## Technická univerzita v Liberci

Fakulta strojní Magisterský studijní program: Zaměření:

Katedra obrábění a montáže strojní inženýrství strojírenská technologie a materiály

# Účinek procesních plynů a kapalin na technologii soustružení a kvalitu obrobených součástí

# The effect of the process gases and liquids to turning technology and the quality of the machined part

#### KOM - 1265

#### Bc. Jaroslav Rak

| Vedoucí práce: | Ing. et Ing. Štěpánka Dvořáčková, Ph.D. |
|----------------|-----------------------------------------|
| Konzultant:    | Ing. Miloslav Ledvina                   |
|                |                                         |
| Počet stran:   | 84                                      |
| Počet příloh:  | 8                                       |
| Počet tabulek: | 27                                      |
| Počet obrázků: | 41                                      |
| Počet grafů:   | 9                                       |
|                |                                         |

#### Prohlášení

Byl jsem seznámen s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím diplomové práce a konzultantem.

Současně čestně prohlašuji, že tištěná verze práce se shoduje s elektronickou verzí, vloženou do IS STAG.

Datum: 12.5.2015

Podpis: .....

#### Poděkování

Tímto bych chtěl zejména poděkovat paní Ing. Štěpánce Dvořáčkové, Ph.D. za cenné informace a rady při zpracování diplomové práce.

Dále děkuji panu Ing. Miloslavu Ledvinovi za poskytnuté rady, konzultace výsledků a pomoc při měření v laboratoři katedry KOM a panu Adamu Junkovi za pomoc při měření.

Zároveň bych chtěl poděkovat paní Ing. Kateřině Rakové za pomoc se stylistickou formou práce.

V neposlední řadě patří dík pracovníkům Katedry obrábění a montáže za jejich ochotu a vstřícnost v celém průběhu vypracování této diplomové práce.

# Účinek procesních plynů a kapalin na technologii soustružení a kvalitu obrobených součástí

#### ANOTACE:

Obsahem diplomové práce je výzkum vlivu chlazení plynnou látkou na obráběcí soustavu, resp. výsledek obráběcího procesu, při technologii soustružení. Jako procesní plyny byly zvoleny: okolní vzduch (za sucha), CO<sub>2</sub>, vírová trubice a zkapalněný dusík. Nedílnou součástí výzkumu je porovnání (zhodnocení) výsledků experimentálních měření sledovaných vlivů mezi procesními médii: kapalina a plynná látka.

Klíčová slova: OBRÁBĚNÍ, PROCESNÍ PLYNY, PROCESNÍ KAPALINY

# The effect of the process gases and liquids to turning technology and the quality of the machined part

### ANNOTATION:

The content of my thesis is to research the effect of cooling the gaseous substance to the machining system, respectively – result of a process, when turning technology. As the process gases were selected: ambient air (dry), CO<sub>2</sub>, vortex tube and liquefied nitrogen. An integral part of the research is to compare (appreciation) of the results of experimental measurements of the effects observed between process media: liquid and gaseous substance.

Key words: MACHINING, PROCESS GASES, PROCESS LIQUIDS

Zpracovatel: Dokončeno: Archivní označ. zprávy:

Počet stran: 84 Počet příloh: 8 Počet tabulek: 27 TU v Liberci, KOM 2015

Počet obrázků: 41 Počet grafů: 9

# Obsah

| Sez     | nam       | použ             | itých zkratek a symbolů                                                                                            | 8         |
|---------|-----------|------------------|--------------------------------------------------------------------------------------------------------------------|-----------|
| 1       | Ú         | vod              |                                                                                                                    | 10        |
| 2       | S         | oustr            | užení                                                                                                              | 11        |
|         | 2.1       | Ná               | stroje – soustružnické nože                                                                                        | 11        |
|         | 2         | .1.1             | Rozdělení soustružnických nožů                                                                                     | 12        |
|         | 2         | .1.2             | Konstrukce soustružnických nožů                                                                                    | 13        |
|         | 2         | .1.3             | Síly při soustružení                                                                                               | 15        |
|         | 2         | .1.4             | Řezné podmínky při soustružení                                                                                     | 17        |
|         | 2.2       | Тер              | pelná bilance a teplota při obrábění                                                                               | 20        |
|         | 2         | .2.1             | Tepelná bilance procesu obrábění                                                                                   | 20        |
|         | 2         | .2.2             | Teplota při obrábění                                                                                               | 21        |
| 3       | Ρ         | roces            | ní média – procesní kapaliny a plyny                                                                               | 24        |
|         | 3.1       | Pro              | ocesní kapaliny                                                                                                    | 25        |
|         | 3.2       | Ply              | ny                                                                                                                 | 27        |
| 4       | N         | letodi           | ka experimentu                                                                                                     | 32        |
|         | 4.1       | Ме               | todika hodnocení plynů pro technologii soustružení                                                                 | 32        |
|         | 4         | .1.1             | Experimentální prostředí                                                                                           | 32        |
|         | 4         | .1.2             | Řezné podmínky pro experimentální měření                                                                           | 35        |
|         | 4         | .1.3             | Metodika experimentu                                                                                               | 35        |
|         | 4         | .1.4             | Popis strojů, nástrojů a měřících přístrojů                                                                        | 37        |
|         | 4         | .1.5             | Měřené parametry                                                                                                   | 48        |
| 5<br>t∈ | E         | xperii<br>ologii | mentální měření vlivu chlazení plynnou látkou na obráběcí soustavu<br>soustružení v porovnání s procesní kapalinou | při<br>53 |
| 6       | E         | konoi            | mické vyhodnocení účinnosti procesních médií                                                                       | 62        |
| 7<br>t∈ | D<br>chno | iskuz<br>ologii  | e výsledků vlivu chlazení plynnou látkou na obráběcí soustavu při<br>soustružení v porovnání s procesní kapalinou  | 69        |
| 8       | Z         | ávěr.            |                                                                                                                    | 73        |
| Sez     | nam       | použ             | ité literatury                                                                                                     | 78        |
| Sez     | nam       | obrá             | zků                                                                                                                | 80        |
| Sez     | nam       | tabu             | lek                                                                                                                | 82        |
| Sez     | nam       | grafů            | 1                                                                                                                  | 83        |
| Sez     | nam       | přílo            | h                                                                                                                  | 84        |

# Seznam použitých zkratek a symbolů

| Zkratka/ Symbol       | Jednotka           | Popis                                    |
|-----------------------|--------------------|------------------------------------------|
| a <sub>p</sub>        | [mm]               | hloubka řezu                             |
| AI                    | [-]                | chemická značka hliníku                  |
| <b>A</b> <sub>D</sub> | [mm <sup>2</sup> ] | plocha jmenovitého průřezu třísky        |
| bε                    | [mm]               | velikost sražení špičky nástroje         |
| b <sub>D</sub>        | [mm]               | jmenovitá šířka třísky                   |
| С                     | [-]                | chemická značka uhlíku                   |
| C <sub>F</sub>        | [-]                | materiálová konstanta                    |
| CO <sub>2</sub>       | [-]                | chemická značka oxidu uhličitého         |
| Cr                    | [-]                | chemická značka chromu                   |
| Cu                    | [-]                | chemická značka mědi                     |
| D                     | [mm]               | průměr                                   |
| f                     | [mm/ot]            | posuv                                    |
| F <sub>c</sub>        | [N]                | celková řezná síla                       |
| F <sub>e</sub>        | [-]                | chemická značka železa                   |
| <b>F</b> <sub>x</sub> | [N]                | posuvová síla                            |
| $F_y$                 | [N]                | přísuvová síla                           |
| Fz                    | [N]                | řezná síla                               |
| $\varphi_L$           | [-]                | koeficient podílu latentní energie       |
| h <sub>D</sub>        | [mm]               | jmenovitá tloušťka třísky                |
| k <sub>C</sub>        | [MPa]              | měrná síla řezání                        |
| <b>K</b> <sub>r</sub> | [°]                | nástrojový úhel nastavení hlavního ostří |
| I                     | [mm]               | délka                                    |
| Ν                     | [-]                | chemická značka dusíku                   |
| n                     | [min⁻¹]            | otáčky                                   |
| Ni                    | [-]                | chemická značka niklu                    |
| Pt                    | [-]                | chemická značka platiny                  |

| <b>Q</b> <sub>D1</sub> | [J]      | teplo primárních plastických deformací         |
|------------------------|----------|------------------------------------------------|
| Q <sub>D2</sub>        | [J]      | teplo sekundárních plastických deformací       |
| $Q_{D3}$               | [J]      | teplo terciálních plastických deformací        |
| Q <sub>N</sub>         | [J]      | teplo odvedené nástrojem                       |
| Q <sub>0</sub>         | [J]      | teplo odvedené obrobkem                        |
| <b>Q</b> <sub>P</sub>  | [J]      | teplo odvedené prostředím                      |
| Q <sub>T</sub>         | [J]      | teplo odvedené třískou                         |
| Q <sub>TC</sub>        | [J]      | teplo vzniklé třením třísky na čele nástroje   |
| <b>Q</b> <sub>TH</sub> | [J]      | teplo vzniklé třením třísky na hřbetu nástroje |
| Ra                     | [µm]     | průměrná aritmetická úchylka profilu           |
| Rt                     | [µm]     | celková výška profilu                          |
| Rz                     | [µm]     | největší výška profilu                         |
| Re                     | [-]      | chemická značka rhenia                         |
| Rh                     | [-]      | chemická značka rhodia                         |
| ٢٤                     | [mm]     | poloměr zaoblení špičky nástroje               |
| S                      | [-]      | hlavní ostří                                   |
| S´                     | [-]      | vedlejší ostří                                 |
| T1;2;3                 | [-]      | označení použitého termočlánku                 |
| VB1;2;3                | [-]      | označení použité břitové destičky              |
| Vc                     | [m/min]  | řezná rychlost                                 |
| V <sub>f</sub>         | [mm/min] | rychlost posuvu                                |
| X <sub>F</sub>         | [-]      | exponenty vlivu <b>a</b> <sub>p</sub>          |
| Уғ                     | [-]      | exponenty vlivu <b>f</b>                       |

## 1 Úvod

Obsahem diplomové práce je výzkum vlivu chlazení plynnou látkou na obráběcí soustavu, resp. výsledek obráběcího procesu, při technologii soustružení. Nedílnou součástí výzkumu je porovnání (zhodnocení) výsledků experimentálních měření sledovaných vlivů mezi procesními médii: kapalina a plynná látka.

Hlavním cílem diplomové práce je výzkum využití zkapalněných technických plynů, jako procesního média, při technologii soustružení z hlediska strojního, fyzikálně-chemického, energetického, ekologického, ekonomického.

Jako procesní plyny byly zvoleny: okolní vzduch (za sucha), CO<sub>2</sub>, vírová trubice a zkapalněný dusík. Procesní kapaliny byly vybrány na bázi minerálních olejů od výrobců PARAMO a HOUGHTON, které tvoří s vodou stabilní mikroemulzi při 5% koncentraci.

Diplomová práce je rozdělena do několika základních částí – a to část teoretickou, experimentální, ekonomickou a část závěrečnou, která informuje o dosažených výsledcích práce.

V rámci teoretické části je popsána obecně technologie soustružení, dále procesní prostředí včetně médií určených ke chlazení. Celá teoretická část se opírá o odbornou literaturu.

Část experimentální uvádí jednotlivé metody a vybrané parametry, kterými byly hodnoceny vlivy použitých procesních médií u technologie soustružení. Dále pak obsahuje naměřené výsledky (data) včetně jejich zpracování.

V ekonomické části jsou srovnány fixní a roční náklady pro jednotlivá procesní média, dále jsou porovnány náklady pro sériovou a kusovou výrobu.

Závěrečná část je tvořena dosaženými výsledky aplikovaného výzkumu a diskuzí k celkovému výsledku diplomové práce.

Diplomová práce je součástí výzkumu realizovaného v rámci projektu TA03010492 – Aplikovaný multioborový výzkum a vývoj progresivních způsobů chlazení u technologických procesů (2013–2015, TA0/TA), jehož poskytovatelem je Technologická agentura České republiky.

Projekt řeší aktuální problematiku přesného dynamického řízení tepelných procesů ve výrobních nástrojích. Inovativní temperační technologie je založena na využití vysokého chladícího potenciálu zkapalněných technických plynů cíleně nasměrovaných do kriticky tepelně zatěžovaných oblastí výrobních nástrojů a to tak, aby bylo dosaženo účinného odvodu tepla z výrobku a nástroje v co nejkratším čase s příznivým dopadem na kvalitu a ekonomičnost výroby.

## 2 Soustružení

Cílem diplomové práce je výzkum využití zkapalněných technických plynů, jako procesního média, při technologii soustružení z hlediska strojního, fyzikálněchemického, energetického, ekologického, ekonomického. V následující části bude pojednáno o technologii soustružení, tepelné bilanci a o procesním prostředí při obrábění. Celá následující část se opírá o odbornou literaturu.

Soustružení je způsob výroby vnějších, nebo vnitřních rotačních ploch, ve většině případů zpravidla jednobřitým nástrojem různých tvarů. Při soustružení hlavní řezný pohyb – rotační koná obrobek, který je upnutý ve sklíčidle, nebo mezi hroty. Vedlejší pohyb koná nástroj, rovnoběžně nebo kolmo k ose otáčení, případně v obou směrech současně, nástroj je upnut v nožové hlavě. Výsledný řezný pohyb je tedy buď šroubovice, nebo spirála. Tato technologie patří mezi nejjednodušší a nejpoužívanější metodu obrábění, kterou lze vyrábět součásti s vnější a válcovou, kuželovou i tvarovou plochou, rovinnou čelní plochou a zápichy, závity atd. Pro vytvoření těchto jednotlivých ploch a prvků je důležité zvolit vhodný druh stroje a nástroje [5] [9] [14].

## 2.1 Nástroje – soustružnické nože

V zásadě se tyto nástroje skládají z držáku a řezné části. Soustružnické nože se vyrábí buď celé z nástrojové oceli 19 800, nebo 19 810 a dodávají se ve formě polotovaru různého průřezu podle ČSN 22 0750 – čtvercový průřez, ČSN 22 0751 – obdélníkový průřez, ČSN 22 0752 – kruhový průřez a 22 0753 – lichoběžníkový průřez. Dále jsou to nože, u kterých je řezná část z nástrojové oceli 19 800 a těleso nože je k této části natupo navařené a je z uhlíkové oceli, nebo je na noži jenom břitová destička z nástrojové oceli 19 800, nebo ze slinutého karbidu, případně z keramického řezného materiálu. Břitové destičky mohou být buď připájené, nebo mechanicky upínané, jak je naznačeno na obrázku 1 [5] [9] [14].



Obrázek 1 Způsoby mechanického upínání břitových destiček [15].

## 2.1.1 Rozdělení soustružnických nožů

Podle směru posuvu dělíme soustružnické nože na pravé a levé.

- **Pravé** soustružíme z pravé strany do levé.
- Levé soustružíme z levé strany do pravé.

Dále dělíme soustružnické nože podle toho, zda jsou určeny pro opracování vnějších nebo vnitřních ploch, na vnější a vnitřní nože (viz obrázek 2 a 3).

Podle druhu práce, pro kterou jsou určeny, se nože dají rozdělit na uběrací, hladící, zapichovací, upichovací a tvarové.

- Uběrací přímé, ohnuté, čelní, stranové.
- Hladící široké, úzké, rohové.
- Zapichovací.
- Upichovací.
- Tvarové.

Profil tvarového nože odpovídá vyráběnému profilu jenom v případě, že úhel čela je nulový. Při jiné hodnotě úhlu čela musíme profil vytvořit jako průmět požadovaného tvaru součásti do roviny čela [5] [9].

Rozdělení vnějších soustružnických nožů je zobrazeno na obrázku 2.



Obrázek 2 Vnější soustružnické nože; a – ubírací nůž čelní, b – ubírací nůž přímý, c – ubírací nůž přímý, d – ubírací nůž ohnutý, e – ubírací nůž oboustranný, f – rohový nůž, g – rohový nůž, h – ubírací nůž stranový, i – hladicí nůž, j – rádiusový nůž [15].

Rozdělení vnitřních soustružnických nožů je zobrazeno na obrázku 3.



Obrázek 3 Vnitřní soustružnické nože; 1 – vnitřní ubírací, 2 – vnitřní rohový, 3 – vnitřní kopírovací, 4 – vnitřní ubírací, 5 – vnitřní ubírací, 6 – vnitřní rohový [15].

## 2.1.2 Konstrukce soustružnických nožů

Nástroj v interakci s obrobkem umožňuje realizaci řezného procesu. Z geometrického hlediska je nástroj identifikován svými prvky, plochami, ostřími a rozměry [5] [9]. Jednotlivé části a plochy soustružnického nože jsou zobrazeny na obrázku 4.

Nástroj se skládá z řezné části, držáku (stopky), tělesa, břitu, osy a základy.

- Řezná část nástroje část nebo části nástroje, jež umožňují proces řezání, řeznou část tvoří ostří, čelo a hřbet.
- Držák nástroje (stopka) část nástroje sloužící k jeho upevnění vnějším povrchem.
- Těleso nástroje část nástroje, na níž jsou upevněny řezné části nástroje.
- Břit část nástroje, vytvořená čelem a hřbetem.
- Osa nástroje teoretická přímka, která je středovou čarou stopky nebo upínací díry.
- Základna plocha držáku nástroje, určená k orientaci nástroje.

Další důležitou částí nástroje, podle které můžeme nástroj identifikovat, jsou jeho plochy.

Každá plocha povrchu řezné části nástroje se označuje symbolem složeným z písmene A a indexu tvořeného písmenem řecké abecedy, který určuje druh plochy, např. Aγ – čelo [5] [9] [14].

Plochy přiřazené k vedlejšímu ostří se označují tak, že se k symbolu doplní čárka, např. Aα' – vedlejší hřbet.

- Čelo Aγ plocha nebo souhrn ploch nástroje, po kterých odchází odebraná tříska.
- Hřbet Aα plocha nebo souhrn ploch nástroje, které jsou přikloněny k řezné ploše (hlavní hřbet) a obrobené ploše (vedlejší hřbet).
- Hlavní hřbet Aα část hřbetu, která při protnutí s čelem vytvoří hlavní ostří.
- Vedlejší hřbet Aα' část hřbetu, která při protnutí s čelem vytvoří vedlejší ostří.

Další důležitou částí nástroje je jeho ostří. Pojmem ostří se rozumí průsečnice čela a hřbetu. Ostří se dělí na hlavní a vedlejší. Hlavní a vedlejší ostří je zobrazeno na obrázku 4 [5] [9] [14].

- Hlavní ostří S část ostří, které začíná v bodě, kde úhel nastavení má nulovou hodnotu a obvykle koná hlavní řeznou práci.
- Vedlejší ostří S' ostří vzniklé průnikem čela a vedlejšího hřbetu a začíná v bodě, v němž vedlejší úhel nastavení κ = 0 [5] [9].



Obrázek 4 Ostří a plochy na řezné části soustružnického nože; 1 – stopka; 2 – základna; 3 – řezná část; 4 – špička; S – nástrojové hlavní ostří; S' – nástrojové vedlejší ostří; A<sub>γ1</sub> – první hlavní čelo; A<sub>γ2</sub> – druhé hlavní čelo; A<sub>α1</sub> – první hlavní hřbet; A<sub>α2</sub> – druhý hlavní hřbet; A<sub>α1</sub> – první vedlejší hřbet; A'<sub>α2</sub> – druhý vedlejší hřbet [9].

Nástroj je dále složen ze špičky. Špička je část ostří, ležící na spojnici hlavního a vedlejšího ostří. Špička může být zaoblená (přechodové ostří obloukové), nebo sražená (přechodové ostří přímkové) [5] [9]. Špička je zobrazena na obrázku 5.

- Poloměr zaoblení špičky r<sub>ε</sub> měřený v nástrojové základní rovině P<sub>r</sub>.
- Velikost sražení špičky b<sub>ε</sub> délka přechodového ostří přímkového, měřená v nástrojové základní rovině P<sub>r</sub>.



Obrázek 5 Špička nástroje a) zaoblená špička, b) sražená špička [9].

### 2.1.3 Síly při soustružení

Celková síla řezání (obrábění)  $F_e$  má 3 složky – řeznou složku síly obrábění  $F_c$ , posuvovou složku síly obrábění  $F_f$  a pasivní složku síly obrábění  $F_p$  [5] [6] [9]. Pro podélné soustružení lze tyto složky vypočítat ze vztahů:

$$F_{c} = C_{Fc} * a_{p}^{X_{Fc}} * f^{Y_{Fc}} [N],$$
 (1)

$$F_{f} = C_{F_{f}} * a_{p}^{X_{F_{f}}} * f^{Y_{F_{f}}} [N],$$
 (2)

$$F_{p} = C_{Fp} * a_{p}^{X} F_{p} * f^{Y} F_{p} [N],$$
 (3)

kde:

CFc, CFf, CFp – materiálové konstanty [-],

*x<sub>Fc</sub>, x<sub>Ff</sub>, x<sub>Fp</sub>* – exponenty vlivu ap [-],

 $y_{Fc}$ ,  $y_{Ff}$ ,  $y_{Fp}$  – exponenty vlivu f [-],

a<sub>p</sub> – hloubka obráběné vrstvy [mm],

f – posuv na otáčku [mm] [5] [6] [9].



Obrázek 6 Složky síly řezání (obrábění) a odpory při podélném soustružení [15].

Výsledná síla je určená rovnicí:

$$F = \sqrt{F_{c}^{2} + F_{f}^{2} + F_{p}^{2}} [N].$$
 (5)

Poměr jednotlivých složek síly řezání:

 $F_c: F_f: F_p = 1: 0.4: 0.25 \text{ při } \kappa_r = 45^\circ.$ 

Síla řezání, která je vztažena na jednotku plochy řezu se nazývá **měrná síla** řezání (obrábění) a značí se  $k_c$ . Dá se vyjádřit jako poměr řezné složky síly obrábění  $F_c$  a plochy jmenovitého průřezu třísky  $A_D$  [5] [9] [14].

Měrná síla řezání je určená vztahem:

$$k_{c} = \frac{Fc}{A_{D}} \text{ [MPa]}, \tag{6}$$

kde:

F<sub>c</sub> – řezná složka síly [-],

 $A_D$  – plocha jmenovitého průřezu třísky [mm<sup>2</sup>].

### 2.1.4 Řezné podmínky při soustružení

Řezné podmínky volíme podle druhu práce, požadované rozměrové přesnosti a jakosti obrobené plochy. Dále musíme brát při volbě řezných podmínek v úvahu ekonomická hlediska, především hospodárnou trvanlivost nástroje [5] [9].

V zásadě můžeme pro soustružení uvést následující hodnoty rozměrové přesnosti a přesnosti tvaru [5] [9].

- Běžná rozměrová přesnost dosahovaná při soustružení
  - u hrubování v rozmezí 0,2 0,4 mm,
  - při obrábění na čisto 0,1 0,2 mm.
- Přesnost tvaru
  - kuželovitost 0,01 až 0,02 mm na délce 300 mm,
  - oválnost 0,005 až 0,01mm.

Drsnost obrobené plochy je závislá především od posuvu a poloměru špičky nože. Při posuvu 0,1 mm na otáčku a  $r_r = 0,5$  mm dosahuje průměrné hodnoty Ra = 1,6 µm. Uvedené hodnoty jsou pouze orientační a závislé na mnoha podmínkách, především přesnosti obráběcího stroje [5] [9].

Důležitou charakteristikou řezných podmínek při soustružení jsou řezné pohyby. Především hlavní řezný pohyb a posuvový pohyb [5] [9].

**Hlavní řezný pohyb** ( $v_c$ ) je rotační a koná ho obrobek. Z povrchu rotujícího obrobku dochází prostřednictvím nože k odřezávání třísky [5] [9].

**Posuvový pohyb** ( $v_f$ ) je vedlejší, obvykle přímočarý a vykonává ho nástroj. Tento pohyb je nutný k tomu, aby nůž postupně odřezával třísky požadovaného průřezu [5] [9].

Posouvá-li se nůž ve směru osy rotace obrobku (axiálně), pak jde o podélné soustružení a **výsledný řezný pohyb** ( $v_e$ ) má tvar šroubovice, posouvá-li se však ve směru kolmém k ose rotace (radiálně), jedná se o přímé (čelní) soustružení (upichování, zapichování,...) a výsledný řezný pohyb má tvar Archimédovy spirály. Přísuv je kolmý k posuvu – tedy při podélném soustružení je radiální a při čelním soustružení axiální. Podélné a čelní soustružení je zobrazeno na obrázku 7 [5] [9].



Obrázek 7 Druhy soustružení a) podélné soustružení, b) čelní soustružení [14].

Při stanovení řezných podmínek jde zejména o volbu řezné rychlosti  $v_c$ , posuvu f a tloušťky obráběné vrstvy  $a_p$  (hloubky řezu) apod. [5] [9].

Řezná rychlost je rychlost hlavního řezného pohybu a definujeme ji jako obvodovou rychlost měřenou na obráběné ploše. Pro různé druhy materiálů nástrojů a obrobků se používá i různých řezných rychlostí. Jsou v rozsahu od 5 m.min<sup>-1</sup> do 1000 m.min<sup>-1</sup> [5] [9]. Obvodovou řeznou rychlost obrobku v místě soustružení lze určit ze vztahu:

$$v_{c} = \frac{\pi * D * n}{1000} [m.min^{-1}],$$
 (6)

kde:

D – průměr obráběné plochy [mm],

n – počet otáček vřetene [min<sup>-1</sup>].

Posuv je dráha, kterou vykoná nástroj za jednu otáčku obrobku. Při hrubování je jeho hodnota 0,4 až 3,5 mm, při dokončovacích operacích 0,06 až 0,3 mm a při jemném soustružení 0,03 až 0,05 mm [5] [9]. Při soustružení se nástroj posune během jedné otáčky o hodnotu posuvu, proto lze stanovit rychlost posuvu v<sub>f</sub> v závislosti na otáčkách vřetene následovně:

(7)

$$v_f = f * n [mm.min^{-1}],$$

kde:

f-posuv na otáčku [mm],

n – počet otáček vřetene [min<sup>-1</sup>].

**Tloušťka obráběné vrstvy**  $a_p$  se při soustružení pohybuje od hodnoty několika desetin mm až po několik mm. Velikost posuvu, hloubka řezu, úhel nastavení a tvar úseku řezné hrany, která je v záběru mají vliv na velikost a tvar průřezu třísky [5] [9]. Rozměr průřezu třísky pro základní druhy soustružení lze vypočítat ze vztahu:

• pro podélné soustružení:

|   | a <sub>p</sub> = 0,5 * (D - d) [mm], | (8) |
|---|--------------------------------------|-----|
| • | pro čelní soustružení:               |     |
|   | $a_p = L - I [mm],$                  | (9) |
|   | kde:                                 |     |

D – průměr obráběné plochy [mm],

d – průměr obrobené plochy [mm],

L – délka obráběné plochy [mm],

I – délka obrobené plochy [mm].

Jmenovitá šířka třísky  $b_D$  a jmenovitá tloušťka třísky  $h_D$  se vypočítají ze vztahů:

$$b_{\rm D} = \frac{a_{\rm p}}{\sin\kappa_{\rm p}} \,\,[\rm mm], \tag{10}$$

$$h_{\rm D} = f * \sin \kappa_{\rm r} \,[\rm mm], \tag{11}$$

kde:

 $\kappa_r$  – nástrojový úhel nastavení hlavního ostří.

Jmenovitý průřez třísky A<sub>D</sub> se stanoví ze vztahu:

$$A_D = b_D * h_D = a_p * f [mm^2].$$
 (12)



Obrázek 8 Identifikace průřezu třísky při soustružení a) válcová plocha, b) čelní plocha; a<sub>p</sub> – šířka záběru ostří, b<sub>D</sub> – jmenovitá šířka třísky, h<sub>D</sub> – jmenovitá tloušťka třísky, κ<sub>r</sub> – nástr. úhel nastavení hlavního ostří, D – průměr obráběné plochy, d – průměr obrobené plochy, L – délka obráběné plochy, I – délka obrobené plochy [15].

## 2.2 Tepelná bilance a teplota při obrábění

Při obrábění dochází v důsledku vnikání nástroje do materiálu k transformaci téměř veškeré mechanické energie na teplo. Vzniklé teplo má zásadní vliv na řezné vlastnosti a trvanlivost nástroje, na mechanické vlastnosti obráběného materiálu, na tření v povrchových vrstvách, pěchování, zpevnění apod. [5] [9].

## 2.2.1 Tepelná bilance procesu obrábění

Tepelné jevy při obrábění se stávají předmětem zkoumání z těchto důvodů:

- účinkem tepla, navenek se projevujícího teplotou, dochází u nástrojů ke ztrátě jejich pracovní schopnosti – řezivosti,
- teplo vznikající při obrábění ovlivňuje přesnost obráběných součástí,
- teplo většinou nepříznivě působí na drsnost obrobeného povrchu,
- v povrchové vrstvě může teplo vyvolat zbytková pnutí a strukturální změny.

Množství tepla, které vznikne při procesu obrábění za časovou jednotku, označujeme jako teplo řezání, nebo také tepelný výkon řezání. Vztáhneme-li množství tepla na jednotku objemu nebo hmotnosti, pak obdržíme měrné teplo řezání [J.cm<sup>-3</sup>, nebo J.g<sup>-1</sup>] [5] [9].

Z místa tvorby třísky je teplo odváděno nástrojem, obrobkem a třískou, následně je teplo odvedeno do okolí. Přírůstek tepla z nich, tzv. pohlcené teplo, je proto menší než teplo, které jimi bylo z oblasti oddělování třísky odvedeno [5] [9].

Za tepelnou bilanci považujeme rozdělení tepla podle lokálních zdrojů vzniku a způsobů odvodu. Experimentálními metodami bylo dokázáno, že na teplo se přemění téměř celá energie obrábění, uvádí se až 99,5% [5] [9].

Tepelný výkon řezání lze stanovit ze vztahu:

$$Q = \varphi_{L} * E * t_{0}^{-1} [W], \qquad (13)$$

kde:

 $\varphi_L$  – koeficient podílu latentní energie (0,02 až 0,03),

 $t_0$  – čas, po který teplo prochází.

Obecná rovnice tepelné bilance:

$$Q_{DI} + Q_{DII} + Q_{DII} + Q_{TC} + Q_{TH} = Q_T + Q_O + Q_N + Q_P,$$
 (14)

kde:

- Q<sub>DI</sub> teplo vzniklé v oblasti primárních plastických deformací [J],
- Q<sub>DII</sub> teplo vzniklé v oblasti sekundárních plastických deformací [J],
- Q<sub>DIII</sub> teplo vzniklé v oblasti terciálních plastických deformací [J],
- Q<sub>TC</sub> teplo vzniklé třením třísky na čele nástroje [J],
- Q<sub>TH</sub> teplo vzniklé třením třísky na hřbetu nástroje [J],
- Q7 teplo odvedené třískou [J],
- Q<sub>0</sub> teplo odvedené obrobkem [J],
- Q<sub>N</sub> teplo odvedené nástrojem [J],
- Q<sub>P</sub> teplo odvedené prostředím [J].



Obrázek 9 Přivedené a odvedené teplo při obrábění [17].

## 2.2.2 Teplota při obrábění

Teplo vznikající v procesu obrábění přechází z míst o vyšší teplotě do míst o nižší teplotě a způsobuje tak jejich ohřátí, tj. změnu jedné jejich stavové veličiny – teploty. To se týká především třísky, obrobku a nástroje. Určitá část je pohlcována okolím. Každý hmotný bod této soustavy je podle vzdálenosti od zdroje tepla a podle své tepelné vodivosti zasažen různým jeho množstvím. Mají proto různé body různou teplotu, nazývanou okamžitá teplota hmotného bodu obrobku, nástroje, nebo třísky [5] [9].

Mezi nimi však je možno najít body o stejné teplotě. Tyto body vytvářejí isotermickou plochu. Soustava těchto ploch představuje teplovodní pole a to buď

v nástroji, obrobku, nebo třísce. Určovat teplotu těchto hmotných bodů je velmi obtížné, a proto se zpravidla zjišťuje tzv. střední teplota. Za ní považujeme průměrnou teplotu hmotných bodů jednotlivých členů soustavy obrobek – nástroj – tříska. Podle toho pak jde o střední teplotu obrobku, nástroje, nebo třísky [5] [9].

Protože při obrábění vzniká nejvyšší teplota vždy na místech styku nástroje s třískou a obrobkem, bývá střední hodnota těchto stykových ploch označována pojmem teplota řezání [5] [9].

Pro studium teplotních stavů při obrábění byla vyvinuta celá řada metod, používajících pro stanovení teploty různých základních fyzikálních, fyzikálněchemických a chemických metod [5] [9].

Pro měření teploty řezání, která je nejčastěji měřenou veličinou, se dají z hlediska měřící techniky použít zejména ty metody, které využívají termoelektrického efektu, změny struktury a tepelného záření. První dvě metody umožňují měření uvnitř materiálů, zbývající pak ke stanovení teploty povrchu tělesa měřením ze vzdálenosti. Rozdělení metod měření teplotních stavů je znázorněn na obrázku 10 [5] [9].



Obrázek 10 Rozdělení metod měření teplotních stavů [9].

Nejrozšířenější metody pro měření teploty řezání jsou principy termočlánkové, založené na termoelektrickém efektu. Fyzikální podstata spočívá v tom, že ve styku dvou různých kovů putují jednotlivé elektrony z kovu s menší výstupní prací do kovu s větší výstupní prací. Takto vznikající napětí závisí na teplotě spoje a druhu obou kovů, ale také na velikosti mechanického zatížení. Takovému spojení říkáme termočlánek [5] [9].

V měřící praxi se vyskytují dva základní typy termočlánkových metod měření teploty při obrábění. Je to metoda přirozeného termočlánku a metoda vestavěného umělého termočlánku [5] [9].

Přirozený termočlánek tvoří obráběný a řezný materiál, které jsou vlivem působících řezných tlaků ve stykových oblastech přivedeny do těsného, vodivého spojení. Termoelektrická síla je vyvolána ohřevem stykových míst a je úměrná střední teplotě dotykových bodů mezi obráběným a řezný materiálem [5] [9].

Měření umělým termočlánkem se dvěma cizími kovy spočívá v tom, že se předem vyrobí úplný termočlánek z drátů kovů, které dávají dostatečně velkou termoelektrickou sílu, např. CrNi – Ni. Takto upravený a patřičně izolovaný termočlánek se vloží, případně přivaří na dno vývrtu zhotoveného v nástroji [5] [9].

Výrazný vliv na teplotu řezání má prostředí, v němž se obrábění odehrává. Obvykle jde o prostředí plynné nebo kapalné. V plynech, které vytvářejí kysličníkové filmy, dochází k poklesu tření a tím i ke snížení teploty řezání [5] [9].

V kapalném prostředí se projeví jednak zvýšený odvod tepla, ale také zmenšení tření. Chladící a mazací účinek patří k nejdůležitějším vlastnostem tzv. řezných kapalin, účinek je doplněn účinky čistícími a antikorozními [5] [9].

| Rozdělení procesního prostředí |                         |                      |  |
|--------------------------------|-------------------------|----------------------|--|
| Skupina Podskupina 1           |                         | Podskupina 2         |  |
|                                |                         | Dusík                |  |
| Dhané                          | Vzduch                  | CO <sub>2</sub>      |  |
| Plynne                         | Inertní plyn            | Argon                |  |
|                                |                         | atd.                 |  |
|                                | Mlha                    |                      |  |
|                                |                         | Minerální            |  |
|                                | ) (a da consta italia é | Polosyntetické       |  |
|                                | vodou misiteine         | Syntetické           |  |
| Konolné prostěstí              |                         | Speciální            |  |
| Kapaine prostredi              |                         | Rostlinné            |  |
|                                |                         | Syntetické           |  |
|                                | Vodou nemísitelné       | Minerální            |  |
|                                |                         | Koncentráty          |  |
|                                |                         | vysokotlakých přísad |  |
| Tuhá maziva                    |                         |                      |  |

Tabulka 1 Rozdělení procesních médií [8].

## 3 Procesní média – procesní kapaliny a plyny

Účinky řezného prostředí můžeme dělit na účinky chladící, mazací a čistící. Chladícím účinkem procesního média se rozumí schopnost média odvádět teplo z místa řezu. Tuto schopnost má každé médium smáčecí povrch kovů za předpokladu, že mezi povrchem obrobku a médiem existuje tepelný spád. Odvod vzniklého tepla při řezání se uskutečňuje schopností procesního média přijmout část vzniklého tepla, které obklopuje nástroj, třísku i obrobek. Chladicí účinek má za následek snížení teploty v místě řezu, čímž se zajistí zlepšení jakosti obrobeného povrchu, zvýšení trvanlivosti nástroje a snížení opotřebení nástroje. K důležitým vlastnostem, které ovlivňují chladicí účinnost média, patří smáčecí schopnost, výparné a měrné teplo, tepelná vodivost, rychlost vypařování za určitých teplot a průtokové množství. Zvýšením hodnot těchto parametrů dochází ke zvýšení chladicí schopnosti procesního média [2] [8] [12].

Mazací účinek lze definovat jako schopnost procesního média vytvořit na povrchu obrobku a nástroje přilnavou vrstvu, která zabraňuje přímému dotyku kovových povrchů a snižuje tření mezi obrobkem a nástrojem. S ohledem na výskyt vysokých tlaků vzniklých při řezání mezi obrobkem a nástrojem, zde nedochází ke kapalinnému tření. Ke vzniku mezního tření může dojít, má-li procesní médium velkou afinitu ke kovu, nebo váže-li se s materiálem obrobku chemicky v mikroskopické mezní vrstvě. Mazacím účinkem procesního média rozumíme schopnosti snížení tření, velikosti řezných odporů a spotřeby energie [2] [8] [12].

Mazací účinek se projeví i ve zlepšení jakosti povrchu. Důraz na mazací účinek klademe především u dokončovací operace obrábění, ale také u protahování, výrobě závitů, nebo výrobě ozubených kol [2] [8] [12].

Mazací schopnost procesního média je závislá na viskozitě a pevnosti vytvořené mezní vrstvy. Nežádoucím důsledkem rostoucí viskozity je omezený průnik média mezi třecí plochy, zhoršení proudění a snížení odvodu tepla. Dalším negativním důsledkem vyšší viskozity je ulpívání média na odvedených třískách, čímž dochází ke ztrátám média [2] [8] [12].

Důležitou funkcí procesního média je odstraňovat třísky vzniklé při obrábění. Aby procesní médium mělo dobrý čistící účinek, musí zamezit shlukování a slepování částic, musí dobře odvádět vzniklé třísky, nesmí lepit a musí dovolovat snadné a rychlé usazování nečistot [2] [8] [12].

Důležitou vlastností procesního média je i provozní stálost, ochranný účinek a zdravotní nezávadnost [2] [8] [12].

Provozní stálost procesního média lze hodnotit dobou jeho výměny. Z ekonomického hlediska musí procesní médium dlouhodobě setrvat v provozu, aniž by změnilo své funkční vlastnosti. Z toho vyplývá, že médium setrvávající déle v provozu snižuje náklady na jeho provoz a na celkovou výrobu součásti. Provozní stálost řezného média závisí na jeho fyzikálních a chemických vlastnostech a na pracovní teplotě [2] [8] [12].

Ochranný účinek procesního média lze definovat jako schopnost média nenapadat kovové povrchy a tím způsobit jejich korozi. Tato důležitá schopnost zaručuje ochranu výrobku a součásti stroje při výrobním procesu. Dalším důležitým požadavkem je, aby procesní médium nerozpouštělo nátěry obráběcích strojů a nebylo agresivní vůči pryžovým těsněním [2] [8] [12].

Zdravotní nezávadnost procesního média zaručuje ochranu pracovníka při přímém kontaktu s médiem. Proto médium nesmí být zdravotně závadné, nesmí obsahovat látky dráždící sliznici a pokožku a nesmí být jedovaté. Tato média nemají taktéž zamořovat pracovní prostředí nepříjemným zápachem. Zdravotní nezávadnost média závisí i na jeho provozní stálosti a čistotě [2] [8] [12].

Při volbě pracovního média je nutné brát taky v úvahu provozní náklady. Nízké náklady závisí výhradně na spotřebě procesního média. Abychom nejlépe optimalizovali proces obrábění je potřeba při rozboru nákladů prozkoumat vliv procesního média na obrábění (průběh plastických deformací v zóně řezání, opotřebení, trvanlivost, ostření nebo výměna nástroje, změny struktury povrchu obrobené plochy, spotřeba energie). Dalším faktorem pro zhodnocení nákladů na procesní médium je jeho provozní stálost, výměna a náklady na likvidaci. Procesní médium slouží jako jeden z prostředků, jak ovlivňovat hospodárnost procesu obrábění. Cena procesního média není hlavním faktorem, který by měl vliv na celkovou ekonomii obrábění [2] [8] [12].

## 3.1 Procesní kapaliny

Procesní kapaliny patří mezi médium, které lze rozdělit podle jeho vlastností na kapaliny s převažujícím chladicím účinkem a kapaliny s převažujícím mazacím účinkem. V současné době však toto rozdělení zcela nevystihuje sortiment vyskytující se na trhu. Cílem vývoje procesních kapalin je snahou vyrobit kapaliny se zvyšujícím mazacím účinkem, s převažujícím chladicím účinkem. V současnosti tyto požadavky plní všechny druhy kapalin na trhu [2] [8] [12].

Procesní kapaliny lze rozdělit do těchto skupin:

- vodní roztoky elektrolytů,
- vodní roztoky povrchově aktivních látek,

- olejové emulze,
- oleje.

Mezi další možnosti jak lze kapaliny rozdělit je zobrazeno v tabulce 2.

| Rozdělení procesních kapalin |                |  |
|------------------------------|----------------|--|
|                              | Minerální      |  |
| Vodou mísitelné              | Polosyntetické |  |
| (chladicí kapaliny)          | Syntetické     |  |
|                              | Speciální      |  |
|                              | Rostlinné      |  |
| Vodou nemísitelné            | Minerální      |  |
| (řezné oleje)                | Syntetické     |  |
|                              | Speciální      |  |

Tabulka 2 Schematické rozdělení procesních kapalin [1].

Vodní roztoky elektrolytů jsou alkalické 1% až 2% roztoky uhličitanu sodného, trietanolaminu, křemičitanu sodného, dusičnanu sodného apod. Mají pouze chladící účinek [5].

Účinnější jsou roztoky povrchově aktivních látek. Jsou to zejména roztoky draselných a sodných mýdel, mastné kyseliny, sulfonaftenové kyseliny apod. Mají vysoký chladící účinek, vlivem malého povrchového napětí dobrou smáčivost a vytvářejí adhesní film s určitou mazací schopností [5].

Největší podíl řezných kapalin tvoří olejové emulze. Obsahují vodu, minerální olej a emulgátor. Mohou obsahovat i další povrchově aktivní složky. Emulgátor zabraňuje slučování kapiček oleje tím, že na jejich povrchu vytváří mikroskopický povlak. Bez emulgátoru by se olej po čase vyloučil na povrchu kapaliny. Velikost kapiček oleje v emulzi je asi 0,2 – 8 µm. Jako emulgátoru se používají některá mýdla. Olejové emulze mají velký chladící účinek a podle obsahu oleje a aditiv též účinek mazací [5].

Další skupinou řezných kapalin jsou řezné oleje. Dnes se používají výhradně minerální oleje s aditivy (síra, chlór a jejich sloučeniny). Oleje mají poměrně malý chladící účinek, vlivem obsahu aditiv se však výrazně a ve velkém rozsahu řezných podmínek projevuje jejich účinek mazací. V malé míře se ještě v některých případech používají rostlinné oleje, např. řepkový [5].

Volba druhu řezné kapaliny se řídí podle způsobu obrábění a řezných podmínek. Při obrábění, kde vzniká velké množství tepla, např. při soustružení, frézování vyššími rychlostmi a většími průřezy třísek, vrtání hlubokých otvorů a při broušení se používají řezné kapaliny s vysokým chladícím účinkem, zejména elektrolyty a olejové emulze o nízké koncentraci. Při obrábění středními rychlostmi a menšími průřezy třísek se používají kapaliny s chladícím a mazacím účinkem, tj. emulze o střední koncentraci a roztoky povrchově aktivních látek. Při obrábění malými řeznými rychlostmi, nebo malými průřezy třísek se používá aditivovaných řezných olejů [5].

## 3.2 Plyny

Proces obrábění kovových i nekovových materiálů probíhá vždy v určitém procesním prostředí. Přirozeným a nejběžnějším procesním prostředím je vzduch. Jako umělé procesní prostředí jsou obecně aplikovány plyny, mlhoviny a procesní kapaliny, které jsou využívány v nejširším měřítku, méně pak tuhá maziva [1] [3].

Vzduch představuje jedno z nejběžnějších a také nejrozšířenějších řezných prostředí, tzn., že se ve své podstatě jedná o běžné obráběcí operace prováděné "na sucho". Nespornou výhodou vzduchu, jako přirozeného média, je jeho dostupnost. V některých případech je nástroj ofukován proudem stlačeného vzduchu (popřípadě i ochlazeného), který má za úkol nejen ochlazovat nástroj jako takový, ale jeho prvořadým úkolem je odstranění třísek z místa řezu [1] [3].

Jako další plynné procesní prostředí při obrábění se používá podchlazený vzduch. K tomuto účelu se vyrábí a využívá zařízení zvané vírová trubice, která použitím pouze filtrovaného stlačeného vzduchu o tlaku 5,5 – 7 bar jako zdroje energie vytvoří dva proudy vzduchu, jeden studený (až -45 °C) a jeden horký (až +120 °C) bez použití elektrické energie, freonů a pohyblivých součástí [1] [3].

Efekt, na němž je vírová trubice založena byl poprvé pozorován francouzským fyzikem Georgem Ranquem kolem roku 1930 (viz obrázek 11). Když však předložil svoji práci francouzské vědecké společnosti, byla přijata s nedůvěrou a nezájmem a jeho článek z roku 1933 byl dlouhou dobu ignorován. Ve čtyřicátých letech se jevem začal zabývat v USA Rudolf Hilsch, který nakonec publikoval první známý článek o tomto jevu [1] [3].



Obrázek 11 Původní uspořádání Ranquova experimentu [3].

### Princip vírové trubice

Po zapojení přívodu vzduchu je velmi rychle dosažen stacionární stav, tedy stav dynamické rovnováhy, který je možné popsat takto: proud vzduchu je odstředivou silou držen v blízkosti stěn trubice a postupuje po spirále směrem doleva, přičemž rotuje velkou úhlovou rychlostí dosahující až desítek tisíc otáček za sekundu. Na levém konci trubice je umístěn výstupní ventil, kterým je možné regulovat množství vzduchu odcházejícího tímto koncem trubice, tzv. horkým koncem, neboť vzduch zde vystupuje silně zahřátý. Princip Ranque Hilschovi vírové trubice je znázorněn na obrázku 12 [3].



Obrázek 12 Princip Ranque Hilschovi vírové trubice [3].

Část vzduchu se však odráží zpět směrem k pravému konci, tzv. studenému konci trubice, neboť na této straně vychází vzduch silně ochlazený. Tato část proudu postupuje doprava opět za současného vířivého pohybu, prochází vírovou komůrkou a otvorem na jejím opačném konci vychází z přístroje. Regulace chlazení a ohřívání, jakož i poměrné množství obou složek se provádí výstupním ventilem [3].

#### Cold Air Gun

Od experimentálních počinů byla dlouhá cesta k průmyslovému využití. V současné době je k dispozici zařízení Cold Air Gun znázorněné na obrázku 13, které pracuje na principu vírové trubice [3].



Obrázek 13 Zařízení Cold Air Gun [3].

Cold Air Gun používá filtrovaný stlačený vzduch a princip vírové trubice pro vytvoření mrazivého proudu vzduchu pro spoustu průmyslových aplikací při bodovém chlazení. Vírová trubice převádí stlačený vzduch do studeného proudu vzduchu o teplotě až -46 °C. Cold Air Gun se používají v různých průmyslových procesech, výrobě, montáži a balení jako universální zdroj bodového chlazení [3].

Chlazení studeným vzduchem významně zvyšuje životnost nástroje (až o 50%) a produktivitu práce (až o 36%) v porovnání s obráběním na sucho. Účinné chlazení pomocí Cold Air Gun eliminuje místní přehřívání součástí a tím zvyšuje rozměrové tolerance i kvalitu povrchu součástí [3].

### Obrábění s využitím zkapalněného oxidu uhličitého

Skleníkový plyn oxid uhličitý je známý s pokračujícím současným tempem růstu jeho koncentrace v ovzduší. Je však možné tento skleníkový plyn využít k ochlazování obrobků a snižování tření na jejich povrchu [3].

Jedním z účinných způsobů chlazení plynem je totiž chlazení stlačeným  $CO_2$ . Princip spočívá v přívodu tenkého paprsku plynu do místa řezu pod tlakem 0,5 – 7 MPa. Tento způsob chlazení je zvláště vhodný u těžkoobrobitelných materiálů. Tato metoda, i když přináší možnost zvýšení výkonu obrábění, má řadu nevýhod. Vysoké náklady na  $CO_2$  a jisté nebezpečí při jeho používání. Vyžaduje se totiž dokonalé odsávání a větrání pracoviště [3].

# Kryogenní chlazení pomocí oxidu uhličitého – tryskání pevného oxidu uhličitého

Obrábění špatně obrobitelných materiálů například titanu, slitin niklu, či duplex ocelí, kdy při obrábění probíhá velké tepelné zatížení s vysokým opotřebením nástroje. S cíleným chlazením lze dosáhnout větší životnosti nástroje a možností zvýšit i řezné podmínky. Kryogenní proces lze provádět nejen s tekutým dusíkem, ale také s přiváděným tekutým kysličníkem uhličitým CO<sub>2</sub> ve formě tryskaného sněhu [3].

"Sněhování" využívá proud malých ledových částeček o velikosti mikronu. Tryskající zmrzlé krystaly suchého ledu jsou vytvářeny dějem, kterému fyzikové říkají adiabatické rozpínání. Princip je velmi jednoduchý, do tenké trubičky se vede pod tlakem kapalný oxid uhličitý. Po jeho průchodu tryskou, jejíž průměr je pouhé tři desetiny milimetru se z něj stanou tryskající "sněhánky". Ty pak mechanicky odstraňují z povrchu obráběné součástky a používaných nástrojů, všechen balastní odpad. Současně místo opracování ochlazují a co je zajímavé, a současně nejdůležitější, krystalky oxidu snižují tření. Působí stejně jako mazivo. Oxid uhličitý je k životnímu prostředí šetrný, nehořlavý a je ho všude dost. Po vykonání práce se odpaří do vzduchu, jako jeho přirozená součást [3].

V laboratorních podmínkách již systém "sněhování" prokázal, že ve srovnání s klasickým obráběním snižuje náklady a že rovněž prodlužuje životnost obráběcích nástrojů [3].

#### Obrábění s využitím zkapalněného dusíku

Dusík se používá pro svou nízkou reaktivitu k vytváření inertní atmosféry, k hašení důlních požárů, k plnění žárovek a také se velmi často používá v lékařství. Je hlavní surovinou pro výrobu amoniaku. Zkapalněný slouží též k chlazení na velmi nízké teploty [1] [3].

Chlazení pomocí zkapalněného dusíku může být kryogenní – a to přímé nebo nepřímé [1] [3].

Kryogenní chlazení (chlazení na velmi nízké teploty) je současným trendem, kdy je snaha docílit velmi nízkých teplot a jeho následným kladným působením na materiál i nástroj. Americký národní institut standardů a technologií určil hranici mezi chlazením a kryogenním chlazením na 93,15 K (-180°C). Pro kryogenní chlazení se využívá především kapalný dusík [1] [3] [18].

#### Kryogenní chlazení pomocí dusíku – přímé chlazení

Tento způsob kryogenního chlazení umožňuje přivedení kapalného dusíku přes utvařeč třísky, přímo mezi třísku a čelo nástroje. Proud dusíku přes utvařeč třísky pomáhá zvednout třísku a tím zároveň sám sobě umožňuje lepší přístup k ochlazovanému místu a chladí ještě lépe. Na rozdíl od nepřímého chlazení tříska neblokuje proudění tekutého dusíku. Tekutý dusík absorbuje teplo, rychle se odpařuje a tvoří tzv. kapalino – plynový polštář mezi třískou a čelem nástroje, který funguje jako mazivo. V důsledku toho se snižuje koeficient tření, jakož i sekundární deformace třísky. Mazací a chladicí efekt na nejteplejší místo snižuje teplotu nástroje, čímž účinně snižuje opotřebení nástroje. Pomocné kryogenní trysky mohou být dodatečně přidány kvůli ochlazování hřbetní plochy k dalšímu snížení opotřebení hřbetu [3].

### Kryogenní chlazení pomocí dusíku – nepřímé chlazení

Metoda nepřímého chlazení spočívá v ochlazování místa řezu přívodem dusíku před trysku umístěnou mimo obráběcí nástroj, jak znázorňuje obrázek 14. Tato metoda velmi závisí na tepelné vodivosti materiálu nástroje (obrobku), kvůli zavedení chladicího účinku až do místa řezu přes odcházející třísku, která brání přímému přístupu do místa řezu. Tím se snižuje efektivita tohoto způsobu chlazení a může dojít k nežádoucím jevům, jako je např. podchlazení obrobku. Na druhou stranu lze tento způsob použít víceméně pro jakýkoliv druh obrábění [3].



Obrázek 14 Chlazení břitu nástroje tekutým dusíkem – nepřímé chlazení [3].

## 4 Metodika experimentu

Kapitola Metodika experimentu shrnuje základní informace o experimentálním prostředí, popisuje vlastní metodiku experimentu, přípravu vzorku, použité stroje, nástroje, měřící zařízení a měřené parametry.

## 4.1 Metodika hodnocení plynů pro technologii soustružení

V této části diplomové práce je popsána metodika pro hodnocení plynů v porovnání s procesními kapalinami při technologii soustružení.

### 4.1.1 Experimentální prostředí

Daná problematika diplomové práce byla řešena společně s problematikou bakalářské práce A. Junka: Účinek procesních plynů na technologii soustružení a kvalitu obrobených součástí (bakalářská práce). V rámci řešení práce A. Junka bylo realizováno společné měření (spolupráce) tří procesních médií (za sucha, CO<sub>2</sub> a vírová trubice) a v rámci předkládané diplomové práce bylo realizováno měření jednoho plynného média - zkapalněný dusík a dvou procesních kapalin. Celkové zhodnocení jednotlivých procesních médií (včetně výsledků z bakalářské práce) je obsahem této diplomové práce.

### Procesní kapaliny

Pro experiment byla použita procesní kapalina EOPS 1030 od výrobce PARAMO a procesní kapalina HOCUT 795B od výrobce HOUGHTON.

PARAMO EOPS 1030 tvoří s vodou stabilní mikroemulzi s dobrou ochrannou schopností proti mikrobiálnímu napadení, atmosférické korozi a nízkou pěnivostí. Je to těžko hořlavá kapalina. Parametry této procesní kapaliny jsou uvedeny v tabulce 3.

Používá se jako řezná kapalina při obrábění kovových i nekovových materiálů a jako těžko hořlavá kapalina pro nenáročné hydraulické mechanismy. Doporučená koncentrace 3 % až 10 % podle způsobu použití [11].

| Procesní kapalina:  | EOPS 1030 |                      |
|---------------------|-----------|----------------------|
| Technické parametry | Hodnota   | Jednotka             |
| Barva koncentrátu   | Žlutá     | [-]                  |
| Vzhled              | Kapalina  | [-]                  |
| Viskozita při 40°C  | 74,00     | [mm <sup>2</sup> /s] |

Tabulka 3 Technické parametry procesní kapaliny EOPS 1030.

| Technické parametry                 | Hodnota | Jednotka             |
|-------------------------------------|---------|----------------------|
| Hustota při 15°C                    | 0,97    | [g/cm <sup>3</sup> ] |
| Faktor pro refraktometr             | 1,10    | [-]                  |
| Bod vzplanutí                       | -       | [°C]                 |
| ph 5% roztoku v dest. vodě při 20°C | 9,50    | [-]                  |

HOCUT 795B je mléčný emulzní olej bez obsahu chlóru, bóru a formaldehydu s vysokými mazacími účinky a dlouhou životností. Parametry této procesní kapaliny jsou uvedeny v tabulce 4.

Vlastnosti HOCUT 795B jsou vhodné k obrábění slitin hliníku a vysoce jakostní legované oceli. Na obrobené ploše hliníku nezanechává žádné viditelné stopy. HOCUT 795B se používá u vysokotlakých systému chlazení na moderních CNC automatech [7].

Tabulka 4 Technické parametry procesní kapaliny HOCUT 795B.

| Procesní kapalina:                  | HOCUT 795B    |                      |
|-------------------------------------|---------------|----------------------|
| Technické parametry                 | Hodnota       | Jednotka             |
| Barva koncentrátu                   | Kalný hnědý   | [-]                  |
| Vzhled roztoku                      | Bělavá emulze | [-]                  |
| Viskozita při 40°C                  | -             | [mm <sup>2</sup> /s] |
| Hustota při 20°C                    | 0,94          | [g/cm <sup>3</sup> ] |
| Faktor pro refraktometr             | 1,00          | [-]                  |
| Bod vzplanutí                       | -             | [°C]                 |
| ph 5% roztoku v dest. vodě při 20°C | 8,70–9,20     | [-]                  |

Pro správné provozní vlastnosti procesních kapalin se musí použít vhodná koncentrace. Potřebné koncentrace se dosáhne namícháním dané kapaliny s vhodně upravenou vodou a volí se podle druhu operace a podle množství přídavných látek. Pro přípravu vybraných vodou mísitelných kapalin od firmy PARAMO a HOUGHTON byla zvolena vhodná koncentrace na 5%. U kapalin bylo nutno vydělit zvolenou koncentraci faktorem, který je uveden výrobcem kapalin.

Měření koncentrace se provádí za pomoci ručního refraktometru, jeho popis je uveden v následující kapitole této diplomové práce.

Postup přípravy kapalin:

- namíchaná procesní kapalina se nanese na měřící část refraktometru ve formě kapiček za pomocí pipety,
- přední stranu refraktometru nasměrujeme na zdroj světla,
- zaostříme okulár tak, aby byla stupnice pro odečtení dobře viditelná,
- odečteme hodnotu koncentrace na stupnici okuláru.

### Procesní plyn – zkapalněný dusík.

Pro experiment byl použit zkapalněný dusík, který je skladován ve speciálním zásobníku tzv. Dewarova nádoba. Pracovní tlak dusíku pro experiment byl udržován na 15 kPa. Při atmosférickém tlaku má kapalný dusík bod varu -196 °C (77 K), při odpaření 1 litru kapalného dusíku vznikne 0,7 m<sup>3</sup> plynu.

Kapalný dusík je umístěn v zásobníku, který se skládá ze dvou do sebe vložených nádob. Vnitřní nádoba je spojena s vnější nádobou tenkostěnnou trubkou (hrdlem), spoje jsou lepené. Prostor mezi nádobami je vyplněn superizolací a odčerpán na vysoké vakuum. Tento zásobník se označuje jako Dewarova nádoba.

Zásobníky typu KL – jsou určeny ke skladování kapalného dusíku, jeho transportu a dále k využití v kryogenních aparaturách (max. pracovní přetlak 0,05 MPa) apod. Parametry zásobníku tekutého dusíku jsou uvedeny v tabulce 5.



Obrázek 15 Zásobník KL 32.

| Zásobník kapalného dusíku typu KL     |         |          |
|---------------------------------------|---------|----------|
|                                       | hodnota | jednotka |
| Objem vnitřní nádoby                  | 31,00   | litr     |
| Průměr hrdla                          | 33,00   | [ mm ]   |
| Max. průměr nádoby                    | 500,00  | [ mm ]   |
| Max. výška nádoby                     | 725,00  | [ mm ]   |
| Hmotnost prázdné<br>nádoby            | 16,10   | [ kg ]   |
| Hmotnost plné nádoby                  | 40,80   | [ kg ]   |
| Odpar L N <sub>2</sub> za 24<br>hodin | 0,25    | l/24h    |
| Statická kapacita                     | 124,00  | dnů      |
| Max. pracovní přetlak                 | 0,05    | [MPa]    |

Tabulka 5 Parametry zásobníku typu KL [16].

## 4.1.2 Řezné podmínky pro experimentální měření

Řezné podmínky experimentu jsou zpřehledněny do níže uvedené tabulky č. 6.

| Parametr                      | Hodnota                  |
|-------------------------------|--------------------------|
| Řezná rychlost v <sub>c</sub> | 141,00 m/min             |
| Otáčky n                      | 900,00 min <sup>-1</sup> |
| Posuv f                       | 0,05 mm/ot               |
| Hloubka záběru a <sub>p</sub> | 1,50 mm                  |

Tabulka 6 Řezné podmínky pro soustružení.

## 4.1.3 Metodika experimentu

Základní parametry experimentu jsou zpřehledněny do níže uvedené tabulky č. 7.

| Měřené parametry                       | Řezná síla                                                    |  |
|----------------------------------------|---------------------------------------------------------------|--|
|                                        | Teplota řezného nástroje                                      |  |
|                                        | Trvanlivost břitu nástroje                                    |  |
|                                        | Drsnost povrchu                                               |  |
|                                        | Rozměrová přesnost                                            |  |
| Obráběný materiál                      | Ocel 12 050.1                                                 |  |
|                                        | (bližší Info o materiálovém složení – viz<br>příloha A)       |  |
| Rozměry polotovaru                     | Ø50x500 mm                                                    |  |
| Stroj                                  | Soustruh univerzální hrotový SU50                             |  |
| Nástroj                                | Nůž stranový ubírací                                          |  |
| Nástroj – vyměnitelné břitové destičky | TPUN 8230                                                     |  |
| Řezné prostředí                        | Obrábění s využitím procesních kapalin                        |  |
|                                        | Obrábění s využitím zkapalněného<br>dusíku, tlak média 15 kPa |  |

Tabulka 7 Metodika soustružení.

#### Příprava zkušebního vzorku pro experiment

Pro experimentální část diplomové práce byl zvolen materiál ocel 12 050.1. Polotovarem pro výrobu vzorku byla zvolena tyč kruhová Ø50x500 mm.

V první fázi bylo nutné vytvořit na polotovaru 20 mm dlouhé úseky, které budou sloužit k měření sil, teploty, drsnosti povrchu a rozměrové přesnosti. Jednotlivé úseky jsou zobrazeny na obrázku 16.



Obrázek 16 Příprava vzorku; jednotlivé úseky zobrazené červenou barvou, izolace z kartitu zobrazena hnědou barvou.

Dále bylo nutné odizolovat vzorek od rámu stroje, z důvodu měření teploty termočlánky. K tomuto účelu byla vyrobena speciální objímka z izolačního materiálu kartitu (pertinax) (viz obrázek 17). Za použití této objímky byl vzorek upnut do sklíčidla. Dále bylo nutné odizolovat vzorek od koníka, z důvodu podepření. Pro tento účel byl vyroben izolační kroužek z kartitu, který se vložil do čela vzorku (viz obrázek 18). Teprve na takto připraveném vzorku mohl být proveden experiment.



Obrázek 17 Izolační objímka z kartitu.



Obrázek 18 lzolační kroužek z kartitu vložený do čela vzorku.

## 4.1.4 Popis strojů, nástrojů a měřících přístrojů

Obrábění materiálu bylo provedeno na univerzálním hrotovém soustruhu SU 50, s použitím těchto nástrojů.

- soustružnický nůž stranový ubírací pro VBD,
- vyměnitelné břitové destičky TPUN 8230 od firmy Pramet.

### Obráběcí stroj

Obrábění vzorku bylo provedeno na univerzálním hrotovém soustruhu SU 50 (viz obrázek 19). Tento stroj patří mezi základní strojní vybavení laboratoře Katedry obrábění a montáže TU v Liberci. Technické údaje tohoto stroje jsou uvedeny v tabulce 8.

| Univerzální hrotový soustruh SU 50 |                 |                      |  |
|------------------------------------|-----------------|----------------------|--|
| Charakteristika                    | Hodnota         | Jednotka             |  |
| Oběžný průměr nad ložem            | 500,00          | [mm]                 |  |
| Oběžný průměr nad suportem         | 250,00          | [mm]                 |  |
| Průměr sklíčidla                   | 250,00          | [mm]                 |  |
| Největší průřez nože               | 32x32           | [mm]                 |  |
| Počet stupňů otáček vřetena        | 22,00           | [-]                  |  |
| Rozsah otáček vřetena              | 11,20 – 1400,00 | [min <sup>-1</sup> ] |  |
| Rozsah podélného posuvu            | 0,027 – 3,80    | [mm/ot]              |  |

Tabulka 8 Technické údaje SU 50 [12].

| Charakteristika                       | Hodnota      | Jednotka |
|---------------------------------------|--------------|----------|
| Rozsah příčného posuvu                | 0,013 – 1,90 | [mm/ot]  |
| Počet motorů pro hlavní pohon stroje  | 2,00         | [-]      |
| Výkon motoru pro hlavní pohon stroje  | 2x5,50       | [kW]     |
| Otáčky motoru pro hlavní pohon stroje | 1400,00      | [ot/min] |



Obrázek 19 Univerzální hrotový soustruh SU 50 [12].

### Nástroj a vyměnitelná břitová destička

Pro soustružení vzorku byl zvolen soustružnický nůž stranový ubírací, který je konstruován pro použití vyměnitelných břitových destiček od firmy PrametTools, s.r.o. (viz obrázek 20). Rozměry soustružnického nože jsou zobrazeny v tabulce 9.
Tabulka 9 Základní rozměry nože [13].



| Rozměry           | Hodnota | Jednotka |
|-------------------|---------|----------|
| b                 | 20,00   | [mm]     |
| h=h1              | 20,00   | [mm]     |
| f                 | 20,50   | [mm]     |
| 1                 | 125,00  | [mm]     |
| l2max.            | 32,00   | [mm]     |
| úhel<br>nastavení | 90,00   | [°]      |

Obrázek 20 Soustružnický nůž vnější [13].

Pro provedení experimentu byly použity vyměnitelné břitové destičky od firmy Pramet - TPUN 160308 z materiálu H15 – 25 (kde H značí druh materiálu, ze kterého je břitová destička vyrobena). Jednalo se o břitové destičky z materiálu bez kubických karbidů, s nízkým obsahem kobaltu, které se vyznačují geometrií s nulovým úhlem čela. Tyto destičky jsou prioritně určeny pro soustružení. Dodávají se ve velikostech 1103, 1603, 2204, pro experiment se zvolila velikost 1603. Parametry břitové destičky jsou uvedeny na obrázku 21.



Obrázek 21 Vyměnitelná břitová destička TPUN 160308 [13].

# Piezoelektrický dynamometr KISTLER, typ 9265B

Pro měření složek řezných sil F<sub>c</sub>, F<sub>f</sub> a F<sub>p</sub> byl použit piezoelektrický dynamometr.

Dynamometr KISTLER má vysokou vlastní frekvenci a je schopen měřit staticky i dynamicky. Je složen ze čtyř piezoelektrických snímačů, z toho každý je složen z piezoelektrických destiček, které jsou umístěny tak, že každá zachycuje sílu v jiném směru. Konstrukce dynamometru je zvolena tak, aby se náboje z jednotlivých snímačů sčítaly. Náboje z piezoelektrických snímačů jsou zesilovány nábojovým zesilovačem 5019 B (viz obrázek 22) [4].



Obrázek 22 Nábojový zesilovač 5019 B.

Dynamometr KISTLER se převážně používá pro měření složek sil při broušení, frézování a soustružení. Při soustružení se měřící zařízení upne na soustruh pomocí šroubů.

Správná funkce dynamometru je závislá na dodržení těchto podmínek:

- teplota vzduchu 21°C ± 1°C,
- vlhkost vzduchu 42% ± 5%.



Obrázek 23 Dynamometr KISTLER 9265B.

# Umělý termočlánek typu K

Pro technologii soustružení bylo z důvodu rotace obrobku použito měření teploty v místě řezu prostřednictvím vyměnitelné břitové destičky. Termočlánek byl stabilně zabudovaný v nástroji a snímal tak teplotu na povrchu a na dolní ploše břitové destičky. Byl zvolen termočlánek typu K. Stabilně zabudovaný termočlánek je zobrazen na obrázku 24 [4].



Obrázek 24 Stabilně zabudovaný termočlánek na vyměnitelné břitové destičce.

Podstatou umělého termočlánku je přímé umístění termočlánku do místa řezu (měření teploty). S pomocí těchto dvou vodičů lze měřit teplotu v různých místech nástroje. Nejčastěji se používá k měření teploty na břitu nástroje. Schéma zapojení umělého termočlánku je zobrazeno na obrázku 25 [4].



Obrázek 25 Umělý termočlánek pro soustružnický nůž s vyměnitelnou břitovou destičkou [4].

| označení | + přívod               | - přívod              | teplotní rozsah<br>[°C] | rozsah [mV]   |
|----------|------------------------|-----------------------|-------------------------|---------------|
| J        | Fe                     | Cu – Ni               | -210°C – 1200°C         | -8,10 –69,50  |
| K        | Ni – Cr                | Ni – Al               | -270°C – 1372°C         | -6,40 – 54,90 |
| Т        | Cu                     | Cu – Ni               | -270°C – 400°C          | -6,20 – 20,80 |
| R        | Pt (13%) –<br>Rh (13%) | Pt                    | -210°C – 1200°C         | -0,20 – 210   |
| G        | W                      | W (26%) –<br>Re (26%) | -50°C – 1768°C          | 0 – 38,50     |
| D        | W (3%) –<br>Re (3%)    | W (25%) –<br>Re (25%) | 0°C – 2320°C            | 0 – 39,50     |
| E        | Ni – Cr                | Cu – Ni               | 0°C – 2320°C            | -9,80 – 76,40 |

Tabulka 10 Obvykle používané kombinace umělých termočlánků a jejich vlastnosti [10].

Jednotlivé upravené a izolované termočlánky byly svařovány kondenzátorovou svářečkou k břitové destičce (viz obrázek 26). Termočlánky byly ve správném pořadí a polaritě zapojeny do svorkovnic a následně do sběrnice dat, propojené s provozní jednotkou PP65 od firmy B&R [4].



Obrázek 26 Kondenzátorová svářečka.

# Laboratorní profiloměr MITUTOYO

Kvalita povrchu obrobeného vzorku je reprezentovaná parametry drsnosti povrchu měřenými pomocí profiloměru Mitutoyo Surftest SV – 2000 N2. Z velkého počtu parametrů drsnosti povrchu, které umožňuje software Surfpak vypočítat, byly

pro vyhodnocení zvoleny parametry Ra (průměrná aritmetická úchylka posuzovaného profilu), Rz (největší výška profilu), Rt (celková výška profilu) [4].

Snímač ujede po povrchu vzdálenost 4,8 mm, z každé strany se 0,4 mm ořízne a vyhodnocování proběhne na dráze 4 mm. Hodnoty zvolených parametrů se vypočítají pomocí ovládacího softwaru [4].



Obrázek 27 Profiloměr Mitutoyo Surftest SV – 2000 N2.

# Ruční refraktometr Brix 0-18% ATC

Pro zjištění správné koncentrace namíchané procesní kapaliny byl použit ruční refraktometr Brix 0 – 18% ATC s přesností ± 0,15 %. Refraktometr je zobrazen na obrázku 28.



Obrázek 28 Ruční refraktometr Brix 0 – 18 % ATC.

# Zařízení pro jímání a cirkulaci procesní kapaliny

Zařízení pro jímání a cirkulaci procesní kapaliny bylo použito z důvodu usnadnění čištění stroje, pro zabránění rozstřiku procesní kapaliny po okolí a pro úsporu množství použité procesní kapaliny.

Celá jímací soustava se skládá z jímacího zařízení, které bylo před provedení experimentu zašroubováno do "T" drážek supportu soustruhu SU 50, jak znázorňuje obrázek 29. Toto zařízení zachytává přebytečnou procesní kapalinu a zabraňuje rozstřiku po okolí, kapalina je za pomocí hadic zpátky dopravována do jímací nádoby.



Obrázek 29 Jímací zařízení procesní kapaliny.

Pro jímání procesní kapaliny bylo použito přídavné zařízení na cirkulaci procesních kapalin určené pro vrtačky (viz obrázek 30). Zařízení se skládá z nádoby na cca 10 l procesní kapaliny s čerpadlem a hadicemi pro přívod kapaliny ze stroje do nádoby s čerpadlem a hadicí s tryskou na přívod kapaliny do místa řezu.



Obrázek 30 Čerpadlo a jímací nádoba na cirkulaci procesní kapaliny.

# Dílenský mikroskop ZEISS

Mikroskop (viz obrázek 31) byl použit při měření opotřebení břitových destiček. VBD se demontovaly z nástroje po jednotlivých typech chlazení při soustružení, potom bylo možné změřit jejich opotřebení [10].

Mikroskop je osazen dvěma mikrometrickými šrouby s přesností na 0,01 mm ve dvou osách. Okulár je vybaven nitkovitým křížem, který slouží pro správné umístění VBD a odečtení hodnoty opotřebení [10].



Obrázek 31 Dílenský mikroskop ZEISS.

#### Aparatura pro přívod tekutého dusíku

Pro přívod tekutého dusíku bylo použito elektrické přečerpávací zařízení EPZ – 2, (viz obrázek 32), od firmy AVIKO PRAHA s.r.o. Zařízení se skládá z napájecího modulu a topné spirály. Při zmáčknutí tlačítka START se na nastavenou dobu zapne ohřev dusíku a vzniklým přetlakem je dusík vytlačován. Regulátorem lze průběžně měnit příkon ohřevu tj. rychlost čerpání. Doba ohřevu je nastavitelná v širokém rozsahu. Při překročení mezních hodnot tlaku dojde k automatickému přerušení ohřevu.



Obrázek 32 Elektrické přečerpávací zařízení EPZ – 2.



Obrázek 33 Aparatura pro přívod tekutého dusíku.



Obrázek 34 Obrábění pomocí tekutého dusíku.

# 4.1.5 Měřené parametry

# Řezná síla

K měření řezných sil byl použit piezoelektrický dynamometr KISTLER, typ 9265B. Tento dynamometr využívá pro snímání deformace piezoelektrického jevu, který je charakterizován vznikem elektrického náboje na povrchu některých krystalů při mechanickém zatížení. Velikost tohoto náboje je přímo úměrná velikosti působící síly a s poklesem zatížení se lineárně snižuje, až zcela vymizí při nulovém zatížení. Vzorové naměřené hodnoty jsou uvedeny v tabulce 11 a obrázku 35.

| Vzorové hodnoty sil při technologii soustružení |        |        |        |        |        |                   |  |  |  |
|-------------------------------------------------|--------|--------|--------|--------|--------|-------------------|--|--|--|
| Měření č.                                       | 1      | 2      | 3      | 4      | 5      | Celkový<br>průměr |  |  |  |
| Fx [N]                                          | 98,00  | 106,00 | 111,50 | 118,00 | 120,50 | 110,80            |  |  |  |
| Fy [N]                                          | 68,00  | 68,00  | 75,50  | 63,50  | 84,00  | 71,80             |  |  |  |
| Fz [N]                                          | 194,00 | 193,00 | 189,00 | 188,00 | 190,50 | 190,90            |  |  |  |

Tabulka 11 Vzorové naměřené hodnoty řezných sil při technologii soustružení.



Obrázek 35 Vzorový průběh řezných sil při technologii soustružení.

# Teplota obrobku

Pro technologii soustružení bylo z důvodu rotace obrobku použito měření teploty v místě řezu prostřednictvím vyměnitelné břitové destičky. Byly použity tři termočlánky (T1, T2 a T3), které se stabilně zabudovaly do vyměnitelné břitové destičky a snímaly tak teplotu na povrchu a dolní ploše břitové destičky. Vzorové naměřené hodnoty jsou uvedeny v tabulce 12 a obrázku 36.

| Vzorové hodnoty teplot při technologii soustružení |       |       |       |       |       |                   |  |  |  |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------------------|--|--|--|
| Měření č.                                          | 1     | 2     | 3     | 4     | 5     | Celkový<br>průměr |  |  |  |
| T1 [°C]                                            | 30,50 | 29,30 | 33,00 | 27,40 | 29,50 | 29,94             |  |  |  |
| T2 [°C]                                            | 23,60 | 24,40 | 24,90 | 21,20 | 25,10 | 23,84             |  |  |  |
| T3 [°C]                                            | 35,20 | 33,80 | 34,10 | 32,70 | 34,60 | 34,08             |  |  |  |

Tabulka 12 Vzorové hodnoty teplot v místech jednotlivých termočlánků při technologii soustružení.

kde:

T1 – teploty termočlánku umístěného ve spodní části břitové destičky [°C],

T2 – teploty termočlánku umístěného ve spodní části břitové destičky [°C],

T3 – teploty termočlánku umístěného na povrchu břitové destičky [°C].



Obrázek 36 Vzorový průběh teplot v místech jednotlivých termočlánků při technologii soustružení.

# Trvanlivost břitu nástroje

Hodnocení trvanlivosti břitu soustružnického nástroje bylo provedeno sledováním opotřebení po jednotlivých krocích o délce 250 mm do celkové délky 2000 mm, aby bylo dosaženo dostatečné škály odměřených hodnot. Měření trvanlivosti pro každé procesní médium a každý měřený úsek se provádělo z důvodu minimalizace chyb 3x. Z naměřených hodnot se vypočítal aritmetický průměr. Měření opotřebení vyměnitelných břitových destiček se provádělo na dílenském mikroskopu ZEISS. Vzorové naměřené hodnoty jsou uvedeny v tabulce 13 a obrázku 37.

| Měžopí č |                    | l [mm] |      |      |      |        |      |      |      |  |
|----------|--------------------|--------|------|------|------|--------|------|------|------|--|
| IVIE     | ereni c.           | 250    | 500  | 750  | 1000 | 1250   | 1500 | 1750 | 2000 |  |
| 1        |                    | 0,12   | 0,12 | 0,14 | 0,18 | 0,0,18 | 0,19 | 0,19 | 0,19 |  |
| 2        | Opotřebení<br>[mm] | 0,12   | 0,14 | 0,14 | 0,18 | 0,18   | 0,19 | 0,19 | 0,20 |  |
| 3        | r]                 | 0,14   | 0,15 | 0,16 | 0,16 | 0,18   | 0,18 | 0,20 | 0,20 |  |

Tabulka 13 Vzorové hodnoty opotřebení břitové destičky při technologii soustružení.



Obrázek 37 Vzorový průběh opotřebení břitové destičky při technologii soustružení.

# Drsnost povrchu

Kvalita povrchu obrobeného vzorku je reprezentovaná parametry drsnosti povrchu měřenými pomocí profiloměru Mitutoyo Surftest SV – 2000 N2. Z velkého počtu parametrů drsnosti povrchu, které umožňuje software Surfpak vypočítat, byly pro vyhodnocení experimentu zvoleny parametry Ra (průměrná aritmetická úchylka posuzovaného profilu), Rz (největší výška profilu), Rt (celková výška profilu).

Snímač ujede po povrchu vzdálenost 4,8 mm, z každé strany se 0,4 mm ořízne a vyhodnocování proběhne na dráze 4 mm. Hodnoty zvolených parametrů se vypočítají pomocí ovládacího softwaru Surfpak. Měření profilu povrchu bylo realizováno v místech podle následujícího obrázku.



Obrázek 38 Místa měření drsnosti povrchu po soustružení.

Tabulka 14 Vzorové hodnoty parametrů drsnosti povrchu při technologii soustružení.

| Daramatr |       | Měření číslo |       |       |       |       |       |       |       |       |
|----------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Farameu  | 1     | 2            | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| Ra [µm]  | 2,32  | 2,18         | 2,12  | 1,97  | 2,05  | 2,30  | 2,31  | 2,14  | 2,14  | 2,01  |
| Rz [µm]  | 16,65 | 13,01        | 11,90 | 11,01 | 11,26 | 13,40 | 15,22 | 13,01 | 11,75 | 11,59 |
| Rt [µm]  | 31,47 | 18,45        | 14,27 | 13,29 | 12,87 | 16,61 | 24,60 | 16,35 | 14,32 | 15,99 |



Obrázek 39 Vzorový výstup z programu Surfpak při technologii soustružení.

# Rozměrová přesnost

V rámci hodnocení rozměrové přesnosti byl pomocí ručního mikrometru (obrázek 41) změřen průměr vysoustružené plochy. Každý úsek byl přeměřován 10x z důvodu minimalizace chyb. Z naměřených hodnot se vypočítal aritmetický průměr. Měření bylo realizováno podle následujícího obrázku (obrázek 40).



Obrázek 40 Místa měření rozměrové přesnosti po soustružení.



Obrázek 41 Měření rozměrové přesnosti pomocí ručního mikrometru.

# 5 Experimentální měření vlivu chlazení plynnou látkou na obráběcí soustavu při technologii soustružení v porovnání s procesní kapalinou

Následující kapitola uvádí naměřené a zhodnocené dosažené výsledky během experimentálního měření. Výsledky jsou zpracovány do přehledných grafů a tabulek v tabulkovém programu Microsoft Excel.

# Složky řezných sil

Naměřené hodnoty složek řezných sil byly zpracovány programem LabView 6.1, který je součástí měřící soustavy dynamometru KISTLER (viz kapitola 4.2). Výstupem programu jsou konkrétní velikosti složek řezných sil, které jsou znázorněny na obrázku 35. Bílou barvou je znázorněna řezná síla Fz, červenou barvou síla přísuvová Fy a zelenou barvou síla posuvová Fx. Z výstupních hodnot byly odečteny hodnoty znázorňující konkrétní velikosti řezných sil při soustružení. Odečtené hodnoty byly zaznamenány do tabulky 15 a následně sestrojen graf za pomoci programu Microsoft Excel. Naměřené hodnoty sil jsou přiloženy v příloze B. Ukázky grafů z programu LabView jsou přiloženy v příloze C.

|                  | F <sub>x</sub> [N] | F <sub>y</sub> [N] | F <sub>z</sub> [N] |
|------------------|--------------------|--------------------|--------------------|
| Za sucha         | 108,00             | 73,50              | 191,50             |
| Vírová trubice   | 94,00              | 70,00              | 190,50             |
| CO <sub>2</sub>  | 100,50             | 53,50              | 196,50             |
| Zkapalněný dusík | 62,00              | 53,70              | 152,80             |
| HOCUT 795B       | 67,00              | 47,80              | 134,80             |
| EOPS 1030        | 63,20              | 43,40              | 144,80             |

| Tabulka 18 | 5 Střední | hodnoty | naměřených | sil pro | jednotlivá | procesní | média. |
|------------|-----------|---------|------------|---------|------------|----------|--------|
|------------|-----------|---------|------------|---------|------------|----------|--------|

kde:

Fx – posuvová síla [N],

Fy – přísuvová síla [N],

Fz – řezná síla [N].



Graf 1 Vliv procesních plynů a kapalin na složky působících sil při technologii soustružení.

Z výše uvedených údajů (viz tabulka 15) a sestrojeného grafu 1 vyplývá, že při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min, bylo dosaženo nejnižších sil při použití procesních kapalin.

Dále je zřetelné, že chlazení vírovou trubicí, CO<sub>2</sub> a bez použití plynu nemá při technologii soustružení výrazný vliv na síly působící při tomto druhu obrábění, výsledné hodnoty působících sil jsou vždy srovnatelné.

Zkapalněný dusík vykazoval jako jediný z procesních plynů snížení hodnot sil a přiblížil se nejblíže svými účinky k procesním kapalinám.

Rozdíl mezi nejvyšší a nejnižší hodnotou posuvové síly Fx při porovnání procesních plynů a kapalin činí 42,60 %, rozdíl přísuvové síly Fy činí 41,90% a rozdíl řezné síly Fz činí 31,50%.

Je zřetelné, že procesní kapaliny vykazují oproti procesním plynům vysoké mazací schopnosti, které vedou ke snížení sil.

# Vliv procesního média na teplotu obrobku při soustružení

V první fázi tohoto experimentu bylo nutné vhodně zabudovat termočlánky do oblasti vyměnitelné břitové destičky. Na břitovou destičku byly umístěny tři termočlánky T1, T2 a T3. Jeden termočlánek (T3) se umístil na povrch destičky a zbylé dva termočlánky (T1 a T2) do spodní části destičky. Termočlánky se umístily co nejblíže k řezné části, aby se dala co nejpřesněji měřit teplota v místě řezu. Jednotlivé termočlánky byly svařeny k destičce pomocí kondenzátorové svářečky (viz kapitola 4.2).

Naměřená data vyhodnotila provozní jednotka PP 65. Data jsou znázorněny na obrázku 36, kde zelenou barvou je označen průběh teploty termočlánku T3, který byl umístěn na povrch břitové destičky. Červeně a modře jsou označeny průběhy teplot termočlánků T1 a T2, umístěných ve spodní části destičky. Naměřené hodnoty teplot jsou přiloženy v příloze D. Ukázky grafů s průběhy teplot jsou přiloženy v příloze E.

Odečtené hodnoty byly zaznamenány do tabulky 16 a následně sestrojen graf za pomoci programu Microsoft Excel.

|                  | T1 [°C] | T2 [°C] | T3 [°C] |
|------------------|---------|---------|---------|
| Za sucha         | 81,66   | 74,96   | 90,42   |
| Vírová trubice   | 59,04   | 57,86   | 24,84   |
| CO <sub>2</sub>  | 61,18   | 59,12   | 66,58   |
| Zkapalněný dusík | -2,36   | 0,96    | -108,12 |
| HOCUT 795B       | 30,34   | 23,16   | 33,48   |
| EOPS 1030        | 28,70   | 24,44   | 35,10   |

Tabulka 16 Průměrné hodnoty naměřených teplot pro jednotlivé termočlánky.

kde:

T1 – teploty termočlánku umístěného ve spodní části břitové destičky [°C],

T2 – teploty termočlánku umístěného ve spodní části břitové destičky [°C],

T3 – teploty termočlánku umístěného na povrchu břitové destičky [°C].



Graf 2 Vliv procesních plynů a kapalin na teplotu při technologii soustružení.

Z výše uvedených údajů (viz tabulka 16) a sestrojeného grafu 2 vyplývá, že při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min, bylo dosaženo nejvyšší teploty 90,00 °C při soustružení za sucha.

Při obrábění zkapalněným dusíkem byla na povrchu destičky naměřena nejnižší teplota -108,00 °C. Teplota uvnitř břitové destičky se pohybovala pod bodem mrazu.

Z grafu je patrné, že zkapalněný dusík má výrazný vliv na průběh teploty při obrábění. Rozdíl teploty mezi dusíkem a bez použití procesního média činí 203,80 °C.

Při použití procesních kapalin se průměrná hodnota teploty pohybovala kolem 30,00 °C na povrchu i uvnitř břitové destičky. U vírové trubice se teplota na povrchu destičky pohybovala kolem 67,00 °C a uvnitř břitové destičky kolem 60,00 °C.

Vyšších hodnot teploty bylo dosaženo při obrábění pomocí CO<sub>2</sub>. Teplota u termočlánku T3 se pohybovala kolem 67,00 °C a teplota uvnitř břitové destičky kolem 60,00 °C. Je tedy zřejmé, že po obrábění bez procesního média se nejvyšších teplot dosahuje při obrábění pomocí CO<sub>2</sub>.

#### Trvanlivost břitu nástroje

Pro tento experiment byla zvolena dlouhodobá zkouška trvanlivosti, kdy se průběžně při soustružení délky 2000 mm měřilo opotřebení břitové destičky na dílenském mikroskopu ZEISS (viz kapitola 4.2).

Měření probíhalo při konstantní řezné rychlosti na soustruhu SU 50. Tento stroj nemá plynulou změnu otáček se změnou průměru obrobku, tedy řezná rychlost není konstantní. Bylo tedy nutné měřit skutečné otáčky vřetene stroje a řeznou rychlost dopočítat.

Experiment probíhal postupně pro každé procesní prostředí, pro minimalizaci chyb se provedlo měření 3x. Z naměřených hodnot se vypočítaly průměrné hodnoty. Naměřené hodnoty trvanlivosti břitových destiček jsou přiloženy v příloze F.

Naměřené hodnoty byly zaznamenány do tabulky 17 a následně sestrojen graf za pomoci programu Microsoft Excel.

| Měřená délka l [mm] | 0    | 250  | 500  | 750   | 1000   | 1250    | 1500 | 1750 | 2000 |
|---------------------|------|------|------|-------|--------|---------|------|------|------|
|                     |      |      | Dos  | ažené | opotře | bení [I | nm]  |      |      |
| Za sucha            | 0,00 | 0,15 | 0,17 | 0,22  | 0,23   | 0,23    | 0,24 | 0,24 | 0,24 |
| Vírová trubice      | 0,00 | 0,09 | 0,11 | 0,11  | 0,12   | 0,13    | 0,13 | 0,13 | 0,14 |
| CO <sub>2</sub>     | 0,00 | 0,08 | 0,09 | 0,10  | 0,10   | 0,10    | 0,10 | 0,12 | 0,12 |
| Zkapalněný dusík    | 0,00 | 0,08 | 0,08 | 0,09  | 0,10   | 0,10    | 0,11 | 0,12 | 0,12 |
| HOCUT 795B          | 0,00 | 0,09 | 0,10 | 0,11  | 0,12   | 0,13    | 0,13 | 0,14 | 0,15 |
| EOPS 1030           | 0,00 | 0,08 | 0,09 | 0,10  | 0,11   | 0,12    | 0,12 | 0,13 | 0,14 |

Tabulka 17 Průměrné hodnoty dosaženého opotřebení vyměnitelné břitové destičky po přejetí 2000 mm.





Z výše uvedených údajů (viz tabulka 17) a sestrojeného grafu 3 vyplývá, že při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min, bylo dosaženo nejvyššího nárůstu opotřebení břitové destičky bez procesního plynu (za sucha).

Dále je zřetelný pozitivní vliv chlazení procesními plyny na trvanlivost řezného nástroje při soustružení, protože dochází k podstatnému snížení opotřebení břitové destičky.

Procesní plyny vykazují prakticky srovnatelné hodnoty dosaženého opotřebení břitové destičky, jako procesní kapaliny. Dále je zřejmé, že čím větší podchlazení se provede, tím menší opotřebení destička vykazuje.

#### Parametry drsnosti povrchu

Procesní plyny a kapaliny byly dále hodnoceny podle vlivu na výslednou drsnost povrchu obrobeného vzorku. Hodnoceny byly tyto parametry: Ra (průměrná aritmetická úchylka posuzovaného profilu), Rz (největší výška profilu), Rt (celková výška profilu).

Na každém obrobeném vzorku bylo provedeno deset měření, z důvodu minimalizace případných odchylek. Parametry drsnosti povrchu byly měřeny pomocí profiloměru Mitutoyo SurftestSV–2000N2 (viz kapitola 4.2). Vyhodnocení dat proběhlo v programu Surfpak a dále zpracovány do tabulek a grafů v programu Microsoft Excel. Naměřené hodnoty parametrů drsnosti povrchu jsou přiloženy v příloze G. Průměrné hodnoty parametrů drsnosti povrchu byly zaznamenány do tabulky 18 a následně sestrojen graf za pomoci programu Microsoft Excel.

|                  | Ra [µm] | Rz [µm] | Rt [µm] |
|------------------|---------|---------|---------|
| Za sucha         | 2,29    | 12,83   | 17,01   |
| Vírová trubice   | 2,16    | 12,89   | 17,26   |
| CO <sub>2</sub>  | 2,33    | 13,82   | 18,37   |
| Zkapalněný dusík | 2,08    | 12,14   | 16,08   |
| HOCUT 795B       | 1,33    | 7,32    | 11,94   |
| EOPS 1030        | 1,33    | 8,44    | 11,84   |

Tabulka 18 Průměrné hodnoty parametrů drsnosti povrchu pro jednotlivá procesní média.



Graf 4 Vliv procesních plynů a kapalin na parametry drsnosti povrchu při technologii soustružení.

Z výše uvedených údajů (viz tabulka 18) a sestrojeného grafu 4 vyplývá, že při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min, bylo dosaženo nejnižší drsnosti povrchu s použitím procesních kapalin. Parametr Ra se zde pohybuje kolem 1,33 µm, parametr Rz kolem 8,00 µm a parametr Rt kolem 12,00 µm. Kapaliny vykazují oproti procesním plynům vysoké mazací schopnosti, které vedou ke snížení drsnosti povrchu.

Při porovnání mezi obráběním bez procesního média (za sucha) a procesní kapalinou činí parametr Ra zlepšení o 42,00%, parametr Rz 38,00% a parametr Rt 30,00%.

Dále je zřetelné že z procesních plynů dosahuje nejlepších výsledků zkapalněný dusík. V porovnání s procesní kapalinou vykazuje zhoršení parametru Ra o 36,00%, parametru Rz o 34,00% a parametru Rt o 25,00%.

Nejhorší drsnost povrchu je dosažena při použití CO<sub>2</sub>. Kde se parametr drsnosti Ra zhoršil s porovnáním s procesní kapalinou o 43,00%, parametr Rz o 43,00% a parametr Rt o 33,00%.

Z tabulky a grafu je zřejmé, že při porovnání procesních plynů a kapalin mají výrazně lepší vliv na drsnost povrchu procesní kapaliny oproti plynnému prostředí.

# Rozměrová přesnost

V rámci hodnocení rozměrové přesnosti byl pomocí dostupných měřidel změřen průměr vysoustružené plochy zkušebního vzorku, postupně pro jednotlivá procesní média.

Měření bylo realizováno pomocí ručního mikrometru (viz kapitola 4.2), kdy každý úsek byl přeměřován 10x, z důvodu minimalizace chyb. Z naměřených hodnot se vypočítal aritmetický průměr. Hodnoty z měření rozměrové přesnosti jsou přiloženy v příloze H. Naměřené hodnoty byly zaznamenány do tabulky 19 a následně sestrojen graf za pomoci programu Microsoft Excel.

|                  | Rozměrová přesnost [mm] |
|------------------|-------------------------|
| Za sucha         | 46,01                   |
| Vírová trubice   | 46,07                   |
| CO <sub>2</sub>  | 46,04                   |
| Zkapalněný dusík | 45,93                   |
| HOCUT 795B       | 45,99                   |
| EOPS 1030        | 46,01                   |

Tabulka 19 Průměrné hodnoty rozměrové přesnosti pro jednotlivá procesní média.



Graf 5 Vliv procesních plynů a kapalin na rozměrovou přesnost při technologii soustružení.

Z výše uvedených údajů (viz tabulka 19) a sestrojeného grafu 5 vyplývá, že při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min, bylo dosaženo nejnižších hodnot rozměrové přesnosti při použití procesních kapalin a zkapalněného dusíku. Naměřené hodnoty se liší řádově pouze v setinách.

Dále z uvedených údajů je zřejmé, že ochlazování místa řezu má negativní vliv na rozměr výsledného obrobku po soustružení. Žádné procesní médium nevykazuje zvýšení hodnot rozměrové přesnosti. Jednotlivá procesní média vykazují takřka srovnatelné hodnoty, nedá se tedy určit, při kterém chlazení bylo dosaženo výrazně lepších či horších výsledků.

# 6 Ekonomické vyhodnocení účinnosti procesních médií

# Fixní náklady pro jednotlivá procesní prostředí

Pro CO<sub>2</sub> volíme 2 lahve a pro dusík 2 nádoby, protože předpokládáme že: vždy jedna láhev (či nádoba) se nechá doplnit a druhá láhev (či nádoba) bude připravená k použití.

| Procesní<br>prostředí | Fixní náklady pro plynná procesní média                         |                                              |  |
|-----------------------|-----------------------------------------------------------------|----------------------------------------------|--|
| Za sucha              | U tohoto prostředí nejsou žádné fixní náklady.                  |                                              |  |
|                       | Příslušenství                                                   | Cena                                         |  |
|                       | Vírová trubice                                                  | 11000 Kč                                     |  |
| Vírová<br>trubice     | Kompresor                                                       | 6000 Kč                                      |  |
|                       | Příslušenství (hadice, držáky)                                  | 1000 Kč                                      |  |
|                       |                                                                 | Celkové fixní náklady pro<br>V.T.: 18000 Kč  |  |
| CO₂                   | Příslušenství                                                   | Cena                                         |  |
|                       | Řídící aparatura + škrtící ventil +<br>hadice držáku + odsávání | 23000 Kč                                     |  |
|                       | 2 x tlaková láhev 20 kg $CO_2$                                  | 2 x 5200 Kč = 10400Kč                        |  |
|                       |                                                                 | Celkové fixní náklady pro<br>CO₂: 33400 Kč   |  |
| Zkapalněný<br>dusík   | Příslušenství                                                   | Cena                                         |  |
|                       | Přečerpávací zařízení + řídící<br>jednotka + hadice držáku      | 40000 Kč                                     |  |
|                       | 2 x Dewarova nádoba KL 32                                       | 2 x 25000 Kč = 50000Kč                       |  |
|                       |                                                                 | Celkové fixní náklady pro<br>dusík: 90000 Kč |  |

Tabulka 20 Fixní náklady pro jednotlivá procesní média.

| Procesní<br>prostředí | Fixní náklady pro plynná procesní média |                                             |  |
|-----------------------|-----------------------------------------|---------------------------------------------|--|
|                       | Příslušenství                           | Cena                                        |  |
| HOCUT<br>795B         | Externí čerpadlo                        | 5000 Kč                                     |  |
|                       | Příslušenství (hadice, držáky)          | 1000 Kč                                     |  |
|                       |                                         | Celkové fixní náklady pro<br>HOCUT: 6000 Kč |  |
| EOPS 1030             | Příslušenství                           | Cena                                        |  |
|                       | Externí čerpadlo                        | 5000 Kč                                     |  |
|                       | Příslušenství (hadice, držáky)          | 1000 Kč                                     |  |
|                       |                                         | Celkové fixní náklady pro<br>EOPS: 6000 Kč  |  |



Graf 6 Porovnání fixních nákladů pro jednotlivá procesní prostředí.

# Celkové roční náklady pro jednotlivá procesní prostředí

Celkové roční náklady byly stanoveny za těchto podmínek:

- rok 2015 má 251 pracovních dnů a 2008 pracovních hodin (8. hod. směna),
- celková roční obrobená délka je stanovena z experimentu na 4381m,
- průtočné množství CO<sub>2</sub> = 2,20 g/s,
- spotřeba CO<sub>2</sub> za rok je 15,80 T = 795 doplnění láhve za rok,
- doplnění láhve CO<sub>2</sub> pro 20kg = 480 Kč,
- průtočné množství dusíku = 6,47 g/s,
- průtočné množství dusíku vychází ze zkoušky trvanlivosti, kde byli minimální ztráty při výměně destiček mezi experimenty a celkového strojního času nástroje v záběru,
- spotřeba zkapalněného dusíku za rok je 46,77 T = 1807 doplnění za rok Dew. nádoby (zásobník KL 32),
- doplnění Dew. nádoby pro 32 litrů (25,89 kg) = 1880 Kč,
- průtočné množství procesní kapaliny = 0,27 l/s,
- do 1 m<sup>3</sup> vody je potřeba 50 litrů procesní kapaliny,
- množství koncentrátu procesní kapaliny na 1 výměnu = 250 litrů,
- počet výměn procesní kapaliny stanoven na 4 výměny za rok,
- ekologická likvidace procesní kapaliny 50 litrů = 10000 Kč,
- elektřina cena 1 kWh = 4,80 Kč,
- vodné a stočné cena za 1 m<sup>3</sup> = 96 Kč.

| Tabulka 21 | Celkové rod | ční náklady. |
|------------|-------------|--------------|
|------------|-------------|--------------|

| Procesní prostředí | Celkové roční náklady                                    |                                             |  |
|--------------------|----------------------------------------------------------|---------------------------------------------|--|
| Za sucha           | Toto procesní médium nevyžaduje roční náklady na provoz. |                                             |  |
|                    | Roční spotřeba                                           | Cena                                        |  |
| Vírová trubice     | Elektřina 2,2 kWh x<br>2008 prac. hodin                  | 21205 Kč                                    |  |
|                    |                                                          | Celkové roční náklady<br>pro V.T.: 21205 Kč |  |

| Procesní prostředí       | Celkové roční náklady                                              |                                                |  |
|--------------------------|--------------------------------------------------------------------|------------------------------------------------|--|
|                          | Roční spotřeba                                                     | Cena                                           |  |
|                          | Doplnění 20 kg láhve<br>CO <sub>2</sub> 795 x za rok               | 795 x 480 = 381600 Kč                          |  |
| CO <sub>2</sub>          | Elektřina 500 W x 2008<br>prac. hodin                              | 4819 Kč                                        |  |
|                          |                                                                    | Celkové roční náklady<br>pro CO₂: 386419 Kč    |  |
|                          | Roční spotřeba                                                     | Cena                                           |  |
| <b>7</b> konoložný dvojk | Doplnění 32 litrů (25,89<br>kg) Dew. nádoby 1807 x<br>za rok       | 1880 x 1807 = 3397160 Kč                       |  |
| Zkapaineny dusik         | Elektřina 500 W x 2008<br>prac. hodin                              | 4819 Kč                                        |  |
|                          |                                                                    | Celkové roční náklady<br>pro dusík: 3401979 Kč |  |
|                          | Roční spotřeba                                                     | Cena                                           |  |
|                          | HOCUT kanistr 10 litrů x<br>5                                      | Kanistr 10 litrů 2500 Kč x 5<br>= 12500 Kč     |  |
|                          | Voda 950 litrů za rok                                              | 96 Kč                                          |  |
| HOCUT 795B               | Ekolog. likvidace 1 m <sup>3</sup><br>použité procesní<br>kapaliny | 200000 Kč                                      |  |
|                          | Elektřina 100 W x 2008<br>prac. hodin                              | 964 Kč                                         |  |
|                          |                                                                    | Celkové roční náklady<br>pro HOCUT: 213560 Kč  |  |
|                          | Roční spotřeba                                                     | Cena                                           |  |
|                          | EOPS kanistr 10 litrů x 5                                          | Kanistr 10 litrů 1700 Kč x 5<br>= 8500 Kč      |  |
|                          | Voda 950 litrů za rok                                              | 96 Kč                                          |  |
| EOPS 1030                | Ekolog. likvidace 1 m <sup>3</sup><br>použité procesní<br>kapaliny | 200000 Kč                                      |  |
|                          | Elektřina 100 W x 2008<br>prac. hodin                              | 964 Kč                                         |  |
|                          |                                                                    | Celkové roční náklady<br>pro EOPS: 209560 Kč   |  |



Graf 7 Porovnání celkových ročních nákladů pro jednotlivá procesní prostředí.

#### Roční náklady na obrobení délky 10 mm pro jednotlivá procesní média

| Procesní prostředí | Roční náklady | Roční náklady na<br>obrobení 10 mm délky |
|--------------------|---------------|------------------------------------------|
| Za sucha           | Bez nákladů   |                                          |
| Vírová trubice     | 21205 Kč      | 0,05 Kč/10mm                             |
| CO2                | 386419 Kč     | 0,88 Kč/10mm                             |
| Zkapalněný dusík   | 3401979 Kč    | 7,77 Kč/10mm                             |
| HOCUT 795B         | 213560 Kč     | 0,49 Kč/10mm                             |
| EOPS 1030          | 209560 Kč     | 0,48 Kč/10mm                             |

Tabulka 22 Roční náklady na obrobení délky 10 mm.



Graf 8 Porovnání ročních nákladů na obrobení délky 10 mm pro jednotlivá procesní média.

#### Roční náklady na obrobení délky 10 mm pro sériovou výrobu

Pro sériovou výrobu předpokládáme 80% celkové roční náklady, kde 20% připadá na technologické časy při zvoleném procesu obrábění (seřízení stroje, přeostření nástroje, výměny nástrojů a obrobků apod.). Celková obrobená délka za rok pro sériovou výrobu je 3504,80 m.

| Náklady pro sériovou výrobu, předpoklad 20% ztrát |               |                                          |  |
|---------------------------------------------------|---------------|------------------------------------------|--|
| Procesní prostředí                                | Roční náklady | Roční náklady na<br>obrobení 10 mm délky |  |
| Za sucha                                          | Bez nákladů   |                                          |  |
| Vírová trubice                                    | 16964 Kč      | 0,05 Kč/10mm                             |  |
| CO2                                               | 309135 Kč     | 0,88 Kč/10mm                             |  |
| Zkapalněný dusík                                  | 2721583 Kč    | 7,77 Kč/10mm                             |  |
| HOCUT 795B                                        | 170848 Kč     | 0,49 Kč/10mm                             |  |
| EOPS 1030                                         | 167648 Kč     | 0,48 Kč/10mm                             |  |

| Tabulka   | 23 Roční  | nákladv pro | sériovou | výrobu. |
|-----------|-----------|-------------|----------|---------|
| i abama i | 201100111 | nanaay pro  | 00110100 | vy/080. |

# Roční náklady na obrobení délky 10 mm pro kusovou výrobu

Pro kusovou výrobu předpokládáme 66% celkové roční náklady, kde 34% připadá na technologické časy při zvoleném procesu obrábění (seřízení stroje, přeostření nástroje, výměny nástrojů a obrobků apod.). Celková obrobená délka za rok pro kusovou výrobu je 2891,46 m.

| Náklady pro kusovou výrobu, předpoklad 34% ztrát |               |                                          |  |
|--------------------------------------------------|---------------|------------------------------------------|--|
| Procesní prostředí                               | Roční náklady | Roční náklady na<br>obrobení 10 mm délky |  |
| Za sucha                                         | Bez nákladů   |                                          |  |
| Vírová trubice                                   | 13995 Kč      | 0,05 Kč/10mm                             |  |
| CO <sub>2</sub>                                  | 255036 Kč     | 0,88 Kč/10mm                             |  |
| Zkapalněný dusík                                 | 2245306 Kč    | 7,77 Kč/10mm                             |  |
| HOCUT 795B                                       | 140950 Kč     | 0,49 Kč/10mm                             |  |
| EOPS 1030                                        | 138310 Kč     | 0,48 Kč/10mm                             |  |

Tabulka 24 Roční náklady pro kusovou výrobu.



Graf 9 Porovnání ročních nákladů při sériové a kusové výrobě.

# 7 Diskuze výsledků vlivu chlazení plynnou látkou na obráběcí soustavu při technologii soustružení v porovnání s procesní kapalinou.

Hlavním cílem této diplomové práce je výzkum využití zkapalněných technických plynů, jako procesního média, při technologii soustružení z hlediska strojního, fyzikálně-chemického, energetického, ekologického a ekonomického. Nedílnou součástí výzkumu je porovnání (zhodnocení) výsledků experimentálních měření sledovaných vlivů mezi procesními médii: kapalina a plynná látka.

Pro tento účel byly zvoleny čtyři plynná média a dvě procesní kapaliny. Jednotlivá procesní média se mezi sebou porovnala z hlediska působení sil, teplot, trvanlivosti, drsnosti povrchu a rozměrové přesnosti. Celý experiment probíhal za konstantních řezných podmínek, jak je uvedeno v předcházející kapitole této diplomové práce (viz kapitola 4.1.2).

Jako plynné médium byl zvolen okolní vzduch (za sucha), vírová trubice, CO<sub>2</sub> a zkapalněný dusík. Pro porovnání s plyny byla vybrána procesní kapalina EOPS 1030 od výrobce PARAMO a procesní kapalina HOCUT 795B od výrobce HOUGHTON (viz kapitola 4.1.1).

Hodnotícím kritériem pro porovnání procesních médií byly zvoleny tyto veličiny:

- velikosti složek řezných sil F<sub>x</sub>, F<sub>y</sub>, F<sub>z</sub>,
- teploty termočlánků T<sub>1</sub>, T<sub>2</sub>, T<sub>3</sub>,
- trvanlivost nástroje,
- parametry drsnosti povrchu Ra, Rz, Rt,
- rozměrová přesnost.

V první fázi experimentu byl zkoumán vliv procesního média na velikosti složek sil  $F_{x,}$   $F_{y}$  a  $F_{z}$ , současně byly při tomto experimentu měřeny velikosti teplot jednotlivých termočlánků  $T_1$ ,  $T_2$  a  $T_3$ . Po vyhodnocení měření a zpracování dílčích výsledků v této etapě došlo k následujícím závěrům:

1) Při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min nemá chlazení vírovou trubicí, CO<sub>2</sub> a bez použití plynu (za sucha) výrazný vliv na síly působící při tomto druhu obrábění. Z procesních plynů vykazuje jako jediný snížení sil zkapalněný dusík, který je z 90% zkapalněný, má tedy lepší mazací schopnost, která vede ke snížení složek sil. Z celkového porovnání procesních médií vykazují kapaliny značné snížení sil, oproti procesním plynům, což je dáno vysokou mazací schopností.

2) Dále lze z naměřených výsledků usoudit, že při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min chlazení procesními plyny má velmi pozitivní vliv na teplotu v místě kontaktu nástroje s obráběným materiálem. Z procesních plynů dosahuje největších změn teploty zkapalněný dusík, protože dochází k velkému podchlazení nástroje (až -180 °C). Z výsledků naměřených u procesních kapalin bylo zjištěno, že udržují teplotu nástroje téměř na teplotě okolí, nedochází tedy k velkým teplotním rozdílům.

V druhé fázi experimentu byl zkoumán vliv procesního média na trvanlivost řezného nástroje. Po obrobení celkové dráhy 2000 mm, vyhodnocení měření a zpracování dílčích výsledků v této etapě došlo k následujícím závěrům:

Při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách
n = 900 ot/min mají procesní plyny pozitivní vliv na trvanlivost řezného nástroje,
protože dochází k podstatnému snížení opotřebení břitové destičky.

2) Dále je zřejmé, že čím je větší podchlazení, tím dochází k menšímu opotřebení destičky. Nejhorších výsledků trvanlivosti vykazuje obrábění za sucha, při kterém je až 50% nárůst opotřebení břitové destičky, v porovnání s ostatními médii. Při použití procesních kapalin dochází ke snížení opotřebení břitové destičky v důsledku vysokého mazacího účinku, tedy oproti procesním plynům nedochází k podchlazení nástroje.

V následující třetí fázi experimentu byl zkoumán vliv procesního média na parametry drsnosti povrchu Ra, Rz a Rt. Po vyhodnocení měření a zpracování dílčích výsledků v této etapě došlo k následujícím závěrům:

1) Při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min ochlazování místa řezu pomocí vírové trubice, CO<sub>2</sub> a bez použití plynu (za sucha) má sice minimální, ale negativní vliv na konečnou kvalitu obrobeného povrchu.

2) Z procesních plynů vykazuje nejlepší kvality obrobeného povrchu zkapalněný dusík, který je z 90% zkapalněný, a tedy vykazuje lepší mazací schopnost, což vede ke snížení parametrů drsnosti povrchu.

3) Dále bylo zjištěno, že procesní kapaliny mají výrazně lepší vliv na konečnou kvalitu povrchu, protože vykazují vysoké mazací schopnosti, které vedou ke snížení parametrů drsnosti povrchu.

V poslední fázi měření byl zkoumán vliv procesního média na rozměrovou přesnost. Po vyhodnocení měření a zpracování dílčích výsledků v této etapě došlo k následujícím závěrům:

 Při soustružení posuvem 0,05 mm/min., hloubce záběru 1,5 mm a otáčkách n = 900 ot/min ochlazování místa řezu pomocí procesních plynů má negativní vliv na rozměr výsledného obrobku.

2) Při porovnání procesních plynů a kapalin žádné procesní médium nevykazuje vysoké zvýšení, nebo snížení hodnot rozměrové přesnosti. Z celkového porovnání jednotlivá procesní média vykazují takřka srovnatelné hodnoty, nedá se tedy určit, při kterém způsobu chlazení bylo dosaženo lepších či horších výsledků rozměrové přesnosti.

Z celkového hodnocení procesních médií lze usoudit, že procesní plyny postrádají některé účinky procesních kapalin. Zejména procesním plynům chybí lepší mazací účinek. Použitý dusík, který je z 90% zkapalněný má z procesních plynů s největší pravděpodobností nejlepší mazací schopnost, což vede ke zlepšení posuzovaných parametrů. Mazací schopnost není však tak vysoká jako u procesních kapalin. Dále při použití CO<sub>2</sub> dochází pouze k bodovému chlazení, tedy nedochází k ochlazování v celé ploše nástroje, což může vést ke zhoršení některých posuzovaných parametrů, zejména teploty. Při použití vírové trubice oproti CO<sub>2</sub> dochází k plošnému chlazení, kdy je nástroj ochlazován v celé ploše. Dále je nutné brát v úvahu to, že při použití vírové trubice dochází k částečnému mazacímu účinku v důsledku přívodu vzduchu kompresorem, kde na sebe vzduch váže malé množství oleje, který je potřebný ke správné funkci kompresoru.

V další části experimentu bylo nutné porovnat procení kapaliny a plyny z hlediska ekonomického a ekologického. V této části byly porovnány vstupní investice na pořízení potřebného vybavení a provoz zařízení vztažený na jeden pracovní rok, dále byly porovnány náklady na roční provoz pro sériovou a kusovou výrobu. Z ekologického hlediska se porovnávala spotřeba média, dopad na životní prostředí a likvidace použitého média.

Z ekonomického hlediska byly hodnoceny tyto parametry:

- fixní náklady na aparaturu a příslušenství,
- celkové roční náklady,
- roční náklady vztažené na obrobení délky 10 mm,
- porovnání nákladů pro sériovou a kusovou výrobu.

Po vyhodnocení a zpracování ekonomického hlediska, se v této etapě došlo k následujícím závěrům:

 Jako nejdražší a ekonomicky nevýhodné plynné médium se jeví zkapalněný dusík, což je dáno značně vysokou cenou aparatury a média. Další problém je nemožnost zachycení a cirkulace plynů, jak je tomu u kapalin, které se mohou i několikrát použít.

2) Při použití CO<sub>2</sub> se vyskytuje podobný problém jako u dusíku, cena média a nemožnost zachycení, tedy náklady jsou také značně vysoké.

 Obrábění za sucha je ekonomicky nejvýhodnější, protože není potřeba žádná aparatura a plyn. Obrábění probíhá pouze při okolním prostředí.

4) Obrábění za pomocí vírové trubice je po okolním vzduchu ekonomicky nejméně náročné, protože pro tento proces postačí kompresor a aparatura pro přívod, tedy odpadají náklady spojené s doplňováním plynu.

5) Při obrábění s použitím procesních kapalin nejsou náklady na aparaturu a přívodní zařízení tak vysoké, jako je tomu např. u dusíku, ale problémem se stává likvidace použité procesní kapaliny. Ovšem procesní kapaliny lze pomocí čerpadla a příslušenství zachytávat a vracet do koloběhu, čímž se sníží náklady na vodné, stočné a sníží se i spotřebované množství kapaliny.

Z celkového ekonomického vyhodnocení je obrábění s použitím procesních plynů poměrně drahá operace, např. při použití dusíku, kdy jsou sumy velmi vysoké, musí se tedy vhodně zvážit, zda je tato technologie potřebná a nedá se nahradit jinou, levnější metodou. Dále je možné se zamyslet nad tím, že pro přívod plynů (dusík, CO<sub>2</sub>) by se mohl použít velkokapacitní zásobník, díky kterému by se snížilo časté doplňování média, což by vedlo ke snížení nákladů spojených s tímto problémem.

# 8 Závěr

Diplomová práce se zabývá problematikou účinku procesních plynů a kapalin na technologii soustružení a kvalitu obrobených součástí.

Hlavním cílem této práce je výzkum využití zkapalněných technických plynů, jako procesního média, při technologii soustružení z hlediska strojního, fyzikálněchemického, energetického, ekologického, ekonomického.

Diplomová práce je součástí výzkumu realizovaného v rámci projektu TA03010492 – Aplikovaný multioborový výzkum a vývoj progresivních způsobů chlazení u technologických procesů (2013–2015, TA0/TA), jehož poskytovatelem je Technologická agentura České republiky.

Samotná problematika řeší vliv procesních plynů na velikosti sil, teplotu, trvanlivost, kvalitu povrchové vrstvy a rozměrovou přesnost, při technologii soustružení. Nedílnou součástí výzkumu je porovnání (zhodnocení) výsledků experimentálních měření sledovaných vlivů mezi procesními médii: kapalina a plynná látka.

Diplomová práce je rozdělena do několika částí. Jako první je úvod, dále následuje teoretická část, vlastní metodika experimentu, experimentální část, ekonomické vyhodnocení, diskuze a závěr.

V rámci teoretické části této diplomové práce je popsána problematika soustružení, ve které jsou popsány nástroje, jejich rozdělení a konstrukce, síly a řezné podmínky při soustružení. Teoretická část dále popisuje tepelnou bilanci a teplotu při obrábění, procesní média – procesní kapaliny a plyny.

Metodika experimentu popisuje použité procesní prostředí, řezné podmínky pro experimentální měření, vlastní metodiku experimentu a měřené parametry. Dále jsou v této kapitole popsány použité stroje, nástroje a měřicí přístroje.

Z experimentální části byly vyvozeny následující závěry:

# 1) Řezná síla

Chlazení vírovou trubicí, CO<sub>2</sub> a bez použití plynu (za sucha) nemá při technologii soustružení výrazný vliv na síly působící při tomto druhu obrábění. Tyto tři procesní média mají nízký mazací účinek, což vede ke zvýšení složek sil.

Z procesních plynů vykazuje jako jediný snížení sil zkapalněný dusík, protože se částečně chová jako kapalina, má tedy lepší mazací schopnost.

Z celkového porovnání procesních médií kapaliny vykazují oproti procesním plynům vysoké mazací schopnosti, které vedou ke snížení sil.

#### 2) Teplota

Při použití vírové trubice dochází k plošnému chlazení oproti CO<sub>2</sub>, což vede k celkovému snížení teplot jednotlivých termočlánků.

U CO<sub>2</sub> dochází k bodovému chlazení, nástroj není dostatečně ochlazen v celé ploše, a tedy dochází ke zvýšení teplot.

Z procesních plynů má největší vliv na průběhy teplot zkapalněný dusík, protože dochází k velkému podchlazení nástroje (až -180 °C).

Procesní kapaliny udržují teplotu nástroje téměř na teplotě okolí.

#### 3) Trvanlivost

CO<sub>2</sub>, vírová trubice a zkapalněný dusík mají pozitivní vliv na trvanlivost řezného nástroje při soustružení, protože dochází k podstatnému snížení opotřebení břitové destičky.

Je zřejmé, že čím je větší podchlazení, tím dochází k menšímu opotřebení destičky.

Při použití procesních kapalin dochází ke snížení opotřebení břitové destičky v důsledku vysokého mazacího účinku.

Jako nejhorší procesní prostředí se jeví obrábění za sucha, při kterém je až 50% nárůst opotřebení břitové destičky, v porovnání s ostatními médii.

#### 4) Drsnost povrchu

Ochlazování místa řezu pomocí vírové trubice, CO<sub>2</sub> a bez použití plynu (za sucha) má sice minimální, ale negativní vliv na konečnou kvalitu obrobeného povrchu, průměrná hodnota Ra je 2,30 µm.

Z procesních plynů vykazuje nejlepší kvality obrobeného povrchu zkapalněný dusík, který je částečně kapalný, a tedy vykazuje lepší mazací schopnost, průměrná hodnota Ra je 2,08 µm.

Procesní kapaliny mají výrazně lepší vliv na konečnou kvalitu povrchu, protože vykazují vysoké mazací schopnosti, průměrná hodnota Ra se pohybuje kolem 1,33 µm.

#### 5) Rozměrová přesnost

Ochlazování místa řezu pomocí procesních plynů má negativní vliv na rozměr výsledného obrobku.

Při porovnání procesních plynů a kapalin žádné procesní médium nevykazuje zvýšení, nebo snížení hodnot rozměrové přesnosti.
Jednotlivá procesní média vykazují takřka srovnatelné hodnoty, nedá se tedy určit, při kterém způsobu chlazení bylo dosaženo lepších či horších výsledků rozměrové přesnosti.

Celkové porovnání jednotlivých procesních médií je shrnuto v tabulce 25, ve které jsou uvedeny vybrané průměrné hodnoty hodnotících parametrů.

|                 | Fz [N]       | T1 [°C]        | Opotřebení<br>[mm] | Ra [µm] | Rozměr.<br>přesnost<br>[mm] |
|-----------------|--------------|----------------|--------------------|---------|-----------------------------|
| Za sucha        | 191,50       | 81,66          | 0,22               | 2,29    | 46,01                       |
| Vír. trubice    | 190,50       | 190,50 59,04 0 |                    | 2,16    | 46,07                       |
| CO <sub>2</sub> | 196,50 61,18 |                | 0,11               | 2,33    | 46,04                       |
| Dusík           | 152,80       | -2,36 0,10     |                    | 2,08    | 45,93                       |
| Hocut 795B      | 134,80       | 134,80 30,34   |                    | 1,33    | 45,99                       |
| EOPS 1030       | 144,80       | 28,70          | 0,11               | 1,33    | 46,01                       |

Tabulka 25 Celkové porovnání měřených parametrů pro jednotlivá procesní média.

Z ekonomického hlediska byly vyvozeny následující závěry:

#### 1) Fixní náklady

Největší fixní náklady za aparaturu a příslušenství vykazuje zkapalněný dusík, tyto náklady byly stanoveny na 90000 Kč.

Pro obrábění za sucha nejsou stanoveny žádné fixní náklady, protože pro toto médium není potřeba žádná aparatura.

Vírová trubice má jako druhé plynné médium nejnižší náklady na aparaturu, které byly stanoveny na 18000 Kč.

Při použití CO<sub>2</sub> se fixní náklady pohybují kolem 33400 Kč za aparaturu a příslušenství.

Při porovnání plynných a kapalných médií je rozdíl fixních nákladů za aparaturu poměrně značný, cena pro kapaliny byla stanovena na 6000 Kč.

#### 2) Roční náklady

Největší roční náklady vykazuje zkapalněný dusík, je to dáno poměrně vysokou cenou za na procesní médium, celkové roční náklady byly stanoveny na 3401979 Kč, což je 7,77 Kč za 10 mm obrobené délky.

Jako druhé nejdražší pracovní médium je CO<sub>2</sub>, u kterého byly roční náklady stanoveny na 386419 Kč, což je 0,88 Kč za 10 mm obrobené délky.

Při použití vírové trubice celkové roční náklady byly stanoveny na 21205 Kč, což je 0,05 Kč za 10 mm obrobené délky.

Jako ekonomicky nejvýhodnější médium je opět obrábění za sucha, kdy byly stanoveny nulové roční náklady.

Při obrábění pomocí procesních kapalin je problém s ekologickou likvidací použité kapaliny, v důsledku čehož byly roční náklady stanoveny na 213560 Kč, což je 0,49 Kč za 10mm obrobené délky.

V tabulce 26 jsou uvedeny pro zpřehlednění fixní a roční náklady pro jednotlivá procesní média.

| Procesní<br>prostředí | Fixní<br>náklady | Celkové<br>roční<br>náklady | Roční náklady<br>na obrobení<br>délky 10 mm |
|-----------------------|------------------|-----------------------------|---------------------------------------------|
| Za sucha              | Bez nákladů      | Bez nákladů                 | Bez nákladů                                 |
| Vírová<br>trubice     | 18000 Kč         | 21205 Kč                    | 0,05 Kč/10mm                                |
| CO <sub>2</sub>       | 33400 Kč         | 386419 Kč                   | 0,88 Kč/10mm                                |
| Zkapalněný<br>dusík   | 90000 Kč         | 3401979 Kč                  | 7,77 Kč/10mm                                |
| HOCUT 795B            | 6000 Kč          | 213560 Kč                   | 0,49 Kč/10mm                                |
| EOPS 1030             | 6000 Kč          | 209560 Kč                   | 0,48 Kč/10mm                                |

Tabulka 26 Porovnání nákladů pro jednotlivá procesní prostředí.

V tabulce 27 jsou uvedeny hodnoty pro porovnání sériové a kusové výroby.

|                       | Náklady pro sé   | ériovou výrobu                           | Náklady pro kusovou výrol |                                          |  |
|-----------------------|------------------|------------------------------------------|---------------------------|------------------------------------------|--|
| Procesní<br>prostředí | Roční<br>náklady | Roční<br>náklady na<br>obrobení 10<br>mm | Roční<br>náklady          | Roční<br>náklady na<br>obrobení 10<br>mm |  |
| Za sucha              | Bez nákladů      | Bez nákladů                              | Bez nákladů               | Bez nákladů                              |  |
| Vírová<br>trubice     | 16964 Kč         | 0,05 Kč/10mm                             | 13995 Kč                  | 0,05 Kč/10mm                             |  |
| CO <sub>2</sub>       | 309135 Kč        | 0,88 Kč/10mm                             | 255036 Kč                 | 0,88 Kč/10mm                             |  |
| Zkapalněný<br>dusík   | 2721583 Kč       | 7,77 Kč/10mm                             | 2245306 Kč                | 7,77 Kč/10mm                             |  |
| HOCUT 795B            | 170848 Kč        | 0,49 Kč/10mm                             | 140950 Kč                 | 0,49 Kč/10mm                             |  |
| EOPS 1030             | 167648 Kč        | 0,48 Kč/10mm                             | 138310 Kč                 | 0,48 Kč/10mm                             |  |

Tabulka 27 Porovnání nákladů pro sériovou a kusovou výrobu.

## Seznam použité literatury

- [1] BENEŠ, P. Chladicí a mazací schopnost procesních kapalin při obrábění. [Diplomová práce]. Liberec: TU v Liberci, 2009, 78 s.
- [2] BUMBÁLEK, B. Řezné kapaliny. Praha: Státní nakladatelství technické literatury, 1963, 136 s.
- [3] DVOŘÁČKOVÁ, Š., J. KARÁSEK a M. LEDVINA. Aplikovaný multioborový výzkum a vývoj progresivních způsobů chlazení u technologických procesů. Etapa 1 – "Výzkum chlazení u technologických procesů". Liberec: TAČR -TA03010492, Tu v Liberci, 2013, 35 s.
- [4] DVOŘÁČKOVÁ, Š., J. KARÁSEK a M. LEDVINA. Aplikovaný multioborový výzkum a vývoj progresivních způsobů chlazení u technologických procesů. Etapa 2 – "Aplikovaný výzkum vlivů inovativního chlazení na technologické procesy". Liberec: TAČR - TA03010492, Tu v Liberci, 2014, 41 s.
- [5] DRÁB, V. et al. *Technologie 1*. Vyd. 2. Liberec Vysoká škola strojní a textilní v Liberci, 1985, 295 s.
- [6] GAZDA, J. a V. GABRIEL. *Teorie obrábění: řezné síly při obrábění*. Vyd. 1.
  Liberec: Vysoká škola strojní a textilní, 1993, 123 s. ISBN 80-708-3110-3.
- [7] Houghton Hocut 795B. [online]. [cit. 2015-04-02]. Dostupné z: <u>http://www.houghtonintl.com/si-si/products/metalremoval/Pages/Hocut-795-B.aspx#</u>
- [8] JERSÁK, J. a A. POPOV. *Ekologické obráběcí kapaliny nové generace*. Vyd. 1.
  Liberec: Technická univerzita v Liberci, 2014, 88 s. ISBN 978-80-7494-142-9.
- [9] KOCMAN, K. *Technologie obrábění*. Vyd. 2. Brno: CERM, 2005, 270 s. ISBN 80-214-3068-0.
- [10] KOREJS, M. Účinek procesních plynů na technologii frézování a kvalitu obrobených součástí. [Bakalářská práce]. Liberec: TU v Liberci, 2014, 66 s.
- [11] *Paramo Katalog výrobků*. [online]. [cit. 2015-04-02]. Dostupné z: https://eshop.paramo.cz/data/Tiskoviny/Paramo\_katalog\_vyrobku\_N.pdf
- [12] POLEDNO, T. Zjišťování vlivu procesních kapalin od světových výrobců na technologii soustružení a jakost obrobeného povrchu při obrábění slitiny hliníku. [Bakalářská práce]. Liberec: TU v Liberci, 2014, 56 s.

- [13] *Pramet Produkty*. [online]. [cit. 2015-04-02]. Dostupné z: http://www.pramet.com/cz/produkty/soustruzeni.html
- [14] ŘASA, J. a V. GABRIEL. Strojírenská technologie 3. Vyd. 1. Praha: Scientia, 2000, 256 s. ISBN 80-718-3207-3.
- [15] Skripta Technologie II: 2.díl [online]. Vysoká škola báňská: Technická univerzita Ostrava [cit.2015-04-02]. Dostupné z: <u>http://homel.vsb.cz/~cep77/PDF/skripta\_Technologie\_II\_2dil.pdf</u>
- [16] [online]. [cit. 2015-04-04]. Dostupné z: <u>http://www.unimed.cz/zasobnik-kapalneho-dusiku-typ-kl-32</u>
- [17] [online]. [cit. 2015-04-04]. Dostupné z: http://www.kom.tul.cz/download.php
- [18] [online]. [cit. 2015-04-04]. Dostupné z: http://cs.wikipedia.org/wiki/Kryogenika

# Seznam obrázků

| Obrázek 1 Způsoby mechanického upínání břitových destiček                                                   | 11            |
|-------------------------------------------------------------------------------------------------------------|---------------|
| Obrázek 2 Vnější soustružnické nože                                                                         | 12            |
| Obrázek 3 Vnitřní soustružnické nože                                                                        | 13            |
| Obrázek 4 Ostří a plochy na řezné části soustružnického nože                                                | 14            |
| Obrázek 5 Špička nástroje                                                                                   | 15            |
| Obrázek 6 Složky síly řezání (obrábění) a odpory při podélném soustružení                                   | 16            |
| Obrázek 7 Druhy soustružení                                                                                 | 18            |
| Obrázek 8 Identifikace průřezu třísky při soustružení                                                       | 19            |
| Obrázek 9 Přivedené a odvedené teplo při obrábění                                                           | 21            |
| Obrázek 10 Rozdělení metod měření teplotních stavů                                                          | 22            |
| Obrázek 11 Původní uspořádání Ranquova experimentu                                                          | 28            |
| Obrázek 12 Princip Ranque Hilschovi vírové trubice                                                          | 28            |
| Obrázek 13 Zařízení Cold Air Gun                                                                            | 29            |
| Obrázek 14 Chlazení břitu nástroje tekutým dusíkem – nepřímé chlazení                                       | 31            |
| Obrázek 15 Zásobník KL 32                                                                                   | 34            |
| Obrázek 16 Příprava vzorku; jednotlivé úseky zobrazené červenou barvou, i z kartitu zobrazena hnědou barvou | zolace<br>36  |
| Obrázek 17 Izolační objímka z kartitu                                                                       | 36            |
| Obrázek 18 Izolační kroužek z kartitu vložený do čela vzorku                                                | 37            |
| Obrázek 19 Univerzální hrotový soustruh SU 50                                                               | 38            |
| Obrázek 20 Soustružnický nůž vnější                                                                         | 39            |
| Obrázek 21 Vyměnitelná břitová destička TPUN 160308                                                         | 39            |
| Obrázek 22 Nábojový zesilovač 5019 B                                                                        | 40            |
| Obrázek 23 Dynamometr KISTLER 9265B.                                                                        | 40            |
| Obrázek 24 Stabilně zabudovaný termočlánek na vyměnitelné břitové destičce.                                 | 41            |
| Obrázek 25 Umělý termočlánek pro soustružnický nůž s vyměnitelnou b<br>destičkou                            | řitovou<br>41 |
| Obrázek 26 Kondenzátorová svářečka.                                                                         | 42            |
| Obrázek 27 Profiloměr Mitutoyo Surftest SV – 2000 N2                                                        | 43            |
| Obrázek 28 Ruční refraktometr Brix 0 – 18 % ATC                                                             | 44            |
| Obrázek 29 Jímací zařízení procesní kapaliny                                                                | 44            |
| Obrázek 30 Čerpadlo a jímací nádoba na cirkulaci procesní kapaliny                                          | 45            |
| Obrázek 31 Dílenský mikroskop ZEISS.                                                                        | 46            |
| Obrázek 32 Elektrické přečerpávací zařízení EPZ – 2                                                         | 46            |

| Obrázek 33 /           | Aparatura pro přívod tekutého dusíku                                           | 17        |
|------------------------|--------------------------------------------------------------------------------|-----------|
| Obrázek 34 (           | Obrábění pomocí tekutého dusíku                                                | 17        |
| Obrázek 35 V           | Vzorový průběh řezných sil při technologii soustružení                         | 18        |
| Obrázek 36<br>soustruž | Vzorový průběh teplot v místech jednotlivých termočlánků při technolog<br>zení | gii<br>19 |
| Obrázek 37             | Vzorový průběh opotřebení břitové destičky při technologii soustruže           | ní<br>50  |
| Obrázek 38 l           | Místa měření drsnosti povrchu po soustružení                                   | 51        |
| Obrázek 39 V           | Vzorový výstup z programu Surfpak při technologii soustružení                  | 51        |
| Obrázek 40 l           | Místa měření rozměrové přesnosti po soustružení                                | 52        |
| Obrázek 41 l           | Měření rozměrové přesnosti pomocí ručního mikrometru                           | 52        |

# Seznam tabulek

| Tabulka 1 Rozdělení procesních médií                                                             | 23           |
|--------------------------------------------------------------------------------------------------|--------------|
| Tabulka 2 Schematické rozdělení procesních kapalin                                               | 26           |
| Tabulka 3 Technické parametry procesní kapaliny EOPS 1030                                        | 32           |
| Tabulka 4 Technické parametry procesní kapaliny HOCUT 795B                                       | 33           |
| Tabulka 5 Parametry zásobníku typu KL                                                            | 34           |
| Tabulka 6 Řezné podmínky pro soustružení                                                         | 35           |
| Tabulka 7 Metodika soustružení                                                                   | 35           |
| Tabulka 8 Technické údaje SU 50                                                                  | 37           |
| Tabulka 9 Základní rozměry nože                                                                  | 39           |
| Tabulka 10 Obvykle používané kombinace umělých termočlánků a jejich vlastr                       | nosti<br>42  |
| Tabulka 11 Vzorové naměřené hodnoty řezných sil při technologii soustružení                      | 48           |
| Tabulka 12 Vzorové hodnoty teplot v místech jednotlivých termočlánků při techno<br>soustružení   | ologii<br>49 |
| Tabulka 13 Vzorové hodnoty opotřebení břitové destičky při technologii soustru                   | žení<br>50   |
| Tabulka 14 Vzorové hodnoty parametrů drsnosti povrchu při technologii soustru                    | žení<br>51   |
| Tabulka 15 Střední hodnoty naměřených sil pro jednotlivá procesní média                          | 53           |
| Tabulka 16 Průměrné hodnoty naměřených teplot pro jednotlivé termočlánky                         | 55           |
| Tabulka 17 Průměrné hodnoty dosaženého opotřebení vyměnitelné břitové dest<br>po přejetí 2000 mm | tičky<br>57  |
| Tabulka 18 Průměrné hodnoty parametrů drsnosti povrchu pro jednotlivá proc<br>média              | esní<br>58   |
| Tabulka 19 Průměrné hodnoty rozměrové přesnosti pro jednotlivá procesní média                    | a 60         |
| Tabulka 20 Fixní náklady pro jednotlivá procesní média                                           | 62           |
| Tabulka 21 Celkové roční náklady                                                                 | 64           |
| Tabulka 22 Roční náklady na obrobení délky 10 mm                                                 | 66           |
| Tabulka 23 Roční náklady pro sériovou výrobu                                                     | 67           |
| Tabulka 24 Roční náklady pro kusovou výrobu                                                      | 68           |
| Tabulka 25 Celkové porovnání měřených parametrů pro jednotlivá procesní m                        | édia<br>75   |
| Tabulka 26 Porovnání nákladů pro jednotlivá procesní prostředí                                   | 76           |
| Tabulka 27 Porovnání nákladů pro sériovou a kusovou výrobu                                       | 77           |

# Seznam grafů

| Graf 1 Vliv procesních plynů a kapalin na složky působících sil při technologii soustružení      |
|--------------------------------------------------------------------------------------------------|
| Graf 2 Vliv procesních plynů a kapalin na teplotu při technologii soustružení                    |
| Graf 3 Vliv procesních plynů a kapalin na trvanlivost břitu nástroje při technologii soustružení |
| Graf 4 Vliv procesních plynů a kapalin na parametry drsnosti povrchu při technologii soustružení |
| Graf 5 Vliv procesních plynů a kapalin na rozměrovou přesnost při technologii soustružení        |
| Graf 6 Porovnání fixních nákladů pro jednotlivá procesní prostředí63                             |
| Graf 7 Porovnání celkových ročních nákladů pro jednotlivá procesní prostředí66                   |
| Graf 8 Porovnání ročních nákladů na obrobení délky 10 mm pro jednotlivá procesní média           |
| Graf 9 Porovnání ročních nákladů při sériové a kusové výrobě                                     |

# Seznam příloh

| Příloha A - Použitý materiál1                                                                  |
|------------------------------------------------------------------------------------------------|
| Příloha B - Naměřené hodnoty složek sil pro jednotlivá procesní prostředí2                     |
| Příloha C - Grafy průběhů složek sil pro jednotlivá procesní prostředí                         |
| Příloha D - Naměřené hodnoty teplot termočlánků pro jednotlivá procesní prostředí9             |
| Příloha E - Grafy průběhů teplot termočlánků pro jednotlivá procesní prostředí10               |
| Příloha F - Naměřené hodnoty trvanlivosti břitových destiček pro jednotlivá procesní prostředí |
| Příloha G - Naměřené hodnoty parametrů drsnosti povrchu pro jednotlivá procesní prostředí      |
| Příloha H - Naměřené hodnoty rozměrové přesnosti pro jednotlivá procesní prostředí             |

## Přílohy

### Příloha A - Použitý materiál

### Použitý materiál:

Pro provedení experimentu byla zvolena konstrukční ocel třídy 12 050.1. Vlastnosti a použití této oceli jsou uvedeny v následujícím textu této Diplomové práce.

### Vlastnosti:

Ocel 12 050.1 patří mezi ocel nelegovanou k zušlechťování a povrchovému kalení. Doplňkové číslo značí stav oceli v závislosti na tepelném zpracování, kde konkrétně číslice 1. normalizační žíhání. Pevnost v tahu Rm = min. 540 [MPa]. Mez kluzu Rp0,2 = min. 325 [MPa]. Chemické složení této oceli zobrazuje tabulka 1.

| Přílohy - Tab. | 1 Chemické složení oceli 12 050.1 v%. |  |
|----------------|---------------------------------------|--|
|                |                                       |  |

|        |           |           | Chemick   | é složen | í v %               |                     |        |        |
|--------|-----------|-----------|-----------|----------|---------------------|---------------------|--------|--------|
| Značka | С         | Mn        | Si        | Cr max.  | Cu <sub>max</sub> . | Ni <sub>max</sub> . | P max. | S max. |
| 12 050 | 0,42-0,50 | 0,50-0,80 | 0,17-0,37 | 0,25     | 0,30                | 0,30                | 0,040  | 0,040  |

### Použití:

Ocel třídy 12 050.1 je vhodná k zušlechťování a povrchovému kalení. Používá se na hřídele turbokompresorů, čerpadel, těžních strojů, elektromotorů a dynam. Pro výrobu větších ozubených kol a šneků. Dále se používá v automobilovém průmyslu pro výrobu klikových hřídelí, ojnic, závěsů pružin a čepů.

# Příloha B - Naměřené hodnoty složek sil pro jednotlivá procesní prostředí

| Za sucha |       |        | Vírová trubice |       |        | CO₂    |       |        |
|----------|-------|--------|----------------|-------|--------|--------|-------|--------|
| Fx       | Fy    | Fz     | Fx             | Fy    | Fz     | Fx     | Fy    | Fz     |
| 100,00   | 70,00 | 195,00 | 90,00          | 75,00 | 190,00 | 100,00 | 57,50 | 200,00 |
| 110,00   | 70,00 | 192,50 | 92,50          | 72,50 | 185,00 | 110,00 | 50,00 | 190,00 |
| 112,50   | 77,50 | 190,00 | 90,00          | 72,50 | 195,00 | 102,50 | 57,50 | 202,50 |
| 120,00   | 65,00 | 190,00 | 105,00         | 60,00 | 197,50 | 95,00  | 57,50 | 200,00 |
| 97,50    | 85,00 | 190,00 | 92,50          | 70,00 | 185,00 | 95,00  | 45,00 | 190,00 |

Přílohy - Tab. 2 Naměřené hodnoty složek sil pro jednotlivá procesní prostředí (Za sucha, Virová trubice, CO2)

Přílohy - Tab. 3 Naměřené hodnoty složek sil pro jednotlivá procesní prostředí (DUSIK, HOCUT 795B, EOPS 1030)

| DUSIK |       |        | HOCUT 795B |       |        | EOPS 1030 |       |        |
|-------|-------|--------|------------|-------|--------|-----------|-------|--------|
| Fx    | Fy    | Fz     | Fx         | Fy    | Fz     | Fx        | Fx Fy |        |
| 60,00 | 52,50 | 154,00 | 63,00      | 51,00 | 141,00 | 70,00     | 50,00 | 150,00 |
| 54,00 | 50,00 | 154,00 | 65,00      | 54,00 | 137,00 | 60,00     | 34,00 | 146,00 |
| 63,00 | 55,00 | 153,00 | 77,00      | 38,00 | 127,00 | 75,00     | 40,00 | 144,00 |
| 63,00 | 53,00 | 148,00 | 67,00      | 47,00 | 136,00 | 53,00     | 39,00 | 140,00 |
| 70,00 | 58,00 | 155,00 | 63,00      | 49,00 | 133,00 | 58,00     | 54,00 | 144,00 |

# Příloha C - Grafy průběhů složek sil pro jednotlivá procesní prostředí



Naměřené průběhy složek sil pro dusík





### Naměřené průběhy složek sil pro dusík





### Naměřené průběhy složek sil pro HOCUT 795B







### Naměřené průběhy složek sil pro HOCUT 795B





### Naměřené průběhy složek sil pro EOPS 1030







### Naměřené průběhy složek sil pro EOPS 1030



Příloha D - Naměřené hodnoty teplot termočlánků pro jednotlivá procesní prostředí

| Procesní médium | č. vzorku | T1   | T2   | Т3     |
|-----------------|-----------|------|------|--------|
|                 | VZ01A     | 78,8 | 73   | 86,5   |
|                 | VZ01B     | 82,3 | 76,3 | 90,5   |
| Za sucha        | VZ01C     | 82,3 | 75,2 | 90,4   |
|                 | VZ01D     | 82,5 | 75,1 | 92,8   |
|                 | VZ01E     | 82,4 | 75,2 | 91,9   |
|                 | VZ02A     | 54,6 | 53,9 | 22,8   |
|                 | VZ02B     | 59,8 | 58,9 | 23,7   |
| Vír. trubice    | VZ02C     | 56,1 | 55,2 | 24,7   |
|                 | VZ02D     | 69,8 | 67,7 | 26,4   |
|                 | VZ02E     | 54,9 | 53,6 | 26,6   |
|                 | VZ03A     | 53,2 | 52,6 | 59,4   |
|                 | VZ03B     | 58,8 | 58   | 62,4   |
| CO₂             | VZ03C     | 67,7 | 67,5 | 73,4   |
|                 | VZ03D     | 68,6 | 66,1 | 80,3   |
|                 | VZ03E     | 57,6 | 51,4 | 57,4   |
|                 | VZ04A     | -0,2 | -1,6 | -107,4 |
|                 | VZ04B     | -4,1 | -0,9 | -108,5 |
| DUSIK           | VZ04C     | -2,3 | 0,6  | -105,4 |
|                 | VZ04D     | -3,3 | 3,6  | -108,1 |
|                 | VZ04E     | -1,9 | 3,1  | -111,2 |
|                 | VZ05A     | 31,3 | 24,7 | 34,2   |
|                 | VZ05B     | 31,4 | 23,4 | 32,9   |
| HOCUT 795B      | VZ05C     | 32,2 | 23,2 | 34,4   |
|                 | VZ05D     | 28,4 | 22,3 | 34,7   |
|                 | VZ05E     | 28,4 | 22,2 | 31,2   |
|                 | VZ06A     | 24,2 | 23,5 | 38,2   |
|                 | VZ06B     | 32,9 | 26,9 | 39,5   |
| EOPS 1030       | VZ06C     | 27,3 | 23,3 | 31     |
|                 | VZ06D     | 28,5 | 23,2 | 32,1   |
|                 | VZ06E     | 30,6 | 25,3 | 34,7   |

# Příloha E - Grafy průběhů teplot termočlánků pro jednotlivá procesní prostředí





## Grafy průběhů teplot termočlánků pro dusík:



### Grafy průběhů teplot termočlánků pro HOCUT 795B:



## Grafy průběhů teplot termočlánků pro HOCUT 795B:



### Grafy průběhů teplot termočlánků pro EOPS 1030:



## Grafy průběhů teplot termočlánků pro EOPS 1030:



Příloha F - Naměřené hodnoty trvanlivosti břitových destiček pro jednotlivá procesní prostředí

|           | Za s     | ucha     |          |
|-----------|----------|----------|----------|
| l [mm]    | měření 1 | měření 2 | Měření 3 |
| 1 [11111] | [mm]     | [mm]     | [mm]     |
| 250       | 0,14     | 0,14     | 0,16     |
| 500       | 0,14     | 0,18     | 0,19     |
| 750       | 0,18     | 0,23     | 0,24     |
| 1000      | 0,22     | 0,23     | 0,25     |
| 1250      | 0,22     | 0,23     | 0,25     |
| 1500      | 0,22     | 0,24     | 0,25     |
| 1750      | 0,23     | 0,24     | 0,25     |
| 2000      | 0,23     | 0,24     | 0,25     |
|           | Vírová   | trubice  |          |
| l [mm]    | měření 1 | měření 2 | Měření 3 |
| . []      | [mm]     | [mm]     | [mm]     |
| 250       | 0,11     | 0,08     | 0,08     |
| 500       | 0,11     | 0,1      | 0,11     |
| 750       | 0,12     | 0,1      | 0,11     |
| 1000      | 0,12     | 0,11     | 0,12     |
| 1250      | 0,13     | 0,13     | 0,12     |
| 1500      | 0,13     | 0,13     | 0,13     |
| 1750      | 0,14     | 0,13     | 0,13     |
| 2000      | 0,14     | 0,14     | 0,13     |
|           | C        | 02       |          |
| l [mm]    | měření 1 | měření 2 | Měření 3 |
| . []      | [mm]     | [mm]     | [mm]     |
| 250       | 0,1      | 0,07     | 0,07     |
| 500       | 0,1      | 0,09     | 0,08     |
| 750       | 0,11     | 0,1      | 0,1      |
| 1000      | 0,11     | 0,1      | 0,1      |
| 1250      | 0,11     | 0,1      | 0,1      |
| 1500      | 0,11     | 0,12     | 0,11     |
| 1750      | 0,11     | 0,12     | 0,12     |
| 2000      | 0,12     | 0,12     | 0,13     |

|        | Du       | ısík          |          |
|--------|----------|---------------|----------|
| [[mm]  | měření 1 | měření 2      | Měření 3 |
| ı [mm] | [mm]     | [mm]          | [mm]     |
| 250    | 0,08     | 0,07          | 0,08     |
| 500    | 0,08     | 0,08          | 0,09     |
| 750    | 0,09     | 0,09          | 0,09     |
| 1000   | 0,1      | 0,1           | 0,09     |
| 1250   | 0,1      | 0,1           | 0,11     |
| 1500   | 0,1      | 0,11          | 0,11     |
| 1750   | 0,11     | 0,12          | 0,13     |
| 2000   | 0,11     | 0,12          | 0,13     |
|        | HOCU     | T 795 B       |          |
| l [mm] | měření 1 | měření 2      | Měření 3 |
| . []   | [mm]     | [mm]          | [mm]     |
| 250    | 0,09     | 0,07          | 0,1      |
| 500    | 0,11     | 0,1           | 0,1      |
| 750    | 0,11     | 0,1           | 0,12     |
| 1000   | 0,12     | 0,11          | 0,12     |
| 1250   | 0,13     | 0,12          | 0,13     |
| 1500   | 0,13     | 0,12          | 0,13     |
| 1750   | 0,14     | 0,12          | 0,15     |
| 2000   | 0,15     | 0,14          | 0,15     |
|        | EOPS     | <u>5 1030</u> |          |
| l [mm] | měření 1 | měření 2      | Měření 3 |
| . []   | [mm]     | [mm]          | [mm]     |
| 250    | 0,08     | 0,06          | 0,09     |
| 500    | 0,09     | 0,065         | 0,1      |
| 750    | 0,1      | 0,09          | 0,11     |
| 1000   | 0,11     | 0,1           | 0,11     |
| 1250   | 0,12     | 0,1           | 0,13     |
| 1500   | 0,12     | 0,11          | 0,14     |
| 1750   | 0,14     | 0,12          | 0,14     |
| 2000   | 0,15     | 0,13          | 0,15     |

| VZ01A    |              |              |       |       | Měřen | í číslo |       |       |       |       |
|----------|--------------|--------------|-------|-------|-------|---------|-------|-------|-------|-------|
| Za sucha | 1            | 2            | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]  | 2,25         | 2,54         | 2,19  | 2,16  | 2,26  | 2,65    | 2,26  | 2,40  | 2,25  | 2,65  |
| Rz [µm]  | 12,91        | 13,51        | 12,32 | 12,37 | 11,69 | 12,62   | 11,60 | 13,52 | 11,73 | 14,06 |
| Rt [µm]  | 14,95        | 17,52        | 14,37 | 15,01 | 14,76 | 14,73   | 14,33 | 15,07 | 14,60 | 17,48 |
| VZ01B    |              | Měření číslo |       |       |       |         |       |       |       |       |
| Za sucha | 1            | 2            | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]  | 1,95         | 2,44         | 2,58  | 2,12  | 2,19  | 2,45    | 2,43  | 2,34  | 2,32  | 2,16  |
| Rz [µm]  | 11,28        | 13,87        | 14,77 | 14,31 | 12,68 | 14,50   | 12,81 | 14,27 | 12,86 | 13,70 |
| Rt [µm]  | 16,40        | 21,85        | 20,47 | 18,56 | 17,64 | 21,29   | 19,34 | 21,70 | 17,91 | 22,60 |
| VZ01C    | Měření číslo |              |       |       |       |         |       |       |       |       |
| Za sucha | 1            | 2            | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]  | 2,45         | 2,14         | 2,35  | 1,88  | 2,21  | 2,70    | 2,29  | 2,01  | 2,33  | 2,19  |
| Rz [µm]  | 13,74        | 12,49        | 12,68 | 11,65 | 12,51 | 13,95   | 12,70 | 10,75 | 13,73 | 12,40 |
| Rt [µm]  | 18,75        | 14,56        | 16,22 | 14,60 | 15,56 | 18,28   | 20,41 | 14,22 | 18,74 | 14,43 |
| VZ01D    |              |              |       |       | Měřen | í číslo |       |       |       |       |
| Za sucha | 1            | 2            | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]  | 2,43         | 2,11         | 2,11  | 1,83  | 2,16  | 2,41    | 2,25  | 1,97  | 2,10  | 2,22  |
| Rz [µm]  | 13,62        | 12,60        | 13,20 | 10,09 | 12,50 | 13,10   | 13,04 | 11,20 | 11,48 | 12,48 |
| Rt [µm]  | 16,59        | 17,80        | 15,90 | 13,04 | 15,58 | 20,89   | 18,36 | 15,29 | 15,10 | 16,17 |
| VZ01E    |              |              |       | 1     | Měřen | í číslo |       |       | T     |       |
| Za sucha | 1            | 2            | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]  | 2,18         | 2,73         | 2,29  | 2,46  | 1,95  | 2,32    | 2,37  | 2,38  | 2,49  | 2,66  |
| Rz [µm]  | 12,84        | 13,56        | 12,44 | 12,18 | 11,93 | 14,33   | 12,62 | 12,19 | 13,99 | 14,04 |
| Rt [µm]  | 15,64        | 17,08        | 15,14 | 16,90 | 19,27 | 17,59   | 14,09 | 13,10 | 19,52 | 21,09 |

Příloha G - Naměřené hodnoty parametrů drsnosti povrchu pro jednotlivá procesní prostředí

| Naměřené hodnoty parametrů drsnosti povrchu pro jednotlivá procesní |
|---------------------------------------------------------------------|
| prostředí:                                                          |

| VZ02A        |              |       |       | _     | Měřen | í číslo |       |       |       |       |
|--------------|--------------|-------|-------|-------|-------|---------|-------|-------|-------|-------|
| Vír. trubice | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]      | 2,31         | 2,22  | 2,11  | 2,39  | 2,01  | 2,26    | 2,52  | 2,31  | 2,08  | 1,83  |
| Rz [µm]      | 13,27        | 14,96 | 12,60 | 13,97 | 12,81 | 14,09   | 14,44 | 14,04 | 13,47 | 10,86 |
| Rt [µm]      | 17,08        | 21,61 | 15,63 | 19,53 | 17,31 | 20,60   | 19,45 | 21,24 | 16,89 | 13,28 |
| VZ02B        |              |       |       |       | Měřen | í číslo |       |       |       |       |
| Vír. trubice | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]      | 2,11         | 2,43  | 2,34  | 2,61  | 1,94  | 2,33    | 2,58  | 2,37  | 2,23  | 2,21  |
| Rz [µm]      | 12,62        | 15,60 | 14,32 | 20,23 | 11,53 | 13,31   | 14,96 | 13,12 | 12,03 | 12,33 |
| Rt [µm]      | 17,29        | 24,79 | 19,17 | 30,85 | 14,94 | 18,05   | 25,30 | 15,65 | 14,22 | 16,82 |
| VZ02C        | Měření číslo |       |       |       |       |         |       |       |       |       |
| Vír. trubice | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]      | 2,34         | 2,18  | 2,38  | 2,21  | 2,05  | 2,19    | 2,05  | 2,45  | 2,47  | 2,32  |
| Rz [µm]      | 13,67        | 12,74 | 13,37 | 12,39 | 14,38 | 14,83   | 11,61 | 13,94 | 18,86 | 14,64 |
| Rt [µm]      | 16,84        | 17,69 | 17,53 | 15,53 | 18,17 | 19,97   | 14,13 | 20,60 | 27,19 | 17,64 |
| VZ02D        |              |       |       |       | Měřen | í číslo |       |       |       |       |
| Vír. trubice | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]      | 2,28         | 2,12  | 2,20  | 1,97  | 1,93  | 1,75    | 1,80  | 2,20  | 1,91  | 1,99  |
| Rz [µm]      | 11,28        | 13,01 | 12,55 | 11,07 | 11,10 | 10,14   | 10,84 | 13,17 | 11,31 | 9,63  |
| Rt [µm]      | 13,90        | 18,22 | 19,86 | 13,48 | 14,81 | 13,48   | 13,58 | 17,00 | 14,22 | 11,90 |
| VZ02E        |              |       |       | 1     | Měřen | í číslo |       |       |       |       |
| Vír. trubice | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]      | 2,10         | 1,89  | 2,22  | 2,29  | 1,86  | 1,95    | 2,01  | 1,95  | 1,75  | 2,12  |
| Rz [µm]      | 12,60        | 11,18 | 11,88 | 12,87 | 10,86 | 10,66   | 11,03 | 11,85 | 9,64  | 12,71 |
| Rt [µm]      | 15,92        | 15,18 | 13,77 | 15,13 | 16,34 | 14,78   | 13,58 | 14,76 | 11,78 | 16,57 |

| VZ03A           |              |       |       |       | Měřen | í číslo |       |       |       |       |
|-----------------|--------------|-------|-------|-------|-------|---------|-------|-------|-------|-------|
| CO <sub>2</sub> | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]         | 2,63         | 2,26  | 2,50  | 2,25  | 2,61  | 2,58    | 2,29  | 2,43  | 2,61  | 2,58  |
| Rz [µm]         | 14,56        | 18,08 | 14,43 | 13,81 | 14,19 | 14,20   | 13,40 | 14,15 | 13,43 | 15,33 |
| Rt [µm]         | 17,34        | 17,75 | 19,05 | 17,10 | 17,50 | 20,43   | 19,36 | 16,86 | 16,19 | 21,87 |
| VZ03B           |              |       |       |       | Měřen | í číslo |       |       |       |       |
| CO <sub>2</sub> | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]         | 2,88         | 2,08  | 1,99  | 2,31  | 2,28  | 2,25    | 2,23  | 2,05  | 2,30  | 2,15  |
| Rz [µm]         | 17,26        | 13,04 | 11,78 | 12,82 | 12,78 | 13,82   | 13,02 | 12,11 | 13,33 | 12,82 |
| Rt [µm]         | 25,70        | 18,42 | 16,47 | 17,80 | 15,32 | 22,05   | 16,54 | 14,71 | 16,52 | 16,71 |
| VZ03C           | Měření číslo |       |       |       |       |         |       |       |       |       |
| CO <sub>2</sub> | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]         | 2,15         | 2,42  | 2,11  | 2,19  | 2,35  | 2,54    | 2,40  | 1,91  | 2,44  | 2,35  |
| Rz [µm]         | 12,19        | 15,50 | 12,44 | 13,14 | 13,37 | 15,37   | 12,42 | 12,51 | 15,94 | 15,05 |
| Rt [µm]         | 15,78        | 21,58 | 15,55 | 16,00 | 20,52 | 22,32   | 14,80 | 17,72 | 23,98 | 18,64 |
| VZ03D           |              |       |       |       | Měřen | í číslo |       |       |       |       |
| CO <sub>2</sub> | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]         | 2,59         | 2,32  | 3,01  | 2,09  | 2,52  | 2,37    | 2,30  | 2,16  | 2,25  | 2,79  |
| Rz [µm]         | 14,21        | 13,74 | 17,35 | 13,62 | 12,86 | 14,42   | 13,89 | 12,06 | 14,25 | 18,53 |
| Rt [µm]         | 16,90        | 17,81 | 27,85 | 19,08 | 16,32 | 19,59   | 19,06 | 13,10 | 16,21 | 25,94 |
| VZ03E           |              |       |       |       | Měřen | í číslo |       |       |       |       |
| CO <sub>2</sub> | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm]         | 2,10         | 2,33  | 2,22  | 2,12  | 1,90  | 1,97    | 2,38  | 2,30  | 2,33  | 2,17  |
| Rz [µm]         | 13,49        | 14,16 | 12,55 | 12,58 | 11,03 | 11,65   | 12,80 | 13,77 | 13,76 | 14,20 |
| Rt [µm]         | 19,60        | 19,15 | 15,82 | 17,04 | 15,41 | 14,76   | 16,27 | 21,84 | 18,16 | 18,23 |

| VZ04A   |              |       |       |       | Měřen | í číslo |       |       |       |       |
|---------|--------------|-------|-------|-------|-------|---------|-------|-------|-------|-------|
| Dusík   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 2,15         | 2,36  | 2,20  | 2,36  | 2,76  | 2,45    | 2,52  | 2,43  | 2,47  | 2,47  |
| Rz [µm] | 13,04        | 13,16 | 13,49 | 12,79 | 16,60 | 14,23   | 15,50 | 15,67 | 13,95 | 16,05 |
| Rt [µm] | 18,43        | 20,16 | 17,62 | 17,03 | 22,16 | 16,71   | 18,57 | 21,45 | 22,71 | 22,48 |
| VZ04B   |              |       |       |       | Měřen | í číslo |       |       |       |       |
| Dusík   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 2,32         | 2,18  | 2,12  | 1,97  | 2,05  | 2,30    | 2,31  | 2,14  | 2,14  | 2,01  |
| Rz [µm] | 16,65        | 13,01 | 11,90 | 11,01 | 11,26 | 13,40   | 15,22 | 13,01 | 11,75 | 11,59 |
| Rt [µm] | 31,47        | 18,45 | 14,27 | 13,29 | 12,87 | 16,61   | 24,60 | 16,35 | 14,32 | 15,99 |
| VZ04C   | Měření číslo |       |       |       |       |         |       |       |       |       |
| Dusík   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 1,66         | 2,16  | 2,02  | 2,03  | 1,87  | 1,98    | 2,19  | 2,07  | 1,82  | 1,81  |
| Rz [µm] | 9,60         | 12,12 | 11,93 | 11,68 | 9,85  | 12,17   | 12,60 | 11,31 | 10,74 | 11,14 |
| Rt [µm] | 12,50        | 15,18 | 14,73 | 13,14 | 11,68 | 15,25   | 16,49 | 13,76 | 13,75 | 13,09 |
| VZ04D   |              |       |       |       | Měřen | í číslo |       |       |       |       |
| Dusík   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 2,04         | 1,80  | 1,99  | 2,24  | 2,15  | 1,93    | 2,02  | 1,71  | 1,74  | 1,69  |
| Rz [µm] | 11,79        | 9,56  | 11,06 | 12,82 | 11,54 | 10,12   | 11,03 | 10,45 | 11,07 | 10,21 |
| Rt [µm] | 17,01        | 12,79 | 15,74 | 16,33 | 16,37 | 12,90   | 15,53 | 13,13 | 14,35 | 13,89 |
| VZ04E   |              |       |       |       | Měřen | í číslo |       | -     | -     |       |
| Dusík   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 2,09         | 1,84  | 1,91  | 1,90  | 1,81  | 2,01    | 1,91  | 1,86  | 2,05  | 2,12  |
| Rz [µm] | 12,15        | 10,01 | 10,33 | 11,50 | 11,57 | 10,78   | 10,52 | 11,40 | 11,46 | 11,39 |
| Rt [µm] | 14,71        | 13,73 | 12,66 | 15,63 | 13,98 | 14,07   | 13,49 | 13,74 | 15,98 | 12,68 |

| VZ05A   |              |       | -     | -     | Měřen | í číslo | -     |       |       |       |
|---------|--------------|-------|-------|-------|-------|---------|-------|-------|-------|-------|
| HOCUT   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 1,20         | 1,08  | 1,30  | 1,33  | 1,16  | 1,40    | 1,13  | 1,26  | 1,24  | 1,28  |
| Rz [µm] | 7,65         | 7,24  | 8,92  | 8,26  | 8,20  | 8,98    | 7,49  | 7,99  | 8,46  | 8,52  |
| Rt [µm] | 9,05         | 9,05  | 14,66 | 9,85  | 9,55  | 11,52   | 8,93  | 11,19 | 11,66 | 11,83 |
| VZ05B   |              |       |       |       | Měřen | í číslo |       |       |       |       |
| HOCUT   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 1,25         | 1,27  | 1,17  | 1,15  | 1,18  | 1,32    | 1,54  | 1,28  | 1,32  | 1,38  |
| Rz [µm] | 8,18         | 7,94  | 7,12  | 7,02  | 7,53  | 7,55    | 9,26  | 7,98  | 8,19  | 7,86  |
| Rt [µm] | 10,26        | 9,91  | 9,73  | 10,18 | 9,65  | 11,94   | 12,84 | 9,82  | 12,26 | 12,44 |
| VZ05C   | Měření číslo |       |       |       |       |         |       |       |       |       |
| HOCUT   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 1,42         | 1,35  | 1,50  | 1,28  | 1,28  | 1,23    | 1,29  | 1,34  | 1,24  | 1,24  |
| Rz [µm] | 8,99         | 8,72  | 10,88 | 7,40  | 8,61  | 8,55    | 8,18  | 8,76  | 7,85  | 7,73  |
| Rt [µm] | 14,15        | 12,39 | 16,17 | 10,01 | 11,77 | 11,28   | 10,87 | 12,89 | 12,05 | 11,71 |
| VZ05D   |              |       |       |       | Měřen | í číslo |       |       |       |       |
| HOCUT   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 1,46         | 1,56  | 1,32  | 1,49  | 1,51  | 1,45    | 1,36  | 1,40  | 1,33  | 1,34  |
| Rz [µm] | 9,85         | 10,19 | 8,72  | 9,73  | 10,25 | 8,97    | 8,79  | 8,76  | 8,57  | 8,34  |
| Rt [µm] | 13,53        | 13,33 | 14,83 | 15,78 | 12,39 | 13,67   | 11,66 | 11,50 | 12,08 | 12,94 |
| VZ05E   |              |       | 1     | 1     | Měřen | í číslo | 1     |       | 1     |       |
| HOCUT   | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10    |
| Ra [µm] | 1,19         | 1,40  | 1,45  | 1,39  | 1,47  | 1,64    | 1,46  | 1,43  | 1,36  | 1,28  |
| Rz [µm] | 6,73         | 8,92  | 10,53 | 8,61  | 9,46  | 10,15   | 8,83  | 8,68  | 7,92  | 8,08  |
| Rt [µm] | 7,99         | 12,69 | 19,56 | 11,82 | 12,58 | 12,52   | 13,20 | 11,13 | 11,90 | 12,25 |

| VZ06A -   |              |       |       |       | Měřen | í číslo |       |       |       |      |
|-----------|--------------|-------|-------|-------|-------|---------|-------|-------|-------|------|
| EOPS 1030 | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10   |
| Ra [µm]   | 1,09         | 1,42  | 1,31  | 1,53  | 1,40  | 1,34    | 1,34  | 1,32  | 1,45  | 1,46 |
| Rz [µm]   | 6,99         | 10,04 | 7,67  | 9,56  | 8,08  | 8,38    | 8,87  | 7,64  | 9,69  | 9,47 |
| Rt [µm]   | 8,82         | 15,40 | 9,70  | 14,72 | 12,27 | 11,30   | 12,90 | 9,95  | 13,39 | 13,8 |
| VZ06B -   | Měření číslo |       |       |       |       |         |       |       |       |      |
| EOPS 1030 | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10   |
| Ra [µm]   | 1,36         | 1,23  | 1,27  | 1,19  | 1,17  | 1,14    | 1,35  | 1,27  | 1,38  | 1,48 |
| Rz [µm]   | 7,99         | 8,11  | 7,09  | 8,28  | 6,85  | 7,12    | 8,62  | 8,17  | 8,84  | 9,59 |
| Rt [µm]   | 11,18        | 14,65 | 9,37  | 10,76 | 8,43  | 9,99    | 11,18 | 12,93 | 14,43 | 11,0 |
| VZ06C -   | Měření číslo |       |       |       |       |         |       |       |       |      |
| EOPS 1030 | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10   |
| Ra [µm]   | 1,33         | 1,31  | 1,07  | 1,18  | 1,13  | 1,40    | 1,30  | 1,26  | 1,20  | 1,28 |
| Rz [µm]   | 8,33         | 8,75  | 6,73  | 7,50  | 6,65  | 8,61    | 8,34  | 6,90  | 6,68  | 7,77 |
| Rt [µm]   | 10,92        | 13,09 | 8,47  | 8,94  | 8,61  | 12,77   | 11,59 | 8,67  | 7,67  | 9,37 |
| VZ06D -   |              |       |       |       | Měřen | í číslo |       |       |       |      |
| EOPS 1030 | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10   |
| Ra [µm]   | 1,33         | 1,33  | 1,43  | 1,23  | 1,16  | 1,23    | 1,13  | 1,28  | 1,47  | 1,47 |
| Rz [µm]   | 8,82         | 7,86  | 9,00  | 7,34  | 7,13  | 7,96    | 7,45  | 8,67  | 9,20  | 9,78 |
| Rt [µm]   | 12,21        | 9,98  | 12,89 | 8,94  | 7,95  | 15,03   | 11,18 | 14,74 | 13,19 | 13,8 |
| VZ06E-    |              |       |       |       | Měřen | í číslo |       |       |       |      |
| EOPS 1030 | 1            | 2     | 3     | 4     | 5     | 6       | 7     | 8     | 9     | 10   |
| Ra [µm]   | 1,38         | 1,35  | 1,53  | 1,67  | 1,41  | 1,44    | 1,59  | 1,38  | 1,41  | 1,42 |
| Rz [µm]   | 8,64         | 7,68  | 11,61 | 11,29 | 9,77  | 9,89    | 10,12 | 9,33  | 9,05  | 8,30 |
| Rt [µm]   | 10.29        | 8,91  | 15,73 | 13,29 | 13.39 | 16.64   | 18.67 | 13.65 | 13.93 | 11.3 |

Příloha H - Naměřené hodnoty rozměrové přesnosti pro jednotlivá procesní prostředí

|          |          | Za sucha |          |          |
|----------|----------|----------|----------|----------|
| Plocha 1 | Plocha 2 | Plocha 3 | Plocha 4 | Plocha 5 |
| 46,03    | 46,01    | 46,02    | 46,00    | 45,99    |
| 46,03    | 46,00    | 46,02    | 46,00    | 45,99    |
| 46,03    | 46,00    | 46,02    | 46,00    | 45,99    |
| 46,03    | 46,00    | 46,02    | 46,00    | 45,99    |
| 46,03    | 46,01    | 46,02    | 46,00    | 46,00    |
| 46,03    | 46,01    | 46,02    | 46,00    | 45,99    |
| 46,03    | 46,01    | 46,01    | 46,00    | 45,99    |
| 46,03    | 46,01    | 46,01    | 46,00    | 45,99    |
| 46,03    | 46,01    | 46,02    | 46,00    | 45,99    |
| 46,03    | 46,01    | 46,02    | 46,00    | 45,99    |

| Vírová trubice |          |          |          |          |  |  |  |  |  |  |
|----------------|----------|----------|----------|----------|--|--|--|--|--|--|
| Plocha 1       | Plocha 2 | Plocha 3 | Plocha 4 | Plocha 5 |  |  |  |  |  |  |
| 46,08          | 46,07    | 46,07    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,06    | 46,07    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,07    | 46,08    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,07    | 46,07    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,07    | 46,07    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,07    | 46,08    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,07    | 46,07    | 46,05    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,07    | 46,07    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,06    | 46,07    | 46,06    | 46,05    |  |  |  |  |  |  |
| 46,08          | 46,06    | 46,07    | 46,05    | 46,05    |  |  |  |  |  |  |

| CO₂      |          |          |          |          |  |
|----------|----------|----------|----------|----------|--|
| Plocha 1 | Plocha 2 | Plocha 3 | Plocha 4 | Plocha 5 |  |
| 46,05    | 46,05    | 46,05    | 46,04    | 46,03    |  |
| 46,06    | 46,05    | 46,05    | 46,04    | 46,03    |  |
| 46,05    | 46,05    | 46,05    | 46,04    | 46,03    |  |
| 46,05    | 46,04    | 46,05    | 46,04    | 46,03    |  |
| 46,06    | 46,04    | 46,05    | 46,04    | 46,03    |  |
| 46,06    | 46,05    | 46,05    | 46,04    | 46,03    |  |
| 46,05    | 46,05    | 46,05    | 46,04    | 46,03    |  |
| 46,06    | 46,04    | 46,05    | 46,04    | 46,03    |  |
| 46,06    | 46,03    | 46,05    | 46,04    | 46,03    |  |
| 46,06    | 46,04    | 46,05    | 46,04    | 46,03    |  |

Naměřené hodnoty rozměrové přesnosti pro jednotlivá procesní prostředí:

| Dusík    |          |          |          |          |  |
|----------|----------|----------|----------|----------|--|
| Plocha 1 | Plocha 2 | Plocha 3 | Plocha 4 | Plocha 5 |  |
| 45,93    | 45,91    | 45,94    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,95    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,94    | 45,94    | 45,95    |  |
| 45,93    | 45,91    | 45,94    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,95    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,95    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,94    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,94    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,94    | 45,94    | 45,94    |  |
| 45,93    | 45,91    | 45,94    | 45,94    | 45,94    |  |

| HOCUT 795 B |          |          |          |          |  |
|-------------|----------|----------|----------|----------|--|
| Plocha 1    | Plocha 2 | Plocha 3 | Plocha 4 | Plocha 5 |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,98    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,98    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |
| 46,00       | 45,99    | 45,99    | 45,99    | 45,99    |  |

Naměřené hodnoty rozměrové přesnosti pro jednotlivá procesní prostředí:

| EOPS 1030 |          |          |          |          |  |
|-----------|----------|----------|----------|----------|--|
| Plocha 1  | Plocha 2 | Plocha 3 | Plocha 4 | Plocha 5 |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |
| 46,02     | 46,02    | 46,01    | 46,01    | 46,00    |  |