Deep learning for anomaly detection in histopathological data – Bc. David Čechák
Bc. David Čechák
Master's thesis
Deep learning for anomaly detection in histopathological data
Deep learning for anomaly detection in histopathological data
Abstract:
Zkoumání histopatologických snímků s cílem zjistit, zda obsahují rakovinovou tkáň, je časově náročný úkol. Vývoj technologie umožnil digitalizaci mikroskopických preparátů do digitálních snímků. Zdigitalizované snímky pak mohou být zpracovány různými metodami strojového učení. Tato práce zkoumá modely z třídy Generative Adversarial Networks (GANs) a jejich schopnost se naučit generovat histopatologické …moreAbstract:
Examination of histopathological images to determine whether they contain carcinoma tissues is a timeconsuming task. The developments of technology allow for the digitalisation of microscope glass slides into digital slides. Once the slides are digitalised, they can be processed by various machine learning methods. This thesis explores models from the class of Generative Adversarial Networks (GANs …more
Language used: English
Date on which the thesis was submitted / produced: 7. 1. 2021
Identifier:
https://is.muni.cz/th/zuv4k/
Thesis defence
- Date of defence: 11. 2. 2021
- Supervisor: doc. RNDr. Tomáš Brázdil, Ph.D.
- Reader: Mgr. Filip Lux
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Artificial intelligence and data processing / Machine learning and artificial intelligence
Theses on a related topic
-
The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models
Mikuláš Bankovič -
Generative Adversarial Networks and Applications in Bioinformatics
Nikita KOLESNICHENKO -
Simulation of Multiple Motile Agents Using Neural Networks
Branislav Ševc -
The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models
Mikuláš Bankovič -
Anomaly Detection Using Deep Sparse Autoencoders for CERN Particle Detector Data
Filip Široký -
Anomaly Detection in Galaxy Images using Deep Learning
Karina Batalova