
T
BRNU UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍTECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS
ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

DESIGN AND IMPLEMENTATION OF DISPLAY SNIFFER
ON EMBEDDED TARGETS
NÁVRH A IMPLEMENTACE NÁSTROJE PRO ANALÝZU OBRAZOVÝCH DAT VESTAVĚNÝCH SYSTÉMŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Samuel Lipták
AUTOR PRÁCE

SUPERVISOR doc. Ing. Jiří Krejsa, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Assignment Master's Thesis
Institut:
Student:

Institute of Solid Mechanics, Mechatronics and Biomechanics
Be. Samuel Lipták
Mechatronics
no specialisation
doc. Ing. Jiř í Krejsa, Ph.D.
2023/24

Degree programm
Branch:
Supervisor:
Academic year:

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and
Examination Regulations, the director of the Institute hereby assigns the following topic of Master's
Thesis:

Design and implementation of display sniffer on embedded targets

Brief Descr ip t ion:

An integral part of the automated testing of embedded systems containing a graphical interface is
the verification of the compliance of the graphical design with the real implementation.
A commonly used technique is the use of camera systems, but this is calibration and maintenance
intensive and inevitably leads to degradation of image data. One way to replace these systems is
to use specialized tools that analyze directly the data stream on the bus between the processor
and the display. The essence of this thesis is the design and implementation of such a tool on the
PYNQ platform.

Master 's Thesis goals :

1. Research commonly used interfaces between display and processor in embedded systems
2. Design and implement reception of image data using PYNQ platform
3. Design and implement the interface for propagation of image data to test framework.

Recommended b ib l iography:

Cem Unsalan, Bora Tar: Digital System Design with FPGA: Implementation Using Verilog and
VHDL, McGraw Hill, 2017

Alegroth, E., Feldt, R. On the long-term use of visual gui testing in industrial practice: a case study.
Empir Software Eng 22, 2017, pp. 2937-2971.

Faculty of Mechanical Engineering, Brno University of Technology / Technickä 2896/2 / 616 69 / Brno

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2023/24

In Brno,

L. S.

prof. Ing. Jindřich Petruška, CSc. doc. Ing. Jiří Hlinka, Ph.D.
Director of the Institute FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technickä 2896/2 / 616 69 / Brno

Abstrakt
T á t o diplomová práca sa zaoberá overením funkcionality grafického rozhrania v integrovaných
systémoch. Súčasné pr ís tupy využívajúce kamerové systémy pre optickú kontrolu sú charakte
rizované nedosta točnou spoľahlivosťou, vysokými nákladmi, náročnou údržbou a náročnosťou
na priestorové umiestnenie.

Cieľom tejto práce je analyzovať a navrhnúť nový pr ís tup k získavaniu grafických dát ,
ktorý bude založený na spoľahlivej technológii. Konkrétne riešenie využíva technológiu F P G A
(Field-Programmable Gate Array) a celý systém je implementovaný na vývojovej platforme
P Y N Q . T á t o platforma zároveň obsahuje server s A P I , čo umožňuje jednoduchší pr í s tup k
získaným dá tam.

Výsledkom tejto práce je nová me tóda overenia funkcionality grafického rozhrania vsta
vaných systémov, k torá bude spĺňať požadované kri tériá spoľahlivosti a účinnosti . Takýto
pr ís tup by mohol nájsť uplatnenie v priemysle a prispieť k zlepšeniu kvality a efektívnosti
kontroly kvality integrovaných systémov.

Summary
This thesis deals with the verification of the functionality of the graphical interface in em
bedded systems. Current approaches using camera systems for optical inspection are charac
terised by a lack of reliability, high cost, maintenance difficulties and spatial challenges.

The aim of this work is to analyse and propose a new approach to graphical data acquisi
tion, based on a reliable technology. The specific solution uses F P G A (Field-Programmable
Gate Array) technology and the whole system is implemented on the P Y N Q development
platform. This platform also includes a server with an A P I , which allows easier access to the
acquired data.

The result of this work is a new verification method of the graphical interface of embed
ded systems, which wil l meet the required reliability and efficiency criteria. Such an approach
may find application in industry and contribute to improving the quality and efficiency of
quality control of embedded systems.

Kľúčové slová
grafické rozhranie, vstavané systémy, F P G A , P Y N Q , kontrola kvality

Keywords
graphical interface, embedded systems, F P G A , P Y N Q , quality control

Bibliographie citation
LIPTÄK, S. Design and implementation of display sniffer on embedded targets. Brno: Brno
University of Technology, Faculty of Mechanical Engineering, 2024. 70 pages, Master's thesis
supervisor: doc. Ing J i f i Krejsa, Ph.D. .

I declare that this thesis is my original work, I prepared it independently under the
guidance of doc. Ing Jiff Krejsa, Ph .D. and using the cited literature.

Samuel Lipták

B r n o

In this way, I would like to thank my thesis advisor doc. Ing Jiff Krejsa, Ph .D. for his help
and valuable advice in solving my thesis. I would also like to thank Ing. Dominik Muller for
his help in solving the practical part of the thesis. Last but not least, I would like to thank
my family for their support and help throughout my studies.

Samuel Lipták

Contents

Introduction 10

1 Problem analysis 11
1.1 Quality control in embedded development 11
1.2 Display quality control 12

1.2.1 Technologies of display devices 13
1.2.2 Display dataflow 16

2 Image data acquiring 21
2.1 Photographic equipment application 21

2.1.1 Camera system 21
2.1.2 Data degradation 23
2.1.3 Space occupation 26
2.1.4 Image distortion 26

2.2 Serial debugging 27
2.2.1 Serial communication with display 27
2.2.2 Image reconstruction 27

2.3 Frame grabbing hardware 29
2.3.1 Video signal protocols 29
2.3.2 Image reconstruction 30
2.3.3 D P I data 31

2.4 Chosen technology 34

3 F P G A implementation 35
3.1 P Y N Q - Z 2 programmable logic 35

3.1.1 F P G A on P Y N Q 35
3.2 F P G A programming 36

3.2.1 Vivado 38
3.2.2 A X I protocol 38
3.2.3 Data timing correction using F P G A 39
3.2.4 Display parallel interface to A X I protocol 40
3.2.5 Display check IP 41
3.2.6 Video direct memory access (V D M A) 42

4 Display sniffer server 43
4.1 P Y N Q - Z 2 processing system 43

4.1.1 P S - P L interconnect 44

8

4.1.2 Operating system 45
4.2 Data manipulation 45

4.2.1 Data gathering 45
4.2.2 Data conversion and post-processing 46

4.3 Server A P I 47
4.3.1 Fast A P I python package 47
4.3.2 Server A P I 47
4.3.3 Client class 53

5 Testing 55
5.1 Simulating video data 55

5.1.1 Test pattern generator (T P G) 55
5.1.2 Raspberry P i 55

5.2 Test results 56
5.2.1 Python T P G pattern reading 56
5.2.2 Testing D P I video data using Raspberry P i 57
5.2.3 Reading real display data 58
5.2.4 Image data output 59

5.3 Opportunities for improvement 61
5.3.1 Compressing data in F P G A 61

5.3.2 Video streaming and video compression 62

6 Conclusion 63

List of Figures 64

List of Tables 66

Abbreviations 68

Bibliography 69

9

Introduction

Quality control is an important part of embedded systems development. We can test electri
cal, mechanical and software properties as well as the overall functionality of such a system.
This thesis primarily focuses on the quality control of graphical components, with a primary
emphasis on displays within the system.

Displays and other graphical interfaces play a crucial role of providing user with infor
mation, instructions or warnings. For this reason, correct functioning of graphical interfaces
must be assured by intensive quality control.

Gathering data for these purposes can prove rather difficult for various reasons. If testing
includes monitoring instructions for the display, the testing environment might not catch
errors caused by faulty display driver. Another solution could be to monitor graphical output
directly by external camera, but this method is complex, not always reliable and very space-
consuming. Another solution would be to monitor dataflow which describes the exact data
that are sent to display pixels. This dataflow is extremely fast and contains a large amount
of data compared to instructions sent by microcontroller.

The aim of this work is to develop a system that wi l l ensure reliable and accurate image
data that is acquired from the communication between the display controller and the display
itself. Based on this requirement, the chosen medium for obtaining the necessary data is
F P G A technology, specifically the P Y N Q Z-2 development board. The software for the ac
quisition, processing and subsequent distribution of the image data based on D V I - D protocol
is designed and implemented directly on P Y N Q Z-2.

10

1 Problem analysis

This thesis is focusing on three tasks:

1. Research commonly used display-to-processor interfaces for embedded display periph
erals

2. Design and implement image data acquisition using a P Y N Q platform

3. Design and implement a suitable interface for passing image data to the test framework

The frame gathering system should be superior to other used methods in speed, quality
of gathered data and reliability. Speed is measured in F P S (frames per second). This unit
describes how many frames can display refresh per second. Quality of data compares the
theoretical real and received data and evaluate their similarity. The replicability of the above
units is evaluated by reliability. Following table sets a minimum that the final system must
handle.

Res F P S
100x100 15
500x400 14
960x544 12
1280x720 10

Table 1.1: Minimum requirements for final system [source: author]

1.1 Quality control in embedded development
Quality control in embedded development is a crucial mechanism for ensuring functionality
of final embedded solution. The process involves:

• Defining clear conditions which must be met

• Create testing environment

• Use testing environment to ensure the system satisfies defined conditions

The objective is to identify any problems which have negative impact on the effectivity or
overall functionality of the final system. Mechanical and electrical tests are not included in
this thesis.

11

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

B y using tools such as testing frameworks which manually or automatically perform soft
ware tests on developed system, the user can evaluate system's performance and quality.
These tests consist of testing framework inserting known inputs to a system and then com
paring the expected outputs (defined by conditions) to real outputs.

real system output

Testing framework
known input

Tested embedded system

Test cases
preprogrammed tests

Figure 1.1: Simple diagram of quality control loop [source: author]

Process displayed in figure 1.1 consists of few simple steps:

1. User defines test cases based on tested conditions

2. Testing framework is connected to tested embedded system

3. Testing framework starts test cases with expected outputs

4. Real outputs are compared to expected outputs

5. Results are provided to user who can update test cases or fix errors in embedded system

This process is straightforward for simple digital or basic analog signals. If user wants to
test more advanced peripherals such as audio, high frequency signals or graphical outputs,
advanced signal processing systems must be used to process the real system output.

The processing must be non-destructive meaning that the details and quality must not
be lost due to destructive compression or other signal simplification methods.

1.2 Display quality control
Displays are one of the most important graphical peripherals in embedded systems. Displays
are used for informing, warning or instructing people. Graphical outputs are used in a
plethora of applications, and thus, quality control of such devices is a relevant topic.

In order to design a data gathering mechanism for testing framework, a display type must
be defined.

12

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

signal processing unit

simplified sign

Testing framework

vcomplicated signal

known input
Tested embedded system

Figure 1.2: Signal processing unit position in data gathering loop [source: author]

1.2.1 Technologies of display devices

Display devices can implement different technologies for outputting graphical data. Most
common display technologies are:

• L C D

• O L E D

• L E D

• E-ink

L C D displays

L C D or Liquid Crystal Display are widely used in devices such as T V s , monitors or
smartphones.

These displays utilize a unique technology that involves liquid crystals positioned between
layers of glass or plastic. The liquid crystals, which are rod-shaped molecules, can twist and
untwist in response to an applied electric current. [1] L C D can display monochrome as well
as color images.

Figure 1.3: Monochrome L C D display [4]

This property allows for precise control over the passage of light through individual pixels.
Color is achieved by employing colour filters and dividing pixels into subpixels of red, green,
and blue. [1]

13

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

Segment
Electrode

4 -

Polarizer
{vertical)

[ill 0>

LIQUID CRYSTAL

Front
Polarizer
(Vertical j

Segment
Electrode

Common
Electrode

Rear
Polarizer
[Vertical]

LIQUID CRYSTAL

Front
Polarizer
(Vertical)

Figure 1.4: L C D working principle [3]

O L E D displays

O L E D or Organic Light Emitting Diode displays are similar to L C D technology O L E D
displays are composed of light-emitting pixels thus not requiring back-illumination as L C D .

A M O L E D

G l a u

}

TFT-LCD

Glass

% II %
H H [color

J Filter

• ! •
Pol ixcr

[r i gck l i gh t
f Uni t

Figure 1.5: Difference between L E D and (AM)OLED display [5]

A M O L E D is a branch of O L E D technology. The working principle is the same but
A M O L E D uses more advanced colour control mechanisms. O L E D s produce images by light
ing or dimming specific R G B pixels similar to classic light emitting diode, hence, image data
is also an analog signal describing the intensity of each R G B component. [2]

14

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

Figure 1.6: One of many possible structures of O L E D display under microscope [6]

L E D displays

L E D displays use light emitting diodes to display information. This type of displays is
mostly used if simple information is to be shown such as numbers and basic letters. L E D
displays are also used in conjunction with L C D displays as back illumination.

L E D displays are simple devices controlled by digital inputs and can be used to display
colour of monochrome images especially on large formats.

Figure 1.7: 8 segment monochrome L E D display [7]

E-ink displays

E-ink displays use very different display technology compared to L C D or O L E D displays.
E-ink or electronic paper use microcapsules containing charged black particles suspended in
white or clear fluid.

These particles can be triggered and moved to top of the capsule displaying black pixel.
These displays have extremely low power consumption and are bistable, meaning that energy
is not needed to maintain displayed content. [8]

Cross-section of E-ink display is shown in figure 1.8

15

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

% í ž > %ís>

Figure 1.8: E-ink capsules [8]

1.2.2 Display dataflow

Controlling any display can be achieved by various means.
Dataflow in this thesis is the communication between user programmed controller and the

display graphic controller which can be either part of embedded system or a part of display
as described in figure 1.9.

The difference between command dataflow and frame dataflow is discussed in chapters
2.2 and 2.3.

user programmed code

Embedded system controller

embedded system

display system

command dataflow

Display graphic controller
embedded system

display system

frame dataflow

Display driver

Display pixels

Figure 1.9: Simple diagram of display dataflow [source: author]

Frames or pixel data are stored as bytes or bits. If the display is monochrome, the value
of a pixel can be stored as 1 or 0 in a single bit. If a display has a colour screen, the value

16

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

of each pixel must be represented by multiple values.
Commonly used is the R G B format which stores the intensity of each pixel as n bit

number. The number of bits is determined by hardware and software capabilities of display
driver. Commonly used is 16-bit, 18-bit or 24-bit R G B format. This means that value of
each color is stored in this 16,18 or 24 bit number.

Figure 1.10 represents 24-bit color format.

8-bits of information (0-255)
> <

8-bits of information (0-255)
> <
8-bits of information (0-255)

Figure 1.10: Single 24-bit pixel color value storage [source: author]

The ratio in which the colours are stored is defined in the name of a format. For example
RGB565 tells that the red value is represented by 5 bits, green value by 6 bits and blue by 5
bits, together combined in 16 bit (2 bytes) number. RGB888 stores all values equally (3 * 8)
in 24-bit (3 bytes) number.

Serial protocols

Serial protocols use the serialization of data which are then sent as a string of bits according
to chosen protocol.

Most notable and commonly used serial protocols are:

• U A R T

• IIC {PC)

• SPI

• C A N

Serial protocols are usually more connection-efficient requiring only few physical connec
tions compared to parallel protocols. Serialization of data causes significantly slower data
transfer since only one bit can be transferred each clock cycle.

Serialization of data is shown in simplified figure 1.11. As shown in the figure serial data is
24 times slower (for RGB888 color format). Serial protocols are mostly used for monochrome
displays where only ones and zeros are transferred thus every pixel is represented by one bit,
or if low F P S of the color display is sufficient.

17

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

Parallel protocols

Parallel protocols are designed to maximize dataflow. To achieve this, sent data are dis
tributed into multiple data lines. The distribution can differ. For example display driver
ST7920 can be set to accept 4-bit parallel interface where a 8-bit information is split into
two 4-bit numbers sent one after another. ST7920 can also be set to accept 8-bit parallel
interface and 8 datalines are needed to transfer all 8-bit at the same time. [9] Parallel data
sending is shown in simplified figure 1.11.

RGE88S
24-birs

Controller

0 i i 0 1 1 0 0 0 1 0 1 1 1

Display driver

Controller Display driver

n-bi: times

Figure 1.11: Serial and parallel dataflow example [source: author]

Display parallel interface (DPI)

Signal name Used for
Clock Synchronizing all transferred data, signalizes to move to next pixel

Data enable Signalizing valid pixel data
H-sync Signalizing driver to move to new line
V-sync Signalizing driver frame ended

Red [7:0] 8 signal lines defining value of red color (0-255)
Green [7:0] 8 signal lines defining value of green color (0-255)
Blue [7:0] 8 signal lines defining value of blue color (0-255)

Table 1.2: Signals transferred by display parallel interface [source: author]

Display parallel interface is a type of parallel protocol where data is sent via n datalines
and 4 synchronization signals. Number n is defined by color format. For example as previ
ously discussed 24-bit color format wi l l require 24 datalines. A l l signals that D P I protocol
transferring RGB888 color format uses is summarized in table 1.2.

18

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

Given timing diagrams show basic functioning of D P I protocol for better understanding.
Figure 1.12 shows how display receives information about pixel value. Each clock cycle

a value is assigned to red, green and blue value. These values are written to display only
when data enable signal is active. H-sync and V-sync signals are static while pixel values are
transferred.

Clock
Data enable

H-sync
V-sync

Red
Green

Blue

0x00 0x02 0x03 0x04 0x05 0x06 0x07 0x08

0x00 "1 OxBB |[OxCC r OxDD t ÖxEE I OxFF I 0x11 j 0x22

0x00 "K OxEl |[0xD2 r 0xC3 t ÖxB4 I 0xA5 I 0x96 j 0x87

Figure 1.12: Timing diagram of pixel values information [source: author]

Figure 1.13 shows how display receives information to move to another line. Low value
of data enable signalizes that display wil l receive no more pixel data.

Clock
Data enable

H-sync
V-sync

Red i H O i E T 0x00 ~j 0x08 |f 0x46 | (~0x23

Green "ö̂säK O X A B f 0x00 ~~l 0x11][0x12 j OxAB

Blue JEHU QX48 r 0x00 0x87 0x22 0x48

Figure 1.13: Timing diagram of new line [source: author]

19

1 P R O B L E M A N A L Y S I S 1.2 D I S P L A Y Q U A L I T Y C O N T R O L

Clock
Data enable

H-sync
V-sync

Red 0x25 K 0x23 I 0x00 I 0x08] (0x46 I 0x23 Red
Green 0x531 Ox A B I 0x00 I 0x11] (0x12 I OxAB Green

Blue 0x441 0x48 I 0x00 I 0x87] (0x22 I 0x48

Figure 1.14: Timing diagram of end of frame [source: author]

Figure 1.14 shows how display receives information that the whole frame has ended. The
display driver wi l l move the pixel pointer to the beginning of a whole frame.

Figures are simplified, however, real timing functioning is the same.

20

2 Image data acquiring

The real system output as defined in figure 1.1 can be acquired by a plethora of methods.
Following section discusses the technology behind each method, its advantages and disad
vantages.

2.1 Photographic equipment application
The easiest method to implement is to use photographic equipment. Digital camera inter
faces are present in any modern computing unit and passing data to testing framework is
very simply implemented, especially, if testing framework is based on popular programming
language such as Python or Rust. Camera system can be integrated to the testing process
by simply capturing the produced image by the display.

processed data

Testing framework

Digital camera

known input

graphical output

Tested embedded system

Test cases
pre-programmed tests

optional user input

Figure 2.1: Diagram of capturing data by camera [source: author]

2.1.1 Camera system

Camera system, in context of this thesis, consists of a camera sensor and camera lens. Both
are crucial when dealing with accurate data aggregation.

21

2 I M A G E D A T A A C Q U I R I N G 2.1 P H O T O G R A P H I C E Q U I P M E N T A P P L I C A T I O N

Camera sensor

Camera sensors can be split into two basic technologies:

• C C D

• C M O S

Both types serve the same purpose, to receive and process light particles coming from external
source.

A l l sensors are composed of light sensitive semiconductors (photodiodes). Both sensor
types need additional components such as amplifiers, filters or other components which are
used to convert analog value of received light particles to digital value which is subsequently
used as image data.

C M O S
C M O S sensor is used in most commercial digital cameras. These sensors consist of small

blocks representing pixels which are equipped with:

• photosensitive diode

• electron trap

• analog amplifier

• analog to digital converter

Each pixel can produce final digital value of each pixel, basically no other components
are needed to read image data.

Cc:ir,em
(Prinr&d Circuit Board)

Cgrpplemenlcirv M<?lal Oxide femteorrcluctor
Image Swim

To Frame AnoJog-la-Digilol
Grabber Conversion

Figure 2.2: Diagram of CMOS chip [16]

Most C M O S sensor use rolling shutter. This process of capturing image data in which
each row of pixels is exposed to light separately causes an unwanted effect if C M O S sensor

22

2 I M A G E D A T A A C Q U I R I N G 2.1 P H O T O G R A P H I C E Q U I P M E N T A P P L I C A T I O N

is capturing a fast moving image. The effect of rolling shutter can be overlooked if data on
display are static.

A. Rolling Shutter B. Global Shutter
Top row ends

Figure 2.3: Rolling vs global shutter [17]

C C D
C C D sensor is typical for its ability to capture whole frame in one instance. C C D sensors

utilize a method where the charge built on each photodiode is passed to common output
which is then passed to amplifiers and analog to digital converters. The advantage to this
technique which can be defined as global shutter is that there is no motion blur and C C D
chips suffer less from image noise since the pixel area can be used more effectively [10].

In conclusion, both sensors are suitable for the purpose of display output data capturing.
The only exceptions are displays with very fast refresh rate and fast moving objects, then a
C C D sensor with good timing is preferred. Both sensors need to be calibrated and the cost
is comparable.

2.1.2 Data degradation

Data degradation is one of the main drawbacks of camera system frame gathering. Data
degradation can occur in camera sensor resolution and camera sensor color mask.

Camera sensor resolution

As mentioned in chapter 2.1.1, camera sensor is made from 2D-array of pixels. If the test
ing framework requires exact pixel color information then the camera sensor must have a
resolution of equal (if aspect ratio is the same) or greater than tested display.

Ksensor ̂ -^display

23

2 I M A G E D A T A A C Q U I R I N G 2.1 P H O T O G R A P H I C E Q U I P M E N T A P P L I C A T I O N

Camera
[Piinted Circuit Board)

Charge-Coupled Device
Image Sensor

Bias
Generation

Oscillator

Clock &
Timing

Generation
I

Clock
Drivers

j I D , h t |~[» H ^ I \ J < K 7 H V > t N 1 ^ 1̂ 1 I

v
To Frame
Grabber

Analog-to-Digital
Conversion

Photon-to-Electron
Conversion

Electron-fo-Voltage
Conversion

Figure 2.4: Diagram of C C D chip [16]

Where K = resolution in pixels.
Average camera sensor has a resolution of 12 M p x which corresponds to 4056x3040 px[l l]

and maximum resolution defined in table 1.1 is 1920x1080 px. The resolution difference is
not a problem for this application.

Example of position of display in camera frame is in figure 2.5

3040 ps

4056 px

Figure 2.5: Example of display area in camera area [source: author]

However because the resolution is rarely identical, the gathered frame must undergo
intense postprocessing to get precise pixel information gathered from the display or alterna
tively the whole setup must be exactly calibrated such that the display screen area exactly
corresponds to pixel size of the camera sensor.

24

2 I M A G E D A T A A C Q U I R I N G 2.1 P H O T O G R A P H I C E Q U I P M E N T A P P L I C A T I O N

Camera sensor color mask

Camera sensor pixels does not distinguish between colors. The color information is obtained
by filtering the light by Brayer mask or similar filter. This mask is placed on top of photo-
diodes and filters incoming light based on wavelength (color).

Red filter Red sensitive pixel Red color value

f \

Light Green filter
f \

Light Green filter Green sensitive pixel Green color value

Blue filter Blue sensitive pixel
^ J

Blue filter Blue sensitive pixel
^ J

^ B l u e color value j

Figure 2.6: Color selection and color value extraction diagram [source: author]

This causes a photodiode to react only when light of specific spectrum passes the Bayer
mask. The pattern of bayer mask is shown on figure 2.7.

Figure 2.7: Bayer mask pattern layed on photodiodes [12]

The pattern is mosaic with a predominance of green pixels which was decided by Ko
dak in 1976 to mimic the physiology of human eyesight. Because the pattern is mosaic, a
postprocessing called demosaicing must be applied.

This process interpolates the lost or missing color data. This postprocessing loads the
data with an error which can produce inaccurate results. If the frame capturing system
uses postprocessing such as sharpening or even color manipulation, the resulting data are
unusable due to their inaccuracy and the fact that they do not represent the real output of
the display.

To overcome these issues, very intense and sometimes impossible data preprocessing and

25

2 I M A G E D A T A A C Q U I R I N G 2.1 P H O T O G R A P H I C E Q U I P M E N T A P P L I C A T I O N

r ? 171 ? n
9 V ~ ? 9 I 9 I 9

? 9 ?
? ? ?

? 1 ? ?
? X

+

?
? 1 ? ?

?

? ?

S J L l _ l l _ L
9 W 9 9 9 9

9 ?

9

Figure 2.8: Interpolation of color data [15]

calibration must be applied before the data are used in testing framework. This wi l l result in
either incorrect results of testing framework or the need to design less strict testing framework
which might lead to subtle errors.

However, if identical display data is not required, this problem could be overlooked.

2.1.3 Space occupation

Space occupation of any testing technology is important if the testing is done on multiple
displays. As mentioned in chapter 2.1.2 camera sensor should be offset from a display to
match pixel area. Even if postprocessing of interpolating colors was acceptable, the camera
lens distortion is most notable on edges of frame and sensor offsetting is encouraged.

For these reasons, the overall space occupation of such a testing stand is much larger
compared to other methods which require only minimal additional hardware for testing.

2.1.4 Image distortion

When capturing frame through a camera, lens distortion might occur. Lens distortion is a
type of data degradation which happens because camera lenses bend the incoming light.

Lens distortion can be manifested in two main forms: barrel distortion and pincushion
distortion. Barrel distortion causes straight lines to appear curved outward, like the sides
of a barrel. On the other hand, pincushion distortion makes straight lines curve inward,
resembling the shape of a pincushion. [21]

Additionally, chromatic aberration can contribute to image distortion. This occurs when
different colors of light focus at slightly different points, resulting in color fringing along
high-contrast edges. [22]

These problems can and must be fixed by heavy image postprocessing, expensive lenses
and more distance between sensor and display which increase space occupation of this system.
A l l of these solution might produce additional unwanted errors or damage data integrity
during postprocessing.

26

2 I M A G E D A T A A C Q U I R I N G 2.2 S E R I A L D E B U G G I N G

Figure 2.9: Example of lens distortion and chromatic aberration [23]

2.2 Serial debugging
Serial debugging is another solution to gathering the output data. This process is based on
the fact that embedded system controller must send commands to display driver as shown
on figure 1.9.

2.2.1 Serial communication with display

Due to limited connection capacities of any microcontroller, serial protocols are widely used
in embedded systems. Such protocols (more discussed in chapter 1.2.2) can be used to
send exact information about what is requested to be shown on display, or preprogrammed
commands are used. In either way, this communication is programmed by the user and is
exactly defined.

Example of such communication is ST7920 display controller IC, which can communicate
with M C U via SPI protocol. ST7920 has preprogrammed font and cursor position registers
so the user only needs to send information what string is to be shown on display and its initial
position. In contrast, the graphical option requires the M C U to send exact information about
which pixel is to be turned on or off. For colour displays the dataflow of such commands are
much more data heavy.

For this reason some display graphic controllers come preprogrammed or if they are part
of embedded system, the user can pre-program them to send predefined data to display driver
which greatly reduces the information needed to be sent from the M C U . This comes at the
cost that command dataflow does not contain exact pixel values which is fatal when trying
to reconstruct the image.

2.2.2 Image reconstruction

Image reconstruction when using serial communication is rather simple procedure due to
previously mentioned display graphic controller responsible for translating the commands
into actual image data.

Since the frame and display graphic controller behavior is predefined. It is as simple as
catching a command to display some information via serial communication and matching it
to requested command.

27

2 I M A G E D A T A A C Q U I R I N G 2.2 S E R I A L D E B U G G I N G

Testing framework output

Embedded system controller

embedded system

display system

Serial data sniffer

command dataflow

Reconstructed image
Testing framework input

command dataflow

Display graphic controller
embedded system

display system

frame dataflow

Display driver

Display pixels

Figure 2.10: Serial dataflow capture diagram [source: author]

The biggest flaw of this method is, that serial debugging cannot see errors that might be
produced by the display driver or the display itself since it is monitoring only the commands
sent.

28

2 I M A G E D A T A A C Q U I R I N G 2.3 F R A M E G R A B B I N G H A R D W A R E

2.3 Frame grabbing hardware

Testing framework output

Embedded system controller

embedded system

display system

command dataflow

Display graphic controller
embedded system

display system

Frame data sniffer

frame dataflow

Reconstructed image
Testing framework input

frame dataflow

Display driver

Display pixels

Figure 2.11: Frame dataflow capture diagram [source: author]

The method which is used in solution in this thesis is frame grabbing hardware. This
method is similar to serial debugging with the difference of sniffed dataflow. Serial debug
ging focuses on command dataflow while the frame grabbing hardware is focusing on frame
dataflow.

Frame grabbing hardware is a type of hardware device designed to capture video signals
and convert them into digital format that can be processed by testing framework in this case.

2.3.1 Video signal protocols

Video signal protocol is a standardized form of transmitting video data. Standardization
makes the protocols reliable in compatibility and interoperability. Video signal protocols can
be separated into two basic categories.

• Analog video protocols

• Digital video protocols

29

2 I M A G E D A T A A C Q U I R I N G 2.3 F R A M E G R A B B I N G H A R D W A R E

Analog video protocols

Analog video protocols are an old method of transmitting video. Today mostly digital proto
cols are used. Analog protocols use voltage level that represent an intensity of some color and
brightness. Analog protocols also include timing and synchronization signals. A n example
of analog video protocol is V G A .

• Old method

• Not usable for high resolutions

• Uses analog voltage levels

• Susceptibility to interference

• Timing is challenging

• Limited colour accuracy

• Signal degradation based on high distances

Digital video protocols

Digital video protocols are a method of transmitting video via digital signals. The video
signal is transmitted in discrete manner using " H I G H " and " L O W " voltage levels. Video
signal is represented as encoded digital data which can be transferred parallelly or serial
ized, see chapter 1.2.2 for explanation. Digital video protocols include for example H D M I ,
DisplayPort, D V I , D P I and many more. Digital protocols can handle higher resolution,
higher framerates and better image quality as analog protocols.

• Binary representation (digital signal)

• Supports high resolution

• Resistant to signal degradation over long distances

• Full color accuracy

• Resistant to interference

• Adjustable for various use cases

2.3.2 Image reconstruction

Image reconstruction when using frame grabbing hardware is based on "simulating" display
driver. Since frame grabbing hardware can capture raw graphical information the simulation
is a simple decoding of received signal. This method can be applied to analog or digital
signals provided that analog signal is converted into digital signal that can be processed by
a decoding unit.

30

2 I M A G E D A T A A C Q U I R I N G 2.3 F R A M E G R A B B I N G H A R D W A R E

2.3.3 D P I data

As an example a D P I protocol, described in 1.2.2, data would be decoded by following steps:

1. Capture D P I data

2. Synchronize data (if needed)

3. Decode data

4. Save and output frame

The maximum speed a frame grabbing hardware can go through all needed steps is defined
in frames per second. Perfect system would have F P S of display and F P S of grabbed frames
equal.

Capturing D P I data

The fastest signal defining highest frequency in D P I protocol is the clock signal. The clock
signal is used to synchronize the whole protocol. Frequency of clock signal can be defined by
the following formula:

fclock = H X W X fdisplay (2-2)

where fdock is frequency of the clock signal in Hz, H is height of display in pixels, similarly
W is width of display in pixels and fdisplay described the refresh rate of the display in Hz.

According to the requirements, table 1.1 the maximum expected frequency of display is

fclock,fullHD = H X W X fdisplay

fdockjuiiHD = 1920 x 1080 x 24

fclock,fullHD ~
50 x 10 6 (2.3)

The minimum theoretical required clock frequency of frame grabbing hardware is equal
to D P I clock frequency. D P I protocol validates data on rising edge of clock. If frame grabbing
hardware was a little offset from the display clock, the waveforms would look as displayed in
following figure:

However since the frame grabbing hardware must simultaneously process captured data,
the frame grabbing clock frequency must be higher. The exact ratio is discussed in chapter
3.2.3.

31

2 I M A G E D A T A A C Q U I R I N G 2.3 F R A M E G R A B B I N G H A R D W A R E

DPI clock _ l I I I I I r
DPI data 0 x 0 0 > 0xl54684 ~) 0XA2D842 f 0xAA62CD f~

Frame grabbing clock I I I I I I
Frame grabbing data oxoo ; oxi54684 ~\ Q X A2D842 K Q X A A 6 2 C D

Figure 2.12: Theoretical timing diagram of frame grabbing hardware [source: author]

Synchronizing data

The synchronization of data step is required only if display clock and display data are not
exactly synchronized. As an example, if display data are slower than display clock and frame
grabbing clock is faster than the difference a data mixup can occur. When this error is
present on the display system, the simplest solution is to offset frame grabbing data read by
a fixed value. Following figures display this error and its correction.

DPI clock _ [
DPI data

J 1
0x001 0x154684 0xA2D842 ~)j 0xAA62CD

Frame grabbing clock ^ U n J ^ J H L J H L j n J l J r i J r U ^
0x000000 11 0x154684 I 0xA2D842 Frame grabbing data Z T

Figure 2.13: Data synchronization error [source: author]

0x001

DPI clock _J
DPI data

Frame grabbing clock
Frame grabbing data 0x00

0x154684 0xA2D842 0xAA62CD

0x154684 0xA2D842][0xAA62CD

Figure 2.14: Data synchronization error correction [source: author]

Figure 2.13 displays a situation when frame grabbing clock acquires data on rising edge
of display clock. Since display data are slower, the frame grabbing hardware captures an old
pixel value which causes the output data to be corrupted and unusable.

Figure 2.14 displays one of possible fixes/protection against this error. Frame grabbing
hardware wil l wait for a specified time (3 clock signals in waveform) before capturing display
data.

32

2 I M A G E D A T A A C Q U I R I N G 2.3 F R A M E G R A B B I N G H A R D W A R E

Decoding captured data

For decoding D P I image data all signals listed in table 1.2 must be used. A l l data are saved
into frame array. Frame grabbing hardware reacts to display clock with delay according to
figure 2.14 if needed. Display data are concatenated into single value with size dependant on
color format (8,16,24,... bit value). Frame grabbing hardware then reacts to H-SYNC that
signalizes new line, and line index of frame data is increased. Another important signal is V-
SYNC which signalizes that whole frame has been transferred and frame grabbing hardware
can proceeed to the next step.

Details about this process are discussed in chapter 3.2.4.

Output gathered frame

Frame grabbing hardware saves the gathered data in internal memory in an array or similar
memory structure. These data could be directly used to evaluate quality in testing frame
work, but sometimes other image formats, such as P N G , is preferred. Both formats, raw or
translated, need to be somehow transferred to the testing framework.

For this reason a frame grabbing hardware must be able to output gathered data effectively
and in lossless format. Data can be transferred directly via datalines (USB, ...) or some
on board protocol (SPI,I2C, parallel,...) if frame grabbing hardware is located on the same
system as testing framework. However, if these two subsystems are separated or more testing
frameworks need access to the grabbed data, a server is a more flexible solution. A local server
able to provide data to any testing framework when requested is preferable solution since
these two subsystems do not have to be integrated together and programmer can access data
manually if needed either for manual inspection or any other reason.

Server and data access setup is discussed in chapter 4.3

33

2 I M A G E D A T A A C Q U I R I N G 2.4 C H O S E N T E C H N O L O G Y

2.4 Chosen technology
Based on chapters 2.1,2.3 and 2.2, table 2.1 was constructed to compare available frame
grabbing technologies.

Technology Practicality Data integrity Reliability Scalability Max. display
resolution

Camera Costly and Depends on Depends on Very low Based on lens and
spacecon- sensor and build quality due to camera sensor,
suming environment space oc

cupation
problems

has upper limit
based on the
available space

Serial Cheap, easy Very low or none Very high, Very high, No limits
debug integration produces

consistent
results

easy to
apply to
muliple sys
tems

Frame Costly, 1:1 data values, Very high, Very high, No limits
grabbing complicated does not check based on compact
hardware integration physical display high-end

technology
and easy to
expand

Table 2.1: Available technology comparison [source: author]

Frame grabbing hardware was used as a solution for its exact and reliable data
values. Additionally, frame grabbing hardware is superior in compactness, scalability and no
display resolution or data protocol limitation. Disadvantages such as high cost and compli
cated integration can be reduced by using the right technologies to simplify user experience.
If display correctness testing is a requirement, frame grabbing hardware can be paired with
camera technology.

34

3 FPGA implementation

Based on the requirements for speed discussed in chapter 3.2.3 and the practical data output
requirement discussed in chapter 2.3.3 P Y N Q - Z 2 development board was chosen for it's
F P G A circuit implementation along the processing system. [13].

Figure 3.1: PYNQ-Z2 [13]

3.1 P Y N Q - Z 2 programmable logic
P Y N Q - Z 2 features a programmable logic circuit based on a X i l i n x Art ix-7. F P G A is a type
of integrated circuit which can be configured by programmer to perform specific tasks by
programming digital logic gates and arrays. F P G A s excel at parallel processing, versatility
and speed.

3.1.1 F P G A on P Y N Q

P Y N Q - Z 2 takes the versatility of F P G A technology a step further by implement it on a
system with " P Y N Q overlay" which is capable of simple interconnection of F P G A and pro
cessing system. F P G A for P Y N Q can be programmed using commercially available IDEs
such as Vivado, which is used for this application.

Table 3.1 summarizes some important specifications regarding F P G A technology on
P Y N Q - Z 2 .

35

3 F P G A I M P L E M E N T A T I O N 3.2 F P G A P R O G R A M M I N G

Maximum clock frequency 200 M H z *
Logic slices 13300
fast R A M 630 k B
D S P slices 220

Table 3.1: PYNQ-Z2 F P G A basic specifications [13]

*The actual maximum clock frequency is defined by the complexity and how time de
manding a designed circuit is.

3.2 F P G A programming
Chosen technology for gathering display data is frame grabbing hardware based on F P G A
technology. F P G A technology provides fast, effective and robust solution for extremely fast
data manipulation. The F P G A " circuit" is designed as a block diagram in Vivado I D E using
V H D L programming language must be capable of the following points:

Frame dataflow (DPI) A X I video to memory

video protocol Digital data

Timing adjustment vXI video Frame output

vid. protocol correct timing

D P I to A X I video

Figure 3.2: Simplified F P G A data processing [source: author]

1. Gather D P I data

2. Analyze D P I data and adjust timing if needed

3. Convert D P I data into internal A X I protocol

4. Save frame data into buffer R A M memory

5. Enable processing system to access the frame via interconnections

6. Enable processing system to access information about D P I protocol (frequency, resolu
tion, etc.)

The final block diagram is displayed in figure 3.3.

30

irlercon necl_0

PYNQ_RED[7:0] D—1_

PYNQ_GREESI[7:0]

PYNCLBLUE[7:0] D — l _

• lnDp:D]
• In1[7:3]
• lnZ[7:3]

.resBflOLO]

•ito-co-i-icct a'csctVC:Cl
peripheral aroset""C:C]

peiipliei

Processor System Reset

PYNQ_DE _ > ~

PYNQ_H_5YNC Z>-

PYWQ_V_SYMC: Z>-

xlconstant_0

d out] 0:0]

Constant

•
II + SO0_AXI
— ALIK
— ARESETN
— SOO.ACLK
— S0O.ARESETN
— MO0_ACLK
— MO0_A RESET N
— M01_ACLK
— MO 1_A RESET N
— M02_ACLK
— Mfl5_ARFSFTM

M00.AXI +-
M01_AXI +-
M02_AXI

IIIO[OLO| düul|0O]

- vid_io_in_clk

-I- ITF
-I- S_AXIS_S2MM

AXI 52MM +
ie_ptr_out[SO]

n_frame_ptr_in|b:U|

AXI Video Direct Memory Access

•
II + SOO.AXI
- ACLK
- ARESETN
- SOO_ACLK
- SO0 ARESETN
- MOn.ACl K
- MOO.A RESET N

Processi n gsystern 7 0

II + S_AXI_HFO_FIFD_CTRL
i| + S_AXI_HFO
- M AX\ GPO ACLk ZYNQ
- S_AXI_HPO_ACI K
- IRQ_F2PiaO]

FCLK_RESETO_N

AXI Interconnei

-|- SOO.AXI
HSV NC
VSYNC

wiclth_debug[31:3] •
ieight_debug|3l:31 •
at a written height •

dispCheek_v1.0 (Pre-Production]

Video lntoAXI4-Stream

Figure 3.3: Display sniffer block diagram in Vivado IDE [source: author]

3 F P G A I M P L E M E N T A T I O N 3.2 F P G A P R O G R A M M I N G

3.2.1 Vivado

Vivado is an integrated development environment designed by X i l i n x which also provides
an integrated circuit used on P Y N Q - Z 2 board. Vivado is used for design, verification and
implementation of F P G A circuits.

Circuit is designed as a block design where each block is programmed in V H D L or Verilog
programming language. Some blocks are preprogrammed by X i l i n x and some blocks are
programmed specifically for this thesis. Following subsections discuss each part of the F P G A
design.

Compiling output for F P G A

Compiling output data for F P G A is different than for other programming languages.
For example when C languages are compiled, the compiler follows steps such as prepro

cessing, compilation and linking [24].
Compiling code for hardware description languages such as V H D L used in this project

for F P G A system requires different approach. Compilation of V H D L consists of:
1. Analysis: this phase involves reading and parsing the V H D L source files and building

an intermediate representation, any parsing or syntax errors are caught in this step.
2. Elaboration: This step instantiates all components and elaborates the design hier

archy.
3. Synthesis: Unt i l this step, hardware was interchangeable. Synthesis step generates

netlist of all elements on specific hardware.
4. Implementation: Implementation retrieves the netlist and generates routes that wi l l

be later programmed on the target hardware.
5. Generating bitstream: While synthesis and implementation steps defined all con

nections and settings on F P G A target, the generated bitstream contains all the information
needed to program the F P G A circuit. This file with extension .bit is loaded into processing
system and can be used later to setup the programmable logic of mentioned P Y N Q - Z 2 .

3.2.2 A X I protocol

A X I stands for Advanced extensible Interface and is a widely used protocol in the field
of digital design and F P G A . It is a protocol and set of rules defining how each block and
module communicates within digital system, in this case F P G A . It is crucial to highlight the
advantages of this protocol since its fast and reliable. A X I uses master-slave architecture,
where master initiates transaction and slave responds.

A X I protocol has subsets, each designed and perfected for a specific task.
A X I 4 is a standard and is used when high frequency and performance is needed. A X I 4

includes features such as burst transfers or separate channels.
AXI4-Lite is a simplified version of A X I 4 , it is designed for a simpler control or low-

bandwidth applications. It has a reduced complexity compared to A X I 4 and additional
features, such as burst transfers or separate channels, are not present.

AXI4-Stream is designed for streaming data interfaces. Unlike A X I 4 , which is more

38

3 F P G A I M P L E M E N T A T I O N 3.2 F P G A P R O G R A M M I N G

transaction-oriented, AXI-Stream is optimized for continuous streams of data.
A X I 4 - S t r e a m V i d e o is a subset of AXI-Stream and is also stream-oriented protocol

optimized for streaming video data. This protocol includes conventions generally used in
video processing applications.

A X I - I n t e r c o n n e c t is not a protocol itself but it is an important component used to
connect multiple A X I masters and slaves.

3 . 2 . 3 D a t a t i m i n g c o r r e c t i o n u s ing F P G A

Frame dataflow (DPI) A X I video to memory

video protocol Digital data

Timing adjustment X I video Frame output

vid. protocol correct timing

D P I to A X I video

Figure 3.4: F P G A data process timing correction block [source: author]

Data timing correction problem is a common issue that occurs anywhere data is being
sampled or gathered in any form.

In theory, we should be able to gather digital signal with sensor having the same sampling
frequency as the source data. However, in reality this is not true and the source must have
higher frequency to correctly gather information about/from the source.

For this reason a measurement was conducted where the impact of different ratios of
faenaor was measured.
J source

For measurement, a frequency generator was used as a source. P Y N Q with custom-made
frequency analyzer was responsible for frequency detection. Graphs showing the results from
measurements demonstrate what frequency the F P G A circuit measured with specifically
selected prescaler of sampling clock frequency.

Graphs of final measurements are displayed in figure(s) 3.5

39

3 F P G A I M P L E M E N T A T I O N 3.2 F P G A P R O G R A M M I N G

- 2* sampled frcquc
•i3x sampled freque
• 5x sampled fieque

— 3xsam z •

(a) Source set to 31.5 Hz (b) Source set to 122 Hz (c) Source set to 500 Hz

F-e;iueru-y ufsensoi [Hz]

(d) Source set to 4 kHz

- - 2 am pi d eque

-'- 5 x sampled frequency
Van eqi.ency sen;

00 40000 50

(e) Source set to 7.8 kHz

• 2x sampled frequent
• 3x sampled freqjenc
• 5x sampled freqjenc

(f) Source set to 31 kHz

_!: 30000 ;•

= 20C0C ••

E loooo-

- 2x sampled frequency
• 3x sampled frequency
• 5x sampled frequency

(g) Source set to 61.5 kHz

Figure 3.5: Measurements of frequency identification correctness based on sensor and source fre
quency ratio [source: author]

From these measurements the recommended ratio of fsensor to fsource is 5. Which means
that the P Y N Q board should sample the display with 5 times higher frequency.

3 . 2 . 4 D i s p l a y pa ra l l e l interface to A X I p r o t o c o l

After the D P I data enter the F P G A and are correctly timed, they must be translated to
protocol the internal wiring of F P G A can work with. The protocol chosen is A X I - s t r e a m
v ideo since it is the easiest to implement for video data transfer.

Axi-stream protocol uses different naming for each signal. Table 3.2 summarizes the
comparison between D P I data and AXI-stream data.

The protocols are similar in functioning with the only difference in effectivity and speed
in which A X I is better since it is an internal communication protocol.

This conversion is handled by Video to AXI4-Stream IP. This IP must be set up before
generating bitstream and cannot be edited later in the process. Because of this disadvantage,
every display protocol and colour format must have individual bitstream generated. Since

40

3 F P G A I M P L E M E N T A T I O N 3.2 F P G A P R O G R A M M I N G

Frame dataflow (DPI) A X I video to memory

video protocol Digital data

Timing adjustment X I video Frame output

vid. protocol correct timing

D P I to A X I video

Figure 3.6: F P G A data process DPI to A X I block [source: author]

D P I A X I Purpose
Data enable valid Signalizes valid pixel data

H-sync tuser Synchronizes end of line
V-sync tlast Synchronizes end of frame
Data data Colour values, changes with each pixel

Table 3.2: DPI to A X I signals [source: author]

the bitstreams can be uploaded by the processing system this disadvantage is not detrimental
to the project.

3.2.5 Display check IP

Display check IP is a quintessential part of the whole design. This IP is responsible for
monitoring information about the connected display, statuses of all data transfers, statuses
of errors that do not cause system crash and report all the information to processing system.
The processing system needs this information for proper functioning and whole system setup.

41

3 F P G A I M P L E M E N T A T I O N

3.2.6 Video direct memory access (V D M A)

3.2 F P G A P R O G R A M M I N G

Frame dataflow (DPI)

video protocol

Timing adjustment

vid. protocol correct timing

D P I to A X I video

A X I video to memory

Digital data

X I video Frame output

Figure 3.7: F P G A data process A X I to memory block [source: author]

Video direct memory access or V D M A is a block commonly used in the X i l i n x Vivado
development environment. V D M A enables the efficient transfer of video data between differ
ent memory locations without the need for constant intervention from the processing unit.
It is often employed in applications such as video streaming, image/video processing, and
graphics rendering.

B y using V D M A common problems with memory accessing are solved beforehand, allow
ing the processing unit to simply adjust V D M A settings on the fly and gather raw frame
data by directly accessing parts of memory where the frame is stored.

42

4 Display sniffer server

Frame dataflow (DPI) A X I video to memory

video protocol Digital data

Timing adjustment vXI video Frame output

vid. protocol correct timing

D P I to A X I video

Figure 4.1: F P G A data process frame output block [source: author]

When frame data arrive to the system memory and are saved in known memory location
handled by V D M A (3.2.6), they must be further processed and delivered to the user.

The output of frame can be handled by plethora of methods. For the highest possible
simplicity and practicality for the user, a server-client method is used.

This method ensures that the data can be accessed by any device connected to the same
network as the P Y N Q testing station.

Image data in default format

Frame dataflow (DPI) Testing framework/user

Request for frame sent to specific IP address

Figure 4.2: P Y N Q and testing framework connection [source: author]

4.1 P Y N Q - Z 2 processing system
Further data manipulation is handled by P Y N Q processing system.

The processing system can be described by few key points:

• Dual-core A R M

43

4 D I S P L A Y S N I F F E R S E R V E R 4.1 P Y N Q - Z 2 P R O C E S S I N G S Y S T E M

• Clocked at 650 M H z

• Capable of running operating system

• Multiple connectivity options (USB, Ethernet, U A R T , etc..)

• P Y N Q operating system based on Linux and Python environment

• Can interact with programmable logic via P S - P L interconnects

4.1.1 P S - P L interconnect

P S - P L interconnects are a crucial parts of P Y N Q main processing unit. Processing system
and programmable logic cannot communicate and exchange data directly. This data manip
ulation and communication must be handled by another subsystem. This subsystem ensured
correct timing and error handling. Following simplified diagram describes the internal layout
of Z Y N Q .

Processing
System

Peripherals

_

7 Series
Programmable
Logic

Me ivo iy
Interfaces

ARM
DualCortK-Ag

MPCorB" Sutern

t
Accelerator

4

Peripheral

Custom

Analog I Monitors 1 Aral eg

Displays

interface 1

Interlace 1

Interface J

Interlace H

Memory

Figure 4.3: Simplified internal Z Y N Q diagram [18]

The P S - P L interconnect allows processing system to access any memory parts from pro
grammable logic region. As mentioned in chapter 3.2.6 where V D M A is discussed, the V D M A
is responsible for saving image data to specific memory location and then pass their location
and size to processing system which can read it v ia the P S - P L interconnect directly from the
memory.

44

4 D I S P L A Y S N I F F E R S E R V E R 4.2 D A T A M A N I P U L A T I O N

4.1.2 Operating system

The processing system is hosting an P Y N Q Linux operating system (OS). This operating
system manages hardware connections and provides a software interface for applications.

This OS can provide almost all capabilities exactly as any other Linux based OS, extended
by P Y N Q overlay, enabling the access to P L part of Z Y N Q chip via Python libraries. P Y N Q
Linux can be managed either by connecting directly via U S B or by ethernet.

For data access, software programming and overall manipulation jupyter notebook envi
ronment or classic command line interface is used.

4.2 Data manipulation
Before the data in a form of images can be accessed or requested by the user, these data
must follow several steps:

1. Activate frame data gathering

2. Retrieve frame data from P L

3. Convert raw frame data into image

4. Apply post-processing to converted image

5. Save or send final image

4.2.1 Data gathering

Data gather is done by initiating F P G A overlay, V D M A and calling V D M A instance in
python script. V D M A must be setup with specific expected resolution. This initiation can
be changed any time.

V D M A is then started when frame data are to be gathered. Raw frame data are requested
and after they are received, V D M A is stopped to prevent memory overflow.

Simplified example of V D M A use case is described in code snippet 1.

45

4 D I S P L A Y S N I F F E R S E R V E R 4.2 D A T A M A N I P U L A T I O N

import required packages

import pynq

from pynq import allocate, Overlay

import pynq.lib.video as pynq_video_lib

initiate FPGA overlay and vdrna instances

overlay = Overlay("bitstream.bit")

vdma = overlay.axi_vdma_0

setup vdma module

vdma.readchannel.mode = pynq_video_lib.VideoMode(frame_width,

frame_height,

bits_per_pixel)

read frame using asynchronous function

vdma.readchannel.st art()

raw_frame_data = await vdma.readchannel.readframe_async()

vdma.readchannel.st op()

Code snippet 1: Simplified python code for V D M A handling [source: author]

4.2.2 Data conversion and post-processing

After raw frame data are saved in a variable, they need to be processed into usable image
format. After testing all formats, B M P was chosen. When raw frame data were processed
the B M P format proved to be the most effective in speed and quality. More details about the
testing in chapter 5.2.4. When image is saved as B M P , it is transformed into bytes format
in order to send it to user.

create Image instance from raw_frame_data

bmp_image = Image.fromarray(raw_frame_data)

save image instance and convert it to bytes format

with io.BytesIOO as buf:

image.save(buf, format='BMP')

image_bytes = buf.getvalueO

return Response(image_bytes, media_type = "image/bmp") # return bytes data to user

Code snippet 2: Simplified Python code raw frame postprocessing [source: author]

Another post-processing features such as image cropping or colour value editing can be
done using the Image object functions.

46

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

4.3 Server A P I
As mentioned in chapter 4, server-client method of data accessing is implemented.

In order to make the server manipulation and data accessing as simple as possible a server
A P I is implemented.

4.3.1 Fast A P I python package

Fast A P I is a modern, fast (high-performance), web framework for building APIs with Python
programming language. It is designed to be easy to use, fast to run, and to produce fast code
[25]. Some key features and aspects of FastAPI include:

• Fast, supports asynchronism

• Secure, build-in features for higher security

• Websockets, in addition to H T T P , FastAPI supports WebSocket connections

• Auto documentation, useful when project gets larger

4.3.2 Server A P I

FastAPI is capable of maintaining server that is hosted on mentioned OS of P Y N Q develop
ment board.

Code snippet 3 shows a simplified example of such framework implementation with an
example function. If user or system wants to access wrapped function and retrieve data
returned by the function, IP address with the function path must be called. If input data
are to be sent, following format is used.

192.168.2.207:8000/path/data=my-custom-datajnput

import fastAPI

from fastapi import FastAPI

create framework app object

app = FastAPI()

Sapp.get("/") # web address to call wrapped function

def read_root():

return {"online"} # anything returned will be "sent" to user

Code snippet 3: Simplified python code for fastAPI utilization [source: author]

Display sniffer has several public functions accessible by user. Table 4.1 summarizes all of
them with brief comment. Details about these processes are discussed further below. Every
external method is handled by fastAPI and wrapped functions. Internal methods cannot be
accessed by the user.

47

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

Function Used for Returns
root (initial function) default landing page,

initiates resolution detec
tion

current settings of server

set_color .format used for setting
display color format

1 or error with details

set .resolution used for denning
display resolution

1 or error with details

set .overlay used for loading
F P G A circruit

1 or error with details

start.vdma used for starting
V D M A frame gathering

1 or error with details

stop_vdma used for stopping V D M A ,
must
be used after frame reading

1 or error with details

read_video used for retrieving multiple list of frames with video
frames in rapid succession statistics or error with de

tails
read_frame used for retrieving single image in specified format or

frame error with details
detect_resolution used for manually

detecting resolution
of display

1 or error with details

reset .server used for software reset,
erases all settings

1 or error with details

get_possible_settings used for retrieving list of settings or error with
all possible settings details

Table 4.1: Table of usable function in display sniffer A P I [source: author]

Root

Root function is the default function that gets called when the user accesses display sniffer
server. Root is used for checking if connection was established, if server is running and to
retrieve server settings. This function should be called when testing framework is initiated
or if connection/settings had to be checked.

Root is accessed by:
S E R V E R _ I P : P O R T /
Root input data:

• None

Root conducts following steps:

1. sets up default overlay

48

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

2. detects resolution of connected display

3. returns settings of display sniffer server

Set colour format

Colour format function is used for defining colour format of connected display. This colour
format must be known in advance. This function addresses a problem of different colour
format processing. Server has multiple bitstreams with different color format pre-cessing
capabilities included.
Color format function is accessed by:

S E R V E R J P : PORT/set Color Format/colorFormat={color _for mat}
Color format function input data:

• color_format (RGB888, RGB565, etc.)

Color format function conducts following steps:

1. checks if input color format is valid

2. updates color format setting for correct bitstream

3. returns True (1) or error with details

Set resolution

Resolution setting is crucial for correct V D M A functioning. If the user does not know the
resolution of connected display, automatic resolution detection might be used. The resolution
includes porch regions which are empty pixels. The resolution must be set including porch
region which is later removed at the client side.

Set resolution function is accessed by:
SERVER_IP:PORT/setResolution/

display Widt h= {width } / display Height={ height}
Set resolution function input data:

• width width of display + front porch in pixels

• height height of display + top porch in pixels

Set resolution function conducts following steps:

1. Checks if height, width are valid values (int!=0)

2. Updates internal resolution setting

3. Returns True (1) or error with details

49

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

Set overlay

Set overlay is responsible for calling overlay set procedure. This procedure wil l "upload" a
desired F P G A circuit to P L side of Z Y N Q .

Set resolution function is accessed by:
SERVER_IP:PORT/se tOver lay
Set overlay function input data:

• None

Set overlay function conducts following steps:

1. Check if colour format was chosen

2. Check if resolution is set

3. Stops V D M A if it is running

4. Loads bitstream from memory and uploads it to P L

5. Initiates used IPs

6. Sets up V D M A (resolution, color format)

7. Returns True (1) or error with details

Start/Stop vdma

Starting and stopping V D M A is crucial for the correct functioning of the whole system.
Before each reading session, V D M A must be started. If no frame wil l be read in upcoming
time, the manual stopping of V D M A is recommended.

Start/stop vdma function is accessed by:
S E R V E R _ I P : P O R T / s t a r t V D M A
or
S E R V E R _ I P : P O R T / s t o p V D M A
Start/stop vdma function input data:

• None

Start/stop vdma function conducts following steps:

1. starts/stops the V D M A module

2. returns True (1) if operation was successful

50

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

Read frame

Read frame is a basic function that can be used to retrieve frame data from display sniffer.
To use read frame function, correct overlay must be set first.

Read frame function is accessed by:
S E R V E R J P : PORT / readFrame / image .format={image .format}
Read frame function input data:

• image_format format of returned image (B M P , Numpy array, J P E G , ...)

Read frame function conducts following steps:

1. checks if requested image format is valid

2. checks if resolution is set

3. checks if overlay is set

4. checks if V D M A is running

5. reads data from V D M A (async function)

6. converts raw data into requested format

7. returns frame in requested format

Read video

Read video is similar to read frame function. Its purpose is to capture multiple frames as fast
as possible. To save time for postprocessing raw dat, the frames are read in the requested
F P S speed and saved locally. After all frames are saved they are processed together and sent
back to user as a list of frames with information about speed and real F P S .

Read video function is accessed by:
SERVER_IP:PORT/readVideo/frames={frames}

/fps={fps}/image_format={image_format}
Read video function input data:

• frames, how many frames the system wil l read

• fps, requested F P S

• image_format, defines final image format (BMP,Numpy array, JPEG, . . .)

Read video function conducts following steps:

1. checks if requested image format is valid

51

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

2. checks if F P S request is valid

3. checks if number of frames is valid

4. checks if resolution is set

5. checks if overlay is set

6. calculates needed time period for one frame

7. reads frame and appends it to the raw frames list

8. records timing information to the list of information

9. waits for specified time or immediately starts reading a new frame

10. repeats 7.,8.,9. until desired number of frames is read

11. starts postprocessing of raw frames

12. calculates statistics such as average F P S , max F P S , etc.

13. returns processed data and information as [{information dictionary},[processed frames]]

Detect resolution

Detect resolution is an useful function when user needs to manually check the connected
display resolution. For detecting resolution, a default overlay is used. This overlay is not
capable of outputting any frames, its only purpose is to detect the resolution or if the display
is connected at all.

Detect resolution function is accessed by:
SERVER_IP:PORT/detectResolut ion
Detect resolution function input data:

• None

Detect resolution function conducts following steps:

1. sets up default overlay

2. initiates dispCheck module

3. reads internal registers of dispCheck that store resolution

4. updates resolution information and returns it to user

52

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

Reset server

Software reset of server is useful if display is being changed, setup process is incorrect or if a
new user is connecting to already running server that is in an unknown state.

Reset server function is accessed by:
SERVER_IP:PORT/sof tReset
Reset server function input data:

• None

Reset server function conducts following steps:

1. stops V D M A if its running

2. resets internal settings

3. uploads default overlay

Get possible settings

This function is used only for users that are not familiarized with the display sniffer system.
Users can call on this function to receive a dictionary of all possible settings such as available
colour formats, available image formats, current internal settings, etc.

Get possible settings function is accessed by:
SERVER_IP:PORT/getPossibleSettings
Get possible settings function input data:

• None

Get possible settings function conducts following steps:

1. Returns the information about available options in dictionary format

4.3.3 Client class

Client class is a control layer written in Python language. This layer is responsible for calling
and executing functions mentioned in chapter 4.3.2 in a safe and controlled manner.

The documentation for client control layer can be found on the project github. [26]
Following code is an example of how to use display sniffer with following variables:

1. server ip = 192.168.2.127

2. display color format = RGB888

3. display resolution = unknown

53

4 D I S P L A Y S N I F F E R S E R V E R 4.3 S E R V E R A P I

1 # import packages

2 from display_sniffer_handler import PynqHandler

3 from PIL import Image

4

5 # create display sniffer object

6 display = pynq_handler("192.168.2.127") # when creating object, IP must be specified

7

8 # check if server is online and receive settings including display resolution

9 server_status = display.server_check() # server_status has information about resolution and settings

10

n # set display settings

12 display.height = server_status["frame_height"] # detected resolution

13 display.width = server_status["frame_width"] # detected resolution

14 display.colorFormat = "RGB888"

15 display.frontPorch = 0 # must be manually corrected

16 display.topPorch = 0 # must be manually corrected

17

is # call for FPGA setup

19 display.setup(10) # number of seconds to wait

20

21 # request image in BMP format from server

22 image = display.read0neFrame(wait_time=10, mode="bmp", type="image")

2li

Code snippet 4: Example of client connection to display sniffer [source: author]

54

5 Testing

After the system was completed, basic testing was done to further validate the functionality
and effectivity.

5.1 Simulating video data
Since connecting real display would consume too much space and debugging would be chal
lenging, other methods of simulating video data were chosen.

Simulating video data can be internally inside F P G A circuit or by external sources.

5.1.1 Test pattern generator (T P G)

The Test Pattern Generator IP Core is designed to produce test patterns essential for Video
System initialization, assessment, and troubleshooting. Offering a diverse range of test pat
terns, the core facilitates users in debugging and evaluating color, quality, edge, and motion
performance, addressing potential quality issues within the video system. It can be seamlessly
integrated into an AXI4-Stream video interface, providing users with an option to either pass
through the system video signals or incorporate test patterns as needed [19].

T P G is capable of

• Different resolutions (64x64 up to 8192 x 4320)

• Generating static or dynamic color patterns

• Outputting video data in a form of AXI-video

• Generating multiple colour formats

• Generating multiple colour depths

Example of some T P G patterns:
This IP is ideal for testing the connection between V D M A on P L side and Python script

on PS side. T P G cannot generate D P I video data.

5.1.2 Raspberry P i

For testing D P I video data gathering and processing, an external video image generator must
be used.

For this purpose Raspberry P i is used. Raspberry P i is a compact and affordable mini
computer. Despite its small size, it boasts significant computing power, making it capable of
various tasks, including serving as a basic computer. Raspberry P i is equipped with external

55

5 T E S T I N G 5.2 T E S T R E S U L T S

(a) Test pattern ID: 0x09 (b) Test pattern ID: OxOB (c) Test pattern ID: OxOF

Figure 5.1: Test pattern generator correct patterns [source: author]

G P I O pins capable of either controlling external devices or receiving and transmitting various
data using different protocols such as U A R T , SPI, IIC or for our use DPI. Its low cost and
versatility have made it a popular choice among hobbyists, educators, and tech enthusiasts
worldwide.

Figure 5.2: Raspberry P i Zero [20]

Raspberry P i is connected directly to P Y N Q development board using Raspberry header.
Raspberry is set to output graphical data as D P I protocol via G P I O pins. Resolution,
display frequency, D P I timings and D P I setting as a whole is defined in config.txt by defining
dpLtimings.

5.2 Test results
5.2.1 Python T P G pattern reading

First test was conducted to determine the speed and reliability of V D M A and Python reading
sequence shown in code snippet 1.

56

5 T E S T I N G 5.2 T E S T R E S U L T S

T P G
A X I video protocol

V D M A
frame data

Python script T P G V D M A Python script

Figure 5.3: T P G to V D M A to Python testing pipeline [source: author]

First T P G was set to produce patterns as in figure 5.1. Data from T P G are directly
connected to V D M A and no other signal processing is done.

Color shifting

Problem encountered while conducting this test which is worth noting was colour data shift
ing. Figure 5.4 displays the error. Patterns are supposed to look like the patterns in figure
5.1.

(a) Test pattern ID: 0x09 (error) (b) Test pattern ID: OxOB (er- (c) Test pattern ID: OxOF (error)
ror)

Figure 5.4: Test pattern generator incorrect patterns [source: author]

This error was caused by an incorrect setup of A X I protocol in F P G A . A X I protocol can
transfer data with two general bit widths. This setting defines how many bits of data are
transferred in one clock cycle. Correct setting is 64 bits. If the setting is set to 32 bits,
the colour information wil l shift and the resulting image wil l not be correct.

Memory overflow

Another discovery worth noting is the fact that V D M A , when handled incorrectly, wi l l over
flow memory and cause fatal errors and segmentation faults. This wil l cause the whole system
to crash, sometimes needing a complete SD card re-etching.

To prevent this, a commands vdma.readchannel.startQ and vdma.readchannel.stop() must
be used before and after writing data to memory. Testing showed that the start/stop calls
have close to no effect on speed and effectivity.

5.2.2 Testing D P I video data using Raspberry P i

Raspberry P i is capable of transmitting D P I video data using G P I O pins. The resolution
and framerate are customizable and for these reasons, Raspberry P i is used to test the whole
system.

During testing, no bugs or errors were discovered.

57

5 T E S T I N G 5.2 T E S T R E S U L T S

Test results

System was tested with resolutions defined in table 1.1. Test results are shown in the table
and in the graph.

Resolution Time for one frame [ms] Average F P S of 60 frame video
100x100 354 18.07
200x200 362 18.16
500x400 357 18.12
960x544 470 18.10

Table 5.1: Results of Raspberry P i video data testing in table [source: author]

Results show that the system effectivity when capturing video is not affected by selected
resolution. However, when capturing a single frame, the resolution causes the system to slow
down by an insignificant amount.

5.2.3 Reading real display data

Final testing of F P G A and frame gathering subsystem is testing with real display. For this
purpose colour display with resolution 320x240 was used.

D P I timing error

When using read display, timing errors discussed in chapter 2.3.3 and shown in figure 2.13
occurred. The result of this error is shown in figure 5.5.

(a) Display with incorrect timing data (b) Display with correct timing data

Figure 5.5: DPI timing error in real display data [source: author]

This error was fixed by implementing dynamic timing correction (DTC) system. This
system works as shown in figure 2.14 with an exception of dynamic clock delay. The D T C
subsystem wil l determine the frequency of connected display and adjust the timing correction
accordingly. If the dynamic correction is not enough, a delay variable can be set by user.

58

5 T E S T I N G 5.2 T E S T R E S U L T S

5.2.4 Image data output

The speed of sending data to the user was also tested. Tested variables were image format
sent and format of multiple frames.

Image format

After the PS receives raw frame data, they must be converted into usable image format. The
image is saved and manipulated using Image package in Python script.

Three image formats were considered:

• J P E G

• P N G

• B M P

J P E G format was immediately excluded from the options for its automatic loss compres
sion. This means that the J P E G format saves the image with size reducing algorithms that
have the unwanted effect of reducing the quality and precision of the transmitted data. This
approach might be used when streaming video but the system was not designed to handle
such tasks.

P N G format is a good choice for its lossless compression. However, P N G supports
transparent images hence adding more complexity to transmitted data which is not needed
since displays are not transparent. P N G format represents raw data with exact precision and
thus the P N G image wil l contain the quality needed and correct representation of raw data.

B M P is format similar to P N G with the difference of support for transparency. B M P
also doesn't use compression by default. This causes the B M P images to be overall larger
than P N G images. For data representation, the B M P format can as P N G format represent
the raw frame values correctly and without any loss in precision.

After testing all formats, B M P was chosen. When raw frame data were processed the
B M P format proved to be the most effective in speed and quality. Figure 5.6 shows the
comparison of P N G and B M P speeds.

The results show that speed of B M P and J P E G format is nearly the same. Since J P E G
uses image compressed and thus loses some quality. Only B M P format is recommended.

59

5 T E S T I N G 5.2 T E S T R E S U L T S

PNG v s BMP s p e e d s

550

^ 500
£

c o

450

fc 400
CD
E

350

300

1 1

png
bmp

1 1

png
bmp

^ # f < f # ^ <P ^
C\̂ ~ C\̂ ~ C\^" Ps^" CS "̂ CN "̂ CS "̂ - L *

^ ^ ^ ^ ^ ^ ^ o+

Resolution

Figure 5.6: P N G vs B M P image format processing and transmitting speeds [source: author]

Multiple frames format

If multiple consequent frames are required a one frame reading method could be less effective
since the images are being processed right as they are requested.

To speed up this process a multiple frames request method was created. This method
ensures the maximum frame gathering speed. This process captured raw frames into a long
buffer. After the requested number of frames is captured, the processing of each wil l start.

The frames are then sent to the user as a list of frames. The speed differences of single
frame requesting and multiple frames requesting are listed in table 5.2.

Resolution Time for one frame [ms] Mean time of one frame for 60 frames [ms]
100x100 300 48
200x200 320 50
600x400 400 52
960x544 450 55

Table 5.2: Single vs multiple frames gathering speeds [source: author]

60

5 T E S T I N G 5.3 O P P O R T U N I T I E S F O R I M P R O V E M E N T

5.3 Opportunities for improvement
The whole system was optimized as much as possible in given time. The timings of all
steps are shown as a pie chart in figure 5.7 and table 5.3 compares the minimum system
requirements to actual system capabilities.

Resolution minimum F P S actual F P S
100x100 15 24
500x400 14 20
960x544 12 18
1280x720 10 15

Table 5.3: Minimum requirements compared to real capabilities (using multiple frames function)
[source: author]

• Frame reading [0.2 ms]
• Frame processing [3 ms]
• Frame transferring [442 ms]

Figure 5.7: Overall timing pie chart for 960x544 resolution [source: author]

It's obvious from these timings that the transmitting is the step that slows down whole
system the most.

5.3.1 Compressing data in F P G A

To send a single frame faster and more effectively a compression on F P G A side of P Y N Q
system should be used. Compressing the raw data instead of compressing data on PS size of
P Y N Q wil l affect the speed minimally.

Compressing image data in F P G A is not an easy task, and since the current solution
satisfies the minimum requirements this upgrade was not implemented. B y compressing, the
data sending of frame should be faster.

61

5 T E S T I N G 5.3 O P P O R T U N I T I E S F O R I M P R O V E M E N T

5.3.2 Video streaming and video compression

If the user requests a video or many frames in a rapid succession, the current system wil l not
be as effective as it could be. Current solution using Fas tAPI might prove to be too slow for
video streaming.

Compressing video in processing system with the combination of compressing frames in
F P G A wil l result in extremely small sized packages that can be sent faster. Also, a new
method of transmitting data to user should be used. Instead of using APIs , maybe direct
T C P or U D P protocols might increase the maximum F P S provided by the system.

62

6 Conclusion

In this thesis I have analyzed the available options for quality control of image outputs of
embedded devices that are in a form of displays. I have analyzed different types of displays
and ways to acquire data in a form that can be accepted by the test framework.

These methods were then analyzed and the option of acquiring image data through frame
grabbing hardware was selected.

To implement the frame grabbing hardware (display sniffer), I used the P Y N Q - Z 2 de
velopment board which main processing unit is a powerful Art ix-7 manufactured by Xi l inx .
This processor is able to implement F P G A circuit subsystem and processing subsystem unit,
which is capable of running a Linux-based operating system.

These two seemingly separate subsystems are able to communicate with each other due
to the internal layout of the processor, and thus various programs written in Python on the
operating system side of the Art ix-7 chip can take advantage of the flexibility and speed of
the F P G A circuit.

This advantage is leveraged in the form of a division of tasks between the two subsystems,
where the F P G A circuit is responsible for collecting the image data and storing it in the shared
memory of the A r t i x chip. The server running on the operating system side is then able to
access the almost complete data from the F P G A side. This data is then post-processed and
sent to the user via the internet implementing fastAPI Python module.

The F P G A circuit, in addition to collecting graphical data, is able to identify the display,
its resolution and also forward this information to the user for an easier setup of the system.

The system limits and minimum requirements were checked as part of the work. The
objectives of the work and the minimum requirements were met.

At the end of the thesis, the shortcomings of the system were evaluated. These problems
are time-consuming and not required to meet the minimum requirements. The thesis has
potential for further development of the system in the form of compressing image data on the
F P G A side, implementing a more efficient method of sending finished image data from the
system, or implementing C I / C D pipelines directly on the P Y N Q - Z 2 board and thus skipping
sending data through the Internet altogether.

A l l the objectives of the thesis have been achieved and some have been extended or
fulfilled beyond the minimum requirements.

03

List of Figures

1.1 Simple diagram of quality control loop [source: author] 12
1.2 Signal processing unit position in data gathering loop [source: author] 13
1.3 Monochrome L C D display [4] 13
1.4 L C D working principle [3] 14
1.5 Difference between L E D and (A M) O L E D display [5] 14
1.6 One of many possible structures of O L E D display under microscope [6] . . . 15
1.7 8 segment monochrome L E D display [7] 15
1.8 E-ink capsules [8] 16
1.9 Simple diagram of display dataflow [source: author] 16
1.10 Single 24-bit pixel color value storage [source: author] 17
1.11 Serial and parallel dataflow example [source: author] 18
1.12 Timing diagram of pixel values information [source: author] 19
1.13 Timing diagram of new line [source: author] 19
1.14 Timing diagram of end of frame [source: author] 20

2.1 Diagram of capturing data by camera [source: author] 21
2.2 Diagram of C M O S chip [16] 22
2.3 Rolling vs global shutter [17] 23
2.4 Diagram of C C D chip [16] 24
2.5 Example of display area in camera area [source: author] 24
2.6 Color selection and color value extraction diagram [source: author] 25
2.7 Bayer mask pattern layed on photodiodes [12] 25
2.8 Interpolation of color data [15] 26
2.9 Example of lens distortion and chromatic aberration [23] 27
2.10 Serial dataflow capture diagram [source: author] 28
2.11 Frame dataflow capture diagram [source: author] 29
2.12 Theoretical timing diagram of frame grabbing hardware [source: author] . . 32
2.13 Data synchronization error [source: author] 32
2.14 Data synchronization error correction [source: author] 32

3.1 P Y N Q - Z 2 [13] 35
3.2 Simplified F P G A data processing [source: author] 36
3.3 Display sniffer block diagram in Vivado I D E [source: author] 37
3.4 F P G A data process timing correction block [source: author] 39
3.5 Measurements of frequency identification correctness based on sensor and

source frequency ratio [source: author] 40

64

L I S T O F F I G U R E S L I S T O F F I G U R E S

3.6 F P G A data process D P I to A X I block [source: author] 41
3.7 F P G A data process A X I to memory block [source: author] 42

4.1 F P G A data process frame output block [source: author] 43
4.2 P Y N Q and testing framework connection [source: author] 43
4.3 Simplified internal Z Y N Q diagram [18] 44

5.1 Test pattern generator correct patterns [source: author] 56
5.2 Raspberry P i Zero [20] 56
5.3 T P G to V D M A to Python testing pipeline [source: author] 57
5.4 Test pattern generator incorrect patterns [source: author] 57
5.5 D P I timing error in real display data [source: author] 58
5.6 P N G vs B M P image format processing and transmitting speeds [source: author] 60
5.7 Overall timing pie chart for 960x544 resolution [source: author] 61

65

List of Tables

1.1 Min imum requirements for final system [source: author] 11

1.2 Signals transferred by display parallel interface [source: author] 18

2.1 Available technology comparison [source: author] 34

3.1 P Y N Q - Z 2 F P G A basic specifications [13] 36
3.2 D P I to A X I signals [source: author] 41

4.1 Table of usable function in display sniffer A P I [source: author] 48

5.1 Results of Raspberry P i video data testing in table [source: author] 58
5.2 Single vs multiple frames gathering speeds [source: author] 60
5.3 Min imum requirements compared to real capabilities (using multiple frames

function) [source: author] 61

66

List of source codes

1 Simplified python code for V D M A handling [source: author] 46
2 Simplified Python code raw frame postprocessing [source: author] 46
3 Simplified python code for fastAPI utilization [source: author] 47
4 Example of client connection to display sniffer [source: author] 54

67

Abbreviations

D P I Display parallel interface

SPI Serial peripheral interface

12 C Inter integrated circuit

U S B Universal serial bus

F P G A Field-programmable gate array

F P S Frames per second

A X I Advanced extensible interface

IP Intellectual property

V D M A Video direct memory access

OS Operating system

T P G Test pattern generator

D T C Dynamic timing correction

C8

Bibliography

[I] Sciencedirect, 2023. Online. Sciencedirect.com. Available at: h t tps : / /www.
s c i e n c e d i r e c t . c o m / t o p i c s / c o m p u t e r - s c i e n c e / l i q u i d - c r y s t a l - d i s p l a y

[2] T S U J I M U R A , Takatoshi, 2017. Oled display fundamentals and applications. 2017. John
Wiley.

[3] L C D Display - Fundamentals, 2022. Online. G E O R G E , Ligo. Electrosome. Available at:
h t t p s : / / e l e c t r o s o m e . c o m / l c d - d i s p l a y - f u n d a m e n t a l s /

[4] 16x2 L C D displej 1602 modrý + I2C převodník, 2024. Online. In: Laskakit. Available at:
h t t p s : / / w w w . l a s k a k i t . c z / 1 6 x 2 - l c d - d i s p l e j - 1 6 0 2 - i 2 c - p r e v o d n i k /

[5] A M O L E D or T F T : a new choice for display designers, 2017. Online. In: Andersdx. Avai l
able at: h t tps : / /www.andersdx.com/advantages-of-amoled/

[6] Samsung S8+ A M O L E D display under the microscope, 2019. Online. In: Hackaday. Avai l
able at: h t tps ://hackaday. io /project /166935-opt ical -scanning-microscope/
log/170202-Samsung-s8-amoled-display-under-the-microscope

[7] LTD-4608JF, 2024. Online. Mouser. Available at: mouser.cz

[8] Peng Fei Bai , Robert Andrew Hayes, Mingliang Jin, Lingling Shui, Z i Chuan Y i ,
L i Wang, Xiao Zhang, and Guofu Zhou, "Review of Paper-Like Display Technolo
gies (Invited Review)," Progress In Electromagnetics Research, Vol . 147, 95-116, 2014.
doi:10.2528/PIER13120405

[9] Sitronix, 2002. Online. ST7920: Documentation. Online. 3rd edition. Available at: h t t p s :
/ / w w w . l a s k a k i t . c z / u s e r / r e l a t e d _ f i l e s / s t 7 9 2 0 _ c h i n e s e . p d f

[10] L I T W I L L E R , Dave, 2001. C C D vs. C M O S : Facts and Fiction. Online. In: Duke. Avai l
able at: h t t p s : / / c o u r s e s . c s . d u k e . e d u / f a l l 1 1 / c p s 2 7 4 / p a p e r s / L i t t w i l l e r 0 1 . p d f

[II] S O N Y , 2018. I M X 4 7 7 - A A C K : Documentation. Online. Sony Semiconductor Solu
tions Corporation. Available at: h t t p s : / / w w w . s o n y - s e m i c o n . c o m / f i l e s / 6 2 / p d f /
p-13_IMX477-AACK_Flyer .pdf

[12] The Bayer arrangement of color filters on the pixel array of an image sensor, 2023.
Online. In: Wikipedia. Available at: h t t p s : / / e n . w i k i p e d i a.Org / w i k i / B a y e r _ f i l t e r #
/med ia /F i l e :Baye r_pa t t e rn_on_senso r . svg

69

http://Sciencedirect.com
https://www
https://electrosome.com/lcd-display-fundamentals/
https://www.laskakit.cz/16x2-lcd-displej-1602-i2c-prevodnik/
https://www.andersdx.com/advantages-of-amoled/
https://hackaday.io/project/166935-optical-scanning-microscope/
http://mouser.cz
http://www.laskakit.cz/user/related_files/st7920_chinese.pdf
https://courses.cs.duke.edu/fall11/cps274/papers/Littwiller01.pdf
https://www.sony-semicon.com/files/62/pdf/
https://en.wikipedia.Org/wiki/Bayer_filter%23

B I B L I O G R A P H Y B I B L I O G R A P H Y

[13] T U L PYNQ™-Z2 board, 2018. Online. Tulembedded. Available at: h t tps : / /www.
tulembedded.com/fpga/ProductsPYNQ-Z2.html

[14] X I L I N X , 2020. Zynq-7000 SoC: Documentation. Online. V1.21. Available at: h t t p s :
/ / d o c s . x i l i n x . c o m / v / u / e n - U S / d s l 8 7 - X C 7 Z 0 1 0 - X C 7 Z 0 2 0 - D a t a - S h e e t

[15] Linear interpolation approach to demosaicing, 2019. Online. In: Illinois.edu. Available
at: h t t p s : / / s l a z e b n i . c s . i l l i n o i s . e d u / s p r i n g l 9 / a s s i g n m e n t O . h t m l

[16] Background Information on C C D and C M O S Technology, 2023. Online. In:
www.tedpella.com. Available at: h t tps : / /www.tedpel la .com/cameras_html /ccd_
cmos.aspx

[17] Top Considerations When Buying A Microscopy Cam
era: P A R T 6: Global vs. Rolling Shutter, 2022. Online. In:
Accu-scope.com. Available at: h t t p s : / / accu-scope. com/news/
t o p - c o n s i d e r a t i o n s - w h e n - b u y i n g - a - m i c r o s c o p y - c a m e r a - p a r t - 6 - g l o b a l - v s - r o l l i n g - s h u t t e r /

[18] Pynq online documentation, 2022. Online. In: Pynq.readthedocs.io. Available at:
h t t p s : / / p y n q . r e a d t h e d o c s . i o / e n / v 2 . 3 / p y n q _ o v e r l a y s . h t m l

[19] X I L I N X , 2024. Test Pattern Generator: Documentation. Online. In: Xil inx.com. Avai l
able at: h t t p s : / / w w w . x i l i n x . c o m / p r o d u c t s / i n t e l l e c t u a l - p r o p e r t y / t p g . h t m l

[20] Raspberry P i Zero W H , 2024. Online. In: Rpishop.cz. Available at: h t tp s : / / r p i s h o p .
c z / r a s p b e r r y - p i - z e r o / 6 8 5 - r a s p b e r r y - p i - z e r o - w h . h t m l

[21] Image distortion, 2022. Online. In: Www.image-engineering.de. Available at: h t t p s :
/ / w w w . i m a g e - e n g i n e e r i n g . d e / l i b r a r y / i m a g e - q u a l i t y / f a c t o r s / 1 0 6 2 - d i s t o r t i o n

[22] B E R K E N F E L D , Diane, 2024. Chromatic Aberration. Online. In: Www.nikonusa.com.
Available at: h t t p s : / /www.n ikonusa . eom/en / l ea rn -and -exp lo re / a /
p r o d u c t s - a n d - i n n o v a t i o n / c h r o m a t i c - a b e r r a t i o n . h t m l

[23] F U S T E R , Eduardo, 2024. Chromatic Aberration: What is it and How to Avoid
it. Online. In: Photoworldtours.com. Available at: h t t p s : / / p h o t o w o r l d t o u r s . c o m /
c h r o m a t i c - a b e r r a t i o n /

[24] Compilation process in c, 2021. Online. In: Javatpoint.com. Available at: h t t p s : //www.
j a v a t p o i n t . c o m / c o m p i l a t i o n - p r o c e s s - i n - c

[25] FastAPI: Documentation, 2024. Online. In: Fastapi.tiangolo.com. Available at: h t t p s :
/ / f a s t a p i . t i a n g o l o . c o m /

[26] L IPTÁK, Samuel, 2024. Display-sniffer-client-files: Source Files. Online. In: Gitlab.com.
Available at: h t tp s : / / g i t l a b . c o m / L i p e t k a / d i s p l a y - s n i f f e r - c l i e n t - f i l e s

70

https://www
http://Illinois.edu
https://slazebni.cs.illinois.edu/springl9/assignmentO.html
http://www.tedpella.com
https://www.tedpella.com/cameras_html/ccd_
http://Accu-scope.com
https://pynq.readthedocs.io/en/v2.3/pynq_overlays.html
http://Xilinx.com
https://www.xilinx.com/products/intellectual-property/tpg.html
http://Rpishop.cz
http://Www.image-engineering.de
http://www.image-engineering.de/library/image-quality/factors/1062-distortion
http://Www.nikonusa.com
https://www.nikonusa.eom/en/learn-and-explore/a/
http://Photoworldtours.com
https://photoworldtours.com/
http://Javatpoint.com
http://Fastapi.tiangolo.com
http://Gitlab.com

