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Abstract 
The goal of this work was to create own robotic arm using R C components, servos and 
provide own graphical user interface to control it. I decided that the solution should use 
sensors that provides some kind of autonomous beahviour. For my solution I modified 
existing stepper motor based robotic arm with five degrees of freedom. As a sensors, 
the accelerometer, encoders, current sensor, laser distance sensor and camera were used. 
Thanks to these sensors, the robotic arm is able to detect stall, position of disconnected 
stepper motors, grabbing of an object or measure distance to the object to compute its 
position in a space. M y solution offers own graphical user interface that allows to control 
each joint separately, autonomous controlling using camera or hand driven controlling. 

Abstrakt 
Cílem té to práce bylo postavit vlastní robotické rameno, s využitím R C komponent, serv 
a dodat k němu i vlastní uživatelské rozhraní, které umožní jeho řízení. Součástí řešení 
bylo také opatřit robotické rameno potřebnou senzoriku, která by umožnila jistou míru au­
tonómnosti. Pro mé řešení jsem se rozhodl upravil již existující design robotického ramene, 
s pěti stupni volnosti, založeném na krokových motorech. Přidal jsem senzory, jako je 
akcelerometr, enkodér, měřič proudu, laserové měření vzdálenosti a kameru. Na základě 
těchto senzorů je robotické rameno schopné detekovat náraz, pozici odpojených motorů, 
uchopení předmětu uchopovacím mechanizmem nebo měřit vzdálenost předmětu v prostoru 
za účelem inverzní kinematiky. Vytvořil jsem také jednoduché uživatelské rozhraní, které 
umožňuje tři typy ovládání, jako je ovládání jednotlivých kloubů samostatně, autonomně s 
využitím kamery nebo ručním napozicováním. 
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Chapter 1 

Introduction 

Robotic arms are nowadays well-known devices that can be used in many ways across the 
industry. The main goal of the robotic arm is to manipulate objects that can be heavy 
for humans, or as independent manipulators on an automated production line. In general, 
robotic arm aid the human workforce or completely substitute the human workforce in 
areas where they are needed. Possibilities of usage are vast, from home robots, such as 
kitchen robots, through industrial robots, such as automated car production to surgery 
robotic arms. 

The main goal of this thesis is to make a robotic arm on my own by using R C compo­
nents. The robot should manipulate objects, check surroundings and detect objects that 
are placed around them. Another important feature that this robotic arm should have is 
collision detection, where the robotic arm should stop when hitting something to prevent 
injury or to protect itself. 

I decided to make my own robotic arm because of my interest in them. Another reason 
is to make something more complex than what was made in my bachelor thesis. It was 
a very simple device that was able to move and pick objects, but it had no sensors, no 
detection of surroundings and the interaction level with the user was very low. That led 
me to make something more complex. 

The structure of this thesis is divided into four main chapters. The Robotic Arm 
introduction chapter, where the user gains awareness of what the robotic arm is and its 
motion study. The Components of robotic arm chapter describes existing components, 
useful for the robotic arm, such as actuators, control boards, etc. Not all components 
are mentioned, only the components, that are related to this thesis. The Concept of my 
robotic arm solution chapter forms the concept of my own robotic arm and specifies the 
requirements for design, hardware, software, user interface and the tests to make sure all 
goals were fulfilled. The last chapter is the implementation of what was mentioned in the 
Concept of my robotic arm solution section. The reader will understand how the solution 
works, how were all goals implemented and if all goals were fulfilled by provided tests. 
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Chapter 2 

Robotic arm introduction 

This chapter focuses on the basic theory behind robotic arms, such as the basic description 
of what the robotic arm is, the motion study behind the robotic arm like forward and 
inverse kinematics and in the end, it enumerates some existing solutions. This chapter does 
not serve as an encyclopedic enumeration of all solutions but focuses on solutions related 
to this thesis. 

2.1 What is the robotic arm 

The robotic arm is an electro-mechanical device, similar to the human arm, that is very 
popular, and shows a high sell rate all over the world [31]. It is a very important device 
used in development. It helps the human or completely substitutes the human to increase 
efficiency and productivity. It can be used in many different ways, such as assembly lines 
for building cars, packing boxes, material handling, welding, painting and many other 
applications. 

There are many reasons to use robotic arms instead of humans [31]. For example, 
the robotic arm can handle heavier objects, move faster, and be more precise and more 
consistent than humans (it can apply the same forces in every repetition, etc.). Another 
reason can be price because robotic arms are cheaper to operate than humans and the 
number of injuries is reduced as well. It can also work in conditions that are not suitable 
for humans, such as environments with high temperatures. 

The robotic arm consists of a set of bodies that are rigidly connected (it is called links), 
which specifies the robotic arm configurations (position of each joint) [31]. Each robotic 
arm can be described by a set of different parameters, such as number of axes, degree of 
freedom, working envelop and working space where the robotic arm operates. Other 
parameters can be kinematics, payload, speed, etc. 

To further describe the abovementioned [31]: 

• Axis - Determines how many axes the joint can move- it can be described by the roll, 
pitch and yaw factors. 

• Degrees of freedom (DOF) - Determines how many joints the robotic arm has. 
For example, when a robotic arm has 5 joints, it has 5 degrees of freedom (each joint 
has one degree of freedom). 

• Working envelop - The range that can be covered by a robotic arm or by a range 
of motion. 

G 
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Figure 2.1: Example of the robotic arm envelop 

• Working space - The area where the robotic arm can participate (the position which 
can be reached by endpoint effector with gripper), so each configuration of the given 
robotic arm will stay in this 

• Payload - The weight that the arm can lift and manipulate. 

Figure 2.2: Example of robotic arm 2 

Figure 2.2 demonstrates how the robotic arm should look and contains labels to better 
understand the idea mentioned in this chapter. 

Each robotic arm needs at least the following components (the construction itself is 
not included in this list). The actuators that realize the motion of the robotic arm; a 
controller which is a device with a microcontroller that coordinates the motion of the 
robotic arm and gets data from the environment via sensors; sensors provide information 
from surrounding (environment) in real time - this is almost the same as receptors of a 
human; the last component is a power supply that energize the whole robotic arm's 
electronics [31]. 

downloaded from: https: //www.researchgate.net/publication/353478116 
2Downloaded from: https: //medium.com/Osarvagya.vaish/f orward-kinematics-using-orocos-kdl-

da7035f9c8e 
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2.2 Mot ion study of robotic arm 

In the beginning, it is necessary to define important keywords used in this section [6]: 

• Link - right piece of the robot arm that connects two joint 

• Joint - the connection between links and it allows to rotate or translate with another 
link 

• Joint Axis - the axis around which the revolute joint turns or along which it trans­
lated 

• Degrees of freedom - defines the number of dimensions also known as mobility, 
where the joint is in [34] 

Kinematics is the study of motion which does not count on the cause of the motion such 
as force or torque [34]. The kinematics model consists of segments, connected with joints. 
These segments and joints are connected in a hierarchic structure. The joints have the 
ability to make either rotation or translation movement. There are two main types of 
kinematics. The inverse kinematics and the forward kinematics. 

The inverse kinematics knows the desired endpoint for the end-effector and deter­
mines an appropriate joint configuration [34]. When the user calculates the joint angles, it 
is possible to use the Jacobian matrix to move the end effector from the beginning position 
to the end target position. Inverse kinematics is more complicated than forward kinematics 
because when a robotics arm has multiple revolute joints, it generates multiple solutions, 
not just one [30]. 

Without inverse kinematics, the programming of the robotic arm (generally a robot) 
will be very complicated. Two basic options can be used to find inverse kinematics. The 
first is to do it by yourself and the second is to use an existing solver [30]. 

The forward kinematics is the right opposite of the inverse kinematics. The inverse 
kinematics tries to calculate the configuration of all joints according to the end effector. 
The goal of the forward kinematics is to calculate the position of the target joint (end 
effector) according to a given joint configuration [34]. Compared to inverse kinematics, 
forward kinematics has only one possible solution because when forward kinematics gets 
one joint configuration, it must lead to the same solution [30]. 

Inverse kinematics 

As was mentioned before, inverse kinematics is useful in situations when the target position 
of the end-effector is known and the goal is to calculate how each joint should be configured 
(rotated). It can, for example, be solved by numerical methods, such as a Jacobian inverse 
method or by analytical method. 

Jacobian - For the numerical method the Jacobian inverse method can be used. The 
Jacobian is a matrix containing partial derivations of the whole chain system (e.g. all robotic 
arm joints), relative to the end-effector [21]. A l l it does is map vector-valued change from 
joint space A9 to real physical space (e.g. space of the robotics arm), using the Jacobian 
matrix. Figure 2.3 illustrates what the Jacobian matrix looks like 3 . 

3Described in detaile: https://nrsyed.com/2017/12/10/inverse-kinematics-using-the-jacobian-
inverse-part-2/ 
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Figure 2.3: Jacobian matrix for n joints'1 

The goal is to calculate how the end-effector moves if only one of the joint angles changes, 
so the goal is to take a partial deriváte of each component. The result says that the final 
change in each coordinate of the end-effector can be calculated as the following equation 
shows: 

E , dcoord . . . 

i=l 
where i represents given joint number, n represents a total number of joints (so we sum 
through all joints), coord stats for change in given coordinate (e.g. the x coordinate) and 
the 9i represents the change of position of the joint [39]. This is counted for all three 
coordinates. Figure 2.4 shows the resulting matrix. 

dx 
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Figure 2.4: Final jacobian matrix for 3D space with n joints 5 

The solution is linear approximation of the inverse kinematics problem (linearly 
model the end-effectors motion). 

• Jacobian Pseudo-inverse - this method is also known as the Moore-Penrose inverse 
of the Jacobian. The joint position difference A# is counted as 

A9 = 

where is called pseudo-inverse of J . It provides the best possible solution to the 
equation JA9 = in the least square sense [21]. 

4Downloaded from: https: / /nr syed.com/2017/ 12/10/inverse-kinematics-using-the- jacobian -
inverse-part-2/ 

5Downloaded from: https: / /nr syed.com/2017/ 12/10/inverse-kinematics-using-the- jacobian -
inverse-part-2/ 
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• Jacobian Transpose - first used method for inverse kinematics [21]. The main 
difference between the Jacobian inverse method and the transpose method is what 
the Jacobian uses. The Jacobian transpose uses the transpose Jacobian [21] instead 
of inverse Jacobian in the case of the Jacobian inverse method. So the joint position 
change A9 is compute as 

A9 = aJT~£ 

for some appropriate scalar a. The a value is chosen to get as precise values as 
possible to . 

The analytical method solves the system at once [34]. is suitable for a certain amount 
of degree of freedom. When the amount of degrees is high, the analytical solution can 
produce infinite solutions. On the other hand, when the amount of joints is low, there will 
be no solution. When the joint parameters and end-effector poses are given, the IK can find 
all possible solutions. On the other hand, there is the iterative method, which does not 
give a solution at one as the analytical method does but solves the system by approximation 
in iterations. 

Forward kinematics 

As was mentioned above the forward kinematics problem is the opposite problem to the 
inverse kinematics. It means the position (configuration) of each joint is known, but the 
position of the end-effector is unknown [6]. 

Each joint gets a coordinate frame to determine Denavit-Hartenberg (DH) parameter. 
The D H method uses four parameters which fully determine the link itself [25]. The pa­
rameters are link length ai-i, link twist C K J - I , link offset di-\ and joint angle Q j - i . The 
transformation matrix l~1T for one single joint, looks like this: 

i-l T = Rx(ai-i)Dx(ai-i)Rz(&i)Qi(di 

where 

Rz 

1 0 0 0 
0 cosaj_i — sinajj-i 0 
0 sinajj-i cosaj_i 0 
0 0 0 1 

cos 6 j — sin Oj 0 0 
sinOj cosOj 0 0 

0 0 1 0 
0 0 0 1 

D:, 

Qi 

1 0 0 a , - i 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 0 0 0' 
0 1 0 0 
0 0 1 dj 
0 0 0 1 

The RxandRz matrices stand for rotation transformation around the x-axis and z-axis. 
The Dx and Qi stand for translation transformation [25]. The final transformation matrix 
looks like the following matrix shows 

cosOj — s in©, 0 di-i 
sinOjCosajj-i cos ©j cos a j_ i — s inaj_i — s ina i — ld\ 
sin Oi sin aj_i cos O sin aj_i cos aj_i cos ai-\di 

0 0 0 1 

To determine whole forward kinematics, it is necessary to take all transformation ma­
trices and simply multiply them together. 
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2.3 Exist ing robotic arm solutions 

This section describes existing robotic arms that are related to this thesis. It focuses on 
mainly 3D printed robotic arms, so arms can be easily reproduced without any advanced 
technology. It is not the encyclopedic enumeration of all existing robotic arms, but robotic 
arms related to this thesis. 

Niryo One and Ned2 robotic arms 

A Niryo One is a 3D printed robotic arm (not only 3D printed), used for learning purposes, 
with 6 axes [11]. The Niryo Education ecosystem is developing for the purpose of improving 
skills in programming, mechanics etc. It allows the programmer to program the arm from 
the most intuitive level (beginner) to the most advanced level. 

Figure 2.5: The Niryo One robotic arm 6 

The Niryo One can be programmed via learning mode, which allows one to move 
with a robotic arm with hand or Xbox controller and position into the desired position the 
user wants. This way of programming is simple for beginners with zero or low knowledge 
of programming. For more advanced programmers (but still beginners) the Python A P I 
can be used together with easy-to-use programming interface that Niryo provides. For 
really advanced programmers the ROS can be used to directly drive the robotic arm, using 
Python and C++ programming language [11]. 

The robotic arm comes with up to 5 different end-effector tools. Three types of grippers, 
vacuum pump and electromagnet. As a gripper one of three following types can be used. 
A standard gripper for picking small or thin objects with precision, a large gripper for 
larger objects and a adaptive gripper for fragile objects with uncommon shapes [11]. 

Downloaded from: https://niryo.com/products-cobots/niryo-one/ 
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• Number of axes - 6 

. Total weight - 3200g 

. Payload - 300g 

• Repeatability - approximately 1mm 

• Collision detection - Magnetic sensor on motor 

• Used materials - Aluminium and P L A (3D printing) 

• Actuators - Stepper and servo motor 

• control board - Arduino 

Robotic arms similar to Niryo One are Niryo Ned or Ned2 robotic arms. Due to 
Ned2 being newer than Ned, only the differences between Niryo One and Niryo Ned2 are 
describedfll]. 

Figure 2.6: The Niryo Ned2 robotic arm' 

It has 6 axes, just like Niryo One. It also combines stepper motors and servomotors 
(for gripper) and the maximal payload of 300g is identical to Niryo One as well. The 
construction is very similar as well. The main differences between Niryo One and Niryo 
Ned2 are [16]: 

• New servo motors with Silent Stepper Technology feature (reduces the noise level of 
the robot) 

7Downloaded from: https: //docs .niryo. com/pr oduct/ned2/vl. 0.0/generated_pdf s/pdf _en.pdf 
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• New version of Raspberry Pi4 instead of Pi3 

• The standard gripper is removed, so only 4 grippers can be used instead of the 5 types 
that Niryo One has 

• Added the Vision Set, which uses a camera, so the user can use it to find a correct 
object or use it for machine learning 

• Precision of 0.5mm 

• Improved the repeatability (from +/- 1mm to +/- 0.5mm) 

• Niryo Ned2 is not 3D printed, but it is made of aluminium 

The Niryo One, Niryo Ned2 and other Niryo robotic arms can be programmed via Niryo 
Studio, which allows fast and direct control of a given robotic arm [16]. The goal of this 
studio is to provide a simple interface for users to program the Niryo arm, and control its 
status and motions. The programming is done by placing one block of code by one. 

A R 2 and A R 4 robotic arms 

The A R 2 is a small desktop, low-cost, Arduino Mega-powered, 6-axis robotic arm using 
stepper motors as actuators [14]. The author of this arm is Chris Annin. The robotic 
arm is designed to be made of 3D printed material or from aluminium. The robotic arm 
comes with two types of grippers, which are standard grippers using servo or grippers using 
pneumatics. 

Figure 2.7: The AR2 robotic arm 8 

As mentioned before, the A R 2 robotic arm is controlled by Arduino Mega to control 
servo motors, but Raspberry P i can be used as well. This version is an open-source project, 
on which base the A R 4 robotic arm was founded. The Ar4 Robotic arm is not an open-
source project, but a commercial project. 

8Downloaded from: https://www.wevolver.com/specs/ar2.robotic.arm 
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Figure 2.8: The AR4 robotic arm 9 

feature/arm AR2 A R 4 
Number of axes 6 6 

Total weight Not mentioned lOOOOg 
Payload 1900g lOOOg 

Repeatability 0.75 mm 0.2mm 
Used materials 3D printed or aluminium 3D printed or aluminium 

Actuators Stepper motors Stepper motors 
control board Arduino Mega and Raspberry P i Not mentioned 

Category Open source Commercial 

Table 2.1: Features of A R 2 and AR4 stepper motor 

Table 2.1 shows the main features of the AR4 robotic arm. The AR4 [22] has improved 
repeatability, but lower payload than the original A R 2 robotic arm provided as an open 
design. 

B C N 3 D M O V E O robotic arm 

The BCN3D M O V E O robotic arm is an open-source project with five axes and 3D printed 
construction [5]. The arm was developed in collaboration with the Ministry of Education in 
Barcelona. The goal is to provide quite a low-cost solution for students and other robotic 
enthusiasts. The M O V E O robotic arm is controlled by Arduino. Due to 3D printed parts, 
it is possible to make it at home with only a 3D printer. 

9Downloaded from: https: //www. anninrobotics. com/pr oduct-page/ar 3-complete-solidworks-
assembly-step-files 
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Figure 2.9: The B C N 3 D M O V E O robotic arm 10 

It is powered by Arduino Mega2560 and as actuators, it uses six stepper motors and one 
servo motor as a gripper [42]. The robotic arm uses a belt and a pully to transfer motion 
to manipulate each joint. For better robot control in the cartesian coordinate system, the 
robotic arm uses a R A M P S , which was developed by Rep Rep. It is the main board for 
controlling stepper motors that allow connecting DRV8825 stepper motor drivers. 

'Downloaded from: https: //www.bcn3d.com/bcn3d-moveo-the-future-of-learning-robotic-arm/ 
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Chapter 3 

Components of robotic arm 

This section focuses on existing technology, devices, algorithms and software that can be 
used for robotics arms, such as actuators, control boards, motion techniques, tools for 
graphical user interface etc. This chapter is not the encyclopedic enumeration of all existing 
devices; only devices with a close connection to this thesis are mentioned. 

3.1 Robotic arm actuators 

Stepper motors 

A stepper motor is a brushless D C motor which divides a full rotation into several steps 
[26]. It converts digital pulses into mechanical rotation. These steps have the same angle 
of rotation, so to determine the angular position of a motor, external position sensors, such 
as encoders, are not needed. The angular position of the motor can be computed as the 
multiplication of the number of steps that the motor performed and the single-step rotation 
angle [27]. 

Design of the stepper motor 

This stepper motor consists of two main parts, which are the stationary part (stator) and 
the moving part (rotor) [17]. The stator is a part that is responsible for creating a magnetic 
field, which will be changed in time and the rotor will be aligned to. The stator has teeth 
that will be magnetized by coils attached to them. It is characterised by several phases 
(number of independent coils attached to the pair of teeth) and pole pairs (determines how 
many teeth pairs are used for each phase) [27]. Figure 3.1 below shows a two-phase stepper 
motor on the left and a three-phase motor on the right. Both steppers have one pole pair 
because each coil is attached to one pair of teeth. 

16 



Figure 3.1: Frustration of two phases and three phases stepper motor 

Figure 3.2 shows the two phases stepper motor where the left one has one pole pair and 
the right one has two pole pairs because two teeth pairs are used for one pole. 

Figure 3.2: Frustration of two phases, single pole pair and dipole pair stepper motor 2 

The rotor is a moving part that is made of permanent magnet, variable reluctance 
iron core or a combination of both mentioned, called hybrid rotor [27]. The stepper 
motor with permanent magnet rotor can be used in the project, where the high torque is 
important, but the resolution is not that important [17]. The stepper motors with variable 
reluctance iron core are suitable for solutions with lower torque, but they can achieve 
high resolution. This type of rotor has teeth and they are similar to the rotor of an inductor 
alternator. There is also the third option, which is a stepper motor with hybrid rotor. It 
is a combination of a stepper motor with a permanent magnet and a stepper motor with 
a variable reluctance structure, so it combines advantages from both of them [17]. This 
type of stepper motor has a permanent magnet-toothed rotor as well as a toothed stator. 
Figure 3.3 shows that the rotor is divided into two offset parts, where each part is opposite 
in polarity. 

1Downlaoded from: https: //media, monolithicpower. com/mps_cms_document/2/0/2020-stepper-
mot or s-basics-types-uses-and-working-principles_rl.0.pdf 

2Downlaoded from: https: //media.monolithicpower.com/mps_cms_document/2/0/2020-stepper-
mot or s-basics-types-uses-and-working-principles_rl.0.pdf 
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Figure 3.3: The hybrid rotor of stepper motor 

How does stepper motor work 

As was mentioned the stepper motor rotates in steps, which means the motor does not 
need any feedback sensor or external sensor such as an encoder to get the current position 
[17]. For example, when the stepper motor has 200 teeth on the rotor, it can make 200 
steps (ticks) to reach a full 360° rotation [15]. This means that each step will rotate the 
motor shaft for 1.8°, which is the standard step mode called full step mode. There are 
four different step modes, such as wave step mode, full step mode, half step mode 
and micro step mode. These modes are described below, on a two-phase stepper motor. 

The wave mode is a mode where only one phase at a time is energized. For example, 
when two phases (two coils) are used, the first will be called phase A and the second phase 
B. In the beginning, only phase A is energized and B is off, which turns the rotor to 90°, 
then only B is energized and phase A is off etc. [27]. Figure 3.4 shows how the wave mode 
works. 

Figure 3.4: Ilustration of how the wave mode works 

The full step mode is a mode where two coils are energized at the time [27]. It can 
provide the highest torque of the mentioned three modes. The disadvantage of this mode 
is that the motion is not so smooth [15]. Figure 3.5 shows how the full-step mode works. 

3Downloaded from: https: //howt omechatronics.com/how-it-works/electrical-engineering/ 
stepper-motor/ 

4Downloaded from: https: //howt omechatronics.com/how-it-works/electrical-engineering/ 
stepper-motor/ 
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Half Step triue 

Figure 3.5: Ilustration of the full step mode 5 

The half-step mode Cctll 5 ctS the name suggests, perform double the number of steps 
for a full rotation. It is a combination of the wave mode and the full stem pode, 
described above. So in the beginning, only one phase is energized. In the next step, the 
neighbour phase will be energised too (so two phases are energized at the time), so up to 2 
coils are energised at the time [27]. The big disadvantage of this mode is a drop of torque 
of approximately 30%. The big advantage is smoother rotation [15]. 

The micro stepping mode is the enhancement of half step mode because we can make 
even smaller steps than in the case of half step mode. This can be reached by controlling 
the intensity of the current that goes through each phase [27]. The main goal is to create 
a rotating magnetic field. This can be done in a few steps described below. 

1. At the beginning, phase A is energized for the maximal possible current and phase B 
is off, so the current is OA. 

2. Current through phase A is controlled to reach 0.92 of the maximal current of phase 
A and the current through phase B is controlled to reach 0.38 of the maximal current 
of phase B. 

3. Both phases are controlled to reach 0.71 of the maximal current 

4. Same as point 2, but phases have opposite values 

5. Same as point 1, but phases have opposite values, so phase A is off (OA) and phase 
B is fully energized 

This mode can perform very smooth motion, which is useful for accurate positioning. 
The disadvantage is the same as for the half step mode, which is torque drop for approx­
imately 30% [15]. 

5Downloaded from: https: //howt omechatronics.com/how- it-works/electrical-engineering/ 
stepper-motor/ 
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Figure 3.6: Ilustration of stepper motor with micro-stepping mode 6 

Figure 3.6 describes the micro-stepping mode. 

Controlling the stepper motor 

As mentioned before, to control the stepper motor, it is necessary to control the current 
flow through each coil [27]. For that purpose, we need a device that consists of two following 
devices: 

• A transistor bridge - set of transistors that take care of current flow through the 
coil by turning appropriate transistors on and of (this is called H bridge and we need 
one for each motor phase [27]) 

• A pre-driver - [27] a device for controlling the transistor bridge (it is controlled by 
M C U ) 

The aforementioned devices can be used separately or together, which is called a driver 
[27]. It is necessary to have some M C U , which is programmed by the motor user, that will 
control that pre-driver or driver to do the desired job. Figure 3.7 shows the basic scheme 
of such a driver. 

Driver 

Figure 3.7: Ilustration of stepper motor control' 

Downloaded from: https: //howt omechatronics.com/how- it-works/electrical-engineer ing/ 
stepper-motor/ 

TDownloaded from: https: //media.monolithicpower.com/mps_cms_document/2/0/2020-stepper-
mot or s-basi cs-types-uses-and-working-principles_rLO.pdf 
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Examples of suitable drivers that are available on the market are a4988, TMC2208, 
TMC2130 or T O S H I B A TB6600 8. 

Advantages and disadvantages 

Now, it is time to make a conclusion and summarise the advantages and disadvantages of 
the stepper motor. 

The adventages are [27]: 

• No external sensors needed to determine precise position (due to the internal 
structure of the stepper motor) 

• Simple controlling - only a driver is needed, but it is not necessary to calibrate it 

• High accuracy - with micro stepping it is possible to reach accuracy up to 0.007° 

• Good torque at low speed 

• Long lifespan 

the disadventages are [27]: 

• If the load torque is high the chance to miss a step is high - the user must deal 
with the wrong position when the step is missed 

• The motors consume the maximal amount of current even if it stays still - not 
efficient and it causes overheating 

• Noisy at higher speed 

• Low power density 

• Low torque to inertia ration 

In conclusion, the stepper motors are a good solution when the user needs an inexpen­
sive, easily controlled (by using drivers) option and does not care about efficiency or high 
torque in combination with high speed [27]. 

Servo motor 

The Servo motor is a rotary or linear actuator, suitable for reaching precise angular or 
liner position [37]. It is part of closed-loop systems which means that the servo motor 
uses feedback to control its motion and position. It is a simple motor that runs through 
a servo mechanism [23]. Servo motors are rated in kg/cm. This indicates that a lOkg/cm 
servo can lift up to 10 kg when the load is placed 1 cm from the motor shaft. When the load 
is placed farther from the motor shaft, the final weight that the motor can lift decreases. 

8Drivers were take from: https://all3dp.eom/2/best-stepper-motor-driver/ 
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Design of the servo motor 

The servo motor consists of two main parts. The motor that is responsible for movement 
and the position sensor, which can be encoder for example [7]. There are some other parts, 
such as an amplifier, a drive gear, an output shaft and a position sensor such as an encoder 
or a resolver [37]. Figure 3.8 shows how does the servo motor look like inside. The advantage 
of the servo motor is that it excels at speed and position control, and its precision. Due to 
position sensors, the servo motor can not be stalled, because of the position sensor. This 
sensor is responsible for checking the position and if the external force pushes the servo 
motor back, it can be corrected [7]. 

Figure 3.8: Illustration of how the servo motor looks inside 9 

How does servo motor work 

As was mentioned before, the servo motor is a closed-loop system, which uses a positive 
feedback system to determine the position of the output shaft. This feedback signal is 
compared with a reference input signal [23]. This comparison generates the signal, which 
is the input signal for controlling the servo motor. The feedback signal is generated via a 
potentiometer, attached to the output motor shaft. So when the output shaft rotates, the 
potentiometer rotates too, until the value of the signal generated by the potentiometer and 
the external signal value is equal. This will stop the servo motor, due to the shaft reaching 
the desired angular position [23]. 

Controlling the servo motor 

To control this type of motor, the servo offers three types of wires. Two of them are used 
for supply (GND and V C C ) and the third one is used for an external input signal called 
P W M signal, which is provided by the microcontroller [23]. 

9Downloaded from: https://www.sparkfun.com/servos 
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Figure 3.9: Illustration of servo motor controlling 

The servo motor is controlled via an external signal - the P W M signal (the P W M 
signal is described below). The servo expects the input signal (external signal) every 20 
milliseconds. The length of the pulse determines how much the servo rotates [23]. The 
signal can be set from 1 ms, which is 0° up to 2 ms, which is the maximal angle, for 
example, 180° [23]. Figure 3.9 above illustrates how the servo motor is controlled by a 
pulsing signal. 

What is P W M signal 

Pulse Width Modulation or P W M is a powerful way to represent analogue value by 
digital value [29]. Therefore, when the task is just to read the analogue value by M C U , the 
user can use the A D C (Analog to Digital Converter). The problem comes in a situation 
when the goal is to control the analogue device according to the read value, which is digital. 
This can be solved by using D A C (Digital to Analog Converter), but they are expensive to 
produce in terms of cost and they consume a lot of silicon space [2]. So the better solution 
for this is to use mentioned P W M . 

It controls the amount of power that is given to a device by quickly switching on and 
off. The amount of time, when the signal is high or On (width of signal in high) in a given 
period, is called duty cycle [36]. For example, duty cycle 80% means, the signal is 80% 
time in high and 20% in low, so the output value is 80% of input voltage. Figure 3.10 
illustrates how the duty cycle works. 

10Downloaded from: https: //circuitdigest.com/article/servo-motor-working-and-basics 
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Figure 3.10: Illustration of the P W M duty cycle 1 1 

The device will not recognize it as switching but as the average voltage value, which 
is counted as the on-time (the time when the signal is high). The advantage of the P W M 
technique is that the power loss is very low in comparison with the potentiometer, which 
generates power loss and heat [36]. 

Advantages and disadvantages 

As a conclusion for the stepper motor, I'd like to mention some advantages and disadvan­
tages. 

The advantages are [37]: 

• High output power in comparsion with servo motor size and weight 

• High efficiency (90% at light loads) 

• High torque to inertia ratio 

• High speed at high torque - good for position holding 

• Quiet and speed 

• Higher accuracy wiht encoder utilization 

the disadvantages are [37]: 

• Need tuning to stabilize the feedback loop 

• Unpredictable when something breaks 

• Peak torque is limited to a 1% duty cycle 

• Higher system cost 

• Gearboxes are öfter required to deliver power at higher speeds 

"Downloaded from: https: //www.circuitbread.com/ee-faq/what-is-a-pwm-signal 
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3.2 Control boards 

As mentioned in previous sections, the control board is necessary for the controlling of 
motors or the behaviour of the robotic arm itself. This section describes control boards 
that are often used. 

Raspberry P i 

Raspberry P i is a low-cost computer the size of a credit card made by the Raspberry P i 
Foundation. The user can connect the monitor to it and use a standard keyboard and 
mouse. The user can use it for anything an ok desktop computer is capable of, such as 
browsing the web, programming, watching videos etc. [28]. 

It is a programmable device with all the motherboard's critical features, which can be 
found in the average computer, but it has no peripherals or internal storage. To set up 
Raspberry P i , the user must use an SD card for the operating system. It is compatible with 
Linux OS which is handy because this system does not need too much memory space [28]. 

There are many generations of Raspberry P i computers, such as Raspberry P i Zero, 
Raspberry P i 1, Raspberry P i 2 B, Raspberry P i 3, Raspberry P i 4B, Raspberry P i Pico 
and Raspberry P i 400 [28]. Due to the concept of this work only the Raspberry P i 3, 4 B 
and Raspberry P i Pico are described. 

Figure 3.11: The Raspberry P i 3 

Both computers have fast processing units, H D M I ports, U S B ports, 40 programable 
general-purpose pins and support Ethernet and W i - F i . Raspberry P i 3 is the predecessor of 
the Raspberry P i 4 B , so the Raspberry P i 4 B offers higher performance, such as 2GB to 
8GB of R A M , instead of 1GB of R A M , the Raspberry P i 3 has and it has a faster processor 
with frequency 1.5GHz [28]. 

12Downloaded from: https: //www.raspberrypi-spy.co.uk/2016/02/introducing-the-raspberry-pi-
3-model-b/ 
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Raspberry P i Pico 

The low-cost, high-performance microcontroller board, is designed to interface with and 
control physical, real-world projects. In comparison to all Raspberry P i computers, the 
Raspberry P i Pico is not capable to run an operating system. It is designed to interface 
with and control physical, real-world projects. 

Figure 3.12: The Raspberry P i Pico 

The Raspberry P i Pico has 26 GPIO pins, instead of the 40 pins that modern Raspberry 
P i boards normally have and the 133 MHz Dual-core A r m Cortex M0+, but it has no W i -
F i or Bluetooth. [12]. Another advantage is that it is suitable for beginners too because 
it can be programmed in MicroPython, CircuitPython or even C or C++ for advanced 
programmers [41]. 

Arduino Uno 

Good development board for beginners, with a 16 MHz ATmega328P microcontroller. It 
has 14 GPIO pins, an ICSP header and a USB connection [18]. Beginners can begin their 
programming in Arduino IDE, developed by Arduino developers. 

The Arduino IDE is a versatile editor, which offers the possibility of installing all 
libraries directly from the IDE, so users do not need to download it from the internet. It 
offers a cloud system, and debugging sketches (sheet with code). The user can use inbuild 
serial monitor or serial plotter too, which allows you to view data streaming from your 
board. A n example of one of the big features of Arduino IDE is autocompletition, which 
was added in the last (second) version of IDE [40]. 

ESP32 

A powerful, generic W i - F i + B T + B L E M C U , that can be used for anything from low-
power applications to more complex tasks, such as voice encoding etc. The core of the ESP-
WROOM-32 module is an ESP32-D0WDQ6 chip with two cores (that can be individually 
controlled) with frequency from 80MHz up to 240MHz, 4MB of internal flash memory and 
520KB of on-chip S R A M . It comes with 38 pins, where 32 of which are used as general-
purpose pins (GPIO pins) [10]. 

Due to Bluetooth, it is possible to communicate with another device such as a smart-
phone. The ESP32 chip allows low-power application as well, for example in sleep mode 

13Downloaded from: https: / /cz . f arnell.com/raspberry-pi/raspberry-pi-pico/raspberry-pi-
32bit-arm-cortex/dp/3643332 
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the current consumption is less than 5/j,. This feature also makes this device suitable for 
wearable applications. The user can use freeRTOS as an operating system and for security 
the secure (encrypted) over-the-air upgrade can be used [10]. 

3.3 Stall detection 

In many applications, the user can ascertain the position of the motor via a sensor, or by 
the motor itself, e.g. stepper motors. In some projects, the user needs to know not only the 
exact position but the state of the motor. It is useful for diagnostics purposes, overloaded 
detection or checking if the motor hit any physical obstacle [33]. 

Without stall detection, the motor would hit an obstacle, e.g. a human, and continue 
to drive through it. It can cause audible noise or cause damage to the motor itself and it 
can be very dangerous for the human as well [33]. 

Measuring B E M F - stepper motors 

It is necessary to specify one term, necessary to understand stall detection which is Back 
E M F . When the current flows through the motor coils, it generates a rotating magnetic 
field that interacts with the magnetic field of the rotor magnets. This will cause the rotor 
will move, but this effect works in the opposite too, so when the rotor moves it induces 
current in the stator. This is known as back E M F (Back ElectroMotive Force) [35] . 

The E M F is used to detect stall detection. A l l that is needed is to simply measure 
the voltage on a coil. When the motor is moving, the voltage will be presented over the 
terminals of the coil, but when the motor is stalled, no voltage is presented [35]. The process 
of detecting that stall detection is very simple and does not need any other wiring. A l l that 
is necessary is to connect both coil pins to the measuring circuit and wait t i l l the coil is not 
driven (the coil will be turned off and no current will flow through it). At this moment, 
where the coil is floated, the Back E M F can be detected (measured). When voltage is 
measured on the floated coil it means the voltage is generated from the moving rotor and 
the motor is not stalled. When no voltage is measured on the floated coil it means the rotor 
is not moving, meaning it is stalled [35]. 

Figure 3.13 shows the moment when the phases are not driven and can be used for 
measuring back E M F in full-step mode. 

At these stages of a full step signal, 
the coll is not driven. 

Figure 3.13: Moments to detect back E M F in full-stepping mode 

Downloaded from: https: //www.nxp.com/docs/en/application-note/AN4024.pdf 
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Full step mode of the stepper motor, described in section 3.1, is good for B E M F detec­
tion, but at a moment, when the coil is floated, the voltage on it can oscillate, which can 
cause problems for the accuracy of stall detection. Of course, it can be an advantage, be­
cause when the peak is high, it is clear that the motor is not stalled. The problem is that it 
can dictate the speed of stepper motor stepping [35]. The half-stepping and micro-stepping 
modes can be used to eliminate problems with oscillations, but the problem is that the time 
when the coil can be opened is so small, so it is difficult to measure the voltage on it. 

Disc rets voltrcisis are created with FWMs At Dieses 
OVand thecolkan 
a few BEMF sensing 

Figure 3.14: Moments to detect back E M F in micro-stepping mode 

Figure 3.14 shows when it is suitable to measure the B E M F and it is visible, that the 
value when the coil voltage is Ov (suitable for opening the coil) is a very short time. A 
better solution is to measure the flyback time [35]. 

The B E M F method should be measured after the flyback energy has disappeared. The 
problem is that due to the motor consisting of coils, the value cannot change immediately. 
So when the current through the coil is cut off, the coil generates an opposite voltage that 
will slowly decrease its value. This is known as flyback voltage and the time that takes for 
the flyback energy to dissipate is called the flyback time [35]. 

It is not necessary to wait until the flyback energy has dissipated, because the flyback 
time (time t i l l the flyback energy dissipates) can be easily measured by a simple timer. 
When the coil is disconnected, the current through the coil starts decreasing and the coil 
generates an opposite voltage spike (flyback voltage) which spike goes up to the Back E M F 
voltage. This spike goes back while the coil current is dissipating and reaches the Back 
E M F voltage when the coil current reaches OA. The reaching Back E M F voltage creates a 
rising edge that starts the timer [35]. 

When a motor is stalled, it is possible the voltage across the coil may reach OV except 
for the B E M F value as in the case of a moving motor. The rising edge should not be high 
enough to trigger the timer. To solve this problem it is necessary to cause the end of the 
coil to be driven all the way to V D D [35]. That will guarantee that the rising edge will hit 
the threshold. 

15Downloaded from: https: //www.nxp.com/docs/en/application-note7AN4024.pdf 
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Figure 3.15: Measuring Back E M F voltage with flyback time 16 

Figure 3.15 above shows how the flyback voltage and back E M F voltage behave for 
the moving motor (upper figure) and for stalled motor (bottom figure). The blue colour 
represents the measuring gap, where the motor stall can be detected. The orange graph 
represents the current that flows through the motor coil. The green colour represents the 
P W M signal to control that stepper motor. 

Using encoders 

The encoder is a device that converts motion into an electrical signal [1]. According to 
the type of movement, there are rotary and linear encoders. It can be used as a sensor 
for detecting movement, speed and position. They can be divided into two types, which 
are the absolute and incremental encoders. The difference between these two types is that 
the absolute encoders generate a signal that reflects the movement and knows its position 
after resetting. The incremental encoder generates a multi-bit digital word that directly 
indicates the position, but after reset, it does not know its position, groups according to 
measuring principles. The optical encoders and the magnetic encoders. 

The magnetic encoder consists of a magnetized disk (with several poles around) and 
a sensor (to detect a change in the magnetic field while the magnetic disk is rotating) to 
detect that field, for example, the Hall sensor [32]. The sensor detects the change in the 
magnetic polarity of the disc. Figure 3.17 shows what does magnetic encoder looks like. 

16Downloaded from: https: //www.nxp.com/docs/en/application-note7AN4024.pdf 
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Figure 3.16: Magnetic encoder 

On the other hand, the optical encoders consist of an emitter, code disc and optical 
sensor [32]. The emitter is placed in front of the optical sensor and the code disc is placed 
between them. When the motor shaft rotates the code disc rotates as well. The output 
signal is based on actual code that is between the emitter and the receiver, which can be 
either a transparent region or an opaque region. When the region is transparent, the beam 
can easily reach the receiver, but when the region is opaque, the beam is blocked. Figure 
3.17 shows how the basic concept of the optical rotary encoder. 

The encoders can be used for stall detection, where the generated step from the micro­
controller should match the feedback signal that the encoder produced. When both signals 
match, the motor is not stalled. The problem occurs when the number of encoder steps 
does not match the step count. This situation is problematic because it can be caused by 
one of three events: The motor is stalled, the motor lost step or steps and the resonance 
situation [9]. 

17Downloadedfrom:https: //www.motioncontroltips.com/faq-how-do-magnetic-encoders-work/  
1 8 https: //www.ti.com/lit/an/slya061/slya061.pdf 

Figure 3.17: Optical encoder 18 
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3.4 Graphical user interface 

For interaction with a robotic arm (robot in general) where the position of each joint can 
be specified or where the robot status is presented, the graphical user interface (GUI) 
is suitable. 

wxPyhton 

The cross-platform toolkit (supported on Microsoft Windows, Mac OS X or MacOS, Linux 
and Unix-like systems) for making graphical user interfaces in Python programming lan­
guage simply and easily. It is in the form of a Python package that wraps the wxWidget 
library written in C++ programming language. It is in the form of Open Source, which 
allows one to view and modify the entire code and improve their project [4]. 

import wx # import the wxPython package. 

app = wx.AppO # create an application object 
frm = wx.Frame(None, title="Hello World") # create a frame object 
frm.ShowO # show the entire GUI 

app.MainLoopO # start the event loop 

E l Hello World Z - • X 

File Help 

Hello World! 

Wekorneto wxPython! 

Figure 3.18: The result of simple wxPython application (Windows O S ) 1 9 

The previous code snippet is a simple code example of the Hello World application 
in wxPython [4]. Figure 3.18 visualizes the result of that code snippet in the Microsoft 
Windows operating system. 

The wxPython has a project called Phoenix, which is the new implementation of wx­
Python, which goal is to improve performance, maintainability, and extensibility and clean 
the entire code. This big cleanup and improvements lead to a problem with backward 
compatibility with classic wxPython. 

For creating GUI with the wxWidget framework, the wxFormBuilder can be used. The 
user can make the GUI by selecting desired widgets and putting them in a suitable place. 

19Downloaded from: https: //www. tut or ialspoint.com/wxpython/wxpython_tutorial.pdf 
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The code generation behind it is in the role of this builder. It can generate it in five different 
programming languages such as C++, Python, X R C , L U A and P H P 2 0 . 

Tkinter 

Python interface The Tkinter is one of the most commonly used modules for making graph­
ical user interface applications in Python programming language. The advantage is that 
this module comes with Python during installation 2 1. 

The Tkinter is an abbreviation to Tk (or newer family Ttk) interface, which is a 
„standard Python interface to the Tc l /Tk GUI toolkit". It is supported by the Windows 
operating system and Unix platforms such as macOS [38]. 

The Tel is a programming language commonly embedded in C languages. It behaves 
like a scripting engine or an interface to the Tk toolkit. A Tk is a package written in 
C language used to create graphical user interface widgets. Although the Tk is written 
in C programming language, the Tkinter allows the user to program that GUI in Python 
programming language [38]. 

import tkinter as tk # Python 3.x Version 
#import Tkinter as tk # Python 2.x Version 
root = tk.TkO 
label = tk.Label(root, text="Hello World!") # Create a text label 
label.pack(padx=20, pady=20) # Pack i t into the window 
root.mainloop() 

Hello World 

Figure 3.19: The result of simple Tkinter application (Windows O S ) 2 2 

The previous code snippet shows how to create a simple graphical user interface using 
the Tkinter package. Figure 3.19 shows GUI represented by the previous code snippet 2 3 . 

PyQt 
It is a module for Python that connects Qt C++ framework, which is cross-platform (sup­
ported for Microsoft Windows, macOS X and Linux), with Python language. It is not only 
a toolkit for making GUI, but it contains aslo libraries for X M L , S V G , SQL and other 
libraries. [3]. 

2 0Desribed in more detail: https://umar-yusuf.blogspot.com/2015/12/wxformbuilder-tutorial-on-
gui-f or.html 

2 1Desribed in more detail: https://riptutorial.com/Download/tkinter.pdf 
22Downloaded from: https://riptutorial.com/Download/tkinter.pdf 
2 3Code snippet and figure find here: https://riptutorial.com/Download/tkinter.pdf 
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1 import sys 
2 from PyQt4 import QtGui 
3 def window(): 
4 app = QtGui.QApplication(sys.argv) 
5 w = QtGui.QWidget() 
6 b= QtGui.QLabel(w) 
7 b.setTextO'Hello World!11) 
8 w.setGeometryClOO.lOO^OO.SO) 
9 b.move(50,20) 

10 w.setWindowTitle('PyQt') 
n w.showO 
12 sys. exit (app. exec_()) 
13 i f name == ' main ' : 
14 window () 

The code snippet above shows the basic hello world application using PyQt [3]. Instead 
of writing GUI in code, Qt comes with a Qt designer. It is a tool which acts as a graphical 
user interface, where the controls (widgets) can be placed instead of writing code [3]. 
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Chapter 4 

Concept of the proposed arm 
solution 

This chapter focuses on the design goals of my robotic arm. It describes all features, 
necessary for the final implementation, and all necessary steps to construct the robotic 
arm. It also analizes the existing state of the robotic arms, such as existing robotic arms, 
control board, etc. At the end of this chapter, the tests that help in the process of ensuring 
the robotic arm works correctly according to specification, are defined. 

4.1 Comparison of existing sulution 

In previous sections 2.3 and 3.2, different types of control boards and existing robotic 
arms are mentioned. In this section, all of mentioned robotic arms and control boards 
are compared and summarised. This section helps to choose the appropriate component. 
The summarization for both previously mentioned sections is visualised in the table for 
improved readability. 

Comaprsion of robotic arms 

A l l of them are mainly 3D printed or aluminium is used as well. The stepper motors are 
the most common actuator for each joint and the servo motors are well used for the gripper 
mechanism. As a control boards, the Raspberry P i and Arduino board are highly used. 
The following table visualizes what are the differences. 

Robotic arm Axes Payload Repeatability Features 
B C N 3 D M O V E O 5 / / / 
AR2 6 1900g 0.75mm / 
AR4 6 1900g 0.2mm / 
Nyrio One 6 300g 1mm collision detection, 

gripper can be 
changed 

Nyrio Ned2 6 300g 0.5mm gripper can be 
changed, attachable 
camera 

Table 4.1: Sumarization of existing robotic arms 
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Table 4.1 shows all mentioned robotic arms have the same amount of axes (except for 
B C N 3 D M O V E O ) , but only A R 2 and AR4 robotic arms have a big payload. The repeata­
bility is quite similar for all of them except for AR4 with 0.2mm. The biggest difference is 
the other features, such as collision detection, changeable gripper and attachable camera. 
These features only Nyrio One and Nyrui Ned2 have. 

Comparsion of the control boards 

In section 3.2 some of the main control boards that can be used for similar projects as well 
as my thesis are described. It was not the encyclopedia enumeration of all possible control 
boards, but only boards, that have a close connection to my thesis are mentioned. Table 
4.2 shows the comparison. 

Control board Frequency R A M size Pins Ethernet W i - F i 
Raspberry Pi 3 1.2 GHz 1 G B 40 Yes Yes 

Raspberry Pi 4B 1.5 GHz 2 - 8 G B 40 Yes Yes 
Raspberry Pi Pico B 133 MHz 264 kB 40 No No 

Arduino Uno 16 MHz 2 K B 16 No No 
ESP32 W R O O M 80 - 240 MHz 520 K B 32 Yes Yes 

Table 4.2: Control boards Features 

From the previous table, it is clear that the most powerful commonly used control 
board is the Raspberry P i 4B control board with 1.5GHz of processor frequency. The 
ESP32 W R O O M except for the Raspberry P i family has big internal R A M memory. The 
ESP32 has Ethernet and W i - F i too, which the Arduino does not have, for example. From 
my comparison, the most powerful control boards are definitely the Raspberry P i family 
and the ESP32 W R O O M control board. 

Comparsion of stepper motor drivers 

The drivers that I found are mentioned in section 3.1 and are compared in this section. As 
well as other comparisons made in this thesis, this is not a comparison based on encyclo­
pedical enumeration. 

Name Max resolution Imax Features 
A4988 [13] 1/16 2A Nothing 

TMC2208 [20] 1/256 2A Stall detection 
TMC2130 [19] 1/256 2A (2.5A peak) Stall detection 

tb6600 [8] 1/16 4.5A Nothing 

Table 4.3: Comparsion of reliable stepper motor drivers 

Table 4.3 shows the main features of the stepper motor drivers, such as maximal res­
olution, the maximal current through the coil and special features if it has any 1 . The 
aforementioned Toshiba tb6600 is the HY-DIV268N-5A variant. This stepper motor driver 
is suitable for bigger stepper motors such as N E M A 2 3 , due to its current limit, which can 
be seen in the table above. 

1Prices of drivers were taken from: https://all3dp.eom/2/best-stepper-motor-driver/ 
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4.2 Desired goals for robotic arm 

Evaluation of my investigation, made in chapters Robotic arm introduction and Compo­
nents of the robotic arm, led me to the conclusion on how to create my own robotic arm 
and what features it should have. The reason I made my own robotic arm solution was 
because I was curious if I can make a better solution compared to the one I made in my 
Bachelor's thesis. 

This section specifies all the features and goals, that are interesting or important and 
were missing in many solutions found during research. The following list shows the features 
implemented in my robotic arm. 

• Easy to reproduce in home conditions - The robotic arm should be easy to 
make in home conditions, which means it should be made out of a 3D printer, so no 
sophisticated technology is needed. This makes my robotic arm suitable for almost 
everybody. 

• Autonomous - Almost all robotic arms mentioned in 4.1 do not have any sensors, 
cameras or any other features which would allow the robotic arm to be autonomous. 
The robotic arm should have sensors to detect robotic arm position, collision with 
obstacles around and detect objects with a camera. 

• Accuracy - The robotic arm should be as accurate as possible. Better accuracy 
means that it can be used in many different ways, e.g. it can be used as a toy (where 
the accuracy does not have to be high), but it can be used as a manipulator in small 
companies (where high precision is necessary) 

• Own and intuitive GUI - The GUI should provide the user to control the robotic 
arm in different ways - to control one motor by one, control the whole robotic arm 
with inversion kinematics, autonomous control with a camera etc. The GUI should 
be intuitive and customizable (choose units, specify ports...) 

• Documentation - The final solution should provide a good level of documentation, 
where the user can find all necessary information. 

• Open Source - The whole solution must be provided as open source, so everybody 
can download all my files and reproduce them or edit them according to users' needs. 

According to the goals above, my solution should have the features mentioned below, 
and all of them should be tested at the end to ensure the goals have been fulfilled. 

• Five degrees of freedom 

• The stepper motors as the main actuator and the servo motor for gripper mech­
anism 

• Intuitive Graphical User Interface as application with no web 

• Three types of controlling - individual motor controlling, semi-autonomous con­
trolling with inversion kinematics and camera and the user hand drive 

• Sensors for actuator position capturing, distance measuring sensor and current 
sensor 
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• Camera with support of object recognition 

• Payload at least 300g 

• Separated solution into two processors (controlling and computing processors) 

• The emergency stop button to stop robot if needed 

Figure 4.1 shows in an easy way the design goals of the robotic arm with the features 
listed above. 

Sensors Actuators 

Main CPU 

Controlling CPU 

GUI Movement planning Camera 

Figure 4.1: The goals of robotic arm goals 

The main goal is to separate the computation power into two processors. The reason 
for that is to separate the load so that one processor can be strong enough and used for 
computations and a camera, while the second processor is only used for controlling. The 
control processor should cooperate with all sensors, and actuators (stepper motors and 
servo). 

Both processors should communicate together to send information to each other about 
the actual state. For example, the control processor should send the positions of actuators 
and the state of the whole robotic arm. The powerful control board should send information 
on what the control board should do and aggregate data from it. 

4.3 Design goals of implement of my robotic arm 

This section focuses on the necessary steps to reach the mentioned goals in the previous 
section 4.1. There are three main parts that must be done: 

• Construction - Creates new robotic arm, or modify existing robotic arm to attach 
all sensors. 4.1. 

• Electronics - Design a main control board that connects all peripherals to one place. 
In this step, the following sub-steps must be done: 
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— Powering - provides power for all components, such as actuators, processors or 
sensors 

— Sensors - makes printed circuit boards for all sensors, that can be easily attached 
to the robotic arm 

— Communication - manages communication between sensors and main control 
processor or between both processors 

• Software - There are two main parts that must be done: 

— Graphical User Interface (GUI) - Create an intuitive Graphical User Inter­
face, without a web server, providing three different types of controlling. 

* Each motor separately - user should be able to control each motor sepa­
rately without affecting the position of other stepper motors 

* Whole robotic arm with camera - this should allow the user to detect 
objects around via camera and by using inverse kinematics, the robotic arm 
should grab the object 

* Hand driven mode - user can move the robotic arm to a certain position, 
capture the position of all joints and store it for further replay 

— Firmware - This part covers firmware for both the main control processor and 
the main compute processor. For the main control processor, the firmware in­
cludes reading data from sensors and communication with the main computing 
processor. Firmware for the main compute processor covers the full backend for 
GUI, so all widgets should be fully functional, including the computing of inverse 
and forward kinematics, camera recognition etc. 

This section describes only the design goals of the implementation. Chapter 5, de­
scribes the physical solution itself in a detailed way. 

4.4 Design of the test procedure of robotic arm 

The section 4.1 describes features which must be implemented in my robotic arm. To ensure 
all my features are implemented correctly, it is necessary to specify the test set. It helps 
to determine if the goals were fulfilled. The following tests are designed to test goals and 
features from section 4.1. The test set and the design of testing use cases are similar to 
my bachelor thesis [24]. There are other test cases that can be tested, but they are not 
mentioned there because of the time limitation of the thesis. 

• Full weight test - This test cannot fail or pass. The output from this test will be 
used only for information on how heavy is the robotic arm with all its components. 

• Payload test - The goal is to lift at least 300g object. The test will test objects 
from lOOg to at least 300g. The robotic arm lifts one object by one, according to its 
weight and if the arm lifts all of them, the test is successful. The reason why the robot 
starts at lOOg object and not 300g object is only due to safety reasons. The robotic 
arm can crash if the weight is too high, however, if it starts with a low weight, the 
behaviour of the arm can be observed and it helps to prevent accidents. The load can 
be considered as successfully lifted if at least half of the robotic arm stepper motors 
do not lose any step. 
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• Accuracy - The robotic arm will be set to default position, e.g. straight, where all 
joints point upwards. Afterwards, if the robotic arm is set to a different position, 
we measure the current position. From the coordinates which the robotic arm should 
have reached and those coordinates that were actually reached, the accuracy/precision 
can be measured. 

• Repeatability - The goal is to replicate the accuracy test many times, e.g. 10 times 
and 100 times. The difference between the accuracy test and the repeatability test is 
that the precision will not be measured after each repetition but after all repetitions 
in the given set. For example, when the repeatability will be tested on 10 repetitions, 
the precision will be measured after 10. repetition. 

• Stall detection - Robotic arm is in one default position and a different position is 
specified. Meanwhile, if the robotic arm reached the target position, it will be blocked 
by an object. If the object will cause the robotic arm will detect it and stop it, the 
test is successful. 

• Gripper object detection - The goal is to test if the gripper is able to stop closing 
when detects an object in its claws space. 

• GUI test - Check if the user interface is still correctly visible, all widgets work as 
they should and are stable when it is used longer time. 

The list of tests mentioned above does not cover everything that can be tested, but due 
to time limitations for this thesis, it is good enough. Another test that can be tested by 
the future user is checking the behaviour of the robotic arm when it is used longer time 
period, e.g. a few days without reset. 
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Chapter 5 

Implementation of the robotic arm 

This chapter focuses on the physical implementation of what was described in the previous 
chapter. The reader will understand how this robotic arm was designed. It covers everything 
necessary for this thesis, such as the design of a robotic arm, firmware, graphical user 
interface, hardware (electronics) and testing. The final robotic arm can be seen in appendix 
D. 
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Figure 5.1: The robotic arm realization overview 

Figure 5.1 shows the robotic arm realization overview to better understand what was 
designed. It can be seen that the main control board contains ESP32 and the Raspberry 
Pi4 is used as well. This solution caused the load to be split between these two processors 
and the final load will be lower. 
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Figure 5.2: breakdown of all tasks to implement 

Figure 5.2 visualizes the breakdown of the tasks that were necessary to implement. The 
blue box represents the final product, which is the robotic arm itself. The light green colour 
boxes are top-level tasks to implement. A l l tasks can be divided into many subtasks. In 
the following section, the reader will understand how the robotic arm was designed. 

Design of robotic arm 

For the robotic arm, I reused the existing solution, which was modified according to specified 
goals. The following list enumerates all subtasks that were important for this solution. 

• Sensors mounting - The sensor board was made, but the original design of the 
robotic arm does not count with such a board. For this task, the mounting mechanism 
was designed for each stepper motor type in this thesis, so the sensor board can be 
attached to it. 

• Camera mounting - The original robotic arm did not count with a camera, so this 
subtask fix it. The camera was mounted to the gripper where the servo motor is 
placed. 

• Fix problematic parts - Some parts were not usable for my solution due to wrong 
diameters or design itself and some parts were designed for different stepper motor 
types. This task fixed the parts according to my goals. 

After this task was finished, the robotic arm was completely modified according to my 
goals. The camera and sensor boards were able to mount to this new solution. 

Electronics for robotic arm 

The whole electronics part of the robotic arm solution should be divided into two main 
subtasks. The first is the main control board and the second is the sensor board. 

• Main control board - responsible for connecting all sensors together, providing 
powering and communication. The subtasks for the main controlling boar are the 
following: 
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— Powering - A l l components need power. This subtask was responsible for pro­
viding 3.3V for communication, 5V for powering the sensors and the stepper 
motor drivers' logic, 12V for small stepper motor drivers and 35V for big step­
per motors. 

— Communication - The main controlling board provides two communication 
types. The U A R T is for communication between both processors (control and 
compute board) and I2C is for communication between the control board and 
sensor boards. 

— Acutator - The goal of this subtask was to connect stepper motors with the 
control board. The steps of the stepper motor can be controlled directly through 
the control board (ESP32), but due to the lack of a pin, the direction and 
resolution are controlled by three shift registers. 

• Sensor board - For each stepper motor the encoder and accelerometer are used. 
To unify that the sensor board was designed. It connects both the encoder and 
accelerometer and provides a uniform way 

After this whole task was finished, the robotic arm was completely prepared for the 
software. 

Software 

This task is focused on the whole program part of the robotic arm. It focuses on firmware 
for both processors, Graphical User Interface and communication. 

• compute processor - this task was divided into firmware part and GUI: 

— Firmware - The compute processor is the Raspberry P i . As a firmware the 
camera recognition, inverse kinematics and forward kinematics were made. For­
ward kinematics are used in combination with distance measuring for detecting 
objects in space. 

— Graphical User Interface - In this task, the intuitive user interface was made. 
It offers 3 ways of controlling each joint separately, semi-autonomous with a 
camera and the hand-driven mode. Everything was done by using the wx Python 
library. 

• Control processor firmware - The goal of this subtask was to provide firmware for 
the control processor. The firmware covers the actuator controlling (stepper motors 
via timers), reading values from sensors, communication with the compute processor, 
stall detecting etc. 

After this task, the robotic arm was fully functional and ready for the testing phase. 

Test goals 

In this task, I tested the previous three parts. A l l tests that were covered are mentioned in 
section 4.4. 
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5.1 Design of the robotic arm 

The design part is one of the most important parts of the whole project. The reason is that 
it specifies the limitations of robotic arms, such as mobility, maximal payload, precision, 
price, etc. Because the design of the robotic arm is important and it should be functional, 
I decided to reuse the existing solution. 

The reused robotic arm is the BCN3D M O V E O , described in section 2.3. There were 
many reasons to reuse exactly this robotic arm. The first reason is that this is a common 
robotic arm, offered as open source from company B C N 3 D and it is commonly used and 
tested by many users. The second reason is that it uses only stepper motors as actuators 
and servo motors as grippers. 

Almost the whole robotic arm was usable for my purpose, except for small four parts 
that must be changed (except for the table used for robotic arm mounting and playground). 
Figure 5.3 shows these four changed parts. Part of this thesis was the covering box for the 
main control board, which can be seen in appendix C. 

Figure 5.3: Visualization of the arm with an emphasis on changed parts 

The changes were made, due to different stepper motor types, small space for other 
sensors or missing solutions for my goals, such as camera mounting and sensor mounting. 

Sensor mounting 

Figure A . l shows the accelerometer, gyroscope and encoder sensor board, which are the 
two components that were designed completely by myself. A l l stepper motors have the 
same sensor board, due to a cheaper manufacturing process, so the mounting mechanisms, 
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specific for each stepper motor, must be designed. Finally, I made two holders, where the 
first was used for the biggest stepper motor N E M A 2 3 , and the second is used for the smallest 
stepper motor N E M A 1 4 the rest N E M A 1 7 stepper motors use only distances, which is good 
enough. The reason is the sensor board was designed primarily for N E M A 1 7 , so all holes 
in this sensor board match this type of motor. Except for the dimensions, both holders are 
technically the same. The main concept of it is to put it on the stepper motor and screw 
it. 

Figure 5.4: Sensor boards for the Nemal4 (the first) and the Nema23 (the rest) 

Figure 5.4 shows how both holders look (in a cut) and how it looks on a stepper motor 
with a sensor board on it for better illustration. A l l parts were 3D printed with P L A 
material. 

Camera mounting 

The best place to place the camera was the gripper. It was well-designed, but the mounting 
mechanism for the camera was missing. Another improvement was made due to the different 
servo motors. The servo motor, used in my thesis has a different size so it was redesigned 
according to my servo motor. 

Figure 5.5: The modified gripper - changed servo motor and camera was mounted on it 

The rest of the gripper itself remained unchanged. Figure 5.5 shows both changes on 
the gripper. 
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Problematic parts fix 

The first problematic part was mounting the base stepper motor that allows the whole 
robotic arm to rotate. This part was designed exactly to one certain type of N E M A 1 7 
stepper motor and the hole for the connector was too small. The solution was increasing 
the hole size. Figure 5.6 shows the difference between the original part and my changed 
part. 

Figure 5.6: Modified base motor holder part on the left and original part on the right 

Another part, that needed to be changed was link number 3, where three changes were 
made. The problems were only the space for the stepper motor and for the sensor board. 
So I made a bigger space inside for the stepper motor and for the sensor board as well. The 
hole for the connector was increased, due to the same problem that the first base link had. 

Figure 5.7: The modified link 3 

The last changed part was link number 4. This part had many problems to solve. The 
first is big friction between link 3 and link 4, where the connection was too tight and with 
no space between joints. The problem was solved by adding the distance column between 
joints. The connection itself was problematic too because when it was tightened together, 
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it was impossible to disassemble that. The solution was made of a hole that goes from the 
top to the bottom of joint 4 which allows me to put a screw instead of a regular instead of 
the previous solution which was the threaded rod. 

Figure 5.8: The modified link 4 (red) and the original part (blue) 

Figure 5.8 visualizes both mentioned changes on link 4. These changes make this com­
ponent available to disassembly. The distance column reduced the friction between links. 

5.2 Electronics for the robotic arm 

The concept in chapter led me to decide to make my own main control board that will 
connect all necessary parts such as the main control processor, sensors, actuators, etc. 
Figure 5.9 below shows what features the main board should have. 

Main control board 

Sensor 
connection 

St&pp&r Servo 

Figure 5.9: The main board implementation overview 
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Each block from the implementation overview above, such as power, sensors, processors 
and actuators is described in a more detailed way in the following sections. A l l final printed 
circuit boards, related to this section, can be found in appendix A . 

Processors for robotic arm 

As was mentioned in chapter 4.1, the concept was to divide tasks between two processors. 
The first control processor is for controlling all peripherals and devices and the second 
processor is for the camera, computing, AI , etc. The ESP32 WROOM32 was chosen as the 
main control processor, which is my personally preferred choice. 

The second processor, used for computations and the camera, was the Raspberry P i 4, 
which is a powerful solution for AI , and computations and offers me an easy solution to 
work with the camera. It is again my personal experience. Both processors are described 
in section 3.2. 

The communication between both processors is realized by U A R T . It connects default 
pins (GPIO 3, GPIO 1 for ESP and GPIO 14 and GPIO 15 for the Raspberry P i 4). The 
commands that are sent via U A R T are described in section 5.3. The pin mapping for ESP32 
can be found in appendix B. 

Sensors for robotic arm 

Figure 5.9 shows, that the processor (ESP32) should communicate with sensors via I2C. 
The reason to choose I2C instead of SPI was an issue with the lack of free pins. The SPI 
needs at least 4 wires (MISO, MOSI, C L K and chip select), but I2C needs only 2 (SDA 
and SCL) , so it was a cheaper solution. 

Due to my decision to use one accelerometer, gyroscope and encoder for each actuator, 
the custom P C B , that connects all these sensors together, had to be done. This board 
contains MPU-6500, which covers the accelerometer and gyroscope, so one module covers 
two features at once and an AS5600 encoder module with 12b resolution. 

Each sensor board contains the same set of sensors. The problem was with the same 
addresses, which should cause the circuit to short when at least two modules will commu­
nicate at the same time. Due to it being difficult to find any solution for my case, the only 
solution was to make another P C B that will switch devices on I2C manually. This board 
contains two multiplexors that connect both SCL and SDA pins. The final I2C switching 
board can be found in the appendixes. 

The next goal is to measure the distance to the object. For that purpose, the G Y -
VL53L0X was chosen as a distance-measuring sensor. It has a different address so it can 
be connected to the I2C directly. 

When the robotic arm is powered on, it does not know the actual position of the stepper 
motors. For that purpose the end switches were used, so the robot can be automatically 
set to a home position. 

The last important sensor is the current sensor for current flows through the servo motor 
to determine if the servo is holding any object or not. The ACS712 sensor was the right 
solution in my case. Values can be read via an A D convertor, so no I2C communication 
was not needed. 

47 



Sensor type Sensor name 
Accelerometer and gyroscope MPU-6500 

Distance measuring VL53L0X 
Encoder AS5600 

Current sensor ACS712 

Table 5.1: Sensors used in this thesis 

Table 5.1 above shows all sensors used for this robotic arm solution to make it trans­
parent. 

Actuators and drivers for robotic arm 

A l l actuators used in my thesis were basically the actuators, that were used in the original 
B C N 3 D robotic arm. The only problem was finding exactly the same stepper motors. A l l 
I found was the same type and torque. Types such as NEMA14 , N E M A 1 7 and N E M A 2 3 , 
gave me the distances for mounting holes. So if the same stepper motor was found, it was 
automatically used, otherwise, the stepper motor with the same type but higher torque was 
used instead. 

Another actuator used in this project is the servo motor. It is used for opening and 
closing gripper. It was not a problem to find the same servo motor, but due to my Bachelor 
thesis, where the servo was too weak, I decided to design it for DS3235SG digital servo. 
Which offers high torque of 35Kg.cm, which is strong enough. Table 5.2 below lists all 
actuators used in this project. 

Part Motor r [kg.cm] Imax [A] Motor ID 
Joint 1 N E M A 1 7 stepper motor 5 1.7 17HS8401 
Joint 2 N E M A 2 3 stepper motor 30.6 4.2 57HS11242A4D8 
Joint 3 N E M A 1 7 5:1 stepper motor 17.1 1.68 17HS19-1684S-PG5 
Joint 4 N E M A 1 7 stepper motor 2.85 1.3 17HS3401 
Joint 5 N E M A 1 4 stepper motor 1.84 0.42 PHB35Y34-401 
Gripper Servo motor 35 2.3 RDS3235 

Table 5.2: Stepper motor used in this thesis 

A l l mentioned stepper motors listed above need a stepper motor driver to be controlled. 
Stepper motors are described in a more detailed way in section 3.1. For all N E M A 1 4 and 
N E M A 1 7 stepper motors the Toshiba TB67S109 stepper motor drivers were chosen. 

This driver was suitable for my use case because it is a „dump" driver that has no stall 
detection implemented, so it can be programmed by me. Another reason is my personal 
bad experience with the cheapest A4988 driver, that was noisy, mostly failed and it had 
to be changed often. The last reason for choosing this stepper driver is its size, which is 
suitable because steppers that use this driver do not consume much current. This driver is 
not mentioned in section 3.1, because it is not used very often, but I wanted to try it. 

The N E M A 2 3 stepper motors needed stronger stepper motor drivers, such as H Y -
DIV268N-5A. This driver allows maximal current up to 5A, which is suitable for a big 
N E M A 2 3 stepper motor, but in the end, it turned out to be a bad solution. It was difficult 
to find different drivers that would fulfil my goals but at last, I found the DM860H driver, 
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which is not used in any mentioned solution in 2.3, but it offers up to 7.2A, which is good 
enough. 

To prevent stepper motor failure, it was necessary to add two fans on the top of the 
main control cover box. When the fans are not used, the drivers can overheat and can be 
destroyed. Two fans were used and were directly connected to the 12V branch via free pins 
next to the powering part. The fans can be seen in appendix C. 

Powering for robotic arm 

From all chapters above, three types of voltage levels are needed. The 12-volt branch is for 
the stepper motors powering, the 5-volt branch is for stepper motor logic values, ESP32 
itself, Raspberry P i and servo motor and the last 3.3V branch is for ESP32 as well and all 
sensors. The scheme for powering can be found in appendix B . The total minimal current 
for my application is approximately 12A for actuators, and up to 3A for Raspberry P i . It is 
15A for the most power-consuming components. The chosen power supply is S-400-12V 
which provides 12V/33A, where half of it is only the reserve. 

Because in the end, my previous drivers were changed to different types as for what 
the main control board was designed, the two voltage regulators were added. The reason 
is that the previous drivers needed at least 8V for powering (my solution offered 12V), but 
the new type uses at least 24V. These regulators moved the voltage from 12V to 35V, which 
is good enough for new drivers. 

5.3 Software for robotic arm 

This section focuses on the software part of this thesis such as firmware and graphical user 
interface. The user can find there the design of the Graphical User Interface of my robotic 
arm, which describes how the GUI is designed and describes every single tab that the user 
can use. Another part is the firmware for the robotic arm, which explains what parts were 
necessary to implement, what features were implemented etc. 

Graphical User Interface of robotic arm 

The goals of my graphical user interface (GUI), specified in section 5.2 are intuitive ap­
pearance, ease to use and different ways of controlling. Another goal was to make GUI 
without a webserver to eliminate problems with multiple connections, bad connections, 
finding IP addresses etc. I decided to program it in Python programming language, be­
cause the Raspberry P i , where the GUI is placed, can be controlled via Python, so it is a 
suitable option. 

I made the GUI in wxPython, described in section 3.4, using the wxFormBuilder editor, 
which allows me to make it in an easy way by clicking on widgets without coding. The final 
GUI is described below. 

Figure 5.10 shows the first GUI tab, that offers individual stepper motor controlling 
(joint controlling mode). For each stepper motor, the angular position can be set by one 
of five slider bars, and the gripper can be controlled via the button at the bottom as well. 
The image on the right is just an illustration for a fast understanding of which slider bar 
controls desired joint. 
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Figure 5.10: The first GUI tab used for manual controlling mode 

Figure 5.11 below shows another GUI tab, which is the camera controlling tab. This tab 
is responsible for the visualization of the camera view and for the item recognition feature. 
In this tab, the user cannot control the robotic arm by itself. A l l that the user can do is 
scan the surroundings to detect all known objects around. Another useful feature is the 
move option at the bottom of the tab. This allows the user to specify coordinates in the 
space and the robotic arm tries to reach it. Every time the user sets at least one coordinate 
the 3D visualization is updated. The grab object and find object features do not work, due 
to time limitations. 
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Figure 5.12: The third GUI tab used inverse kinematics 

Figure 5.12 shows the last controlling tab. It can be used for position capturing. The 
tab is divided into two parts. The first contains a list, where all stepper motor positions 
and the state of the gripper (closed or opened) are stored. The second is the controlling 
part where the user can disable or enable stepper motors (disable for hand tracking), save 
and remove the configuration, import configuration from file or export configuration to file 
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and apply the full configuration set. The configuration is the row with 5 stepper motor 
angles and gripper status (true for opened grippers). 

Simple Control Camera Control Hand Driver Control Settings 
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Figure 5.13: The settings tab 

The last tab is used for settings. It allows the user to specify the C O M port that is 
used for ESP32 to Raspberry P i communication. The user can also set the robotic arm to 
a home position, enable or disable the stall detection feature and enable or disable stepper 
motors as well as in the previous tab. 

Firmware for compute processor 

The firmware for compute processor is located in the Raspberry Pi4 computer. The re­
sponsibility of this computer is to visualize GUI, communicate with the control processor, 
compute inverse kinematics and work with a camera. The whole firmware including GUI 
is stored in the following directory structure of GUI/src: 

• main gui.py - Frontend of the graphical user interface, generated from the wxForm-
Builder tool (for Python)- it contains only the design with no functionality. 

• main gui ctrl.py - Backend of the graphical user interface defined in main gui.py. 
This file is not generated as the main_gui.py, but it is fully handwritten. 

• main.py - The main part that allows running complete the GUI, by creating an 
instance of the GUI defined in main_gui_ctrl.py 

• communication.py - A script for communication between Raspberry P i and the 
ESP32. It is a wrapper for the PySerial Python module. 

• camera control - A script for basic camera item recognition used in main_gui_ctrl.py 
module. 

• ik python.py - A module for computation of the inverse and forward kinematics 
and visualization of the resolution. To compute the kinematics the I K P y Python 
module is used. A l l that it needs is just urdf file that contains a description of the 
robotic arm. 
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• U R D F - Folder with defined urdf file for ik_python.py module. 

• Sample TF-Lite model - Folder with important files for item recognition used in 
the second tab for camera control. 

The Raspberry P i should take care of updating the camera view and it should recognize 
if the control board detected stall. Both these features are handled by two timers, where 
the first timer is responsible for the camera, which updates the camera view only when 
the camera tab is selected to decrease the load. The second timer is responsible for stall 
detection and repeatedly checks the serial port for that purpose. When the control board 
sends information about the detected stall, the GUI pops up the message dialogue that 
provides the user with two possibilities to solve it, such as continuing or returning home. 

Firmware for control processor 

M y firmware for control is located in ESP32, which is the main control board. The goal 
of this control board is to read all sensors, communicate with the main compute processor 
and control the entire robotic arm. 

The most important part is the parallel controlling of stepper motors. To do so 
my solution uses the internal timers that trigger the timer interrupts. Every time the 
interruption occurs, the appropriate stepper motor makes a step. The advantage of this 
method is that before the interrupt occurs the rest of the code is not blocked. The problem 
was that the ESP32 has only 4 timers, so only 4 motors can be controlled via this method. 
This limitation led me to a solution, where one motor (the base motor) is controlled normally 
without interrupts and the rest with interrupts. 

The interrupts must be precise, so there is no big time space for stall detection, which 
was one of my desired goals. Luckily the ESP32 has two cores, so the problem was solved 
by moving the whole firmware into two cores. 

• The first core - used for the main loop that reads and parse data coming from 
U A R T from Raspberry P i and controls the entire robotic arm. 

• The second core - used for stall detection if the feature is enabled by the user. 

Thanks to this method, the robotic arm can be controlled and the stall detection can 
be detected without mutual interference. The code snippet below shows what the interrupt 
method looks like for a given stepper motor. 
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void IRAM_ATTR on_motor2_timer(){ 
2 / / I f a l l steps were done, stop the timer 
3 if(motor2_step_cntr <= 0){ 
4 motor2_step_cntr = 0; 
5 stepper_go_home = false; 
6 timerAlarmDisable(motor2_timer); 
7 timerStop(motor2_timer); 
8 } 
9 //Change the polarity of the step pin 

10 i f (!motor2_state){ 
digitalWrite(M0T2_STEP_PIN, HIGH); 

12 }else{ 
13 digitalWrite(M0T2_STEP_PIN, LOW); 
14 motor2_step_cntr—; 
15 } 

16 motor2_state = !motor2_state; 
17 } 

The stall detection is my other goal to design. It was previously implemented in two 
different ways. The first one was with encoders and the second was implemented with an 
accelerometer. 

• The encoder version - Quite time-consuming for computing (for each joint the 
difference between the previous and actual position should be computed) and it was 
not reliable. The problem was that the range of the encoder was only 0 to 359 degrees. 
When the degrees overflowed (e.g. to 361) the encoder represented it as 1 degree, but 
due to almost all joints being geared, the original range is insufficient, e.g. when the 
joint has a gear ratio of 5:1, the stepper motor must make 1800 degrees for a joint 
full rotation. 

This problem should be fixed by the cumulative method, so when overflow occurs the 
difference will be computed and added to the cumulative angle. To give an example, 
the angle of 400 degrees, which would be represented as 40 degrees will now detect 
overflow and adds 40 (cliff between 400 and 360) to 360. The only problem is that 
this value must be captured very often or the overflow can be missed and the stall 
detection would be useless. 

• The accelerometer version - This version of stall detection is much easier to imple­
ment and it is quite reliable. A l l that is needed is to capture the accelerometer value 
and check if it exceeds the threshold value. When the threshold value is exceeded, 
the stall is detected. The only limitation of this version is that this detection cannot 
be applied for a full range of motion, because when the robotic arm starts moving or 
stops moving, the acceleration value is high and it will be indicated as a stall. 

The arguments above led me to the decision to implement stall detection via an ac­
celerometer. The following code snippet shows how the stall detection is captured for the 
base link. 
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1 //Check s t a l l detection only i f the feature is enabled from GUI (disabled by default) 
2 if(stall_enabled){ 
3 //Check i t only when i t is time to detect s t a l l (the joint is in the range where the 

detection is allowed) 
4 if(arm.actuators.check_stall(l)){ 
5 //Check i f the accelerometer value is greater than the threshold 
6 if(abs(arm.sensors.get_accel_value(0).x) > 7500){ 
7 stall_detected = true; 
8 } 
9 } 

10 }else{ 
n stall_detected = false; 
12 } 

Another goal to implement was the detection if the gripper grabbed any object. For 
that purpose, the ACS712 current sensor, mentioned in section Sensors for my robotic 
arm solution is a good choice. While the gripper is closing, the value from A D C that 
converts the value from the current sensor is compared against the threshold value. When 
the value is exceeded, the gripper is holding an object. 

Figure 5.14: Visualization of gripper state (fully opened, closed with an object, fully closed) 

Figure 5.14 Shows three states of the gripper. The first state is open (the most left 
figure), closed gripper holding object (middle figure) and fully closed gripper (the most 
right figure). 
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1 void BobArmActuators::claw_close( void ){ 
2 //Change gripper claws position tick by t ick (from ful ly opened to fu l ly closed) 
3 for(int i = 0; i < 60; i++){ 
4 myservo.write(i); 
5 //Wait 5ms to slow the motion 
6 delay(5); 
7 / / I f the current exceeds the threshold value, open the claws by 3 ticks to 
8 //Reduce tension and stop the claws 
9 if(sensors.get_servo_current() > 1580){ 

10 myservo.write(i-3); 
n break; 
12 } 

13 } 

14 } 

The code snippet for object detection is mentioned above. The servo starts closing and 
when the current value exceeded the threshold value, the servo is slightly opened to reduce 
tension and the servo stops closing. 

Gripper object detection 
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Figure 5.15: Result for my gripper object detection 

Figure 5.15 above shows the captured values for the gripper. The test used for this 
graph was toggling the gripper (repeat open and close) every 500 ms, so the object was put 
twice into the claws space and it successfully detected the object. The values are quite noisy, 
which can be caused, in my opinion, by surrounding noise, or changing the direction of the 
stepper motor. The threshold value is represented by the orange line. As was mentioned 
the object was put two times into the claws, but in the figure, there are four spikes. The 
second lower spike can be caused, in my opinion, by changing direction after it grabbed the 
object. So the current rises and the gripper is slightly opened to reduce tension when the 
object is grabbed. This causes a current decrease, but due to the gripper starting to open, 
the current raises again and caused a second spike. 
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5.4 Testing of the robotic arm 

The chapter 4, describes all the goals that my robotic arm solution should have and the 
chapter 5, shows the implementation of that goal. These goals are what define my own 
solution. 

This section focuses on testing all mentioned goals to determine which of them were 
successfully implemented and which were not. A l l the tests mentioned in this section will 
follow the testing procedure, specified in section 4.4. The following list shows all tests, 
tested in this thesis: 

• Total weight of the robotic arm 

• Payload test 

• Accuracy test of the robotic arm 

• Repeatability test of the robotic arm 

• Stall detection test of the robotic arm 

• Gripper object detection 

. Test of the GUI 

Due to time limitations on this thesis, not all suitable tests were realized. For example, 
a long-duration test if the robotic arm is capable to run a few hours, days, etc. Another 
possible test can be automatic GUI testing instead of hand testing. 

Total weight of robotic arm 

The total weight of my entire robotic arm solution is 13,6kg and as was mentioned in section 
4.4 this value is not bad. This is just good to know value. M y solution does not contain 
any heavier parts, than what the original B C N 3 D M O V E O has, so it can be assumed that 
the weights of both solutions are quite similar. 

Payload test 

This test was made in iterations as mentioned in section 4.4. The test started with an object 
of weight lOOg and in each iteration, the payload was increased by lOOg. The following table 
shows the tested weight and its results. The criterion for this test was very simple. When 
half of the robotic arm stepper motors can handle a given load, the test will be considered 
successful. 

Object weight [g] Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 
100 Passed Passed Passed Passed Passed 
200 Passed Passed Passed Failed Failed 
300 Passed Passed Passed Failed Failed 
400 Passed Passed Passed Failed Failed 
500 Passed Passed Passed Failed Failed 
600 Passed Passed Passed Failed Failed 

Table 5.3: Payload test of my robotic arm solution 
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Table 5.3 shows that the robotic arm lifts up to 600g. The only problem was that 
around 200g, the last joint (the joint that holds the claws) and the fourth joint had a 
problem getting through its middle position, due to the load. The rest of the robotic arm 
joints had no problem. M y personal goal was 300g, which the last two joints did not fulfil, 
but the rest of the joints did. So this test can be considered successful. 

Accuracy test of the robotic arm 

In this test, the robotic arm was set into a specific position and the real coordinates of the 
end effector was measured. The result is the difference between the measured coordinates 
and the target coordinates. Table 5.4 shows the distances the differences between the goal 
and real position. Coordinates are given in meters. 

Target position [m] Reached position [m] X diff [m] Y diff [m] Z diff [m] 
0.0; 0.0; 0.8 0.0; 0.0; 0.81 0.0 0.0 +0.1 

0.03; -0.5; 0.1 0.029; -0.50; 0.08 -0.01 0.0 -0.02 
0.13; -0.3; 0.2 0.125; -0.31; 0.185 -0.005 -0.01 -0.015 

Table 5.4: Accuracy test for translation motion 

Table 5.4 shows that the maximal error between the target position and the computed 
position was 20mm on the Z axis and 10mm on the other axis. The precision of measured 
value could be affected by the human factor because all values were measured by meter and 
ruler and weak link 5. This test was only an informative test, so it can not be considered 
a successful or failed test. 

Repeatability test of the robotic arm 

This test did the same as what the previous Accuracy test of the robotic arm test did, 
but it was repeated 10 times, 15 times and 20 times. A l l of that was made for translation 
and rotation motion as well as accuracy tests. The goal of this test was to find accuracy 
between each repetition. In all cases, the worst accuracy was +-lmm. This test was only 
an informative test, so it can not be considered a successful or failed test. 

Stall detection test of the robotic arm 

I put the robotic arm in a default straight position and then moved to a different position. 
The goal was to stop the robotic arm when the obstacle was put into the trajectory. 

This part was complicated and the stall detection did not work properly with the en­
coders. Sometimes it detected a stall even when the stall did not happen and sometimes 
it detect nothing when the stall should occur. The solution with an accelerometer worked 
properly when the robotic arm was standing still and hit by an object. When the robotic 
arm was moving, it sometimes detected stall even when stall did not happen. After com 

The stall detection for the servo (gripper), which indicates the gripper is holding some 
object, worked. When the gripper was closing and no object was between the claws, the 
claws completely closed themselves. When the object was put in the middle of the claws, 
the servo stops closing to prevent increasing the current through the servo and protect it 
from damage. This test can be considered as successful. 
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Gripper object detection 

I run the basic program, where the gripper was toggled, so when the claws were opened, it 
closed it etc. When the object was put in the claws' space, the gripper stopped. Figure 5.15 
shows values captured during the testing phase. Due to that, the test can be considered as 
successful. 

Test of the G U I 

This test was only visual. The Graphical User Interface was run many times and every 
time I checked if all widgets, such as buttons, radio buttons, edit bars, slider bars, etc are 
visible and they work as they should. This test was successful, because all widgets were 
visible, when the widget should be disabled or enabled, it worked. Every time the widget 
was used I checked if the behaviour is correct as well and it worked too. This test can be 
considered as successful. 

Test conclusion 

To make it clear, the following list shows the result of all tests made in this chapter. It 
contains the name of the test above and the final result of it. 

• Total weight of robotic arm: 13.5kg 

• Pay load test: lOOg for all stepper motors and more than 600g without two last links 

• Accuracy test: +-20mm in Z axis and +-10mm for other axis 

• Repeatability test: -+lmm 

• Stall detection test: successful 

• Gripper object detection test: successful 

• Test of the GUI: successful 

A l l tests were successfully made and almost all results are satisfactory, except for the 
accuracy test. The problem could be caused by a weak fourth joint, which is quite inaccurate 
and it could cause big differences. 
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Chapter 6 

Conclusion 

The goal of this thesis was to make my own robotic arm solution, by using R C components 
and servos. This goal was successfully fulfilled. 

I made my own robotic arm solution that reused the existing B C N 3 D M O V E O robotic 
arm design, which was modified according to my needs. The robotic arm uses an accelerom-
eter for stall detection and encoders for detecting actual stepper motors positions that can 
be stored for further repetition. The gripper uses a current sensor to detect if the robotic 
arm is holding any object. The robotic arm has a camera and distance-measuring sensor 
attached to the gripper mechanism. The camera is used for object detection and recognition 
via the OpenCV Python library. The distance meter is used for measuring the distance 
to the desired object to get its position in space. Despite these features the automatic 
grabbing object, detected by the camera, is not implemented due to time limitations. 

The whole solution is divided into two processors, such as ESP32 for controlling the 
whole robotic arm and the Raspberry Pi4 computer for computations and for GUI, which 
was designed as well. The Graphical User Interface allows the user to work with a robotic 
arm in three different ways. The first is controlling each joint separately via slider bars. 
The second option is by using a camera view and object recognition on it. Wi th this option, 
the user can detect objects around the robotic arm. This option offers the user to specify a 
point in 3D and the robotic arm will automatically reach this position. The last possibility 
how to control the robotic arm is the capturing mode, where each configuration(forward 
kinematics) can be captured and stored for further autonomous repetition. 

Future work includes the motion of the robotic arm should be smoother, automatical 
object grabbing can be finished, tests can be improved, by adding long-term tests and cable 
management could be improved. The problem is that each sensor or stepper motor requires 
wires and the robotic arm design is quite messy. The reason why these tests were not made 
is the time limitation of this thesis. 
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A p p e n d i x A 

Printed circuit boards 

Design of the sensor board for accelerometer and encoder module. First figure is the final 
design with all treces and other two figures are the final product. 

Figure A . l : The sensor board with accelerometer, gyroscope and encoder 

Design of the switching board used for switching I2C between sensor boards. The left 
figure is the final design with all traces before realization and figure on the right is the final 
product. 

Figure A.2: The switching board for switching sensors in I2C 

The following figure shows the design of the main control board with all traces. It 
also indicates four main parts of this board with color rectangle. The blue for powering 
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part, the green is for the stepper motors (stepper motor drivers), servo and shift registers 
for resolution and direction. The yellow rectangle is a slot for the main control processor, 
which is ESP-32. The last black rectangle indicates the input sensor part with end sensors 
and the U A R T communication. 

5V input ^.ZVZ input End buttons for home UART MUX for current sensor MUX for end switches 

12V input 

Shif reg. for resolution 

Stepper motor drivers and stepper motor input + 
shift registers for direction and resolution 

Figure A.3: The main control board 
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A p p e n d i x B 

Printed circuit boards 

Schema for main control board powering. There are three branches such as 12V as input 
and then 5V and 3V3. 
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CD 
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Figure B . l : The schema of the main controlling board powering 

Pinout for the ESP32 located in main control board. 
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Figure B.2: The ESP32 connection 

The shift registers fixed problem with lack of pins, because resolution and direction for 
all stepper motors are controlled by three shift registers. 
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A p p e n d i x C 

Main board cover 
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A p p e n d i x D 

Final realization 
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