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Abstrakt

Táto diplomová práca sa zaoberá overeńım funkcionality grafického rozhrania v integrovaných
systémoch. Súčasné pŕıstupy využ́ıvajúce kamerové systémy pre optickú kontrolu sú charakte-
rizované nedostatočnou spol’ahlivost’ou, vysokými nákladmi, náročnou údržbou a náročnost’ou
na priestorové umiestnenie.

Ciel’om tejto práce je analyzovat’ a navrhnút’ nový pŕıstup k źıskavaniu grafických dát,
ktorý bude založený na spol’ahlivej technológii. Konkrétne riešenie využ́ıva technológiu FPGA
(Field-Programmable Gate Array) a celý systém je implementovaný na vývojovej platforme
PYNQ. Táto platforma zároveň obsahuje server s API, čo umožňuje jednoduchš́ı pŕıstup k
źıskaným dátam.

Výsledkom tejto práce je nová metóda overenia funkcionality grafického rozhrania vsta-
vaných systémov, ktorá bude sṕlňat’ požadované kritériá spol’ahlivosti a účinnosti. Takýto
pŕıstup by mohol nájst’ uplatnenie v priemysle a prispiet’ k zlepšeniu kvality a efekt́ıvnosti
kontroly kvality integrovaných systémov.

Summary

This thesis deals with the verification of the functionality of the graphical interface in em-
bedded systems. Current approaches using camera systems for optical inspection are charac-
terised by a lack of reliability, high cost, maintenance difficulties and spatial challenges.

The aim of this work is to analyse and propose a new approach to graphical data acquisi-
tion, based on a reliable technology. The specific solution uses FPGA (Field-Programmable
Gate Array) technology and the whole system is implemented on the PYNQ development
platform. This platform also includes a server with an API, which allows easier access to the
acquired data.

The result of this work is a new verification method of the graphical interface of embed-
ded systems, which will meet the required reliability and efficiency criteria. Such an approach
may find application in industry and contribute to improving the quality and efficiency of
quality control of embedded systems.

Kl’́učové slová

grafické rozhranie, vstavané systémy, FPGA, PYNQ, kontrola kvality
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Introduction

Quality control is an important part of embedded systems development. We can test electri-
cal, mechanical and software properties as well as the overall functionality of such a system.
This thesis primarily focuses on the quality control of graphical components, with a primary
emphasis on displays within the system.

Displays and other graphical interfaces play a crucial role of providing user with infor-
mation, instructions or warnings. For this reason, correct functioning of graphical interfaces
must be assured by intensive quality control.

Gathering data for these purposes can prove rather difficult for various reasons. If testing
includes monitoring instructions for the display, the testing environment might not catch
errors caused by faulty display driver. Another solution could be to monitor graphical output
directly by external camera, but this method is complex, not always reliable and very space-
consuming. Another solution would be to monitor dataflow which describes the exact data
that are sent to display pixels. This dataflow is extremely fast and contains a large amount
of data compared to instructions sent by microcontroller.

The aim of this work is to develop a system that will ensure reliable and accurate image
data that is acquired from the communication between the display controller and the display
itself. Based on this requirement, the chosen medium for obtaining the necessary data is
FPGA technology, specifically the PYNQ Z-2 development board. The software for the ac-
quisition, processing and subsequent distribution of the image data based on DVI-D protocol
is designed and implemented directly on PYNQ Z-2.

10



1 Problem analysis

This thesis is focusing on three tasks:

1. Research commonly used display-to-processor interfaces for embedded display periph-
erals

2. Design and implement image data acquisition using a PYNQ platform

3. Design and implement a suitable interface for passing image data to the test framework

The frame gathering system should be superior to other used methods in speed, quality
of gathered data and reliability. Speed is measured in FPS (frames per second). This unit
describes how many frames can display refresh per second. Quality of data compares the
theoretical real and received data and evaluate their similarity. The replicability of the above
units is evaluated by reliability. Following table sets a minimum that the final system must
handle.

Res FPS
100x100 15
500x400 14
960x544 12
1280x720 10

Table 1.1: Minimum requirements for final system [source: author]

1.1 Quality control in embedded development

Quality control in embedded development is a crucial mechanism for ensuring functionality
of final embedded solution. The process involves:

� Defining clear conditions which must be met

� Create testing environment

� Use testing environment to ensure the system satisfies defined conditions

The objective is to identify any problems which have negative impact on the effectivity or
overall functionality of the final system. Mechanical and electrical tests are not included in
this thesis.

11



1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

By using tools such as testing frameworks which manually or automatically perform soft-
ware tests on developed system, the user can evaluate system’s performance and quality.
These tests consist of testing framework inserting known inputs to a system and then com-
paring the expected outputs (defined by conditions) to real outputs.

Testing framework Tested embedded system

Test cases User

known input

real system output

preprogrammed tests

test outputs

Figure 1.1: Simple diagram of quality control loop [source: author]

Process displayed in figure 1.1 consists of few simple steps:

1. User defines test cases based on tested conditions

2. Testing framework is connected to tested embedded system

3. Testing framework starts test cases with expected outputs

4. Real outputs are compared to expected outputs

5. Results are provided to user who can update test cases or fix errors in embedded system

This process is straightforward for simple digital or basic analog signals. If user wants to
test more advanced peripherals such as audio, high frequency signals or graphical outputs,
advanced signal processing systems must be used to process the real system output.

The processing must be non-destructive meaning that the details and quality must not
be lost due to destructive compression or other signal simplification methods.

1.2 Display quality control

Displays are one of the most important graphical peripherals in embedded systems. Displays
are used for informing, warning or instructing people. Graphical outputs are used in a
plethora of applications, and thus, quality control of such devices is a relevant topic.

In order to design a data gathering mechanism for testing framework, a display type must
be defined.

12



1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

Testing framework Tested embedded system

signal processing unit

known input

complicated signalsimplified signal

Figure 1.2: Signal processing unit position in data gathering loop [source: author]

1.2.1 Technologies of display devices

Display devices can implement different technologies for outputting graphical data. Most
common display technologies are:

� LCD

� OLED

� LED

� E-ink

LCD displays

LCD or Liquid Crystal Display are widely used in devices such as TVs, monitors or
smartphones.

These displays utilize a unique technology that involves liquid crystals positioned between
layers of glass or plastic. The liquid crystals, which are rod-shaped molecules, can twist and
untwist in response to an applied electric current. [1] LCD can display monochrome as well
as color images.

Figure 1.3: Monochrome LCD display [4]

This property allows for precise control over the passage of light through individual pixels.
Color is achieved by employing colour filters and dividing pixels into subpixels of red, green,
and blue. [1]

13



1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

Figure 1.4: LCD working principle [3]

OLED displays

OLED or Organic Light Emitting Diode displays are similar to LCD technology. OLED
displays are composed of light-emitting pixels thus not requiring back-illumination as LCD.

Figure 1.5: Difference between LED and (AM)OLED display [5]

AMOLED is a branch of OLED technology. The working principle is the same but
AMOLED uses more advanced colour control mechanisms. OLEDs produce images by light-
ing or dimming specific RGB pixels similar to classic light emitting diode, hence, image data
is also an analog signal describing the intensity of each RGB component. [2]

14



1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

Figure 1.6: One of many possible structures of OLED display under microscope [6]

LED displays

LED displays use light emitting diodes to display information. This type of displays is
mostly used if simple information is to be shown such as numbers and basic letters. LED
displays are also used in conjunction with LCD displays as back illumination.

LED displays are simple devices controlled by digital inputs and can be used to display
colour of monochrome images especially on large formats.

Figure 1.7: 8 segment monochrome LED display [7]

E-ink displays

E-ink displays use very different display technology compared to LCD or OLED displays.
E-ink or electronic paper use microcapsules containing charged black particles suspended in
white or clear fluid.

These particles can be triggered and moved to top of the capsule displaying black pixel.
These displays have extremely low power consumption and are bistable, meaning that energy
is not needed to maintain displayed content. [8]

Cross-section of E-ink display is shown in figure 1.8
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1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

Figure 1.8: E-ink capsules [8]

1.2.2 Display dataflow

Controlling any display can be achieved by various means.
Dataflow in this thesis is the communication between user programmed controller and the

display graphic controller which can be either part of embedded system or a part of display
as described in figure 1.9.

The difference between command dataflow and frame dataflow is discussed in chapters
2.2 and 2.3.

Embedded system controller

Display graphic controller

Display driver

Display pixels

command dataflow

frame dataflow

embedded system

display system

embedded system

display system

user programmed code

Figure 1.9: Simple diagram of display dataflow [source: author]

Frames or pixel data are stored as bytes or bits. If the display is monochrome, the value
of a pixel can be stored as 1 or 0 in a single bit. If a display has a colour screen, the value

16



1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

of each pixel must be represented by multiple values.
Commonly used is the RGB format which stores the intensity of each pixel as n bit

number. The number of bits is determined by hardware and software capabilities of display
driver. Commonly used is 16-bit, 18-bit or 24-bit RGB format. This means that value of
each color is stored in this 16,18 or 24 bit number.

Figure 1.10 represents 24-bit color format.

8-bits of information (0-255)

8-bits of information (0-255)

8-bits of information (0-255)

Figure 1.10: Single 24-bit pixel color value storage [source: author]

The ratio in which the colours are stored is defined in the name of a format. For example
RGB565 tells that the red value is represented by 5 bits, green value by 6 bits and blue by 5
bits, together combined in 16 bit (2 bytes) number. RGB888 stores all values equally (3 ∗ 8)
in 24-bit (3 bytes) number.

Serial protocols

Serial protocols use the serialization of data which are then sent as a string of bits according
to chosen protocol.

Most notable and commonly used serial protocols are:

� UART

� IIC (I2C)

� SPI

� CAN

Serial protocols are usually more connection-efficient requiring only few physical connec-
tions compared to parallel protocols. Serialization of data causes significantly slower data
transfer since only one bit can be transferred each clock cycle.

Serialization of data is shown in simplified figure 1.11. As shown in the figure serial data is
24 times slower (for RGB888 color format). Serial protocols are mostly used for monochrome
displays where only ones and zeros are transferred thus every pixel is represented by one bit,
or if low FPS of the color display is sufficient.

17



1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

Parallel protocols

Parallel protocols are designed to maximize dataflow. To achieve this, sent data are dis-
tributed into multiple data lines. The distribution can differ. For example display driver
ST7920 can be set to accept 4-bit parallel interface where a 8-bit information is split into
two 4-bit numbers sent one after another. ST7920 can also be set to accept 8-bit parallel
interface and 8 datalines are needed to transfer all 8-bit at the same time. [9] Parallel data
sending is shown in simplified figure 1.11.

Figure 1.11: Serial and parallel dataflow example [source: author]

Display parallel interface (DPI)

Signal name Used for
Clock Synchronizing all transferred data, signalizes to move to next pixel

Data enable Signalizing valid pixel data
H-sync Signalizing driver to move to new line
V-sync Signalizing driver frame ended
Red [7:0] 8 signal lines defining value of red color (0-255)
Green [7:0] 8 signal lines defining value of green color (0-255)
Blue [7:0] 8 signal lines defining value of blue color (0-255)

Table 1.2: Signals transferred by display parallel interface [source: author]

Display parallel interface is a type of parallel protocol where data is sent via n datalines
and 4 synchronization signals. Number n is defined by color format. For example as previ-
ously discussed 24-bit color format will require 24 datalines. All signals that DPI protocol
transferring RGB888 color format uses is summarized in table 1.2.
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1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

Given timing diagrams show basic functioning of DPI protocol for better understanding.
Figure 1.12 shows how display receives information about pixel value. Each clock cycle

a value is assigned to red, green and blue value. These values are written to display only
when data enable signal is active. H-sync and V-sync signals are static while pixel values are
transferred.

Clock

Data enable

H-sync

V-sync

Red 0x00 0x02 0x03 0x04 0x05 0x06 0x07 0x08

Green 0x00 0xBB 0xCC 0xDD 0xEE 0xFF 0x11 0x22

Blue 0x00 0xE1 0xD2 0xC3 0xB4 0xA5 0x96 0x87

Figure 1.12: Timing diagram of pixel values information [source: author]

Figure 1.13 shows how display receives information to move to another line. Low value
of data enable signalizes that display will receive no more pixel data.

Clock

Data enable

H-sync

V-sync

Red 0x25 0x23 0x00 0x08 0x46 0x23

Green 0x53 0xAB 0x00 0x11 0x12 0xAB

Blue 0x44 0x48 0x00 0x87 0x22 0x48

Figure 1.13: Timing diagram of new line [source: author]
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1 PROBLEM ANALYSIS 1.2 DISPLAY QUALITY CONTROL

Clock

Data enable

H-sync

V-sync

Red 0x25 0x23 0x00 0x08 0x46 0x23

Green 0x53 0xAB 0x00 0x11 0x12 0xAB

Blue 0x44 0x48 0x00 0x87 0x22 0x48

Figure 1.14: Timing diagram of end of frame [source: author]

Figure 1.14 shows how display receives information that the whole frame has ended. The
display driver will move the pixel pointer to the beginning of a whole frame.

Figures are simplified, however, real timing functioning is the same.
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2 Image data acquiring

The real system output as defined in figure 1.1 can be acquired by a plethora of methods.
Following section discusses the technology behind each method, its advantages and disad-
vantages.

2.1 Photographic equipment application

The easiest method to implement is to use photographic equipment. Digital camera inter-
faces are present in any modern computing unit and passing data to testing framework is
very simply implemented, especially, if testing framework is based on popular programming
language such as Python or Rust. Camera system can be integrated to the testing process
by simply capturing the produced image by the display.

Testing framework Tested embedded system

Test cases User

Digital camera

known input

pre-programmed tests

test outputs

graphical outputprocessed data

optional user input

Figure 2.1: Diagram of capturing data by camera [source: author]

2.1.1 Camera system

Camera system, in context of this thesis, consists of a camera sensor and camera lens. Both
are crucial when dealing with accurate data aggregation.
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2 IMAGE DATA ACQUIRING 2.1 PHOTOGRAPHIC EQUIPMENT APPLICATION

Camera sensor

Camera sensors can be split into two basic technologies:

� CCD

� CMOS

Both types serve the same purpose, to receive and process light particles coming from external
source.

All sensors are composed of light sensitive semiconductors (photodiodes). Both sensor
types need additional components such as amplifiers, filters or other components which are
used to convert analog value of received light particles to digital value which is subsequently
used as image data.

CMOS
CMOS sensor is used in most commercial digital cameras. These sensors consist of small

blocks representing pixels which are equipped with:

� photosensitive diode

� electron trap

� analog amplifier

� analog to digital converter

Each pixel can produce final digital value of each pixel, basically no other components
are needed to read image data.

Figure 2.2: Diagram of CMOS chip [16]

Most CMOS sensor use rolling shutter. This process of capturing image data in which
each row of pixels is exposed to light separately causes an unwanted effect if CMOS sensor
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2 IMAGE DATA ACQUIRING 2.1 PHOTOGRAPHIC EQUIPMENT APPLICATION

is capturing a fast moving image. The effect of rolling shutter can be overlooked if data on
display are static.

Figure 2.3: Rolling vs global shutter [17]

CCD
CCD sensor is typical for its ability to capture whole frame in one instance. CCD sensors

utilize a method where the charge built on each photodiode is passed to common output
which is then passed to amplifiers and analog to digital converters. The advantage to this
technique which can be defined as global shutter is that there is no motion blur and CCD
chips suffer less from image noise since the pixel area can be used more effectively[10].

In conclusion, both sensors are suitable for the purpose of display output data capturing.
The only exceptions are displays with very fast refresh rate and fast moving objects, then a
CCD sensor with good timing is preferred. Both sensors need to be calibrated and the cost
is comparable.

2.1.2 Data degradation

Data degradation is one of the main drawbacks of camera system frame gathering. Data
degradation can occur in camera sensor resolution and camera sensor color mask.

Camera sensor resolution

As mentioned in chapter 2.1.1, camera sensor is made from 2D-array of pixels. If the test-
ing framework requires exact pixel color information then the camera sensor must have a
resolution of equal (if aspect ratio is the same) or greater than tested display.

Ksensor ≥ Kdisplay (2.1)
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2 IMAGE DATA ACQUIRING 2.1 PHOTOGRAPHIC EQUIPMENT APPLICATION

Figure 2.4: Diagram of CCD chip [16]

Where K = resolution in pixels.
Average camera sensor has a resolution of 12 Mpx which corresponds to 4056x3040 px[11]

and maximum resolution defined in table 1.1 is 1920x1080 px. The resolution difference is
not a problem for this application.

Example of position of display in camera frame is in figure 2.5

Figure 2.5: Example of display area in camera area [source: author]

However because the resolution is rarely identical, the gathered frame must undergo
intense postprocessing to get precise pixel information gathered from the display or alterna-
tively the whole setup must be exactly calibrated such that the display screen area exactly
corresponds to pixel size of the camera sensor.
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2 IMAGE DATA ACQUIRING 2.1 PHOTOGRAPHIC EQUIPMENT APPLICATION

Camera sensor color mask

Camera sensor pixels does not distinguish between colors. The color information is obtained
by filtering the light by Brayer mask or similar filter. This mask is placed on top of photo-
diodes and filters incoming light based on wavelength (color).

Light Green filter

Red filter

Blue filter

Red sensitive pixel

Green sensitive pixel

Blue sensitive pixel

Green color value

Red color value

Blue color value

Figure 2.6: Color selection and color value extraction diagram [source: author]

This causes a photodiode to react only when light of specific spectrum passes the Bayer
mask. The pattern of bayer mask is shown on figure 2.7.

Figure 2.7: Bayer mask pattern layed on photodiodes [12]

The pattern is mosaic with a predominance of green pixels which was decided by Ko-
dak in 1976 to mimic the physiology of human eyesight. Because the pattern is mosaic, a
postprocessing called demosaicing must be applied.

This process interpolates the lost or missing color data. This postprocessing loads the
data with an error which can produce inaccurate results. If the frame capturing system
uses postprocessing such as sharpening or even color manipulation, the resulting data are
unusable due to their inaccuracy and the fact that they do not represent the real output of
the display.

To overcome these issues, very intense and sometimes impossible data preprocessing and
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2 IMAGE DATA ACQUIRING 2.1 PHOTOGRAPHIC EQUIPMENT APPLICATION

Figure 2.8: Interpolation of color data [15]

calibration must be applied before the data are used in testing framework. This will result in
either incorrect results of testing framework or the need to design less strict testing framework
which might lead to subtle errors.

However, if identical display data is not required, this problem could be overlooked.

2.1.3 Space occupation

Space occupation of any testing technology is important if the testing is done on multiple
displays. As mentioned in chapter 2.1.2 camera sensor should be offset from a display to
match pixel area. Even if postprocessing of interpolating colors was acceptable, the camera
lens distortion is most notable on edges of frame and sensor offsetting is encouraged.

For these reasons, the overall space occupation of such a testing stand is much larger
compared to other methods which require only minimal additional hardware for testing.

2.1.4 Image distortion

When capturing frame through a camera, lens distortion might occur. Lens distortion is a
type of data degradation which happens because camera lenses bend the incoming light.

Lens distortion can be manifested in two main forms: barrel distortion and pincushion
distortion. Barrel distortion causes straight lines to appear curved outward, like the sides
of a barrel. On the other hand, pincushion distortion makes straight lines curve inward,
resembling the shape of a pincushion. [21]

Additionally, chromatic aberration can contribute to image distortion. This occurs when
different colors of light focus at slightly different points, resulting in color fringing along
high-contrast edges. [22]

These problems can and must be fixed by heavy image postprocessing, expensive lenses
and more distance between sensor and display which increase space occupation of this system.
All of these solution might produce additional unwanted errors or damage data integrity
during postprocessing.
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Figure 2.9: Example of lens distortion and chromatic aberration [23]

2.2 Serial debugging

Serial debugging is another solution to gathering the output data. This process is based on
the fact that embedded system controller must send commands to display driver as shown
on figure 1.9.

2.2.1 Serial communication with display

Due to limited connection capacities of any microcontroller, serial protocols are widely used
in embedded systems. Such protocols (more discussed in chapter 1.2.2) can be used to
send exact information about what is requested to be shown on display, or preprogrammed
commands are used. In either way, this communication is programmed by the user and is
exactly defined.

Example of such communication is ST7920 display controller IC, which can communicate
with MCU via SPI protocol. ST7920 has preprogrammed font and cursor position registers
so the user only needs to send information what string is to be shown on display and its initial
position. In contrast, the graphical option requires the MCU to send exact information about
which pixel is to be turned on or off. For colour displays the dataflow of such commands are
much more data heavy.

For this reason some display graphic controllers come preprogrammed or if they are part
of embedded system, the user can pre-program them to send predefined data to display driver
which greatly reduces the information needed to be sent from the MCU. This comes at the
cost that command dataflow does not contain exact pixel values which is fatal when trying
to reconstruct the image.

2.2.2 Image reconstruction

Image reconstruction when using serial communication is rather simple procedure due to
previously mentioned display graphic controller responsible for translating the commands
into actual image data.

Since the frame and display graphic controller behavior is predefined. It is as simple as
catching a command to display some information via serial communication and matching it
to requested command.
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Embedded system controller

Serial data sniffer

Display graphic controller

Display driver

Display pixels

Testing framework input

command dataflow

command dataflow

frame dataflow

embedded system

display system

embedded system

display system

Testing framework output

Reconstructed image

Figure 2.10: Serial dataflow capture diagram [source: author]

The biggest flaw of this method is, that serial debugging cannot see errors that might be
produced by the display driver or the display itself since it is monitoring only the commands
sent.
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2.3 Frame grabbing hardware

Embedded system controller

Display graphic controller

Frame data sniffer

Display driver

Display pixels

Testing framework input

command dataflow

frame dataflow

frame dataflow

embedded system

display system

embedded system

display system

Testing framework output

Reconstructed image

Figure 2.11: Frame dataflow capture diagram [source: author]

The method which is used in solution in this thesis is frame grabbing hardware. This
method is similar to serial debugging with the difference of sniffed dataflow. Serial debug-
ging focuses on command dataflow while the frame grabbing hardware is focusing on frame
dataflow.

Frame grabbing hardware is a type of hardware device designed to capture video signals
and convert them into digital format that can be processed by testing framework in this case.

2.3.1 Video signal protocols

Video signal protocol is a standardized form of transmitting video data. Standardization
makes the protocols reliable in compatibility and interoperability. Video signal protocols can
be separated into two basic categories.

� Analog video protocols

� Digital video protocols
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Analog video protocols

Analog video protocols are an old method of transmitting video. Today mostly digital proto-
cols are used. Analog protocols use voltage level that represent an intensity of some color and
brightness. Analog protocols also include timing and synchronization signals. An example
of analog video protocol is VGA.

� Old method

� Not usable for high resolutions

� Uses analog voltage levels

� Susceptibility to interference

� Timing is challenging

� Limited colour accuracy

� Signal degradation based on high distances

Digital video protocols

Digital video protocols are a method of transmitting video via digital signals. The video
signal is transmitted in discrete manner using ”HIGH” and ”LOW” voltage levels. Video
signal is represented as encoded digital data which can be transferred parallelly or serial-
ized, see chapter 1.2.2 for explanation. Digital video protocols include for example HDMI,
DisplayPort, DVI, DPI and many more. Digital protocols can handle higher resolution,
higher framerates and better image quality as analog protocols.

� Binary representation (digital signal)

� Supports high resolution

� Resistant to signal degradation over long distances

� Full color accuracy

� Resistant to interference

� Adjustable for various use cases

2.3.2 Image reconstruction

Image reconstruction when using frame grabbing hardware is based on ”simulating” display
driver. Since frame grabbing hardware can capture raw graphical information the simulation
is a simple decoding of received signal. This method can be applied to analog or digital
signals provided that analog signal is converted into digital signal that can be processed by
a decoding unit.
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2.3.3 DPI data

As an example a DPI protocol, described in 1.2.2, data would be decoded by following steps:

1. Capture DPI data

2. Synchronize data (if needed)

3. Decode data

4. Save and output frame

The maximum speed a frame grabbing hardware can go through all needed steps is defined
in frames per second. Perfect system would have FPS of display and FPS of grabbed frames
equal.

Capturing DPI data

The fastest signal defining highest frequency in DPI protocol is the clock signal. The clock
signal is used to synchronize the whole protocol. Frequency of clock signal can be defined by
the following formula:

fclock = H ×W × fdisplay (2.2)

where fclock is frequency of the clock signal inHz, H is height of display in pixels, similarly
W is width of display in pixels and fdisplay described the refresh rate of the display in Hz.

According to the requirements, table 1.1 the maximum expected frequency of display is

fclock,fullHD = H ×W × fdisplay

fclock,fullHD = 1920× 1080× 24

fclock,fullHD ≈ 50× 106 (2.3)

The minimum theoretical required clock frequency of frame grabbing hardware is equal
to DPI clock frequency. DPI protocol validates data on rising edge of clock. If frame grabbing
hardware was a little offset from the display clock, the waveforms would look as displayed in
following figure:

However since the frame grabbing hardware must simultaneously process captured data,
the frame grabbing clock frequency must be higher. The exact ratio is discussed in chapter
3.2.3.
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DPI clock

DPI data 0x00 0x154684 0xA2D842 0xAA62CD ...

Frame grabbing clock

Frame grabbing data 0x00 0x154684 0xA2D842 0xAA62CD

Figure 2.12: Theoretical timing diagram of frame grabbing hardware [source: author]

Synchronizing data

The synchronization of data step is required only if display clock and display data are not
exactly synchronized. As an example, if display data are slower than display clock and frame
grabbing clock is faster than the difference a data mixup can occur. When this error is
present on the display system, the simplest solution is to offset frame grabbing data read by
a fixed value. Following figures display this error and its correction.

DPI clock

DPI data 0x00 0x154684 0xA2D842 0xAA62CD

Frame grabbing clock

Frame grabbing data ... 0x000000 0x154684 0xA2D842

Figure 2.13: Data synchronization error [source: author]

DPI clock

DPI data 0x00 0x154684 0xA2D842 0xAA62CD

Frame grabbing clock

Frame grabbing data 0x00 0x154684 0xA2D842 0xAA62CD

Figure 2.14: Data synchronization error correction [source: author]

Figure 2.13 displays a situation when frame grabbing clock acquires data on rising edge
of display clock. Since display data are slower, the frame grabbing hardware captures an old
pixel value which causes the output data to be corrupted and unusable.

Figure 2.14 displays one of possible fixes/protection against this error. Frame grabbing
hardware will wait for a specified time (3 clock signals in waveform) before capturing display
data.
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Decoding captured data

For decoding DPI image data all signals listed in table 1.2 must be used. All data are saved
into frame array. Frame grabbing hardware reacts to display clock with delay according to
figure 2.14 if needed. Display data are concatenated into single value with size dependant on
color format (8,16,24,... bit value). Frame grabbing hardware then reacts to H-SYNC that
signalizes new line, and line index of frame data is increased. Another important signal is V-
SYNC which signalizes that whole frame has been transferred and frame grabbing hardware
can proceeed to the next step.

Details about this process are discussed in chapter 3.2.4.

Output gathered frame

Frame grabbing hardware saves the gathered data in internal memory in an array or similar
memory structure. These data could be directly used to evaluate quality in testing frame-
work, but sometimes other image formats, such as PNG, is preferred. Both formats, raw or
translated, need to be somehow transferred to the testing framework.

For this reason a frame grabbing hardware must be able to output gathered data effectively
and in lossless format. Data can be transferred directly via datalines (USB, ...) or some
on board protocol (SPI,I2C, parallel,...) if frame grabbing hardware is located on the same
system as testing framework. However, if these two subsystems are separated or more testing
frameworks need access to the grabbed data, a server is a more flexible solution. A local server
able to provide data to any testing framework when requested is preferable solution since
these two subsystems do not have to be integrated together and programmer can access data
manually if needed either for manual inspection or any other reason.

Server and data access setup is discussed in chapter 4.3
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2.4 Chosen technology

Based on chapters 2.1,2.3 and 2.2, table 2.1 was constructed to compare available frame
grabbing technologies.

Technology Practicality Data integrity Reliability Scalability Max. display
resolution

Camera Costly and
spacecon-
suming

Depends on
sensor and
environment

Depends on
build quality

Very low
due to
space oc-
cupation
problems

Based on lens and
camera sensor,
has upper limit
based on the
available space

Serial
debug

Cheap, easy
integration

Very low or none Very high,
produces
consistent
results

Very high,
easy to
apply to
muliple sys-
tems

No limits

Frame
grabbing
hardware

Costly,
complicated
integration

1:1 data values,
does not check
physical display

Very high,
based on
high-end
technology

Very high,
compact
and easy to
expand

No limits

Table 2.1: Available technology comparison [source: author]

Frame grabbing hardware was used as a solution for its exact and reliable data
values. Additionally, frame grabbing hardware is superior in compactness, scalability and no
display resolution or data protocol limitation. Disadvantages such as high cost and compli-
cated integration can be reduced by using the right technologies to simplify user experience.
If display correctness testing is a requirement, frame grabbing hardware can be paired with
camera technology.
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3 FPGA implementation

Based on the requirements for speed discussed in chapter 3.2.3 and the practical data output
requirement discussed in chapter 2.3.3 PYNQ-Z2 development board was chosen for it’s
FPGA circuit implementation along the processing system. [13].

Figure 3.1: PYNQ-Z2 [13]

3.1 PYNQ-Z2 programmable logic

PYNQ-Z2 features a programmable logic circuit based on a Xilinx Artix-7. FPGA is a type
of integrated circuit which can be configured by programmer to perform specific tasks by
programming digital logic gates and arrays. FPGAs excel at parallel processing, versatility
and speed.

3.1.1 FPGA on PYNQ

PYNQ-Z2 takes the versatility of FPGA technology a step further by implement it on a
system with ”PYNQ overlay” which is capable of simple interconnection of FPGA and pro-
cessing system. FPGA for PYNQ can be programmed using commercially available IDEs
such as Vivado, which is used for this application.

Table 3.1 summarizes some important specifications regarding FPGA technology on
PYNQ-Z2.
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3 FPGA IMPLEMENTATION 3.2 FPGA PROGRAMMING

Maximum clock frequency 200 MHz*
Logic slices 13300
fast RAM 630 kB
DSP slices 220

Table 3.1: PYNQ-Z2 FPGA basic specifications [13]

*The actual maximum clock frequency is defined by the complexity and how time de-
manding a designed circuit is.

3.2 FPGA programming

Chosen technology for gathering display data is frame grabbing hardware based on FPGA
technology. FPGA technology provides fast, effective and robust solution for extremely fast
data manipulation. The FPGA ”circuit” is designed as a block diagram in Vivado IDE using
VHDL programming language must be capable of the following points:

Frame dataflow (DPI)

Timing adjustment

DPI to AXI video

AXI video to memory

Frame output

video protocol

vid. protocol correct timing

AXI video

Digital data

Figure 3.2: Simplified FPGA data processing [source: author]

1. Gather DPI data

2. Analyze DPI data and adjust timing if needed

3. Convert DPI data into internal AXI protocol

4. Save frame data into buffer RAM memory

5. Enable processing system to access the frame via interconnections

6. Enable processing system to access information about DPI protocol (frequency, resolu-
tion, etc.)

The final block diagram is displayed in figure 3.3.
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3 FPGA IMPLEMENTATION 3.2 FPGA PROGRAMMING

3.2.1 Vivado

Vivado is an integrated development environment designed by Xilinx which also provides
an integrated circuit used on PYNQ-Z2 board. Vivado is used for design, verification and
implementation of FPGA circuits.

Circuit is designed as a block design where each block is programmed in VHDL or Verilog
programming language. Some blocks are preprogrammed by Xilinx and some blocks are
programmed specifically for this thesis. Following subsections discuss each part of the FPGA
design.

Compiling output for FPGA

Compiling output data for FPGA is different than for other programming languages.
For example when C languages are compiled, the compiler follows steps such as prepro-

cessing, compilation and linking [24].
Compiling code for hardware description languages such as VHDL used in this project

for FPGA system requires different approach. Compilation of VHDL consists of:
1. Analysis: this phase involves reading and parsing the VHDL source files and building

an intermediate representation, any parsing or syntax errors are caught in this step.
2. Elaboration: This step instantiates all components and elaborates the design hier-

archy.
3. Synthesis: Until this step, hardware was interchangeable. Synthesis step generates

netlist of all elements on specific hardware.
4. Implementation: Implementation retrieves the netlist and generates routes that will

be later programmed on the target hardware.
5. Generating bitstream: While synthesis and implementation steps defined all con-

nections and settings on FPGA target, the generated bitstream contains all the information
needed to program the FPGA circuit. This file with extension .bit is loaded into processing
system and can be used later to setup the programmable logic of mentioned PYNQ-Z2.

3.2.2 AXI protocol

AXI stands for Advanced eXtensible Interface and is a widely used protocol in the field
of digital design and FPGA. It is a protocol and set of rules defining how each block and
module communicates within digital system, in this case FPGA. It is crucial to highlight the
advantages of this protocol since its fast and reliable. AXI uses master-slave architecture,
where master initiates transaction and slave responds.

AXI protocol has subsets, each designed and perfected for a specific task.
AXI4 is a standard and is used when high frequency and performance is needed. AXI4

includes features such as burst transfers or separate channels.
AXI4-Lite is a simplified version of AXI4, it is designed for a simpler control or low-

bandwidth applications. It has a reduced complexity compared to AXI4 and additional
features, such as burst transfers or separate channels, are not present.

AXI4-Stream is designed for streaming data interfaces. Unlike AXI4, which is more
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transaction-oriented, AXI-Stream is optimized for continuous streams of data.
AXI4-Stream Video is a subset of AXI-Stream and is also stream-oriented protocol

optimized for streaming video data. This protocol includes conventions generally used in
video processing applications.

AXI-Interconnect is not a protocol itself but it is an important component used to
connect multiple AXI masters and slaves.

3.2.3 Data timing correction using FPGA

Frame dataflow (DPI)

Timing adjustment

DPI to AXI video

AXI video to memory

Frame output

video protocol

vid. protocol correct timing

AXI video

Digital data

Figure 3.4: FPGA data process timing correction block [source: author]

Data timing correction problem is a common issue that occurs anywhere data is being
sampled or gathered in any form.

In theory, we should be able to gather digital signal with sensor having the same sampling
frequency as the source data. However, in reality this is not true and the source must have
higher frequency to correctly gather information about/from the source.

For this reason a measurement was conducted where the impact of different ratios of
fsensor

fsource
was measured.

For measurement, a frequency generator was used as a source. PYNQ with custom-made
frequency analyzer was responsible for frequency detection. Graphs showing the results from
measurements demonstrate what frequency the FPGA circuit measured with specifically
selected prescaler of sampling clock frequency.

Graphs of final measurements are displayed in figure(s) 3.5
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(a) Source set to 31.5 Hz (b) Source set to 122 Hz (c) Source set to 500 Hz

(d) Source set to 4 kHz (e) Source set to 7.8 kHz (f) Source set to 31 kHz

(g) Source set to 61.5 kHz

Figure 3.5: Measurements of frequency identification correctness based on sensor and source fre-
quency ratio [source: author]

From these measurements the recommended ratio of fsensor to fsource is 5. Which means
that the PYNQ board should sample the display with 5 times higher frequency.

3.2.4 Display parallel interface to AXI protocol

After the DPI data enter the FPGA and are correctly timed, they must be translated to
protocol the internal wiring of FPGA can work with. The protocol chosen is AXI-stream
video since it is the easiest to implement for video data transfer.

Axi-stream protocol uses different naming for each signal. Table 3.2 summarizes the
comparison between DPI data and AXI-stream data.

The protocols are similar in functioning with the only difference in effectivity and speed
in which AXI is better since it is an internal communication protocol.

This conversion is handled by Video to AXI4-Stream IP. This IP must be set up before
generating bitstream and cannot be edited later in the process. Because of this disadvantage,
every display protocol and colour format must have individual bitstream generated. Since
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Frame dataflow (DPI)

Timing adjustment

DPI to AXI video

AXI video to memory

Frame output

video protocol

vid. protocol correct timing

AXI video

Digital data

Figure 3.6: FPGA data process DPI to AXI block [source: author]

DPI AXI Purpose
Data enable valid Signalizes valid pixel data

H-sync tuser Synchronizes end of line
V-sync tlast Synchronizes end of frame
Data data Colour values, changes with each pixel

Table 3.2: DPI to AXI signals [source: author]

the bitstreams can be uploaded by the processing system this disadvantage is not detrimental
to the project.

3.2.5 Display check IP

Display check IP is a quintessential part of the whole design. This IP is responsible for
monitoring information about the connected display, statuses of all data transfers, statuses
of errors that do not cause system crash and report all the information to processing system.
The processing system needs this information for proper functioning and whole system setup.
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3.2.6 Video direct memory access (VDMA)

Frame dataflow (DPI)

Timing adjustment

DPI to AXI video

AXI video to memory

Frame output

video protocol

vid. protocol correct timing

AXI video

Digital data

Figure 3.7: FPGA data process AXI to memory block [source: author]

Video direct memory access or VDMA is a block commonly used in the Xilinx Vivado
development environment. VDMA enables the efficient transfer of video data between differ-
ent memory locations without the need for constant intervention from the processing unit.
It is often employed in applications such as video streaming, image/video processing, and
graphics rendering.

By using VDMA common problems with memory accessing are solved beforehand, allow-
ing the processing unit to simply adjust VDMA settings on the fly and gather raw frame
data by directly accessing parts of memory where the frame is stored.
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4 Display sniffer server

Frame dataflow (DPI)

Timing adjustment

DPI to AXI video

AXI video to memory

Frame output

video protocol

vid. protocol correct timing

AXI video

Digital data

Figure 4.1: FPGA data process frame output block [source: author]

When frame data arrive to the system memory and are saved in known memory location
handled by VDMA (3.2.6), they must be further processed and delivered to the user.

The output of frame can be handled by plethora of methods. For the highest possible
simplicity and practicality for the user, a server-client method is used.

This method ensures that the data can be accessed by any device connected to the same
network as the PYNQ testing station.

Frame dataflow (DPI) Testing framework/user

Image data in default format

Request for frame sent to specific IP address

Figure 4.2: PYNQ and testing framework connection [source: author]

4.1 PYNQ-Z2 processing system

Further data manipulation is handled by PYNQ processing system.
The processing system can be described by few key points:

� Dual-core ARM
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� Clocked at 650 MHz

� Capable of running operating system

� Multiple connectivity options (USB, Ethernet, UART, etc..)

� PYNQ operating system based on Linux and Python environment

� Can interact with programmable logic via PS-PL interconnects

4.1.1 PS-PL interconnect

PS-PL interconnects are a crucial parts of PYNQ main processing unit. Processing system
and programmable logic cannot communicate and exchange data directly. This data manip-
ulation and communication must be handled by another subsystem. This subsystem ensured
correct timing and error handling. Following simplified diagram describes the internal layout
of ZYNQ.

Figure 4.3: Simplified internal ZYNQ diagram [18]

The PS-PL interconnect allows processing system to access any memory parts from pro-
grammable logic region. As mentioned in chapter 3.2.6 where VDMA is discussed, the VDMA
is responsible for saving image data to specific memory location and then pass their location
and size to processing system which can read it via the PS-PL interconnect directly from the
memory.
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4.1.2 Operating system

The processing system is hosting an PYNQ Linux operating system (OS). This operating
system manages hardware connections and provides a software interface for applications.

This OS can provide almost all capabilities exactly as any other Linux based OS, extended
by PYNQ overlay, enabling the access to PL part of ZYNQ chip via Python libraries. PYNQ
Linux can be managed either by connecting directly via USB or by ethernet.

For data access, software programming and overall manipulation jupyter notebook envi-
ronment or classic command line interface is used.

4.2 Data manipulation

Before the data in a form of images can be accessed or requested by the user, these data
must follow several steps:

1. Activate frame data gathering

2. Retrieve frame data from PL

3. Convert raw frame data into image

4. Apply post-processing to converted image

5. Save or send final image

4.2.1 Data gathering

Data gather is done by initiating FPGA overlay, VDMA and calling VDMA instance in
python script. VDMA must be setup with specific expected resolution. This initiation can
be changed any time.

VDMA is then started when frame data are to be gathered. Raw frame data are requested
and after they are received, VDMA is stopped to prevent memory overflow.

Simplified example of VDMA use case is described in code snippet 1.
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1 # import required packages

2 import pynq

3 from pynq import allocate, Overlay

4 import pynq.lib.video as pynq_video_lib

5

6 # initiate FPGA overlay and vdma instances

7 overlay = Overlay("bitstream.bit")

8 vdma = overlay.axi_vdma_0

9

10 # setup vdma module

11 vdma.readchannel.mode = pynq_video_lib.VideoMode(frame_width,

12 frame_height,

13 bits_per_pixel)

14

15 # read frame using asynchronous function

16 vdma.readchannel.start()

17 raw_frame_data = await vdma.readchannel.readframe_async()

18 vdma.readchannel.stop()

Code snippet 1: Simplified python code for VDMA handling [source: author]

4.2.2 Data conversion and post-processing

After raw frame data are saved in a variable, they need to be processed into usable image
format. After testing all formats, BMP was chosen. When raw frame data were processed
the BMP format proved to be the most effective in speed and quality. More details about the
testing in chapter 5.2.4. When image is saved as BMP, it is transformed into bytes format
in order to send it to user.

1 # create Image instance from raw_frame_data

2 bmp_image = Image.fromarray(raw_frame_data)

3

4 # save image instance and convert it to bytes format

5 with io.BytesIO() as buf:

6 image.save(buf, format='BMP')

7 image_bytes = buf.getvalue()

8 return Response(image_bytes, media_type = "image/bmp") # return bytes data to user

Code snippet 2: Simplified Python code raw frame postprocessing [source: author]

Another post-processing features such as image cropping or colour value editing can be
done using the Image object functions.
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4.3 Server API

As mentioned in chapter 4, server-client method of data accessing is implemented.
In order to make the server manipulation and data accessing as simple as possible a server

API is implemented.

4.3.1 FastAPI python package

FastAPI is a modern, fast (high-performance), web framework for building APIs with Python
programming language. It is designed to be easy to use, fast to run, and to produce fast code
[25]. Some key features and aspects of FastAPI include:

� Fast, supports asynchronism

� Secure, build-in features for higher security

� Websockets, in addition to HTTP, FastAPI supports WebSocket connections

� Auto documentation, useful when project gets larger

4.3.2 Server API

FastAPI is capable of maintaining server that is hosted on mentioned OS of PYNQ develop-
ment board.

Code snippet 3 shows a simplified example of such framework implementation with an
example function. If user or system wants to access wrapped function and retrieve data
returned by the function, IP address with the function path must be called. If input data
are to be sent, following format is used.

192.168.2.207:8000/path/data=my custom data input

1 # import fastAPI

2 from fastapi import FastAPI

3

4 # create framework app object

5 app = FastAPI()

6

7 @app.get("/") # web address to call wrapped function

8 def read_root():

9 return {"online"} # anything returned will be "sent" to user

10

Code snippet 3: Simplified python code for fastAPI utilization [source: author]

Display sniffer has several public functions accessible by user. Table 4.1 summarizes all of
them with brief comment. Details about these processes are discussed further below. Every
external method is handled by fastAPI and wrapped functions. Internal methods cannot be
accessed by the user.
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Function Used for Returns
root (initial function) default landing page,

initiates resolution detec-
tion

current settings of server

set color format used for setting
display color format

1 or error with details

set resolution used for defining
display resolution

1 or error with details

set overlay used for loading
FPGA circruit

1 or error with details

start vdma used for starting
VDMA frame gathering

1 or error with details

stop vdma used for stopping VDMA,
must
be used after frame reading

1 or error with details

read video used for retrieving multiple
frames in rapid succession

list of frames with video
statistics or error with de-
tails

read frame used for retrieving single
frame

image in specified format or
error with details

detect resolution used for manually
detecting resolution
of display

1 or error with details

reset server used for software reset,
erases all settings

1 or error with details

get possible settings used for retrieving
all possible settings

list of settings or error with
details

Table 4.1: Table of usable function in display sniffer API [source: author]

Root

Root function is the default function that gets called when the user accesses display sniffer
server. Root is used for checking if connection was established, if server is running and to
retrieve server settings. This function should be called when testing framework is initiated
or if connection/settings had to be checked.

Root is accessed by:
SERVER IP:PORT/
Root input data:

� None

Root conducts following steps:

1. sets up default overlay
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2. detects resolution of connected display

3. returns settings of display sniffer server

Set colour format

Colour format function is used for defining colour format of connected display. This colour
format must be known in advance. This function addresses a problem of different colour
format processing. Server has multiple bitstreams with different color format pre-cessing
capabilities included.
Color format function is accessed by:

SERVER IP:PORT/setColorFormat/colorFormat={color format}
Color format function input data:

� color format (RGB888, RGB565, etc.)

Color format function conducts following steps:

1. checks if input color format is valid

2. updates color format setting for correct bitstream

3. returns True (1) or error with details

Set resolution

Resolution setting is crucial for correct VDMA functioning. If the user does not know the
resolution of connected display, automatic resolution detection might be used. The resolution
includes porch regions which are empty pixels. The resolution must be set including porch
region which is later removed at the client side.

Set resolution function is accessed by:
SERVER IP:PORT/setResolution/

displayWidth={width}/displayHeight={height}
Set resolution function input data:

� width width of display + front porch in pixels

� height height of display + top porch in pixels

Set resolution function conducts following steps:

1. Checks if height, width are valid values (int!=0)

2. Updates internal resolution setting

3. Returns True (1) or error with details
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Set overlay

Set overlay is responsible for calling overlay set procedure. This procedure will ”upload” a
desired FPGA circuit to PL side of ZYNQ.

Set resolution function is accessed by:
SERVER IP:PORT/setOverlay
Set overlay function input data:

� None

Set overlay function conducts following steps:

1. Check if colour format was chosen

2. Check if resolution is set

3. Stops VDMA if it is running

4. Loads bitstream from memory and uploads it to PL

5. Initiates used IPs

6. Sets up VDMA (resolution, color format)

7. Returns True (1) or error with details

Start/Stop vdma

Starting and stopping VDMA is crucial for the correct functioning of the whole system.
Before each reading session, VDMA must be started. If no frame will be read in upcoming
time, the manual stopping of VDMA is recommended.

Start/stop vdma function is accessed by:
SERVER IP:PORT/startVDMA
or
SERVER IP:PORT/stopVDMA
Start/stop vdma function input data:

� None

Start/stop vdma function conducts following steps:

1. starts/stops the VDMA module

2. returns True (1) if operation was successful
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Read frame

Read frame is a basic function that can be used to retrieve frame data from display sniffer.
To use read frame function, correct overlay must be set first.

Read frame function is accessed by:
SERVER IP:PORT/readFrame/image format={image format}
Read frame function input data:

� image format format of returned image (BMP, Numpy array, JPEG, ...)

Read frame function conducts following steps:

1. checks if requested image format is valid

2. checks if resolution is set

3. checks if overlay is set

4. checks if VDMA is running

5. reads data from VDMA (async function)

6. converts raw data into requested format

7. returns frame in requested format

Read video

Read video is similar to read frame function. Its purpose is to capture multiple frames as fast
as possible. To save time for postprocessing raw dat, the frames are read in the requested
FPS speed and saved locally. After all frames are saved they are processed together and sent
back to user as a list of frames with information about speed and real FPS.

Read video function is accessed by:
SERVER IP:PORT/readVideo/frames={frames}

/fps={fps}/image format={image format}
Read video function input data:

� frames, how many frames the system will read

� fps, requested FPS

� image format, defines final image format (BMP,Numpy array, JPEG,...)

Read video function conducts following steps:

1. checks if requested image format is valid
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2. checks if FPS request is valid

3. checks if number of frames is valid

4. checks if resolution is set

5. checks if overlay is set

6. calculates needed time period for one frame

7. reads frame and appends it to the raw frames list

8. records timing information to the list of information

9. waits for specified time or immediately starts reading a new frame

10. repeats 7.,8.,9. until desired number of frames is read

11. starts postprocessing of raw frames

12. calculates statistics such as average FPS, max FPS, etc.

13. returns processed data and information as [{information dictionary},[processed frames]]

Detect resolution

Detect resolution is an useful function when user needs to manually check the connected
display resolution. For detecting resolution, a default overlay is used. This overlay is not
capable of outputting any frames, its only purpose is to detect the resolution or if the display
is connected at all.

Detect resolution function is accessed by:
SERVER IP:PORT/detectResolution
Detect resolution function input data:

� None

Detect resolution function conducts following steps:

1. sets up default overlay

2. initiates dispCheck module

3. reads internal registers of dispCheck that store resolution

4. updates resolution information and returns it to user
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Reset server

Software reset of server is useful if display is being changed, setup process is incorrect or if a
new user is connecting to already running server that is in an unknown state.

Reset server function is accessed by:
SERVER IP:PORT/softReset
Reset server function input data:

� None

Reset server function conducts following steps:

1. stops VDMA if its running

2. resets internal settings

3. uploads default overlay

Get possible settings

This function is used only for users that are not familiarized with the display sniffer system.
Users can call on this function to receive a dictionary of all possible settings such as available
colour formats, available image formats, current internal settings, etc.

Get possible settings function is accessed by:
SERVER IP:PORT/getPossibleSettings
Get possible settings function input data:

� None

Get possible settings function conducts following steps:

1. Returns the information about available options in dictionary format

4.3.3 Client class

Client class is a control layer written in Python language. This layer is responsible for calling
and executing functions mentioned in chapter 4.3.2 in a safe and controlled manner.

The documentation for client control layer can be found on the project github. [26]
Following code is an example of how to use display sniffer with following variables:

1. server ip = 192.168.2.127

2. display color format = RGB888

3. display resolution = unknown
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1 # import packages

2 from display_sniffer_handler import PynqHandler

3 from PIL import Image

4

5 # create display sniffer object

6 display = pynq_handler("192.168.2.127") # when creating object, IP must be specified

7

8 # check if server is online and receive settings including display resolution

9 server_status = display.server_check() # server_status has information about resolution and settings

10

11 # set display settings

12 display.height = server_status["frame_height"] # detected resolution

13 display.width = server_status["frame_width"] # detected resolution

14 display.colorFormat = "RGB888"

15 display.frontPorch = 0 # must be manually corrected

16 display.topPorch = 0 # must be manually corrected

17

18 # call for FPGA setup

19 display.setup(10) # number of seconds to wait

20

21 # request image in BMP format from server

22 image = display.readOneFrame(wait_time=10, mode="bmp", type="image")

23

Code snippet 4: Example of client connection to display sniffer [source: author]
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5 Testing

After the system was completed, basic testing was done to further validate the functionality
and effectivity.

5.1 Simulating video data

Since connecting real display would consume too much space and debugging would be chal-
lenging, other methods of simulating video data were chosen.

Simulating video data can be internally inside FPGA circuit or by external sources.

5.1.1 Test pattern generator (TPG)

The Test Pattern Generator IP Core is designed to produce test patterns essential for Video
System initialization, assessment, and troubleshooting. Offering a diverse range of test pat-
terns, the core facilitates users in debugging and evaluating color, quality, edge, and motion
performance, addressing potential quality issues within the video system. It can be seamlessly
integrated into an AXI4-Stream video interface, providing users with an option to either pass
through the system video signals or incorporate test patterns as needed [19].

TPG is capable of

� Different resolutions (64x64 up to 8192 x 4320)

� Generating static or dynamic color patterns

� Outputting video data in a form of AXI-video

� Generating multiple colour formats

� Generating multiple colour depths

Example of some TPG patterns:
This IP is ideal for testing the connection between VDMA on PL side and Python script

on PS side. TPG cannot generate DPI video data.

5.1.2 Raspberry Pi

For testing DPI video data gathering and processing, an external video image generator must
be used.

For this purpose Raspberry Pi is used. Raspberry Pi is a compact and affordable mini
computer. Despite its small size, it boasts significant computing power, making it capable of
various tasks, including serving as a basic computer. Raspberry Pi is equipped with external
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(a) Test pattern ID: 0x09 (b) Test pattern ID: 0x0B (c) Test pattern ID: 0x0F

Figure 5.1: Test pattern generator correct patterns [source: author]

GPIO pins capable of either controlling external devices or receiving and transmitting various
data using different protocols such as UART, SPI, IIC or for our use DPI. Its low cost and
versatility have made it a popular choice among hobbyists, educators, and tech enthusiasts
worldwide.

Figure 5.2: Raspberry Pi Zero [20]

Raspberry Pi is connected directly to PYNQ development board using Raspberry header.
Raspberry is set to output graphical data as DPI protocol via GPIO pins. Resolution,
display frequency, DPI timings and DPI setting as a whole is defined in config.txt by defining
dpi timings.

5.2 Test results

5.2.1 Python TPG pattern reading

First test was conducted to determine the speed and reliability of VDMA and Python reading
sequence shown in code snippet 1.
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TPG VDMA Python script
AXI video protocol frame data

Figure 5.3: TPG to VDMA to Python testing pipeline [source: author]

First TPG was set to produce patterns as in figure 5.1. Data from TPG are directly
connected to VDMA and no other signal processing is done.

Color shifting

Problem encountered while conducting this test which is worth noting was colour data shift-
ing. Figure 5.4 displays the error. Patterns are supposed to look like the patterns in figure
5.1.

(a) Test pattern ID: 0x09 (error) (b) Test pattern ID: 0x0B (er-
ror)

(c) Test pattern ID: 0x0F (error)

Figure 5.4: Test pattern generator incorrect patterns [source: author]

This error was caused by an incorrect setup of AXI protocol in FPGA. AXI protocol can
transfer data with two general bit widths. This setting defines how many bits of data are
transferred in one clock cycle. Correct setting is 64 bits. If the setting is set to 32 bits,
the colour information will shift and the resulting image will not be correct.

Memory overflow

Another discovery worth noting is the fact that VDMA, when handled incorrectly, will over-
flow memory and cause fatal errors and segmentation faults. This will cause the whole system
to crash, sometimes needing a complete SD card re-etching.

To prevent this, a commands vdma.readchannel.start() and vdma.readchannel.stop() must
be used before and after writing data to memory. Testing showed that the start/stop calls
have close to no effect on speed and effectivity.

5.2.2 Testing DPI video data using Raspberry Pi

Raspberry Pi is capable of transmitting DPI video data using GPIO pins. The resolution
and framerate are customizable and for these reasons, Raspberry Pi is used to test the whole
system.

During testing, no bugs or errors were discovered.
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Test results

System was tested with resolutions defined in table 1.1. Test results are shown in the table
and in the graph.

Resolution Time for one frame [ms] Average FPS of 60 frame video
100x100 354 18.07
200x200 362 18.16
500x400 357 18.12
960x544 470 18.10

Table 5.1: Results of Raspberry Pi video data testing in table [source: author]

Results show that the system effectivity when capturing video is not affected by selected
resolution. However, when capturing a single frame, the resolution causes the system to slow
down by an insignificant amount.

5.2.3 Reading real display data

Final testing of FPGA and frame gathering subsystem is testing with real display. For this
purpose colour display with resolution 320x240 was used.

DPI timing error

When using read display, timing errors discussed in chapter 2.3.3 and shown in figure 2.13
occurred. The result of this error is shown in figure 5.5.

(a) Display with incorrect timing data (b) Display with correct timing data

Figure 5.5: DPI timing error in real display data [source: author]

This error was fixed by implementing dynamic timing correction (DTC) system. This
system works as shown in figure 2.14 with an exception of dynamic clock delay. The DTC
subsystem will determine the frequency of connected display and adjust the timing correction
accordingly. If the dynamic correction is not enough, a delay variable can be set by user.
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5.2.4 Image data output

The speed of sending data to the user was also tested. Tested variables were image format
sent and format of multiple frames.

Image format

After the PS receives raw frame data, they must be converted into usable image format. The
image is saved and manipulated using Image package in Python script.

Three image formats were considered:

� JPEG

� PNG

� BMP

JPEG format was immediately excluded from the options for its automatic loss compres-
sion. This means that the JPEG format saves the image with size reducing algorithms that
have the unwanted effect of reducing the quality and precision of the transmitted data. This
approach might be used when streaming video but the system was not designed to handle
such tasks.

PNG format is a good choice for its lossless compression. However, PNG supports
transparent images hence adding more complexity to transmitted data which is not needed
since displays are not transparent. PNG format represents raw data with exact precision and
thus the PNG image will contain the quality needed and correct representation of raw data.

BMP is format similar to PNG with the difference of support for transparency. BMP
also doesn’t use compression by default. This causes the BMP images to be overall larger
than PNG images. For data representation, the BMP format can as PNG format represent
the raw frame values correctly and without any loss in precision.

After testing all formats, BMP was chosen. When raw frame data were processed the
BMP format proved to be the most effective in speed and quality. Figure 5.6 shows the
comparison of PNG and BMP speeds.

The results show that speed of BMP and JPEG format is nearly the same. Since JPEG
uses image compressed and thus loses some quality. Only BMP format is recommended.
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Figure 5.6: PNG vs BMP image format processing and transmitting speeds [source: author]

Multiple frames format

If multiple consequent frames are required a one frame reading method could be less effective
since the images are being processed right as they are requested.

To speed up this process a multiple frames request method was created. This method
ensures the maximum frame gathering speed. This process captured raw frames into a long
buffer. After the requested number of frames is captured, the processing of each will start.

The frames are then sent to the user as a list of frames. The speed differences of single
frame requesting and multiple frames requesting are listed in table 5.2.

Resolution Time for one frame [ms] Mean time of one frame for 60 frames [ms]
100x100 300 48
200x200 320 50
600x400 400 52
960x544 450 55

Table 5.2: Single vs multiple frames gathering speeds [source: author]
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5.3 Opportunities for improvement

The whole system was optimized as much as possible in given time. The timings of all
steps are shown as a pie chart in figure 5.7 and table 5.3 compares the minimum system
requirements to actual system capabilities.

Resolution minimum FPS actual FPS
100x100 15 24
500x400 14 20
960x544 12 18
1280x720 10 15

Table 5.3: Minimum requirements compared to real capabilities (using multiple frames function)
[source: author]

Frame reading [0.2 ms]
Frame processing [3 ms]
Frame transferring [442 ms]

Figure 5.7: Overall timing pie chart for 960x544 resolution [source: author]

It’s obvious from these timings that the transmitting is the step that slows down whole
system the most.

5.3.1 Compressing data in FPGA

To send a single frame faster and more effectively a compression on FPGA side of PYNQ
system should be used. Compressing the raw data instead of compressing data on PS size of
PYNQ will affect the speed minimally.

Compressing image data in FPGA is not an easy task, and since the current solution
satisfies the minimum requirements this upgrade was not implemented. By compressing, the
data sending of frame should be faster.
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5.3.2 Video streaming and video compression

If the user requests a video or many frames in a rapid succession, the current system will not
be as effective as it could be. Current solution using FastAPI might prove to be too slow for
video streaming.

Compressing video in processing system with the combination of compressing frames in
FPGA will result in extremely small sized packages that can be sent faster. Also, a new
method of transmitting data to user should be used. Instead of using APIs, maybe direct
TCP or UDP protocols might increase the maximum FPS provided by the system.
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6 Conclusion

In this thesis I have analyzed the available options for quality control of image outputs of
embedded devices that are in a form of displays. I have analyzed different types of displays
and ways to acquire data in a form that can be accepted by the test framework.

These methods were then analyzed and the option of acquiring image data through frame
grabbing hardware was selected.

To implement the frame grabbing hardware (display sniffer), I used the PYNQ-Z2 de-
velopment board which main processing unit is a powerful Artix-7 manufactured by Xilinx.
This processor is able to implement FPGA circuit subsystem and processing subsystem unit,
which is capable of running a Linux-based operating system.

These two seemingly separate subsystems are able to communicate with each other due
to the internal layout of the processor, and thus various programs written in Python on the
operating system side of the Artix-7 chip can take advantage of the flexibility and speed of
the FPGA circuit.

This advantage is leveraged in the form of a division of tasks between the two subsystems,
where the FPGA circuit is responsible for collecting the image data and storing it in the shared
memory of the Artix chip. The server running on the operating system side is then able to
access the almost complete data from the FPGA side. This data is then post-processed and
sent to the user via the internet implementing fastAPI Python module.

The FPGA circuit, in addition to collecting graphical data, is able to identify the display,
its resolution and also forward this information to the user for an easier setup of the system.

The system limits and minimum requirements were checked as part of the work. The
objectives of the work and the minimum requirements were met.

At the end of the thesis, the shortcomings of the system were evaluated. These problems
are time-consuming and not required to meet the minimum requirements. The thesis has
potential for further development of the system in the form of compressing image data on the
FPGA side, implementing a more efficient method of sending finished image data from the
system, or implementing CI/CD pipelines directly on the PYNQ-Z2 board and thus skipping
sending data through the Internet altogether.

All the objectives of the thesis have been achieved and some have been extended or
fulfilled beyond the minimum requirements.
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