
BACHELOR THESIS

Procedurally generated content in computer game

2019 Serhiy Kudryashov
Supervisor: Mgr. Petr Osička,
Ph.D.

Study field: Applied Computer Sci-
ence, full-time form

Bibliografické údaje

Autor: Serhiy Kudryashov

Název práce: Jednoduchá hra s procedurálně generovaným obsahem

Typ práce: bakalářská práce

Pracoviště: Katedra informatiky, Přírodovědecká fakulta, Univerzita
Palackého v Olomouci

Rok obhajoby: 2019

Studijní obor: Aplikovaná informatika, prezenční forma

Vedoucí práce: Mgr. Petr Osička, Ph.D.

Počet stran: 54

Přílohy: 1 CD

Jazyk práce: anglický

Bibliograhic info

Author: Serhiy Kudryashov

Title: Procedurally generated content in computer game

Thesis type: bachelor thesis

Department: Department of Computer Science, Faculty of Science,
Palacký University Olomouc

Year of defense: 2019

Study field: Applied Computer Science, full-time form

Supervisor: Mgr. Petr Osička, Ph.D.

Page count: 54

Supplements: 1 CD

Thesis language: English

Anotace

Cílem práce bylo prozkoumát možnosti procedurálního generování obsahu v počí-
tačových hrách. Na příkladu jednoduché hry zjištěné metody implementovat a
okomentovat jejich vhodnost, případně různé metody porovnát.

Synopsis

The main goal of the thesis was to analyze the possibilities of a procedurally
generated content in computer games, to implement a simple game with the use
of obtained techniques, to comment suitability of used methods and to provide
their comparison.

Klíčová slova: procedurálně generovaný obsah; procedurální generování; hra;
algoritmy

Keywords: procedurally generated content; procedural generation; game; algo-
rithms

I wish to express my sincere gratitude to my supervisor Mgr. Petr Osička, Ph.D.
for his essential recommendations and guidance throughout this thesis. I am
grateful to all members of the Department of Computer Science for continuous
inspiration during all the years of my study at Palacký University Olomouc. I
also thank my parents and friends for their unceasing support and motivation.

I hereby declare that I have completed this thesis including its appendices on my
own and used solely the sources cited in the text and included in the bibliography
list.

date of thesis submission author’s signature

Contents
1 Introduction 1

2 Computer games 2
2.1 Game development process . 2

3 Procedurally generated content 4
3.1 Random generation . 5
3.2 Benefits and pitfalls of PCG in games 5
3.3 Usage of PCG in games . 6

3.3.1 Space saving . 7
3.3.2 Game world elements . 7
3.3.3 Animation . 7
3.3.4 Audio . 8
3.3.5 Levels . 8

3.4 Conclusion . 9

4 Game implementation 10
4.1 Title . 10
4.2 Game design . 11
4.3 Visual representation . 12

4.3.1 Animation . 12
4.4 Unity . 13

4.4.1 DOTS . 13
4.4.2 ECS . 14
4.4.3 C# Job System . 15
4.4.4 Burst Compiler . 17

4.5 Procedurally generated content in the game 17
4.5.1 Dungeon Generation . 17

4.5.1.1 “Naive” approach 18
4.5.1.2 Cellular automaton 22
4.5.1.3 BSP-tree . 28
4.5.1.4 Comparison . 33
4.5.1.5 Tile map . 34

4.5.2 Object placement . 35
4.5.2.1 Player spawning 35
4.5.2.2 Poisson disk sampling 35

4.5.3 Objectives generation . 38
4.5.4 Leveling and stats . 39
4.5.5 Items generation . 40

4.6 Basic game mechanics . 41
4.6.1 Player . 41
4.6.2 Camera setup . 41
4.6.3 Minimap . 41

iv

4.6.4 AI . 41
4.6.5 Pathfinding . 42
4.6.6 Dungeon transitions . 42
4.6.7 Saving and loading the game 43
4.6.8 Tutorial level . 43
4.6.9 Game settings . 44

4.7 User interface . 45
4.7.1 Main menu . 45
4.7.2 In-game interface . 45

Závěr 47

Conclusions 48

A Contents of the enclosed CD 49

Acronyms 50

References 51

v

List of Figures
1 Games that use PCG for space saving 7
2 Games with procedurally generated world elements 7
3 Games with procedural animation 8
4 Games with procedurally generated levels 9
5 Screenshots of the implemented game 10
6 Game’s icon . 10
7 Use case diagram . 11
8 Main character . 12
9 Chest opening animation . 12
10 ECS Performance comparison . 17
11 Parallel execution of jobs . 21
12 Final results of the “Naive” dungeon generation 21
13 Neighborhood types . 23
14 Bresenham’s line algorithm . 25
15 Cellular automaton map creation process 26
16 Final results of the Cellular automaton dungeon generation 27
17 BSP-tree creation process . 30
18 Digging the corridor . 31
19 BSP-tree rooms connection . 31
20 Final results of the BSP-tree dungeon generation 32
21 Creating the tile map with Unity 34
22 Generated maps converted to tile map 34
23 Poisson disk sampling on a 2D plane 37
24 PDS problem in dungeons . 37
25 Results of PDS in the dungeon 38
26 Quests generation in the game . 39
27 Generated items . 40
28 Setting up the camera with the Cinemachine 41
29 Generated navigation mesh for the dungeon 42
30 Dungeon cut-scene created with Timeline tool 43
31 Screenshot from the tutorial level 44
32 Main menu and settings menu . 45
33 In-game interface . 46

List of Tables
1 Comparison of implemented algorithms 33

vi

List of source codes
1 Example of a simple ECS component 14
2 Example of a simple ECS system 15
3 Example of a simple ECS system with a job 16
4 “Naive” approach implementation in ECS 19

vii

1 Introduction
The game industry, as well as the gaming community today, has reached a mas-
sive size in the entertainment industry and it is hard to ignore its influence on
media and our lives, which is increasing every year [1].

Computer games always took a special place in my life and were one of the
main reasons why I am so highly interested in programming and computer science
overall. Since childhood, one of the greatest mysteries for me was how computer
games are made and that is what set me on an exciting journey of studying
computer science. I’ve done some simple games before and was excited during
the process, but I always wanted to make a more complex game. Therefore, it
is not surprising that I took the opportunity to try and do this as a bachelor
thesis.

The main focus of this thesis is procedurally generated content in computer
games. One of the goals was to implement a game with the use of techniques
obtained during the research. The first part of this work describes commonly
used algorithms and methods of procedural generation. The second part provides
detailed information on the process of game implementation.

The implemented game itself is a single-player 2D roguelike, which is a very
popular genre among games built with this approach. Moreover, the game not
only demonstrates procedurally generated elements but also tries to provide an
entertaining and enjoyable experience to the player.

The reader of this thesis will be introduced to the problem of procedural
generation and integration of procedurally generated content into the game. It
is expected that the reader has a basic understanding of algorithms and data
structures.

1

2 Computer games
Procedural generation requires an understanding of what computer games actu-
ally are, how they are made and why they can benefit from procedurally gener-
ated content.

A video game is a software with the main goal of entertaining its users. A
game involves interaction with a user interface to generate visual feedback on a
video display device [2].

A computer game is a video game played on a personal computer. PC game
platform is known for its overall higher performance, which can result in better
image quality, higher frame rates, bigger and more complex game worlds. This
platform also provides a wider range of peripherals. But this all comes for a price
of increased hardware cost [3].

2.1 Game development process
Game creation is a full software development process [4]. Hence, well known
and widely used in software development techniques may be and should be used
during game development. Although, an iterative design, especially iterative
prototyping approach has proved itself as a better option here. The general
idea is to create a basic functional prototype and continue from that point to
the final product by adding new features and removing unwanted or unexpected
behaviour [5].

Proper planning and time management is required for a game to be successful.
Otherwise, due to lack of time, budget exhaustion or numerous bugs, failure is
inevitable.

That is why it is very important to keep in mind the basic stages of the game
development process [5], [6]:

1. Pre-production – probably, the most important part. At this stage, the
idea and the main concept of the game is discussed and documented. Also,
the first prototypes are created here. Those prototypes can serve as proof
of concept and can tell if the game has any chance to succeed or just may
lead to waste of time, money and human resources. Moreover, successful
prototypes may be reused later in the process.

2. Production – the main phase of actual development. Here game elements
are implemented. This includes programming, modelling, level creation,
art and audio production and testing.

3. Milestones – used to track product progress. Milestones are important
timestamps of the game’s lifecycle. Reaching these points in time makes
easier to analyze what was already done, and what lies ahead. Most known
milestones are Alpha, Beta and Gold master (final build that will be used
for production).

2

4. Post-production – lifecycle of the game after the official release. Here bugs
and problems found after launch are solved. New content and features may
be added over time, and they will go through the identical phases up until
shipped to end-user.

As can be clearly seen, the whole process of the game development is complex,
time-consuming and requires a lot of human resources. Creating a playable and
immersive game world requires a lot of effort and hard work.

But what if some time could be saved by letting computers do what they do
best – compute? What if algorithms could be used to place objects on the level?
That would probably save hours or even days for a level designer. Moreover, it
may provide some interesting results for further inspiration. Or how to create
an infinite world that will feel natural and unique? This leads to the main topic
of this thesis – procedurally generated content.

3

3 Procedurally generated content
First of all, it is necessary to clarify some terminology. Procedurally generated
content is content, that was created with Procedural Content Generation (PCG)
techniques. That leads to the question, what is PCG? There are two parts in
this terminology that need explanation – procedural generation and the content
itself.

Procedural generation is a process of creating data not manually, but with an
algorithm [7]. An algorithm is a sequence of computational steps that transform
the input values into output [8]. Content is data that are presented to the player,
such as text, levels, models, items, game rules, quests, music, maps, textures etc
[9], [10].

With all that in mind, PCG can be defined as “the algorithmic creation of
game content with limited or indirect user input” [11]. In other words, PCG
is a process, that takes some input values, for example, the size of the level to
generate, then through a series of defined computational steps converts those
values into a game content.

Even though PCG found its place in a wide range of areas, it is still expected
from PCG to satisfy some common properties [10]:
• Speed – whether generation takes place during development or the actual

gameplay, speed will always be one of the most crucial aspects of PCG.
The main goal here is to find adequate time boundaries. It is unacceptable
to make the player spend most of his time at loading screen, neither it is
possible for a developer to spend hours of waiting due to rerunning PCG
tool until a usable result is created.

• Reliability – may be more important for one type of content than others.
This requires some kind of quality criteria. An object spawned in a wrong
place may block the player from reaching an expected destination, which
is a big failure.

• Controllability – content generators must provide some way to control the
process, so user, whether it is a player or other algorithm, has the ability to
affect the result. An object spawner may take into account how far away
from each other user wants to spawn objects.

• Expressivity and diversity – it is expected from generators to provide a
wide range of content with elements that feel unique.

• Creativity and believability – more pleasant content for the player is the
one, that does not seem unnatural to him. The main goal is to make the
player believe that the game world is real. Even little detail, such as a
weird-looking tree’s branch, may ruin the immersive experience.

It goes without saying, that tradeoffs are always present in the implemen-
tation of a content generator, as in any software, such as speed over quality, or
reliability over believability [10].

4

3.1 Random generation
Alongside with procedural generation, the term random generation is often men-
tioned. Sometimes procedural generation is mistaken for random generation and
it may lead to confusion. It is important to understand the difference between
those two.

PCG, as was mentioned earlier, is a process that utilizes some algorithms.
Algorithms are definite – for the same inputs the same output is given [12].
Same is true for PCG, if generator receives the same inputs, it will produce the
same content and there is no randomness involved [7]. But one of the goals of
PCG is to provide unpredictable results, thus some level of randomness must
take place. We can achieve that, by altering our inputs with random numbers,
or by changing the order of commands execution depending on some random
values. This is where the boundary between random and procedural terms is
erased. Often, when it is said “procedurally generated”, it is meant procedurally
generated with utilizing randomness [7]. As we can see, definiteness is still saved
– the same random values with the same input will result in the same output.

Obtaining a random number seems like a simple task from a human perspec-
tive. But for computers, in fact, it is a very complex problem. This is because
computers are deterministic. Hence, random numbers generated by computers
may seem like random, but actually, are pseudo-random, because they are a
result of some complex algorithm, which is again definite [7].

Procedural content generators usually do not require every single random
value as an input. Instead, they may ask for one single number commonly known
as a seed. A generator will use this number to drive algorithm execution [9]. For
example, most of the random number generators require seed as an input. If
the same seed is provided, the same numbers will be generated. It is common
practice, that number generators take current system time as a default seed. So,
by giving randomized seed to content generator we will obtain unpredictable and
dynamic results.

3.2 Benefits and pitfalls of PCG in games
It is always debatable why, when and where one should use PCG. Understanding
of what PCG may give is crucial to make the right decision.

These are strong sides of PCG [13], [10]:

• Time-saving – generators can create a massive amount of content in a short
time.

• Expandability and flexibility – changing or adding new features will have
an impact on every output.

• Replayability – generators may provide a similar, but a unique experience
at the same time.

5

• Reusability – generators can be reused between applications. Depending
on the context, generator can create a completely different experience.

• Individual experiences – there is an opportunity for every player to immerse
themselves in a unique experience.

• Creativity – content provided by the generator may be far beyond human
imagination.

• Overcoming technical limitation – PCG can be used to produce an amount
of content that cannot be stored, therefore be a form of data compression
[11].

• Fun – the process of creating PCG systems can be very exciting and a great
challenge at the same time. “What greater than to create a creator?” [13]

But everything comes with a price. PCG “can be a black hole, a slippery
slope, a project risk, and a dark abyss”[13]. These are some known risks that
need to be considered [13]:

• Quality assurance – game with PCG may not work as intended 100% of
the time. Despite the creation of a sufficient number of automated tests
and test scenarios, it is easy to miss the bug. At the same time, exces-
sive generator restriction will lead to less variant experience. Finding that
“golden” spot may be a hard task to accomplish.

• Time restrictions – PCG should have saved time, but this is not always the
case. Implementing, tweaking and debugging the generator may be more
time consuming then it was expected.

• Multiplayer – online competitive games have one very important and hard
to achieve property – balance. It is extremely difficult to create a generator
in such a way, that it could not give advantage to one player over another.

• Over reliance on PCG – the game will fail, if there is nothing for the player
to do other then wandering through infinite worlds. The final touches must
be made by hand to ensure the best experience.

3.3 Usage of PCG in games
This section provides a brief overview of popular games and how they made use
of PCG.

6

3.3.1 Space saving

Storage limitation is one of the problems that PCG can solve. For example, Elite
took an approach of saving space by storing the seed numbers that were used
to create eight galaxies [10]. Another example is .kkrieger that uses only 97,280
bytes of disk space. It was achieved by storing textures by their create history
instead of per-pixel basis and then recreating them on load [14].

(a) Elite (1984). Source: [15] (b) .kkrieger (2004). Source: [16]

Figure 1: Games that use PCG for space saving

3.3.2 Game world elements

PCG often used to fill the world with unique elements to explore. Such may
be items, weapons, characters, text, flora and fauna. For example, guns in
Borderlands 2. This game has around 17.75 million weapons to use. Weapons
are created by combining small pieces and adding stats and features to the final
result [17]. Another example are creatures from No Man’s Sky. Those are created
in the same manner, by constructing from basic parts [18].

(a) Borderlands 2 (2012). Source: [19] (b) No Man’s Sky (2016). Source: [20]

Figure 2: Games with procedurally generated world elements

3.3.3 Animation

Models created by PCG techniques can be impossible to animate by hand. One
of the widely known techniques of procedural animation is ragdoll physics. Rag-
dolls take advantage of a skeletal model structure by altering the position of

7

bones depending on the applied forces. Hitman: Codename 47 was a pioneer in
integrating ragdolls into game mechanics [21]. Spore, on the other hand, took
another approach. Their animation tool allows animators to describe motion
using familiar posing and key-framing methods. The system records the data
and then at runtime, apply those data to specific characters to yield pose goals
[22].

(a) Hitman: Codename 47 (2000). Source:
[21]

(b) Spore (2008). Source: [23]

Figure 3: Games with procedural animation

3.3.4 Audio

At first glance, the audio experience may not seem so noticeable, but in fact it
is a really important part of the game and adds a unique feeling. Procedural
music can give even more to this. Currently played audio can be adjusted to suit
gameplay context. For example, when there is action on the screen, music can
be more intense. It can make the player be more concentrated. Also, when the
player is peacefully wandering the world, music can be more calm and relaxing to
let the player enjoy the environment. The other approach is to generate music at
the runtime. This can be achieved by using neural networks for example. Spore
and No Man’s Sky both have procedural music, that creates a unique audio
experience for the player [24].

3.3.5 Levels

Finally, level creation is for what PCG is known the most. The level implies any
game area, such as dungeons, terrains, planets and even whole galaxies. Wide
range of algorithms is used to achieve this. Rogue was one of the first games with
PCG. It is a dungeon-crawling roleplaying ASCII1 game that features dungeon
generation, items and enemies spawning. Every time the player descends the
stairs, new level is generated. Rogue created a whole new genre – roguelike

1American Standard Code for Information Interchange

8

https://en.wikipedia.org/wiki/ASCII

[25]. Minecraft creates almost endless world to explore. It is achieved by using
a variant of 3D Perlin noise to create terrains [26]. Diablo 3 creates dungeons
by combining premade parts [27]. Developers of Sir, you are being hunted used
Voronoi diagrams to create beautiful landscapes [28].

(a) Rogue (1980). Source: [29] (b) Minecraft (2011). Source: [26]

(c) Diablo 3 (2012). Source: [27] (d) Sir, you are being hunted (2014).
Source: [28]

Figure 4: Games with procedurally generated levels

3.4 Conclusion
To sum up, PCG is a process of creating game content with the help of algo-
rithms. A content generator can be driven by limited or indirect user input.
Generation can be randomized, by providing random seed value, to achieve more
unpredictable results. PCG has found its place in multiple areas. Games that
implement PCG techniques can create a unique, interesting and almost infinite
world, and also may save time if done right.

9

4 Game implementation
From now on, this thesis will cover the game design and implementation of
gameplay mechanics as well as some known PCG techniques on the example of
a simple game.

Figure 5: Screenshots of the implemented game

4.1 Title

Figure 6: Game’s icon

For a long time my project was called “BP” as an abbreviation from “Bakalářská
práce”, that is, “Bachelor thesis” in Czech. At some point in time, I decided to
give the game a name, so this abbreviation and game’s visual aesthetics led me
to the title – “Beyond Pixels”. The title also shows the main goal of this thesis
– to describe what lies beyond those pixels of a procedurally generated content.

10

4.2 Game design
The game itself is a 2D roguelike with pixel art graphics that features dungeon
generation, enemies and items spawning, level and stats progression system, a
simple system of generating tasks for a player to complete and tutorial level. The
game also has the ability to save and load the current progress of the player. Such
common genre was chosen in order to sustain the main focus on implementing
PCG methods and gameplay mechanics, than on visual aesthetics and game
design.

The gameplay is similar to roguelike games. The main goals of the player are
to explore dungeons, kill enemies, collect items, gain experience points. Dun-
geons are connected with staircases. When a player passes through a connection,
a new dungeon is generated, the passage is blocked, and the player is forced to
search for the next ladder to continue. Enemies and items in each dungeon adapt
to the level of the player and his characteristics.

A more detailed overview of the game from the player’s perspective can be
described in the use case diagram (see figure 7). It is also a way to specify the
requirements and functionality that the game provides.

Figure 7: Use case diagram

11

4.3 Visual representation

Figure 8: Main character

The game completely consists of 2D pixel art sprites. Pixel art is a type of digital
art, where the image is edited on the pixel level [30]. It is usually drawn by hand,
but not necessarily. The size of sprites is often small, for example, 32x32 pixels.
Pixel art graphic was chosen for several reasons:

• Fast to create and adjust.

• Suits the genre and pays tribute to old roguelike games.

• Does not require a high level of details.

• Light-weight and cheap to render.

As with any other form of art, pixel art requires practice and talent. All
sprites in this game were drawn by me, with the exception of icons taken from
open game art resource2. The font in the game is the free font “Karma Future”3.
It has a pixelated style and suits the game really well.

4.3.1 Animation

The way animation is created in this game is a common approach to pixel art
animation. The animation consists of frame-by-frame hand-drawn sprites that
change with a certain time step.

Figure 9: Chest opening animation

2496 pixel art icons for medieval/fantasy RPG by 7Soul1
3Karma Font Family by Raymond Larabie

12

https://opengameart.org/content/496-pixel-art-icons-for-medievalfantasy-rpg
https://www.1001fonts.com/karma-font.html

4.4 Unity
The decision to use the engine was made in order to concentrate more on the
main target – procedurally generated content. The choice fell on Unity, a game
engine developed by Unity Technologies [31]. Unity engine offers a lot of features
[32], and those were the most convincing:

• Free for personal use.

• Multiplatform editor that has the ability to build applications for more
than 25 platforms.

• All-in-one editor that offers a wide range of tools for 3D and 2D develop-
ment.

• Built-in User Interface System.

• Large amount of official and made by community tutorials available.

• .NET Framework4 4.6 scripting runtime with C#5 7.3 as the main scripting
language.

• Ability to make standalone builds with IL2CPP6.

4.4.1 DOTS

Data-Oriented Technology Stack (DOTS) is a new chapter in the history of Unity.
The Unity team set as their priority “performance by default”, and now they are
rebuilding the core of the engine. What they want to achieve with DOTS is to
give developers the ability to write high-performance multithreaded code with
the least effort [33]. DOTS consists of 3 parts that can make this possible [33]:

• Entity Component System

• C# Job System

• Burst Compiler

DOTS, for now, is in preview, hence, it has limited functionality and some fea-
tures may be changed or removed in future updates. Minimal required Unity
version is 2019.1.0f1, and this project is using 2019.3.0a6, where some minor
bugs were fixed [34].

4.NET Framework
5C# Guide
6Intermediate Language To C++ in Unity

13

https://dotnet.microsoft.com/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.unity3d.com/Manual/IL2CPP.html

4.4.2 ECS

Entity Component System (ECS) is an architectural pattern, that follows com-
position over inheritance principle. In ECS game objects are represented as
entities that consist of components. The behaviour of entities is driven by those
components. It gives entities the ability to change their behaviour at runtime, by
adding or removing components. Systems are then the place where behaviour is
defined. The system will search for entities with certain components and apply
defined operations on them. Such an approach “eliminates the ambiguity prob-
lems of deep and wide inheritance hierarchies that are difficult to understand,
maintain and extend” [35].

Unity’s ECS implementation highly benefits form data layout. Entities with
the same set of components are stored in memory together. Such a set is called
an archetype. Adding or removing a component from the entity switches its
archetype. Unity’s ECS allocates memory in chunks. Every chunk than contains
component data for entities with the same archetype. An archetype has a list of
chunks in which entities of this archetype are stored. In order to access the data
of the entities components, ECS will cycle through these chunks, and within each
of them, it performs a linear loop over tightly packed memory [36].

Because ECS is still in preview mode, it lacks basic features, such as an-
imations, physics, rendering, networking. So the way it is used in this game
is called “Hybrid” approach. Old Unity’s GameObjects7 are used to represent
entities data. Unity has built-in support for such approach. In order for it to
be functional, GameObjectEntity8 component must be added to GameObject. It
will create a bridge between ECS and Unity’s GameObject, that allows us to use
animation, physics and other existing non-ECS components inside ECS. Unity’s
ECS also has limitations on what can be stored inside components. Components
must be structs that can contain only blittable types9 and no reference types or
methods[37].

Source code 1 shows an example of a simple component and source code
2 shows an example of a simple system, that moves the object with the use
of Unity’s physics. On every frame system filters entities that have Movement
and RigidBody2D10 components. It will calculate velocity based on speed and
direction, that entity is heading, and apply it to entity’s rigidbody.

1 public struct MovementComponent : IComponentData
2 {
3 public float2 Direction;
4 public float Speed;
5 }

Source code 1: Example of a simple ECS component

7Unity’s GameObject
8Unity’s GameObjectEntity
9Blittable types

10Unity’s Rigidbody2D Component

14

https://docs.unity3d.com/Manual/class-GameObject.html
https://docs.unity3d.com/Packages/com.unity.entities@0.0/api/Unity.Entities.GameObjectEntity.html
https://docs.microsoft.com/en-us/dotnet/framework/interop/blittable-and-non-blittable-types
https://docs.unity3d.com/ScriptReference/Rigidbody2D.html

1 public class MovementSystem : ComponentSystem
2 {
3 private EntityQuery group;
4

5 protected override void OnCreate()
6 {
7 this.group = this.GetEntityQuery(new EntityQueryDesc
8 {
9 All = new ComponentType[]
10 {
11 ComponentType.ReadOnly(typeof(MovementComponent)),
12 typeof(UnityEngine.Rigidbody2D)
13 }
14 });
15 }
16

17 protected override void OnUpdate()
18 {
19 this.Entities.With(this.group).ForEach((Entity entity,
20 ref MovementComponent movementComponent,
21 Rigidbody2D rigidbody) =>
22 {
23 var velocity = math.normalize(movementComponent.Direction) *
24 movementComponent.Speed;
25

26 rigidbody.velocity = velocity;
27 });
28 }
29 }

Source code 2: Example of a simple ECS system

4.4.3 C# Job System

Job system was created to give developers the ability to fully utilize all avail-
able CPU cores. C# Job System is actually a wrapper around the C++ Job
System written in native code [33]. It features built-in scheduler that is respon-
sible for creating and executing jobs on worker threads. Job system manages
dependencies and has safety checks enabled by default to prevent accidental race
conditions. The race condition problem is solved by sending each job a copy of
the data instead of the reference. This approach isolates the data, but has a
limitation – a job can receive only blittable data types, because blittable types
do not require conversion when passed between managed11 and native code [38],
[39]. It also isolates the results of a job and to overcome this, using of a special
NativeContainer12 is required. NativeContainer is a safe C# wrapper for native
memory, that contains a pointer to an unmanaged allocation and provides the
way for the job to share the data with the main thread instead of working with

11More about managed code
12More about NativeContainer

15

https://en.wikipedia.org/wiki/Managed_code
https://docs.unity3d.com/Manual/JobSystemNativeContainer.html

the copy. Since the memory is unmanaged, it is necessary to manually deallocate
the data by calling the Dispose method. Unity’s ECS provides different types
of containers to use, such as arrays, hashmaps and queues [40]. Those types are
heavily used in this game.

Source code 3 demonstrates an example of a simple system with a job in
ECS. The job checks current health value and if it is less than or equal to 0 adds
KilledComponent to the entity.

1 public class DeathSystem : JobComponentSystem
2 {
3 [ExcludeComponent(typeof(KilledComponent))]
4 private struct DeathJob : IJobForEachWithEntity<HealthComponent>
5 {
6 public EntityCommandBuffer.Concurrent CommandBuffer;
7

8 public void Execute(Entity entity, int index,
9 [ReadOnly] ref HealthComponent healthComponent)
10 {
11 if (healthComponent.CurrentValue <= 0)
12 this.CommandBuffer.AddComponent(index, entity, new

KilledComponent());
13 }
14 }
15

16 private EndSimulationEntityCommandBufferSystem endFrameBarrier;
17

18 protected override void OnCreate()
19 {
20 this.endFrameBarrier = World.Active.GetOrCreateSystem<

EndSimulationEntityCommandBufferSystem>();
21 }
22

23 protected override JobHandle OnUpdate(JobHandle inputDeps)
24 {
25 var destroyJobHandle = new DeathJob
26 {
27 CommandBuffer = this.endFrameBarrier.CreateCommandBuffer().

ToConcurrent(),
28 }.Schedule(this, inputDeps);
29 this.endFrameBarrier.AddJobHandleForProducer(destroyJobHandle);
30 return destroyJobHandle;
31 }
32 }

Source code 3: Example of a simple ECS system with a job

16

4.4.4 Burst Compiler

Burst is a compiler, capable of creating highly-optimized machine code from C#

jobs by using LLVM13. It is working on a small subset of .NET and, therefore,
adds more limitations to jobs – usage of any managed objects/reference types
inside job is not allowed. In order to compile the job with Burst, the job must
be marked with the BurstCompile attribute [41].

Benefits of using ECS with Job System and Burst were described in the official
Unity’s video series [42] on the simple example. In the example a large number of
space ships are being spawned. Each ship is constantly moving forward. Figure
10 shows the results of the simulation.

(a) Old GameObjects (b) ECS + Jobs + Burst

Figure 10: ECS Performance comparison. Source: [42]

4.5 Procedurally generated content in the game
Starting from this section, as needed terminology and the way this game is imple-
mented are covered, follows description and implementation of PCG techniques
and gameplay mechanics.

4.5.1 Dungeon Generation

Dungeon generation problem
Task: Generate unique 2D map on every request.
Input: Dungeon size, seed value.
Output: 2D array that represents the dungeon.
Requirements: 1. Must provide a map with fully connected playable areas.

2. Map contains a minimal amount of a playable area.
3. Map is closed on borders.
4. Fast enough to execute at runtime.

Each element in the array is called tile. Tiles contain integer value, where 1
is a wall and 0 is a floor, indexes in the array then represent X and Y position

13More about LLVM

17

https://en.wikipedia.org/wiki/LLVM

in 2D space. Fully connected means that the result can not contain floor tiles,
that are unreachable from any point of the map.

4.5.1.1 “Naive” approach

When thinking about level generation, this approach may be the first one that
comes to mind and serves as the starting point into PCG problems. Different
versions of this algorithm are being referred to as Agent-based dungeon growing
[10]. The main idea is to create random room, peek random direction and create
corridor from the room in that direction, then repeat as many times as needed.

Algorithm 1 “Naive” approach
1: procedure CreateMapNaive(mapSize)
2: tilesArray ← [mapSize.heigth, mapSize.width]
3: roomCounter ← 0
4: desiredRoomAmount← GetRoomAmount(mapSize)
5: currentPosition← GetRandomPosition()
6: while roomCounter < desiredRoomAmount do
7: room← CreateRandomRoom(currentPosition)
8: direction← PickRandomDirection()
9: corridor ← CreateCorridor(room, direction)
10: SetRoomTiles(room, tilesArray)
11: SetCorridorTiles(corridor, tilesArray)
12: currenPosition← corridor.EndPoint
13: roomCounter ← roomCounter + 1
14: end while
15: return tilesArray
16: end procedure

Overlapping of rooms and corridors may occur, but it is not a problem, but
rather a positive effect, that can lead to unpredictable and non-linear dungeons.
The main thing to be aware of while implementing this algorithm, is map borders.
The algorithm should not exceed them and must behave properly when reaches
any. Also, when picking direction generator must assure that it does not choose
a direction, which leads backwards. Connectivity is provided from the way the
map is created.

The number of steps that this map generator executes depends only on the
desired number of rooms. It uses map size only for restriction purposes. But,
obviously, the number of rooms must be in some way bound to the map size, to
utilize as much available space as possible. This implementation uses a simple
formula, obtained by experimenting with the generator. For a 100 × 100 map,
which is 10000 square units, 25-35 rooms result in pleasant output for most of the
cases. So, on each square unit, the generator must spawn around 0.0025-0.0035
rooms.

But how can ECS and jobs be used here, to benefit from multithreading?
First of all, the generator will be represented as a system, rather than a normal

18

procedure. An entity is used to provide the system with all required inputs.
Input values are stored in the component. The system will then pick up this
entity, read the data from the component and start the generation process.

The generator will create the first room and corridors from that room in all
4 directions. Then it executes 4 jobs, each having the corresponding corridor
passed to it. Each job creates new rooms and corridors in parallel, starting from
the end of the received corridor, and stores them in the queue. Actual tiles in
the array are set later. To set the tiles, jobs can be created for every single room
and corridor, thus utilize all available cores. A brief overview of how this is done
in ECS is shown in source code 4.

1 public class BoardSystem : JobComponentSystem
2 {
3 [BurstCompile]
4 private struct CreateRoomsAndCorridorsJob : IJobParallelFor
5 {
6 [WriteOnly] public NativeQueue<RoomComponent>.Concurrent Rooms;
7 [WriteOnly] public NativeQueue<CorridorComponent>.Concurrent

Corridors;
8 [DeallocateOnJobCompletion] [ReadOnly] public NativeArray<

CorridorComponent> FirstCorridors;
9

10 public BoardComponent Board;
11 public int RoomCount;
12 public int RandomSeed;
13

14 public void Execute(int index)
15 {
16 var random = new Random((uint)(this.RandomSeed * (index + 1)));
17

18 var firstCorridor = this.FirstCorridors[index];
19 var room = this.CreateRoom(this.Board, firstCorridor, ref

random);
20 this.Rooms.Enqueue(room);
21

22 for (var i = 0; i < this.RoomCount; i++)
23 {
24 var corridor = this.CreateCorridor(room, this.Board, ref

random);
25 room = this.CreateRoom(this.Board, corridor, ref random);
26 this.Rooms.Enqueue(room);
27 this.Corridors.Enqueue(corridor);
28 }
29 }
30 }
31

32 // Properties declaration
33

34 protected override JobHandle OnUpdate(JobHandle inputDeps)
35 {
36 // Reading data from component and generator initializations
37

19

38 var roomCount = var roomCount = (int)(randomSize.x * randomSize.y

* random.NextFloat(0.0025f, 0.0035f));
39

40 // There is no 2D NativeArray, so using flatten array instead
41 this.Tiles = new NativeArray<TileType>(board.Size.x * board.Size.

y, Allocator.TempJob, NativeArrayOptions.UninitializedMemory)
;

42 // Everything is a wall at the beginnings
43 for (var j = 0; j < this.Tiles.Length; j++)
44 this.Tiles[j] = TileType.Wall;
45

46 this.RoomsQueue = new NativeQueue<RoomComponent>(Allocator.
TempJob);

47 this.CorridorsQueue = new NativeQueue<CorridorComponent>(
Allocator.TempJob);

48 var firstCorridors = new NativeArray<CorridorComponent>(4,
Allocator.TempJob);

49

50 // setup fist room and corridors to all 4 directions
51 var firstRoom = CreateRoom(board, ref random);
52 this.RoomsQueue.Enqueue(firstRoom);
53 for (var c = 0; c < 4; c++)
54 {
55 firstCorridors[c] = this.CreateCorridor(firstRoom, board, ref

random, c);
56 this.CorridorsQueue.Enqueue(firstCorridors[c]);
57 }
58

59 // Creating rooms and corridors in 4 parallel jobs
60 inputDeps = new CreateRoomsAndCorridorsJob
61 {
62 Board = board,
63 Rooms = this.RoomsQueue.ToConcurrent(),
64 Corridors = this.CorridorsQueue.ToConcurrent(),
65 FirstCorridors = firstCorridors,
66 RoomCount = roomCount / 4,
67 RandomSeed = random.NextInt()
68 }.Schedule(4, 1, inputDeps);
69

70 //Further execution and map controls
71 return inputDeps;
72 }
73 }

Source code 4: “Naive” approach implementation in ECS

20

Figure 11: Parallel execution of jobs

This implementation has some further polishing steps:

• The initial room is spawned in the center of the map, to give more space
for expanding.

• While picking a direction, there was added a 25% chance to move further
from the center, depending on current quadrant of the map.

• Generator still may not utilize a lot of available space, so in the final step
it finds actual boundaries of the playable area and cuts it out.

Figure 12: Final results of the “Naive” generation, where white is a playable area

21

Considering the worst-case scenario of having only 1 available core (WebGL
14) and a squared map of size N ×N , which is n square units, time complexity
can be determined as follows:

1. Creating the first room and first 4 corridors is done in time O(s).

2. The number of desired rooms is 0.0035n at maximum (assume that is R).
The loop to create rooms and corridors will execute R times, each iteration
will create 1 room in time r steps and 1 corridor in c steps, thus O(R(r+c)).

3. Loop over all rooms. Every room has defined maximum size of M square
units, that it can not exceed. For each room system will set corresponding
tiles in O(M), thus O(R ·M).

4. Loop over all corridors. A total number of corridors is numbersOfRooms+
2. Corridors have defined maximum length L. For each corridor system
will set corresponding tiles in maximum L steps, thus O(L(R + 2))

Adding all together, time is O(s + R(r + c) + R ·M2 + L(R + 2)). Creating
rooms and corridors is done in a constant number of steps, hence can be emitted
from the equation. Maximum room size and corridor length are limited by a
constant, so can be also emitted, but those values must be chosen wisely. The
final time complexity then:

O(R + R + R) = O(n) (1)

4.5.1.2 Cellular automaton

A Cellular Automaton (CA) is a discrete computational model, that consists of
an n-dimensional grid, a set of states and a set of transition rules. Each cell in
a grid has defined a state. CA evolves in generations, by changing the states of
its cells. At each generation, the cell calculates its state based on the state of
surrounding cells. A set of cells that have an affect on the current cell is called
the neighbourhood. The most known types of neighbourhoods are von Neumann
neighborhood15 and Moore neighborhood16. CA is a point of interest for many
scientific fields, such as computer science, biology, physics and mathematics [10],
[43].

14WebGL specifications
15Von Neumann neighborhood
16Moore neighborhood

22

https://docs.unity3d.com/Manual/webgl-gettingstarted.html
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood
https://en.wikipedia.org/wiki/Moore_neighborhood

(a) Von Neumann neighborhood. Source:
[44]

(b) Moore neighborhood. Source: [45]

Figure 13: Neighborhood types

This implementation uses the Moore neighbourhood and the simplest case of
CA, where a cell can be only in 2 states – on or off. In the initial generation,
each cell gets a random state. At further generations, every cell will check its
neighbourhood. If more than 4 cells are currently in the off state, the cell will be
turned off, otherwise, it will be turned on. After several generations, cells with
the same state will be grouped together, forming regions. Regions with cells that
have on state are considered as playable area and are called rooms. Rooms can
be separated from each other, therefore must be determined and connected.

Algorithm 2 Cellular automaton
1: procedure CreateMapCellular(mapSize, genCount, randomFillPercent)
2: cellsArray ← [mapSize.heigth, mapSize.width]
3: counter ← 0
4: RandomFillMap(cellsArray, randomFillPercent)
5: while counter < genCount do
6: CalculateNextState(cellsArray)
7: SetNextState(cellsArray)
8: counter ← counter + 1
9: end while
10: roomsArray ← FindRooms(cellsArray)
11: ConnectRooms(roomsArray, cellsArray)
12: tilesArray ← ConvertToTiles(cellsArray)
13: return tilesArray
14: end procedure

In algorithm 2 randomFillPercent parameter decides the chance of the cell

23

being off in the initial generation. Larger value will result in more cells being
off.

To find actual rooms this implementation uses the iterative version of the
flood fill algorithm17. The algorithm scans the whole map. When it encounters
the cell with the on state that has not been processed yet, it starts gathering
all surrounding cells with the on state and adds them to the queue. Then the
process repeats for every cell in the queue. All cells collected in that way will
form the room.

Algorithm 3 Flood fill
1: procedure FindRooms(mapSize, cellsArray)
2: flags← [mapSize.heigth, mapSize.width]
3: rooms← ∅
4: for y ← 0, mapSize.heigth do
5: for y ← 0, mapSize.width do
6: if flags[y, x] = false and cellsArray[y, x].State = on then
7: room
8: cell← cellsArray[y, x]
9: flags[y, x]← true
10: room.Cells← CollectCells(cell, f lags, cellsArray)
11: rooms.Add(room)
12: end if
13: end for
14: end for
15: return rooms
16: end procedure
17: procedure CollectCells(startCell, f lags, cellsArray)
18: foundCells← ∅
19: queue← ∅
20: queue.Enqueue(startCell)
21: while queue.Length > 0 do
22: cell← queue.Dequeue()
23: for all c ∈ GetCellsAround(cell, cellsArray)) do
24: if flags[c.y, c.x] = false and c.State = on then
25: foundCells.Add(c)
26: queue.Enqueue(c)
27: flags[c.y, c.x]← true
28: end if
29: end for
30: end while
31: return foundCells
32: end procedure

Connection between all collected rooms is established in 2 stages. First of
all, the generator creates corridors between pairs of the nearest rooms. It then

17Flood fill algorithm

24

https://en.wikipedia.org/wiki/Flood_fill

checks the connection between all the rooms and creates new ones, if necessary.
In the first stage, the algorithm loops over all rooms. For each room, it finds

nearest by comparing tiles of that room with tiles of every other room and stores
the best result. The corridor is created between nearest tiles. To track which
rooms are connected, the algorithm uses a table in which rows and columns
represent rooms. Each value in the table cell indicates whether the rooms are
connected, where 0 means no connection and 1 means there is a connection. In
the initial state, the table has all values set to 1 on the main diagonal, which
means that room is connected with itself. When the algorithm connects 2 rooms
it sets appropriate cell to 1, and it also sets a proper cell value for all rooms that
are connected to any of those rooms. Thus, the algorithm is able to determine
whether rooms are connected directly, or through other rooms. When searching
for the nearest room, the algorithm additionally checks if rooms have already
been connected, and if so, it skips to the next one. There was added an additional
condition to the flood fill algorithm – the cell is added to the result only if there
is at least one off cell around. With this condition the algorithm will add cells
that are most likely room boundaries. With this approach some unnecessary
iterations can be skipped when searching for the nearest room.

In the second stage, the algorithm marks the first room as the main room end
verifies if every room is reachable from the main room by simply checking table
values. If it finds the room that is not reachable, it stores all reachable rooms
in one list and all unreachable in another list. Then it finds 2 closest rooms
between those lists and creates the connection. It repeats the process until there
are no unreachable rooms left. This approach can create the natural looking
cave, rather than chaotic dungeon.

To dig the actual corridor between 2 points on the map Bresenham’s line
algorithm18 was used.

Figure 14: Bresenham’s line algorithm. Source: [46]
18Bresenham’s line algorithm

25

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

(a) CA initial state (b) CA after 5 generations

(c) Collecting rooms (d) Result with connected rooms

Figure 15: Cellular automaton map creation process. Map size is 75 × 75 and
randomFillPercent set to 65

ECS and jobs were used to speed up the process. Iteration over the map
is done by creating a job for every row. Each job then processes its row in
parallel. That approach used on initializing the CA with random states and
when calculating states for the next generation. Flood fill was not parallelized,
to avoid race conditions when setting the flags and to avoid multiple processing
of the same room. Jobs were used when searching for the nearest rooms by
splitting the map on smaller quads. Each job connects rooms, that lie within its
quad. After that one single job connects all rooms together.

26

Figure 16: Final results of the Cellular dungeon automaton generation, where
white is a playable area

Considering the worst-case scenario with 1 core and a map of size N × N ,
which is n square units, time complexity:

1. Initializing the CA with random states is O(n).

2. This implementation uses 5 generations to evolve, so O(10n), because it
needs one pass to calculate the next state of every cell and additional pass
to set new state.

3. Flood fill will scan the entire map in O(n). When it encounters not pro-
cessed cell, the number of steps is proportional to the number of cells in
the filled area. When the whole map is a flooding area, then it is O(n).
Since flood fill does not execute the gathering on already processed cells it
will be O(2n) at maximum.

4. The number of steps required to connect the rooms depends on the num-
ber of rooms and the size of each room. The number of rooms in CA
is not strictly bound to the size of the map. It also depends on the
randomFillPercent and how CA evolves through generations. With the
low randomFillPercent value, the map can have a single room, that covers

27

almost the entire map, and with the large value map with a single room
but of small size may also be generated, both resulting in O(1). But in av-
erage CA will create more separated rooms as grid size is growing. Assume
that the number of rooms is R. Finding the connection between rooms is
done by comparing distances between every cell in each room. If rooms
are the same size, they will have at maximum n

R
cells each. To create the

actual corridor, the algorithm needs to set cells between closest rooms to
on state. When rooms are in opposite corners, the length of the corridor
is N at maximum. Hence, connecting all rooms is O(R2(n

R
+ N)).

5. After that, one generation is lived, to remove unnecessary cells created by
digging the corridors, which is O(n).

Summing all up, time complexity is O(n+10n+2n+R2(n
R

+N)+n). Assuming
that the number of rooms is bound to the map size, and is growing proportionally,
than R = c·n, where c is a constant such that 0 < c < 1. Removing the constants,
the final result in the worst-case:

O(n + n + n + n2 + n) = O(n2) (2)

4.5.1.3 BSP-tree

Binary Space Partitioning (BSP) is the most popular method for space parti-
tioning. Space partitioning is a subdivision of space (typically 2D or 3D) into
disjoint subsets. To store subsets and operate on them, trees are usually used.
BSP divides the space recursively into two subsets, which allows using of binary
trees. Such a binary tree is called BSP-tree. They are commonly used in render-
ing, raytracing and collision detection to operate on already existing data, rather
than to create new ones. But because such subsets are disjoint, they can be used
to represent rooms in the dungeon [10].

Each node of the BSP-tree holds a certain area of the map. The root node
holds the entire map. The algorithm starts in the root node, where it splits
the space held by the root in 2 parts vertically or horizontally. Those parts are
assigned to the left and right child nodes. Then it repeats the process recursively
until space can not be divided further. Actual rooms are created in the leaf nodes.
Visualization of the BSP process is shown in figure 17.

28

Algorithm 4 BSP-tree
1: procedure CreateMapBSP(mapSize, minSpaceSize)
2: tree← InitTree(mapSize)
3: SplitNode(tree.Root, minSpaceSize)
4: RandomFillMap(cellsArray, randomFillPercent)
5: level← tree.Height
6: while level > 0 do
7: ConnectNodes(tree, level)
8: level← level − 1
9: end while
10: tilesArray ← ConvertToTiles(tree)
11: return tilesArray
12: end procedure
13: procedure SplitNode(node, minSpaceSize)
14: if node.Space/2 < minSpaceSize then
15: CreateRoom(node)
16: return
17: end if
18: DivideSpace(node)
19: SplitNode(node.LeftChild, minSpaceSize)
20: SplitNode(node.RightChild, minSpaceSize)
21: end procedure

29

(a) (b)

(c) (d)

(e) (f)

Figure 17: BSP-tree creation process

The algorithm connects rooms by creating corridors between left and right
child of every node in each level of the tree starting from the penultimate level.
The last level is skipped because leaves can not connect anything. When the
algorithm reaches the root, all rooms are connected. To create the connection
between 2 rooms, it picks random points in each room and digs the corridor
between them. If those points are not aligned vertically or horizontally, it digs
the corridor with a turn as shown in figure 18.

30

Figure 18: Digging the corridor

Actual rooms lie in leaves. When connecting 2 nodes, the algorithm will
recursively traverse the tree down from those nodes, until it reaches the nearest
leaf. Then it creates the actual corridor between rooms of those leaves.

(a) (b)

(c) (d)

Figure 19: BSP-tree rooms connection

ECS and jobs are used here to create rooms, corridors set map tiles. To use
the tree in the jobs, it is converted to the array. The BSP-tree is not guaranteed
to be perfectly balanced, so the array is filled with additional null nodes. To
find corridors in each level, a job is created for every node, starting from the
penultimate level. Every job is responsible for connecting node’s left and right
child.

31

Figure 20: Final results of the BSP-tree dungeon generation, where white is a
playable area

Considering 1 core and map size N ×N , which is n square units, once more,
time:

1. If space is divided in 2 exact same parts all the time and minimal space
size is m square units, then the tree will become a perfect binary tree and
the map can fit at most n

m
rooms, thus the number of leaves is also n

m
,

assuming that is L. Total number of nodes in such tree is then 2L−1. The
height of the tree is than h = log2(2L).

2. Splitting the space is done in non-leaf nodes. There are L − 1 of them in
this tree So O(L− 1) for the BSP-tree creation.

3. Tree is converted to the array, which is O(2L− 1).

4. Rooms are created in leaves and there are L of them. So O(L) is the
amount of work needed to create rooms.

5. Rooms are connected in each level starting from the bottom. Only non-
leaf nodes are responsible for the corridor creation (left child connects to
right child) and the root node stops the process. So, L− 1 nodes that will

32

execute connection searching process. To connect the nodes, nearest leaf
needs to be found, that is done in h steps maximum, since all leaves have
the same depth. To connect left and right child nodes, a leaf needs to be
found for both of them. So (L−1)·2h = 2(L−1)(log2(2L)) = O(L log2(L)),
corridors are stored in the queue as a pair of points.

6. Setting the tiles in the array then executed on each room and each corridor.
There are L rooms of m square units each, so L · m to set room tiles.
Corridors are created in each level between siblings, so there are (L − 1)
corridors created overall. Assuming that maximal length of the corridor
can grow up to the N – O(L ·m + N(L− 1)) to set actual tiles.

Summing all up, when BSP-tree becomes a perfect binary tree, the time is
O((L − 1) + (2L − 1) + L + L log2(L) + L ·m + N(L − 1)) = O(n

m
+ n

m
+ n

m
+

n
m

log2(n
m

) + n + N n
m

), therefore:

O(n

m
log2(

n

m
)) = O(n log2(n)) (3)

When tree becomes unbalanced, searching of the leaf node becomes linear
and overall time complexity moves towards O(n2).

4.5.1.4 Comparison

To test the running time of implemented algorithms, 100 dungeons of size 500×
500 with randomized inputs were generated by each. Results are in seconds.
Test was run as a standalone build using IL2CPP on the i3 1.9Ghz Dual-core 4
threads CPU.

“Naive” CA BSP-tree
Minimal 0.1 0.49 0.12
Maximal 0.98 69.38 2.61
Average 0.19 15.22 0.54

Table 1: Comparison of implemented algorithms

In the game map size varies from 75× 50 up to 150× 150 tiles, such a map is
large enough to give the player space to explore, and it is not overwhelming at
the same time. Implemented algorithms will create a map of such size in a very
similar time span, that erases the difference between them. If bigger maps are
required, there should be done more optimization steps, for example, creating
the dungeon in smaller parts and then merging them together, or generating
parts of the map only when a player reaches the border of the current part.

As for dungeons themselves, “Naive” generator is fast, but does not provide
a lot of control and creates chaotic maps. BSP-tree is a reasonable choice, as it
creates maps that look like real man-made dungeons or prisons. CA generates
natural-looking caves. CA with a bigger number of states can generate more

33

diverse maps, for example, 4 states in the CA could represent ground, bushes,
rocks and trees to create a forest map.

4.5.1.5 Tile map

Results obtained from dungeon generators now can be visualized. The game has
a set of hand-drawn tiles, 32 × 32 pixels each. Such a set is called a tilesheet.
Every element of the array that the generator provides is represented by those
tiles. Depending on the environment of the element, the most suitable tile is
picked. This can be done manually by iterating through the whole map and
scanning all neighbours of the current element, or by using Unity’s built-in tool
called Tilemap component19 and a additional Unity’s package that is called 2d-
extras20. With this tool, the rules for tiles can be set directly in the editor. It
also offers the ability to generate a collider for the tile map.

(a) Tilesheet (b) Tile map rules in Unity

Figure 21: Creating the tile map with Unity

Figure 22: Generated maps converted to tile map
19About Unity’s Tilemap component
202d-extras Github repository

34

https://docs.unity3d.com/Manual/class-Tilemap.html
https://github.com/Unity-Technologies/2d-extras

4.5.2 Object placement

Object placement problem
Task: Determine positions on the map where objects should be

placed.
Input: Generated 2D map.
Output: Array of positions.
Requirements: 1. Positions can not overlap with each other.

2. Positions should uniformly cover as much space as pos-
sible.

3. Fast enough to execute at runtime.

4.5.2.1 Player spawning

The position of the player must be determined first, so that it can be used later,
for example, when placing exits from the dungeon it is undesirable to spawn one
directly next to the player.

The player’s starting position on the map is chosen in a simple manner.
Random corner of the map is picked. From that corner, the procedure starts to
search for a valid tile. When such tile is found the player is spawned and other
systems can take into consideration his position. Placing the player in the corner
of the map may help him navigate faster in a new dungeon.

4.5.2.2 Poisson disk sampling

Poisson disk sampling (PDS) is a technique that produces blue noise sample
patterns. Blue noise found the application in computer graphics, particularly
in rendering. This type of noise is used to create particle systems, motion blur
or depth-of-field effects. PDS distributes the samples so that they are at some
minimum distance r from each other [47]. This game uses a 2D modification
of the PDS to determine the positions of objects. The algorithm initializes the
background grid, that is used to store samples. PDS places the initial sample in
the random position, adds it to the active list and marks the corresponding cell
in the grid. While there are samples left in the active list, pick a random sample
S. Pick a random direction and a random distance in between r and 2r. Move
to a new position from the S. If the position is valid for a new sample to be
placed – create a new sample, add it to the active list, mark the background grid
and repeat the process. If the proper position was not found in a defined k steps
– remove S from the active list and continue the execution. Validation of the
position is done by searching for existing samples around the position. Since k
and r are constants overall time complexity of this PDS implementation is O(n),
where n is the number of tiles that PDS receives as input [47].

35

Algorithm 5 Poisson disk sampling
1: procedure GetPositionsPDS(mapSize, mapT iles, radius, limit)
2: grid← [mapSize.height, mapSize.width]
3: activeList← ∅
4: sample← GetRandomSample(mapTiles)
5: activeList.Add(sample)
6: grid[sample.Position.y, sample.Position.x]← sample
7: while activeList.Length > 0 do
8: sample← GetRandomSample(activeList)
9: counter ← 0
10: candidateFound← false
11: while counter < limit do
12: newPos← sample.Position + randomV ector
13: if IsValid(newPos, grid) then
14: newSample← CreateSample(newPos)
15: activeList.Add(newSample)
16: grid[newSample.Position]← newSample
17: candidateFound← true
18: break
19: end if
20: counter ← counter + 1
21: end while
22: if !candidateFound then
23: activeList.Remove(sample)
24: end if
25: end while
26: positions← GetSamplePositions(grid)
27: return positions
28: end procedure
29: procedure IsValid(position, grid, radius)
30: for all s ∈ GetSamplesAround(position, grid, radius) do
31: if GetDistance(s.Position, position) < 2 ∗ radius then
32: return false
33: end if
34: end for
35: return true
36: end procedure

36

Figure 23: Poisson disk sampling on a 2D plane

PDS by itself if not suitable for calculating the positions in the dungeons,
because it does not take into consideration the obstacles like walls. There may
occur a situation when PDS will not cover the whole area due to that. Example
of such a situation is visualized in figure 24, where PDS is not guaranteed to
reach the room on the right. This limitation has been overcome by keeping track
of all valid tiles that have not been covered by PDS yet. When the active list gets
emptied, there is an additional verification assuring that there are no uncovered
tiles left. If there is any, it is added to the active list and the PDS continues the
execution.

Figure 24: PDS problem in dungeons

This game extends PDS further and allows samples to have different radiuses.
Enemies, dungeon exits, chests, torches on the walls and cages are spawned with
the use of PDS.

37

Figure 25: Results of PDS in the dungeon, where yellow squares are exits, red –
enemies, brown – chests, blue – cages and the green square is the player

4.5.3 Objectives generation

Without a clear target in the game, player may feel bored overtime. Quests and
different objectives in games serve as a way of creating variety to the gameplay
and providing the reason for the player to play. Completing the missions gives
the player a feeling of accomplishment and stimulates him to play more.

This game features a simple set of objectives for the player to complete, like
killing enemies, gathering items etc. The player holds 5 active quests. When any
quest is completed, a new one will be generated instantly. The system ensures
that duplicate quests are not created. Those tasks are generated at runtime by
using formal grammars. Grammar G consists of a terminal T and non-terminal
N symbols, a set of rewriting rules R and a starting non-terminal symbol S.
Quests are generated by applying rewrite rules until there are no non-terminal
symbols left, beginning from the start symbol.

38

G = 〈N, T, R, S〉
N = {:Quest, :Kill, :Find, :Release, :Loot, :Item,

:LevelUp, :SpendSkillPoint, :randomNumber}
S = : Quest

R = {
: Quest → :Kill | :Find | :Release |

:Loot | :LevelUp | :SpendSkillPoint
: Kill → Defeat :randomNumber enemies

: Find → Pick up :randomNumber :Item
: Release → Release :randomNumber chickens

: Loot → Loot :randomNumber chests
: LevelUp → Level up :randomNumber times

: SpendSkillPoint → Spend :randomNumber skill points
: Item → food item | potion | gear item

: randomNumber → 1, . . . , 15}

(a) The grammar used in this game

(b) Generated quests

Figure 26: Quests generation in the game

4.5.4 Leveling and stats

The game features basic leveling mechanics, to let the player track the progression
and to evolve the character. The amount of experience needed to reach a new
level doubles with every level. Experience can be earned by defeating enemies,
opening chests and cages, completing objectives. When a new level is reached,
the player receives a skill point that he can spend to improve one of the four
available characteristics. Those stats are:

39

• Attack – responsible for the amount of damage dealt by the weapon.

• Defence – responsible for the amount of incoming damage dealt by the
weapons.

• Health – responsible for the amount of total health.

• Magic – responsible for multiple things at once that are relative to the
magic. This stat adjusts the amount of incoming and outgoing damage
dealt by spells, spell cooldowns and spell cast times.

Enemies have the exact same set of characteristics. When the new dungeon
is generated, the level of the enemies will be set depending on the current level
of the player. Then available skill points will be spent randomly, creating more
varied enemies. This technique is called auto-leveling, and in the bigger games
allows players to explore the world without limitations.

4.5.5 Items generation

There are different types of items in the game: so-called consumable items and
gear items. Consumables are presented in the form of food and potions, that have
only one purpose – restore lost health points. Gear items affect characteristics
of the owner. These items are swords, helmets, chest armour pieces, boots and
spellbooks. Every item can hold up to 4 stat modifiers at the same time with
a certain modifier always present, such as attack on a sword. When an item is
generated it will receive a guaranteed modifier. Then there is a 50% chance to
receive the second modifier. If the item gets the second modifier, then it has a
30% chance of getting the third and after the third one, item has a 10% chance
to receive the fourth. Items can be dropped from enemies and chests. When
chests and enemies are spawned, the system will give those randomized items.
Enemies will equip gear items, hence create even more differences between them.
When an enemy is killed, each item belonging to the enemy, with a probability
of 15% will drop out. Chests will drop everything that they store.

Figure 27: Generated items

40

4.6 Basic game mechanics
4.6.1 Player

The player has the ability to move in 4 directions, do melee attacks, collect, use
and equip various items found in dungeons, spend skill points on character stats,
cast 1 of the 3 available spells, 2 of them being damage dealing and 1 being
self-healing, complete objectives and explore generated dungeons.

4.6.2 Camera setup

There is a trivial camera setup done by using Unity’s Cinemachine21 tool. This
tool allows to adjust different camera settings directly in the editor and has a lot
of features, such as defining the target that the camera must follow, setting the
field of view, adjusting the soft and dead zones and creating smooth transitions.

Figure 28: Setting up the camera with the Cinemachine

4.6.3 Minimap

The minimap is done with the help of an additional camera attached directly to
the player. This camera renders to the texture, that is later used as a simple
image in the UI. Different game objects, such as enemies and chests, have an
image attached to them visible only to that camera. Those images are actually
what can be seen in the minimap.

4.6.4 AI

NPCs are driven by the state machine with 5 states:

• Idle state – NPC stays for a random amount of time doing nothing.
21More about Unity’s Cinemachine

41

https://unity.com/unity/features/editor/art-and-design/cinemachine

• Inspect state – NPC chooses a random point and moves towards it for a
random amount of time.

• Evade state – NPC goes back to its initial position.

• Follow state – NPC has a target and will pursue it until the target escapes
the range or NPC gets close enough to attack.

• Attack state – NPC will attack the target if the attack cooldown expired
and the target is within the attack range.

The state machine is also implemented in ECS, where different states are
driven by systems, for example, if the entity has a FollowStateComponent, the
FollowStateSystem will be executed and not others.

4.6.5 Pathfinding

NPC has the ability to navigate the dungeons with the Unity’s pathfinding tools
called NavMeshComponents22. When the dungeon is generated, new navigation
mesh is baked at runtime and used later by agents to calculate the path to the
destination. Although Unity’s NavMesh was primarily designed to be used in a
3D environment, a rotated 3D plane can be used to match 2D’s up vector.

Figure 29: Generated navigation mesh for the dungeon

4.6.6 Dungeon transitions

When the player enters the dungeon a simple cut-scene starts. In the beginning
it reveals the whole map, letting the player take a look at the overall map layout
and where he should go. When the player leaves the dungeon a similar cut-scene

22NavMeshComponents Github repository

42

https://github.com/Unity-Technologies/NavMeshComponents

will be triggered. Cut-scenes were created with the Unity’s Timeline23 tool that
allows combining already existing animations as well as creating new ones.

Figure 30: Dungeon cut-scene created with Timeline tool

4.6.7 Saving and loading the game

A saving mechanic must be present in the game, so the player is able to return to
the game later. While using ECS most of the data is stored in components that
are structs with blittable types, thus the data is already prepared for the serial-
ization. In this game player’s level, stats, items, objectives and their progression
are saved automatically when the player leaves the current dungeon. Then, when
he enters a new dungeon, these data are loaded back. If the player dies in the
dungeon he will lose the progress in the current dungeon. This approach adds a
little bit of the roguelike’s fear of losing gained items and experience. Dungeons
are not saved to remove the ability to reload the same dungeon until it will be
learned and mastered.

4.6.8 Tutorial level

Whenever the player starts a new game, the tutorial will be loaded. The tutorial
level presents the basic game mechanics, guides through the starting area and
has some storytelling mechanics implemented.

23More about Unity’s Timeline tool

43

https://docs.unity3d.com/Manual/TimelineSection.html

Figure 31: Screenshot from the tutorial level

4.6.9 Game settings

In the main menu, there is an options button that opens the game settings menu,
where the player is able to toggle full-screen mode, change the resolution and
remap key bindings. Settings are saved locally in the XML format when the
settings menu is closed, and are loaded back when the player returns to the
game.

44

4.7 User interface
Unity offers a lot of UI components and tools that make the process of creating
the interface easy and straightforward.

4.7.1 Main menu

When the player starts the game for the first time he is welcomed with the main
menu that will have 3 buttons: New Game, Options and Quit. While opened
from the game there will be an additional Resume button that simply closes
the menu. If there is an existing saved game, the Load Last Game button will
appear that allows the player to load the last saved game. New Game button
will start a new game, and if there is an existing save, the confirmation dialogue
will pop up, asking the player if he wants to delete the current save and start
anew. Quit button will close the game. Options button will bring the game
settings menu, where the player has the ability to toggle fullscreen mode via
checkbox, change the resolution by picking the value from the dropdown, and
change keybindings by clicking on the desired keybind button and pressing the
key he wants to assign.

Figure 32: Main menu and settings menu

4.7.2 In-game interface

In the game, the player has an overview of the character’s health, current level,
level progress and if there are any completed objectives in the top left corner. The
minimap is displayed in the top right corner. At the bottom, there are clickable
spell buttons and a casting progress bar. When hovering with the mouse over a
spell button, the tooltip with information about the spell will appear.

Enemies have their health displayed directly upon them, and the currently
selected enemy will have a red circle underneath him.

The player can open the character’s info menu where the inventory is located
as well. Here the information about stats is visible. If the player has skill points
available, he can spend them by clicking a button next to the stat he wants to
invest points into. On the right side of the window, there are slots for equipped
gear and in the bottom part, there is a player’s inventory. Items in the inventory
are sorted, and items like food and potions are stacked. The inventory does not

45

have a capacity, and when items will not fit on the initial grid the scrollbar will
appear on the right side.

Opening a loot bag will bring a small window with a grid containing dropped
items that are sorted in the same way as in the player’s inventory. Hovering over
the item will bring the tooltip with item’s description, its stat modifiers and a
comparison with the currently equipped item.

The objective window will show information about active tasks and their
progress. Whenever the task is completed Collect button will appear that allows
the player to receive the experience for completing the objective.

(a) In-game interface elements

(b) Inventory and character window (c) Objectives window

Figure 33: In-game interface

46

Závěr
Tato práce popisuje možnosti procedurálního generování obsahu v počítačových
hrách a možná rizika, která by měla být zohledněna při implementaci procedurál-
ního generování. Na příkladech populárních her býli ukázány oblastí ve kterých
se používá procedurálně generovaný obsah.

Známé algoritmy a techniky byly implementovány a předvedeny na příkladu
jednoduché 2D roguelike hry. Vhodnost použitých algoritmů byla okomentována,
různé metody byly porovnány. Součástí hry jsou procedurálně generováne dun-
geony a předměty, rozmístění nepřátelů a předmětů, systém generování úloh,
možnost uložení a načtení postupů hráče. Hra je postavená s využitím herního
enginu Unity v novém Entity Component Systemu.

Ještě zbývá hodně prostorů pro další vylepšení, jako je přidání zvuků, vy-
tváření nových spritů, přidání objektů, hlavolamů a pastí do dungeonu, aby
nevypadali prázdní, přidání ručně vytvořených úrovni, které by měli elementy
vyprávění. A samozřejmě, ještě zbývá mnoho technik a algoritmů, které se dá
použít pro procedurální generování obsahů.

47

Conclusions
This thesis describes the possibilities of the procedural content generation in
computer games as well as the possible risks that should be considered when
implementing PCG. On the examples of popular games were shown areas where
procedural content generation may be used.

Well known algorithms and techniques for PCG were implemented and show-
cased on the example of a simple 2D roguelike game, such as an agent based dun-
geon growing, cellular automaton, BSP-tree, Poisson disk sampling and gram-
mars. Details of those algorithms were described and compared. The game
features dungeons and items generation, enemies and objects placement, leveling
and stats progression system, a simple system for quests generation, ability to
save and load the current progress of the player and a tutorial level. The game
is built with the use of Unity game engine in Unity’s new Entity Component
System.

There is plenty of space left for further improvements, such as adding an
audio, creating more diverse tile sheets, adding objects, puzzles and traps to the
dungeons so they do not feel empty, blending premade levels between dungeons
with storytelling elements. And, of course, there are a lot of algorithms and
techniques that can be used in PCG.

48

A Contents of the enclosed CD
The enclosed CD contains:

bin/
Contains the standalone game build. The game can be started by executing
BeyondPixels.exe.

doc/
Contains the text of this thesis in PDF format as well as the attachments
and files needed to generate the text.

src/
Contains the complete project and source codes of the game.

49

Acronyms
ASCII American Standard Code for Information Interchange is a character en-

coding standard for electronic communication

BSP Binary Space Partitioning

CA Cellular Automaton

DOTS Data-Oriented Technology Stack

ECS Entity Component System

IL2CPP Intermediate Language To C++

PCG Procedural Content Generation

PDS Poisson disk sampling

50

References
[1] ESPORTS, LPE. The Video Games’ Industry is Bigger Than Hollywood [online].

2018 [visited on 2019-7-3]. Available from WWW: 〈https://lpesports.
com/e-sports-news/the-video-games-industry-is-bigger-
than-hollywood〉.

[2] WIKIPEDIA. Video game [online]. [visited on 2019-7-3]. Available from WWW:
〈https://en.wikipedia.org/wiki/Video_game〉.

[3] WIKIPEDIA. PC game [online]. [visited on 2019-7-3]. Available from WWW:
〈https://en.wikipedia.org/wiki/PC_game〉.

[4] BETHKE, Erik. Game development and production. Texas: Wordware Publish-
ing, Inc., 2003. 437 pp. ISBN 1-55622-951-8.

[5] BATES, Bob. Game Design. Second Edition. Boston, MA: Thomson Course
Technology, 2004. 377 pp. ISBN 1-59200-493-8.

[6] MICHAEL E. MOORE, Jeannie Novak. Game Development Essentials: Game
industry career guide. 2010. 320 pp. ISBN 978-1-4283-7647-2.

[7] GREEN, Dale. Procedural Content Generation for C++ Game Development.
Birmingham, UK: Packt Publishing Ltd, 2016. 304 pp. ISBN 978-1-78588-671-3.

[8] CORMEN, T. H.; LEISERSON, C. E.; RIVEST, D. L.; STEIN, C. Introduction
to algorithms. Second Edition. 2001. ISBN 0-262-03293-7.

[9] WATKINS, Ryan. Procedural Content Generation for Unity Game Development.
Birmingham, UK: Packt Publishing Ltd, 2016. 260 pp. ISBN 978-1-78528-747-3.

[10] NOOR SHAKER Julian Togelius, Mark J. Nelson. Procedural Content Genera-
tion in Games: A Textbook and an Overview of Current Research. 2016. 237 pp.
ISBN 978-3-319-42714-0.

[11] JULIAN TOGELIUS Emil Kastbjerg, David Schedl; YANNAKAKIS, Georgios
N. What is Procedural Content Generation? Mario on the borderline. [online].
2011, [visited on 2019-7-5]. Available from WWW: 〈https://course.ccs.
neu.edu/cs5150f13/readings/togelius_what.pdf〉.

[12] KNUTH, D. The Art of Computer Programming: Fundamental Algorithms. Third
Edition. 2004. ISBN 0-201-89683-4.

[13] TANYA X. SHORT(EDITOR), Tarn Adams(Editor). Procedural Generation in
Game Design. First Edition. 2017. 338 pp. ISBN 978-1-498-79919-5.

[14] WEN, Howard. Interview: Frugal Fragging with .kkrieger [online]. 2005 [visited
on 2019-7-3]. Available from WWW: 〈https://www.gamasutra.com/
view/feature/130690/interview_frugal_fragging_with_.php〉.

[15] WIKIPEDIA. Elite screenshot [online]. [visited on 2019-7-3]. Available fromWWW:
〈https://en.wikipedia.org/wiki/Elite_(video_game)#/media/
File:BBC_Micro_Elite_screenshot.png〉.

51

https://lpesports.com/e-sports-news/the-video-games-industry-is-bigger-than-hollywood
https://lpesports.com/e-sports-news/the-video-games-industry-is-bigger-than-hollywood
https://lpesports.com/e-sports-news/the-video-games-industry-is-bigger-than-hollywood
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/PC_game
https://course.ccs.neu.edu/cs5150f13/readings/togelius_what.pdf
https://course.ccs.neu.edu/cs5150f13/readings/togelius_what.pdf
https://www.gamasutra.com/view/feature/130690/interview_frugal_fragging_with_.php
https://www.gamasutra.com/view/feature/130690/interview_frugal_fragging_with_.php
https://en.wikipedia.org/wiki/Elite_(video_game)#/media/File:BBC_Micro_Elite_screenshot.png
https://en.wikipedia.org/wiki/Elite_(video_game)#/media/File:BBC_Micro_Elite_screenshot.png

[16] WIKIPEDIA. .kkrieger screenshot [online]. [visited on 2019-7-3]. Available from
WWW: 〈https://en.wikipedia.org/wiki/.kkrieger#/media/
File:Kkrieger_screenshot.jpg〉.

[17] WIKI, Borderlands. Borderlands 2 Weapons [online]. [visited on 2019-7-3]. Avail-
able from WWW: 〈https://borderlands.fandom.com/wiki/Borderl
ands_2_Weapons〉.

[18] ALEXANDRA, Heather. A Look At How No Man’s Sky’s Procedural Generation
Works [online]. [visited on 2016-10-18]. Available from WWW: 〈https://kota
ku.com/a-look-at-how-no-mans-skys-procedural-generation-
works-1787928446〉.

[19] WIKI, Borderlands. Borderlands Weapons image [online]. [visited on 2019-7-3].
Available from WWW: 〈https://borderlands.fandom.com/wiki/
Weapons?file=Weapon_Components.png〉.

[20] WIKIPEDIA. No Man’s Sky screenshot [online]. [visited on 2016-10-18]. Available
from WWW: 〈https://en.wikipedia.org/wiki/No_Man%27s_Sky#
/media/File:No_mans_sky_screenshot.jpg〉.

[21] MUSINGS OF A MARIO MINION. How Does Ragdoll Physics Work? [online].
[visited on 2016-9-15]. Available from WWW: 〈https://musingsofamario
minion.com/2016/09/15/how-does-ragdoll-physics-work/〉.

[22] HECKER, Chris; RAABE, Bernd; ENSLOW, Ryan W., et al. Real-time Motion
Retargeting to Highly Varied User-Created Morphologies. 2008. Available also
from WWW: 〈http://chrishecker.com/images/c/cb/Sporeanim-
siggraph08.pdf〉.

[23] HETHERINGTON, Janet. The Evolution of ’Spore’ [online]. [visited on 2016-
9-15]. Available from WWW: 〈https://musingsofamariominion.com/
2016/09/15/how-does-ragdoll-physics-work/〉.

[24] CUTAJAR, Simon. An Introduction to Procedural Musicin Video Games by
Karen Collins Summary. Available also fromWWW: 〈http://chrishecker.
com/images/c/cb/Sporeanim-siggraph08.pdf〉.

[25] WIKIDOT. Rogue [online]. [visited on 2019-7-3]. Available from WWW: 〈http:
//pcg.wikidot.com/pcg-games:rogue〉.

[26] FINGAS, Jon. Here’s how ’Minecraft’ creates its gigantic worlds [online]. 2015
[visited on 2019-7-3]. Available from WWW: 〈https://www.engadget.
com/2015/03/04/how-minecraft-worlds-are-made/〉.

[27] DIABLOWIKI. Diablo: Randomization [online]. [visited on 2019-7-3]. Available
from WWW: 〈https://www.diablowiki.net/Randomization#Map_
Generation_and_Size〉.

[28] BESCHIZZA, Rob. Procedurally-generated British countryside [online]. 2012 [vis-
ited on 2019-7-3]. Available from WWW: 〈https://boingboing.net/
2012/07/04/procedurally-generated-british.html〉.

52

https://en.wikipedia.org/wiki/.kkrieger#/media/File:Kkrieger_screenshot.jpg
https://en.wikipedia.org/wiki/.kkrieger#/media/File:Kkrieger_screenshot.jpg
https://borderlands.fandom.com/wiki/Borderlands_2_Weapons
https://borderlands.fandom.com/wiki/Borderlands_2_Weapons
https://kotaku.com/a-look-at-how-no-mans-skys-procedural-generation-works-1787928446
https://kotaku.com/a-look-at-how-no-mans-skys-procedural-generation-works-1787928446
https://kotaku.com/a-look-at-how-no-mans-skys-procedural-generation-works-1787928446
https://borderlands.fandom.com/wiki/Weapons?file=Weapon_Components.png
https://borderlands.fandom.com/wiki/Weapons?file=Weapon_Components.png
https://en.wikipedia.org/wiki/No_Man%27s_Sky#/media/File:No_mans_sky_screenshot.jpg
https://en.wikipedia.org/wiki/No_Man%27s_Sky#/media/File:No_mans_sky_screenshot.jpg
https://musingsofamariominion.com/2016/09/15/how-does-ragdoll-physics-work/
https://musingsofamariominion.com/2016/09/15/how-does-ragdoll-physics-work/
http://chrishecker.com/images/c/cb/Sporeanim-siggraph08.pdf
http://chrishecker.com/images/c/cb/Sporeanim-siggraph08.pdf
https://musingsofamariominion.com/2016/09/15/how-does-ragdoll-physics-work/
https://musingsofamariominion.com/2016/09/15/how-does-ragdoll-physics-work/
http://chrishecker.com/images/c/cb/Sporeanim-siggraph08.pdf
http://chrishecker.com/images/c/cb/Sporeanim-siggraph08.pdf
http://pcg.wikidot.com/pcg-games:rogue
http://pcg.wikidot.com/pcg-games:rogue
https://www.engadget.com/2015/03/04/how-minecraft-worlds-are-made/
https://www.engadget.com/2015/03/04/how-minecraft-worlds-are-made/
https://www.diablowiki.net/Randomization#Map_Generation_and_Size
https://www.diablowiki.net/Randomization#Map_Generation_and_Size
https://boingboing.net/2012/07/04/procedurally-generated-british.html
https://boingboing.net/2012/07/04/procedurally-generated-british.html

[29] ROGUEARCHIVE. Rogue screenshot [online]. [visited on 2016-9-15]. Available
from WWW: 〈https://britzl.github.io/roguearchive/〉.

[30] WIKIPEDIA. Pixel art [online]. [visited on 2019-7-3]. Available from WWW:
〈https://en.wikipedia.org/wiki/Pixel_art〉.

[31] UNITY TECHNOLOGIES. Unity [online]. [visited on 2019-7-14]. Available from
WWW: 〈https://unity.com/〉.

[32] UNITY TECHNOLOGIES. The world’s leading real-time creation platform [on-
line]. [visited on 2019-7-14]. Available from WWW: 〈https://unity3d.com/
unity?_ga=2.185105069.587496795.1563040448-1628506034.
1548607113〉.

[33] UNITY TECHNOLOGIES. Performance by default [online]. [visited on 2019-7-
14]. Available from WWW: 〈https://unity.com/dots〉.

[34] UNITY TECHNOLOGIES. Official ECS Github repository [online]. [visited on
2019-7-14]. Available from WWW: 〈https://github.com/Unity-Techno
logies/EntityComponentSystemSamples〉.

[35] WIKIPEDIA. Entity Component System [online]. [visited on 2019-7-14]. Avail-
able from WWW: 〈https://en.wikipedia.org/wiki/Entity_compon
ent_system〉.

[36] MEIJER, Lucas. On DOTS: Entity Component System [online]. 2019 [visited on
2019-7-14]. Available from WWW: 〈https://blogs.unity3d.com/2019/
03/08/on-dots-entity-component-system/〉.

[37] UNITY TECHNOLOGIES. General Purpose Components [online]. [visited on
2019-7-15]. Available from WWW: 〈https://docs.unity3d.com/Packag
es/com.unity.entities@0.0/manual/component_data.html〉.

[38] UNITY TECHNOLOGIES. What is a job system? [online]. [visited on 2019-
7-15]. Available from WWW: 〈https://docs.unity3d.com/Manual/
JobSystemJobSystems.html〉.

[39] UNITY TECHNOLOGIES. The safety system in the C# Job System [online].
[visited on 2019-7-15]. Available from WWW: 〈https://docs.unity3d.
com/Manual/JobSystemSafetySystem.html〉.

[40] UNITY TECHNOLOGIES. NativeContainer [online]. [visited on 2019-7-15]. Avail-
able from WWW: 〈https://docs.unity3d.com/Manual/JobSystemNa
tiveContainer.html〉.

[41] UNITY TECHNOLOGIES. Burst User Guide [online]. [visited on 2019-7-15].
Available from WWW: 〈https://docs.unity3d.com/Packages/com.
unity.burst@0.2/manual/index.html〉.

[42] UNITY TECHNOLOGIES. Intro To The Entity Component System And C#

Job System [online]. [visited on 2019-7-15]. Available from WWW: 〈https:
//www.youtube.com/playlist?list=PLX2vGYjWbI0S4yHZwjDI1bo
IrYStpBCdN〉.

53

https://britzl.github.io/roguearchive/
https://en.wikipedia.org/wiki/Pixel_art
https://unity.com/
https://unity3d.com/unity?_ga=2.185105069.587496795.1563040448-1628506034.1548607113
https://unity3d.com/unity?_ga=2.185105069.587496795.1563040448-1628506034.1548607113
https://unity3d.com/unity?_ga=2.185105069.587496795.1563040448-1628506034.1548607113
https://unity.com/dots
https://github.com/Unity-Technologies/EntityComponentSystemSamples
https://github.com/Unity-Technologies/EntityComponentSystemSamples
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system
https://blogs.unity3d.com/2019/03/08/on-dots-entity-component-system/
https://blogs.unity3d.com/2019/03/08/on-dots-entity-component-system/
https://docs.unity3d.com/Packages/com.unity.entities@0.0/manual/component_data.html
https://docs.unity3d.com/Packages/com.unity.entities@0.0/manual/component_data.html
https://docs.unity3d.com/Manual/JobSystemJobSystems.html
https://docs.unity3d.com/Manual/JobSystemJobSystems.html
https://docs.unity3d.com/Manual/JobSystemSafetySystem.html
https://docs.unity3d.com/Manual/JobSystemSafetySystem.html
https://docs.unity3d.com/Manual/JobSystemNativeContainer.html
https://docs.unity3d.com/Manual/JobSystemNativeContainer.html
https://docs.unity3d.com/Packages/com.unity.burst@0.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.burst@0.2/manual/index.html
https://www.youtube.com/playlist?list=PLX2vGYjWbI0S4yHZwjDI1boIrYStpBCdN
https://www.youtube.com/playlist?list=PLX2vGYjWbI0S4yHZwjDI1boIrYStpBCdN
https://www.youtube.com/playlist?list=PLX2vGYjWbI0S4yHZwjDI1boIrYStpBCdN

[43] WIKIPEDIA. Cellular automaton [online]. [visited on 2019-7-20]. Available from
WWW: 〈https://en.wikipedia.org/wiki/Cellular_automaton〉.

[44] WIKIPEDIA. Von Neumann neighborhood image [online]. [visited on 2019-7-20].
Available from WWW: 〈https://en.wikipedia.org/wiki/Von_Neu
mann_neighborhood#/media/File:Von_Neumann_neighborhood.
svg〉.

[45] WIKIPEDIA. Moore neighborhood image [online]. [visited on 2019-7-20]. Avail-
able from WWW: 〈https://en.wikipedia.org/wiki/Moore_neig
hborhood#/media/File:Moore_neighborhood_with_cardinal_
directions.svg〉.

[46] WIKIPEDIA. Bresenham’s line algorithm image [online]. [visited on 2019-7-20].
Available from WWW: 〈https://en.wikipedia.org/wiki/Bresenham
%27s_line_algorithm#/media/File:Bresenham.svg〉.

[47] BRIDSON, Robert. Fast Poisson Disk Sampling in Arbitrary Dimensions. Avail-
able also from WWW: 〈https://www.cs.ubc.ca/~rbridson/docs/
bridson-siggraph07-poissondisk.pdf〉.

54

https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood#/media/File:Von_Neumann_neighborhood.svg
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood#/media/File:Von_Neumann_neighborhood.svg
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood#/media/File:Von_Neumann_neighborhood.svg
https://en.wikipedia.org/wiki/Moore_neighborhood#/media/File:Moore_neighborhood_with_cardinal_directions.svg
https://en.wikipedia.org/wiki/Moore_neighborhood#/media/File:Moore_neighborhood_with_cardinal_directions.svg
https://en.wikipedia.org/wiki/Moore_neighborhood#/media/File:Moore_neighborhood_with_cardinal_directions.svg
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#/media/File:Bresenham.svg
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#/media/File:Bresenham.svg
https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf

	Procedurally generated content in computer game
	Title page
	Synopsis
	Contents
	1 Introduction
	2 Computer games
	2.1 Game development process

	3 Procedurally generated content
	3.1 Random generation
	3.2 Benefits and pitfalls of PCG in games
	3.3 Usage of PCG in games
	3.3.1 Space saving
	3.3.2 Game world elements
	3.3.3 Animation
	3.3.4 Audio
	3.3.5 Levels

	3.4 Conclusion

	4 Game implementation
	4.1 Title
	4.2 Game design
	4.3 Visual representation
	4.3.1 Animation

	4.4 Unity
	4.4.1 DOTS
	4.4.2 ECS
	4.4.3 C.38ex# Job System
	4.4.4 Burst Compiler

	4.5 Procedurally generated content in the game
	4.5.1 Dungeon Generation
	4.5.1.1 ``Naive'' approach
	4.5.1.2 Cellular automaton
	4.5.1.3 BSP-tree
	4.5.1.4 Comparison
	4.5.1.5 Tile map

	4.5.2 Object placement
	4.5.2.1 Player spawning
	4.5.2.2 Poisson disk sampling

	4.5.3 Objectives generation
	4.5.4 Leveling and stats
	4.5.5 Items generation

	4.6 Basic game mechanics
	4.6.1 Player
	4.6.2 Camera setup
	4.6.3 Minimap
	4.6.4 AI
	4.6.5 Pathfinding
	4.6.6 Dungeon transitions
	4.6.7 Saving and loading the game
	4.6.8 Tutorial level
	4.6.9 Game settings

	4.7 User interface
	4.7.1 Main menu
	4.7.2 In-game interface

	Závěr
	Conclusions
	A Contents of the enclosed CD
	Acronyms
	References

