follows 

_ V 2 C 2 ( 1 ) (1-Vl)-VA(2) ( ! - V 2 ) n_C2(2) ( j j ^ H ^ ^—^ ^ 
oc — . p — 

V2-Vj v 2 -v , 
Using a and /J values, we can calculate any value of C 2(v) wi th values of vt known. With all 
parameters calculated until the step 7, the following error function can be mapped such as 

7 V (3.2) 
- / > ( C M ( v J , £ , , w e x p U ) r max(TexPU)) 

where subscript means a set of parameters Ek and vt determined for each load-deflection curve 

with n data. Equation 3.2 represent an error surface in which the minimum errors should be in the 

places where a set of E and v satisfy the experimental measurements. According to previous 

exploratory data analysis done in our study, it was found that a linear approximation can define the 

set of optimal solutions for Ek and vt such as described in the step 8. Until this step, a set of parameters 

that approximate the analytical equation and the finite element model is found, this is due to that 

between both parameters elastic coupling exists. To compute a unique solution the following index is 

created 

*, : (*) (£* . v *) = I 
rwjvU)(x,y)-w 3

FEM(x,y) 
In, (3.3) 

Equation 3.3 was established to compare a 30% of the displacement field between the finite element 

models and the measured data. The minimum value min|e<.(t)|,Vfc = l,2...,p indicates that the elastic 

parameters (E and v) are the best approximations for the load-deflection curves obtained 

experimentally. These values should satisfy the best conditions to reproduce the load and 

displacement curve obtained experimentally. 

3.3 C o m p a r i s o n s b e t w e e n s o l u t i o n s t ra teg ies p r e s e n t e d in sec t i on 3 .1 

In order to compare both methodologies of simulation by FEA, several numerical examples were 

proposed. These are designed for the following fi lm size 2x2mm, 2.5x2.5mm and 3x3mm all wi th a 

thickness of v = 0.3. The following properties were considered for both models, such as; 



E = 236.3GPa,(Tr = l66MPa and v = 0.3. The loading conditions were defined by the application of a 

maximum pressure of 9.57kN imposed by 39 steps applied incrementally in the FEM model to 

guarantee the solving convergence which were obtained with implicit solutions. Figure 3.3a illustrates 

the results obtained for all proposed simulations, where the pressure and the maximum displacement 

(central point) are correlated. The label FEM I indicates that the residual stress application was 

imposed inside the film (Figure 3.1a) and FEM II refers to enforce the residual stress on the boundary. 

The model includes an extension, as detailed in Figure 3.1b. 

3 1 0 

' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 8 5 - | 1 1 1 1 1 1 1 1 1 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 0 . 0 0.5 1.0 1.5 2.0 2.5 

Displacement [//m] x - Coordinates [fim] 

Figure 3.3. (a) Load-deflection comparison between models represented in Figure 3.1a and 3.1b. (b) Maximum principal 
stress comparison for a 2.5 x 2.5mm film. 

Figure 3.3a shows that the comparisons between the load-deflection curves presented small 

deviations among both, FEM I and FEM II models. However, these differences are caused by the 

stiffness effects which are introduced in order to impose the residual stress. The curves evidence that 

both models give very similar results, for example, FEM II present slightly lower stiffness with respect 

to FEM I model since the curves obtained with FEM II analysis move downward. To examine the 

variation among the stresses, the maximum principal stresses along the x-axis were calculated and 

represented in Figure 3.3b. A fi lm 2.5x2.5 mm is considered for the calculations. Figure 3.3b illustrates 

that the stress distributions present two regions where can be distinguished the deviation of both 

methods. One is noted at the central point (x=1 .25 mm) and then other at the boundaries (x = 0 mm 
and x = 2.5 mm. The relative error among the minimal stress values obtained with FEM I (287.76 MPa) 
and FEM II (286 MPa) is 0.6%. On the boundaries, the computed error is about 0.25%; and in the rest 

of the domain were lower. These results demonstrate that both modeling approaches are close to 

each other, which indicates that both are acceptable to simulate the bulge testing. In this paper, all 

simulations presented in the following sections were performed using FEM II. 



3.4 I d e n t i f i c a t i o n o f Young ' s m o d u l u s a n d Poisson 's r a t i o f o r SUN* 

For the application of the proposed methodology described in section 3.2, three experiments were 

conducted on commercial silicon nitrate films (Si3N4) wi th 2x2mm 2 of surface and 500wn of 
thickness. The tests were carried out in the apparatus described in Section 1.6 and the measurements 

obtained to represent the bulge surface are shown in Figure 3.4. 

p=0.000 kPa, z=-0.003 um p=0.958 kPa, 2=3.408 um p=1.917 kPa, 2=6.590 um p=2.875 kPa, 2=9.462 um 

p=3.843 kPa, 2=11.991 urn p=4.802 kPa, 2=14.212 um p=5.760 kPa, 2=16.212 um p=6.718 kPa, 2=18.000 um 

p=7.677 kPa, z=19.627 um p=8.635 kPa, 2=21.121 um p=9.594 kPa, 2=22.526 um 

Figure 3.4. Experimental measurements of the displacement field z under different pressure conditions. 

The thin films were pressurized until a maximum pressure of 9.59 kPa which was applied 

incrementally. Following the procedures outlined in Figure 3.2, the firsts two steps were applied to 
determine the value of Cj =3.373 f rom simulations. Then, applying the step 3, the residual stress was 
computed as cr = 166±3.6MPa. Based on the steps 4 through 6 (see Section 3.2), the following 

constants were determined; « = 1.9690 and /? = -0.4594. It is important to denote that these 

parameters are used to determine the mapped values C 2 with Poisson's values estimated to compute 
the best approximation with the experimental data, as detailed in the steps 7 and 8. Figure 3.5a shows 

the error function ep(E,v) computed with Equation 3.2, this function is mapped with the elastic 
parameters expressed in the domains Ee (200,280) MPa and v e (0.2,0.4). It is observed that there 

is a region in which the elastic values minimize the function ep(E,v). The minimum values are 
presented by dark blue, in this region C = | E* a E e m|V* a v e MJ, all pairs (E*,v*) satisfy the load-

deflection curve with good accuracy, however, to select the best solution all pairs should be evaluated 

until satisfying minec(E* ,v*) < ec(E* ,v*). These results demonstrate that all elastic pairs provide a 
feasible solution to the bulged f i lm, which indicates that the problem is mechanically coupled. 
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Figure 3.5. (a) Error function ep(E,v). (b) RMS cubic error scheme of the experimental setup, (c) Load-

deflection curve comparisons. 

As illustrated in step 9, the set of values that minimize ep(E*,v)~0 (dark blue values) are used to 
perform finite element simulations to find an optimal solution inside the chosen values. Then, an 
optimal solution is found in the minimum of mine c(£*,v*), for our test, it was determined as 
E = 232.45 ±3 MPa and v = 0.278 ±0.01 wi th three experiments analysed. The results are shown in 
Figure 3.5b. Based on the solutions found, a new simulation was conducted to compare the load-
deflection curve determined by the FEA with experimental results. In Figure 3.5c is observed that the 
numerical solutions agree with the experimental data, computations were done to verify that 
calculated solution adjusts the measured data. Additionally, for the maximum state of pressure ( 
9.59 kPa), there is evidenced the absolute error between finite element solution and experimental 
displacement field present errors less than 1% in most of the bulged domain. To compare the results 
of the square thin f i lm, other experimental tests were performed on a rectangular thin fi lm (Si 3 N 4 ) 
of 3.5xl.5mm2 of area and lOOnm of thickness. Implementing the same procedures performed for the 
square thin f i lm, the following constants were determined conducting the firts six steps (see Section 
3.2); a ; =125±5MPa,C{ =2.1,« = 1.2513, and p = -0.7527. Figure 3.6a shows the error function 
ep(E,v) presented in Equation (2) which in turn was computed with the parameters anteriorly 
expressed in the domains £e(200,280)MPa and ve (0.2,0.4). It is observed that there is a region in 
which the elastic values minimize the function E (E',V') . These values are evaluated into cubic error 



function minec(£*,v") to determine the best pair of solutions. The best solution for this case was 
computed as E = 235.45 + 4 MPa and v = 0.254+0.01 wi th three experiments analysed. These values 
are comparable with the values determined for the thin square f i lm. According to Figure 3.6b, the 
solution determined satisfied the experimental load-deflection curve and the relative error between 
the displacement fields was less than 2%. 

eP [%] 

Figure 3.6. (a) Error function ep(E,v). (b) RMS cubic error scheme of the experimental setup, (c) Load-

deflection curve comparisons. 

The obtained properties of both commercial silicon nitrate films demonstrate that the procedures 
established by the proposed methodology satisfy the experimental results. Compared to other studies 

that set the elastic properties between 200 and 260 GPa (Vlassak & Nix, 1992; Karimi et al., 1997; 
Edwards et al., 2004; Boe et al., 2009; Tinoco et al., 2018a), the results are comparable. In Table 3.1 
are summarized the elastic properties. 

Table 3.1. Determined elastic properties for silicon nitride Si3N4 thin films 

Square thin fi lm Rectangul ar thin fi lm 
V £ [MPa ] V £ [MPa ] 

0.278 232.45+3 0.254+ 0.01 235.45 +4 

3.5 I d e n t i f i c a t i o n o f Young ' s m o d u l u s a n d Poisson 's r a t i o o f a r e c t a n g u l a r 
A u t h i n f i l m 

An experimental bulge test was conducted for a Gold (Au) fi lm with 1.056x4mm surface and 198.6nm 
of thickness. The experimental details for obtaining load deflection curves of a cracked film are 

illustrated in Preils et al. (2017). Measurements of load and deflection were taken until the thin film 
was damaged. However, the elastic portion of the behaviour was extracted using a consideration on 

the load-deflection model to determine the elastic limits in the bulge problem (Holzer et al., 2017b). 
For example, if Equation (1.1) is divided by w0 (maximum displacement), it is possible to obtain the 

following linear relationship 



Y = C ^ + C2(v)^X, (3.4) 
a a 

Where Y-P/wQ and X = w 2
a. To establish an elastic limit during the bulge test (see Figure 3.7a), 

equation (3.4) should satisfy a linear relation. In Figure 3.7a is shown the relation between X = w 2  

and Y-P/w which was established from experimental data to validate the linear expression 
illustrated in Equation (3.4). 

w2 |(im2] w2 \nm2} 

Figure 3.7. (a) Comparison between experimental data and the linear relation P/w0 and wl. (b) Error 
function with threshold in 0.6%. 

In order to establish a deviation parameter for the linear relation, the data set between w 2 e (0,250) 

was used to f it a linear approximation which is marked with red color in Figure 3.7a. 

a) [%] b) 

Figure 3.8. (a) ep(E,v) error function, (b) Set of ep(E,v) values lower than 0.15%. 

To define a comparison parameter the following error function is established eY = (Ycxp - Y,)/Ycxp, this 

function quantifies the deviation between Yt (approximation) and Feip (experimental data). A threshold 

of 0.6 % is chosen to delimit the limit of the linear behavior in the bulge test. It is observed that the 

experimental data begins to deviate more than 0.6 % in X = 325/um 2 as illustrated in Figure 3.7b, .With 



this limit point, the load-deflection curve is reduced until 2.758kPa which is the limit pressure obtained 

from the experimental data. Applying the procedures described in section 3.2, the following constants 

were determined; for the Gold fi lm cr =30.168MPa,C, = 1.83407,^ = 1.2809 and /? = -0.7647. Figure 

3.8a shows the error function ep(E,v) established in Equation (3.2) which in turn was computed with 

the parameters anteriorly expressed in the domains £e(80,100)GPa and ve(0.2,0.5). It is observed 

that there is a region in which the elastic values {E* ,v) minimize the functionep(E,v). As shown in 

Figure 3.8b, these were extracted with an error threshold of 0.15%. Based on these values, all pairs 

satisfy the load-deflection curve with good accuracy. 

a) b) 

0.20 0.25 0.30 0 .35 0 4 0 0 45 0 5 0 0 2 0 0 2 5 0 3 0 035 0 A O 0 A 5 0 5 0 

Poisson's ratio - v Poisson's ratio - v 

Figure 3.9. (a) £and v data set for ep{E,v) < 0.15% . (b) Error function ec(E,v) evaluated in the central 

sub-region. 

To determine which pair ( £ » approximates better the experimental data of load-deflection, finite 

element simulations were running with the new extracted data set shown in Figure 3.9b and Figure 

3.9a. 

1 1 1 ' 1 1 1 ' 1 ' 1 1 1 ' 1 1 1 ' 1 U T 1 1 1 1 1 1 ' 1 1 1 1 I 
2 4 6 8 10 12 14 16 18 2 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 

Deflection \fim] Pressure [Pa] 

Figure 3.10. (a) Comparisons between FEA and experimental data, (b) Load-deflection, b) Stress vs. Pressure. 

All load deflection curves obtained by FEA were compared using the error function ec(E,v) over a 

subregion sub-model (sub-region) that presents dimensions of 20x40 um located at the place of the 

maximum displacement. Comparisons were computed from displacements of 8 um, since after this 



value the elastic parameters have more influence over the load-deflection model. Figure 3.9b shows 
error function ec(E,v) computed for the central sub-region, it observed that the minimum values of 
the Poisson's ratio are between 0.42 and 0.43. From these results the following elastic properties were 
extracted for the Gold f i lm: E = 80.853GPa,v = 0.425. 

Table 3.2. Determined elastic properties for silicon nitride silicon nitride Si3N4 thin film 

Authors Elastic properties 
V £[GPa] 

Present study 0.425 80.85 
Saraswati et al. (2004) — 84.4 
Birleanu et al. (2016) — 89 
Liang &Prorok (2007) . . . . 75.9 

New simulations were carried out to validate that the found properties satisfy the experimental data. 
In Figure 3.10 is seen that the elastic properties provide solutions that agree accurately wi th the 
pressure-deflection data. Aditionally, Figure 3.10b shows the relation among stress and pressure, in 
this result is visible in which value the stresses initiated, it means that the residual stresses coincided 
with the estimated input parameter. Finally, it is observed that the elastic properties of the gold thin 
fi lm calculated with the current methodology agree with those it reported in Table 3.2. The 
comparisons shows only values determined for the Young's modulus and not for the Poisson's ration 
which can be considered as advantage of the proposed methodology in this chapter. 



Chapter 4. Plasticity characterization in freestanding 
monolayer thin films 

In this chapter, constitutive models are reviewed in order to calculate the stress and strain of bulged 
films, treating it as shell structures when deformed. In this way, equations for representing the 
equiaxial stress state are presented and applied to square films. Based on the deflection field proposed 
by Maier-Schneider et al. (1995), the curvatures can be computed locally in linear and nonlinear 
material states. The presented models are validated by virtual experiments using finite element 
analysis. A practical application based on these equations is presented to characterize elastoplastic 
material models. 

4.1 St ress-s t ra in d i s t r i b u t i o n s f o r f r e e s t a n d i n g s q u a r e t h i n f i l m s s u b j e c t e d 
t o bu lge t e s t 

Bulge testing consists of applying uniform pressure over one side of a freestanding thin fi lm exposed 
in a window of supporting material. This process causes a deflection outward that is represented by a 
displacement field w(x,y) as illustrated in Figure 4.1a. In the manufacturing process, the fi lm is 
deposited on a material stiffer that acts as the main support of it, working as a base substrate. During 

decades different approximations have been proposed to reproduce the shape of the bulged film to 
satisfy the equilibrium conditions that involve high-order derivatives. Timoshenko and Woinowsky-
Krieger (1959) presented a set of approximations based on series that posteriorly Maier-Schneider et 
al. (1995) expanded a model wi th two more terms to improve the proposed solution by Timoshenko 
and Woinowsky-Krieger (1959). The modification presented a better description of the bulged shape 
in the evaluated examples. Maier-Schneider et al. (1995) proposed the expression for thin rectangular 
plates of size 2ax2b, where a<b, but it was modified for a square thin f i lm a = b as follows 

w(x,y) =[ w0 + w, — +

2

y - + w2

 X ^ Icosf — jcosf — ],Vjc,y e {-a,a) (4-1) 

where the constants wl =0.401w0 and w2 =1.161w0 depend on the maximum displacement tv 0 . In our 
study, Equation (4.1) is used to approximate the strain distributions (not dependent on the elastic 

properties) of a bulged square thin f i lm. For this purpose, nonlinear shell theory is applied to 

assumptions adopted in Sander's shell theory (Budiansky, 1968). A structure can be considered a thin 
shell if the ratio between length and thickness is higher than 20. In this case, it considers that a bulged 

membrane is a thin shell since the thickness is minimal compared to transversal dimensions, which 

means that 2a/t>20, being a one half of the smaller length of the fi lm and t the thickness. A thin shell 
has dominant flexure stiffness, whereas thick plates provide shear rigidity, which is not required in the 
bulging problem by the mechanical conditions of a thin structure. 



X 

Figure 4.1. (a) Scheme of a bulged square membrane represented by the displacement field w(x,y) and its 

directional curvature radios px(x, y) and py(x, y). (b) Representation of the stress state at the central point 

of a bulged square thin film. 

Therefore, strains in the mid-plane are estimated from different contributions, including the nonlinear 

effects produced by large deformations; then, strains are computed as; 

du,. 1 
dx 2A 

dw(x,y)\ 1 w(x,y) 

dx 

(4.2) 

Apx(x,y) 

err(x,y)-
dv± + _\_f 8w(x,y) 
8y 2a\ 8y 

1 w(x,y) 
Ap{x,yY 

(43) 

7xy(x,y)--
2A 

dw(x, y) dw(x, y) 
dx 3y 

2 w(x, y) 

Ap„(x,y) :  

(4.4) 

where Uo, vo and w(x,y) are the initial displacements fields at x, y and z position, du0ldx and dvQldy 

are initial axial strains. In the bulge test, the initial axial strains are associated with residual stresses 

corresponding to the manufacturing of the thin f i lm. A is a constant that depends on the deformed 

geometry of shell, i.e. A=l for cylindrical shape as described by Ventsel & Krauthammer (2001). 

px(x,y) and py(x,y) represent the radius of curvature at x and y directions associated with the 

curvatures Kxx(x,y) = l/px(x,y) and Kyy(x,y) = \lpy(x,y) as illustrated in Figure 4.1b. Axes are 

oriented according to Figure 4 .1 . Curvatures of the middle surface are determined by the following 

relations (Ventsel & Krauthammer, 2001). 



Kxx(X, y) • 
d 2w(x, y) 

dx 2  

d 2w(x, y) 1 d 2w(x, y) 
. x(x,y) = —n—. K(x,y) = ---

(4.5) 
dy 2  2 dxdy 

In a bulged thin f i lm, initial axial strains are caused by residual stress or which appears in the 

membrane as a consequence of the preparation technique; for a square thin f i lm, it is computed by 

du0/dy = dv0/dy = <?r(l-v)/E (in-plane strain state). Equations (4.2), (4.3), (4.4), and (4.5) can be 

solved using the displacement field w(x,y) described in Equation (4.1). Calculations for the strain fields 

are detailed in Appendix A. Given the kinematic description of a bulged square thin f i lm, generalized 

elastic stresses are determined by O = C E , where through the middle surface (plane B in Figure 4.1b) 

the elastic matrix C for an isotropic material and plane-strain state is given by 

(l + v)(l-2v) 

1-v v 0 
v 1-v 0 
0 0 ( l - 2 v ) / 2 

(4.6) 

where a = [cra(x,y) <Jyy{x,y) ^ , ( x j ) ] and E = [£a(x,y) syy(x,y) y^{x,y)\ . The set of equations 

described above determines stress-strain distributions in the elastic regime, but only if the elastic 

properties are known. On the other hand, a plane stress condition at point A (see Figure 4.1b) is 

considered for 

( 1 - v 2 ) 

1 v 0 
v 1 0 
0 0 ( l - v ) / 2 

(4.7) 

The set of equations described in this section serve to calculate stress-strain relations in the elastic 

regime if the elastic properties (E, v) are determined previously by any of reported methods (Pan et 

al., 1990; Vlassak & Nix, 1992; Maier-Schneider et al., 1995; Edwards et al., 2004; Huang et al., 2007). 

For a square f i lm, principal stresses are quantified by the following 

cr12(x,y) = (crxx(x,y)+cryy(x,y)y2+Txy(x,y), and further, at the central point is known that rxy=Q. 

Therefore, we can obtain that <r12 =axx = ayy; this is known as equi-biaxial stress state. It indicates 

that the maximum stress directions are on the orthogonal directions to the sides of the square film 

(these coincides with x and y). It is necessary to denote that the equivalent stresses at the central 

point correspond with stresses at the directions x and y. 

4.2 S t ress-s t ra in r e l a t i o n s a t t h e c e n t r a l p o i n t f o r a b u l g e d squa re t h i n f i l m 

The equations presented in section 4.1 describe the elastic behavior of a square bulged fi lm (2ax2a) 

with known elastic properties. However, those equations are not useful to characterize the elastic-

plastic regime due to the linear nature of the models. Thus, a stress-strain model for freestanding 

square membranes is developed in this section To overcome this l imitation. For this purpose, equation 

(4.1) is taken as reference or input. Then, let's consider the curvatures of the central point determined 

with the strain functions obtained as follows: 



8w(x,y) \2WjXy1 2w,x) (nx\ (ny^\ n . (nx\ (7ty^\ — y - ^ - = \ — M - + —h- cos — cos — sin — cos — 
a a~ [ la J [ 2a J 2a [ 2a J I 2a J 
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- ; +— 
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(4.9) 

Acurvatures (second-order derivation) are computed for x - d i r ec t i on : 

dw2(x,y) _ 7t2 

dx2 ~ 4a 2  

(7ix~\ (TryY (x 2+y 2) x 2y y 2 ) I 2w7y 2 2w, ) (7ix^\ (ny 
• 1 + 1 • ^ M ^ M * 

a [2a J [2a)[ a 4 a 2  

(4.10) 

and for y- direction 

dw2(x, y) 

dy 2  

n I 7i x 
^-cos |cos| 

4a2 I 2a 

y2) x2y2 | [ 2w2x2 2w> 
- + w, • H I C O S 

a [,2a J [,2a J 

71 I 7Tx\ . (71 y\\ 2w^x2y 2w,y 
-cos| sin —- 11 " 1 

2a J \2a 

(4.11) 

For x-y plane, the mixed curvature is determined as 

dw2(x,y) 4 fTTX'] fTry'] , . (7ix\ . (7iy^\ 
— — — = -—w 2 xycos — cos — \ + 7i sin — sin — 

oxoy a \2a) [2a) \ 2a) [2a) 

2 2 U) 
w2x y  wi 

(x 2
 + y2) 

7 1 sinf ^ I c o s f n ^ If -^w2x2y + ^-w\y I 7 1

 c o s f ^"^^sinf ^y^li 2w2xy2

 + 2w1x 
2a [2a J [2a)[ a4 a2 ) 2a [2a J [2a J[ a4 a2 

(4.12) 

To determine a set of kinematic equations that in x - d i r e c t i o n , the derivatives should be evaluated in 

y = 0 such that; 

dw{x,0) (2wxx 
ax 

(7Tx\ 71 . (TtX V X2 

\2a J 2a \2a )ya2 0 

(4.13) 
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dw 4(x,0) 3x7i 3 . (nx\ ( n* 
„ = -w, — sin + -

dx 4 1 4a5 I 2a J I 16a4 

5 /T 2 71*X1 ] (7tX 
W. -r + W. T C O S 

1 2a4 116a 6 J I 2a 
(4.16) 

For the central coordinates x-0 and y-0 (localization at the central point), we have that 

K „ ( 0 , 0 ) = V W ( Q , 0 ) ^ 
n w0 2w, 5TT 2 W0 

3 0 a 2  
, *• (0,0) = 0. 

(4.17) 

It is important to point out that for a freestanding square film under bulging pressure, the stress state 

at the central point does not contain shear stress, at least f rom a theoretical point of view. 

Nx + dw(x.y) 

Nx + ^ d x \ •> 

w 
WQ 

X 

Figure 4.2. Differential element at the central point of a square thin film, (a) Stress state, (b) Kinematic 
approximations. 

This is due to that there are no rotations, and its curvature KXX is null at the central point, it can be 

verified with equation (5). At the central point, the bulging effect produces an equi-biaxial stress state 
in-plane stress (point A, see Figure 4.2) and a triaxial stress state in-plane strain (point B). In Figure 

4.2, a differential element that describes the equilibrium at the intersection of central planes x-z and 

y-z is represented. Moments are not considered in the central part by the equi-biaxial stress effect in 
a square fi lm since in the bulging conditions; the thin films present negligible bending stiffness in this 
location. The force caused by the pressure P is calculated by Fn = Pd6>2px„pr„ , and the stretching axial 

force atx-direction is given by Nx = o-xxoPv0td&, where px0 = p X ( 0 , 0 ) , py0 = py(0,0) and c r ^ = 0 ^ ( 0 , 0 ) 

. Applying equilibrium conditions, specifically evaluating resultant moments about point C (in­
direction), it is determined that 

-TV (4.18) 

By solving equation (4.18), the following expression is obtained 



where = ^ (0 ,0 ) . Equation (4.19) represents a classical solution reviewed by different authors 

(Xu and Liechti, 2010; Santos et al., 2010; Ghanem et al. 2017; Shafqat et al., 2018) which 

demonstrated that the stresses depend on the curvatures generated by bulged surface. If these are 

known, stresses can be estimated as in the case of circular (equal to c r^ ) and long rectangular films 

( 2 ( 7 ^ ) . Note that elastic constants of the fi lm are not present in the Eq. (4.19); stresses are derived 

from the known value of applied pressure and curvature. In order to complete the calculation of the 

stress, equation (4.17) is replaced into equation (4.19) obtaining that 

APa 2 3 Pa 2 ., (4.20) 
2[n wa -8w , ) f 10 w0t 

In equations (4.2), (4.3) and (4.4), strains were derived from the shell theory. Then, by replacing 

rotations and curvatures at the central point, the strain expression is calculated as follows 

duQ 1 (5w(0,0)Y 1 , , (4.21) 

By substituting equation (4.17) into (4.21), the strain at the central point is computed finally as 

_ ( l - v ) c r f 5TT 2 w 2 (4.22) 
3 0 ^ a 2  

It is important to mention that equations (4.20) and (4.22) represent the stress-strain relations at the 

maximum deflection point (mid-surface) of a freestanding square thin f i lm. In the last few years, the 

characterization of rectangular films was preferably performed for membranes with aspect ratio 

b>4a. The basis for this preference was the simplicity of assuming a bulged fi lm shape as a cylindrical 

portion (Schweitzer & Goken et al., 2007; Javed et al., 2016). With this consideration, the curvatures 

were estimated in a simple way; therefore early-stage works (Tabata et al., 1989; Vlassak & Nix, 1992; 

Xiang et al., 2005) presented the following relations for the stress, as follows 

1 Pa 
2 wnt 

(4.23) 

and for the strain as 

du^+2wl_ (4.24) 
dx 3 a 2  

Establishing a stress relation between stress models (equations (4.20) and (4.23)) established for 
membranes with aspect ratio b/a = l and b/a =4, it is obtained that 



xvO (4.25) 

Equations (4.20) and (4.22) represent new models for characterizing the stress-strain relations of 
freestanding square thin films. In relation to a rectangular membrane a/b = 4, the stresses generated 

in a square fi lm are less of approximately 40% for the same pressure state, as described the relation 

between stress models. It verifies that aspect ratio influences the bulged shape (Vlassak & Nix, 1992; 
Lee et al., 2007). The main conclusion denotes that stresses are higher in rectangular membranes. 

4.3 D e s c r i p t i o n o f t h e e las top las t i c b e h a v i o u r o f squa re t h i n f i l m s 

Let's consider a rectangular thin fi lm 2ax2b, such that a<b, pre-stressed by residual stress crr and 

made of an isotropic elastic material that fulfills linear stress-strain relation. Under a pressure P, the 
fi lm is deformed by the action of the bulged surface. In those conditions, Tabata et al. (1989) proposed 

a classical analytical solution that relates w 0 and Pas described in Equation (1.4). 

Pfw0 A Slope = C 2 (v) — 

Limit 
pressure 

Limit 
deflection 

Nonlinear 

Figure 4.3. Linear relation obtained from the load-deflection curve. 

Several models and numerical estimations have been discussed and proposed for both c , and c2(v) 

(Maier-Schneider et al., 1995; Mitchell et al., 2003; Overman et al., 2019), in our study, C2(v) is 

represented by the general equation presented in Equation (1.5), which depends on Poisson's ratio v 

; a and p are constants to be determined. In real applications, experimental data obtained for w0 and 

P are adjusted by least-square fitt ing with the aim to determine ar and E. This is possible if q and 

C2(v) are known. However, the values of C, and C2(v) differs as reported by Mitchell et al. (2003). 

Considering all the mentioned parameters, we can divide Equation (1.4) by w0 obtaining that 

Y = C1% + C2(y)^X, 
a a 

(4.26) 

where Y = P/w0 and x = w\. Equation (4.19) is a linear expression that can be used to establish an 
elastic limit during the bulge test (Huang et al., 2007; Youssef et al., 2010; Holzer et al., 2017b). 

According to Figure 4.3, if there is deviation respect to the linear part, it indicates that nonlinear 
material effects (plastic stresses) are introduced on the thin film in the bulging process. To establish a 

deviation between Y, (linear) and Y (measured), the following error is established as follows 



EY ~{Ym-Yl)lYm. To define a threshold error among Y, and Ym, we will consider an error eY><j> to 
determine the limit pressure PT and limit displacement wr The threshold defines the pressure limit in 

which plasticity effects are introduced in the bulged membrane. Therefore, the yield stress ayp (Eq. 
4.20) and total strain in the elastic threshold eyp (Eq. 4.21) are computed as follows 

3 P,a 2 _ ( l - v ) c r , 5TT2 W2 (4.27) 
* 10 w,t '  y p E 30^3 a 2 ' 

To reconstruct the plastic material behavior a correction should be done in the total strain using yield 
stress and Young modulus (know values), then 

•is n—s )H—— .Vs (4.28) 

The analytical equations reviewed and developed show that wi th the classical load-deflection model 

is possible to reconstruct the material model for the plastic regime computed with equations (4.27) 

and (4.28). 

4.4 Comparison between stress and strain distributions in an elastic square 
thin film 

In section 4 .1 , Equations (4.2) and (4.6) were introduced to calculate the elastic linear relations among 
the stress and strain fields in a bulged thin fi lm which can be determined if the elastic properties are 
known. It is most favorable to calculate these distributions from analytical solutions since finite 
element computations require a high time-demand if large volumes of thin films are tested. Equation 
(4.1) represents the displacement field that follows the membrane shape after being bulged and the 

simplicity of w(x,y) is due to that it is only dependent on the maximum deflection»„. So, if maximum 
displacements are known from the load-deflection curve, it is possible to reproduce the tridimensional 
shape of each deformed state in any regime. 

Figure 4.4. (a) Relative displacement error between FEM II solutions and w(x, y). (b) Comparison of the 
maximum principal stress among FEM II and the analytical solution. 



Maier-Schneider et al. (1995) proposed some values for the following constants w,=0.401w0 and 
w2 =1.161 lw0, and they demonstrated that w(x,y) presented an accurate experimental correlation 
with the bulged shape in the studied cases. Authors did not report how and w2 were obtained; but, 
these can be determined by minimization between experimental data and w(x,y). 

Let's consider a thin fi lm of size 2x2 mm and thickness of 500 nm subjected to a bulge test that 
achieves a maximum pressure state of P = 9.57kPa. The material properties are the following 
E-236.3MPa,v = 0.3 ander. U ) =166 MPa . The bulge test was simulated by means of FEA (proposed 
method explained in above Chapters 2 and 3) obtaining a maximum deflection of w0 =22.154 um for 
the maximum pressure. Then, the displacement field xv(x,y) (see eq. 4.1) is compared wi th the bulge 
surface calculated by FEA using the absolute relative error, as shown in the colormap shown in Figure 
4.4a. The result indicates that the central region agrees quite well wi th numerical solutions since the 
relative errors (analytical solutions) are quite acceptable (less than 0.2%). Largest errors are found 
close to the corners, which reach 2% in its maximum; it can be concluded that the finite element 
solutions approximated with high accuracy the described bulged shape. In order to verify these 
differences in detail, we computed maximum principal stresses er, 2 for comparison between the FEM 
results and the analytical expressions presented, using the following computation of principal stresses 
as a reference: 

Figure 4.4b depicts the maximum principal stress distributions calculated analytically and by FEM. It 
is evidenced by simple inspection that the largest principal stresses appeared at the central part of the 
boundaries for both cases. However, remarkable differences in the way that stresses are distributed 
over the fi lm domain are noticed. The deviations correspond with second-order derivatives since the 
stress calculations depend directly on the strains, and it relates the contributions of each deformation, 
axial, bending, and large deflections on the function w(x,y) • The principal stresses distribution are 
shown in figures 4.5a, 4.5b, and 4.5c, where Figure 4.5a (analytical results) and Figure 4.5b (FEA 
results) crj is visualized as a 3D surface. To compare the FEA results quantitatively, the curves 
correspoding along of the x-direction are related in Figure 4.5a. It is observed that f rom x e (0.25,1.75) 

mm both results are well correlated, specially the central point of the fi lm. It confirms the numerical 
solution obtained by FEM is reproduced by the analytical model. Furthermore, Figure 4.5c and 4.5d 
represent the minimum principal stress and Von Mises stress, which are commonly used for stress 
analyses. In Figure 4.6a, ea(x,l) obtained from Equation (4.2) is compared with the numerical solutions 
(FEM results). 

The correlations of both solutions exhibit the same trend, but the analytical solution underestimates 
the strains with a maximum relative error of 3.5% on the boundaries. In the middle region xe(0.5,1.5) 

mm, strains overestimate the numerical results. Given that the calculated curve is a projection of the 
strain field, inside the figure, the strained surface e„(x, y) is illustrated. It is important to remark that 
numerical computations are approximations and these are taken as reference in our case, since w(x, y) 
is determined by the parameters w0, wl and w2. 

(4.29) 
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Figure 4.5. (a) Comparisons between al obtained by FEM and the proposed analytical equation, (b) 
Maximum principal stress determined by FEM. (c) Minimum principal stresses obtained analitically. (d) Von 

Mises stresses determined analitically. 

In practical applications, these parameters should be f i t ted from the experimental data that are used. 
The stress field and its projection on (x,l) are computed applying Equation (4.7). Both are illustrated 
in Figure 4.6b in the same way as for strains. It is seen that the difference in the boundary stresses is 
10 MPa, and the relative errors are minimized close to the central part of the f i lm. Comparisons 
showed in Figure 4.6 can be used for the determination of better relations between w0, wl and w , . In 
order to observe if the curvatures obtained through xv(x,y) are well correlated with the numerical 
results, an interest region delimited by xe(0.5,1.5) mm is demarked in gray color in Figure 4.6. 
Applying equation (4.5) and equations (4.10), (4.11) and (4.12), the curvatures icxi(x,y),Kyy(x,y) and 
Kxy(x,y) were calculated, and these are depicted in Figure 4.7a. The axes (x,y) are shifted by 1 to set 
the zero as the central point. 
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Figure 4.6. Calculations for / > = 9.57kN a) Strain field at x-direction, b) Stress field at x-direction. 
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Figure 4.7. (a) Directional curvatures Ka{x,y) ,Kyy{x,y) and K (x,y) determined analytically, (b) Comparison 

among the principal curvatures. 



The segmented region A (interest region) in the image shows that the directional curvatures oscillate 
between 34 m"1 and 39 m 1 in the central part, where K^(x,y) and Kyy(x,y) evidence the symmetrical 
nature of the bulged surface. Further, K v (x, y) it indicates that over the central part there are no twist 
curvatures since these are zero. Principal curvatures and K, were determined for both approaches 
to compare their deviations, as shown in Figure 4.7b. It is noted that curvatures determined by FEM II 
are scattered. This is due to that the calculations were done over the displacement results that use 
second-order functions, which produces constant curvatures on each finite element. On the other 
hand, analytical solutions are represented by high order functions; for this reason, these are 
continuous. It is observed that only a small region presents a good correlation among the curvatures 
%e (-0.2,0.2), which means that w(x,y) it only satisfies the second derivative in a limited area. It is 
essential to point out that all results shown in this section can only be used in the elastic regime. 

4.5 Stress model (Eq. 4.20) validation for elastic square thin films 

Equation (4.20) developed to calculate the stresses located on the central point of a square thin film 
is evaluated for different membrane sizes in this section. The elastic square film 2mmx2mm used in 
the previous section is considered a first comparison example, including their pressure states. Figure 
4.8 shows the maximum principal stresses obtained by FEM analysis, equations (4.20) for square thin 
films, and (4.23) for rectangular thin films. Both solutions (FEM and Eq. 4.20) demonstrate a 
numerical correspondence f rom specific pressure values, specifically 4.5kPa; which indicates that the 
deviation among these diminished when the elastic effects are more effective . It is pointed out that 
at the beginning of a load-deflection curve, the residual stress is predominant in the bulging problem 
(Mehregany et al, 1997; Shojaei et al. 1998; Ghanem et al., 2017). The deviations evidence that a 
correction model could be introduced to act in the first part of the load-deflection curve. 
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Figure 4.8. (a) Maximum principal stress comparisons, (b) Stress comparisons for different sizes of square 
films. 

The classical equation (4.23) was applied for the 2x1mm to compare the solutions with the proposed 
model in (4.20); equation (4.23) was developed for rectangular films, which is applied for aspect ratio 
b/a equal or higher than 4. Our purpose is to show the differences between stress values since both 
stress models present dependency with the parameter a. In the showed results, we observe that the 
differences are remarkable among the curves with triangular (square film) and square (rectangular) 
markers; the main characteristic is that stresses are clearly over-dimensioned. 



In this example, the residual stress is assumed as unknown to impose the same pressure and 

deflection condition on both equations. According to the classical work done by Tabata et al. (1989), 

equation (4.23) is valid only for films with the aspect ratio b/a>=4 as discussed in section 4.2. 

However, the same model has been used for square geometries in some cases since a stress equation 

for square films is not available in the reviewed literature as mentioned above, this is not a correct 

approach as is clearly seen in Figure 4.8a. Additional information about the validity and limitations of 

the rectangular model used to determine the stresses are discussed by Neggers et al. (2012b). 

Figure 4.8b shows approximations for different sizes, wi th fixed thickness, and considering the elastic 

properties and residual stress as in Figure 4.8a. For square films of side 1mm, 2mm, 3mm, and 4mm; 

it is observed that the results determined with equation (4.20) presents a satisfactory agreement with 

finite element results, as demonstrated by the low relative errors listed in Table 4 .1 . These indicate 

that there are small deviations between the analytical and numerical solutions. Nevertheless, it is 

noted that the analytical solution approximates the stresses better beyond the effects of the residual 

stress, which means that the results correlated better when elasticity is more effective in the bulging 

process; this is highlighted in the fi lm Ixhmn . The explanation is the nature of the equation since, 

for small deflections (residual stress is effective), the displacement field (Eq. 4.1) does not satisfy the 

high curvatures. Holzer et al. (2017b) described how the two parts (residuals stress and elasticity) 

contribute to the load-deflection process. 

In general terms, it is denoted that all approximations are consistent, as was verified for different 

square fi lm sizes. Neggers et al (2012a) explained that in the rectangular f i lm [bla >=4), the bulge 

equations are not valid at the beginning of the bulging since the cylindricity is not satisfied in that 

regime and the accuracy of curvatures limits the validity of the approximations. 

Table 4.1. Relative errors for each size of thin fi lm 
Size [ mm ] Error [%] SD [%] 

l x l 2.33 0.55 

2x2 1.35 1.28 

3x3 1.09 1.16 

4x4 0.97 1.00 

The results suggest that the correlation in the active region of the residual stress can be improved with 

an auxiliary function designed to minimize the differences of the beginning. Finally, the reported 

results in this section show that the proposed stress model follows the maximum principal stress 

determined by FEM, which verifies that there is a numerical agreement between obtained solutions 

for elastic square thin films. 

4.6 Elastoplastic description of square thin films using stress-strain models 

Several methods to describe the elastoplastic parameters of rectangular thin films have been 

recognized and adopted in different studies of bulge testing (Neggers, 2012b; Min et al., 2017). On the 

other hand, the elastoplastic characterization from load-deflection experimental data is not well 



known in square thin films. For this reason, the methodology described in section 4.3 is applied to 

contribute to the modeling of stress and strain in the plastic regime. 

Finite element models are assumed as numerical experiments to provide the load-deflection data with 
known material models listed in Table 4 .1 . This process is carried out to validate the developed 

equations (4.20), (4.22), (4.27) and (4.28). The finite element simulations were performed for two 
material models (bilinear and nonlinear) considering these as isotropic hardening elastoplastic 

models. The variables listed in Table 4.2 are mentioned in the above sections, except tan(a) that 
corresponds with the slope of the stress-strain curve after the yield limit. 

Table 4.2. Material models 

Material model crr [MPa] E [GPa] V ayp [MPa] tan(«) [GPa] Size 
[mm 2] 

Bilinear 166 236.30 0.3 90 23.6 2x2 
Nonlinear 60 258.80 0.3 130 See Fig. 4.10b 2x2 

Figure 4.9a illustrates a comparison between the numerical and analytical results determined for the 

strains, in the case of FEA, these are Equivalent total strains (Von Mises). 

D 2 4 6 8 1 0 1 2 1 4 1 6 0 2 4 6 8 1 0 1 2 1 4 1 6 
Pressure [kPa] Pressure [kPa] 

Figure 4.9. Comparison between FEM results and analytical models, (a) Equivalent total strains at the central 

point, (b) Maximum principal stress at the central point. 

Using the load-deflection data of both numerical models (bilinear and nonlinear), equation (4.22) is 
evaluated. The mean relative deviations presented in the calculations are 5.8% for the bilinear and 

4% for the nonlinear (until pressure of 11 kPa). The percentual difference increases considerably above 

11 kPa pressure in the nonlinear correlation. This can be caused by the localized plasticization that 
changes the bulged surface to an irregular shape that cannot be reproduced by the curvatures 

calculated with equation (4.1). Neggers et al. (2012b) discuss that strains present higher inaccuracies 
by the error induced in the deflection field that not satisfies the bulged surface 



The maximum principal stresses also were calculated as shown in Figure 4.9b. It indicates that the 

tensions present better approximations to the finite element solutions since the relative errors were 

4.7% and 1.5% for bilinear and nonlinear material models. Similar to the strains, the stress deviation 
presents an inflection in the pressure of llkPa. The results indicate that the stresses can be estimated 

without performing additional numerical calculations (FEA) since only load-deflection data and the 
fi lm geometry are enough to determine the state stresses, as demonstrated in Figure 4.8b. It is 

concluded that the analytical Equation (4.20) and (4.22) converged in a good agreement with the 
numerical results obtained by FEM. 

Equations (4.20) and (4.28) were proposed to predict the material models in the plastic regime from 

load-deflection data. The first step is to determine the elastic limits wi th the relation shown in 
Equation (4.26). According to the proposed methodology, P/w and w2 keep a linear correlation in 

the elastic regime which means that there is no plasticization in the bulged surface. The interpolation 
of the linear function Y1 is built f rom the first data (initial part of the load-deflection curve), and its 

domain is extrapolated until the total value of applied pressure. The data set YM corresponds to the 
load-deflection data mapped overall domain YR These functions are related through the absolute 
value of relative error eY = ( Y N I - Y , ) / YNI to estimate the deviations in each pressure state. 

(b) Predicted material models. 

In Figure 4.10a is observed that relative errors (right axis) present repeated minimum values close to 
zero, and the last one establishes a starting point in which the error increases indefinitely. This point 

is considered as the limit point since the last intersection among the linear and nonlinear functions is 

delimited visibly. The elastic limits determined for the bilinear material model is computed as 
90.14/WPo (initial yield stress 90 MPa) and 132.87 MPa (initial yield stress 130 MPa) for the nonlinear 
material model as shown in Figure 4.10b (left axis). Equations (4.20) and (4.28) were used to predict 

the material models calculated and represented in Figure 4.10b. There is observed that the 

approximation follows the trend of the material models assumed in the proposed finite element 
experiments. In practical terms, it means that wi th load-deflection data, stress-strain models can be 

predicted. We concluded that the methodology presented can be used to characterize the plastic 
regime after the yield point to study the plastic effects in bulged thin films. 



Chapter 5. Fracture toughness evaluation of a cracked 
Au thin film and plasticity assessment of an Al thin film 
by bulge testing 

This chapter is divided into two main sections that correspond with the applications related to fracture 
toughness determination and plasticity estimations in thin films under bulging test, two different 
materials are used as study cases. First, a finite element analysis of a pre-cracked gold thin film was 
subjected to a bulge test. These tests were conducted in order to determine the elastoplastic 
properties and fracture toughness of the gold films. For the numerical fracture analysis, the problem 
was divided into stages; the first stage was the development of the numerical model on the whole 
fi lm wi thout pre-crack (elasto-plastic analysis) and the second one was performed on a film portion 
that included the pre-crack (sub-modeling stage). To calculate the stress intensity factor around the 
crack tip, three different notches (rounded, sharp, and V-sharp) were used. In addition, an improved 
method for determining the yield stress and residual stress in a freestanding thin aluminum (Al) fi lm 
is presented based on the results of the bulging test. The fi lm was cyclically loaded with increasing 
maximum gas pressure. The method to determine plasticity parameters relies on the load-deflection 
relationship that presents a linear behavior in the elastic regime when scaled with the displacement 
parameter. 

5.1 Experimental setup for a bulge testing of Au (Gold) and Al (Aluminum) 
thin films 

The experimental setup for Al thin fi lm tests was custom-built at the Institute of Scientific Instruments 
of Czech Academy of Sciences (see Figure 5.1). It comprises a Twyman-Green laser interferometer 
with a wide collimated beam, pressure transmitter, pressure pump, and digital camera. The 
interferometer equipment uses a fiber-coupled HeNe laser wi th a wavelength of 633 nm. The laser 
beam is split into a measuring beam that reflects off the specimen surface and a reference beam that 
reflects off a reference mirror (surface flatness of A/10). 

Bulged film 2mm x 2mm 
Optical interferometric system 

HeNe Laser f^Tj 
633nm lllllllll 1 B 

H'f, for different 
pressures 

Figure 5.1. Experimental setup for the bulging test of the Al thin film. 



The measuring beam interferes with the reference beam at the interferometer output and forms 
interference fringes projected onto the sensor via camera lens (Nikon 50mm f/1.4 Nikkor G). The test 

specimen was prepared following the procedure by Vlassak and Nix (1992). A layer of amorphous 
silicon nitride layer wi th stoichiometry close to Si3N4 and thickness of 525 nm was deposited by low-

pressure chemical vapor deposition on Si monocrystalline wafer. A square window of 2 x 2 mm was 
opened in the Si wafer by wet anisotropic etching. The exact dimension of the window covered by the 

nitride membrane was 2.02 x 2.03 mm. An aluminum fi lm with a thickness of 1.74 urn was deposited 

by magnetron sputtering on the nitride (deposition was done for 141 minutes at 500 W at magnetron 
in an oscillating regime with argon pressure of 0.38 Pa). Finally, the Si3N4 layer was etched out, so only 

the freestanding Al membrane was subjected to the bulge experiments. 

For the gold (Au) preparation thin f i lm, the substrates were acquired from Silson Ltd. Southam, UK) 
which are silicon-rich silicon nitride (SiNx) manufactured by low-pressure chemical vapor deposition 

(LPCVD). The details of the experimental setup are described in the doctoral thesis of Preifs et al. 
(2017). 

5.2 Stress intensity factor K i and J-integral 

In linear-elastic materials, the stress singularities at crack tips or slit tips can also be explained by stress 
intensity factors (SIFs). This concept can be observed in corner notches (e.g. V-notch, stepped bar, 
weld toe notches). In the crack tip, it is observed asymptotic stress decreases from the singularity and 
it is can be described by the inverse square root of the radial distance r from the crack tip (Irwin, 1968). 
Stress intensity factors can be used to describe the stress fields near corner notches and crack tips. 

Figure 5.2. Bulge test on a cracked thin film (half model). 

There are three modes of notch loading: in-plane tensile loading, in-plane shear loading, and out-of-

plane shear loading. Let's consider a bulged film with a pre-crack over the place with the maximum 

displacement as illustrated in Figure 5.2. The stress field ery(r,8) in the vicinity of an sharp crack tip is 
described mathematically for the first mode by the following expression Irwin (1968). 



(5.1) 

where K, is the stress intensity factor (SIF), 9 and x are the direction and position of the stress field 

<yy(x,0). In the crack tip (x = 0), Kl can be estimated in a sharp notch as K,(x) -cry(x,Q)^2nx . 

The above expression shows that stress values should be known to compute K,. There are several 

methods for computing Kt{x) and one of these is called the direct method. For this purpose different 

techniques have been proposed as discussed in Ojan et al. (2016). This method is based on finite 

element solutions obtained for cr v(x,60,Vxe (xL,x2). The idea is to choose an interval (xl,x2) where 

stress values are used to compute K,. Figure 5.3a describes the stress behavior obtained by FEM. 

The cut domain defined in (0,x,) is an uncertainty domain because stress values are not defined 

properly by the numerical singularity that represents the crack front. To calculate K, i n x = 0 , an 

extrapolation is proposed to project the value of K, using stress values obtained by finite element 

solutions as shown in Figure 5.3b. 

Figure 5.3. (a) Uncertainty of the stresses at the crack tip determined by FEM. (b) Direct method for 
determining Kl through finite element solutions. 

However, the direct method is very sensitive in the vicinity of the crack tip since there is a dependence 

with the meshing as well as with the shape of the crack root. Therefore, in this study elastic part of i 

- integral was used. J-integral value is determined by the strain energy release rate close to the crack 

tip. The J-integral is a fracture parameter that denotes the release rate of the potential energy-related 

with crack growth. J- integral theory was proposed by Rice (1968), the theory describes the 

mechanical strength around a crack tip which is defined in a two-dimensional problem by the following 

expression 

ds. 
(5.2) 

where w(ev) is strain energy density, T are the components of the traction vector over a part of the 

space delimited by x-y, utare the components of the displacement vector and s is the distance along 

any contour f traversed in counter-clockwise direction from the lower face of the crack t ip. In the 



linear elastic plane stress case, J - integral is determined by the strain energy release rate close to the 
crack tip, being the relationship between K, (stress intensity factor) and / in the following way 

(Nuismer, 1975) 

/ = KJE. (5.3) 

Where E is the Young's modulus. For plane strain conditions, J = KJE/(l-v 2). 

5.3 Fracture analysis for a pre-cracked and non-cracked Au thin film 

In Figure 5.4, a brief scheme of a numerical approach proposed to simulate a bulged fi lm with a pre-
crack that passes through the thickness is described. The approach is based on two solution stages; 
the first stage is developed on a fi lm without crack and the second one on a fi lm portion that includes 
the pre-crack (sub-model). A geometric division of the membrane is carried out with the aim to control 
the meshing parameters around the crack. 

Figure 5.4. Scheme of the solution process by finite element analysis 

The fi lm is divided into two geometric sections that are composed by a scaled section (sub-region of 
1% of the size film - sub-model) located in the center of the film and the second one part is the 
complement of it, as illustrated in Figure 5.4. It is very important to point out that the sub-section 
contains the crack, further, three notch types are considered for the fracture analysis; rounded, V-
sharp and sharp. 

In the solution stage I, the model without pre-crack is used to characterize the elasto-plastic properties 
with the aim to approximate the load-deflection curve measured experimentally. For the stage II, the 



loading states (those obtained in the stage I) are applied at the boundaries of the sub-region that 
includes the pre-crack. It means that only the solution for the chosen subregion will be computed. 
The sub-modelling process has the advantage of reducing computations in the entire geometry. In 
addition, the fracture problem can be classified as a multi-scale problem because the finite element 
solution can be weighed computationally. Only if it is solved in one stage. This problem occurs when 
the mesh should satisfy multiple dimensional scales in the same problem, such as micro- to milli-scale. 
In both cases, the sub-modeling is based on Saint-Venant's principle which guarantees the same load 
state in the boundaries of the sub-regions. The technique has been used in several studies (Norman 
et al., 2011; Narvydas & Puodziuniene, 2014; Bozkurt et al., 2016; Zhao et al., 2019). For the analysis, 
a gold thin fi lm is considered since experimental data of bulge tests were available for this purpose 
(Preifs et al, 2017). In Figure 5.4, the overall views of both finite element models are shown, the whole 
model (stage I) and sub-region (stage II). The size of the thin fi lm is 1.056x4 mm wi th 198.6 nm of 
thickness. A crack of 10 jum in length and 100nm in width is included in the sub-model (sub-region) 
with dimensions of 20x40 jum as the figure describes it. 

5.4 Nonlinear fracture results for the Au thin film 

With the elastic properties determined in the chapter 3 for the Gold (Au) membrane, the estimation 
of elasto-plastic behaviour is achieved from the calculations of stresses and strains proposed by 
Vlassak & Nix (1992) for long rectangular membranes (see Chapter 4). The stresses were computed in 
the central part atx-direction as indicated in Figure 3.10b. 
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Figure 5.5. Comparisons in load-deflection curves for non-cracked and cracked film with the experimental data 

Using all mechanical properties determined in the section 3 and applying the proposed methodology 
described in section 5.3, there were computed the deflections for the films without crack (full model) 
and with the pre-crack, the obtained results are shown in Figure 5.5. The simulation procedures for 
the fi lm without crack are described in the chapters 2 and 3, these included the characterization 
process of the elastic properties determined in chapter 3, section 3.5. It is seen that the load-deflection 
curve agrees with the experimental data. Although there are some differences between the 
displacement intervals 30 urn and 45 urn, the correlation is acceptable for this purpose because 
despite all nonlinear effects at that load level the correlation presented good accuracy. The 



experimental details of obtaining load-deflection curves of a cracked fi lm are described in Preifs et al. 

(2017). Figure 5.5 shows that damage pressure was determined at 31.46 kPa, which corresponds to a 

broken fi lm. 

It is noted in Figure 5.5 that there are some differences between the simulations and the experimental 

data. It is primarily identified that the stiffness in the fi lm is higher when there is a presence of the 

pre-crack and therefore, the displacements are lower, it is primarily identified that the stiffness is 

higher when there is a crack on the membrane. Both experiments were approximated with the same 

material model, it indicates that the numerical computations likely approximated both bulging tests. 

Additionally, in the stage II, fracture parameters were computed with ANSYS 16.1 which supplies the 

maximum and the minimum values of the Kt and J distributions along the crack front, the results 

are illustrated in figures 5.5 and 5.6. In Figure 5.6a is illustrated Kt along crack front in the pressure 

level of TlkPa, the point A indicates that the crack tip on the top surface (no pressure), B point is 

located with the minimum value of Kl and C is the crack tip on the bottom surface subjected to 

different pressure levels. According to the distribution of Kt, it seen that the fracture mechanism is 

not symmetric through the thickness, which means that the crack probably can be propagated from 

the top surface firstly. 
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Figure 5.6. (a) Stress intensity factor through thickness obtained by ANSYS. (b) Stress intensity factor vs loading 
pressure. 

Figure 5.6b shows all K, values respect to the increment of pressure levels until that the fi lm was 

broken, the last value will betaken as the fracture toughness of the gold film knowing that the damage 

pressure was 31.469 kPa. Results shows that the maximum value reached was 0.2SMPa-m 0 5 and the 

minimum 0A5MPa-m 0 5 for the ultimate pressure. The values determined for Klagree with those 

reported by Hosokawa et al. (2008) determining 0A5MPa-m 0 5 for gold films. Recently, Preifs et al. 

(2017) determined values corresponding to 2MPa-m 5 for gold fi lm with thickness between 60 nm 

and 320 nm. Fracture toughness values show that the thin films generally present lower values than 

those determined for bulk samples as has been reported for different metal films (Wang et al., 2003; 

Hosokawa et al, 2008; Hirakata et al., 2011). 
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Figure 5.7. Sequential procedure for estimating Young's modulus and Poisson's ratio. 

In Figure 5.7a, values of J -integral were computed to approximate fracture toughness from energy 

release rate relation exposed in Equation (5.3). There are highlighted the maximum and minimum 

values obtained for J, 0.62 and 1.13 Jim 2. 
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Figure 5.8. (a) Stress in y direction close to the crack tip for 31.469 kPa . (b) Estimation of Kt values from 

Equation (5) for 31.469 kPa. 

Applying Equation (5.3), K, values were calculated and these are depicted in Figure 5.8b. Klmjn was 
determined for plane strain condition and KImax for plane stress. Obtained limit values of toughness 

were 0.3 [KImax) and 0.25 (Klmjn) MPa-m 0 5, these correspond with those reported in Figure 5.8b. As 
an additional methodology of comparison, the fracture toughness can also be obtained from stress 

values in y - direction, those close to the crack tip, as detailed in section 5.2. Figure 5.8a shows the 

stress values determined from 1 urn until 5 urn of the crack tip, since the closest values do not have 
numerical meaning by the uncertainty induced in the crack t ip. Along the crack, stress values are 

between 425 and 433 Mpa, wi th a maximum stress located on the top surface at 2 urn. Using stress 
values in equation (5.3), Kl values were extrapolated until the crack tip to determine the fracture 



toughness. The values are 0.63MPa-m05and 0.39MPa-m05. Figure 5.9 collects the Kl values 
determined by the three exposed methods. 
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Figure 5.9. Kt values from different methods. 

As final Analysis, Figure 5.10 is computed for three different notches at the crack-tip as illustrated in 

Figure 5.3. Figure 5.10 shows the values calculated for the fracture toughness with ./-integral and 

Equation (5.3). The mean values were determined between 0.288 and 0.303 MPa-m05 f rom elastic 

(1.03 / / m 2 ) a n d elasto-plastic (1.136 J/m2)./-integrals. 
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Figure 5.10. K, values from different notches for both J- integral fracture methodology. 

These results agree with the values reported by Hosokawa et al. (2008) that determined 
0A5MPa-m05 for gold thin films with thicknesses between 200 and 300 nm. It is observed that the 
plasticity effects have influence at the crack-tip since ./-integral values obtained from elastic problem 
were very close to those computed with plasticity. 



5.5 Plasticity analysis for an Al thin film 

In this section is applied an improved method to determine the yield stress and residual stress in a 
freestanding aluminum thin fi lm by analysing experimental data obtained from the bulging test. The 
specimen was glued to a stainless-steel plate with a hole in the centre and mounted to the chamber 
via four screws. A computer-controlled industrial-grade piston operated by a syringe pump was used 
to increase and decrease the chamber pressure and on the membrane. The chamber pressure was 
monitored by a pressure transmitter wi th a precision of 60 Pa as described in section 5.1. The method 
to determine the plasticity parameters is based on the load-deflection relation that presents a linear 
behaviour in the elastic regime when it is scaled with the displacement parameter as discussed in 
Chapter 4 

Figure 5.11. (a) Example of 3D experimental displacement field, (b) Displacement fields for different pressure 
states. 

From the measured data, it is possible to calculate the displacement of every pixel in the normal 
direction to the specimen surface in relation to the pressure change, as illustrated in Figure 5.11. 
Further, the reconstruction of the shape of the whole membrane w(x,y) as a pressure function was 
computed, including the central point of the membrane as shown in the same figure. It is important 
to note that measurements of displacements close to the fixed boundary of the membrane are not 
very feasible since the camera is unable to capture this part of the fi lm when it is bulged. 

For the bulging test, an aluminum fi lm wi th a thickness of 1.74 um and size of 2x2 mm was cycled six 
times in loading and unloading conditions, respectively. Each loading cycle incremented the gas 
pressure progressively by 10 kPa, starting at a maximum pressure of 10 kPa in the first cycle, and 
finalizing of 60 kPa, for the last cycle. The schematics of the loading conditions are given in Figure 
5.12a; the measured displacement of the central point versus gas pressure is plotted Figure 5.12b. 
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Figure 5.12 (a) The schematics of the membrane loading in six cycles; (b) pressure - deflection curves as the 
central point. 

Figure 5.13a shows the measured data correlating the pressure and stress values at the membrane 

centre cr^ for the first four measured loading cycles. The stresses were computed with Equation 

(4.20). For the gas pressure close to zero, an initial value of stress corresponds to the residual stress 

crr, as illustrated in the magnified section A-A. The residual stress is not changing for the first three 

cycles; these values were used for calculation of ar in as-received Al fi lm as 82.5+0.2 MPa. It is also 

visible that residual stress is changing after subsequent cycling due to the plasticity effects. 

Figure 5.13. (a) Pressure-stress curve for different loading cycles, (b) Scaled load-deflection relations and 
relative error for the third loading cycle. 

The value of cr. was compared with values calculated from Equation (1.4) and constants Cx listed 

in Table 5.1, following the procedures described in Chapter 3. Table 5.1 demonstrates that ar is in 
good agreement with the values calculated by classical models determined with Equation (1.4). The 

difference between the value found by other authors and this study ranges between 0.43% and 10% 

for the oldest approximation of C , . Based on the above results, we consider it an advantage that 
residual stress can be determined wi thout complicated calculations of Ci. In addition, the validity of 

Equation (4.20) developed in chapter 4 is successfully established. 



Table 5.1. Residual stress computations with known c , values 
Q crr [MPa] Error [%] reference 

3.044 91.56 10.98 Tabata et al. (1989) 
3.41 81.73 0.93 Pan et al. (1990) 

3.393 82.14 0.43 Vlassaketal. (1992) 
3.45 80.79 2 Maier-Schneider et al. (1995) 
3.42 81.49 1.22 Bonnotte etal. (1997) 

— 82.5+0.2 — Present study 

In Figure 5.14a, the residual stress value showed a change after the third loading cycle with a maximum 
pressure of 30 kPa, suggesting the membrane had irreversibly deformed. Equation (1.6) was used to 
determine whether plastic effects occurred during this loading cycle, x and Y [P/w0] were 
f i t ted by a linear elastic function (V/) and smoothed by a cubic polynomial function (YNi). Both functions 
YNland Yl are plotted in Figure 5.14b. 

(a) (b) 

Figure 5.14. (a) Stress and strain curve for different loading cycles, (b) Residual deformations after unloading 
cycles. 

It was calculated the relative error function e y to determine when the linear relationship no longer 
followed experimental data. Comparing the results, the following criteria was chosen to define the 
threshold error: if the final error reaches a value higher than the errors computed through the domain, 
the error limit is defined on the last error peak, as shown in Figure 5.14b. The final errors on the 
domain do not overpass the higher errors in the first two loading cycles. In the third cycle, all the 
conditions are met, and an error limit of 0.27% percent has been established. This corresponds with 
x = l280jum 2 which is related to the pressure 27.6kPa, and the stress calculated is 132.18MPa. This 
value represents the yield stress determined for the equi-biaxial stress state at the central point. 

Figure 5.14a shows stress-strain curves for the six loading cycles; the strains are relative 
measurements, excluding the residual strain calculated according to Equation (4,21). It is noted that 
f rom the fourth cycle, the stress-strain curves start to shift down from the value of residual stress of 
the as-received f i lm, and the difference of residual stress at zero strain between loading and unloading 
values augments. It indicates that when the plastic deformations are introduced, and the hysteresis 



increased in the stress-strain curve. This effect has been reported e.g. by Kalkman et al. (1999). It 
means that the residual stress diminishes with each cycle showing a stress relaxation effect. In general 
terms, we can observe that the plasticity effects after the third cycle influenced the mechanical 
behavior in each bulging stage that was detected with the presented methodology. The effects caused 
by the plastic deformation could be explained from a microstructural analysis since it is well known 
that the yield strength of thin films can be affected by more mechanisms operating in the 
microstructure as changes in the dislocation density or (sub) grain size. Figure 5.14b illustrates how 
the plastic effects are visualized on the measured displacement field after the fi lm bulged. In this case, 
the last four loading cycles were considered for the analysis, from 30 kPa until 60 kPa. It is observed 
that the fi lm remains deflected in a non-uniform way, which shows the higher residual displacements 
at edges. Progressively, the residual deflections increase their values from 0.8/Mn to 3.6/um. Usually, 
in plates subjected to a transversal loading pressure, the stresses are higher in the boundaries when 
these are in clamped conditions. Lin et al. (2014) discussed that the local curvatures induced 
restriction of the bending moments developed at the boundaries. As a consequence, stresses are 
higher at these locations. 



Chapter 6. Elastic properties characterization of bilayer 
thin films subjected to bulge testing 

This chapter describes a methodology to characterize the elastic properties of a thin fi lm deposited 
over a substrate (Bilayer configuration) with known elastic properties, as a study case, a silicon nitrate 
fi lm Si3N4 (studied in previous chapters) is used as the main substrate. When a second film is 
deposited on a primary f i lm, the first effect produced by adding it is the modification of the residual 
stresses in both films. It is important to point out that in monolayer films, the classical load deflection 
equation is useful to compute residual stresses. However, in bilayer films, there are more parameters 
that depend on each fi lm, therefore this model is not applicable in a simple way. 
The main effect of manufacturing a bilayer fi lm is the redistribution of the residual stresses in between 
layers since the equilibrium conditions on the substrate change when the second layer is added. This 
challenge is solved by developing a numerical method to estimate both residual stresses using new 
equilibrium conditions that consider the shear lag effect (Tinoco et al., 2010) between both films. As 
a result of determining these values, Young's modulus of the second film can be determined with a 
combination of the methodologies exposed in previous chapters of this thesis. 

6.1 Finite element model for bulge testing in bilayer thin films 

This section describes the procedure considered to simulate the bulge testing on bilayer thin films 
utilizing a finite element analysis. As detailed in section 2.1, some processes already explained are 
implemented in this chapter. 

Figure 6.1. (a) Composition of a bilayer thin film, (b) residual stresses in a bilayer thin film, (c) Bulging test 
scheme in a bilayer thin film. 

Figure 6.1a shows two films called A and B, which correspond to a substrate and deposited f i lm. With 

the fabrication process, residual stresses in each fi lm are generated internally, however, their 

magnitudes are different but their definition is governed by the equilibrium conditions. It is important 



to denote that when the first layer is deposited (monolayer case - first stage of manufacturing), 
residual stresses are developed on the substrate (Engwall et al., 2016; Chason & Guduru, 2016), but 

when the second layer is added, these are modified by the new equilibrium conditions. It means that 
a new residual stress value arises. At the end of the process of manufacturing, both films remain 

stretched by the individual residual stress, as illustrated in Figure 6.1b. Where crrfA) and e r r ( s ) 

represent the residual stresses of the deposited thin fi lm and the substrate. 
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Figure 6.2. Scheme of the solution process by finite element analysis. 

To model bi layerthin films subjected to a bulging test (see Figure 6.1c) through finite element analysis, 
it is necessary to review section 2.1. The first step is the design process of the bilayer geometry. A 
submodeling strategy is considered for the analysis, which means that the solution is planned in three 

stages as follows: stage I (residual stress for substrate at the boundary r / ( B ) ) , stage II (Importing 

residual stress for the substrate in the top and bottom domains Q / ( s ) ) , and stage III (pressure 
conditions application on both stressed films on the r / ( A ) and r / ( B ) ). The geometry of each fi lm is 

defined by an active domain Q / ( A ) (real domain corresponding to the deposited thin film) and Q / ( s ) 

for the substrate. The active domain is considered the face with higher dimensions. As explained in 
chapters 2 and 3, a virtual boundary 5 (numerical boundary) is considered to emulate the stiffness 
of a real boundary, a discussion about this parameter is described in sections 2.1 (chapter 2) and 3.3 

(chapter 3). For the finite element model, In the solution stage I, it is carried out the modelling of the 

substrate, in this stage, the imposition of the residual stress crrfB) is applied on the boundary r / ( B ) . 
The virtual boundary is neglected in this stage, however, this boundary should be considered in stage 

III. The main idea to impose only crr(B) is determine the stress distribution over the f i lm. The second 
modeling is carried out on both films, the resulting stresses inside Q / ( s ) (bottom and top) are 

imported to determine the residual stresses of the thin fi lm A. This strategy guarantee that it is 
necessary to know the residual stresses of the substrate since the residual stresses over fi lm A are 



determined by the equilibrium conditions on both films. Here, it is important to take into account the 

determination of the crr(A) value, since this is a constant value over the f i lm, therefore maximum and 

minimum principal cannot represent this value. This aspect is important since the role of the residual 

stresses interacts with the shear stresses at the boundary, which means that there is not a principal 

direction for these values. Therefore, it is important to consider the Coulomb-Mohr criterion (Labuz 

& Zang, 2012) for the definition of the residual stresses in both films. Then, the residual stress can be 

obtained from the stress intensity defined as cr. = 2r = (crl-er3), or from averaged stress 

tr =(cr1 +<T 3)/2,where al is the maximum principal stress and cr3 is the minimum principal stress. 

In the last stage, all geometrical characteristics should be considered, including the virtual boundary 

S . In this stage, the solutions for r / ( A ) and Tfm are imported into the new model which includes 

the stiffness of the virtual boundary, at this point, the pressure P is applied on the bottom active 

surface Q / ( s ) of the substrate. Finite element solutions were obtained with ANSYS 19 on a LENOVO 

Legion VS30-1 SICH (Intel(R) Core (TM) i7-87 SOH CPU @ 2.20GHz, 2208 Mhz, 6 Core(s)) notebook 

which ran in Windows 11 environment in order to compute the proposed FEA models. Details of the 

simulation procedures via finite element analysis can be found in the previous chapters. 

6.2 Numerical strategy for determining residual stresses in bilayer thin films 
6.2.1 Theoretical background for the numerical strategy 

Figure 6.3a shows a structure composed of two thin films (bilayer configuration), of which one 

represents the substrate (thin fi lm B), and the other the study layer (thin fi lm A). As part of the first 

manufacturing process of a bilayer thin f i lm, the substrate is deposited on the main support, this first 

layer is structurally defined by two important mechanical characteristics that define the bulging 

behavior, the residual stresscr r f B ), and the elastic properties (EB,vB). After deposition, these 

parameters are considered unknown. The methodology for determining the elastic properties of a 

monolayer was presented in chapters 3 and 4. However, in this chapter, it is considered the case in 

which the elastic properties (EB,vB) of the first layer are known since these can be determined 

previously to the addition of a new layer to configure a bilayer thin f i lm. Let's consider that a second 

layer is deposited over the substrate, in this case, it is assumed that their properties are unknown ( 

(TrfA) ,EA,vA). Therefore, a characterization procedure for the following properties should be carried 

out for all these constants crrfB), a-rfA), EA,vA. To understand the interaction of the forces that act in 

between both films when these are initially stretched by the residual stresses, it is proposed an 

equilibrium model. If the equilibrium conditions are evaluated in a small section dx located (as 

illustrated in Figure 6.3a) in any section of both thin films, there is observed that the interaction 

mechanism will be through the shear stress (bonding boundary). This model is called shear lag which 

has been applied to study joints (Abedin et al., 2019) and composite material interactions (Landis & 

McMeeking, 1999). The model neglect normal stresses at the z-direction (normal direction to the 

bonding surface), which is adequate for mechanical interaction of bilayer thin films before applying 

pressure for the bulging these. Considering the equilibrium conditions of the substrate B (Figure 6.3b) 

at the x-direction it is obtained that 



dcrrtKAx) l 

ax t„ (6.1) 

Where ariB) (x) is the residual stress at the x-direction in the thin fi lm B, r(x) is the shear stress at 

the x-direction, and tB the thickness of the fi lm B. Equation (6.1) was used by Tinoco (2018b) in 

piezoelectric materials applications. Following the same procedure that (6.1), the equilibrium 
conditions are determined for the fi lm A, which we have that 

d C r r ( A , ( X ) 

clx 
-r(x) -

1 
(6.2) 

The name of the variables is similar to the f i lm B, it means that these are analogous for the fi lm A. 

(a) 
I — • * 

dx Substrate 
thin film B 

dx 

f 

OTA(%) , 

(b) 

Deposited 
thin fi lm A 
Deposited 
thin fi lm A 
Deposited 
thin fi lm A 

" 
Deposited 
thin fi lm A 

v 

Surface to be subjected to uniform pressure 

uA(x) 

\ 

Substrate 
thin film B 3x tlx 

«• 

Thin f i lm A 

Thin film B 

h h 
dx uB{x) 

Figure 6.3. (a). Model of a thin film deposited on the substrate, (b) Equilibrium conditions for a differential 
element of the set are subjected to residual stress, (c) Kinematic conditions are imposed by the residual 

stresses (compatibility conditions) 

Relating Equations (6.1) and (6.2), it is computed the following expression 

der Ax) (63) 

This expression means that the changes in the residual stresses are related directly to the thicknesses 
relations of the films in equilibrium conditions if the stresses are related through the shear lag effect 
in the bonding boundary. However, there are several relations that govern the behavior of the 
multilayer thin films as proposed by the following equation for residual stresses expressed in the book 
of Schlenoff & Decher (2006), which is computed as 



°V(W) - B arB + A arA' IQM 
lbi lbi 1 ' 

Where ciribi) is the equivalent residual stress for both films, tu\s the total thickness of the sum of 

both layers. For the elastic properties, the equation is represented as 

rr — la. p i {A -p 
lbi lbi 1 ' 

For which Ebi, EB, EA represents Young's modulus of both films (equivalent), the substrate B, and the 

study thin fi lm A. Considering the parameters described above, the bulging test for a bilayer thin fi lm 

can be represented in a new load-deflection model as follows (Martins et al., 2008), 

p r gWw% r Ebitbiwl 
1 ( W ) ^ 2 ( W ) a*—' ( 6- 6) 

Considering that the bilayer thin fi lm is a square or rectangular bilayer thin f i lm, the parameter a 

represents the length edge (short side) of both thin films. Model presented in (6.6) is commonly used 

for estimating the composite properties of the residual stress ar(bi) and Young's modulus Ebi. 

However, it is necessary to know more parameters to determine the residual stress of each f i lm. Then, 

the characterization of the elasticity is more simple since the properties of the substrate are known, 

but, the residual stresses are not due to the stress redistribution when the new film is added. To solve 

this challenge, a numerical methodology based on equilibrium conditions (see Eq. (6.3)) and multilayer 

thin fi lm models (see Eq. (6.3) and (6.6)) is proposed. This with the aim to estimate both residual 

stresses after a bilayer fi lm is tested via a bulging test. The numerical procedure to compute arB and 

crM is applied as follows: 

1. First stage is to compute the parameter C 1 ( W ) (see Equation 6.6), for this process a set of finite 

element models should be prepared with the same geometry and known mechanical 

parameters for both should be designed. Knowing that EAk,EBk, o-r(B)k, and Poisson's ratios 

are input parameters. As output parameter, o r ( B ) t is computed from FEA analysis as 

methodology is described in section 6.1. a(bi) and Em can be calculated with Equations (6.4) 

and (6.5). Using Equation (6.6), p and w0 (obtained numerically), C 1 ( W ) is determined by least 

square f i t t ing. In this process, C 2 ( W ) ( v ) is also obtained each numerical example proposed. 

The final value for Cvbi) is the mean value determined with all numerical experiments 

computed. 

2. Second stage is compute ar{bi) for the p and w0 (obtained experimentally), again applying 

least square f i t t ing, we can obtain the equivalent residual stresses tx ( W ) corresponding to the 

experimental data. 

3. Third stage is to estimate the residual stresses arB and arA , applying the following 

algorithm: 

Step 1: Initializing variables er r ( W ) = a (determined in stage 2), tA,tB,thl and c r r S ( 0 ) = 10 

Step 2: To estimate <T with the following equation 



CTM(0) | CTr(W) ^ r S f O ) 
*W J 

Step 3: To estimate tr rfl(O) 

rfl(l) 

Step 4; Initialize a cycle WHILE until that /?, -1 < lx 10" ;s satisfied 

Step 5: Initialize a cycle while until this expression is satisfied, initialize j = l, 

To calculate a new tr 
rM.i> 

G
r(bi)  arB(j) 

V  lbi )l  lbi 

To compute Rj 
y °'rA(j) ~  arA(0) J 

f \ 
rB(j) 

Step 6: Compare the following conditions, if Rj > 0, then crrB(j+1) = 1.005crrBO.), else, then 

= 0 . 9 9 5 ^ 0 ) 

Step 7; Compare the following conditions, if Rj >0, then cr r S ( y + 1 ) = 1.005cr.SU), else, 

< W D = 0 . 9 9 5 ^ 0 ) 

Step S; Compare the following condition, if Rf - 1 < l x 10" 6 , then break the while cycle 

Step 9: End the while cycle comparing the following condition, if Rf - 1 < l x 10" 6 , then break 

the cycle. 

6.2.2 Numerical validation using Finite Element Analysis 

To evaluate the proposed algorithm in the above section, numerical experiments are considered 
through finite element analysis. 
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Figure 6.4. Load-deflection curves for six examples solve by finite element analysis. 

It is important to denote that these are designed with aim to characterize a bilayer fi lm made from 
silicon nitride (as substrate) and aluminum as study case. Therefore, the elastic properties are close 



f rom the real properties of the material. Let's consider a bilayer thin fi lm Inrnxlnm wi th the 
following dimensions a = hnm,tA = \760nm,tB = 50Om Six cases were designed for validating the 

numerical procedures proposed. Table 6.1 list the mechanical properties for all the considered 
examples. 

Table 6.1. Mechanical properties for the six numerical examples 

Input parameters - FEM models FEM outputs 

Numerical 
example Poisson's ratio v 

Young's modulus 

[Gpa] 

Input (B.C.) 

crr [MPa] 

Residual stress crr 

[MPa] in the center 
CT > CT ,, 

Stress intensity 

Item Substrate 
B 

Film 
A 

Substrate 
B Film Substrate- B Substrate- B Film 

°V<-4) 

1 0.267 0.32 236.22 64 264.8 264.08 77.44 

2 0.267 0.26 236.22 69 264.8 264.08 76.7 

3 0.267 0.28 236.22 60 300 298.67 77.55 

4 0.267 0.23 236.22 70 200 199.45 40.35 

5 0.267 0.20 236.22 80 180 179.17 55.82 

6 0.267 0.24 236.22 90 220 218.75 80.75 

Applying the procedures described in the section 6.1 to simulate a bulging test, the six examples were 
simulated by finite element analysis. In all examples, the maximum bulge pressure was 40 kPa. The 
mechanical properties of the substrate are considered fix since the main objective is perform 
predictions over the added second fi lm in a bilayer configuration. Only, the residual stresses crrfB) is 

considered as input parameter in the first stage of solution. In the second stage is seen that the 

residual stress is crr(B) higher than in the film crr(A) due to fact that if the residual stress are lower in 
the substrate, compressive stresses can produce buckling which is a configuration with mechanical 

instabilities (Shafqat et al., 2018). The results of all virtual experiments are illustrated in Figure 6.4, 

which shows all load-deflections obtained from simulations as well there is plotted the displacement 
field for the example 5. 

Following section 6.2.1, the first step was to determine the constants (Cjand C2) applying least square 
fitt ing to the equation (6.6), these constants depend on the associated terms in this equation. Residual 
stress is related to the first term, and elasticity is related to the second term as described in previous 

chapters. The most important step at this stage is to estimate the constant value of C, since it will be 

used for all subsequent estimations of crr(bi}. For each example a pair of C, and C2 values were 
estimated, this using all properties of each example, the obtained results are listed in Table 6.2. 

file:///760nm


Table 6.2. Predictions determined using the numerical strategy (proposed algorithm) 

Numerical 
example 

Constants determined 

w i th Eq. (6.6) 

Residualstresses [MPa] 

Q =3.817 (estimated) Prediction Error 

[%] 

Substrate Film 
Item c i C2 

CTr(W) 

Predicted Predicted 

Substrate Film 

1 3.78 2.46 117.61 265.55 75.2 0.55 2.89 

2 3.83 2.38 118.82 267.19 76.28 1.17 0.54 

3 3.81 2.37 126.49 286.48 81.44 4.08 5.01 

4 3.94 2.45 76.20 171.35 48.92 14.08 21.23 

5 3.87 2.40 84.39 189.77 54.18 5.91 2.93 

6 3.64 2.37 112.98 255.38 72.88 16.74 9.74 

The mean values calculated for those parameters were Cx =3.817±0.1 and C 2 =2.41+0.042. Since 
the objective is to predict residual stresses for both films based on load-deflection data, C2 value is 
not relevant at this stage. Therefore, Cx =3.817+0.1 is used in Equation (6.6) for all examples as 
standard value, and posteriorly aribi) values were estimated applying least square fitt ing with the 
load-deflection data used as input parameters. a-r(bi) value is key in the determination of the residual 
stress of the substrate and the study f i lm. Applying the algorithm described in the section 6.2.1, arA 

and orB were predicted for each example. These residual stresses are shown in the Table 6.2. It is 
observed that the relative errors are in between 0.5% to 2 1 % as the maximum, which demonstrates 
that there is an acceptable accuracy grade. This means that the algorithm to estimate the residual 
stresses individually for each fi lm can predict the residual stresses. As final point, it is pointed out that 
for the real application the prediction of the arB will be used as input in the finite element model, this 
is an advantage since the model is dependent on the arB parameter. arA computed from equilibrium 
condition solved in the stage II of the procedure described in Section 6.1. 

6.3 Experimental validation for a bilayer thin film of Si3N4 (substrate) and Al 
subjected a bulge testing 
6.3.1 Determination of the residual stresses for ShN* (substrate) and Al 

For the bulging experiments, a bilayer thin fi lm was manufactured using supporting films supplied by 
Norcada (Norcada Inc., Edmonton, Canada). These are composed of a silicon frame with square hole 

of 2x2mm, covered by S,3N4thin f i lm, wi th tB =500nm . These films were tested through bulging test 
as described in Chapter 2 and 3, in which the properties are known and determined by the procedures 

developed in this work. SEM (Scanning electron microscopy) and TEM (transmission electron 
microscopy) observations indicate that S,3N4 monolayer structure does not exhibit a diffraction 

pattern, therefore, it is considered that the films are amorphous and isotropic. 

To configure a bilayer structure, a thin aluminum fi lm was deposited on the substrate of S,3N4. A SEM 
image can be seen in the study published by Holzer et al. (2017b). It can be observed a single 



crystalline silicon at the bottom part, and the layers of Si3N4 and Aluminum with thickness of 1.76 ± 
0.2 urn (for this study). During magnetron sputtering, the aluminum layer grows from many nucleation 

centers, then becomes columnar when it overruns grains with preferential orientation. By SEM, it was 
observed that the surface grains were smaller than 0.5 m in direction parallel to the surface. The setup 

described in section 1.6 was used for the bulging tests, as described before pressure is applied from 
the bottom on the substrate that for this experiment is composed by the Si3N4 membrane. 

Wmax ll"n] 

Figure 6.5. (a). Load-deflection data for three samples ( S Í 3 N 4 / Al). (b) Measured deflection surface. 

Three samples were considered for the characterization process, the load-deflection curves obtained 
from the maximum deflection point measured on the aluminum surface are shown in Figure 6.5a. It is 
observed the degree of repeatability of the tests is quite good since the data are not scattered. The 
interval of pressure was chosen lower than 25 kPa to avoid the plasticity influence therefore certain 
degree of linearity is kept in the load-deflection observations. Figure 6.5b illustrates the deflection 
surface measured with the interferometric system used for this study, f rom the central point is 
obtained the maximum deflection of the films. 

Table 6.3. Predictions determined for arA and arB using the numerical strategy 

Experimental 
case 

Residual stresses [MPa] 

Q = 3.817 (estimated) 

Sample 
SÍ3N4 

Estimated 
(Input B.C. FEM ) 

Al 
a* 

estimated 

1 117.93 267.48 75.82 

2 115.77 260.33 74.32 

3 117.68 265.39 75.33 

Using the load-deflection data, crr(bi) values were estimated for each sample from Equation (6.6), with 

those values, the developed algorithm and explained in section 6.2.1 is ran for estimating the residual 



stresses of Si3N4 and Al, which are listed in Table 6.3. Results shows that in average the residual stress 

for Si3N4 is 264.4±3 .67 MPa and for the Aluminum is 75 .15+0 .76 MPa. These values are key for 

characterization of the bilayer using finite element analysis. The values estimated for arB will be the 

boundary conditions (B.C.) for the finite element models. It noted that for the Si3N4 f i lm that the 

residual stresses were increased from 166 Mpa (computed for monolayer in previous chapters) to 

264.4 Mpa for the bilayer case, which demostrates a new stress redistribution. 

6.3.2 Determination of the elastic properties for SJ3N4 (substrate) and Al (Aluminum) 

For the determination of the elastic properties in a bilayer configuration, analytical models simplify 

the process, but if most of the parameters are known these can be non-useful. In the majority of cases, 

authors assume the properties of some parameters as Poisson's ratio and Young's modulus of the 

substrate. But in this particular case, the substrate properties (Si3N4 ) were calculated in previous 

chapters (2 and 3) with several methodologies as listed in the Table 6.4. To estimate Young's modulus, 

equation 6.5 is reorganized in such a way that EA = (thi/tA)(Ehj -(tB/thi)EB). The value f o r £ w is 

estimated using least square fitt ing on the equation (6.6), experimental data of p and w0 are 

neccesary for the computations as well as the residual stress <yr(W) calculated in the Table 6.3. 

Table 6.4. Silicon nitride Si3N4 elastic properties and Al elastic estimations 

No. Sample Methodology V £ B [MPa] Ebi [GPa] EA [GPa] 

Si 3 N 4 C 2 =2.41 (bilayer) (Al) 

1 105.23 68.01 
2 Chapter 2 0.264 236.22 113.93 69.08 
3 104.88 68.23 
1 105.23 79.18 

2 Chapter 3 0.278 232.45 113.93 80.25 
3 (rectangular) 104.88 79.40 
1 105.23 67.56 
2 Chapter 3 0.254 235.45 113.93 68.63 

3 (square) 104.88 67.78 
1 105.23 67.56 
2 Mean value 0.265 234.7 113.93 68.63 
3 104.88 67.99 

For each sample combined with each methodology (used for determining v and E - Si3N4), Ebi and EA 

values are estimated. C 2 =2 .41 constant was calculated in section 6.2.2 with the numerical 

experiments. To condense the Table 6.4, mean values of for the EA were calculated with the aim to 

perform finite element simulations to determine which combination of properties satisfy better the 

experimental data of the sample 1 with higher accuracy. Four finite element solution were proposed, 

one for each methodology and the properties of each case are described in Table 6.5. 



Table 6.5. Silicon nitride Si3N4 elastic properties and Al elastic estimations for FEM models. 

Experimental 
case 

Values 
Table 

6.3 
Stress intensity at 
the center point 

[MPa] 

Input FEM 
Poisson's 

ratio 

Input FEM 
Young's Modulus 

[GPa] 

Computed 
f rom (6.5) 

Input Output Output 
Sample 1 (stage 1 (Stage II) (Stage II) Si 3N 4 Al Si 3N 4 Al Bilayer 

-B.C.) FEM arB FEM orA Mean Eh, 

Chapter 2 - S l l 267.48 268.21 66.05 0.264 0.3 236.22 68.44 105.55 

Chapter 3 (R)-S12 267.48 268.21 76.33 0.278 0.3 232.45 79.61 113.42 

Chapter 3 (Sq)-S13 267.48 268.21 66.88 0.254 0.3 235.45 67.99 105.03 

Means value -S14 267.48 268.21 66.00 0.265 0.3 234.7 68.06 104.92 

Wmax [ H 
Figure 6.6. (a) Finite element approximations for the Sample 1. (b) Root mean square deviation for the FEA 

approximations for Samplel. 

The results of all simulations are shown in Figure 6.6a. Some of the solutions are closer to the 

experimental values than others, for example, methodology S l l , S13, and S14. In contrast to the FEM 

solution for case S12, the load deflection curve does not agree with these parameters. A root mean 
square deviation is proposed to determine which set of parameters is most compatible wi th the 

experimental data. It can be seen in Figure 6.6b. The methodology S l l provides the most accurate fit 

for sample 1, so all properties are appropriate except the Poisson's ratio, which was not defined 
correctly. 



0.45 

Figure 6.7. (a) Finite element approximations for the Sample 1. (b) Non-absolute relative error for the FEA 
approximations for the sample 1. 

In order to estimate Poisson's ratio optimally, several cases were proposed. There are five Poisson's 
ratios defined as 0.2, 0.27, 0.28, 03, and 0.4. The solutions are shown in Figure 6.7a. There is a good 
match between the experimental curve and the closest curve within 0.27 and 0.3. A relative error 
function was computed to observe optimal solutions, which was found in 0.28, approximately. For the 
sample 2 and 3, the optimal set of parameters is used for the simulations (see Table 6.6). Figure 6.8a 
Illustrates the results, which show a good correlation with the experimental curve of the sample 2. 
The maximum principal stresses at the central point of each fi lm were measured during pressure 

application, as shown in Figures 6.8b and 6.8c. 

Table 6.6. Parameters for FEM models. 

Experimental 
case 

Residual stress at the 
center point [MPa] 

Poisson's ratio Young's Modulus 
[GPa] 

No. Sample 
Input 

(stage 1 -

B.C.) 

Output 
(Stage II) 

Output 
(Stage II) 

Si 3 N 4 Al Si 3 N 4 Al 

1 267.48 268.21 66.07 0.264 0.28 236.22 68.44 

3 265.39 261.11 62.51 0.264 0.28 236.22 68.44 

2 260.33 260.99 64.27 0.264 0.28 236.22 68.44 

For the Al fi lm, the stress levels reached 102 MPa for 19.3 urn and 320 MPa for the Si 3 N 4 f i lm. In those 
curves, it is possible to denote the residual stresses at the beginning of the curves, these values represent 
the initial stresses before submitted to the pressure conditions. From the Table 6.3, there are compared 
the obtained values from the residual stress predictions for each fi lm. The FEM solution (Al thin film) 
yielded 77.32 MPa and the predicted value (sample 2) yielded 74.32 MPa. For the Si 3 N 4 th in film the 
calculations evidenced 261 from FEM and 260.33 from the proposed algorithm (Input for FEM). These 
results confirm that the proposed methodology show a consistency in the properties estimations for this 



specific case. As conclusion, the properties for the Al thin fi lm are E=68.44 GPa, aM =75.15 MPa, 

i/=0.28. These values correspond to real values for the aluminum in bulk shape and thin films (Feng & 

Kang, 2008). 

Figure 6.8. (a) Finite element approximations for the Sample 2. (b) Maximum principal stress in the central 
point for Al. (c) Maximum principal stress in the central point for SJ3N4. 

In general, the methodology presented in this chapter showed to be useful in the characterization of 
bilayer films subjected to bulging test. These procedures can be improved, but the main contribution 
of the methodology is the capacity to estimate the residual stresses in both films as well both elastic 
properties. 



Chapter 7. Conclusions 

In chapter two, a numerical approach to determining the elastic properties of monolayer thin films 
was described and applied. The bulging analysis of monolayer films was used to test two types of 

geometry in separate tests. Numerical solutions were obtained by combining two standard methods, 
namely finite element analysis and classical analytical solutions. A new way to simulate the bulging 

problem was discussed and used to reproduce the experimental tests. Bulging tests were conducted 

on silicon nitride (Si3N4) monolayer of 2 x 2 mm (square) and 3.5x1.5 mm (rectangular) membranes 
to determine their elastic properties (Young's modulus (E) and Poison's ratio (v)). Using mapping of 

elastic parameters for the two membranes (square and rectangular), an error function was 
constructed for each membrane. As a result of the intersection of both linear approximations 

minimized, a unique solution was obtained for E with 236 GPa and v with 0.264. According to the 
results, the estimated elastic properties agree with those reported in the literature. A traditional 

bulging test analysis can only determine one of both biaxial modulus, not a combination of E and v, 
which is a contribution of this thesis. As the main conclusion of this chapter, it was demonstrated that 
Young's modulus and Poisson's ratio are mechanically coupled in the bulging problem, allowing a 
unique determination of both elastic constants. Since a traditional bulging test analysis only finds one 
of these constants. 

Chapter three presented a numerical approach for identifying the elastic properties of monolayer thin 

films that simplified the methodology presented in chapter two. As a result of applying part of the 
procedures previously presented, the methodology was improved by only using data f rom one 
monolayer f i lm. Also, it demonstrated the validity of using a virtual boundary for the bulging test 
modeling by finite element analysis. Monolayer membranes made from silicon nitride and gold were 
studied to test the validity of the procedures designed. Based on the error functions, Young's modulus 
and Poison's ratio were delimited by a solution space that minimized the error function, this domain 
presents a correlation among both elastic properties. This proves that Young's modulus and Poison's 
ratio are coupled. The found solutions for silicon nitride films (square and rectangular) were E= 232.45 

GPa and v= 0.278 for a square f i lm, and E= 235.45 GPa and v= 0.254 for a rectangular f i lm. Additionally, 

for the gold f i lm, the elastic properties were E= 80.55 GPa and v= 0.425 for a rectangular f i lm. The 
procedures developed showed to be useful to characterize thin films by bulge testing, due to the lack 

of a unique solution in the estimation of these by a traditional bulged analysis. 

The purpose of chapter 4 was to describe novel modeling of stress and strain for freestanding square 
thin films under bulge testing, considering the elastoplastic behavior as a primary focus. Finite element 
simulations were conducted as virtual experiments to demonstrate the validity of the proposed 

analytical models. The FEA modeling procedures included a description of the application of residual 

stresses in thin films since the detailed description of the FEM modeling found in the literature is not 
clearly detailed. A more realistic simulation was achieved by including the manufacturing factor (pre-

stressed film) at the boundary conditions of FEM models. The validation of the stress-strain models 

developed for bulge testing showed good agreement with the finite element results. These 
approximated the stresses better than strains, specifically in the regime where the elasticity effects 
were more visible in the load-deflection curves. These results validated that the proposed analytical 

equations predict the stress and strain in a freestanding square thin fi lm under bulge testing. These 



new results show that the proposed equations can be useful for characterizing thin square films in the 
elastoplastic regime. 

In the chapter five was presented an elasto-plastic analysis conducted for a non-cracked and pre­

packed gold thin fi lm applying finite element analysis. For the analysis of a pre-cracked fi lm, a 
numerical solution of two stages was proposed with the aim to determine the fracture parameters at 

the crack tip. Elasto-plastic results correlated the load-deflection curves for non-cracked and pre-
cracked films with the same material law. It indicated that the proposed models presented a good 

correlation and robustness. There were found values of fracture toughness (between 0.288 and 0.303 
MPa-nř 5) for different notches; rounded, sharp, and V-sharp. The calculated values corresponded 

with other values reported in the literature. 

Further, this chapter described a methodology to estimate mechanical parameters of thin films using 

the experimental data from the bulging test. The biaxial stress-strain curve, yield stress at the central 
point, and residual stress and its evolution were determined with high precision for an Aluminum (Al) 

square thin f i lm. Load-deflection measurements were performed during the bulging process in 
conditions of cycling loading. The obtained results showed that plasticity effects were detected in the 

third cycle. Non-linear (plastic) behavior of the fi lm started at the stress value of 132 MPa; this value 
is the yield stress of the fi lm in a condition of biaxial tensile loading. Increasing plasticity was detected 
in the next applied loading cycles, showing a non-proportional shifting of the stress-strain curve in 
each loading cycle, which indicated that the plasticity effects were cumulative. Further, an analytical 
model was presented to determine the residual stress values without the necessity to apply equations. 
The result showed good agreement with other values obtained by using classical methods. 
In chapter six, freestanding bilayer films were characterized. A challenge addressed was focused on 

determining residual stresses in each film after a bulging test. Based on equilibrium conditions as well 
as analytical models for multilayer films, an algorithm was developed to estimate both residual 
stresses. A virtual (finite element solution) and experimental evaluation of the algorithmic procedure 
was conducted. As a result of numerical experiments, residual stress predictions presented relative 
errors between 2% for the best case and 2 1 % for the worst case. As part of the experiments, three 
samples of silicon nitr ide/aluminum were evaluated with the aim of determining residual stresses and 

elastic properties, as well as validating numerical methods. In conclusion, the Al thin fi lm properties 

were determined as E=68.44 GPa, arAI ==75.15 MPa, v=0.28. Since these values agree with standard 
values determined for thin aluminum films, which shows that the presented methodology can be 

applied to other materials. 
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