Analýzy vlivu počasí na posun a tvarb produkční hranice – Ing. Barbora Hřebíková
Ing. Barbora Hřebíková
Disertační práce
Analýzy vlivu počasí na posun a tvarb produkční hranice
The analysis of the weather impact on the shape and shift of the production frontier
Anotace:
Třebaže počasí je signifikantním determinantem zemědělské produkce, v běžné ekonomické analýze není vliv počasí na produkci konkrétně analyzován. Domníváme se, že důvodem je existence metodologického problému, spočívajícího v obtížné formulaci proměnné, která by vliv počasí pro daný účel vhodně reprezentovala. V rámci běžných modelů zemědělské produkce bývá proto počasí zahrnuto do množiny neměřených faktorů ovlivňujících produktivitu zemědělců (statistický šum, chyba odhadu). Disertační práce si klade za cíl odstranit tento metodologický problém a navrhnout způsob, jak vliv počasí definovat v podobě konkrétní proměnné, zahrnout tuto proměnnou ve vhodně specifikovaném modelu a tento model následně aplikovat. Účelem této práce je překlenout rámec empirických poznatků a odvodit ekonometrický model, který by popsal a kvantifikoval vliv počasí jako součást vlivu množiny více faktorů na výslednou produkci. Jinak řečeno, cílem je nalézt zůsob, jak definovat počasí jako jeden z mnoha vzájemně (ne)podmíněných faktorů určujících finální produkci, specifikovat model a aplikovat ho. Disertační práce je založena na předpokladu, že metoda Stochastické hraniční analýzy (SFA) představuje potenciální možnost jednat s počasím jako se specifickým (i když ne manegementem firmy kontrolovatelným) faktorem produkce, resp. technické efektivnosti. SFA je parametrická metoda založená na ekonometrickém přístupu. Jejím východiskem je definice stochastické hraniční produkční funkce. Metoda byla představena v práci Aignera, Lovella a Schmidta (1977) a Meusen a van den Broecka (1977). Oproti běžně používaným ekonometrickým modelům produkce je SFA založena na analýze produkční hranice, tvořené deterministickou produkční hraniční funkcí a složenou chybou odhadu. Složená chyba odhadu je přitom tvořena 2 prvky - náhodnou složkou (chyba odhadu, statistický šum) a technickou neefektivností, představující rozdíl ve skutečné úrovni produkce daného producenta a maximální dosažitelnou (možnou) úrovní daného producenta, které by bylo dosaženo v případě, že by producent využil konkrétní kombinaci produkčních faktorů maximáně technicky efektivně. Postupem času byla rozvíjena o řadu aspektů - viz v čase variantní a invariatní neefektivnosti, heteroskedasticita, meřená a neměřená heterogenita. Spolu s DEA se SFA stala upřednostňovanou metodologií v oblasti výzkumu hranice produkčních možností a analýzy produktivity a efektivnosti v zemědělství, v poslední době ji aplikovali například Bakusc, Fertő a Fogarasi (2008) Mathijs a Swinnen (2001), Hockmann a Pieniadz (2007), Bokusheva a Kumbhakar (2008) a Čechura a Hockmann (2011), Hockmann a kol.(2007), Čechura a kol. (2014 a, b), aj. Předpokládáme, že vlivy počasí by měly být analyzovány z hlediska jejich vztahu k technické efektivnosti, namísto konvenčního zahrnutí těchto vlivů do statistického šumu. Implementace počasí do deterministické části produkční funkce namísto zahrnutí do statistického šumu, je výraznou změnou v metodickém postupu v rámci stochastické hraničního analýzy. Analýza dopadů počasí na změny v úrovni TE nebyla dosud v související literatuře výrazně zaznamenána a je tedy považována za hlavní přínos této práce pro současnou teorii odhadu produkční hrancie, resp. technického efektivnosti v oblasti zemědělství. Zohlednění dalších proměnných, které jsou významné pro daný vztah a jejichž začlenění by mohlo zvýšit vypovídací schopnosti modelu bylo součástí cíle této práce. Při fomulaci modelů i závěrečné diskuzi nad výsledky odhadů tak byl brán zřetel na možný efekt heterogenity. V práci jsou nejprve definovány a diskutovány možné způsoby zahrnutí vlivů počasí do m …víceméněAnotace:
odelu produkční hranice. Zhodnocení možností zahrnutí vlivů počasí do těchto modelů se opírá o teoretický rámec vývoje stochastické hraniční analýzy, definující pojem technické efektivnosti, teorii distančních funkcí, torii stochastické produkční funkce a metodiku přístupů a technik SFA, které jsou relevantní pro účely disertační práce. Poté je analyzován vliv počasí na posun a tvar produkční hranice a technické efektivnosti v případě produkce obilovin v České republice v rámci osmileté časové řady, 2004-2011. Analýza pracuje s předpokladem, že existují dva různé způsoby, jak definovat proměnné reprezentující vlivy počasí. Jedním způsobem je použití konkrétních klimatických údajů, které přímo popisují stav počasí. V případě této disertační práce byly zvoleny proměnné průměrná teplota (AVTit) a plošný úhrn srážek (SUMPit) v období mezi setím a sklizní obilovin (za daný hospodářský rok) v jednotlivých krajích ČR (vypočtené z údajů o průměrných měsíčních teplotách a měsíčních plošných úhrnech srážek v jednotlivých krajích ČR získaných z databáze CHMU). Nebo lze definovat umělou (proxy) proměnnou, která bude vliv počasí reprezentovat. V případě této práce byl aplikován tzv. klimatický index (KITit), vypočtený jako suma vážených podílů skutečných výnosů obilnin a výnosů aproximovaných lineární trendovou funkcí, vážený zastoupením konkrétní obiloviny v celkovém portfoliu obilovin v daném kraji (výnosy a váhy byly vypočtené z údajů o úrovních krajské produkce v jednotlivých letech a osevních plochách jednotlivých obilovin na úrovni krajské produkce, získaných z veřejné databáze CZSO). Oba způsoby mají své výhody i nevýhody. Konkrétní klimatické jevy jsou velice přesnou specifikací počasí jako takového. Nicméně, aby se projevil jejich vliv na produkci, musí být vhodně implementovány do modelu ve zájemné interakci s dalšími faktory. Oproti tomu klimatický index v sobě sice nezahrnuje přímo konkrétní charakteristiku počasí, nicméně, vztahuje počasí přímo k výsledné produkci (je definován na základě předpokladu, že vliv počasí na produkci je příčinou odchylek produkce od trendu). Analýza je aplikována na panelová data, obsahující informace o individuální produkci celkem 803 producentů specializovaných na produkci obilovin, vykazujících minimálně 2 roky z celkové 8-mi leté časové řady. Specializace je definována minimálně 50-ti procentním podílem produkce obilovin na celkové rostlinné produkci daného producenta. Finální nevyrovnaný panel dat je tvořen celkem 2332 pozorováními. Každému z producentů je přiřazena hodnota proměnné AVTit, SUMPit a KITit na základě jeho místní příslušnosti ke konkrétnímu kraji. Modely jsou definovány jako stochastické hraniční modely zachycující vliv heterogenity, do nichž je počasí v navržených formulacích implementováno. Cílem je identifikovat vliv počasí na posun a tvar produkční hranice. Prostřednictvím takto definovaných modelů je odhadnuta produkční technologie a technická efektivnost. Předpokládáme, že navrhované zahrnutí počasí do modelů povede k vyšší vypovídací schopnosti definovaných modelů, jako důsledku extrakce vlivů počasí z náhodné složky modelu, respektive s množiny neměřitelných faktorů způsobujících heterogenitu vzorku. Pro odhad technické efektivnosti byly aplikovány dva typy modelů - Fixed management model (FMM) a Random parameter model (RPM). Modely jsou definovány jako translogaritmická multiple-output distanční funkce. Analyzovanou endogenní proměnnou je produkce obilovin v monetárním vyjádření (tis. EUR). Další dva výstupy, ostatní rostlinná produkce (v tis. EUR) a živočišná produkce (v tis. EUR), vyjádřené jako podíl na produkci obilovin vystupují na pravé straně rovnice spolu s exogenními proměnnými (produkčními faktory) práce (v AWU), použitá půda (v ha), kapitál (odpisy investičního majetku podniku a najatá, zpravidla strojní, práce v tis. EUR), specifický materiál (příme náklady na osivo, sadbu, pesticidy, hnojiva a prostředky na ochranu obilnin v tis. EUR) a ostatní materiál (v tis. EUR). Hodnoty výstupů, kapitálu a materiálových vstupů jsou deflovány podle cenových indexů EUROSTATu (2005=100). Heterogenita v Random parameter modelu je zahrnuta v náhodných parametrech a v determinantech rozdělení technické efektivnosti. Všechny produkční faktory jsou defnovány jako náhodné proměnné, vliv počasí v podobě KITit vstupuje do průměru technické efektivnosti a představuje tak možný zdroj neměřené heterogenity vzorku producentů. Heterogenita ve Fixed management modelu je definována jako speciální faktor, představující neměřené firemně specifické efekty, m. Tento faktor představuje neměřenou mezipodnikovou heterogenitu a vstupuje do modelu v interakci s ostatními produkčními faktory i s časovým vektorem, reprezentujícím vliv technologické změny. Vliv počasí ve formě proměnných AVTit a SUMPit je spolu s ostatními produkčními faktory extrahováno z množiny firemně specifických efektů a numericky vyčíslen, čímž se z něj stává faktor měřené mezipodnikové heterogenity. Oba typy modelu byly odhadnuty také bez zahrnutí vlivů počasí a sloužily jako srovnávací základna pro posouzení efektu specifikace vlivu počasí na posun a tvar produkční hranice v konkrétním modelu. Pro snažší interpetaci výsledných odhadů jsou modely pojmenovány následovně: FMM je model typu FMM bez specifikovaných vlivů počasí, model AVT je model typu FMM zahrnující vliv počasí v podobě průměrných teplot v kraji v daném vegetačním období (hospodářském roku), SUMP je model zahrnující vliv počasí v podobě úhrnu srážek v kraji za dané vegetační období (hospodářský rok), model RPM je model typu RPM bez specifikovaného vlivu počasí, model KIT je model typu RPM zahrnující vliv počasí vypočtených jako klimatický index (KITit). Všechny navržené modely splnily specikační předpoklady. Podmínky monotocity a kvazikonvexity jou splněny u všech odhadnutých modelů pro všechny produkční faktory, s vyjímkou produkčního faktoru kapitálu u modelů FMM, KIT, AVT i SUMP. Nesplnění podmínky kvazikonvexity u kapitálu narušuje specifikační předpoklady, nicméně, vzhledem k tomu, že kapitál je v odhadu parametrů prvního řádu nesignifikantní, není nutné považovat model za špatně specifikovaný. Všechny odhadnuté modely dávají stejný výsledek, který je zároveň naprosto konzistentní s ekonomickou teorií. Porušení podmínky kvazikonvexity u kapitálu ukazuje na možnou přítomnost dalšího faktoru, který působí kontraproduktivně vůči působení kapitálu. Cechura a Hockmann (2014) zmiňují nedokonalosti na trhu s kapitálem jako pravděpodobnou příčinu neadekvátního využití kapitálových zdrojů ze strany zemědělců ve vztahu k předpokládanému technologickému rozvoji. Nesignifikantní vliv kapitálu je zřejmě důsledkem nevhodné specifikace proměnné. Kapitál, definovaný jako odpis investičního majetku a suma najaté, zejména strojní, práce, v sobě totiž zahrnuje veškeré kapitálové prostředky a nikoliv pouze prostředky, vztahující se k produkci obilovin. Váha kapitálu se, tudíž, neodrazí ve výsledné hodnotě produkce obilnin v takové míře, aby byla statisticky významná. Kromě kapitálu jsou v souladu s ekonomickou teorií jsou ve všech odhadnutých modelech všechny produkční faktory signifikantní na hladině významnosti =0,01. Nejvyšší elasticitu vykazují produkční faktory materiál a specifický materiál, a to u všech odhadnutých modelů RPM i FMM, včetně modelů bez zahrnutí vlivů počasí. Hodnota produkční elasticity specifického materiálu se pohybuje v rozmezí 0,29-0,38, nejvyšší hodnota produkční elasticity je odhadnuta v modelu RPM s KITit v rozdělení TE, nejnižší v modelu FMM s AVTit reprezentujícími vliv počasí na TE. Produkční elasticita ostatního materiálu je ještě vyšší, s hodnotou v rozpětí 0,40-0,47 s nejvyšší hodnotou v odhadu modelu AVT a nejnižší v odhadu modelu KIT. Nejnižší hodnotu produkční elasticity vykazují produkční faktory práce a půda. Produkční elasticita práce dosahuje v jednotlivých modelech hodnoty 0,006-0,129 a produkční elasticita půdy hodnot mezi -0,114 a 0,129. Všechny odhadnuté modely dávají obdobný výsledek a korespondují s teoretickým předpokladem o elasticitě výrobních faktorů - vysoká hodnota odhadnutých parametrů u materiálu odráží přirozeně vysokou produkční elasticitu "materiálových" vstupů, zatímco nejnižší hodnoty odhadnutých parametrů u produkčního faktoru půdy korespondují s předpokladem, že z ekonomického hlediska je půda považována za produkční faktor s nízkou produkční elasticitou. Relativně nízká produkční elasticita je vysvětlena jako důsledek nižší pracovní náročnosti sektoru obilovin oproti ostatním sektorům. Produkční elasticita vlivů počasí je signifikantní v případě obou proměnných - ve hodnota průměrné teploty za vegetační období v daném regionu, AVTit, je signifikantní, značně vysoká a rovna 0,3691, což ji řadí na úroveň elasticit u faktorů materiálu. Produkční elasticita proměnné SUMPit je také signifikantní s hodnotou rovnou 0,1489. Oproti produkční elasticitě vlivů počasí ve formě průměrných ročních teplot, je nižší. V obou případech hodnota parametru ukazuje na signifikantní, pozitivní vliv počasí na produkci obilnin. Suma odhadnutých produkčních elasticit je ve všech modelech blízko hodnotě=1, což, indikuje konstantní výnosy z rozsahu, RS (RSRPM=1,0064, RSKIT=0,9738, RSSUMP =1,00002, RSFMM= 0,9992, RSAVT=1,0018.). Výsledek všech modelů tak koresponduje se závěrem Cechury (2009) a Cechury a Hockmanna (2014) o konstantních výnosech z rozsahu u českých producentů obilnin. Vzhledem k tomu, že hodnota RS je vypočtena jako suma produkčních elasticit výrobních faktorů, tj. bez proxy proměnných (AVTit, SUMPit), je téměř identický výsledek všech tří FMM modelů potvrzením správnosti specifikace modelu. Nepatrné rozdíly v hodnotách RS jsou výsledkem odchylek v odhadech jednotlivých parametrů. Hodnocen byl také význam technologické (někdy nazývané technické) změny, TCH. Pojem technologické změny (TCH) zahrnuje změny v technologii produkce v průběhu sledovaného období. Předpokládá se, že v čase dochází ke zlepšení technologie produkce. U všech odhadnutých modelů byl prokázán signifikantní vliv TCH na výslednou produkci.Všechny 3 odhadnuté FMM modely shodně indikují pozitivní a v čase se zvyšující signifikantní vliv technologických změn na výslednou produkci. Výsledky odhadu RPM modelu dávají rozporuplný výsledek - pro model s KITit ukazují odhadnuté hodnoty na negativní technologickou změnu, která se však s časem zpomaluje (deceleruje), zatímco RPM model bez specifikovaných vlivů počasí indikuje pozitivní, ale opět v čase decelerující vliv TCH. Lze konstatovat, že bez zahrnutí vlivu počasí, může mít faktor počasí vliv na výsledek odhadnutého směru technologické změny. V případě, že se zahrne počasí do modelu, je tento vliv odfiltrován a technologická změna se ukazuje jako negativní. Zároveň, jak bude uvedeno dále v textu, model RPM podhodnocuje odhad technické efektivnosti, tudíž i odhad vlivu TCH může být zkreslen. Vliv vývoje technologií na produkční elasticity jednotlivých výrobních faktorů, (tzv. biased TCH), se v modelech typu FMM projevuje v odhadnutých hodnotách parametru definujícího interakci produkčních elasticit a časové proměnné. Hypotéza o časové invarianci parametrů (Hicksova neutrální technologická změna) spojených s produkčními faktory se zamítá pro všechny modely, s výjimkou modelu AVT. U modelů FMM a SUMP se tak potvrzuje předpoklad baised technological change v čase. Ta je u modelů FMM a SUMP úsporná na materiál a náročná na specifický materiál. V případě modelu s počasím reprezentovaným proměnnou AVTit se technologická změna nevyznačuje statistickou významností ve vztahu k žádnému z produkčních faktorů. V modelu RPM se zamítnutím této hypotézy potvrzuje signifikance TCH vzhledem k výsledné produkci. Nesignifikantní vliv zlepšení technologie produkce na produkční elasticity práce, půdy a kapitálu ukazuje na všeobecně nízkou schopnost zemědělců reagovat na technologický rozvoj, která může být vysvětlena dvěma důvody. Prvním důvodem jsou možné komplikace v přizpůsobení se podmínkám společného zemědělského trhu EU (např. nejsou zde vytvořeny dostatečné podmínky na domácím trhu, které by usnadňovali zemědělcům integraci do EU). Toto vysvětlení je postaveno na závěru Cechury a Hockmanna (2014), kteří vysvětlují skutečnost, že TCH je v řadě zemí EU (včetně ČR) v kapitálu úsporná, namísto očekávané kapitálové náročnosti, a že některé země EU se dokonce vykazují záporným vlivem TCH, existencí problémů na kapitálovém trhu a nedostatečné integraci. Druhou možností je skutečnost, že se pravděpodobně ještě nestačila projevit značná finanční podpora zemědělského sektoru, která by měla vést k vytvoření podmínek nutných pro přijetí technologického rozvoje. V obou případech pak zemědělci nemají dostatečné podmínky nutné pro využití možností představovaných rozvojem v technologii produkce, což se v modelu projeví nízkou či nulovou signifikancí biased TCH. Vlivy počasí nejsou v signifikantním vztahu k technologickým změnám v ani jednom z případů. Oba typy modelů, FMM i RPM, byly hodnoceny ve vztahu k podchycení vlivů mezipodnikové heterogenity. Všechny odhadnuté náhodné parametry u obou definovaných RPM modelů jsou statisticky významné s výjimkou produkčního faktoru kapitál v modelu nezahrnujícím vliv počasí (model RPM). Výsledek odhadu je důkazem o přítomnosti měřené mezipodnikové heterogenity. Odhadnutý parametr proměnné KITit (0,0221) ukazuje na signifikantním pozitivní vliv počasí na rozdělení TE. Potvrzena je tedy také heterogenita ve vztahu k TE a především signifikantní vliv počasí na velikost TE. Management, resp. produkční prostředí (heterogenita), je signifikantní ve všech třech FMM modelech. U modelů zahrnujících vlivy počasí (modely AVT a SUMP) hodnoty parametru ukazují na pozitivní, nepatrně se snižující vliv managementu, resp. heterogenity na výslednou produkci. Oproti tomu model bez specifikovaných vlivů počasí, FMM, má hodnoty parametru managementu rovněž signifikantní, nicméně vliv je záporný a v čase se zpomaluje. V případě zahrnutí vlivů počasí ve formě AVTit, resp. SUMPit, do modelu se tedy významně mění směr vlivu managementu (heterogenity) na produkci obilnin ve výsledném modelu. Ve všech třech FMM modelech se také na základě signifikance parametru managementu potvrzuje statisticky významnou přítomnost neměřené mezipodnikové heterogenity analyzovaného vzorku. Co se týče vlivu mezipodnikové heterogenity na produkční faktory (tzv. management bias), lze konstatovat, že v případě modelu bez vlivů počasí heterogenita zvyšuje produkční elasticitu půdy a kapitálu a snižuje elasticitu u materiálu. Oproti tomu v modelu zachycujícím vliv klimatu má zvýšení heterogenity za následek snížení produkční elasticity půdy a kapitálu a zvýšení produkční elasticity u materiálových vstupů. Vliv mezipodnikové heterogenity na produkční elasticitu práce je nevýznamný u všech FMM modelů. Ve všech třech případech má přítomnost mezipodnikové heterogenity největší vliv na produkční elasticitu materiálu a překvapivě také na produkční elasticitu půdy. Přitom v případě modelu bez vlivů počasí případná mezipodniková heterogenita zvyšuje produkční elasticitu půdy, zatímco v modelech AVT a SUMP zvýšená heterogenita výrazně snižuje produkční elasticitu půdy. Zároveň lze konstatovat, že samotná elasticita půdy je u všech definovaných FMM modelů nízká, ale heterogenita elasticitu půdy značně zvyšuje u FMM, a naopak výrazně snižuje u AVT a SUMP. V modelech AVT a SUMP je v důsledku extrahování vlivů počasí z neměřené mezipodnikové heterogenity je její vliv na produkční elasticitu půdy negativní. Lze konstatovat, že ponechání vlivů počasí v efektech neměřené podnikové heterogenity nadhodnocovalo pozitivní vliv neměřené heterogenity na produkční faktor půda v modelu FMM. Vůči vlivům počasí se management v modelu SUMP nevykazuje statisticky významným vlivem, zatímco na vlivy počasí reprezentované průměrnou teplotou, AVT, má management signifikantně negativní vliv s hodnotou rovnou -0.0622**. Zároveň lze říci, heterogenita se projevuje v negativním vztahu k vlivům počasí reprezentovaných průměrnou teplotou, zatímco vlivy počasí reprezentované úhrnem srážek (SUMPit) se nevykazují signifikantním vztahem k neměřené mezipodnikové heterogenitě, tedy jejich efekt ve výsledné heterogenitě je stejně tak jako vliv nárůstu heterogenity na produkční elasticitu práce nevýznamný. V porovnání s modelem bez zahrnutí vlivů počasí má v modelu zachycujícím vliv klimatu zvýšení heterogenity opačný efekt na produkční elasticity jednotlivých výrobních faktorů. V porovnání s modelem, kde je vliv počasí reprezentován průměrnou teplotou za dané vegetační období (model AVT), je vliv managementu (resp.heterogenity) v modelu SUMP větší v případě produkčního faktoru kapitál, zatímco v případě půdy a materiálu se lehce snižuje. Technická efektivnost je signifikantní ve všech odhadnutých modelech. Variabilita efektů neefektivnosti je větší než variabilita náhodné složky jak v modelech nespecifikujících vlivy počasí, tak v modelech zahrnujících tyto vlivy. Průměrná hodnota TE v modelech typu RPM dosahuje značně nízké hodnoty (54%), z čehož lze usoudit, že modely podhodnocují odhad TE a (některé proměnné) nebyly proto pro účely analýzy TE vhodně formulovány, resp. nebyl vhodně zvolen typ rozdělení náhodné proměnné reprezentující neefektivnost. Všechny modely FMM dávají obdobný výsledek odhadu TE (odhadnutá průměrná TE se pohybuje okolo 86-87 %), se velice podobnou hodnotou variability TE (cca 0,5%). Vliv změn technologie výroby (TCH) na TE se v modelu bez specifikovaných vlivů počasí projevuje pozitivně (0,0140***), u FMM modelů zahrnujících klimatické vlivy působí změny v technologii výroby vzhledem k TE negativním směrem (-0.0135*** pro model AVT, a -0.0114*** pro model SUMP). Lze vyvodit závěr, že v modelu bez zahrnutí počasí dochází ke zkreslení odhadu role technologické změny, jelikož odhadnutý parametr v sobě zahrnuje i systematický vliv počasí v analyzovaném období. Vliv neměřené heterogenity na TE se projevuje signifikantně ve všech třech modelech. V modelu AVT a SUMP má neměřená mezipodniková heterogenita pozitivní dopad na TE (model AVT= 0.1413 a model SUMP=0,1389), zatímco v modelu bez vlivů počasí (FMM) management (heterogenita) snižují úroveň TE (model FMM =0,1378). Počasí je v případě modelů AVT a SUMP extrahováno z neměřené heterogenity (spolu s ostatními produkčními faktory je tedy zahrnut do determinantů měřené heterogenity). Extrakce počasí z neměřené heterogenity vede ke změně z negativního vlivu heterogenity, zahrnující vliv počasí, na TE (model FMM) na pozitivní (modely AVT a SUMP). Přímý vliv počasí na TE je signifikantní pouze v případě specifikace AVT. Počasí v podobě průměrných teplot v období od setí do sklizně působí na velikost TE negativně, tj. snižuje TE (-0.0622**). Počasí definované úhrnem srážek se nevyznačuje statisticky významným vlivem na úroveň TE. Zahrnutím vlivů počasí se tedy významně mění směr vlivu managementu na produkci obilnin ve výsledném modelu i směr vlivu managementu na produkční elasticity jednotlivých výrobních faktorů. Analogicky s případem vlivu heterogenity na produkční elasticitu půdy je konstatováno, že počasí (zahrnuté v neměřené mezipodnikové heterogenitě) hrálo roli v podhodnocování vlivu heterogenity na celkovou produkci obilnin a zároveň také, že nevyjmutí vlivů počasí z neměřené mepodnikové heterogenity hrálo roli v podhodnocování vlivu heterogenity na TE. Na základě těchto výsledků a výsledků odhadu průměrné TE (a její variability) lze konstatovat, že efekt zahrnutí počasí neměl zásadní přímý vliv na hodnotu průměrné TE, nicméně, jeho vliv na TE a výslednou produkci se projevil prostřednictvím vlivu heterogenity, z níž byl v důsledku specifikace v podobě AVTit a SUMPit vyňat. Výsledky analýzy potvrzují, že vliv počasí na posun a tvar produkční hranice a TE je možné specifikovat a numericky vyjádřit. Indikují také, že počasí snižuje úroveň TE a je důležitým zdrojem neefektivnosti českých producentů obilnin. Byl navržen způsob, jak počasí definovat do modelu stochastické hraniční funkce, čímž byl splněn cíl disertační práce. Z výsledných odhadů vyplývá, že neměřená mezipodniková heterogenita je důležitým znakem českého zemědělství a identifikování jejích zdrojů by mělo být kritické pro zajištění lepšího výkonu zemědělské produkce. Byl tedy potvrzen předpoklad, že mezi jednotlivými producenty existují signifikantní rozdíly v technologii produkce, tj. mezipodniková heterogenita je signifikantní charakteristikou producentů obilnin. V důsledku extrahování počasí ze zdrojů neměřené mezipodnikové heterogenity se ukazuje skutečný vliv heterogenity a skutečný vliv počasí na TE. Kdyby vlivy počasí nebyly zahrnuty do modelu, docházelo by k nadhodnocování TE. Model definovaný jako translogaritmická multiple-output distanční funkce je vhodnou specifikací vztahu mezi počasím, TE i celkovou produkcí obilnin. Analýza také odhalila, že RPM model není vhodným nástrojem pro odhad vlivů počasí definovaných v indexovém vyjádření (klimatický index), protože jeho odhad podhodnocuje TE. Problém může být způsoben nevhodnou definicí některých proměnných, či nesprávným předpokladem o rozdělení neefektivnosti. Na druhou stranu, FMM je dobrý nástroj pro identifikaci vlivů počasí definovaných v konkrétních klimatických údajích na TE a na posun a tvar produkční hranice českých producentů obilnin. Výsledky odhadů tak potvrzují předpoklad o důležitosti specifikování vlivů počasí v modelech analyzujících úroveň TE rostlinné produkce. Specifikací vlivu počasí na výslednou produkci bylo počasí vyčleněno z množiny neměřených faktorů, způsobujících mezipodnikovou heterogenitu. Tento metodický krok pomůže zpřesnit odhad technologie a zdrojů neefektivnosti (respektive skutečné neefektivnosti). Zvyšuje se tím pádem vypovídací schopnost modelu a celkově se zpřesňuje odhad TE. Disertační práce splnila svůj účel a přinesla důležité poznatky o vlivu počasí na úroveň TE, o vztahu počasí a neměřené mezipodnikové heterogenity, o vlivu počasí na dopady technologických změn, a tím i efektu specifikace počasí na posun a tvar produkční hranice. Byl navržen model, který je vhodnou aplikací k definování těchto vztahů. Umístění počasí do deterministické části funkce produkční hranice, namísto do statistického šumu, představuje výraznou změnu v metodickém postupu v rámci stochastické hraničního analýzy a vzhledem ke skutečnosti, že analýza dopadů počasí na úrovneň TE takového rozsahu nebyla dosud v související literatuře zaznamenána, lze výsledek disertační práce považovat za značný přínos pro současnou teorii odhadu technického efektivnosti v oblasti zemědělství. Disertační práce byla vypracována v souvislosti s řešením 7th FP EU project COMPETE no 312029. …víceméněAbstract:
Although weather is a significant determinant of agriculture production, it is not a common practice in production analysis to investigate on its direct impact on the level of final production. We assume that the problem is methodological, since it is difficult to find a proper proxy variable for weather in these models. Thus, in the common production models, the weather is often included into a set of unmeasured determinants that affects the level of final production and farmers productivity (statistical noise, random error). The aim of this dissertation is to solve this methodological issues and find the way to define weather and its impacts in a form of proxy variable, to include this variable into proper econometric model and to apply the model. The purpose of this dissertation is to get beyond the empirical knowledge and define econometric model that would quantify weather impacts as a part of mutually (un)conditioned factors of final production, to specify the model and apply it. The dissertation is based on the assumption that the method of stochastic frontier analysis (SFA) represents a potential opportunity to treat the weather as a specific (though not firm-controllable) factor of production and technical efficiency. SFA is parametric method based on econometric approach. Its starting point is the stochastic frontier production function. The method was presented in the work of Aigner, Lovell and Schmidt (1977) and Meusen and van den Broeck (1977). Unlike commonly used econometric models, SFA is based on analysis of production frontier that is formed by deterministic production frontier function and the compound error term. The compound error term consists of two parts -- random error (statistical noise, error term) and technical inefficiency. Technical inefficiency represents the difference in the actual level of production of the producer, and the maximum attainable (possible) level that would be achieved if the producer used a particular combination of production factors in a maximum technically efficient way. Over time, it has been developed on a number of aspects - see time variant and invariant inefficiency, heteroscedasticity, measurement and unmeasured heterogeneity. Along with the DEA, SFA has become the preferred methodology in the area of production frontier and productivity and efficiency analysis in agriculture. Lately, it has been applied for example by Bakusc, Fertő and Fogarasi (2008) Mathijs and Swinnen (2001), Hockmann and Pieniadz (2007), Bokusheva and Kumbhakar (2008) Hockmann et al. (2007), Čechura a Hockmann (2011, 2012), and Čechura et al. (2014 a, b). We assume that the weather impacts should be analysed with regard to technical efficiency, rather than as a part of statistical noise. Implementation of weather in part of deterministic production function rather than in the statistical noise is a significant change in the methodical approach within the stochastic frontier analysis. Analysis of the weather impacts on the changes in the level of TE has not been greatly recorded in the associated literature and is, therefore, considered as the main contribution of this work for the current theory of production frontier estimation, or the technological effectiveness, in the field of agriculture. Taking into account other variables that are important for the relationship and whose inclusion would enhance the explanatory power of the model was part of the objective of this work.Thus, the possible effect of heterogeneity was taken into account when models were formulated and final results discussed. The paper first defined and discussed possible ways how to incorporate the effects of the weather into production frontier model. Assessing the possibility of inclusion of weather in these models was based on the theoretical framework for the development of stochastic frontier analysis, which defines the concept of technical efficiency, distance functions theory, stochastic production function theory and …víceméněAbstract:
the methodology and techniques that are applied within the framework of SFA, which were relevant for the purpose of this work. Then, the weather impacts on the shape and shift of production frontier and technical efficiency of czech cereal production in the years 2004-2011 was analyzed. The analysis was based on the assumption that there are two ways how to define variables representing weather in these models. One way is to use specific climatic data, which directly describe the state of the weather. For the purpose of this thesis, the variables mean air temperature (AVTit) and sum of precipitation (SUMPit) in the period between planting and harvest of cereals in the individual regions of Czech republic (NUTS 3) were selected. Variables were calculated from the data on monthly mean air temperatures and monthly sums of precipitation on the regional levels provided by Czech hydro-meteorological institute CHMI. Another way to define weather variable is to use a proxy variable. In this dissertation, the calculation of climatic index (KITit) was applied. Climatic index was calculated as a sum of ratios between the actual yield levels and approximated yield levels of wheat, barley and rye, weighted by the importance of each plant in a cereal production protfolio in each region of the Czech republic. Yield levels were approximated by the linear trend functions, yield and weights were calculated with the use of data on regional production and sown area under individual grains by year at the level of regional production (NUTS 3) provided by Czech Statistical Office. Both ways of weather definition are associated with some advantages and disadvantages. Particular climatic data are very precise specificatopn of the actual weather conditions, however, to capture their impacts on the level of final production, they must be implemented into model correctly along with the number of other factors, which have an impact on the level of final production. Climatic index, on the other hand, relates the weather impacts directly to the yield levels (it has been based on the assumption that the violation from yield trends are caused by the weather impacts), though, it does not accomodate the concrete weather characteristics. The analysis was applied on unbalanced panel data consisting of the information on the individual production of 803 producers specialized on cereal production, which have each the observations from at least two years out of total 8-years time serie. Specialization on crop production was defined as minimum 50% share of cereal production on the total plant production. Final panel consists of 2332 observations in total. The values of AVTit, SUMPit a KITit has been associated with each individual producer according to his local jurisdiction for a particular region. Weather impacts in the three specified forms were implemented into models that were defined as stochastic production frontier models that capture the possible heterogeneity effects. The aim is to identify the impact of weather on shift and shape of production frontier. Through the defined models, the production technology and technical efficiency were estimated. We assume that the proposed inclusion in weather impacts will lead to a better explanatory power of defined models, as a result of weather extraction from a random components of the model, or from a set of unmeasured factors causing heterogeneity of the sample, respectivelly. Two types of models were applied to estimate TE - Fixed management model (FMM) and Random parameter model (RPM). Models were defined as translogarithmic multiple-output distance function. The analyzed endogene variable is cereal production (expressed in thousands of EUR). Other two outputs, other plant production and animal production (both expressed in thousands of EUR) are expressed as the share on cereal production and they appear on the right side of the equation together with the exogene variables representing production factors labour (in AWU), total utilized land (in acres), capital (sum of contract work, especially machinery work, and depreciation, expressed in thousands of EUR), specific material (represented by the costs of seeds, plants, fertilisers and crop protection, expressed in thousands of EUR), and other material (in thousands of EUR). The values of all three outputs, capital, and material inputs were deflated by the the country price indexes taken from the EUROSTAT database (2005=100). In Random parameter model, heterogeneity is captured in random parameters and in the determinants of distribution of the technical inefficiency, uit. All production factors were defined as a random parameters and weather in form of KITit enters the mean of uit and so it represents the possible source of unmeasured heterogeneity of a sample. In fixed management model, heterogeneity is defined as a special factor representing firm specific effects, mi. This factor represents unmeasured sources of heterogeneity of sample and enters the model in interaction with other production factors and the with the trend variable, tit.Trend variable represents the impact of technological change at a time t for each producer i. The weather impacts in form of variables AVTit a SUMPit is, together with production factors, excluded from the set of firm specific effects and it is also numerically expressed. That way weather becomes a measured source of heterogeneity of a sample. Both types of models were estimated also without the weather impacts specification in order to obtain the benchmark against which the effects of weather impacts specification on production frontier and technical efficiency is evaluated. Easier interpretation of results was achieved by naming all five estimated models as follows: FMM is a name of fixed management model that does not include specified weather variables, AVT is a name for fixed management model including weather impacts in form of average temperatures AVTit, SUMP is name of model which includes weather impacts in form of sum of precipitations SUMPit, RPM is random parameter model that does not account for weather impacts, KIT is random parameter model that includes climatic index KITit into the mean of inefficiency. All estimated models fullfilled the conditions of monotonicity and kvasikonvexity for each production factor with the exception of capital in FMM, AVT, SUMP and RPM model. Violating the kvasikonvexity condition is against the theoretical assumptions the models are based on, however, since capital is also insignificant, it is not necesary to regard model as incorrect specification. Violation of kvasikonvexity condition can be caused by the presence of other factor, which might have contraproductive influence on final production in relation to capital. For example, Cechura and Hockann (2014) mention imperfections of capital market as possible cause of inadequate use of this production factor with respect to technological change. Insufficient significancy of capital can be the result of incorrect specification of variable itself, as capital is defined as investment depreciation and sum of contract work in the whole production process and not only capital related to crop production. The importance of capital in relation to crop production is, thus, not strong enough to be significant. Except of capital are all other production factors significant on the significancy level of 0,01. All estimated models exhibit a common pattern as far as production elasticity is concerned. The highest elasticity is attributed to production factors specific and othe material. Production elasticity of specific material reaches values of 0,29-0,38, the highest in model KIT and lowest of the values in model AVT. Production elasticity of other material reahed even higher values in the range 0,40-0,47. Highest elasticity of othe material was estimated by model AVT and lowest by model KIT. Lowest production elasticity are attributed to production factors labour and land. Labour reached elasticity between 0,006 and 0,129 and land reached production elasticity in the range of 0,114 a 0,129. All estimated models displayed simmilar results regarding production elasticities of production factors, which also correspond with theoretical presumptions about production elasticities -- highest values of elasticity of material inputs correspond with naturally high flexibility of these production factors, while lowest values of elasticity of land corresponds with theoretical aspect of land as relativelly inelastic production factor. Low production elasticity of labour was explained as a result of lower labor intensity of cereals sector compared to other sectors. Production elasticity of weather is significant both in form of average temperatures between planting and harvest in a given region, AVTit, and form of total precipitation between planting and harvest in a given region, SUMPit. Production elasticity of AVTit, reach rather high value of 0,3691, which is in the same level as production elasticities of material inputs. Production elasticity of SUMPit is also significant and reach rather high lower value of 0,1489. Both parameters shows significant impact of weather on the level of final crop production. Sum of production elasticities in all models reach the values around 1, indicating constant returns of scale, RS (RSRPM=1,0064, RSKIT=0,9738, RSSUMP =1,00002, RSFMM= 0,9992, RSAVT=1,0018.). The results correspond with the conclusion of Cechura (2009) and Cechura and Hockmann (2014) about the constant returns of scale in cereals sector in Czech republic. Since the value of RS is calculated only with the use of production elasticities of production factors, almost identical result provided by all three specifications of fixed management model is a proof of correct model specification. Further, the significance of technological change and its impact on final production and production elasticities were reviewed. Technological change, TCH, represents changes in production technology over time through reported period. It is commonly assumed that there is improvement on production technology over time. All estimated models prooved significant impact of TCH on the level of final production. All specified fixed management models indicate positive impaact of TCH, which accelerates over time. Estimated random parameter models gave contradicting results -- model KIT implies that TCH is negative and decelerating in time, while model RPM indicates positive impact of TCH on the level of final production, which is also decelerating in time. It was concluded, that in case that weather is not included into model, it can have a direct impact on the positive direction of TCH effect, which can be captured by implementing weather into model and so the TCH becomes negative. However, as to be discussed later, random parameter model appeared not as a suitable specification for analyzed relationship and so the estimate of the TCH impact might have been distorted. The impact of technological progress on the production elasticities (so-called biased technological change) is in fixed management models displayed by parameters representing the interaction of production factors with trend variable. The hypothesis of time invariant parameters (Hicks neutral technological change) associated with the production factors is rejected for all models except the model AVT. Significant baised technological change is confirmed for models FMM and SUMP. Biased technological change is other material-saving and specific material-intensive. In the AVT model, where weather is represented by average temperatures, AVTit, technological change is not significant in relation to any production factors. In both random parameter models, rejection of hypothesis of time invariant parameters only confirms significance of technological change in relation to final crop production. Nonsignificant effect of technological change on production elasticity of labor, land and capital indicates a generally low ability of farmers to respond to technological developments, which can be explained by two reasons. The first reason can the possible complications in adaptation to the conditions of the EU common agricultural market (eg. there are not created adequate conditions in the domestic market, which would make it easier for farmers to integrate into the EU). This assumption is based on conclusion made by Cechura and Hockmann (2014), where they explain the fact that in number of European countries there is capital-saving technological change instead of expected capital-using technical change as the effect of serious adjustment problems, including problems in the capital market.. Second possible reason for nonsignificant effect of technological change on production elasticity of labor, land and capital is that the financial support of agricultural sector, which was supposed to create sufficient conditions for accomodation of technological progress, has not shown yet. Then, the biased TCH is not pronounced in relation to most production factors. Weather impacts (SUMPit, AVTit) are not in significant relation to technological change. Both types of models, FMM and RPM were discussed in relation to the presence of the heterogeneity effects All estimated random parameters in both RPM models are statistically significant with the exception of the production factor capital in a model that does not involve the influence of weather (model RPM). Estimated parameter for variable KITit (0,0221) shows significant positive impact of the weather on the distribution of TE. That way, heterogeneity in relation to TE is confirmed, too, as well as significant impact of weather on the level of TE. Management (production environment) is significant in all three estimated fixed management models. In models that include weather impacts (AVT, SUMP), the parameter estimates indicates positive, slightly decreasing effect of management (or heterogeneity, respectivelly) on the level of final crop production. In model FMM, on the contrary, first and second order parameters of mangement indicate also significant, but negative and decelerating effect of management (heterogeneity) on final crop production. If weather impact is included into models in form of AVTit, or. SUMPit, the direction of the influence of management on the level of final crop production changes. Based on the significance of first order parameter of management, significant presence of heterogeneity of analyzed sample is confirmed in all three estimated fixed management models. As far as the effect of heterogeneity on single production factors (so called management bias) is concerned, the results indicate that in case of model that does not include weather impacts (model FMM) the heterogeneity has positive impact on production elasticities of land and capital and negative effect on the production elasticities of material inputs. In models that account for weather impacts, heterogeneity has negative effect on production elasticities of land and capital and positive effect on the elasticity of material inputs. Heterogeneity effect on the production elasticity of labor is insignificant in all models FMM. In all three estimated models, the effect of heterogeneity is strongest in case of production factors specific and othe material, and, also, on production factor land. In case of FMM model, heterogeneity leads to increase of production elasticity of land, while in AVT and SUMP heterogeneity leads to decrease of production elasticity of land. At the same time, the production elasticity of land, as discussed earlier, is rather low in all three models. This fact leads to a conclusion that in models that accomodate weather impacts (AVT and SUMP), as the effect of extraction of weather from the sources of unmeasured heterogeneity, the heterogeneity has a negative impact on production elasticity of land. It can be stated that the inclusion of weather effects into the sources of unmeasured heterogeneity overestimated the positive effect of unmeasured heterogeneity on the production factor land in the model FMM. Management does not have a significant effect on the weather in form of SUMPit, while it has significant and negative effect on the weather in form of average temperature, AVTit, with the value of -0.0622**. In other words, heterogeneity is in negative interaction with weather represented by average temperatures, while weather in form of the sum of precipitation (SUMPit) does not exhibit significant relation to unmeasured heteregeneity. In comparison with the model that does not include weather impacts, the effect of heterogeneity on the production elasticities has the opposite direction the models that include weather. Compare to the model where weather is represented by average temperature (model AVT), the effect of management (heterogeneity) on the production elasticity of capital is bigger in model with weather represented by sum of precipitations (model SUMP) while the effect of management (heterogeneity) on the production elasticity of land and material imputs is smaller in model with weather represented by sum of precipitations (model SUMP). Technical efficiency is significant in all estimated models. The variability of inefficiency effects is bigger than the variabilty of random error in both models that include weather and models where weather impacts are not specified. The average of TE in random parametr models reaches rather low value (setting the average TE = 54%), which indicates, that specified RPM models underestimate TE as a possible result of incorrect variable specification, or, incorrect assumptions on the distribution of the error term representing inefficiency. All estimated FMM models results in simmilar value of average TE (86-87%) with the simmilar variability of TE (cca 0,5%). Technological change has significant and positive effect on the level of TE in the model that does not specify the weather impacts (model FMM), with a value of 0,0140***, while in the models that include weather in form of average temperatures, or sum of precipitations, respectivelly, technological change has a negative effect on the level of TE (in model AVT = -0.0135***; in SUMP = -0.0114***). It can be stated, that in the model where the weather impacts were not specified, the effect of TCH on the level of TE may be distorted, because the parameter estimate implies also a systematic influence weather in the analyzed period. The effect of unmeasured heterogeneity on the level of TE is significant in all three estimated fixed management models. In models AVT and SUMP, heterogeneity has a positive effect on the level of TE (in AVT = 0.1413 and in SUMP =0,1389), while in the model that does not include weather variable the effect of heterogeneity on the level of TE is negative (in FMM =-0,1378). In models AVT and SUMP, the weather impacts were extracted from the sources of unmeasured heterogeneity, and so from its influence on the level of TE (together with other production factors weather becomes a source of measured heterogeneity). The extraction of the weather from the sources of unmeasured heterogeneity leads to change in the direction of heterogeneity effects on the level of TE from negative (in model where weather was part of unmeasured heterogeneity) to positive. The direct impact of weather on TE is only significant in case of variable AVTit, indicating that average temperatures reduce the level of TE (-0.0622**). Weather in form of sum of precipitations does not have a significant impact on the level of TE. It is evident that incorporating the effects of weather significantly changes the direction of the influence of management on the production of cereals and the direction of influence on the management of production elasticity of each factor in the final model. Analogically with the case of the influence of heterogeneity on the production elasticity of land, it is stated that the weather (included in sources of unmeasured heterogeneity) played a role in the underestimation of the impact of heterogeneity on the overall cereal production. Also, in case that weather was not extracted form the sources of unmeasured heterogeneity would play significant role in underestimation of the effect of heterogeneity on the level of TE. Based on the results of parameters estimates, and on the estimate of average values of TE and its variability, it is concluded, that the effect of inclusion of weather into defined models does not have significant direct impact on the average value of TE, however, its impact on the level of TE and the level of final crop production is pronounced via effects of unmeasured heterogeneity, from which the weather was extracted by its specification in form of AVTit a SUMPit. The analysis results confirms that it is possible to specify the impacts of weather on the shape and shift of production frontier, and, this to define this impact in a model. Results Aaso indicate that the weather reduces the level of TE and is an important source of inefficiency Czech producers of cereals (crop). The model of stochastic frontier produkction function that capture the weather impact was designed, thereby the goal of the dissertation was met. Results also show that unmeasured heterogeneity is an important feature of czech agriculture and that the identification of its sources is critical for achieving higher productivity and higher level of final output. The assumption about significant presence of heterogeneity in production technology among producers was confirmed, and heterogeneity among producers is a significant feature of cereal sector. By extracting weather from sources of unmeasured heterogeneity, the impact of real unmeasured heterogeneity (all that was not extracted from its sources) and the real impact of weather on the level of TE is revealed. If weather was not specified in a model, the TE would be overestimated. Model in form of translogarithmic multiple-output distance function well approximates the relationship between weather, technical efficiency, and final cereal production. Analysis also revealed, that the Random parameter model, which was applied in case that weather impacts were expressed as an index number, is not the suitable model specification due to underestimating of the average level of TE. The problem of underestimation of TE might be caused by wrong variable definition or incorrect assumptions about the distribution of inefficiency term. Fixed management model, on the other hand, appears as a very good tool for identification of weather impacts (in form of average temperatures and sum of precipitations in the period between planting and harvesting) on the level of TE and on the shape and shift of production frontier of czech cereals producers. The results confirm the assumption that it is important to specify weather impacts in models analyzing the level of TE of the plant production. By specification of weather impactzs in form of proper variables (AVTit, SUMPit), the weather was extracted from the sources of unmeasured heterogeneity. This methodical step will help to refine the estimate of production technology and sources of inefficiencies (or, the real inefficiency, respectivelly). That way, the explanatory power of model increase, which leads to generally more accurate estimate of TE. Dissertation has fulfilled its purpose and has brought important insights into the impact of weather on the TE, about the relationship between weather and intercompany unmeasured heterogeneity, about the effect of weather on the impact of technological change, and so the overall impact of weather specification on the shape and shift of production frontier. A model that is suitable application to define these relationships was designed. Placing the weather into deterministic part of production frontier function instead of statistical noise (or, random error, respectivelly) means a remarkable change in the methodical approach within the stochastic frontier analysis, and, due to the fact that the analysis of weather impacts on the level of TE to this extent has not yet been observed in relevant literature, the dissertation can be considered a substantial contribution to current theory of the estimate of technical efficiency of agriculture. The dissertation arose within the framework of solution of the 7th FP EU project COMPETE no 312029. …víceméně
Jazyk práce: čeština
Datum vytvoření / odevzdání či podání práce: 1. 10. 2015
Obhajoba závěrečné práce
- Vedoucí: doc. Ing. Lukáš Čechura, Ph.D.
Citační záznam
Citace dle ISO 690:
HŘEBÍKOVÁ, Barbora. \textit{Analýzy vlivu počasí na posun a tvarb produkční hranice}. Online. Disertační práce. Praha: Česká zemědělská univerzita v Praze, Provozně ekonomická fakulta. 2015. Dostupné z: https://theses.cz/id/kw4kpz/.
HŘEBÍKOVÁ, Barbora. <i>Analýzy vlivu počasí na posun a tvarb produkční hranice</i>. Online. Disertační práce. Praha: Česká zemědělská univerzita v Praze, Provozně ekonomická fakulta. 2015. Dostupné z: https://theses.cz/id/kw4kpz/.
HŘEBÍKOVÁ, Barbora. Analýzy vlivu počasí na posun a tvarb produkční hranice. Online. Disertační práce. Praha: Česká zemědělská univerzita v Praze, Provozně ekonomická fakulta. 2015. Dostupné z: https://theses.cz/id/kw4kpz/.
@PhdThesis{Hrebikova2015thesis,
AUTHOR = "Hřebíková, Barbora",
TITLE = "Analýzy vlivu počasí na posun a tvarb produkční hranice [online]",
YEAR = "2015 [cit. 2024-11-17]",
TYPE = "Disertační práce",
SCHOOL = "Česká zemědělská univerzita v Praze, Provozně ekonomická fakultaPraha",
NOTE = "SUPERVISOR: doc. Ing. Lukáš Čechura, Ph.D.",
URL = "https://theses.cz/id/kw4kpz/",
}
AUTHOR = "Hřebíková, Barbora",
TITLE = "Analýzy vlivu počasí na posun a tvarb produkční hranice [online]",
YEAR = "2015 [cit. 2024-11-17]",
TYPE = "Disertační práce",
SCHOOL = "Česká zemědělská univerzita v Praze, Provozně ekonomická fakultaPraha",
NOTE = "SUPERVISOR: doc. Ing. Lukáš Čechura, Ph.D.",
URL = "https://theses.cz/id/kw4kpz/",
}
@PhdThesis{Hrebikova2015thesis,
AUTHOR = {Hřebíková, Barbora},
TITLE = {Analýzy vlivu počasí na posun a tvarb produkční hranice},
YEAR = {2015},
TYPE = {Disertační práce},
INSTITUTION = {Česká zemědělská univerzita v Praze, Provozně ekonomická fakulta},
LOCATION = {Praha},
SUPERVISOR = {doc. Ing. Lukáš Čechura, Ph.D.},
URL = {https://theses.cz/id/kw4kpz/},
URL_DATE = {2024-11-17},
}
AUTHOR = {Hřebíková, Barbora},
TITLE = {Analýzy vlivu počasí na posun a tvarb produkční hranice},
YEAR = {2015},
TYPE = {Disertační práce},
INSTITUTION = {Česká zemědělská univerzita v Praze, Provozně ekonomická fakulta},
LOCATION = {Praha},
SUPERVISOR = {doc. Ing. Lukáš Čechura, Ph.D.},
URL = {https://theses.cz/id/kw4kpz/},
URL_DATE = {2024-11-17},
}
{{Citace kvalifikační práce | příjmení = Hřebíková | jméno = Barbora | instituce = Česká zemědělská univerzita v Praze, Provozně ekonomická fakulta | titul = Analýzy vlivu počasí na posun a tvarb produkční hranice | url = https://theses.cz/id/kw4kpz/ | typ práce = Disertační práce | vedoucí = doc. Ing. Lukáš Čechura, Ph.D. | rok = 2015 | počet stran = | strany = | citace = 2024-11-17 | poznámka = | jazyk = }}
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Česká zemědělská univerzita v Praze, Provozně ekonomická fakultaČeská zemědělská univerzita v Praze
Provozně ekonomická fakultaDoktorský studijní program / obor:
Ekonomika a management / Podniková a odvětvová ekonomika
Práce na příbuzné téma
Seznam prací, které mají shodná klíčová slova.
-
Analýza technické efektivnosti českých zemědělských podniků s chovem prasat
Tamara Rudinskaya -
Analýza ziskovosti českých zemědělských podniků zaměřených na produkci mléka
Jana Maxová -
Analýza efektivnosti - ekonometrický přístup
Alena Chylíková -
Vliv dotací z Programu rozvoje venkova na technickou efektivnost příjemců
Marie Pechrová -
Efektivnost technické analýzy akcíí
Michal Kníž -
Vývoj technické efektivnosti komerčních bank v České republice.
Tereza Janošťáková -
Informační efektivnost a technická analýza na devizovém trhu
Petr Obergruber -
Impact of Cooperatives on Maize Farmers Technical Efficiency in Nigeria
Adeolu Stephen Adedokun
Název
Vložil
Vloženo
Práva
-
Co je jinak přidání souboru
-
Co je jinak další operace se soubory
-
Co je jinak pohled pro experty
-
Co je nové vyhledávání souborů
-
Co je nové rychlý přístup k souborům
-
Co se chystá