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Jazyková aproximace výstup̊u fuzzy model̊u

Katedra matematické analýzy a aplikaćı matematiky
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prof. Mikael Collan, Ph.D.
prof. Pasi Luukka, Ph.D.

Author: Mgr. Tomáš Talášek
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Abstrakt: Jazyková aproximace je proces, kterým se přǐrazuj́ı jazykové termy ma-
tematickým objekt̊um, přičemž tyto objekty jsou často výstupy fuzzy model̊u. Na
jazykovou aproximaci klademe požadavek, aby jazykové termy dostatečně “reprezen-
tovaly význam” aproximovaných objekt̊u nebo aby alespoň reprezentovaly ty charak-
teristiky těchto objekt̊u, které jsou pro daný účel kĺıčové. Výběrem vhodné metody
pro jazykovou aproximaci se však odborná literatura téměř nezabývá. V pr̊uběhu
let bylo představeno několik př́ıstup̊u k jazykové aproximaci, avšak doposud nebylo
provedeno žádné d̊ukladné srovnańı těchto př́ıstup̊u. Tato disertačńı práce si klade
za ćıl napravit tento nedostatek pomoćı analytického frameworku, který umožńı
navrhovatel̊um (a zároveň i uživatel̊um) model̊u s pomoćı vizualizace znázornit
možné výsledky jazykové aproximace při použit́ı rozd́ılných vzdálenost́ı/podobnost́ı
fuzzy množin, porovnat jejich chováńı a identifikovat př́ıpadné nedostatky/problémy
zvolených vzdálenost́ı/podobonost́ı. K výběru vhodné vzdálenosti/podobnosti fuzzy
množin (pro potřeby jazykové aproximace) tedy v této práci přistupujeme jiným
zp̊usobem - pomoćı identifikace potenciálńıch problémů postupně vylučujeme ty
vzdálenosti/podobnosti, které se v daném př́ıpadě nechovaj́ı dle potřeby.
Hlavńı př́ınos práce spoč́ıvá v návrhu frameworku, který umožňuje analyzovat to, jak
volba vzdálenosti/podobnosti fuzzy č́ısel ovlivňuje výsledek jazykové aproximace.
Framework je navržen tak, aby byl snadno použitelný, nekladl na vysoké nároky
na znalosti uživatele, umožňoval př́ımé srovnáńı vlivu vzdálenosti/podobnosti na
výsledek jazykové aproximace a výsledky byly snadno vizualizovatelné. Přestože se
práce zaměřuje převážně na trojúhleńıková a lichoběžńıková fuzzy č́ısla (symetrická i
nesymetrická), je zde představena i modifikace frameworku, která umožňuje analýzu
a vizualizaci výsledk̊u jazykové aproximace fuzzy výstup̊u, které lze obdržet pomoćı
Mamdaniho fuzzy inference. Na této modifikaci mimo jiné ukazujeme, jak snadno lze
framework upravit pro analýzu daľśıch typ̊u výstup̊u. Dále je v práci představena
nová metoda pro jazykovou aproximaci, která je postavena na myšlence fuzzy 2-



tuples. Tato metoda jazykové aproximace se od jiných metod lǐśı t́ım, že požaduje
jen omezený počet jazykových termů (tj. uživatel modelu nemuśı rozumět velkému
počtu jazykových termů), ale d́ıky 2-tuples může být i tak výstupem jazykové apro-
ximace nekonečně mnoho jazykových termů, přičemž každý takovýto term se skládá
z jednoho ze zvolených jazykových termů a také z informace o jeho “posunu”. T́ım
je zajǐstěna snadnost porozuměńı výsledku jazykové aproximace.
Disertačńı práce dále obsahuje 11 publikaćı, na kterých se Tomáš Talášek významně
spolupod́ılel. Tyto publikace shrnuj́ı dosažené matematické výsledky autora a umož-
ňuj́ı detailněǰśı náhled na zkoumáńı toho, jak volba vzdálenosti/podobnosti fuzzy
množin ovlivňuje výsledek jazykové aproximace.

Kĺıčová slova: jazyková aproximace, fuzzy č́ıslo, vzdálenost, podobnost, jazyková
škála, numerické šetřeńı, 2-tuples
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Title: The linguistic approximation of fuzzy models outputs

Type of thesis: Dissertation thesis

Department: Department of Mathematical Analysis and Applications of Mathe-
matics

Supervisor: doc. RNDr. Jana Talašová, CSc.
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Abstract: Linguistic approximation is a process of assigning linguistic labels to
various mathematical objects, frequently ones that are obtained as outputs of fuzzy
models. Such an assignment cannot be arbitrary – the usual requirement on lin-
guistic approximation is for the linguistic label to “represent the meaning” of the
approximated object sufficiently, or at least to reflect its characteristics that are
the most important for the given purpose. How to define such a sufficiency, or in
other words how to recognize an appropriate method of linguistic approximation,
however, remains an unresolved issue. Over the years several various approaches
for linguistic approximation was introduced but almost no proper comparison of
these approaches was made. This thesis strives to resolve this issue by suggest-
ing a universal analytical framework that helps the designers (and also users) of
the models to visualize the performance of linguistic approximation under differ-
ent distance/similarity measure of fuzzy numbers and to use this visualization to
compare their performance and identify the potential drawbacks of using selected
distance/similarity measures. It therefore approaches the issue of sufficiency of the
linguistic approximation from behind – mainly pointing out the problems and thus
ruling out some of the not-well-functioning distance/similarity measures.
The contribution of the thesis lies in the proposal of a framework for the analysis
of performance of different distance/similarity measures of fuzzy numbers such that
its use is straightforward, it requires only limited knowledge from his potential user,
it allows for a direct comparison of the performance of different distance/similarity
measures in the given context and it provides results by means of graphical represen-
tation. Although most of the thesis focuses on the frequently used shapes of fuzzy
numbers (triangular, trapezoidal; both symmetrical and asymmetrical), we also pro-
pose a modification of the framework which allows for the analysis and visualization
of results for Mamdani-type fuzzy sets (outputs of Mamdani fuzzy inference). On



this modification we also show the simplicity of the generalization of the frame-
work for different conditions and contexts (represented by different approximated
objects etc.). Another contribution is the proposal of a novel linguistic approxima-
tion method based on the idea of fuzzy 2-tuples in the thesis. This method differs
from other methods in a way that it requires only small number of linguistic terms
(i.e. the decision-makers’s vocabulary for the description of the results can remain
reasonably limited, hence the requirements on understanding the meaning of the
linguistic values can be kept to a reasonable minimum), but thanks to the 2-tuple
concept it can results in an infinite number of linguistic labels composed of one
of the known linguistic terms and a description of its “shift” which facilitates easy
understandability of the results of the linguistic approximation.
Eleven publications on which the author participated are appended to the thesis.
These publications summarize the mathematical results and provide closer insights
into the issue of the investigation of the performance of linguistic approximation
under different distance/similarity measures.

Key words: linguistic approximation, fuzzy number, distance, similarity, linguistic
scale, numerical investigation, 2-tuples

Number of pages: 209 with appendices and publications

Number of appendices: 2 appendices + 11 full-text papers

Language: English
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Talášek, T. and Stoklasa, J., The role of distance/similarity measures in the lin-
guistic approximation of triangular fuzzy numbers. Proceedings of the international
scientific conference Knowledge for Market Use 2016, 539–546, 2016.

Publication VI
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co-author Tomáš Talášek provided the mathematical perspective to the paper and
participated in the literature review of the use of fuzzy sets in social sciences.
The Publication III presents an attempt to suggest the use of linguistic approx-
imation for a different purpose than just “retranslation”. Tomáš Talášek as the
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1 Introduction
This thesis deals with the analysis of the effect of different distance and similarity
measures of fuzzy numbers on the results of a classification model. There is an
abudance of distance/similarity measures of fuzzy numbers to be used for various
purposes. Even though their mathematical properties are being studies to some
extent in the scientific literature (see e.g. [44, 32, 4]) the actual choice of a distance
or a similarity measure for a model for a given purpose remains frequently arbitrary.
Most of the theoretical papers suggest “the most appropriate” distance or similarity
measure to be used. Unfortunately, the criteria for appropriateness are not specified
and the actual knowledge of the differences in performance of the models under
different distance/similarity measures is unavailable. In fact, the very methods for
the analysis of the effect of specific choices of distance/similarity measures on the
results of the models are missing. The thesis therefore aims on suggesting a general
framework for the comparison of the performance of a specific model under different
distance/similarity measures. The goal is to provide the makers of the models with
insights regarding the choice of the distance/similarity measure. The thesis strives
to provide graphical outputs that allow for easy comparability of the performance of
these measures and that do not assume that the correct answers (e.g. in classification
or linguistic approximation) are necessarily available. This framework should at least
allow for the identification of differences in performance of the distance/similarity
measures and of their similarities as well.

Due to the extensiveness of the selected goal in the further text we will focus
only on the effect of the selection of the distance/similarity measures on the results
of linguistic approximation of the given fuzzy numbers (representing the outputs of
mathematical model). This does not result in a loss of generality, because linguistic
approximation is a representative example of a classification model - the goal is to
assign a linguistic term (label or class) from a predefined set of linguistic terms
(labels or classes) that describes best the approximated output of a model (usually
in a form of fuzzy set or fuzzy number). The restriction to linguistic approximation
is driven by several motives:

• To deal with a clear example of a classification task. This way a clear parallel
to general classification task can be easily established.

• To properly explain the application of the presented framework and to show
what kind of insights can be obtained, it is suitable to demonstrate its usage on
a conceivable example. Linguistic approximation provides such an example.

• Linguistic approximation does not pose any default requirements on the dis-
tance/similarity measure used for the the determination of the most appro-
priate linguistic label for the given fuzzy number. This allows us to apply
(and thus investigate) any distance/similarity measure of fuzzy numbers in
this framework.
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• The performance of linguistic approximation can be easily parametrized by the
adjustement of linguistic scale. This enables us to study distance/similarity
measures in a controlled environment.

Linguistic approximation can, in essence, be applied to any mathematical ob-
ject. Real numbers are not considered in this thesis since their one dimensional
representation is straightforward and the graphical summaries would not have much
additional information value. Instead we focus on the approximation of fuzzy num-
bers whose representation requires more than one parameter. This opens a way to
multidimensional graphical representation of the outputs. Even though most of the
results presented in this thesis are in 2D, generalization to more dimensions (i.e. to
more parametres representing the approximated objects) is straightforward. With
more parameters we however encounter the limits of convenient graphical represen-
tation.

Since there is an large number of different distance/similarity measures it is not
possible to study all within a single thesis. Instead we propsed a general framework
applicable to any distance/similarity measure and select examples of the most fre-
quently used distance/similarity measures to be able to show the performance of the
suggested framework. The selection of frequently used measures allows us also to
draw conclusions on their (un)suitability for linguistic approximation in the given
analysed settings. This adds another application contribution to the thesis.

To clarify the inteded contribution of this thesis and to explain its structure we
set the following subgoals:

• To investigate the performance of the chosen distance/similarity measures in
the linguistic approximation (different approximated objects, different linguis-
tic scales). So far, the choice of the distance or similarity measure was left
entirely with the creator of the model - no guideance for the choice exists;
graphical representations/summaries of the performance of distance/similarity
measures are not being used so far.

• Propose easy-to-understand and easy-to-use method for graphical compari-
son of the performance of linguistic approximation applying different dis-
tance/similarity measures

• Identify potential drawbacks of chosen distance/similarity measures in the
context of linguistic approximation and their possible strange/unexpeted be-
haviour.

• To proposes a new method for linguistic approximation and show the adapt-
ability of the developed analytical framework to new linguistic approximation
methods on its example. The new method will provide not only a resulting
linguistic term for the approximated fuzzy number but also a supplementary
information describing its deviation from the approximating fuzzy number (in
terms of meaning).
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Since the number of pages is limited some results will be available in the ap-
pendices without detailed descriptions. Their understanding will be analogous to
the results presented directly in the body of the thesis.

2 Preliminaries
In this section the mathematical preliminaries used in the thesis are be presented
to unify the notation. First, the main concepts such as fuzzy sets, their properties
and basic operations with them are be defined. The definitions are be based on the
notation from L. A. Zadeh’s paper [38] where the key contepts of fuzzy sets were
formulated. Second, fuzzy numbers as the key concept representing the meanings of
linguistic terms throught out the thesis are defined. Finally a chapter introducing
the key concept of linguistic fuzzy modeling i.e. linguistic variables, linguistic scale
and linguistic approximation follows. For more details on fuzzy sets please see for
example [17, 8].

2.1 Basic notions
Let U be a nonempty set (the universe of discourse). A fuzzy set A on the universe
U is defined by the mapping A : U → [0, 1]. A family of all fuzzy sets on U is
denoted by F(U). For each x ∈ U the value A(x) is called the membership degree
of the element x in the fuzzy set A and A(.) is called a membership function of the
fuzzy set A.

Let A and B be fuzzy sets on the same universe U . The set Ker(A) = {x ∈
U |A(x) = 1} represents the kernel of A, Aα = {x ∈ U |A(x) ≥ α} denotes an α-cut
of A for any α ∈ [0, 1], Supp(A) = {x ∈ U |A(x) > 0} denotes a support of A.
Hgt(A) = sup{A(x)|x ∈ U} denotes a height of fuzzy set. Fuzzy set A is called
normal if Hgt(A) = 1, otherwise it is called subnormal.

We say that A is a fuzzy subset of B (A ⊆ B), if A(x) ≤ B(x) for all x ∈ U .
A union of two fuzzy sets A and B on U is a fuzzy set (A ∪ B) on U defined as
follows: (A ∪ B)(x) = max{A(x), B(x)} and a  Lukasiewicz union of two fuzzy sets
A and B on U is a fuzzy set (A ∪L B) on U defined as follows: (A ∪L B)(x) =
min{1, A(x) + B(x)}, ∀x ∈ U . A intersection of two fuzzy sets A and B on U is
a fuzzy set (A ∩ B) on U defined as follows: (A ∩ B)(x) = min{A(x), B(x)} and a
 Lukasiewicz intersection of two fuzzy sets A and B on U is a fuzzy set (A∩L B) on
U defined as follows: (A ∩L B)(x) = max{0, A(x) +B(x)− 1}, ∀x ∈ U .

Let A1, . . . , An be fuzzy sets on U1, . . . , Un respectively. The Cartesian product
of A1, . . . , An is a fuzzy set (A1×· · ·×An) on U1×· · ·×Un with membership function
(A1 × · · · × An)(x1, . . . , xn) = min{A1(x1), . . . , An(xn)}, ∀xi ∈ Ui, i = 1, . . . , n.
A fuzzy set R on U1 × · · · × Un is called an n-ary fuzzy relation. Let R be a
fuzzy relation on U × V and S be a fuzzy relation on V × W . The composition
(R ◦ S) is a fuzzy relation on U ×W a with membership function (R ◦ S)(x, z) =
supy∈V min{R(x, y), S(y, z)}, ∀x ∈ U, z ∈ W .
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A fuzzy number is a fuzzy set A defined on the set of real numbers which satisfies
the following conditions:

1. Ker(A) 6= ∅ (A is normal);

2. Aα are closed intervals for all α ∈ (0, 1] (this implies that A is unimodal)

3. Supp(A) is bounded.

A family of all fuzzy numbers on U is denoted by FN(U). A fuzzy number A
is said to be defined on [a, b] ⊂ R, if Supp(A) is a subset of the interval [a, b]. Real
numbers a1 ≤ a2 ≤ a3 ≤ a4 are called significant values of the fuzzy number A if
[a1, a4] = Cl(Supp(A)) and [a2, a3] = Ker(A), where Cl(Supp(A)) denotes a closure
of Supp(A).

Each fuzzy number A is determined by
{

[a(α), a(α)]
}
α∈[0,1]

, where a(α) and
a(α) is the lower and upper bound of the α-cut of fuzzy number A respectively,
∀α ∈ (0, 1], and the closure of the support of A Cl(Supp(A)) = [a(0), a(0)]. The
length of the support of a fuzzy number A, L(Supp(A)) can now be calculated as
L(Supp(A)) = a(0)− a(0).

The fuzzy number A such that a1 6= a4 is called linear if its membership function
is linear on [a1, a2] if a1 6= a2 and on [a3, a4] if a3 6= a4; for such fuzzy numbers we
will use a simplified notation A ∼ (a1, a2, a3, a4). A linear fuzzy number A is said
to be trapezoidal if a2 6= a3 and triangular if a2 = a3. We will denote triangular
fuzzy numbers by an ordered triplet A ∼ (a1, a2, a4). Triangular fuzzy number
A ∼ (a1, a2, a4) is called symmetrical triangular fuzzy number if a2 − a1 = a4 − a2.
If A ∈ FN(U) is a linear fuzzy number and c is a real number, then A + c =
(a1 + c, a2 + c, a3 + c, a4 + c).

The cardinality of a fuzzy number A on [a, b] is a real number Card(A) defined as
follows: Card(A) =

∫ b
a A(x)dx. Let A be a fuzzy number on [a, b] for which a1 6= a4.

The center of gravity of A is defined by the formula COG(A) =
∫ b
a xA(x)dx/Card(A).

If A = (a1, a2, a4) is symmetrical triangular fuzzy number on [a, b], then COG(A) =
a2 (note that Ker(a) = {a2}).

2.2 Linguistic approximation
Mathematical models nowadays are capable of providing a wide variety of outputs
ranging from numbers, intervals, functions to complex outputs represented in matrix
or graphical forms etc. The complexity of outputs can reflect the complexity of the
modeled system as well as the requirements of the user of the model. Not all types
of outputs that are currently available are however intuitive to the users of the
models. Consider standard (non-technical) education where numbers, intervals and
functions are the most frequently used mathematical objects. If a user is not familiar
with more complex mathematical entities he/she might not be able to interpret and
use them correctly. One way to solve this issue is to resign on complex outputs
and provide only such outputs that are understandable for their user. Another
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approach, the one adopted in this thesis is to assist the user of the model in his/her
understanding of the more complex mathematical entities. As natural language
is the most common means of communication it seems only reasonable to provide
this assistance by “translating” the mathematical objects into common language.
The use of natural language also allows to stress important aspects of the obtained
solution or to dampen the less important ones. It can even allow to add a desired
“spin” to the presented information [37].

Obviously such a translation can not constitute a one to one mapping. Even
though there might be slight differences in meaning between the mathematical out-
puts and their natural language translations, the benefits of such a translation might
outweight the risk stemming from slight alterations of meaning. Formally speaking
the process of assigning linguistic labels (words in common language) to various
mathematical objects is called linguistic approximation. If performed correctly this
process enables the use of advanced mathematical models with possibly complex
outputs even to unexperienced users (non-mathematicians). This thesis focuses on
providing guidance for this process, more specifically it aims on answering the ques-
tion of which methods should (or should not) be used for linguistic approximation
to achieve the desired effect. Note, that not only understanding of the outputs, but
also stressing some of their aspects as well as raising attention etc. might be the
possible goals of this process.

The process of linguistic approximation was proposed by L.A. Zadeh in 1975 [40,
41, 39]. Its key concept, as defined by Zadeh, is the linguistic variable. A linguistic
variable is a quintuple (V , T (V), X,G,M), where V is a name of the variable, T (V) is
the set of its linguistic values (terms), X is an universe on which the meanings of the
linguistic values are defined, G is a syntactic rule for generating the linguistic values
of the variable V . M is a semantic rule which to every linguistic value A ∈ T (V)
assigns its meaning A = M(A) which is usually a fuzzy number on X.

The values of the linguistic variable can now represent the possible transla-
tions that we would like to obtain in the process of linguistic approximation. We
assume that the meanings of the linguistic terms are understandable to the user of
the mathematical model and as such provide usefull replacements for the mathe-
matical entities provided by the model. We just need to be able to select the most
appropriate linguistic value of the linguistic variable to provide to the user of the
model. Note that not only are the meanings of the values of the linguistic variable
assumed to be understood by the user, their mathematical meaning obtained by the
function M are also available as mathematical entities. Surprisingly enough even
though linguistic approximation methods started to be proposed already at the end
of 1970s and the beginning of 1980s (see [40, 10, 35, 2] etc.) no single method seems
to dominate this area. In fact, the problem of linguistic approximation is considered
unsolved sufficiently even in 2006 [22] where it seems to reemerge in the context of
computing with perceptions under the slightly more general label of “retranslation”.
Also Yager in 2004 [37] points out the unavailability of criteria to asses the most
appropriate retranslation in computing with words.

Let Out be a output of mathematical model that needs to be assigned a lin-
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guistic label and (V , T (V), [a, b], G,M) be a linguistic variable such that T (V) =
{T1, . . . , Ts}. The linguistic approximation of the output Out is the process of search-
ing for a suitable linguistic term TOut from T (V) which describes the meaning of the
output Out the best. One of the most popular approaches to finding the linguistic
term TOut is using the “best-fit” approach:

TOut = arg min
i∈{1,...,s}

d(Ti, Out), (2.1)

where Ti is the meaning of the linguistic term Ti, i = 1, . . . , s. To be able to define
a suitable distance we need the meanings of the linguistic terms to be represented
by mathematical entities of the same type as Out. For the purposes of this thesis
we assume Out and Ti to be fuzzy sets (fuzzy numbers) on the same universe.
In this case d in the previous formula represents a general distance1 of fuzzy sets
(fuzzy numbers). In the family of “best-fit” linguistic approximation methods we are
looking for the linguistic term the meaning of which is the closest (most similar) to
the approximated mathematical entity (i.e. which mathematical object representing
the meaning of some linguistic term from T (V) “fits best” the (features of) the
approximated mathematical entity). Tah et al. [30] suggest the use of Euclidean
distance to find the best-fit whereas other authors suggest [44, 7] a range of possible
distances and similarities of fuzzy numbers for this purpose.

So far, the only requirement imposed on the linguistic variable used for the
purposes of linguistic approximation is that the meaning of its linguistic terms is
represented by fuzzy numbers. In this thesis, we however restrict ourself to spe-
cial types of linguistic variables called linguistic scale and enhanced linguistic scale.
These restrictions enable us to analyse the behaviour of linguistic approximation
under different distance (or similarity) of fuzzy numbers. This does not restrict
the use of the proposed methods for the analysis of the performance of different
distance/similarity measures of fuzzy numbers in the linguistic approximation.

A fuzzy scale on [a, b] is defined as a set of fuzzy numbers T1, T2, . . . , Ts on
[a, b], that form a Ruspini fuzzy partition (see [27]) of the interval [a, b], i.e. for all
x ∈ [a, b] it holds that ∑s

i=1 Ti(x) = 1, and the T ’s are indexed according to their
ordering. Linguistic variable (V , T (V), X,G,M) is called a linguistic scale on [a, b]
if X = [a, b], T (V) = {T1, . . . , Tn} and Ti = M(Ti), i = 1, . . . , n form a fuzzy scale
on [a, b]. Fuzzy scale is called uniform when L(Supp(Ti)) = 2 · (b− a)/(n−1) for all
i = 2, ..., n− 1,L(Supp(Ti)) = (b− a)/(n− 1) for i = 1 and i = n, Ti form a Ruspini
fuzzy partition of U , and T2, . . . , Tn−1 are symmetrical triangular fuzzy numbers.

Linguistic terms {T1, . . . , Tn} of linguistic scale T (V) are called elementary (level
1) terms of linguistic scale. Linguistic variable that we obtain from a linguistic scale
T (V) by extending its linguistic-term set by additional linguistic terms Ti to Tj
where i = 1, . . . , n − 1, j = 2, . . . , n and i < j (called derived linguistic terms) is
called enhanced linguistic scale; M(Ti to Tj) = Ti∪LTi+1∪L · · ·∪LTj. The enhanced
linguistic scale thus contains linguistic values of different levels of uncertainty – from

1Alternatively a similarity of two fuzzy sets (fuzzy numbers) can be used. In this case, the
arg min function in formula (2.1) is replaced by arg max.
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the possibly least uncertain elementary terms {T1, . . . , Tn} to the most uncertain lin-
guistic term T1 to Tn (uncertainty can be assessed by the cardinality of the meanings
of these linguistic terms). Derived linguistic terms Ti to Tj are called level j − i+ 1
terms and can be also denoted by Tij. Elementary linguistic terms Ti can be also
denoted by Tii (i.e. Ti = Tii to unify the notation).

3 Literature review
In this section we will provide a brief overview of linguistic approximation methods as
they were proposed in the scientific literature since the seminal papers on linguistic
fuzzy modeling by L. A. Zadeh [40, 41, 39]. Since the rest of this thesis focuses on
“best-fit” approaches, i.e. approaches that determine the linguistic approximation
based on the closeness (distance) of the approximated object and the fuzzy set
meaning of the linguistic terms, we will try to present mainly alternative approaches
to the “best-fit” in this chapter.

The first methods to appear in the scientific literature were multistage-ones.
Eshragh and Mamdani suggested in [10] to first split the approximated fuzzy set
into specific subsets, then to assign linguistic labels to this subsets and finaly to
derive the linguistic approximation using connectives (and, or, etc.) and hedges
(very, more or less, not). Even though this method was introduced four years after
the introduction of linguistic variables it already proposes searching for more then
one linguistic approximation and selecting the most simple (easiest to understand)
one. More specifically the method approximates the original fuzzy set and it also
finds the negation of the linguistic approximation of the negated fuzzy set (i.e. the
method finds the linguistic approximation of the fuzzy set A and its negation B;
it suggests the first in the form “it is A” and the negation of the second in the
form “it is not B” as possible linguistic approximations and chooses whichever one
is easier to understand or less complex). This constitutes a first step to considering
the semantic features of linguistic approximation. Similar approach was proposed
by Dvořák in [9] in the context of Novak’s fuzzy inference system.

One year later Wenstøp in [35] proposed a full auxiliary language to perform
quantitative analysis with linguistic values. The basic representations of meaning
where unimodal fuzzy sets which were represented by their coordinates in a two-
dimensional space; first coordinate representing the low-high dimension (position),
the second one representing their imprecision. This approach was capable of approx-
imating multimodal fuzzy sets by splitting them into simpler ones, replacing simpler
multimodal fuzzy sets by a unimodal fuzzy set from which a low-uncertain fuzzy sets
were excepted to model the “valley” between the two peaks. This way a collection
unimodal fuzzy sets was obtained, that could be combined using connectives into
the original approximated fuzzy set. The linguistic labels were assigned based on
the Euclidean distance of these simple fuzzy sets to the fuzzy sets representing the
meaning of 56 available linguistic labels in the two-dimensional position-imprecision
space (see Figure 3.1). The author himself however states [35, p. 106] that “...some
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labels are expressed rather more clumsily than in ordinary language.” For example
a possible output could look like this: “((not below lower medium) OR possibly
unknown) EXCEPT ((medium to rather high) EXCEPT upper medium)”. Given
the state of computer technology at that time, the results still provide reasonable
linguistic approximation of complex fuzzy sets. Modifications of this method were
proposed in [28, 36].

Figure 3.1: The 56 linguistic terms and their location in the position and imprecision
space. Adapted from [35, p. 105]

In the same year as Wenstøp, Bonnisone proposed in [2] another linguistic ap-
proximation method based on feature extraction and pattern recognition techniques.
In its first step the method selected a predefined number of linguistic terms from a
finite linguistic term set based on their semantic similarity with the approximated
fuzzy object. The semantic similarity is assessed based on several key features such
as cardinality, location (COG), skewness and fuzziness etc. These features are as-
signed weights to emphasize the difference in their importance for the given purpose.
In the second step the modified Bhattacharyya distance (which takes into account
the complete information represented by the membership functions) is applied to
select the closest fuzzy set representation of a linguistic term to the approximated
fuzzy set. This linguistic term is finally assigned as a result of the linguistic ap-
proximation. The preselection by applying weighted Euclidean distance to find the
“most appropriate” candidates based on the selected features reduces the compu-
tation complexity of the whole method and allows for the application of the more
advanced modified Bhattacharyya distance only on the reduced set of candidates
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for the linguistic approximation. The author revisited the idea of linguistic approx-
imation again in [3].

In 1998 Kowalczyk [18] proposed the question of correct linguistic approxima-
tion of subnormal fuzzy sets and suggest to use of subnormal primitive terms. He
proposes a methodology for the linguistic approximation of subnormal fuzzy sets but
concludes that the linguistic approximation using subnormal meanings of linguistic
terms might be difficult to interpret. Kowalczyk also stresses that the issue of select-
ing the most appropriate distance/similarity measure for linguistic approximation
remains an open question. Even after more than twenty years since the introduction
of the concept of linguistic approximation this issue remains unresolved until today.
This is one of the reasons why this thesis was written.

Zwick et al. in 1987 in [44] and Degani and Bortolan in [7] point out the abun-
dancy of available distance and similarity measures of fuzzy numbers and the lack
of guidelines for their appropriate selection in linguistic approximation in various
context. Even these authors do not resolve the issue of selection of appropriate dis-
tance/similarity measures in linguistic approximation. They provide some insights
in the functioning of the distances/similarities, yet no general methodology for the
analysis of the performance of various distance/similarity measures is suggested.
Marhamati et al. [21] approach the issue of linguistic approximation from a slightly
different angle in the context of computing with words. They classify linguistic ap-
proximation methods into three categories and assume that the result of linguistic
approximation can be a sentence, i.e. modifiers and quantifiers are applied to the
atomic terms which is well in line with the ideas of computing with perceptions
(see e.g. [42, 43, 22]. Given the possibly vast number of linguistic approximations
(increasing with the number of elementary/primary terms, connectives and hedges),
Kowalczyk [19] suggested to use a genetic programming to speed-up the process of
searching for a fitting linguistic term.

In 2004 Klir wrote a short paper called Some Issues of Linguistic Approximation
[16] where he stated that the defuzzification of fuzzy numbers (i.e. in the process
of assigning a real number value to a fuzzy number) was more extensively studied
in the literature than linguistic approximation. He also contemplates about the
meaning of the expression good approximation: ‘There are of course various views
about what the terms “good approximation” and “best approximation” are supposed
to means. An epistemological position taken here is that these terms should always
be viewed in information-theoretic terms. That is, a good approximation should be
one in which the loss of information is small and, similarly, the best approximation
(not necessarily uniuqe in this case) should be one of those in which the loss of
information is minimal.’ [16, p. 5]
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4 Methods for the analysis of linguistic approxi-
mation

In this section several methods for the analysis of linguistic approximation are pro-
posed. The methods differ in several aspects:

• type of the aproximated object (triangular or more general fuzzy numbers,
fuzzy sets are also considered in several cases) – this influences the number of
parameters that need to be reflected in the graphical representation,

• symmetry of the approximated object (most frequently fuzzy number) – this
also influences the number of parameters required for unambiguous representa-
tion of the output of the analysis; asymmetry introduces overlaps in graphical
representation using fever dimensions,

• type of the linguistic scale used to provide linguistic values for the approxi-
mation (elementary and enhanced scales) – this affects the number of possible
outputs of the linguistic approximation (only linguistic variables with finite
lingustic terms set are considered).

Proposed methods are applicable for the analysis of any linguistic approxima-
tion method using a finite linguistic terms set. This is not a restrictive requirement
since as long as there are finitely many possible linguistic approximations, we can
make sure that all of them are properly understood by the user of the outputs.
Given the goal of the thesis, examples of the performance of the proposed analytical
methods consider distance/similarity based linguistic approximation.

4.1 Representation of the approximated objects
In this thesis we consider mainly triangular fuzzy numbers to be the objects to be
approximated – both symmetrical and asymmetrical; trapezoidal fuzzy numbers as
well as general Mamdani-type fuzzy set are also briefly discussed. For the purpose
of visualization of the results of our analysis, we need to be able to represent the
approximated objects by sufficiently low number of characteristics. The higher the
number, the more complex (and less understandable) the visualization may become.

As long as symmetrical triangular fuzzy numbers are considered, each can be
uniquely represented by a single point in two-dimensional space, e.g. using cen-
ter of gravity (COG) and length of support of the approximated fuzzy number as
coordinates (see e.g. publication I or [31]).

If the triangular fuzzy number is asymmetrical, the above suggested representa-
tion is no longer unique (the same point in the two-dimensional space can represent
various fuzzy numbers). Nevertheless, these fuzzy numbers can be uniquely rep-
resented in three-dimensional space, e.g. using their Center of gravity, length of
support and the kernel element as coordinates. A similar representation is required
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for symmetrical trapezoidal fuzzy numbers. Again, three dimensions are needed,
e.g. center of gravity, the length of support and the length of kernel as coordinates.

In the more complex case e.g. when asymmetrical trapezoidal fuzzy numbers are
taken into account, more characteristics are needed for unambiguous representation:
center of gravity (COG), the length of support, the length of kernel and center of
support as coordinates, etc.

Obviously a visualization using more than two dimensions is potentially prob-
lematic as it requires interactive representation (e.g. the ability of the user to rotate
the plots). Therefore, in following text we will use two-dimensional plots wherever
possible, providing additional information using other means where needed.

4.2 Approximating linguistic variables selected for the anal-
yses

As mentioned before, the proposed analytical methods can be used with any ap-
proximating linguistic variable as long as its terms set is finite. For the purposes of
presentation of the performance of the proposed analytical methods, the following
linguistic variables on [0, 1] interval are considered:

• A uniform linguistic scale with five linguistic terms
In this case, we will consider a linguistic scale that contains five linguistic
terms T1, . . . , T5. The Meanings of these terms are represented (in respective
order) by triangular fuzzy numbers T1 = (0, 0, 0.25), T2 = (0, 0.25, 0.5), T3 =
(0.25, 0.5, 0.75), T4 = (0.5, 0.75, 1), T5 = (0.75, 1, 1). These fuzzy numbers form
a uniform Ruspini fuzzy partition of interval [0, 1] and are depicted (together
with their respective linguistic terms) on Figure 4.1.

Figure 4.1: Fuzzy set meanings of the elementary linguistic terms of the 5-term
uniform linguistic scale.

• Enhanced linguistic scale derived from the uniform linguistic scale
with five terms
This linguistic variable will contain all five elementary linguistic terms from
the previous case and also derived linguistic terms “Ti to Tj” denoted Tij,
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where i = 1, . . . , 4, j = 2, . . . , 5 and i < j (see Section 2 for the approach how
to obtain derived linguistic terms and their meaning).

For the simplicity of graphical representation each linguistic term will be as-
signed a specific colour further in the text. Bright red will be reserved for undecided
cases where more than one lingustic term is suggested by the linguistic approxi-
mation. The generalization of the results for different universes, different numbers
of elementary terms, non uniform scales, etc. is straightforward. The thesis is re-
stricted to five elementary terms to maintain graphical representation clear enough.

4.3 Studied distance and similarity measures

It was already specified that the focus of this thesis is mainly on distance/similarity
based linguistic approximation. The reason for this is that distance/similarity based
linguistic approximation methods often require finite and previously known sets of
linguistic terms. In the following sections we will suggest analytical methods for the
assessment of linguistic approximation applied to various approximated objects. In
line with the available literature [7, 44] a distance is supposed to be minimized while
similarity is supposed to be maximized to obtain the best linguistic approximation.

To enhance the practical relevance of the thesis eight frequently used or in-
vestigated distance/similarity measures of fuzzy numbers have been chosen. The
proposed analytical methods will be applied to all of them. This will allow us to
not only clearly see the benefits (and possible limitations) of the proposed analytic
methods, but also to draw conclusions concerning the usefulness of the selected dis-
tance/similarity measures in Linguistic approximation in the given setting. This, to
my best knowledge, has never been done before. This way it not only clearly shows
how to use the proposed analytical tools, but also provide valuable insights concern-
ing the performance of the chosen eight distance/similarity measures in linguistic
approximation.

LetA andB are trapezoidal fuzzy numbers on [0, 1]. Following distance/similarity
measures of fuzzy numbers will be used in the further text:

• distance measure d1 [25] (Formula 4.1 is a generalization of the distance used
in [25] for fuzzy numbers on an interval. ):

d1(A,B) =
∫ 1

0 | A(x)−B(x) | dx∫ 1
0 A(x)dx+

∫ 1
0 B(x)dx

. (4.1)

• distance measure d2 [24]:

d2(A,B) = sup
x∈[0,1]

|A(x)−B(x)|. (4.2)
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• modified Bhattacharyya distance d3 [1]:

d3(A,B) =
[
1−

∫ 1

0
(A∗(x) ·B∗(x))1/2dx

]1/2
, (4.3)

where A∗(x) = A(x)/
∫ 1

0 A(x)dx and B∗(x) = B(x)/
∫ 1

0 B(x)dx.

• dissemblance index d4 [14]:

d4(A,B) =
∫ 1

0
|a(α)− b(α)|+ |a(α)− b(α)| dα. (4.4)

Please note that the following formulas for similarity measures of fuzzy numbers
were originally defined for generalized trapezoidal fuzzy numbers2. Since we restrict
the scope of the thesis only to linguistic approximation of triangular/trapezoidal
fuzzy numbers, the formulas were adjusted for easier computation (since the height
of fuzzy numbers is 1 by definition). Please check the respected references for original
formulas. Let us assume that A ∼ (a1, a2, a3, a4) and B ∼ (b1, b2, b3, b4).

• similarity measure s1 [5], [6]:

s1(A,B) =
(

1−
∑4
i=1 |ai − bi|

4

)

·(1− |XA −XB|)
⌈

(a4−a1)+(b4−b1)
2

⌉
· min(YA, YB)

max(YA, YB) , (4.5)

where [XA, YA] are the coordinates of the center of mass of fuzzy number A
calculated using the following formulas:

YA =


(

a3−a2
a4−a1

+2
)

6 , if a4 6= a1
1
2 , if a4 = a1

, (4.6)

XA = YA · (a3 + a2) + (a4 + a1) · (1− YA)
2 , (4.7)

and [XB, YB] are coordinates of the center of mass of B defined analogically.

2A fuzzy set AG on U is called generalized trapezoidal fuzzy number if there exists a trapezoidal
fuzzy number A and wA ∈ [0, 1] for which AG(x) = wA ·A(x), x ∈ U .
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• similarity measure s2 [33]:

s2(A,B) =
(

1−
∑4
i=1 |ai − bi|

4

)
· min{Pe(A), P e(B)}+ 1

max{Pe(A), P e(B)}+ 1 , (4.8)

where Pe(A) =
√

(a1 − a2)2 + 1 +
√

(a3 − a4)2 + 1 + (a3 − a2) + (a4 − a1),
Pe(B) is defined analogically.

• similarity measure s3 [11]:

s3(A,B) =
(

1−
∑4
i=1 |ai − bi|

4

)
· min{Pe(A), P e(B)}

max{Pe(A), P e(B)} ·

min{Ar(A), Ar(B)}+ 1
max{Ar(A), Ar(B)}+ 1 , (4.9)

where Ar(A) = 1
2(a3− a2 + a4− a1), Ar(B) is defined analogically and Pe(A)

and Pe(B) are computed identically as in the previous measure.

• similarity measure s4 [15]:

s4(A,B) =
(

1−
∑4
i=1 |ai − bi|

4 · d′(A,B)
)
·
(

1− |Ar(A)− Ar(B)|
3

−
|Pe(A)−Pe(B)|

max{Pe(A),P e(B)}

3

)
, (4.10)

where d′(A,B) =
√

(XA−XB)2+(YA−YB)2
√

1.25 , |Pe(A)−Pe(B)|
max{Pe(A),P e(B)} = 0 when max{Pe(A), P e(B)} =

0 and [XA, YA] and [XB, YB] are computed identically as in similarity measure
s1.

However, the coordinates of a center of mass of a rectangle defined by the
following four points [a1, 0], [a2, 1], [a3, 1] and [a4, 0] are defined by (4.11) and (4.12).
Clearly, (4.7) does not coincide with (4.11) neither does (4.6) with (4.12). Assuming
that the intention was to use the coordinates of the center of mass of the fuzzy
number, formulas (4.11) and (4.12) should be used.

XA =
{

1
3
a2

4+a2
3−a

2
2−a

2
1+a4a3−a2a1

a4+a3−a2−a1
, if a4 < a1

a1, if a4 = a1
, (4.11)

YA =
{

1
3

(
1 + a3−a2

a4+a3−a2−a1

)
, if a4 < a1

1
2 , if a4 = a1

. (4.12)

In this thesis we proceed to use the formulas (4.11) and (4.12) for the calculation
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of coordinates of the center of mass of a trapezoidal fuzzy numbers. The effect of
this correction is discussed in section 4.4.2.

Distance measures d3 and d4 along with similarity measures s2 and s3 have
already been extensively studied by the author (see Table 4.1). To extend the
findings and to show the validity of the proposed methods for the analysis of the
performance of distance/similarity measures in linguistic approximation, distance
measures d1 and d2 and similarity measures s1 and s4 are also investigated in this
thesis. Table 4.1 summarizes which publications focus on which distance/similarity
measures and which type of approximated fuzzy numbers are taken into considera-
tion in the publications by the author. It also indicates what underlying linguistic
variable is assumed for linguistic approximation.

d1 d2 d3 d4 s1 s2 s3 s4 Fuzzy number type Scale used for LA
Publication I • • • • symmetrical, triangular elementary, enhanced
Publication II
Publication III • enhanced
Publication IV • elementary
Publication V • • • • asymmetrical, triangular elementary
Publication VI • • • • asymmetrical, triangular enhanced
Publication VII • • symmetrical, triangular elementary
Publication VIII • • Mamdani-type enhanced
Publication IX • symmetrical, triangular
Publication X • • • • symmetrical, triangular
Publication XI • asymmetrical, triangular elementary

Table 4.1: Overview of the distance and similarity measures, types of fuzzy numbers
and underlying linguistic variables studied in publications I-XI. Publication II deals
with the background of the use of the concepts of fuzzy sets and linguistic modeling
in social sciences, i.e. it discusses the benefits of these concepts for laymen.

As it was already mentioned, only some selected distance/similarity measures
are examined in this thesis. Other, less frequently used distance measures can be
found for example in [44, 7, 37, 21] etc. Similarly, less frequently used similarity
measures can be found in [34, 26, 23] etc.

4.4 Analysis of linguistic approximation of symmetrical tri-
angular fuzzy numbers

In this section we will focus on linguistic approximation of triangular fuzzy numbers
that are symmetrical. This section summarizes the findings from publication I and
extends these findings to distance measures d1 and d2 and similarity measures s1
and s4 introduced in section 4.3.

In accordance with publication I the performace of each distance/similarity
measure for the linguistic approximation of symmetrical triangular fuzzy numbers
on the interval [0, 1] will be numerically investigated. Each of these fuzzy numbers
O = (o1, o2, o4), where o2− o1 = o4− o2, represents a possible output of some math-
ematical model and can be represented by a 2-tuple (COG(O),L(Supp(O)));. To
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allow quicker calculations, this 2-tuple can be rewritten for symmetrical triangular
fuzzy numbers as (o2, o4 − o1). Using this 2-tuple each approximated fuzzy num-
ber can be unambiguously respresented as a point in a 2D graph as is presented in
Figure 4.2.

Figure 4.2: Representation of a symmetrical fuzzy number A as a point in a 2-
dimensional space. The x-coordinate represents COG(A), the y-coordinate repre-
sents L(Supp(A)) and colour can be used to represent the approximating linguistic
term.

To obtain a set of symmetrical triangular fuzzy numbers to be linguistically
approximated, it is possible to randomly generate them as was suggested in [31].
The same procedure was later used in publications V, VI or XI. For a systematic
analysis of the performance of distance/similarity measures it may be more appro-
priate to generate the fuzzy numbers on [0, 1] in a “uniform way”. A grid approach,
presented in publication I and later used in publication VII can be used to gener-
ate the sample of approximated fuzzy numbers such that their representations are
uniformly distributed in the [0, 1]× [0, 1] space. The grid approach is applied in this
thesis. The two [0, 1] intervals are therefore uniformly divided into 1 001 points each
and these points represent possible centers of gravity/length of support of the ap-
proximated fuzzy numbers. Using the cartesian product we obtain 1002001 2-tuples
that represent symmetrical triangular fuzzy numbers. Not all of these fuzzy num-
bers are defined on [0, 1] interval (e.g. two tuple (1, 1) represents the fuzzy number
(0.5, 1, 1.5)). We restrict our analysis to the fuzzy numbers defined on the [0, 1] in-
terval only. Thus obtaining the set Out1 = {O1, . . . , O500000} that contains 500 000
symmetrical triangular fuzzy numbers on interval [0, 1] (see section 4 of publication
I for more information).

4.4.1 Linguistic approximation of symmetrical triangular fuzzy numbers
using a linguistic scale

At first, we will consider a uniform linguistic scale with five linguistic terms T1, . . . , T5.
The meanings of these terms are represented (in respective order) by triangular fuzzy
numbers T1 = (0, 0, 0.25), T2 = (0, 0.25, 0.5), T3 = (0.25, 0.5, 0.75), T4 = (0.5, 0.75, 1), T5 =
(0.75, 1, 1) that form a uniform Ruspini fuzzy partition of interval [0, 1].

Each of the distance and similarity measures from section 4.3 is applied to
identify the linguistic approximation of each fuzzy number from the set Out1. Re-
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sults describing the performance of the Bhattacharyya distance d3 are depicted in
Figure 4.3. Each approximating linguistic term is assigned a different colour, ares
with same colour represent fuzzy numbers that are linguistically approximated by
the same linguistic term. White areas consist of the representations of such sym-
metrical triangular fuzzy numbers, that are not defined on [0, 1]. This graphical
representation was designed to provide insights into the performance of a selected
distance/similarity measure that would be easily understandable. From Figure 4.3
we can e.g. see, that result of linguistic approximation is highly COG driven; the
length of support plays only minor role.

Figure 4.3: A graphical representation of the results of linguistic approximation of
symmetrical triangular fuzzy numbers using the Bhattacharyya distance d3 and a
linguistic scale. Each colour represents one term of the five term linguistic scale: T1
(blue), T2 (green), T3 (black), T4 (pink) and T5 (yellow). Red colour (visible on the
borders between the black area and its neighborouing areas) represents ambiguous
cases, i.e. cases when more than one linguistic term is assigned.

Using this graphical representation more distance and similarity measures can
be compared. Figure 4.4 summarizes the performance for all the investigated dis-
tance/similarity measures presented in section 4.3. Differences in their performance
are clearly visible. To provide more details about the performance of linguistic
approximation under selected measures we add the Table 4.2, that sumarizes the
frequencies of assignment of each of the elementary linguistic terms by linguistic ap-
proximations under distance/similarity measures. This information can be used not
only to verify our findings based on the graphical summary provided by Figure 4.4
(see the following list), but also to highlight some unexpected/easily overlooked be-
haviour of linguistic approximation under some distance/similarity measures. This
becomes more important when enhanced linguistic scales are used and higher-level
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linguistic terms start to be assigned (see e.g. the low frequency of assignment of
linguistic terms T12 and T45 by linguistic approximation using distance measure d1 in
section 4.4.2, which can be easily overlooked in Figure 4.7). Based on the direct com-
parison of the performance of distance/similarity measure graphically summarized
in Figure 4.4 we can draw the following conclusions:

• Linguistic approximation of symmetrical triangular fuzzy numbers with the
length of the support higher then approximately 0.4 are not dependent on the
choice of distance/similarity measure. The results of the lingusitic approxima-
tion in these cases depend only on the center of gravity of the approximated
fuzzy numbers. Therefore if the possible outputs of the model are only fuzzy
numbers with higher cardinality, the choice of a distance/similarity measure
(out of the once discussed in this thesis) is of no consequence. In such cases it
is therefore reasonable to use measure that are e.g. easy to compute or readily
available in the software we are using.

• Distance measure d2 does not seem to be appropriate for the linguistic approx-
imation of triangular symmetrical fuzzy numbers. Firstly, lingusitic terms T1
(blue) and T5 (yellow) are not used at all. The set of obtainable linguistic
terms is thus reduced, moreover the border terms (i.e. the terms with mean-
ings closest to the endpoints of [0, 1] interval) are eliminated. This could by
undesirable, because the border terms can be the most important ones (e.g.
excellent evaluation; extremly dangerous...). Secondly, there are four “triangle-
shaped” areas (red) that represent fuzzy numbers, for which a unambiguous
linguistic approximation can not be determined (distance measure d2 selects
more than one lingustic term as a result of linguistic approximation).

• The remaining distance measures d1, d3 and d4 provide similar results. The
results of linguistic approximation using Bhattacharyya distance d3 depend
almost exclusively on the center of gravity of the approximated fuzzy number
(we can see from Figure 4.3 that the border between linguistic terms T1 (blue)
and T2 (green) is not completly vertical, nor is the border between T4 (pink)
and T5 (yellow)). The results of linguistic approximation using distance mea-
sures d1 and d4 exhibit the same pattern, the border between the blue and
the green area is more dependent on the length of the support of the approx-
imated fuzzy numbers. The same holds for the border between the pink and
the yellow areas for these two distances.

• Differences between the outputs of linguistic approximation using the four
selected similarity measures are clearly visible. Linguistic approximation using
the similarity measure s1 provides results similar to Bhattacharyya distance
d3 – i.e. it focuses mostly on the center of gravity of approximated fuzzy
numbers.

• Similarity measure s2 is more focused on the shape of the approximated fuzzy
number (it uses perimeters of fuzzy numbers) than s1. Therefore fuzzy num-



4.4 Analysis of linguistic approximation of symmetrical triangular fuzzy
numbers 35

bers with smaller length of support and center of gravity close to the borders
of the interval [0, 1] tend to be linguistically approximated by linguistic term
T1 instead of T2 or T5 instead of T4. This is due to the fact, that narrow tri-
angles close to 0 or 1 are more similar to T1 ot T5 respectively (note, that the
perimeter of T1 or T5 is smaller than the perimeter of T2, T3 or T4.

• The performance of similarity measures s3 and s4 is significantly different from
the performance of all the other similarity and distance measures considered in
this thesis. The s3 and s4 measures focus not only on the perimeters (as sim-
ilarity measure s2 does), but also on the areas of fuzzy numbers. This results
in the amplification of the effect observed for similarity measure s2. Note that
even some fuzzy numbers that were consistently linguistically approximated
by the middle term T3 (black) by all the previous measures (with the exception
of distance measure d2) are approximated by linguistic terms T1 or T5 under s3
and s4. This effect is even stronger using similarity measure s4. In essence, T2
and T4 are never assigned as lingusitic approximation of low uncertain fuzzy
numbers.

Level 1 T1 T2 T3 T4 T5 Ambiguous
d1 26 654 113 595 218 000 113 595 26 654 1 502
d2 0 93 500 187 000 93 500 0 126 000
d3 26 694 113 556 218 000 113 556 26 694 1 500
d4 28 405 111 823 218 000 111 823 28 405 1 544
s1 28 940 111 307 218 000 111 307 28 940 1 506
s2 47 360 92 885 218 000 92 885 47 360 1 510
s3 90 096 52 582 213 500 52 582 90 096 1 144
s4 100 001 45 231 208 554 45 231 100 001 982

Table 4.2: Frequencies of assignment of each of the elementary linguis-
tic terms T1, . . . , T5 as linguistic approximations of the symmetrical triangular
fuzzy numbers from the set Out1 by the examined distance/similarity measures
d1, d2, d3, d4, s1, s2, s3 and s4. The column ambiguous represents cases where more
than one linguistic term was recommended, i.e. the shortest distance/maximum
similarity of the approximated fuzzy number to the meanings of the linguistic terms
was identical for two or more terms.

4.4.2 Linguistic approximation of symmetrical triangular fuzzy numbers
using an enhanced linguistic scale

In this section, we will expand the uniform linguistic scale with five linguistic terms
T1, . . . , T5 from the previous section by adding derived linguistic terms Tij, where
i = 1, . . . , 4, j = 2, . . . , 5 and i < j. The meanings of the elementary terms remain
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Figure 4.4: A graphical summary of the performance of the chosen distance and
similarity measures in the linguistic approximation of symmetrical triangular fuzzy
numbers on [0, 1] using a linguistic scale. Each colour represents one term of the five
term linguistic scale: T1 (blue); T2 (green), T3 (black), T4 (pink) and T5 (yellow).
Red colour represents ambiguous cases, i.e. cases when more than one linguistic
term is assigned.
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the same (and are represented by triangular fuzzy numbers) and the meanings of the
enhanced linguistic terms are represented by trapezoidal fuzzy numbers (obtained as
 Lukasiewicz unions of the meanings of the respective elementary linguistic terms).

In line with the previous section each of the distance and similarity measures
considered in section 4.3 is applied here to identify the linguistic approximation
of each fuzzy number from the set Out1. An example of the results describing
the performance of one chosen distane measure, the Bhattacharyya distance d3,
is depicted in Figure 4.5. Again, each approximating linguistic term is assigned
a different colour; areas with the same colour represent fuzzy numbers that are
linguistically approximated by the same linguistic term. Colours that have been used
in the previous section still represent the same linguistic terms (T1, . . . , T5), while
new colours represent derived linguistic terms Tij. Differences resulting from the use
of enhanced linguistic scale can be directly studied by the comparison of Figures 4.3
and 4.5. When the enhanced linguistic scale is used for linguistic approximation the
information respresented by the length of support of the approximated fuzzy number
now plays a much more significant role for the investigated Bhattacharyya distance
d3. This can not be observed under the linguistic scale. When the center of gravity
of the approximated fuzzy number lies half way between the centers of gravity of the
fuzzy numbers representing the meanings of the neighbouring elementary linguistic
terms a derived linguistic term is suggested as a linguistic approximation instead
of the elementary ones. The higher the length of support of the approximated
fuzzy number the further its center of gravity can be from the middle point for the
linguistic approximation to assigned derived term. When the length of support is
higher then approximately 0.75, alementary linguistic terms are no longer assigned
and the linguistic approximation suggests derived linguistic terms only.

Before we focus on the direct comparison of the performance of linguistic ap-
proximation using the selected distance/similarity measures in combination with
the enhanced linguistic scale, we need to deal with one important issue. As we have
stated in section 4.3, the similarity measures s1 and s4 require the calculation of
x and y coordinates of the center of mass of the fuzzy numbers. However we have
pointed out that the original formulas (4.6) and (4.7) do not provide the coordi-
nates of the center of mass; to obtain the correct coordinates formulas (4.11) and
(4.12) should be used. In Figure 4.6 we show the difference between the originally
proposed formulas (4.6) and (4.7) and the correct formulas for the calculation of
the center of mass of the fuzzy number (4.11) and (4.12) in the calculation of the
similarity measure s1. More specifically we show how the results of the linguistic
approximation under enhanced linguistic scale differ between the two approaches to
the calculation of the center of mass of a fuzzy number. The left graph represents
the results using the original formulas while the right graph shows the results ob-
tained using formulas (4.11) and (4.12) in s1. While the original formula for the
calculation of s1 can result in the use of derived linguistic term - T23 (purple) and
T34 (brown), the use of the correct formulas (4.11) and (4.12) no longer suggest any
derived linguistic terms to be used as a linguistic approximation under s1. It is
evident that the results of linguistic approximation are affected by the choice of the
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Figure 4.5: A graphical representation of the results of linguistic approximation of
symmetrical triangular fuzzy numbers using the Bhattacharyya distance d3 and an
enhanced linguistic scale. Elementary linguistic terms are represented by the same
colours as in figure 4.3 (i.e. blue, green, black, pink and yellow respectively). Other
colours represent derived linguisted terms.

formulas for the coordinates of the center of mass of a fuzzy number. As the original
idea in s1 and s4 is to use the x and y coordinates of the centers of mass of the fuzzy
numbers we have decided to use the correct formulas (4.11) and (4.12) in the thesis.

As in the previous section, we will use graphical representation of the results of
linguistic approximation using the selected distance and similarity measures. Figure
4.7 summarizes the performance for all the investigated distance/similarity measures
presented in section 4.3 in combination with enhanced linguistic scale. Frequencies
of assignment of each of the linguistic terms (elementary and derived) by linguistic
approximation are presented in Table 4.3. Based on such a direct comparison of the
performance of distance/similarity measure in the given context we can draw the
following conclusions:

• Similarity measure s1 is the only measure that suggest the same linguistic ap-
proximation regardless if standard or enhanced linguistic scale is used. Derived
linguistic terms are never assigned. All the other studied distance/similarity
measure suggest derived linguistic terms as linguistic aproximation for some of
the symmetric triangular fuzzy numbers on [0, 1] when the enhanced linguistic
scale is considered.

• Distance measures d1 and d3 are the only measures for which a level 3 linguistic
term can be selected as a result of linguistic approximation - linguistic term
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Figure 4.6: A comparison of the effect of different approaches to the calculation of
the center of mass of a fuzzy number on the results of linguistic approximation using
s1 with enhanced linguistic scales. Formulas (4.6) and (4.7) are applied in the left
graph, formulas (4.11) and (4.12) are applied in the right graph.

T24 (dark blue). Other distance/similarity measures can select only elementary
linguistic terms or level 2 terms (except for s1 where even level 2 terms are not
used at all). This means that except for d1 and d3 all the measures assigned
relatively low-uncertain linquistic approximations even to fuzzy numbers with
high cardinality.

• Linguistic approximation using distance measure d1 can result in level 2 lin-
guistic terms T12 (dark green) and T45 (aqua). This could be easily overlooked,
because in our numerical investigation, only 50 fuzzy numbers were approxi-
mated by either of these two level 2 terms (e.g. fuzzy numbers with the length
of the support approximately equal to 0.3 and the center of gravity approx-
imately equal to 0.15 or 0.85). In order to avoid potential overlookings of
this type, I strongly suggest to accompany the graphical representation of the
performance of linguistic approximation by a table representing the relative
frequencies of assignment of individual linguistic terms - see Table 4.3.

• With the exception of Bhattacharyya distance d3, all the distance/similarity
measures provide linguistic approximations identical to those under the lin-
guistic scale (section 4.4.1) for all fuzzy numbers whose length of support is
below a certail threshold. The value of this threshold varies from approxi-
matelly 0.3 for distance measure d1, approximately 0.5 for distance measures
d2 and d4 to approximatelly 0.6 for similarity measures s2, s3 and s4. We have
already stated that the results suggested by s1 are identical regardles of the
linguistic scale, i.e. the respective threshold would be 1. This implies that the
choice of the approximating linguistic scale is of consequence only if the ap-
proximated fuzzy numbers are going to have the lengths of support above the



40 4 Methods for the analysis of linguistic approximation

respective thresholds. Note that for the Bhattacharyya distance d3 the thresh-
old is essentially zero which means that level 2 linguistic terms can be obtained
as linguistic approximation even for very low-uncertain fuzzy numbers.

• Distance d2 again does not seem to be appropriate for the linguistic approxi-
mation - both problems from previous section remain (linguistic terms T1 and
T5 are not used at all and there are “triangle-shaped” red areas that represent
fuzzy numbers that can not be unambiguously linguistically approximated).
The use of the enhanced linguistic scale introduces two level 2 linguistic terms
as a result of linguistic approximation for fuzzy numbers with high cardinality
- T23 (purple) and T34 (brown). This is also the case of distance measure d4.

• Similarity measures s2, s3 and s4 provide similar results of linguistic approxi-
mation. Derived linguistic terms are suggested (as linguistic approximations)
for fuzzy numbers with high cardinality. However, while s2 (similarly to d2
and d4) may result only in T23 (purple) and T34 (brown) linguistic terms, the
remaining similarity measures s3 and s4 may result also in T12 (dark green)
and T45 (aqua); the only other measure that can provide these linguistic terms
as a result of linguistic approximation is the Bhattacharyya distance d3. Note,
that areas representing fuzzy numbers that are linguistically approximated by
T12 or T45 are significantly larger in the case of similarity measure s4 than s3.

• The performance of linguistic approximation using investigated distance/similarity
measures showed similar characteristics for all the measures with the excep-
tions of Bhattacharyya distance d3. Bhattacharyya distance assigns higher
level (derived) linguistic terms to fuzzy numbers with much lower cardinalities
than all the other measures. Also the “borders” between the areas of fuzzy
numbers linguistically approximated by the same linguistic terms are curved
- for other measures, the areas are rather straight.
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Figure 4.7: A graphical summary of the performance of the chosen distance and
similarity measures in the linguistic approximation of symmetrical triangular fuzzy
numbers on [0, 1] using enhanced linguistic scale. Elementary linguistic terms are
represented by the same colours as in figure 4.4 (i.e. blue, green, black, pink and
yellow respectively). Other colours represent derived linguisted terms. Red colour
represents ambiguous cases, i.e. cases when more than one linguistic term is as-
signed.
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Level 1 T1 T2 T3 T4 T5
d1 26 650 101 270 156 474 101 270 26 650
d2 0 88 375 155 751 88 375 0
d3 25 707 93 062 138 922 93 062 25 707
d4 28 405 106 698 186 751 106 698 28 405
s1 28 940 111 307 218 000 111 307 28 940
s2 47 360 90 804 175 672 90 804 47 360
s3 90 096 49 765 172 272 49 765 90 096
s4 100 001 41 895 165 361 41 895 100 001

Level 2 T12 T23 T34 T45
d1 25 42 252 42 252 25
d2 0 20 834 20 834 0
d3 4 282 48 973 48 973 4 282
d4 0 20 834 20 834 0
s1 0 0 0 0
s2 0 23 249 23 249 0
s3 3 870 19 539 19 539 3 870
s4 9 200 15 704 15 704 9 200

Level 3 T13 T24 T35 Ambiguous
d1 0 2 490 0 642
d2 0 0 0 125 831
d3 0 16 970 0 60
d4 0 0 0 1 375
s1 0 0 0 1 506
s2 0 0 0 1 502
s3 0 0 0 1 188
s4 0 0 0 1 039

Table 4.3: Frequencies of assignment of each of the elementary linguistic terms
T1, . . . , T5 and also of the derived level 2 linguistic terms T12, T23, T34, T45 and level
3 linguistic terms T13, T24 and T35 as linguistic approximations of the symmetrical
triangular fuzzy numbers from the set Out1 by d1, d2, d3, d4, s1, s2, s3 and s4. The
frequencies for use of higher level linguistic terms are not presented, because they
were not selected as a output of the linguistic approximation for any of the approx-
imated fuzzy numbers. The column ambiguous represents cases where more than
one linguistic term was recommended.
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4.5 Analysis of linguistic approximation of asymmetrical
triangular fuzzy numbers

The framework introduced in section 4.4 will be now applied on linguistic approx-
imation of asymmetrical triangular fuzzy numbers. Although the generalization to
asymmetrical fuzzy numbers may seem to be straightforward (technically methods
introduced in section 4.4 could be directly applied on asymmterical triangular fuzzy
numbers without adjustments), there is one significant complication, that needs to
be taken into account. Each asymmetrical triangular fuzzy number O = (o1, o2, o4)
can again be represented by a 2-tuple (COG(O),L(Supp(O))), however this 2-tuple
representation possibly represents more than one asymmetrical triangular fuzzy
number. This introduces a complication into our framework, because one point in
the 2D graphical visualization space represents possibly several different asymmet-
rical triangular fuzzy numbers (technically a single point can represents an infinite
number of different fuzzy numbers). Figure 4.8 presents an example of two different
asymmetrical triangular fuzzy numbers A = (0.1, 0.1, 0.4) and B = (0, 0.3, 0.3) for
which COG(A) = COG(B) = 0.2 and L(Supp(A)) = L(Supp(B)) = 0.3, i.e. both
can be represented by the same 2-tuple (0.2, 0.3).

There are several possible solutions to this problem. One would be using such
a representation of the triangular fuzzy numbers that would represent each of them
by a unique vector of values. Such vectors would however need to have more than
two components. In other words, applying this solution we loose the easy to follow
2D graphical representation. E.g. switching to a 3D graphical representation, non-
transparency can become an issue.

If we insist on 2D graphical summaries, we can apply the methods from section
4.4, but account for the loss of information stemming from the 2D vector represen-
tation of asymmetrical triangular fuzzy number in some way. Direct application of
the previously defined analytical framework may result in one point being coloured
by several colours (representing different linguistic terms) at the same time. This is
impossible to present graphically in a single plot. We can resolve this issue (in accor-
dance with publication V) by using more than one 2D graph for the graphical repre-
sentation of the performance of the linguistic approximation under selected measures
to prevent this “overlapping” of coloured areas in the graphical presentation. Or
to be more precise to clearly show which (COG(O),L(Supp(O))) representations of
fuzzy numbers can result in the assignment of each linguistic term.

This can be done in two possible ways: 1) for each linguistic term we can
use separate graphical representation – coloured area represents fuzzy numbers that
are linguistically approximated by the given linguistic term; 2) linguistic terms are
divided into groups in such a way that the 2D graphical representation of fuzzy
numbers linguistically approximated by terms from one group is not overlapping
(see Figure 4.9). This reduces the required number of plots.

We now need a suitable method for the generation of asymmetrical trian-
gular fuzzy numbers on interval [0, 1] to study the effect of the selection of dis-
tance/similarity measure on their linguistic approximation. Again, it is possible to
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Figure 4.8: Example of two different asymmetrical triangular fuzzy numbers A (blue)
and B (green) that have identical center of gravity (COG(A) = COG(B) = 0.2) and
length of support (L(Supp(A)) = L(Supp(B)) = 0.3).

randomly generate these fuzzy numbers (i.e. to randomly generate the triplet of
their significant values; this approach was chosen in publications V and XI). How-
ever, in the further text we will adjust the grid approach that was originally used to
generate the set of symmetrical triangular fuzzy numbers Out1 in previous sections
for the generation of asymmetrical triangular fuzzy numbers. This approach allows
for uniform sampling from the set of asymmetrical triangular fuzzy numbers on [0, 1]
and also for the adjustment of precision and hence of the computational speed. As
we already mentioned, these fuzzy numbers can not be unambiguously represented
using 2-tuple (COG(O),L(Supp(O))). For this reason we will use standard represen-
tation of triangular fuzzy numbers using their significant values. These values will
be uniformly distributed in the [0, 1]× [0, 1]× [0, 1] space. These three intervals will
be uniformly divided into 151 points each3. Using the cartesian product we obtain 3
442 951 candidates on triangular fuzzy numbers. However, some of these candidates
do not represent a fuzzy number (e.g. triplet A = (1, 0, 0) is not a fuzzy number,
because a1 > a2) and thus it makes no sense to use them in further analysis of the
performance of linguistic approximation. After this restriction (i.e. restricting the
set of candidates on triangular fuzzy numbers to the set of actual fuzzy numbers),
we obtain the set Out2 that contains 585 125 asymmetrical triangular fuzzy numbers
on the interval [0, 1].

Linguistic approximation of asymmetrical triangular fuzzy numbers using
a linguistic scale

In accordance with section 4.4 where the performance of linguistic approximation of
symmetrical triangular fuzzy numbers under different distance/similarity measures
was studied, we will firstly consider a uniform linguistic scale with five linguistic

3In the case of assymetrical triangular fuzzy numbers the interval [0, 1] is divided into signifi-
cantly less points then in the case of symmetrical triangular fuzzy numbers. This is not an oversight
- due to the fact that now each fuzzy number is represented by a triplet of its significant values,
the initial cartesian product results in an even larger set of “potential candidates” on asymmetrical
triangular fuzzy numbers then in the case of symmetrical triangular fuzzy numbers. Obviously,
the partition of the [0, 1] intervals can be adjusted.
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terms T1, . . . , T5. Their meanings (in accordance with previous text) are assumed to
be represented by triangular fuzzy numebrs T1 = (0, 0, 0.25), T2 = (0, 0.25, 0.5), T3 =
(0.25, 0.5, 0.75), T4 = (0.5, 0.75, 1), T5 = (0.75, 1, 1) that form uniform Ruspini fuzzy
partition of interval [0, 1]. Again, each of studied distance/similarity measures in-
troduced in section 4.3 is applied to identify the linguistic approximation of each
fuzzy number from the set Out2.

Results of the performance of linguistic approximation using Bhattacharyya dis-
tance d3 are depicted in Figure 4.9. Colours represent the same linguistic terms as
in section 4.4 and therefore the direct comparison with the performance of linguis-
tic approximation of symmetrical triangular fuzzy numbers under Bhattacharyya
distance depicted in Figure 4.3 is possible (and recommended). Please note, that
assymetrical triangular fuzzy numbers are a generalization of symmetrical triangular
fuzzy numbers and therefore the findings from previous sections also apply in the
case of asymmetrical triangular fuzzy numbers. Therefore new findings should be
perceived as a generalization/extension of prior findings.

From Figure 4.9 can see, that the area representing the linguistically approx-
imated fuzzy numbers is larger than in the case of symmetrical triangular fuzzy
numbers. This is especially evident in the case of fuzzy numbers with the length
of support equal to one - if symmetrical triangular fuzzy numbers are considered,
there is only a single fuzzy number with that property: (0, 0.5, 1). But in the case
of asymmetrical triangular fuzzy numbers, this property is fullfilled for any fuzzy
number (0, x, 1), x ∈ [0, 1], i.e. for infinitely many fuzzy numbers. Centers of gravity
for the “borderline” fuzzy numbers (0, 0, 1) and (0, 1, 1) are COG(0, 0, 1) = 1/3 and
COG(0, 1, 1) = 2/3. Also it is clearly notable that unlike in the case of symmet-
rical triangular fuzzy numbers, the results of linguistic approximation using Bhat-
tacharyya distance do not depend as strongly on the center of gravity as in the
symmetrical case.

Figures 4.10 and 4.11 summarize the performance for all the investigated dis-
tance/similarity measures presented in section 4.3. First figure depicts asymmetrical
triangular fuzzy numbers linguistically approximated by linguistic terms T1, T3 and
T5 while the second figure depicts fuzzy numbers linguistically approximated by lin-
guistic terms T2 and T4. Each term is again represented by a specific colour (in
accordance with the previous sections). Unlike in the case of symmetrical triangular
fuzzy numbers, ambiguous cases (represented by red colour) are depicted separatelly
in Figure 4.12. This is necessary, because a single point in the 2D space can represent
both a fuzzy number that can not be linguistically approximated (i.e. an ambiguous
case) and also a fuzzy number that can be linguistically approximated. Therefore
for the sake of clarity ambiguous cases are investigated in a separate figure.

To provide even more insight into the performance of linguistic approximation
in this case we can also plot the areas of possible colour overlaps. In another words we
can identify areas in the (COG(O),L(Supp(O))) space, where each point represents
a set of fuzzy numbers with identical 2-tuple representation, but possibly different
linguistic approximation, see Figure 4.13. In the further text we will call these areas
linguistic approximation grey zones.
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Table 4.4 presents a different view on the performance of different distance/similarity
measures of fuzzy numbers in the linguistic approximation – through absolute fre-
quencies of assignment of each linguistic term. Comparing the results with the Table
4.2 should take into an account different cardinalities of the sets of approximated
fuzzy numbers Out1 and Out2. Clearly, ambiguous cases are much less frequent
under d1 and d3 as long as asymmetrical fuzzy numbers are considered.

Considering Figures 4.10, 4.11, 4.12 and 4.13 and Table 4.4 we can now draw
for example the following conclusions:

• Distance measures d1, d3 and similarity measure s1 exhibit similar properties.
The result of linguistic approximation using these measures is again (as in
the case of symmetrical triangular fuzzy numbers) mainly center of gravity
dependent. For all these measures the (COG(O),L(Supp(O))) representation
is an acceptable simplification; in other words the center of gravity and the
cardinality of the approximated fuzzy number are a good predictor of the re-
sult of linguistic approximation. The d4 measure behaves in a similar manner,
but the amount of ambiguous cases as well as the area of the linguistic ap-
proximation grey zones are larger. For all these four measures a situation
where more than two linguistic approximations would be suggested for the
same (COG(O),L(Supp(O))) point is practically ruled out.

• Distance measures d2 and d4 are the only ones that assign linguistic terms T1
and T5 to fuzzy numbers with high length of support (over 0.5). Note, that for
d2 the term T1 is assigned only to fuzzy numbers of the type (0, 0, x), x ∈ (0, 1]
and T5 to fuzzy numbers of the type (x, 1, 1), x ∈ [0, 1).

• Using d2 the linguistic approximation of low-uncertain fuzzy numbers (as well
as of fuzzy singletons) is virtually impossible (see Figure 4.12).

• High length of support in combination with the use of d2, s2 or s3 can result
in three linguistic labels being assigned to a single (COG(O),L(Supp(O)))
two-tuple (see the (0.5, 0.75) points in Figures 4.10 and 4.11 corresponding
with these measures). Note that this feature is not present in the linguistic
approximation of symmetrical triangular fuzzy numbers using these measures.

• Again, under s3 and s4 similarity measures, linguistic terms T2 and T4 are never
assigned to low-uncertain fuzzy numbers. Also a similar problem as in the
previous item is present, this time for T1, T2 and T3 or T3, T4 and T5 terms. Not
to mention, that two plots for each of these measures (assuming a five element
scale) are not sufficient to avoid overlaps. However to maintain comparability
with the analysis of the other six measures, the two-plot representation (Figure
4.10 and 4.11) is maintained for these two measures as well.
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Figure 4.9: A graphical representation of the results of linguistic approximation of
asymmetrical triangular fuzzy numbers using the Bhattacharyya distance d3 and
a linguistic scale. Colours on the left subfigure represents “odd” linguistic terms
T1 (blue), T3 (black) and T5 (yellow) and colours on the right subfigure represents
“even” linguistic terms T2 (green) and T4 (pink).

Level 1 T1 T2 T3 T4 T5 Ambiguous
d1 11 258 140 143 282 305 140 143 11 258 18
d2 150 152 638 238 687 152 638 150 40 862
d3 11 350 135 316 291 781 135 316 11 350 12
d4 14 541 143 774 267 047 143 774 14 541 1 448
s1 14 497 136 332 283 193 136 332 14 497 274
s2 23 364 142 638 251 333 142 638 23 364 1 788
s3 44 287 122 560 249 749 122 560 44 287 1 682
s4 52 302 97 712 284 713 97 712 52 302 384

Table 4.4: Frequencies of assignment of each of the elementary linguistic terms
T1, . . . , T5 to the asymmetrical triangular fuzzy numbers from set Out2 by lin-
guistic approximation using each of the examined distance/similarity measures
d1, d2, d3, d4, s1, s2, s3 and s4. Frequencies of cases where more than one linguistic
terms were recommended are also presented as an ambiguous cases.
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Figure 4.10: A graphical summary of the performance of the chosen distance and
similarity measures in the linguistic approximation of asymmetrical triangular fuzzy
number on [0, 1] using 5-term linguistic scale. Colour represents three selected terms
of the linguistic scale: T1 (blue), T3 (black) and T5 (yellow). The remaining linguistic
terms T2 and T4 are depicted in Figure 4.11.
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Figure 4.11: A graphical summary of the performance of the chosen distance and
similarity measures in the linguistic approximation of asymmetrical triangular fuzzy
number on [0, 1] using 5-term linguistic scale. Colour represents two selected terms
of the linguistic scale: T2 (green) and T4 (pink). The remaining linguistic terms T1,
T3 and T5 are depicted in Figure 4.10.
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Figure 4.12: A graphical summary of the ambiguous cases (red areas) in linguistic
approximation of asymmetrical triangular fuzzy numbers on [0, 1] using 5-terms
linguistic scale. All eight selected distance/similarity measures are considered.
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Figure 4.13: A graphical summary of the linguistic approximation grey zones of the
chosen distance and similarity measures in the linguistic approximation of asym-
metrical triangular fuzzy number on [0, 1] using 5-terms linguistic scale.
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As we already mentioned, the use of the (COG(O),L(Supp(O))) two-tuple rep-
resentation (i.e. the requirement for two-dimensional graphical representation) in
combination with asymmetrical fuzzy numbers as linguistically approximated ob-
jects introduces the grey zones. Each point in the grey zone represents a variety of
asymmetrical fuzzy numbers approximated by different linguistic terms. The infor-
mation on the relative frequency of the use of these terms is, so far, not available
in our analysis method. It is however possible to obtain these relative frequencies
and even to visualize them graphically using three-dimensional histograms as was
proposed in Publication XI.

This framework was designed in a way to follow and extend the findings from
previous analysis. Each fuzzy number from the set Out2 is again represented by the
two-tuple (COG(O),L(Supp(O))) and its linguistic approximation (using selected
distance/similarity measure) is calculated. If the previous analysis method was ap-
plied, all the necessary data (which is possibly time consuming to obtain) is already
available. The intervals [0, 1] representing the universe for the center of gravity
and the universe for the length of support are uniformly divided into n parts each.
This introduces a uniform partition of the [0, 1]× [0, 1] universe into n times n two-
dimensional areas. Each area represents a subset Outi,j2 , i = 1, . . . , n, j = 1, . . . , n
of Out2 that contains only assymetrical triangular fuzzy numbers from Out2 with
the respective (COG(O) and L(Supp(O)). Cardinalities of Outi,j2 , i = 1, . . . , n, j =
1, . . . , n define the three-dimensional histogram in Figure 4.15 (for n = 20 and
n = 10) representing the distribution of approximated asymmetrical triangular fuzzy
numbers obtained using the grid approach described previously4.

At this point fuzzy numbers belonging to the same bin can still be linguistically
approxited by different linguistic terms. To get clear insights into the actual relative
frequencies of assignment of each of the linguistic terms in each bin the graphical
representation presented in Figure 4.14 is suggested. Under this representation each
linguistic term is assigned a three-dimensional histogram representing its usage (the
relative frequencies of its use) in each bin for a selected distance/similarity measure.
If a two-dimensional representation is prefered/required, a top-down view of the
three-dimensional histograms can be used. In some cases this may be more suitable
for paper (non-interactive) presentation of the results (see Figure 4.16).

Similar conclusions as those obtained for the previous graphical summaries can
be derived for the three dimensional histograms. Since histograms are suggested here
as an additional piece of information we leave a thorough analysis of these outputs
to the interested readers and refer them to the Appendix A, where the results for
all seven remaining distance/similarity measures can be found.

Analogously to the section 4.4.2, the findings from this section can be extended
by using an enhanced linguistic scale instead of the linguistic scale. Again, fuzzy
numbers from the set Out2 can be used in the analysis and the results can be
obtainded and visualized in analogy to the visualization proposed in this section.
An example of such analysis for Bhattacharyya distance d3 is depicted in Figure

4Slight asymmetry of the three-dimensional histograms in Figure 4.15 is caused by rounding.
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Figure 4.14: Three-dimensional histogram representation of the performance of
Bhattacharyya distance d3 in the linguistic approximation of asymmetrical trian-
gular fuzzy numbers on [0, 1] using a 5-term linguistic scale. Each subfigure sum-
marizes the relative frequencies of suggesting the given linguistic term for the fuzzy
numbers belonging to the respective bin (feature-wise). Fuzzy numbers that can be
equally well approximated by more linguistic terms at the same time are depicted
in the subfigure labelled ambiguous.
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Figure 4.15: Three-dimensional histogram representation of the absolute frequencies
of the asymmetrical triangular fuzzy numbers from the set Out2 in each bin. 20 times
20 bin representation (left) and 10 times 10 bin representation (right).

4.17. This graphical representation however requires eight subfigures to properly
describe the possible results of linguistic approximation using one distance/similarity
measure. Due to the limited space within the thesis the graphical summaries of the
results for the remaining seven distance/similarity measures are available in the
Appendix B.
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Figure 4.16: Top-down view of the three-dimensional histograms depicted in Figure
4.15. 20 times 20 bin representation (left) and 10 times 10 bin representation (right).
This way three dimensional histograms are converted into “heat maps”.
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Figure 4.17: A graphical summary of the results of linguistic approximation of
asymmetrical triangular fuzzy numbers using the Bhattacharyya distance d3 and a
5-term enhanced linguistic scale. Each colour represents one term of the enhanced
linguistic scale, the assignment of colours to the linguistic terms is indicated above
each subplot (linguistic terms that are never assigned to any element of Out2 are
not considered in the summary). Red colour is reserved for ambiguous cases, i.e.
cases when more than one linguistic term is assigned and grey colour represents the
grey zones.
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4.6 A note on the linguistic approximation of more general
objects: Mamdani-type fuzzy sets

In previous sections we were studying the performance of linguistic approximation of
triangular fuzzy numbers under selected distance/similarity measures and discussed
their possible extension to trapezoidal fuzzy numbers. Several methods for analysis
of the performace of these measures were proposed. However, in this section we will
propose methods for the analysis of performance of linguistic approximation of more
general Mamdani-type fuzzy sets5. These fuzzy sets can be obtained as the outputs
of Mamdani fuzzy inference [20] and the performance of the linguistic approximation
of such outputs was already studied in Publication VIII.

Before we start with the analysis of the performance, we will shortly intro-
duce the process of the Mamdani fuzzy inference. Let (Uj, T (U j), Xj, Gj,Mj),
j = 1, . . . ,m be m linguistic scales representing the inputs of the fuzzy inference
system and let (V , T (V), Y,G,M), j = 1, . . . ,m be a linguistic scale representing
the output of the fuzzy inference system. Let

If U1 is Ai1 and . . . and Um is Aim, then V is Bi,

be a set of n rules describing the relationship between the input and the output
linguistic variables, where Aij ∈ T (U j) and Bi ∈ T (V), Mj(Aij) = Aij and M(Bi) =
Bi, i = 1, . . . , n, j = 1, . . . ,m. Then for the input (A′1, A′2, . . . , A′m) consisting of m
fuzzy sets A′j defined on Xj, j = 1, . . . ,m the output of the fuzzy inference OutM
(Mamdani-type fuzzy set on Y ) is computed using:

OutM(A′1, A′2, . . . , A′m) = (A′1 × · · · × A′m) ◦
n⋃
i=1

(Ai1 × · · · × Aim ×Bi). (4.13)

An example of such output is depicted in figure 4.18. Please note that the
output is not a fuzzy number on Y . In general the height of OutM need not be
1 or the fuzzy set need not be unimodal (its α-cuts may not be closed intervals
for all α ∈ (0, 1]). As long as OutM is a general fuzzy set and not a fuzzy number,
dissemblance index d4 and of all four similarity measures s1, . . . s4 investigated in this
thesis from the analysis can not be used, because these measures are not applicable
on general fuzzy sets.

In the further text we will restrict ourselves to cases when the output linguistic
variable V contains five elementary linguistic terms B1, . . . ,B5 and their meanings are
represented by triangular fuzzy numbers B1 = (0, 0, 0.25), B2 = (0, 0.25, 0.5), B3 =
(0.25, 0.5, 0.75), B4 = (0.5, 0.75, 1) and B5 = (0.75, 1, 1) respectively, all defined on
[0, 1]. The same linguistic scale was used in the analysis of the performance of
the linguistic approximation of triangular fuzzy numbers in sections 4.4 and 4.5.
For example let us consider Mamdani-type outputs obtained as a union of three

5In the case of another frequently used fuzzy inference proposed by Sugeno[29] the issue of
linguistic approximation is much less complicated, since the usual output of Sugeno fuzzy inference
is a real number.
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Figure 4.18: Example of Mamdani-type fuzzy set.

neigbouring fuzzy sets as depicted in Figure 4.18. Formally such outputs can be
represented as

OutM(x) = max {min{hL, B2(x)},min{hM , B3(x)},min{hR, B4(x)}} , (4.14)

where hL, hM , hR ∈ [0, 1]. Assuming, that hM = 1, each such fuzzy set can be
uniquely represented using two-tuple (hL, hR). Note that the two-tuple representa-
tion using (hL, hR) corresponds well with the need to approximate outputs of Mam-
dani fuzzy inference, because hL(hM , hR) can be interpreted as the maximum firing
strength of a rule resulting in B2(B3,B4) respectively. Such a representation thus
uses representation directly obtainable from the fuzzy inference. Therefore, similarly
as in the case of symmetrical triangular fuzzy numbers, each approximated fuzzy
sets can be unambiguously represented as a point in the two-dimensional space.
Colors of these points can again represent the result of the linguistic approximation.

In line with the previous analysis, it is now necessary to generate a set all types
of fuzzy sets that can be represented by 4.14 to be linguistically approximated.
Again, it is possible to randomly generate this set, but in the further text we will
employ a more systematic approach which is based on the grid approach, as in the
Publication VIII. The two [0, 1] intervals are uniformly divided into 1 001 points
each and these points represent values hL and hR. Using the cartesian product we
obtain set Out3 that contains 1002001 two-tuples that represent the approximated
fuzzy sets. Unlike in the previous sections, no further restriction need to be intro-
duced because each of these two-tuples represents a fuzzy set obtainable by 4.14.

Each of the distance measures d1, d2 and d3 is applied to identify the linguistic
approximation of each fuzzy set from the set Out3 using an enhanced linguistic
scale derived from the elementary linguistic terms B1, . . . ,B5. Based on the direct
comparison of results depicted in Figure 4.19 and Table 4.5 we can draw for example
the following conclusions:

• Linguistic approximation in all three cases can results in any of the four lin-
guistic terms B3,B23,B34,B24 or it is indecisive among two or more of them
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Figure 4.19: The results of the linguistic approximation of 1 002 001 fuzzy sets from
Out3 using distance measures d1, d2 and d3. Enhanced linguistic scale with five ele-
mentary terms is used. Approximated Mamdani-type fuzzy sets are represented by
points with coordinates (hL, hR). The colour of each point represents the linguistic
term assigned as the most appropriate linguistic approximation for the given fuzzy
set, colours represent the same linguistic terms (elementary and derived) as in the
previous sections of the thesis. Ambiguous cases are depicted using red colour.

(such situations are denoted as ambiguous). Only one of the possible results
of linguistic approximation is an elementary linguistic term B3. This is under-
standable, since a union of three neighboring fuzzy sets (modified meanings of
B2 and B4, and the meaning of B3) is being approximated.

• From the Figure 4.19 it is evident, that the results of linguistic approxima-
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B3 B23 B34 B24 Ambiguous
d1 151 383 246 741 246 741 357 042 94
d2 250 000 250 000 250 000 250 000 2 001
d3 13 128 89 698 89 698 809 437 40

Table 4.5: Frequencies of assignment of linguistic terms {B3,B23,B34,B24} and Am-
biguous cases obtained for 1 002 001 fuzzy sets from Out3 in the linguistic approx-
imation using d1, d2 and d3. Unlisted linguistic terms (e.g. B1,B13, . . . ) were not
assigned to any approximated Mamdani-type fuzzy set. Frequencies of ambiguous
cases are strongly dependent on the chosen partition of [0, 1].

tion depend significantly on the choice of the distance measure. For example
distance measure d2 tends to overuse the elementary linguistic term B3 and
it is the only one for which the knowledge of two thresholds (one for hL one
for hR) contains the full information concerning the result of the linguistic
approximation.

• The result of linguistic approximation in the case of distance measure d2 can be
established solely on the values of hL and hR - this is evident from the “square-
shaped” structure. If hL or HR is equal to 0.5, the linguistic approximation
results in an ambiguous case. If hL and hR are both lower then 0.5, the fuzzy
set is approximated by elementary term B3. On the other hand, if both hL and
hR are greater than 0.5, the linguistic approximation results in the term B24.
The remaining cases result in B23 (B34), if hL > 0.5 and hR < 0.5 (hL < 0.5 and
hR > 0.5). Moreover the Table 4.5 shows that each linguistic term was assigned
to the exactly same number of fuzzy sets. Also note, that for hL = hR = 0.5
we obtain a fuzzy set that can be linguistically approximated equally well by
all four linguistic terms B3,B23,B34,B24. This means that if the values hL and
hR of the approximated fuzzy set are both close to 0.5, even a small change of
hL or hR could result in the assignment of a different linguistic label.

• Use of the Bhattacharyya distance d3 results in the most cases (87.78%) in the
most uncertain linguistic term B24 (the only level 3 linguistic term from the
set of resulting terms). On the contrary, the elementary linguistic term B3 is
assigned rather sparsely (1.31%). Moreover, if the value of hL or hR is higher
than ≈0.13, the term B3 is never assigned. Similarly, if hL and hR are both
higher than ≈0.135, the only possible resulting linguistic term is B24. This
is in compliance with the findings from the previous section where we have
shown that the Bhattacharyya distance tends to suggest linguistic terms that
are supersets of the approximated object meaning-wise.

• Distance measure d1 exhibits features similar to both d2 and d3. In line with d3
it suggests the level 3 term B24 most frequently (35.63%), but its requirements
on the approximating fuzzy number being a superset of the approximated
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object is weaker (the linguistic term B3 is suggested in 15.11% of the cases
compare to the 1.31% frequency under d3). In this sense it seems to be a
compromise between d2 and d3. Again as in the case of d2 there exist a fuzzy
set that can be linguistically approximated by all four obtainable linguistic
terms. Its representation is ((

√
3− 1)/2, (

√
3− 1)/2).

• Note, that based on the Table 4.5 the ambiguous cases seem to be rather
exceptional - 94 and 40 in the cases of d1 and d3 respectively. Only in the case
of distance measure d2, the linguistic approximation resuls in 2 001 ambiguous
cases. This is caused by the fact, that if hL or hR are equal to 0.5 the linguistic
approximation will automatically result in an ambiguous case (direct result of
the particular choice of grid). However, using all three distance measures there
is a possibility of obtaining infinitely many ambiguous cases on the boarders
of differently coloured areas (again depending on the choice of grid).

To conclude with, the distance measure d2 is the fastes to compute (it has the
simplest computation formula). In this case, the formula is no even needed, since
the knowledge of the thresholds hL = 0.5 and hR = 0.5 is sufficient to be able
to determine the result of linguistic approximation. Its overuse of the elementary
linguistic term B3 even for fuzzy sets for which hL and hR are close to 0.5 can
however be considered an undesirable property. Fuzzy sets with high uncertainty
are in these cases assigned a linguistic approximation with a low-uncertain meaning.
If the desired linguistic approximation should be such that its meaning is a superset
of the approximated fuzzy set, Bhattacharyya distance d3 seems to be the method
of choice. If the superset property is not that important, the distance measure d1
represents a reasonable compromise between d3 and the simple d2.

We have thus presented the possible application of the analytic framework on
a selected type of Mamdani-type fuzzy set. In general, we can assume n elements in
the underlying linguistic scale. In this case a general Mamdani-type output can be
expressed as max {min{h1, B1(x)}, . . . ,min{hn, Bn(x)}} and thus represented by an
n-tuple (h1, . . . , hn) which would require an n-dimensional graphical representation
for the analysis.

5 Linguistic approximation of fuzzy numbers us-
ing fuzzy 2-tuples

In the previous section we have presented several methods for the analysis of the
outputs of linguistic approximation using different distance/similarity measures. All
of these methods assumed a finite set of linguistic labels to be assigned as a result
of linguistic approximation (either standard or enhanced linguistic scales were as-
sumed). This section presents a new method for the linguistic approximation of
fuzzy numbers that was proposed in publication IV. This new method is based on
the idea of fuzzy 2-tuples that was introduced by Herrera and Martinez [12, 13].
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This method stresses the ability of its user to interpret the results easily. It
therefore works only with elementary linguistic terms i.e. with a chosen linguistic
scale. The user of this method is thus not required to understand the grammar
used to derive new linguistic terms from the elementary ones, he/she also does
not need to be able to define their meaning. The restriction on the elementary
linguistic term set usually means, that the ability of the linguistic approximation
to capture the meaning of the approximated objects that are far from the meanings
of the elementary terms is compromised to some extent. We therefore propose a
compensation of this disadvantage that in fact offers infinitely many possible results
of the linguistic approximation. All of the results use the elementary linguistic
terms as the center-piece of information. A second piece of information is provided
that describes the possible shift of meaning of the elementary terms (including the
direction of this shift).

Given that the approximating linguistic scale frequently uses only a very limited
number of linguistic terms, it is easy to check (and ensure) that the user of the
method understands them well. Also note, that the elementary linguistic terms of
a linguistic scale can be ordered. The results of the linguistic approximation are in
this new method provided as 2-tuples (T , β), where T is the resulting linguistic term
and β is a real number representing the shift of the meaning of the linguistic term T ,
see [12, 13]. For example instead of forcing either of the neighboring linguistic terms
Average and Good as the result on linguistic approximation, we can also consider
Average+ ∆1 or Good−∆2, where ∆1 and ∆2 are non-negative real numbers. The
known meanings of the linguistic terms can thus be shifted closer to each other.
The original meanings of the linguistic terms remain unchanged, their ordering as
well and the operation of shifting the meaning to the left or to the right on a real
number universe is simple enough to understand intuitively. Moreover, the fuzzy
2-tuple representation can be transformed into a fully linguistic one, e.g. slightly
better than Average. In the next subsection, the linguistic approximation method
using fuzzy 2-tuples will be summarized.

5.1 Proposed method for linguistic approximation

In the following text we will assume that the outputs of the mathematical model
that we are going to linguistically approximate are fuzzy numbers defined on the
interval [a, b], a < b, a, b ∈ R. For the purpose of linguistic approximation we
define linguistic variable (V , T (V), [a, b], G,M), where Te(V) = {T1, . . . , Tn} ⊆ T (V)
constitutes a set of n elementary linguistic terms (n > 1), their meanings M(Ti) =
Ti, i = 1, . . . , n are represented by triangular fuzzy numbers that form a uniform
linguistic scale on [a, b]:

M(T1) = (a, a, a+ ∆),
M(Ti) = (a+ (i− 2) ·∆, a+ (i− 1) ·∆, a+ i ·∆), i = 2, . . . , n− 1,
M(Tn) = (b−∆, b, b),

(5.1)
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where ∆ = (b− a)/(n− 1). Note, that when the linguistic variable is defined on
[0, 1] and has five elementary linguistic terms, we obtain the linguistic scale that is
depicted in Figure 4.1 and is used in previous section.

A fuzzy set F which is a fuzzy superset of any fuzzy set on [a, b] is defined as

F (x) =
{

1 if x ∈ [a, b],
0 if x /∈ [a, b], (5.2)

which can also be denoted as F ∼ (a, a, b, b).
As was already stated because the set of elementary linguistic terms is limited

in some cases we might not be able to select the linguistic term, that would fit the
the approximated fuzzy number well enough. In Publication VII we have shown
that this can become a serious issue e.g. when the approximating linguistic terms
can be categorized into gains and loses. In this particular case low granularity
of the approximating scale (particularly when only elementary linguistic terms are
considered) can result in a gain being approximated by a linguistic term with a
loss “meaning” and vice versa. To resolve this we will extend the set of elementary
linguistic terms Te(V) into T (V) by allowing for the shifting of the linguistic terms
to the right or to the left within their universe of discourse:

T (V) = Te(V) ∪ {T βi ; β ∈ [−0.5 ·∆, 0.5 ·∆), i = 1, . . . , n},

where T βi denotes “Ti shifted by β” and can be denoted by 2-tuple (Ti, β). Ti
represents the elementary linguistic term from the set Te(V) and β represents a shift
of the meaning of the linguistic term Ti. If 0 < β < 0.5 · ∆ then the meaning of
the linguistic term is shifted to the right. Analogously if −0.5 · ∆ ≤ β < 0 then
the meaning of the linguistic term Ti is shiftet to the left. If β = 0 the meaning of
the linguistic term Ti does not change and T βi coincides with Ti. The shift of the
meaning of linguistic term Ti by β > 0 is depicted in Figure 5.1.

Figure 5.1: The meaning of the linguistic term Ti (grey) and the meaning of the
linguistic term Ti shifted by β (black); Ti, T βi ∈ T (V)

Once we have introduced the shifted linguistic terms, thus defining infinitely
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many elements of T (V) it is necessary to define semantic rule that describes how
to assign a fuzzy-number meaning, T βi = M(T βi ) to every element of the set of
linguistic labels T (V).

Introducing the shift may result in some of the meanings of the linguistic terms
“sliding out” of the [a, b]. For computational purposes we therefore extend the
universe [a, b] to [a−∆, b+ ∆] and modify the meaning of T1 and Tn from T1 to T ′1
and from Tn to T ′n in the following way:

T ′1 ∼ (a− 0.5 ·∆, a− 0.5 ·∆, a, a+ ∆),
T ′n ∼ (b−∆, b, b+ 0.5 ·∆, b+ 0.5 ·∆). (5.3)

The meaning of the remaining elementary linguistic terms remains unaltered
(hence Ti = T ′i , i = 2, . . . , n−1). Please note, that this process is just a technicality
and thus not results in the change of the meaning of the elementary linguistic terms
within the [a, b] interval. Finally, the fuzzy numbers representing the meaning of
the shifted linguistic terms are computed using:

M(T βi ) = (T ′i + β) ∩ F, i = 1, . . . , n, β ∈ [−0.5 ·∆, 0.5 ·∆). (5.4)

However, it is not reasonable to shift the meaning of linguistic term T1 (Tn) to
the left (right), since such an operation results in a fuzzy number the restriction of
which on the interval [a, b] is no longer normal. For this reason β ∈ [0, 0.5 ·∆) and
β ∈ [−0.5 ·∆, 0] will be considered in the case of T β1 and T βn respectively. Having
defined the shifts and their meaning this way, the ordering of the the shifted terms
T β1
i and T β2

j depends only on the ordering of T1 and Tj, for i 6= j, i, j = 1, . . . , n.
The result T β

∗

i∗ of linguistic approximation of fuzzy number Out on [a, b] is
computed using:

M(T β
∗

i∗ ) =



arg min
β∈[0,0.5·∆)

d(Out, T β1 ) if i = 1,

arg min
β∈[−0.5·∆,0.5·∆)

d(Out, T βi ) if i = 2, . . . , n− 1,

arg min
β∈[−0.5·∆,0]

d(Out, T βn ) otherwise,
(5.5)

where d is the selected distance measure of fuzzy numbers (similarity measure
can also be used, but the arg min must be substituted by arg max in the previous
formula). The resulting linguistic term T β

∗

i∗ can be denoted using the fuzzy 2-tuple
as (Ti∗ , β∗). The linguistic approximation proposed in this chapter will therefore be
refered to as fuzzy 2-tuple linguistic approximation in the further text.

Moreover, if the user of the model prefers a fully linguistic description of the
evaluation, we can use for example Table 5.1 that suggests a linguistic intrerpreta-
tion of values of β. For example if the result of the proposed method is a 2-tuple
(Average,−0.3) the resulting fully linguistic description would be worse than Aver-
age. We assume here that the user of such a linguistic approximation understands
this as worst than average but definitely better than the previous value of the linguis-
tic scale. For novice users this can be a direct part of the linguistic approximation
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output.
Another benefit of the use of fuzzy 2-tuples for linguistic approximation is that

the results of such an approximation can be ordered. In other words (Ti, β) is
preferred over (Tj, γ) if i > j or if i = j and β > γ, i, j = 1, . . . , n, assuming a
benefit-type scale.

Negative β value Linguistic description Positive β value Linguistic description
[−0.05 ·∆, 0) About (0, 0.05 ·∆] About

[−0.2 ·∆,−0.05 ·∆) Slightly worse than (0.05 ·∆, 0.2 ·∆] Slightly better than
[−0.35 ·∆,−0.2 ·∆) Worse than (0.2 ·∆, 0.35 ·∆] Better than
[−0.5 ·∆,−0.35 ·∆) Noticeably worse than (0.35 ·∆, 0.5 ·∆) Noticeably better than

Table 5.1: An example of a posssible partition of the feasible β values with the
respective linguistic descriptions.

Several examples of the linguistic approximation of triangular fuzzy numbers
A ∼ (0.4, 1.6, 2.8), B ∼ (1.6, 3.2, 3.2) and C ∼ (2.4, 1, 1) on [0, 4] interval using
fuzzy 2-tuples and similarity measure s4 are depicted in Figure 5.2. The symmetri-
cal triangular fuzzy number A is linguistically approximated by the linguistic term
T −0.4

3 represented by the fuzzy number T−0.4
3 . Note, that the kernels of both the

approximated and the approximating fuzzy numbers coincide - this is an expected
behaviour, because both fuzzy numbers are symmetrical and triangular. Results of
the linguistic approximation of asymmetrical triangular fuzzy numbers are demon-
strated in the remaining cases. Fuzzy numbers B and C have the same shape, but
the second one is “shifted” to the right. In the case of fuzzy number B the resulting
approximation is linguistic term T4 with β = −0.33, i.e. with meaning shifted to
the left. Even though the kernel of T−0.33

4 lies more to the left than the kernel of T4
(which is already closer to zero than the kernel of B), its center of gravity is closer
to the center of gravity of B than the center of gravity of T4 is. Since s4 is based on
the area, perimeter, center of gravity and significant points of fuzzy numbers this
is an expected behaviour of the linguistic approximation (the area and perimeter
of T4 and T−0.33

4 are identical). However, in the case of fuzzy number C, the result
of the linguistic approximation is the linguistic term T5 with β = −0.3. We can
see that the meaning of the approximating linguistic term M(T 0.3

5 ) is a trapezoidal
fuzzy number. Moreover, this fuzzy number is “pulled out” to compensate for the
fact that the cardinality of the fuzzy number C is larger then the cardinality of T5.

5.2 Example of the analysis of the performance of the fuzzy
2-tuple linguistic approximation under similarity mea-
sure s4

As long as the value of β is not reported to the decision maker, the fuzzy 2-tuple
linguistic approximation provides only one of the n-elementary linguistic term as
an output. Under this simplification its results can be compared directly with the
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Figure 5.2: Examples of the results of fuzzy 2-tuple linguistic approximation em-
ploying distance measure s4. Each subfigure presents the outcome of linguistic
approximation of fuzzy number A ∼ (0.4, 1.6, 2.8) (top), B ∼ (1.6, 3.2, 3.2) (middle)
and C ∼ (2.4, 4, 4) (bottom). Each example uses linguistic variable containing five
uniformly distributed elementary linguistic terms the meanings of which are fuzzy
numbers on [0, 4] interval.

results of the methods studied in the previous chapters. We will therefore start
the analysis of the performance of fuzzy 2-tuple lingustic approximation with its
comparison on with the results obtained in section 4.4.1. For simplicity, let us
assume only a single distance/similarity measure, in this case the similarity measure
s4 was chosen.

Again, we will consider the uniform linguistic scale with five linguistic terms
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T1, . . . , T5 with meanings represented by fuzzy numbers T1 = (0, 0, 0.25), T2 =
(0, 0.25, 0.5), T3 = (0.25, 0.5, 0.75), T4 = (0.5, 0.75, 1), T5 = (0.75, 1, 1) as a basis
for the linguistic approximation. We will use the set Out1 of 1 002 001 symmetrical
triangular fuzzy numbers that was generated using the grid approach in section 4.4.
Each fuzzy number from the set Out1 is linguistically approximated using the fuzzy
2-tuple method and the results are visualized in the same way as in the section 4.4
(the value of β is not reflected in the visualization so far). The results are depicted
in Figure 5.3 (left) together with the results of linguistic approximation using the
best-fit approach (right).

Even though the similarity measure s4 was used in both cases the visualization
clearly shows some differences. Mainly, some symmetrical triangular fuzzy num-
bers with the length of support higher than 0.4 are lingustically approximated by
the “outer” linguistic terms T1 and T5 in the fuzzy 2-tuple linguistic approxima-
tion. Also the “border” between linguistic terms T1 and T2 and also T4 and T5 is
more curved in the case of the fuzzy 2-tuple linguistic approximation. And finally,
some fuzzy numbers with the length of the support lower than 0.25 are linguisti-
cally approximated by linguistic terms T2 and T4, unlike in the case of linguistic
approximation using the best-fit approach.

We can see that even this regarding the value of β the fuzzy 2-tuple approach
provides a different perspective (i.e. different results) than the linguistic approxi-
mation approaches discussed previously. The method for the analysis of the per-
formance of linguistic approximation under selected distance/similarity measures
proposed in previous chapters can be adjusted to include the “shift” represented by
the value β as well. This adjustment however results in the transition from two-
dimensional to three-dimensional visualization, where the added dimension reflects
the value of β. An example of such a visualization is depicted in Figure 5.4. From
the visualization we can conclude several observation (obviously the ability to rotate
the 3D representation is required to get full information):

• Fuzzy numbers approximated by the linguistic term T1 (blue) with the length
of support lower than ≈ 0.25 are linguistically approximated by 2-tuple (T1, 0).
For the remaining fuzzy numbers approximated by T1 the value of β is higher
than 0 and depends almost exclusively on the length of support of the approx-
imated fuzzy number. Also note, that fuzzy numbers approximated by the
linguistic term T5 (yellow) show an analogous behaviour, only the values of β
are negative for fuzzy numbers with higher length of support.

• In the case of fuzzy numbers linguistically approximated by the remaining
linguistic terms T2, T3 and T4, the value of β depends on the value of the
center of gravity.

• Fuzzy numbers with center of gravity slightly lower than 0.375 (higher than
0.625) and the length of support close to zero are linguistically approximated
by the linguistic term T2 (T4) with β close to 0.5 (-0.5) when the fuzzy 2-
tuple linguistic approximation is used. Note that T2(T4) are never assigned
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as results of the best-fit linguistic approximation using s4 to fuzzy numbers
with low length of support. The fuzzy 2-tuple linguistic approximation on the
one hand does not “skip” from T1 to T3 (T3 to T5), but on the other hand the
assignment of T2 (T4) to fuzzy numbers with low length of support is still rare
and slightly counter-intuitive (see Figure 5.4).

Figure 5.3: A graphical summary of the performance of the similarity measure s4
in the fuzzy 2-tuple linguistic approximation (left) and the linguistic approxima-
tion using the best-fit approach of symmetrical triangular fuzzy numbers on [0, 1]
using a five-term linguistic scale. Each colour represents one term of the five-term
linguistic scale: T1 (blue); T2 (green), T3 (black), T4 (pink) and T5 (yellow). Red
color represents ambiguous cases, i.e. cases when more than one linguistic term is
assigned.

Although the proposed fuzzy 2-tuple linguistic approximation method was pre-
sented here using a uniform partition by triangular fuzzy numbers on [a, b], it is
possible to generalize the method to non-uniform partitioning of [a, b] as well and
also on partitioning by non-triangular fuzzy numbers. Moreover, an enhanced lin-
guistic scale can be used instead of the standard linguistic scale.
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Figure 5.4: A three-dimensional visualization of the performance of the similarity
measure s4 in the fuzzy 2-tuple linguistic approximation of symmetrical triangular
fuzzy numbers on [0, 1] using a five-term linguistic scale. The x and y axes represent
center of gravity and length of support of approximated fuzzy numbers. Each colour
represents one term of the five-term linguistic scale: T1 (blue); T2 (green), T3 (black),
T4 (pink) and T5 (yellow). Red colour represents ambiguous cases, i.e. cases when
more than one linguistic term is assigned. The z axis (vertical) represents the values
of β.

6 Conclusion and summary of contributions
At the beginning of the thesis we have set out the goal of suggesting a general
analysis framework for the assessment of performance of different distance/similarity
measures in linguistic approximation. While linguistic approximation (and methods
thereof) has been in existence since 1970s the issue of appropriate selection of the
distance/similarity measure has remained far from the center of scientific inquiry.
This does not mean that the problem was ignored or not being pointed out in the
literature. The solutions to it, however, were partial at best until now. This thesis
and the publications of the author appended to it proposed an analytical framework
that allows for the following:

• Any distance/similarity measure of fuzzy numbers can be analysed.

• Any linguistic variable with a finite number of linguistic terms can be consid-
ered.

• The results of the analysis are visualized in such a way, that facilitates under-
standability by non-profesionals mathematicians.
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• Any type of fuzzy sets that can be represented by a reasonable low number of
features can be considered to represent the approximated fuzzy object.

• The visual representations allow for direct comparison of the performance of
different distance/similarity measures. This way strange or undesirable be-
haviour of some of the distance/similarity measures can be identified. Non-
problematic measures can then be selected to be used in linguistic approxi-
mation. Note, that the proposed method does not require the knowledge of a
“correct” linguistic approximation for the approximated objects.

To our knowledge, the proposed analytical framework is the only one currently
available with the above mentioned properties. Even though the thesis restricts
itself to linguistic approximation, a more general application context can be also
considered. We should point out that the linguistic approximation is essentially a
classification task (the set of all possible objects to be approximated is classified
into classes denoted by the respective linguistic labels) – the proposed framework
can thus be adapted for the analysis of classification methods as well, the graphical
representation of the results is just limited by the number of features necessary to
characterize the approximated objects. Nevertheless even if we restrict the results
just to the linguistic approximation domain, the research gap constituted by the
non-existence of a “road map” of distance/similarity measures for this context is
now at least bridged.

To clearly show the use of the proposed methodology (and thus to meet the sub-
goals set in the introduction) we have analysed the performance of eight frequently
used distance/similarity measures of fuzzy numbers in combination with standard
and enhanced linguistic scales. We have considered different types of objects to
be linguistically approximated ranging from symmetrical triangular fuzzy numbers
through asymmetrical ones to a general family of Mamdani-type fuzzy sets. We
generate graphical summaries of the results of the analysis and provide additional
informations in terms of frequencies, relative frequencies, three dimensional his-
tograms etc. to enable sufficient insights into the working of the distance/similarity
measures. Wherever appropriate we point out the shortcomings and/or failures of
the distance/similarity measures based on these analytical outputs.

To show the generalizability of the analytical framework we propose a brand
new linguistic approximation method based on fuzzy 2-tuples. This method provides
linguistic approximation in terms of a linguistic label accompanied by a number
representing a shift of its meaning to the left or to the right. Even though such a
result of linguistic approximation is not similar to any of the linguistic approximation
methods discussed in the thesis (multistage methods, best-fit approaches) we show
how to generate graphical outputs analogous to those proposed for the standard
best-fit methods.

Moreover the new linguistic approximation method by fuzzy 2-tuples extends
the finite set of results of linguistic approximation to an infinite one. On the other
hand it uses only elementary linguistic terms for which we assume complete knowl-
edge and understanding by the user of the model. The shift of meaning is suggested
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to be represented either by a number or by linguistic term approximating the mag-
nitude of the shift and its direction. The method therefore allows for a much finer
representation of the approximated objects as long as the type of approximated ob-
ject is not too different from the default meanings of the elementary linguistic terms.
Another aspect important for practical applications of this linguistic approximation
approach is that the fuzzy 2-tuple representations can be ordered.

The main application area for the results and methods presented in this thesis
is the area of linguistic fuzzy modeling, computing with words and perceptions and
expert systems (i.e. systems working with or representing the knowledge, experience
or skill of a human being). In these areas fuzzy sets can be considered frequent out-
puts of the models and the linguistic labels summarizing their meaning are required
by the very nature and purpose of the models. The ability to provide appropri-
ate linguistic approximation is also vital for the design of user-system interfaces in
mathematical modeling in general – not only to make the outputs of the models
clear to their users, but also to stress the important aspects of these outputs that
could remain unnoticed otherwise, i.e. to create a needed “spin” for the outputs.

It is my sincere hope that this thesis and the proposed methodology will allow
for a wider spread of linguistic approximation which in term means a wider use of
linguistic fuzzy models in real-life applications. In fact the ability of providing rea-
sonable, intuitive and understandable linguistic approximation can open the results
of sophisticated mathematical models to a wider audience of users.
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A Three dimensional histogram representations
of the performance of d1, d2, d4, s1, . . . s4 in lin-
guistic approximation
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Figure A.1: Three-dimensional histogram representation of the performance of dis-
tance measure d1 in the linguistic approximation of asymmetrical triangular fuzzy
numbers on [0, 1] using a 5-term linguistic scale. Each subfigure summarizes the
relative frequencies of suggesting the given linguistic term for the fuzzy numbers
belonging to the respective bin (feature-wise). Fuzzy numbers that can be equally
well approximated by more linguistic terms at the same time are depicted in the
subfigure labelled ambiguous.
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d1, d2, d4, s1, . . . s4 in linguistic approximation

Figure A.2: Three-dimensional histogram representation of the performance of dis-
tance measure d2 in the linguistic approximation of asymmetrical triangular fuzzy
numbers on [0, 1] using a 5-term linguistic scale. Each subfigure summarizes the
relative frequencies of suggesting the given linguistic term for the fuzzy numbers
belonging to the respective bin (feature-wise). Fuzzy numbers that can be equally
well approximated by more linguistic terms at the same time are depicted in the
subfigure labelled ambiguous.
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Figure A.3: Three-dimensional histogram representation of the performance of dis-
semblance index d4 in the linguistic approximation of asymmetrical triangular fuzzy
numbers on [0, 1] using a 5-term linguistic scale. Each subfigure summarizes the
relative frequencies of suggesting the given linguistic term for the fuzzy numbers
belonging to the respective bin (feature-wise). Fuzzy numbers that can be equally
well approximated by more linguistic terms at the same time are depicted in the
subfigure labelled ambiguous.
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Figure A.4: Three-dimensional histogram representation of the performance of sim-
ilarity measure s1 in the linguistic approximation of asymmetrical triangular fuzzy
numbers on [0, 1] using a 5-term linguistic scale. Each subfigure summarizes the
relative frequencies of suggesting the given linguistic term for the fuzzy numbers
belonging to the respective bin (feature-wise). Fuzzy numbers that can be equally
well approximated by more linguistic terms at the same time are depicted in the
subfigure labelled ambiguous.
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Figure A.5: Three-dimensional histogram representation of the performance of sim-
ilarity measure s2 in the linguistic approximation of asymmetrical triangular fuzzy
numbers on [0, 1] using a 5-term linguistic scale. Each subfigure summarizes the
relative frequencies of suggesting the given linguistic term for the fuzzy numbers
belonging to the respective bin (feature-wise). Fuzzy numbers that can be equally
well approximated by more linguistic terms at the same time are depicted in the
subfigure labelled ambiguous.
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d1, d2, d4, s1, . . . s4 in linguistic approximation

Figure A.6: Three-dimensional histogram representation of the performance of sim-
ilarity measure s3 in the linguistic approximation of asymmetrical triangular fuzzy
numbers on [0, 1] using a 5-term linguistic scale. Each subfigure summarizes the
relative frequencies of suggesting the given linguistic term for the fuzzy numbers
belonging to the respective bin (feature-wise). Fuzzy numbers that can be equally
well approximated by more linguistic terms at the same time are depicted in the
subfigure labelled ambiguous.
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Figure A.7: Three-dimensional histogram representation of the performance of sim-
ilarity measure s4 in the linguistic approximation of asymmetrical triangular fuzzy
numbers on [0, 1] using a 5-term linguistic scale. Each subfigure summarizes the
relative frequencies of suggesting the given linguistic term for the fuzzy numbers
belonging to the respective bin (feature-wise). Fuzzy numbers that can be equally
well approximated by more linguistic terms at the same time are depicted in the
subfigure labelled ambiguous.
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B Graphical summaries of the performance of d1,
d2, d4, s1, . . . s4 in linguistic approximation of
asymmetrical triangular fuzzy numbers using
an enhanced linguistic scale
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Figure B.1: A graphical summary of the results of linguistic approximation of asym-
metrical triangular fuzzy numbers using the distance measure d1 and a 5-term en-
hanced linguistic scale. Each colour represents one term of the enhanced linguistic
scale, the assignment of colours to the linguistic terms is indicated above each subplot
(linguistic terms that are never assigned to any element of Out2 are not considered
in the summary). Red colour is reserved for ambiguous cases, i.e. cases when more
than one linguistic term is assigned and grey colour represents the grey zones.



82
B Graphical summaries of the performance of d1, d2, d4, s1, . . . s4 in

linguistic approximation of asymmetrical triangular fuzzy numbers...

Figure B.2: A graphical summary of the results of linguistic approximation of asym-
metrical triangular fuzzy numbers using the distance measure d2 and a 5-term en-
hanced linguistic scale. Each colour represents one term of the enhanced linguistic
scale, the assignment of colours to the linguistic terms is indicated above each subplot
(linguistic terms that are never assigned to any element of Out2 are not considered
in the summary). Red colour is reserved for ambiguous cases, i.e. cases when more
than one linguistic term is assigned and grey colour represents the grey zones.
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Figure B.3: A graphical summary of the results of linguistic approximation of asym-
metrical triangular fuzzy numbers using the dissemblance index d4 and a 5-term
enhanced linguistic scale. Each colour represents one term of the enhanced linguis-
tic scale, the assignment of colours to the linguistic terms is indicated above each
subplot (linguistic terms that are never assigned to any element of Out2 are not
considered in the summary). Red colour is reserved for ambiguous cases, i.e. cases
when more than one linguistic term is assigned and grey colour represents the grey
zones.
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linguistic approximation of asymmetrical triangular fuzzy numbers...

Figure B.4: A graphical summary of the results of linguistic approximation of asym-
metrical triangular fuzzy numbers using the similarity measure s1 and a 5-term
enhanced linguistic scale. Each colour represents one term of the enhanced linguis-
tic scale, the assignment of colours to the linguistic terms is indicated above each
subplot (linguistic terms that are never assigned to any element of Out2 are not
considered in the summary). Red colour is reserved for ambiguous cases, i.e. cases
when more than one linguistic term is assigned and grey colour represents the grey
zones.



85

Figure B.5: A graphical summary of the results of linguistic approximation of asym-
metrical triangular fuzzy numbers using the similarity measure s2 and a 5-term
enhanced linguistic scale. Each colour represents one term of the enhanced linguis-
tic scale, the assignment of colours to the linguistic terms is indicated above each
subplot (linguistic terms that are never assigned to any element of Out2 are not
considered in the summary). Red colour is reserved for ambiguous cases, i.e. cases
when more than one linguistic term is assigned and grey colour represents the grey
zones.
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linguistic approximation of asymmetrical triangular fuzzy numbers...

Figure B.6: A graphical summary of the results of linguistic approximation of asym-
metrical triangular fuzzy numbers using the similarity measure s3 and a 5-term
enhanced linguistic scale. Each colour represents one term of the enhanced linguis-
tic scale, the assignment of colours to the linguistic terms is indicated above each
subplot (linguistic terms that are never assigned to any element of Out2 are not
considered in the summary). Red colour is reserved for ambiguous cases, i.e. cases
when more than one linguistic term is assigned and grey colour represents the grey
zones.
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Figure B.7: A graphical summary of the results of linguistic approximation of asym-
metrical triangular fuzzy numbers using the similarity measure s4 and a 5-term
enhanced linguistic scale. Each colour represents one term of the enhanced linguis-
tic scale, the assignment of colours to the linguistic terms is indicated above each
subplot (linguistic terms that are never assigned to any element of Out2 are not
considered in the summary). Red colour is reserved for ambiguous cases, i.e. cases
when more than one linguistic term is assigned and grey colour represents the grey
zones.
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The paper investigates the behavior of linguistic approximation under
two distance measures of fuzzy numbers and two similarity measures
of fuzzy numbers in the context of different linguistic scales. An ana-
lytic framework for the comparison of different distance/similarity mea-
sures in the linguistic approximation based on the minimization of dis-
tance (maximization of similarity) is introduced and numerical investi-
gation of four chosen measures is performed. The focus of this paper
is narrowed to symmetrical triangular fuzzy numbers as approximated
objects and several different linguistic scales are considered. The pre-
sented results provide evidence of the existence of differences in the
performance of the selected measures. Preference of more uncertain
approximations, reduction of uncertainty and the emergence of ambi-
guity regions are among the identified effects of some of the measures.
Conclusions concerning the suitability of specific distance/similarity
measures in different contexts are drawn and possible drawbacks of
their use are identified and discussed.

Keywords: Linguistic approximation, fuzzy number, distance, similarity, Bhat-
tacharyya distance, dissemblance index, best-fit, linguistic scale.

1 INTRODUCTION

The main focus of this paper is the process of assigning linguistic labels
to the outputs of mathematical models, i.e. linguistic approximation. Yager
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[14] uses also the term “retranslation” in the context of representing the
outputs of mathematical models by numbers, intervals, linguistic labels or
other entities, that are able to carry the core of the information, to relay
the meaning, to summarize the important aspects of the output and/or to
provide appropriate spin where necessary. From this point of view, linguis-
tic approximation can be seen as one possible tool for retranslation. There
are also several approaches to linguistic approximation as such. The diver-
sity of practical applications of retranslation and the corresponding abun-
dancy of methods and mathematical tools suggested for this purpose make
the field of retranslation a rather demanding object for analysis. Behavioural
investigation of the methods that are intended to carry the meaning to the
users of the outputs of the models is still scarce. This paper strives to pro-
vide insights into the mechanisms of linguistic approximation techniques
based on the “best-fit” approach (see [14] for an overview of methods).
That is we investigate methods for the assignment of linguistic labels to
the outputs of mathematical models (fuzzy numbers are considered). More
specifically, we assume that the meanings of the linguistic labels are rep-
resented by fuzzy numbers (an underlying linguistic variable is assumed)
and that the appropriate linguistic label is assigned based on the distance
(similarity) of the approximated fuzzy number to the meanings of the val-
ues of the linguistic variable. Methods based on subsethood and multi-step
methods [2, 13] are left out of the scope of this paper, as is the explicit
incorporation of spin in the process [14]. This still leaves the choice of
the distance/similarity measures an open issue. This paper continues in the
investigation of behavior of linguistic approximation methods based on dis-
tance/similarity measures [8–10] and extends its scope to different linguis-
tic scale structures. Since the number of available distance/similarity mea-
sures is huge (see e.g. [7,18]), we select two representatives of distances and
two representatives of similarities to perform the analysis. From this point
of view, we offer a detailed investigation of the selected distance/similarity
measures in linguistic approximation, but also suggest an easy-to-implement
methodology for the systematic investigation of the applicability of specific
distance/similarity measures in the “best-fit” linguistic approximation set-
ting.

The structure of the article is following: mathematical preliminaries and
basic notations of the theory of fuzzy sets are defined in Section 2. In the next
section the process of linguistic approximation using the so called best-fit
approach is defined together with four distance/similarity measures of fuzzy
numbers. Analytic framework for the numerical investigation is introduced
in the Section 4 and the results of this investigation are discussed in the last
section.
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2 PRELIMINARIES

Let U be a nonempty set (the universe of discourse). A fuzzy set A on U is
defined by the mapping A : U → [0, 1]. For each x ∈ U the value A(x) is
called a membership degree of the element x in the fuzzy set A and A(.) is
called a membership function of the fuzzy set A. Ker(A) = {x ∈ U |A(x) =
1} denotes a kernel of A, Aα = {x ∈ U |A(x) ≥ α} denotes an α-cut of A for
any α ∈ [0, 1], Supp(A) = {x ∈ U |A(x) > 0} denotes a support of A. Let A
and B be fuzzy sets on the same universe U . We say that A is a fuzzy subset
of B (A ⊆ B), if A(x) ≤ B(x) for all x ∈ U .

A fuzzy number is a fuzzy set A on the set of real numbers which sat-
isfies the following conditions: (1) Ker(A) �= ∅ (A is normal); (2) Aα are
closed intervals for all α ∈ (0, 1] (this implies A is unimodal); (3) Supp(A)
is bounded. A family of all fuzzy numbers on U is denoted by FN (U ). A
fuzzy number A is said to be defined on [a,b], if Supp(A) is a subset of an
interval [a, b]. Real numbers a1 ≤ a2 ≤ a3 ≤ a4 are called significant val-
ues of the fuzzy number A if [a1, a4] = Cl(Supp(A)) and [a2, a3] = Ker(A),
where Cl(Supp(A)) denotes a closure of Supp(A). Each fuzzy number A is
determined by A = {

[a(α), a(α)]
}

α∈[0,1], where a(α) and a(α) is the lower
and upper bound of the α-cut of fuzzy number A respectively, ∀α ∈ (0, 1],
and the closure of the support of A Cl(Supp(A)) = [a(0), a(0)]. A cardinal-
ity of fuzzy number A on [a, b] is a real number Card(A) defined as follows:
Card(A) = ∫ b

a A(x)dx . A union of two fuzzy sets A and B on U (based on
Łukasiewicz disjunction) is a fuzzy set (A ∪L B) on U defined as follows:
(A ∪L B)(x) = min{1, A(x) + B(x)}, ∀x ∈ U .

The fuzzy number A is called linear if its membership function is linear
on [a1, a2] and [a3, a4] and a1 �= a4; for such fuzzy numbers we will use a
simplified notation A = (a1, a2, a3, a4). A linear fuzzy number A is said to
be trapezoidal if a2 �= a3 and triangular if a2 = a3. We will denote triangular
fuzzy numbers by ordered triplet A = (a1, a2, a4). Triangular fuzzy number
A = (a1, a2, a4) is called symmetric triangular fuzzy number if a2 − a1 =
a4 − a2. More details on fuzzy numbers and computations with them can be
found for example in [3].

In real-life applications we often need to represent fuzzy numbers by real
numbers. This process is called defuzzification. The most common method is
to substitute fuzzy number by its center of gravity (COG). Let A be a fuzzy
number on [a, b] for which a1 �= a4. The center of gravity of A is defined
by the formula COG(A) = ∫ b

a x A(x)dx/Card(A). If A = (a1, a2, a4) is sym-
metric triangular fuzzy number on [a, b], then COG(A) = Ker(A) = a2.

A fuzzy scale on [a, b] is defined as a set of fuzzy numbers T1, T2, . . . , Ts

on [a,b], that form a Ruspini fuzzy partition (see [6]) of the interval [a, b],
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i.e. for all x ∈ [a, b] it holds that
∑s

i=1 Ti (x) = 1, and the T ’s are indexed
according to their ordering.

A linguistic variable [15–17] is defined as a quintuple (V, T (V),
X, G, M), where V is a name of the variable, T (V) is a set of its lin-
guistic values (terms), X is an universe on which the meanings of the lin-
guistic values are defined, G is a syntactic rule for generating the val-
ues of V and M is a semantic rule which to every linguistic value A ∈
T (V) assigns its meaning A = M(A) which is usually a fuzzy number
on X . Linguistic variable (V, T (V), X, G, M) is called a linguistic scale
on [a, b] if X = [a, b], T (V) = {T1, . . . , Tn} and Ti = M(Ti ), i = 1, . . . , n
form a fuzzy scale on [a, b]. Linguistic terms {T1, . . . , Tn} of linguistic
scale T (V) are called elementary (level 1) terms of linguistic scale. Linguis-
tic scale can be extended using additional linguistic terms Ti to T j where
i = 1, . . . , n − 1, j = 2, . . . , n and i < j are called derived linguistic terms,
M(Ti to T j ) = Ti ∪L Ti+1 ∪L · · · ∪L Tj . The extended linguistic scale thus
contains linguistic values of different levels of uncertainty – from the possibly
least uncertain elementary terms {T1, . . . , Tn} to the most uncertain linguistic
term T1 to Tn (uncertainty can be assessed by the cardinality of the meanings
of these linguistic terms). Derived linguistic terms Ti to T j are called level
j − i + 1 terms and can be also denoted by Ti j . Elementary linguistic terms
Ti can be also denoted by Ti i (i.e. Ti = Ti i to unify the notation).

3 LINGUISTIC APPROXIMATION OF FUZZY NUMBERS

We have already stated our focus on the “best-fit” approach to linguistic
approximation, based on assigning such linguistic label to the given fuzzy
set, that is the closest (or most similar) in terms of its meaning represented
by a fuzzy number. That is we assume an underlying linguistic variable
(V, T (V), [a, b], G, M), such that Ti = M(Ti ), i = 1, . . . , s are fuzzy num-
bers on [a, b], and T (V) = {T1, . . . , Ts} is the set of its linguistic values (pos-
sible linguistic labels). The task of a linguistic approximation is now one of
finding an appropriate linguistic label from T (V) to a given fuzzy number
O on [a, b] (considered to be an output of a mathematical model). The lin-
guistic approximation TO ∈ T (V) of the fuzzy number O is in the “best-fit”
linguistic approximation framework found computing

TO = arg min
i∈{1,...,s}

d(Ti , O), (1)

where d(A, B) is a distance or similarity measure∗ of two fuzzy numbers.
To retain comparability with the results recently published in the literature

∗ In the case of similarity measure the arg min function in formula (1) is naturally replaced by arg max.
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[8–10], we choose the following distances and similarity measures of fuzzy
numbers A and B for the analysis (note, that these serve as examples of the
distance and similarity measures and that the findings of this analysis can also
serve as a case study of the types of behavior or differences in performance
that can be identified using the analysis methodology suggested in this paper):

� modified Bhattacharyya distance [1]:

d1(A, B) =
[
1 −

∫
U

(A∗(x) · B∗(x))1/2dx
]1/2

, (2)

where A∗(x) = A(x)/Card(A) and B∗(x) = B(x)/Card(B),� dissemblance index [5]:

d2(A, B) =
∫ 1

0
|a(α) − b(α)| + |a(α) − b(α)| dα. (3)

� similarity measure (introduced by Wei and Chen [12]):

s1(A, B) =
(

1 −
4∑

i=1

|ai − bi |
4

)
· (4)

· min{Pe(A), Pe(B)} + 1

max{Pe(A), Pe(B)} + 1
,

where Pe(A) =
√

(a1 − a2)2 + 1 +
√

(a3 − a4)2 + 1 + (a3 − a2) + (a4 −
a1), Pe(B) is defined analogically,� similarity measure (introduced by Hejazi and Doostparast [4]):

s2(A, B) =
(

1 −
4∑

i=1

|ai − bi |
4

)
· (5)

· min{Pe(A), Pe(B)}
max{Pe(A), Pe(B)} · min{Ar (A), Ar (B)} + 1

max{Ar (A), Ar (B)} + 1
,

where Ar (A) = 1
2 (a3 − a2 + a4 − a1), Ar (B) is defined analogically and

Pe(A) and Pe(B) are computed identically as in the previous method.

Although these chosen measures present but a fracture of the measures
available in literature, their detailed analysis can still be meaningful and
present not only insights into the appropriateness of these measures in the
best-fit linguistic approximation, but also a good case study of the use of the
analytic framework proposed in this paper. These methods also represent an
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interesting selection of different approaches to represent difference between
fuzzy numbers in terms of distance or similarity - d1 focusing among
other aspects on the subsethood, d2 being based mainly on the differences
between the α-cuts of the fuzzy numbers and both similarities s1 and s2

representing different focus on various aspects of the shape of fuzzy numbers
(area, perimeter, significant values). The analysis presented in this paper
can, however, be easily extended to many other distance and similarity
measures of fuzzy numbers and their performance in the “best-fit” linguistic
approximation.

4 NUMERICAL INVESTIGATION

In this paper, we restrict our investigation of behavior of linguistic approxi-
mation based on different distance and similarity measures applied to sym-
metrical triangular fuzzy numbers defined on the interval [0, 1]. These fuzzy
numbers O = (o1, o2, o3) can be represented by 2-tuples (o2, o3 − o1), where
the first element represents the center of gravity of O and the second ele-
ment represents the length of the support of O . The simulation approach
employed in [8, 10] or [9] (see Figure 1 for an example of the outputs
of [8], where random generation of symmetrical triangular fuzzy numbers
was employed to assess the effect of the choice of similarity/distance mea-
sure under a 5-element elementary term set of the linguistic scale) is replaced
in this paper by a grid approach - i.e. by a systematic investigation of a
representative sample of symmetrical triangular fuzzy numbers on [0, 1].
To obtain a set of 500 000 symmetrical triangular fuzzy numbers for the
investigation, 1 001 points uniformly distributed across the interval [0, 1] are
selected to represent the centers of gravity of the investigated fuzzy num-
bers (o2) and the same approach is applied to generate the spreads of the
fuzzy numbers (o3 − o1). This way a set of 1 002 001 symmetrical trian-
gular fuzzy numbers OG = {Ok ∈ FN ([−0.5, 1.5])|k = 1, . . . , 1002001} is
generated. Out of these we select for our investigation a subset of symmet-
rical triangular fuzzy numbers O I N = {

O j ∈ OG |O j ∈ FN ([0, 1])
}
. The set

O I N = {O1, . . . , O500000} represents a uniform grid on the COG-Card(Supp)
space of symmetrical triangular fuzzy numbers on [0, 1]. This allows for the
comparison of frequencies and also for the use of a crisp benchmark (denoted
“crisp” in the tables) in the analysis of the results.

This crisp benchmark assumes a partitioning of the interval [0,1] into j
subintervals I1, . . . , I j , where I1 ∪ · · · ∪ I j = [0, 1], and j is the number of
elementary terms of the linguistic scale used for the linguistic approximation.
The intervals are defined in the following way: Im = [xm, ym], where x1 = 0,
y j = 1, xm is the solution of Tm−1(xm) = Tm(xm) for m = 2, . . . , j and ym

is the solution of Tm(ym) = Tm+1(ym) for m = 1, . . . , j − 1. These intervals
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FIGURE 1
Results of the numerical experiment presented in [8]. Symmetrical triangular fuzzy numbers on
[0, 1] were randomly generated and linguistically approximated using the “best-fit” approach
and all of the above mentioned similarity/distance measures d1 (top left plot), d2 (top right plot),
s1 (bottom left plot) and s2 (bottom right plot). Each colour correspond with one linguistic value
of a linguistic scale (uniform, 5 elementary terms) used for the linguistic approximation.

then represent the meanings of the elementary linguistic terms T1, . . . , T j .
The linguistic approximation is then performed based on the determination to
which interval the value of the COG of the approximated fuzzy set belongs.
This in essence means that we are looking for the maximum membership
degree of the COG of the approximated fuzzy set to the meanings of the
linguistic labels and assigning the label where this membership degree is
maximal.

Since triangular fuzzy numbers are used, each of them can be uniquely
represented by its COG and the cardinality of its support. This way each
generated fuzzy number in O I N is represented by a single point in the tri-
angular area in Figures 2 - 5; in Figure 6 only a subset of the set O I N

is presented, i.e. the points (in red) correspond with those fuzzy numbers
for which an unambiguous linguistic approximation can not be found in the
“best-fit” context. To stress the effect of using extended linguistic scales for
linguistic approximation, Figure 7 presents a decomposition of the plot for d1
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FIGURE 2
The results of linguistic approximation of the elements of O I N represented by points with coor-
dinates (COG(Oi ), Card(Supp(Oi ))) using a 6-element uniform linguistic scale V6. The mean-
ings of the elementary terms of V6 are modeled as triangular fuzzy numbers. Only elementary
linguistic terms are considered, each is represented by a different colour.

presented in Figure 4 into subplot, each subplots representing a different level
of the derived terms. To investigate the results of linguistic approximation,
each linguistic label available for linguistic approximation under the given
linguistic variable (scale) is assigned a different colour (red is reserved for
ambiguous cases) and the elements of O I N are then presented in the plots in
such colour that corresponds with the result of the linguistic approximation
using the given distance/similarity measure. The frequencies of the assign-
ment of each label are summarized in Tables 1 and 2. In tables considering
elementary terms only, the comparison with the crisp benchmark linguistic
approximation method is also available.

To asses the effect of odd/even number of elementary terms of the linguis-
tic scale on linguistic approximation, two elementary linguistic scales V6,V7

are used in this paper: T (V6) = {T1, . . . , T6} with the respective meanings
of these linguistic terms given as {T1, . . . , T6} = {(0, 0, 0.2), (0, 0.2, 0.4),
(0.2, 0.4, 0.6), (0.4, 0.6, 0.8), (0.6, 0.8, 1), (0.8, 1, 1)} and T (V7) = {T1, . . . ,

T7} with the meanings {T1, . . . , T7} = {(0, 0, 1/6), (0, 1/6, 1/3), (1/6, 1/3,
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FIGURE 3
The results of linguistic approximation of the elements of O I N represented by points with coor-
dinates (COG(Oi ), Card(Supp(Oi ))) using a 7-element uniform linguistic scale V7. The mean-
ings of the elementary terms of V7 are modeled as triangular fuzzy numbers. Only elementary
linguistic terms are considered, each is represented by a different colour.

1/2), (1/3, 1/2, 2/3), (1/2, 2/3, 5/6), (2/3, 5/6, 1), (5/6, 1, 1)}. The results
of the linguistic approximation for all the elements of O I N are presented in
Figures 2 and 3 and Tables 1 and 2. In the figures, each colour corresponds
with one of the elementary terms, the figures therefore summarize the behav-
ior of d1, d2, s1 and s2 in the linguistic approximation using the elementary
terms of the linguistic scales and the “best-fit” approach. The tables then
summarize the frequencies assignment of each particular linguistic label. A
comparison with the naive crisp linguistic approximation technique speci-
fied above is also provided in the tables. The tables also include information
concerning the number of ambiguous cases, when (1) has more than one solu-
tion and the linguistic label can not be unambiguously determined. The total
number of fuzzy numbers evenly distributed in the feasible part of the COG-
Card(Supp) space used for the computation of these results is 500 000.

Also, two extended linguistic scales V6e,V7e obtained from linguistic
scales V6,V7 are considered in our analysis. The corresponding results of the
linguistic approximation for all the elements of O I N are presented in Figures
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FIGURE 4
The results of linguistic approximation of the elements of O I N represented by points with
coordinates (COG(Oi ), Card(Supp(Oi ))) using a uniform linguistic scale V6e with 6 elementary
terms. The meanings of the elementary terms of V6e are modeled as triangular fuzzy numbers.
Elementary and derived linguistic terms are considered for the linguistic approximation, each
elementary and derived term is represented by a different colour.

4 - 5 and the corresponding frequencies in Tables 3 - 4. We also present graph-
ical summaries for the results obtained for V8e,V9e and V10e scales, since the
analysis found that for s1 and s2 the areas of ambiguity start to appear, as
presented in Figure 6.

5 DISCUSSION

The results presented in the previous section were obtained for the linguis-
tic approximation of symmetrical triangular fuzzy numbers by the elemen-
tary (derived) linguistic terms of linguistic variables defined in the prelimi-
naries section. The minimization of distance (maximization of similarity) is
employed to find the best fitting linguistic approximation for a given fuzzy
number, i.e. the “best fit” approach is adopted here. Although these assump-
tions may seem to be rather restrictive, there are still several relevant con-
clusions that can be made in terms of the performance of d1, d2, s1 and s2
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FIGURE 5
The results of linguistic approximation of the elements of O I N represented by points with
coordinates (COG(Oi ), Card(Supp(Oi ))) using a uniform linguistic scale V7e with 7 elementary
terms. The meanings of the elementary terms of V7e are modeled as triangular fuzzy numbers.
Elementary and derived linguistic terms are considered for the linguistic approximation, each
elementary and derived term is represented by a different colour.

in linguistic approximation. The methodology for the investigation of perfor-
mance of linguistic approximation of asymmetrical triangular fuzzy numbers
by the elementary terms was outlined in [9] along with the discussion of
possible issues connected with the graphical representation of its outputs.
Let us first consider only the linguistic approximation using the elemen-
tary terms. It is apparent from Figures 2 and 3, that the outputs of linguis-
tic approximation using d1, d2, s1 and s2 are similar as long as fuzzy num-
bers with higher uncertainty are considered (this holds approximately for
Card(Supp(Oi )) > 0.4 for V5 - see Figure 1, Card(Supp(Oi )) > 0.3 for V6 -
see Figure 2, Card(Supp(Oi )) > 0.25 for V7 - see Figure 3). In general there
is an apparent trend of the methods getting more and more agreement con-
cerning the linguistic approximation of fuzzy numbers with sufficient level of
uncertainty, while the required uncertainty (proportional to Card(Supp(Oi )))
gets lower with the number of elementary terms of the linguistic scale used
for linguistic approximation. For fuzzy numbers of low uncertainty one of
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FIGURE 6
Elements of O I N represented by points with coordinates (COG(Oi ), Card(Supp(Oi ))) using an
extended linguistic scale V8e with 8 elementary terms (top), V9e with 9 elementary terms (mid-
dle) and V10e with 10 elementary terms (bottom), for which the best-fit linguistic approximation
using s1 and s2 is ambiguous (red areas).

the investigated similarity measures stands out. This measure is s2, in case of
which the linguistic terms T2 and Tn−1 of a linguistic scale with n elemen-
tary terms will never be used as labels for low-uncertain fuzzy numbers. This
could constitute a significant bias, since even in cases when the approximated
fuzzy number is a subset of T2 or Tn−1, it might not be assigned the linguis-
tic label T2 or Tn−1 respectively (i.e. some O ⊆ T2 will not be linguistically
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FIGURE 7
The results of linguistic approximation of the elements of O I N represented by points with coor-
dinates (COG(Oi ), Card(Supp(Oi ))) using a 6-element uniform linguistic scale V6 and the Bhat-
tacharyya distance d2 decomposed by levels: level-1 (top left), level-2 (top-right), level-3 (bot-
tom left), level-4 (bottom right).

approximated by T2). These results are confirmed by the frequency analysis
summarized in Tables 1 and 2 - note, that the frequency of use T2 and Tn−1 in
both tables is significantly lower than in all the other measures and the crisp
benchmark approach. This can be attributed to the fact that the similarity
measure s2 stresses the shape of the fuzzy numbers much more strongly than
the other investigated methods. If fuzzy numbers with relatively low uncer-
tainty are expected to be linguistically approximated, s2 might not be the best
method to choose. Based on the figures we can also conclude, that the d1

distance seems to rely mainly on the COG information in the assignment of
linguistic labels, as long as only elementary terms of the linguistic scales are
considered. However the results of linguistic approximation using d1 differ
from the results of the crisp benchmark (see Tables 1 and 2).

The results concerning the Bhattacharyya d1 distance, however, change
significantly when the derived linguistic terms are considered, i.e. when
extended linguistic scales are used. Figures 4 and 5 clearly show that using
d1 it is possible to get a level-2 linguistic label even for very low-uncertain
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T 1 T 2 T 3 T 4 T 5 T 6 Ambiguous
d1 17 091 72 606 159 200 159 200 72 606 17 091 2 206
d2 18 177 71 501 159 200 159 200 71 501 18 177 2 244
s1 30 673 59 022 159 200 159 200 59 022 30 673 2 210
s2 59 985 32 646 156 461 156 461 32 646 59 985 1 816

Crisp 9 900 79 600 159 200 159 200 79 600 9 900 2 600

TABLE 1
Frequencies of assignment of each of the elementary linguistic terms T1, . . . , T6 of V6 to the
elements of O I N in the “best-fit” linguistic approximation using d1, d2, s1 and s2 and the crisp
approach. The ambiguous cases (when (1) has more than one solution) are calculated separately
and are presented in the last column of the table.

T 1 T 2 T 3 T 4 T 5 T 6 T 7 Ambiguous
d1 11 862 50 387 110 722 153 056 110 722 50 387 11 862 1 002
d2 12 620 49 616 110 722 153 056 110 722 49 616 12 620 1 028
s1 21 475 40 772 110 722 153 056 110 722 40 772 21 475 1 006
s2 42 629 22 432 108 081 153 056 108 081 22 432 42 629 660

Crisp 6 972 55 278 110 722 153 056 110 722 55 278 6 972 1 000

TABLE 2
Frequencies of assignment of each of the elementary linguistic terms T1, . . . , T7 of V7 to the
elements of O I N in the “best-fit” linguistic approximation using d1, d2, s1 and s2 and the crisp
approach. The ambiguous cases (when (1) has more than one solution) are calculated separately
and are presented in the last column of the table.

fuzzy numbers, that lie “between” the meanings of two neighboring elemen-
tary terms. This behavior can be described as preferring more uncertain lin-
guistic terms the meanings of which are supersets to the approximated fuzzy
number to the elementary terms of lower uncertainty, whose meanings, how-
ever, do not overlap with the approximated fuzzy number enough (see Figure
7 - top right subplot - for more details). This way when linguistic labels with
meanings on different levels of uncertainty are allowed, d1 embodies at least
partially the requirement of subsethood - the approximating term that is a
superset of the approximated fuzzy number (meaning-wise) is preferred to
others, that might be closer in terms of shape (meaning-wise). Thanks to this
inherent preference of more uncertain labels, d1 can be observed to assign
linguistic labels from higher levels, that are never even used when the other
three measures are applied (see level 4 in Table 3 and level 5 in Table 4).
Suggesting linguistic labels that are more general than the approximated out-
put (while the output is a subset of the meaning of this more general label)
might be a desired property in applications, where it is necessary to obtain
a description that includes the output as a subcase (special-case or even as
a representative). We can also note, that for any of the four investigated
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Level 1 T 1 T 2 T 3 T 4 T 5 T 6

d1 16 458 59 537 88 863 88 863 59 537 16 458
d2 18 177 68 234 119 401 119 401 68 234 18 177
s1 30 673 57 854 113 295 113 295 57 854 30 673
s2 59 985 30 897 111 207 111 207 30 897 59 985

Level 2 T 12 T 23 T 34 T 45 T 56

d1 2 744 31 373 55 119 31 373 2 744
d2 0 13 334 60 000 13 334 0
s1 0 14 219 58 847 14 219 0
s2 3 147 11 617 61 603 11 617 3 147

Level 3 T 13 T 24 T 35 T 46

d1 0 19 858 19 858 0
d2 0 0 0 0
s1 0 3 532 3 532 0
s2 0 1 511 1 511 0

Level 4 T 14 T 25 T 36 Ambiguous
d1 0 7 163 0 52
d2 0 0 0 1 708
s1 0 0 0 2 007
s2 0 0 0 1 669

TABLE 3
Frequencies of assignment of each of the elementary linguistic terms T1, . . . , T6 of V6e and all
the derived terms Ti j = “Ti to T j ” to the elements of O I N in the “best-fit” linguistic approxima-
tion using d1, d2, s1 and s2. Each level of the linguistic terms is presented in a separate subtable,
the ambiguous cases (when (1) has more than one solution) are calculated separately and are
presented in the last subtable. Linguistic terms from the highest two levels are not used.

distance/similarity measures, the derived linguistic terms of a linguistic scale
with n elementary terms from level n − 1 up are never used for n ≥ 4.

Unlike d1 and both the similarity measures, the dissemblance index d2

tends to assign level-1 terms even to fuzzy numbers with considerably high
uncertainty (see e.g. the height of the areas representing the middle two ele-
mentary terms in Figure 4 and the middle three in Figure 5) when extended
linguistic scales are used. From this point of view, using d2 there is a potential
risk of uncertainty reduction.

When the similarity measures s1 and s2 are used in the extended linguis-
tic scale setting, their performance is analogical to their performance when
only elementary linguistic terms are allowed - that is as long as fuzzy num-
bers with lower uncertainty are approximated. For the approximation of fuzzy
numbers with higher uncertainty, s1 and s2 seem to be less useful, mainly as
the number of the elementary terms of the linguistic scale increases above 7.
Figure 6 depicts the elements of O I N for which the best-fit linguistic approx-
imation using s1 and s2 using an extended linguistic scale with 8 elementary
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Level 1 T 1 T 2 T 3 T 4 T 5 T 6 T 7

d1 11426 41326 61704 61743 61704 41326 11426
d2 12620 47375 83000 83334 83000 47375 12620
s1 21475 40042 79261 79690 79261 40042 21475
s2 42629 21248 76811 80504 76811 21248 42629

Level 2 T 12 T 23 T 34 T 45 T 56 T 67

d1 1919 21798 38255 38255 21798 1919
d2 0 9297 46314 46314 9297 0
s1 0 9623 42308 42308 9623 0
s2 2657 7627 45535 45535 7627 2657

Level 3 T 13 T 24 T 35 T 46 T 57

d1 0 13791 33015 13791 0
d2 0 0 18594 0 0
s1 0 1963 29378 1963 0
s2 0 827 23858 827 0

Level 4 T 14 T 25 T 36 T 47

d1 0 10762 10762 0
d2 0 0 0 0
s1 0 167 167 0
s2 0 0 0 0

Level 5 T 15 T 26 T 37 Ambiguous
d1 0 3216 0 64
d2 0 0 0 860
s1 0 0 0 1254
s2 0 0 0 970

TABLE 4
Frequencies of assignment of each of the elementary linguistic terms T1, . . . , T7 of V7e and all
the derived terms Ti j = “Ti to T j " to the elements of O I N in the “best-fit” linguistic approxima-
tion using d1, d2, s1 and s2 and the crisp approach. Each level of the linguistic terms is presented
in separate subtable, the ambiguous cases (when (1) has more than one solution) are calculated
separately and are presented in the last subtable. Linguistic terms from the highest two levels are
not used.

terms (top subplots), 9 elementary terms (middle subplots) and 10 elemen-
tary terms (bottom subplots) is ambiguous (i.e. more than one linguistic label
is assigned). The existence of these “ambiguity areas” in the plots represents
a significant problem in the use of s1 and s2 for linguistic approximation in
the above described setting. If the linguistic labels for the fuzzy numbers in
ambiguity areas are chosen arbitrarily it is possible to assign different linguis-
tic labels to two different fuzzy numbers in the same part of the ambiguity
area (area suggesting the same two or more possible labels), which might be
in direct contradiction with the natural ordering of these fuzzy numbers (i.e.
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the greater fuzzy number might be assigned a label that precedes the label of
the lesser fuzzy number in the ordering of the labels).

6 CONCLUSION

This paper continues in the investigation of behavior of the selected distance
and similarity measures in linguistic approximation presented in [8–11]. We
adopt the focus on symmetrical triangular fuzzy numbers on [0, 1], which
allows easier interpretability of the results (the generalization to asymmetri-
cal fuzzy numbers analogical to [9] is also possible). We extend the scope
of the investigation of the performance of the methods to linguistic scales
with odd and even number of elementary terms, and also to extended linguis-
tic scales, which provide more possibilities to reflect the uncertainty of the
approximated fuzzy numbers. This, however, as can be seen in the results,
stresses the problem of ambiguity in linguistic approximation. When only
elementary terms are used, it can happen that two linguistic approximations
are suggested (because the distance/similarity of the approximated linguistic
term to the meanings of two neighboring linguistic values is the same) - in
this case the approximated object lies “directly in the middle” and a small
shift will result in unambiguous assignment of a linguistic label (i.e. a ran-
dom assignment of one of these linguistic labels is not a problem). When
the extended linguistic scale is used, the small shift of the approximated
fuzzy number no longer guarantees unambiguous linguistic approximation.
Ambiguous areas appear under the use of some of the investigated methods,
where two different linguistic labels (in terms of COG of their meanings),
and if random assignment of a linguistic label is performed, it is possible to
assign different linguistic labels to two different fuzzy numbers in the same
ambiguity area, and the ordering of these labels might not correspond with the
natural ordering of the two fuzzy numbers. A difference in the performance
of the two distance measures with a clear implication in the possibilities of
their use was also identified. The preference of more uncertain approxima-
tions by d1 makes it more suitable in cases where uncertainty of the result
plays an important role and should not be underestimated. Bhattacharyya
distance can therefore be among the measures of choice when more general
linguistic approximations (superterms) are desirable. An opposite behavior
was identified in d2, where the uncertainty of the approximated output can be
reduced for some fuzzy numbers (compared to other investigated methods) in
the process of linguistic approximation. Overall the results confirm, that the
yet not completely mapped landscape of linguistic approximation deserves
closer investigation, since specific features of the methods can be identified.
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This might be the first step towards creating the “map of methods of choice”
for particular application areas and contexts.
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[10] T. Talášek, J. Stoklasa, and J. Talašová. (2016). The role of distance and similarity in
Bonissone’s linguistic approximation method a numerical study. In Proceedings of the
34th International Conference on Mathematical Methods in Economics, pages 845–850,
Liberec. Technical University of Liberec.
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FUZZY APPROACH – A NEW CHAPTER

IN THE METHODOLOGY OF PSYCHOLOGY?1

JAN STOKLASA, TOMÁŠ TALÁŠEK AND JANA MUSILOVÁ

Abstract: This paper aims to briefly introduce the main idea behind the fuzzy approach and to identify 
the areas and problems encountered in the humanities that might profit from using this approach. Based 
on a short overview of selected applications of fuzzy in psychology we identify key areas in which the 
fuzzy approach has already been applied, and propose a list of general types of problems that the fuzzy 
approach may provide solutions for in psychology and the humanities in general. These types of problems 
are illustrated using practical examples. The benefits and possible shortcomings of using the fuzzy approach 
compared to classical approaches in use today are discussed. 

The goal of this paper is to indicate areas in research and practice in the humanities, where modern 
mathematical tools—in this case linguistic fuzzy modelling—have already been used or might prove 
promising.

Keywords: methodology; fuzzy; linguistic modelling; decision support; diagnostics.

Introduction

The goal of every science can be formulated like this: to describe, explain, and predict the 

world, or more specifically the behaviour of the object of study. In psychology, the object is 

the human mind. However, it is not an object that is easy to access. There are not many ways 

in which the human mind or specific mental processes can be directly assessed or measured.

Psychology uses methods and formal models developed in other sciences for other 

purposes (mathematics, physics, medicine and others) as well as methods developed directly 

for psychology. Many of these originate from other sciences and use their tools. Of all these 

formal tools, statistics has an important role to play (especially in quantitative methodology). 

It is one of the few mathematical tools that all psychology majors meet during their studies 

and as far as we can say from our experience, the only one that psychology students in the 

Czech Republic are really required to be familiar with. It is used in psychological diagnostics 

to define the norm, to assess the validity and reliability of psychological tests and methods, 
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to test hypotheses—its uses are numerous and in many cases the use of statistics is not only 

apt, but beneficial to the psychological understanding of the world (or at least of a part of it). 

We might question how much statistics can be of service if we really want to concentrate 

on uniqueness, if we want to capture what it is that makes every human being different from 

other human beings. The fact that qualitative methodologies have been introduced into 

psychology (if introduction is the correct term for ideas that have always been implicitly 

present in psychology, although perhaps not sufficiently methodologically and formally 

grounded) means that the answer this question is a clear “not enough”. 

In this paper we would like to point out that if we create a psychological methodology 

based mainly on statistics, we might sooner or later find that there is a hole in it. And for all 

the problems that fall into this hole, statistics and other mathematical tools commonly used 

in psychology (scaling, optimisation, etc) might not be able to provide satisfactory models. 

The hole might not be visible from a distance—only when we encounter a problem lying 

really close to the hole or even directly inside it do we realize that new tools are necessary 

and that a different approach to building formal models is required. So it is quite possible 

that many psychologists will not get closer to the problems near this hole during their whole 

professional career. But if they eventually do, they need to have tools to deal with them 

appropriately. Representing human knowledge, working with linguistic descriptions of reality 

or mental processes (self-reports), dealing with uncertain information or describing human 

decision-making are issues that form just a subset of the problems that might fall into this 

Figure 1. The concept of a fuzzy set: a) crisp set of happy people in the population—people are 
either happy or not happy; b) crisp set with borderline cases (grey area with question marks) where 
we cannot decide whether these people are happy or not; c) fuzzy set of happy people—people 
can be happy to various extents—in the centre the people are completely happy, the further away 
from the centre they are, the less happy the people are. 
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“hole in methodology”. In our opinion we encounter problems from this area quite frequently 

in psychology, but we either treat them with methods ill-suited to these problems or the data 

they produce, or we ignore them owing to the lack of appropriate tools. 

If we consider some of the most typical sources of information in psychology—

interviews, observations and similar methods—we usually obtain a linguistic description 

of the problem or process. This description is based on a self-report by a particular human 

being, and as such can be understood only as precisely as the words and language allow. 

The meaning of the words is, however, not certain—some of the linguistic expressions we 

normally use partially overlap, and their meanings are context dependent and may even differ 

from person to person. If uncertainty is inherent to linguistic description (due to the process 

whereby one person codes ideas into words and then they are decoded back into ideas—that 

is, a second person—the psychologist—assigns meaning to the words), then classical 

methods not equipped to deal with uncertainty may produce incorrect results when applied to 

model situations or systems that are described linguistically. 

We aim to briefly introduce the basic concept of fuzzy approach in the following section. 

Using a list of a number of successful applications of fuzzy in a psychological context, we 

identify several prototypical issues which typically lead to the use of fuzzy tools (or at least 

suggest that the use of fuzzy might be considered). We discuss several implications and areas 

that typically encounter several of these issues. Finally, we provide two practical applications 

of fuzzy in the humanities context to show how the prototypical issues can be dealt with in 

real life.

Fuzzy approach in a nutshell

The fuzzy approach is based on the idea that, in some cases, it is not reasonable to say 

that an object either has a property or it does not (the fuzzy approach in fact assumes that 

the logical law of the excluded middle does not hold). Objects or people may exhibit some 

properties only partially—to a certain extent. This becomes even more apparent when the 

properties are described in common language—by words. Let us for example consider 

happiness. If we would like to select all the happy people from the population, we would have 

to be able to define a strict threshold between “happiness” and “not happiness” —that is, we 

would have to be able to decide whether each person is happy or not (see Figure 1, subfigure 

a). This approach is, however, counterintuitive. In this case, we would probably be able to 

select those who are “definitely happy” and those who are “definitely not happy”. But there 

would be a certain amount of people for whom we would not be able to decide with certainty 

(see Figure 1, subfigure b). This is usually used in diagnostics for borderline values of scores 

or indicators. If we obtain values close to the threshold, we interpret them with more caution 

(for example as being inconclusive).

If we consider happiness then there are people that are “very happy”, some of them may 

even be “manic”, there may also be people that are “a bit happy”, “somewhat unhappy” 

and so on. It would therefore seem that happiness is an emotion that people experience to 

different extents (Figure 1, subfigure c) describes a fuzzy set of happy people—the darker 

the colour, the higher the level of happiness). We can view the characteristic property of a 

set as a linguistic label of a set as well and the degree to which a member belongs to this 
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set (usually a number between 0 and 1) can be interpreted as the level of compatibility of 

the member with this linguistic label—the extent to which the linguistic label describes the 

member well. This can be of course interpreted also in a logical sense—statements in fuzzy 

logic can be true, false or everything between these two extremes—this means a statement 

can hold only partially. 

To refer to the concept of fuzzy modelling and fuzzy logic as a new branch of 

mathematics would not be appropriate. Fuzzy sets were introduced as far back as in 1965 by 

Zadeh and he outlined the possibility that fuzzy sets could be used to model the meanings 

of certain linguistic terms ten years later (Zadeh, 1975). There is a considerable amount of 

literature on fuzzy logic, fuzzy set theory and linguistic fuzzy modelling and it is not within 

the scope of this paper to provide theoretical insights into this area (interested readers can see 

for example Klir & Yuan (1995) or Dubois & Prade (2000)). 

Applying fuzzy in psychology and social sciences 

Since 1965, there has been a fair amount of development in the field of fuzzy, both in 

the theory and applications. Surprisingly, fuzzy set theory has received more attention in the 

technical sciences and heavy industry than in the humanities. There are a number of books 

and book chapters on fuzzy methods in the social sciences and psychology—for example, 

Smithson (1986), Zétényi (1988), Smithson & Oden (1999), Ragin (2000), Smithson & 

Verkuilen (2006) and Arfi (2010). Most of these authors expect that the fuzzy approach will 

attract greater attention in the humanities soon. It would not be correct to say that there are 

no cases of fuzzy mathematics or linguistic fuzzy modelling being applied so far—some 

interesting psychological results can be found, such as:

• fuzzy logical model of perception (Oden & Massaro, 1978)

• fuzzy set based theory of memory (Massaro et al., 1991)

• approach to depression as a fuzzy concept (Horowitz & Malle, 1993)

• fuzzy burnout syndrome concept (Burisch, 1993)

• fuzzy scaling and various fuzzifications of Likert scales

• fuzzy coding in qualitative research

• fuzzy developmental stages theories (overlapping stages)

Researchers have also focused on the use of linguistic fuzzy modelling in psychological 

diagnostics (focus on the MMPI-2 interpretation)—see Bebčáková et al. (2010) or Stoklasa 

& Talašová (2011) for an example of MMPI-2 (a psychological personality inventory) 

interpretation tools using fuzzy concepts and linguistic modelling. 

There are also numerous applications of fuzzy methods in formal mathematical theory of 

group and multiple criteria decision-making (which are very close to psychology) and fuzzy 

data analysis methods. The use of fuzzy methods in HR management in companies has been 

discussed in Zemková & Talašová (2011); Stoklasa et al. (2011, 2013) describe potential uses 

of fuzzy rule bases in HR management at tertiary education institutions. 

Fuzzy concepts have also been covered in fuzzy linguistics. The linguistic modelling 

approach also provides valuable insights into classical decision support methods. It can be 

used even in the evaluation of arts—for example an evaluation model for the creative work 

outcomes of Czech art colleges and faculties (described in Stoklasa et al., 2013, Stoklasa 
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& Talašová, 2013) shows how a linguistically described condition on consistency of expert 

preferences can prove useful in large evaluation problems.

Prototypical issues: where human sciences can benefit from the fuzzy approach 

These applications of fuzzy in the humanities all share some common features that can 

be extracted to produce a list of typical cases of when one might consider using the fuzzy 

approach. All the examples address issues that cannot be sufficiently reflected upon and dealt 

with in the formal models in psychology using the classical crisp approach. These include:

• inadequacy of crisp boundaries and “grey zones”—a typical example of this issue is 

deciding whether a particular observation, test score etc., is within the norm or not. It 

is not reasonable to assume that the shift from being one unit below the threshold (can 

be defined numerically or linguistically) to being one unit above the threshold means a 

transition from being “normal” to being “beyond the norm”. In diagnostics, setting scores 

and observations around the threshold can be treated as “inconclusive” or “borderline”. 

But this does not solve the problem as we still need to decide what is “normal” and when 

it becomes “borderline”. The fuzzy approach can provide tools that enable the continuous 

transition from one state to another, allowing an observation to be partially normal and 

partially above the norm. 

• ill-defined and overlapping categories—in many cases we need to classify people or 

objects into classes. These classes are usually defined by their characteristic feature (this 

can be a measurable quality or a purely qualitative feature). Classical approaches operate 

under the assumption that an object cannot belong to more than one class at the same 

time. The fuzzy approach makes it possible for an object to distribute its membership 

among several categories, as well as to belong fully to several categories at the same 

time. This includes also diagnostics situations, testing, management decisions and so on.

• continuity of transformation between stages—many theories operating with stages 

might again benefit from the possibility of modelling continuous transitions between 

stages. Not only developmental stages as mentioned in the previous section—evaluation 

is also a good example of this problem (an improving performance means a person 

gradually ceases to be “average” and begins to be “good”). 

• linguistic data—when we deal with information provided in words, we need to be able 

to account for the uncertainty inherent in such data. Since a concept can mean different 

things to two different people, formal models should be able to reflect these differences. 

Also the fact that the same linguistic term can equally well describe various actual 

objects or situations (a “long sleep” can be something between 6 and 12 hours for me) 

should be modelled adequately. A single object might even be described using several 

words (to various degrees of compatibility). It may be necessary to allow a description to 

be partially compatible with an object. A fuzzy approach can provide tools to represent 

linguistic data.

• measurement/assessment with linguistically labelled scales—all assessment and 

measurement instruments that use linguistic labels or scales (for example: never—

sometimes—always) may encounter problems with the uncertainty of the words used 

and the different meanings of these words among different people. When subjective 
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differences in meaning become an issue, appropriate tools to model the meanings of 

words are welcome. The issues of meaning might also arise when only numerical scales 

are used.

• partial validity of statements or data—in the humanities, where human beings provide 

a great amount of the data and where observation and interpretation play an important 

part in the methodology, we cannot rely on the fact that the data we work with are 

completely valid (some instruments even provide tools for the validity assessment of 

the data obtained from people). Human knowledge of the world can be contradictory, 

incomplete or uncertain. If we have no more objective means of obtaining data than 

self-assessment, we need to be able to reflect the different validities of our findings, 

and the varying importance of the rules we use to describe the behaviour of the system. 

Fuzzy can not only provide tools to represent the partial validity of statements and data, 

it can also provide the means for assessing the methods we already use in the context of 

partially valid data. 

We do not claim that the fuzzy approach will solve all these problems. The fuzzy 

approach also has its limits, which are usually defined by people’s ability to express the 

meaning of words, the issue of the context dependency of the meaning and the inconsistency 

of expert knowledge of the systems. Fuzzy methodology was developed to deal with 

uncertainty and as such might provide at least some level of assistance for these issues. 

However, we need to admit that the continued collaboration between fuzzy set theoreticians, 

psychologists, linguists and sociologists is required to find even more appropriate ways of 

capturing the meaning of words in ordinary language. 

Using these prototypical issues identified above, we can generate several possible areas 

in which the fuzzy approach can be used in the humanities. Combining the ability to deal 

with uncertainty (and hence to model some aspects of language descriptions of reality) and 

allowing the partial validity of statements, we can build powerful tools for the humanities 

that could be used for example in expert knowledge representation, knowledge transfer and 

provide assistance in difficult decision problems (such as diagnostics in psychology).

Since language is our main tool for communication, being able to build models using 

words (narrative descriptions) that reflect knowledge of the systems we are interested in 

seems to be the natural course of research in the humanities. The uncertainty inherent 

in words is the key to the relative simplicity and effectiveness of our communication. 

Providing precise descriptions is not only unnatural to human beings, in many cases it is 

also impossible (we do not know exactly what “fast” is in km/h, we do not have a precise 

representation of “a while”), but we still understand each other well enough. And the models 

that fit “well enough” remain relatively simple and understandable and are the main domain 

of fuzzy mathematics and linguistic fuzzy modelling. 

Once we have a model of expert knowledge, we can easily distribute it to others. This 

might be an interesting feature in the context of education. Let us consider that we are able 

to model the diagnostics process of a skilled diagnostician, his work using the diagnostics 

method, his way of dealing with the data and interpreting results. Linguistic fuzzy modelling 

can provide us with a formal (mathematical) level and an attached linguistic description 

level (see also the next section for more information on this). That way if we input the 

expert knowledge into a computer, we obtain a good training tool for students—future 
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diagnosticians. They can train their skills against a modelled expert in the field. The main 

advantage of fuzzy modelling in this context compared to other mathematical tools (such 

as neural networks) is that when students make a mistake, they can check what they did 

differently from the procedure implemented in the model. As the model has an in-build 

linguistic level, the students can check it against the description of the process described in 

words, not mathematical formulas. 

We can also use the fuzzy approach to assist us in everyday complex tasks which require 

our insight, but are repeated frequently. Using fuzzy we can build decision support tools by 

describing what we do in words and spare time to concentrate on more pressing matters. In 

psychological diagnostics, the pre-processing of data can be automatized (in a way that still 

reflects our habits in working with the data) to provide us with some kind of summarizing 

information, even to suggest possible diagnoses (using the fact that a subject can belong fully 

or partially to several classes).

What can fuzzy bring psychology—practical examples

Before we present some examples of the use of fuzzy methods in a humanities context, 

we provide a brief overview of the possible benefits of fuzzy approach to psychology. 

Figure 2 illustrates the use of classical mathematical methods in psychology—inputs (these 

may be words obtained by interview or other self-report based methods) are converted into 

mathematical objects (numerical inputs provided by diagnostics methods can be rescaled 

or used in the form they are provided) and are then processed by the selected mathematical 

model. The model produces results in the form of mathematical objects, which need to be 

interpreted appropriately. To describe the results of a mathematical model using words in a 

way that captures their proper meaning is not easy—this process is even more demanding if 

the mathematical operations performed with the inputs are complex.

If we link the inputs and the mathematical operations we perform on the inputs to their 

proper linguistic meanings, we get a linguistic model. This model (see Figure 3) has two 

Figure 2. Scheme of the usual approach to mathematical modelling in psychology.
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levels for describing the modelled system. The first is the linguistic level, which remains 

comprehensible to all (even the non-expert) because it uses words to describe the variables 

and their relationships. The second level (computational or mathematical) reflects the 

linguistic level, if possible, in each step of the model. Mathematical methods therefore 

have to be chosen to best reflect the linguistic level (which is demanding and requires a 

sufficient understanding of the methods and the fuzzy approach itself). By maintaining 

the correspondence between the two levels of the model, interpreting the outputs of the 

computational level is much easier and the model remains comprehensible. Also adjustments 

to the model can be easily made at the linguistic level—particularly when the relationships 

between the variables are described using linguistic IF-THEN rules (see the example of the 

academic faculty evaluation system).

Academic faculty evaluation system IS HAP (example 1)

Linguistic rules—such as “If the weather is nice, then you can leave your umbrella at 

home” provide an easy-to-understand description of the modelled system or expert knowledge 

on a system. Linguistic fuzzy models can be used for knowledge storage, knowledge transfer 

and even to test expert knowledge. Consider that we build a linguistic model of the reasoning 

process of a skilled diagnostician (see Figure 7 for a simple example of such a decision 

process described using 25 rules, Figures 4–6 summarize the meanings of the linguistic 

terms used in the rules). Once it is available, we can provide it to students to see how the 

expert approaches the diagnostic situation. The computational level allows us to input this 

knowledge (albeit described in words and thus uncertain) into a computer programme against 

which the students can test their diagnostic conclusions and thanks to the linguistic level, they 

can find out which aspects of their train of thinking differs from the experts’. 

Let us consider a real example of an academic faculty evaluation system called IS 

HAP, developed at the Faculty of Science, Palacky University in Olomouc, (see Stoklasa 

Figure 3. Scheme of the two-level linguistic approach to mathematical modelling suitable for the 
humanities.
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Figure 4. Linguistic scale for evaluating academic faculty in teaching used in IS HAP. 

Figure 5. Linguistic scale for the evaluating academic faculty in research and development used 
in IS HAP—illustration of different meanings of the same linguistic terms (see Figure 4) in a 
different context. 

Figure 6. Linguistic scale for evaluating academic faculty used in IS HAP. The linguistic terms in 
this scale are used to describe outputs of the evaluation model to the users.

et al. (2011, 2013) for more details). The system is based on two inputs—evaluation of an 

academic faculty member in teaching (see Figure 4) and evaluation of the academic faculty 

member in research and development (see Figure 5). For both areas 5 linguistic values are 

used to describe the performance of the academic faculty member: very low, low, standard, 

high, extreme. The meanings of these words are modelled by the respective triangles in 
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Figures 4 and 5. It can be seen that the meanings of the neighbouring linguistic terms 

overlap. This can be interpreted in the following way: as teaching performance (Figure 

4) improves—moving along the horizontal axis from 0 to the right, the true linguistic 

description of the performance ceases to be “very low” and gradually moves to “low”; 

for the value of 0.5 on the horizontal axis, “low” is an entirely appropriate description 

and as the performance of the staff member improves, “low” ceases to be an appropriate 

description and “standard” becomes more appropriate up to the value of 1, where standard 

is entirely appropriate. This way the value of 0.9 can be interpreted as being “20% low and 

80% standard”—that is “somewhere between a low and a standard performance but closer 

to standard”.

The relationship between the evaluation in teaching and research and development is 

described by the rule base in Figure 7, which can be read as 25 rules thus:

RULE 1: “if teaching performance is low and research and development performance is low, 

then the overall evaluation is unsatisfactory”,

 ... 

RULE 14: “if teaching performance is standard and research and development performance is 

high, then the overall evaluation is very good”,

...

RULE 25: “if teaching performance is extreme and research and development performance is 

extreme, then the overall evaluation is excellent”.

The meanings of the linguistic terms of the output variable are shown in Figure 6. 

The rule base is easy to understand and can be used not only to compute the linguistic 

evaluation, but also to explain to the academic faculty members what kind of behaviour will 

result in which particular evaluation. Although the description is highly comprehensible, 

the evaluation function represented by the rule base is quite a complex one (see Figure 8, 

Stoklasa, 2011) describes how the evaluations are computed at the mathematical level of the 

model). This illustrates that linguistic models are capable of describing complex relationships 

Figure 7. Rule base describing the evaluation process in IS HAP—25 linguistic rules.
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Figure 8. Plot of the evaluation function described by the fuzzy rule base from Figure 7.

Figure 9. Example of graphical outputs (here bars in different shades of grey that sum up the 
evaluation information; colours are used in the actual output of IS HAP) and linguistic outputs 
(under the bars) from the evaluation model used in IS HAP.

in a way that is easy to understand. Also adjustments to the evaluation process can be made 

simply by changing the outputs (that is the “then” part of the 25 rules). The outputs can 

easily be transformed into colour bars (see Figure 9) by assigning a colour to each value of 

the output variable. If the overall evaluation is “60% standard and 40% very good”, we will 

obtain a rectangle which will be 60% yellow and 40% light blue (that is an output that is 

uncertain and requires the active participation of the evaluator to be appropriately interpreted 

within the whole evaluation context, which is desirable). 
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Psychological diagnostics (example 2)

Linguistic rules can also be used to classify objects into categories. This is a typical task 

in psychological diagnostics for example. Again, we can obtain rules that describe under 

which conditions an object (a client) should be classified into which category (assigned 

which diagnosis). Inputs for this classification process could be complex results from several 

test methods, from an interview or any other source of information we might use. It may 

prove useful not to see the diagnoses as mutually exclusive—a client may be assigned several 

diagnoses. Also, we can consider situations in which we are able to find only partial evidence 

for assigning specific diagnoses. Figure 10 shows an example output of such a model in 

which we consider 6 diagnoses dg
1
, ..., dg

6
. These results can be interpreted such that if we 

have confirmed diagnosis 1, we have found partial evidence for diagnoses 2, 4 and 6 and we 

have found no confirmatory information for diagnoses 3 and 5.

If we also add rules that describe the conditions under which we can disprove a 

diagnosis, we can obtain results as depicted in Figure 11. This kind of thinking brings 

additional information to the diagnostics situation. We can interpret the results in the 

following way: diagnosis 1 can be seen as confirmed, there is contradictory information 

concerning diagnosis 2—it is partially confirmed and partially disproved, we have found 

Figure 10. Example of a possible output of a fuzzy classification model—diagnostics (only 
confirmatory information for all diagnoses available).

Figure 11. Example of a possible output of a fuzzy classification model—diagnostics (confirma-
tory information and information disproving each diagnosis available).
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no information (neither confirmatory, nor disproving) for diagnosis 3, there is strong but 

incomplete confirmation of dg
4
, but some disproving information has also been found, 

dg
5
 can be considered as disproved, as can dg

6
 (where only a small level of confirmation 

has been found). If we add the disproving rules, we are able to identify the ambivalent 

information (dg
2
). We are now able to distinguish between dg

3
 (complete lack of information 

on this diagnosis—no reason to confirm or disprove it) and dg
5
 (now clearly disproved).

Conclusions

Psychology relies substantially on self-report based methods, which provide linguistic 

and, hence uncertain, information. Despite its uncertainty, linguistic information is sufficient 

to describe some systems and well suited to describe systems with human components. 

As such it can prove useful in that it can deal with uncertain and linguistic information in 

psychology, reflect the partial validity of statements and represent it formally. We have 

identified several prototypical issues which can signal that the use of fuzzy methodology may 

provide useful tools. We have discussed what the fuzzy approach can bring to the table that 

other mathematical tools cannot and also some possible shortcomings in the fuzzy approach. 

In our two examples, we have illustrated that using the linguistic fuzzy modelling 

approach means we can easily understand and easily adjust models of an individual’s 

knowledge, decision-making process and understanding of certain systems. These models 

operate on two levels—linguistic and formal. The formal level allows us to input the models 

into a computer—this way, in the case of psychological diagnostics, part of the diagnostics 

data can be pre-processed, based on the diagnostician’s own knowledge and experience 

reflected in linguistic rules and the diagnostician can be provided with comprehensive 

output—see e.g. Figure 11. We have provided several reasons for why the fuzzy approach 

might be considered the tool of choice in some of the situations a psychologist may 

encounter. The final decision as to whether or not to try these methods now rests with the 

reader. 
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Tomáš Talášek∗†, Jan Stoklasa‡, Mikael Collan‡ and Pasi Luukka‡
∗LUT Graduate School, Lappeenranta University of Technology

Skinnarilankatu 32, 53851, Lappeenranta, Finland
Email: tomas.talasek@gmail.com

†Department of Applied Economics, Palacký University, Olomouc
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Abstract—Linguistic approximation is a suitable way of trans-
forming mathematical outputs into words that can be easily
used and understood by laymen. The methods for linguistic
approximation range from simple distance based ones to more
complex methods aspiring on finding high semantic match be-
tween the approximated output and its linguistic label. This
paper builds on Bonissone’s proposal of a two step method for
linguistic approximation based on a pattern recognition approach.
It suggests an algorithm for finding a partial ordering of fuzzy
numbers utilizing the partial results from the two step method.
As such it proposes a means of finding a partial ordering of
fuzzy numbers through linguistic approximation. The proposed
algorithm is showcased on several numerical examples and its
performance is briefly discussed.

I. INTRODUCTION

In practical applications the outputs of the mathematical
models are frequently in the form of numbers or fuzzy
sets. The users of mathematical models therefore must be
trained how to interpret these outputs. Since both numbers and
fuzzy sets are not a natural means of presenting information
(knowledge of the mechanism that generated the results might
be necessary for appropriate interpretation), there is a risk
(especially for the new practitioners) that they misinterpret
the output and react inappropriately. Reasonable way how
to avoid the problem of misinterpretation is to present the
output of the model in a more natural way for the users
– in the linguistic form. The process of translation between
fuzzy sets (or real numbers) and words is called linguistic
approximation. This paper focuses on one particular linguistic
approximation method proposed by Bonissone [1] and suggest
a extension of this method that would allow direct comparisons
of mathematical outputs through linguistic approximation (or
using the information computed to obtain the linguistic approx-
imation). Basic notions of the theory of fuzzy sets are defined
in Section 2. Bonissone’s method for linguistic approximation
is presented in Section 3. In the next Section, the extension of
Bonissone’s method is proposed together with the ideas how
this method could be used for the purposes of ordering fuzzy
numbers. Behavior of the proposed algorithm for the ordering

of fuzzy numbers is studied on three numerical examples in
Section 4.

II. PRELIMINARIES

Let U be a nonempty set (the universe of discourse). A
fuzzy set A on U is defined by the mapping A : U → [0, 1]. For
each x ∈ U the value A(x) is called a membership degree of
the element x in the fuzzy set A and A(.) is called a member-
ship function of the fuzzy set A. Ker(A) = {x ∈ U |A(x) = 1}
denotes a kernel of A, Aα = {x ∈ U |A(x) ≥ α} denotes an
α-cut of A for any α ∈ [0, 1], Supp(A) = {x ∈ U |A(x) > 0}
denotes a support of A.

A fuzzy number is a fuzzy set A on the set of real numbers
which satisfies the following conditions: (1) Ker(A) 6= ∅ (A
is normal); (2) Aα are closed intervals for all α ∈ (0, 1]
(this implies A is unimodal); (3) Supp(A) is bounded. A
family of all fuzzy numbers on U is denoted by FN (U). A
fuzzy number A is said to be defined on [a,b], if Supp(A)
is a subset of an interval [a, b]. Real numbers a1 ≤ a2 ≤
a3 ≤ a4 are called significant values of the fuzzy number
A if [a1, a4] = Cl(Supp(A)) and [a2, a3] = Ker(A), where
Cl(Supp(A)) denotes a closure of Supp(A). An union of two
fuzzy sets A and B (based on Lukasiewicz disjunction) is
a fuzzy set (A ∪L B) defined as follows: (A ∪L B)(x) =
min{1, A(x) +B(x)}, ∀x ∈ U . Fuzzy set A on U is a subset
of fuzzy set B on U (A ⊆ B) if A(x) ≤ B(x), ∀x ∈ U .

The fuzzy number A is called linear if its membership
function is linear on [a1, a2] and [a3, a4]; for such fuzzy
numbers we will use a simplified notation A = (a1, a2, a3, a4).
A linear fuzzy number A is said to be trapezoidal if a2 6= a3
and triangular if a2 = a3. We will denote triangular fuzzy
numbers by ordered triplet A = (a1, a2, a4). More details on
fuzzy numbers and computations with them can be found for
example in [2].

A partial ordering of fuzzy numbers can be defined in the
following way: Let A and B be fuzzy numbers on [a, b] then
A > B if Aα > Bα∀α ∈ (0, 1] that is if ([inf Aα, supAα] >
[inf Bα, supBα]) ⇔ ((inf Aα > inf Bα and supAα ≥
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supBα) or (inf Aα ≥ inf Bα and supAα > supBα)). If
A > B and B > A, then A = B. Otherwise A and B are
incomparable. This partial ordering is a natural one and can
be well applied to the meanings of linguistic terms modeled
by fuzzy numbers.

A fuzzy scale on [a, b] is defined as a set of fuzzy numbers
T1, T2, . . . , Ts on [a, b], that form a Ruspini fuzzy partition
(see [4]) of the interval [a, b], i.e. for all x ∈ [a, b] it holds that∑s
i=1 Ti(x) = 1, and the T ’s are indexed according to their

ordering. A linguistic variable ([10]) is defined as a quintuple
(V, T (V), X,G,M), where V is a name of the variable, T (V)
is a set of its linguistic values (terms), X is a universe on
which the meanings of the linguistic values are defined, G
is an syntactic rule for generating the values of V and M is
a semantic rule which to every linguistic value A ∈ T (V)
assigns its meaning A = M(A) which is usually a fuzzy
number on X . Linguistic approximation is the process that
assign appropriate labels (known linguistic terms of a linguistic
scale) to general fuzzy sets. From mathematical point of view
it is a mapping from the set of all fuzzy sets on X to T (V).

A linguistic variable (V, T (V), X,G,M) is called a lin-
guistic scale on [a, b] if X = [a, b], T (V) = {T1, . . . , Ts} and
Ti =M(Ti), i = 1, . . . , s, form a fuzzy scale on [a, b]. Terms
T1, . . . , Ts are called elementary terms of linguistic scale.
The extended linguistic scale is linguistic scale, that besides
elementary terms T1, . . . , Ts contains also derived terms in
the form Ti to Tj , where i < j and i, j ∈ {1, . . . , s} and
M(Ti to Tj) = Ti∪LTi+1∪L. . .∪LTj . The extended linguistic
scale thus contains linguistic values of different levels of
uncertainty – from the possibly least uncertain elementary
terms {T1, . . . , Ts} to the most uncertain linguistic term T1s
(Uncertainty can be assessed by the cardinality of the meanings
of these linguistic terms). Derived linguistic terms Ti to Tj
are called level j − i terms and can be also denoted by Tij .
Elementary linguistic terms Ti are called level 1 terms and can
be also denoted by Tii (i.e. Ti = Tii to unify the notation).
More details on linguistic scales and extended linguistic scales
can be found for example in [6].

Linguistic hedge is a word (generally an adverb) that can
be applied to a linguistic term to modify its meanings. From
mathematical point of view a linguistic hedge is a function
which modifies the membership functions of fuzzy sets -
for example the linguistic hedge very (using Zadeh’s [10]
definition) applied to a fuzzy set A on U results is a fuzzy
set very A with membership function defined (very A)(x) =
A2(x), x ∈ U .

We are frequently required to be able to represent fuzzy
sets by real numbers, this procedure is called defuzzification.
In applications an approximation of a fuzzy set A by its center
of gravity (COG) tA is frequently used. The center of gravity
of a fuzzy set A defined on [a, b] is defined by the formula
tA =

∫ b
a
A(x)x dx/

∫ b
a
A(x)dx. Other possible defuzzification

methods are discussed in [3].

III. TWO STEP METHOD FOR LINGUISTIC APPROXIMATION

In 1979 Bonissone [1] introduced his two step pat-
tern recognition approach for linguistic approximation. This
method consist of two steps – in the first step the set of m
suitable linguistic terms of some linguistic variable (suitability

is assessed according to a chosen set of features of the
meanings of these linguistic terms) is found (”preselection
step”) and in the second step the most appropriate term from
the preselected set is chosen based on Bhattacharyya distance
between the output of mathematical model to be linguistically
approximated and the meanings of the preselected linguistic
terms.

Let T (V) = {T1, . . . , Tn} be the set of all linguistic terms
of a linguistic variable V for which Ti =M(Ti), i = 1, . . . , n
are fuzzy sets defined on the same universe as a fuzzy set
Out, where Out is an output of a mathematical model to be
linguistically approximated by a linguistic term of V .

In the first step (preselection) the set T (V) is reduced
in the way, that m terms with characteristics most similar
to the ones possessed by the output Out are preserved. For
this purpose each Ti, i = 1, . . . , n is represented by four real
numbers, that each represent one of the four features (selected
by Bonissone [1]) of this fuzzy set: i) Cardinality of fuzzy set
Ti (Card(Ti)); ii) Fuzziness of the fuzzy set Ti (nonprobalistic
entropy, Entropy(Ti)); iii) Center of gravity of fuzzy sets Ti
(COG(Ti)); iv) Skewness of fuzzy set Ti (SKEW(Ti)). These
four features represent the fuzzy set (and the linguistic term
Ti associated with it) in four-dimensional space. For pres-
election of linguistic terms the weighted Euclidean distance
d1(Ti, Out) is computed between the fuzzy set Out and each
of the fuzzy sets Ti, i = 1, . . . , n represented by a quadruplet
of the numerical values of the chosen four features using
Formula (1). A reordered set of linguistic terms {Tp1, . . . , Tpn}
so that d1(Tp1, Out) ≤ . . . ≤ d1(Tpn, Out). This way we
obtain the preselected term set Tp = {Tp1 , . . . , Tpm}, where
1 ≤ m ≤ n. For two fuzzy sets A and B represented
by quadruplets of features (a1, . . . , a4) and (b1, . . . , b4) the
Euclidean distance is computed by

d1(A,B) =
4∑

i=1

wi(ai − bi), (1)

where wi are normalized real weights1 (i.e.
∑4
i=1 wi = 1

and wi ∈ [0, 1], i = {1, . . . , 4}), and ai (bi) are computed by

a1 = Card(A) =

∫

U

A(x)dx, (2)

a2 = Entropy(A) =

∫

U

S(A(x))dx, (3)

a3 = COG(A) =

∫

U

xA(x)dx/Card(A), (4)

a4 = SKEW (A) =

∫

U

(x− COG(A))3A(x)dx, (5)

where S(y) = −y ln(y)− (1− y) ln(1− y).

In the second step, the linguistic approximation T ∗ ∈ Tp
of the fuzzy set Out is computed. Fuzzy set T ∗ (which is a
mathematical meaning of a linguistic term T ∗) is computed

1The choice of weights is usually left with the user of the model and some
features could be even optional. Wenstøp [7] for example proposed (in his
method for linguistic approximation) to use only two features – cardinality
and center of gravity.
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as T ∗ = arg minTpj
∈Tp

d2(Tpj , Out) using the modified
Bhattacharyya distance:

d2(A,B) =
[
1−

∫

U

(A∗(x) ·B∗(x))1/2dx
]1/2

, (6)

where A∗(x) = A(x)/Card(A(x)). This way the linguistic
term T ∗ is found as the closest linguistic approximation among
the preselected linguistic terms.

IV. ORDERING OF FUZZY SETS THROUGH LINGUISTIC
APPROXIMATION BASED ON THE TWO STEP METHOD

Linguistic approximation is usually used in situations when
the user of the mathematical model requires the results in an
understandable form (i.e. in a linguistic form). To find a proper
linguistic approximation lots of calculations may need to be
done and substantial part of these result is not used for anything
else (see the complexity of Bonissone’s method described
in the previous Section). This raises a question, whether
it is possible in situations when we need to approximate
more outputs of mathematical models (e.g. outputs of model
representing evaluation of various alternatives in decision
making problems – for more information see e.g. [5]) to use
linguistic approximation (or partial results obtained through
calculation of linguistic approximation) for the purposes of
decision making – for example to order the alternatives with
respect to their evaluations. In this paper we are therefore
focusing on the possibility of using the information obtained
in the process of linguistic approximation using the two step
method to order the outputs of a mathematical model (fuzzy
numbers on X). For an overview of other possible methods for
ordering fuzzy numbers and their reasonable properties see [8],
[9] .

In this paper the structure of an extended linguistic scale
(V, T (V), X,G,M) is used. We suppose that the user of the
mathematical model specifies (or at least approves) the mean-
ings of its n the elementary linguistic terms of this scale. Lin-
guistic terms of this extended linguistic scale can be ordered by
the user directly (this could be difficult and time consuming) or
can be partially ordered through the partial ordering of fuzzy
numbers that represent the meanings of these linguistic terms,
where Tij is preferred to Tkl, Tij � Tkl ⇔M(Tij) > M(Tkl),
where Tij , Tkl ∈ T (V), 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.
Linguistic terms Tij and Tkl are incomparable according to
this ordering, if i > k and j < l. In the case of incomparamble
fuzzy numbers, we can use a different method to obtain the
ordering of these fuzzy numbers (e.g. a method based on the
centers of gravity, where Tij �t Tkl ⇔ tM(Tij) > tM(Tkl), see
Fig. 1). However, from our point of view it is not reasonable to
present ordering obtained through the center of gravity method
to the user due to possible information loss. It is reasonable
to present such terms as incomparable (and eventually let the
ordering of these term on the user of the model).

Methods for linguistic approximation usually use complex
structures of linguistic terms (linguistic hedges may even be
applied to generate the set of linguistic terms). In these cases
there is a potential risk, that the user may not understand
all these linguistic terms correctly. Therefore in our proposed
method the elementary linguistic terms form a linguistic scale
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0 0.25 0.5 1tB
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Fig. 1. Fuzzy numbers A and B that are incomparable through natural
ordering of fuzzy numbers and center of gravity method (top Figure); fuzzy
numbers A and B that are incomparable using the natural ordering method,
but can be ordered based on their centers of gravity B �t A (bottom Figure).

and the user must confirm, that he/she understands each
elementary linguistic terms correctly and that its fuzzy number
meaning is appropriately defined. This in combination with
the construction of the linguistic term set of the extended
linguistic scale ensures, that the user understands correctly all
possible outputs of linguistic approximation (output can be
either one elementary term or a derived term represented as two
elementary terms connected by ”to”). Therefore the user works
only with objects (linguistic terms, respectively fuzzy numbers
representing their meaning) that he/she understands or with
their Lukasiewicz union. The use of the extended linguistic
scale ensures, that the output of linguistic approximation is
a linguistic term, which meaning is modeled by a normal,
unimodal fuzzy set (a fuzzy number).

Let us now take a closer look on the use of the two
step method for linguistic approximation in ordering of fuzzy
numbers. Let us consider r outputs of some mathematical
model Out1, . . . , Outr in the form of fuzzy numbers on X . Let
us consider an extended linguistic scale (V, T (V), X,G,M)
with n elementary terms T1, . . . , Tn,. This linguistic scale will
be used for the linguistic approximation of Out1, . . . , Outr
and also to obtain an ordering of these outputs.

According to Bonissone in the first step of linguistic
approximation it is our goal to reduce the set of all linguistic
terms T (V) in the way, that m terms with meanings seman-
tically closest to the ”ideal” linguistic description of each ap-
proximated output are found, T Outqp = {T Outqp1 , . . . , T Outqpm },
where T Outqpi ∈ T (V), i = 1, . . . ,m, q = 1, . . . , r. Since
the semantic context is provided by the universe on which
the meanings of the linguistic values of the output linguistic
variable are defined, it is sufficient to account for the position,
fuzziness and shape of the fuzzy sets (that represent meanings
of linguistic terms) to find a pair of semantically close ones.

In the second step the most appropriate linguistic approx-
imation of each output is found from its preselected term set.
In the process the Bhattacharyya distance d2(M(Tij), Outq)
between the meaning of each linguistic term Tij from T Outqp

and each output Outq, q = 1, . . . , r is computed. Therefore
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for the linguistic approximation of Outq we obtain an ordered
m-tuple of linguistic terms T Outqapp =(T Outqapprox1 , . . . , T Outqapproxm ),
where T Outqapproxu ∈ T Outqp , d2(M(T Outqapproxi), Outq) ≤
d2(M(T Outqapproxj ), Outq), ∀i < j, u = 1, . . . ,m, q = 1, . . . , r.
Note that these results are used by Bonissone only to find the
best approximation, we will show, how the complete m-tuples
can be used to order Out1, . . . , Outr (e.g. for the purposes
of decision making problem mentioned above). TOutqapprox1 is
linguistic approximation of fuzzy number Outq according to
Bonissone. Let us now consider two outputs of the mathe-
matical model Out1 and Out2 in the form of fuzzy numbers
on X . These two outputs can be (partially) ordered using the
following algorithm:

1) Let i = 1.
2) We compute T Out1app and T Out2app .
3) If T Out1approxi

� T Out2approxi
then Out1 is preferred to

Out2 or if T Out2approxi
� T Out1approxi

then Out2 is pre-
ferred to Out1. END (ordering has been found).
ELSE Go to 4.

4) If T Out1approxi
and T Out2approxi

are incomparable, leave the
ordering of these two outputs to the user2. END
(outputs are incomparable). ELSE Go to 5.

5) If i < m and T Out1approx1
= T Out2approx1

, then increase i
and Go to 3. ELSE Go to 6.

6) Find a pair of adjacent linguistic terms
of the same level T Out1ij , T Out1i+1,j+1 and
T Out2ij , T Out2i+1,j+1 i, j = 1, . . . , n − 1. Let
assume that Ti+1,j+1 � Ti,j then if
(d2(M(T Out1ij ), Out1) > d2(M(T Out2ij ), Out2) and
d2(M(T Out1i+1,j+1), Out1) < d2(M(T Out2i+1,j+1), Out2))
then Out1 is preferred to Out2. ELSE if
(d2(M(T Out1ij ), Out1) < d2(M(T Out2ij ), Out2) and
d2(M(T Out1i+1,j+1), Out1) > d2(M(T Out2i+1,j+1), Out2))
then Out2 is preferred to Out1. ELSE Go to the
beginning of six and choose another pair. END
(ordering has been found).

V. EXAMPLES OF THE PROPOSED METHOD:

Let (V, T (V), [0, 1], G,M) be a extended linguistic scale
with five elementary linguistic terms T1, . . . , T5 with mean-
ings specified in Table I. Meanings of elementary terms are
depicted in Fig. 2. Derived linguistic terms are constructed
in accordance with Chapter 2. Outputs of the mathematical
model are fuzzy numbers on [0, 1] (in examples we consider
only triangular fuzzy numbers as approximated outputs). For
the preselection step the value of m is equal to 5 (five linguistic
terms are preselected).

In next three subsections we present three different exam-
ples and stress the strong and weak properties of the presented
model for ordering of the outputs.

2This situation is depicted in Fig. 1. These situations involve the compar-
isons of fuzzy sets (one is a subset of the other) with different cardinalities.
The natural ordering based on α-cuts of these fuzzy sets is non-existent. Since
we are looking for easily interpretable results, we prefer at this point to present
both outputs to the decision maker as incomparable and leave the choice of
the better one with him/her.

TABLE I. ELEMENTARY LINGUISTIC TERMS OF THE EXTENDED
LINGUISTIC SCALE USED FOR LINGUISTIC APPROXIMATION AND THEIR

MEANINGS.

Ti Ti = M(Ti) Associated linguistic term

T1 (0, 0, 0.25) Very bad

T2 (0, 0.25, 0.5) Bad

T3 (0.25, 0.5, 0.75) Average

T4 (0.5, 0.75, 1) Good

T5 (0.75, 1, 1) Excellent

1
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0.25

0

0 0.25 0.75 10.5
[x]

[α]
T1 T2 T3 T4 T5

Fig. 2. Meanings of the elementary linguistic terms of the extended linguistic
scale used for linguistic approximation.
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Fig. 3. Outputs of mathematical model used in Example 1 (A and B) and
Example 2 (C and D).

A. Example 1

Let fuzzy numbers A = (0.1, 0.2, 0.3) and B =
(0.2, 0.3, 0.4) (presented in Fig. 3) be two outputs of a
mathematical model – evaluations of two different alternatives.
Our goal is to choose a better alternative using the algorithm
proposed in this paper.

At first the preselection of linguistic terms from T (V) is
performed. Order of all the linguistic terms of V with their
distances from the fuzzy set A (B) is presented in Table II.
Five terms are preselected for the second step – T1, T2, T12 ,
T3 and T23 (these terms are the same for both outputs A and
B). In the second step the terms are ordered with respect to
Bhattacharyya distance and the results are presented in Table
III.

As can be seen from the Table III, the ordering of the first
three preselected terms is identical for both A and B. However
the fourth suggested term for B (T3) is preferred to the fourth
suggested term for A (T1). Hence B is better than A.

B. Example 2

Let fuzzy numbers C = (0.6, 0.7, 0.8) and D =
(0.7, 0.8, 0.9) (presented in Fig. 3) be two outputs of a math-
ematical model we need to order.

Again five terms are preselected for the second step – T4,
T45, T34, T5 and T3. These terms are the same for both outputs
C and D and even their ordering is identical (see Table IV).
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TABLE II. OUTPUTS OF THE FIRST STEP OF THE TWO STEP METHOD
FOR FUZZY SETS A AND B (d1 DISTANCES TO THE MEANINGS OF ALL

LINGUISTIC TERMS OF V ); ORDERED.

Preselection of linguistic terms for fuzzy number A

Linguistic term T1 T2 T12 T3 T23
d1(A, Tij) 0.0149 0.0475 0.0763 0.1350 0.2131

Linguistic term T13 T4 T34 T45 T35
d1(A, Tij) 0.2899 0.3475 0.3631 0.4429 0.5099

Linguistic term T5 T24 T14 T25 T15
d1(A, Tij) 0.5149 0.5350 0.6591 0.7305 0.9100

Preselection of linguistic terms for fuzzy number B

Linguistic term T2 T1 T3 T12 T23
d1(B, Tij) 0.0475 0.0482 0.0850 0.0874 0.1881

Linguistic term T4 T13 T34 T45 T5
d1(B, Tij) 0.2475 0.2765 0.2881 0.3318 0.3815

Linguistic term T35 T24 T14 T25 T15
d1(B, Tij) 0.4232 0.4850 0.6210 0.6686 0.8600

TABLE III. PRESELECTED TERM SETS FOR EXAMPLE 1 AND THE
BHATTACHARYYA DISTANCES OF THEIR MEANINGS TO A AND B

RESPECTIVELY.

Linguistic approximation of fuzzy number A

Linguistic term T2 T12 T23 T1 T3
d2(A, Tij) 0.5131 0.5626 0.6890 0.7261 0.9802

Linguistic approximation of fuzzy number B

Linguistic term T2 T12 T23 T3 T1
d2(B, Tij) 0.5131 0.6273 0.6388 0.8159 0.9718

TABLE IV. PRESELECTED TERM SETS FOR EXAMPLE 2 AND THE
BHATTACHARYYA DISTANCES OF THEIR MEANINGS TO C AND D

RESPECTIVELY.

Linguistic approximation of fuzzy number C

Linguistic term T4 T45 T34 T5 T3
d2(C, Tij) 0.4782 0.5838 0.6551 0.8820 0.9181

Linguistic approximation of fuzzy number D

Linguistic term T4 T45 T34 T5 T3
d2(D,Tij) 0.5131 0.5626 0.6890 0.7261 0.9802

As Table IV suggests, Step 6 of the proposed algorithm needs
to be applied in this case. That is first we need to find two
adjacent linguistic values of the same level (pairs T3, T4; T4, T5
and T34, T45 can be used). Based on the pair T4, T5 output D
is considered better than output C. The same result can be
obtained for the pair T34, T45. Pair T3, T4 does not provide
information based on which the ordering can be found.

C. Example 3

Let fuzzy numbers A = (0.1, 0.4, 0.7), B = (0.3, 0.4, 0.5)
and C = (0.3, 0.6, 0.9), D = (0.5, 0.6, 0.7) (presented in Fig.
4) be two pair of outputs of a mathematical model we need to
order.

Second step results are presented in Table V. The results
suggest, that B is better than A while C is better than D.
It is worth noting, that both cases are similar (B ⊆ A and
D ⊆ C; the numerical values of the Bhattacharyya distance
to the ordered preselected terms are identical for A and C
and for B and D, although different terms were preselected).
However, in the first case the output with lower cardinality is
considered better whereas in the second case the output with
larger cardinality is preferred.
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Fig. 4. Outputs of mathematical model used in Example 3.

TABLE V. PRESELECTED TERM SETS FOR EXAMPLE 3 AND THE
BHATTACHARYYA DISTANCES OF THEIR MEANINGS TO A, B, C AND D

RESPECTIVELY.

Linguistic approximation of fuzzy number A

Linguistic term T23 T3 T2 T45 T12
d2(A, Tij) 0.2096 0.3591 0.4960 0.5759 0.5969

Linguistic approximation of fuzzy number B

Linguistic term T3 T2 T12 T1 T4
d2(B, Tij) 0.5965 0.6970 0.7617 1.0000 1.0000

Linguistic approximation of fuzzy number C

Linguistic term T34 T3 T4 T23 T45
d2(C, Tij) 0.2096 0.3591 0.4960 0.5759 0.5969

Linguistic approximation of fuzzy number D

Linguistic term T3 T4 T45 T5 T2
d2(D,Tij) 0.5965 0.6970 0.7617 1.0000 1.0000

VI. CONCLUSION

In the paper we have proposed a utilization of the infor-
mation obtained by the two step method for linguistic ap-
proximation by Bonissone for the ordering of fuzzy numbers.
This partial ordering is derived from the best candidates on
appropriate linguistic approximation of the fuzzy numbers
to be approximated. The extended linguistic scale has been
proposed as a suitable linguistic variable for the approximation.
The performance of the proposed algorithm is showcased on
three numerical examples.
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Linguistic approximation using fuzzy 2-tuples in
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Abstract. The paper focuses on linguistic approximation methods for the
outputs of mathematical decision support models in the context of investment
decision making. Since the decision makers in this context are frequently lay-
men in mathematics, the ability of the models to provide understandable and
easily interpretable results is of great importance. We explore the possibili-
ties of using the fuzzy 2-tuples concept introduced by Herrera et al. [2] for
linguistic approximation and propose a method of linguistic approximation of
fuzzy-number-type outputs suitable for the use in investment decision support.
The performance of the proposed method is discussed on a practical example
of mutual fund selection.

Keywords: Linguistic approximation, linguistic modelling, multiple criteria
decision making, decision support, fuzzy 2-tuples, mutual funds.
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1 Introduction

In linguistic modelling it is necessary to be able to assign appropriate labels (known values of a linguistic
variable) to general fuzzy sets. In practical applications it is often required to obtain fuzzy numbers as
outputs from mathematical models, subnormal or multimodal fuzzy sets on R (normal and unimodal
fuzzy sets) are difficult to interpret and use by practitioners. This paper therefore concentrates on
assigning linguistic labels to fuzzy numbers. This process is called linguistic approximation. From the
mathematical point of view linguistic approximation is a mapping from a given class of fuzzy numbers on
R to a set of linguistic values (labels) of a linguistic variable V whose mathematical meanings are modelled
by fuzzy numbers on R. In this paper we propose a new method for the linguistic approximation of fuzzy-
number-evaluations that is based on the idea of fuzzy 2-tuples [2]. We showcase the proposed method on
the outputs of a multi-stage decision support model for investment decision making proposed in [6] and
further elaborated in [7].

2 Preliminaries

Let U be a nonempty set (the universe of discourse). A fuzzy set A on U is defined by the mapping
A : U → [0, 1]. For each x ∈ U the value A(x) is called a membership degree of the element x in the
fuzzy set A and A(.) is called a membership function of the fuzzy set A. Ker(A) = {x ∈ U |A(x) = 1}
denotes a kernel of A, Aα = {x ∈ U |A(x) ≥ α} denotes an α-cut of A for any α ∈ [0, 1], Supp(A) = {x ∈
U |A(x) > 0} denotes a support of A.

A fuzzy number is a fuzzy set A on the set of real numbers which satisfies the following conditions:
(1) Ker(A) 6= ∅ (A is normal); (2) Aα are closed intervals for all α ∈ (0, 1] (this implies A is unimodal);
(3) Supp(A) is bounded. A family of all fuzzy numbers on U is denoted by FN (U). A fuzzy number
A is said to be defined on [a,b], if Supp(A) is a subset of an interval [a, b]. Real numbers a1 ≤ a2 ≤
a3 ≤ a4 are called significant values of the fuzzy number A if [a1, a4] = Cl(Supp(A)) and [a2, a3] =
Ker(A), where Cl(Supp(A)) denotes a closure of Supp(A). Each fuzzy number A is determined by

1Palacký University, Olomouc, Faculty of Science, Dept. of Math. Analysis and Applications of Mathematics, 17.
listopadu 1192/12, 77146, Olomouc, Czech Republic, tomas.talasek@upol.cz

2dtto, jan.stoklasa@upol.cz
3dtto, jana.talasova@upol.cz
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A =
{

[a(α), a(α)]
}
α∈[0,1], where a(α) and a(α) is the lower and upper bound of the α-cut of fuzzy number

A respectively, ∀α ∈ (0, 1], and the closure of the support of A Cl(Supp(A)) = [a(0), a(0)]. An intersection
of two fuzzy sets A and B is a fuzzy set (A∩B) defined as follows: (A∩B)(x) = min{A(x), B(x)}, ∀x ∈ U .

The fuzzy number A is called linear if its membership function is linear on [a1, a2] and [a3, a4]; for
such fuzzy numbers we will use a simplified notation A = (a1, a2, a3, a4). If A ∈ FN (U) is a linear fuzzy
number and c is a real number, then A + c = (a1 + c, a2 + c, a3 + c, a4 + c). A linear fuzzy number A
is said to be trapezoidal if a2 6= a3 and triangular if a2 = a3. We will denote triangular fuzzy numbers
by ordered triplet A = (a1, a2, a4). More details on fuzzy numbers and computations with them can be
found for example in [1].

A fuzzy scale on [a, b] is defined as a set of fuzzy numbers T1, T2, . . . , Ts on [a,b], that form a Ruspini
fuzzy partition (see [4]) of the interval [a, b], i.e. for all x ∈ [a, b] it holds that

∑s
i=1 Ti(x) = 1, and

the T ’s are indexed according to their ordering. A linguistic variable ([8]) is defined as a quintuple
(V, T (V), X,G,M), where V is a name of the variable, T (V) is a set of its linguistic values (terms),
X is an universe on which the meanings of the linguistic values are defined, G is an syntactic rule for
generating the values of V and M is a semantic rule which to every linguistic value A ∈ T (V) assigns its
meaning A = M(A) which is usually a fuzzy number on X.

We are frequently required to be able to represent fuzzy sets by real numbers, this procedure is
called defuzzification. In applications an approximation of a fuzzy number A by its center of grav-
ity (COG) tA is frequently used. The center of gravity of a fuzzy number A defined on [a, b], ex-
cept for fuzzy numbers where a1 = a2 = a3 = a4 (so called fuzzy singletons), is defined by the for-

mula tA =
∫ b
a
A(x)x dx/

∫ b
a
A(x)dx. The center of gravity of a fuzzy singleton is defined as COGA =

a1. Other possible defuzzification methods are discussed in [3]. A distance of fuzzy numbers A ={
[a(α), a(α)]

}
α∈[0,1], B =

{
[b(α), b(α)]

}
α∈[0,1] can be defined by the formula d(A,B) =

∫ 1

0
|a(α)− b(α)|+

|a(α)− b(α)| dα (see e.g. [5] for other possible approaches).

3 Proposed method for linguistic approximation

Let us consider an evaluation scale [a, b] and a mathematical model, the outputs of which are triangular
fuzzy numbers Ej ∈ FN ([a, b]), j = 1, . . . ,m (more general types of fuzzy numbers can also be considered,
but within this paper we restrict our investigation to triangular ones). These fuzzy numbers represent
evaluations of some objects (alternatives). Such outputs can be obtained e.g. in situations where each
expert provides a fuzzy evaluation in the form a triangular fuzzy number (all the experts are using the
same evaluation scale) and an overall evaluation is computed by a fuzzy weighted average of these expert
evaluations. Our aim is to propose a linguistic approximation method for these evaluations that would
be understandable to the users of the outputs (decision makers/evaluators) and at the same time would
provide more specific information than commonly used linguistic approximation methods (see e.g. [5]).

First we define a linguistic variable (Eval, T (Eval), [a, b], G,M). The set TB(Eval) = {T1, . . . , Tn} ⊂
T (Eval) constitutes a basic term set of Eval, consisting of all the terms the decision maker wants to use
for evaluation purposes. M(Ti) is a triangular fuzzy number on [a, b], for all i = 1, . . . , n. The elements
of the basic term set must be well understood by the decision maker and their fuzzy number meanings
M(Ti) = Ti ∈ FN ([a, b]) for all i = 1, . . . , n specified in cooperation with him/her. For the purposes
of this paper we will suppose that the fuzzy evaluations we need to linguistically approximate are not
significantly more uncertain then the meanings of the elements of the basic terms set. Let us also consider
that T1, . . . , Tn form a uniform Ruspini fuzzy partition of [a, b]:

M(T1) = (a, a, a+ ∆),

M(Ti) = (a+ (i− 2) ·∆, a+ (i− 1) ·∆, a+ i ·∆), i = 2, . . . , n− 1,

M(Tn) = (b−∆, b, b),

(1)

where ∆ = (b− a)/(n− 1).

A fuzzy set representing feasible evaluations on R is defined as

FE(x) =

{
1 if x ∈ [a, b],

0 if x /∈ [a, b].
(2)
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Non-uniform partitions and partitions by non-triangular fuzzy numbers will be the subject of further
study and hence are left out of the scope of this paper.

Since the basic term set of Eval contains only n elements, we might not be able to find a linguistic
approximation of some of the possible fuzzy evaluations that would fit well enough (using just these n
linguistic terms). We are however restricted to the use of the elements of the basic term set, as the
linguistic terms it contains are the only ones that the decision maker clearly understands. To resolve this
issue, we suggest to use the concept of fuzzy 2-tuples (which in this context translates into shifting the
meanings of the basic terms to either side within the specified universe) and thus introduce the following
syntactic rule to describe the results of such shifts and thus add derived terms to TB(Eval):

T (Eval) = TB(Eval) ∪ {T βi ; β ∈ [−0.5 ·∆, 0.5 ·∆), i = 1, . . . , n},

where T βi is ”Ti shifted by β” (see Figure 1; the size of the shift can be described linguistically as well; it

will be shown in the numerical example). T βi can be expressed as a 2-tuple (Ti, β), where Ti, i = 1, . . . , n
is an elementary linguistic term and β ∈ [−0.5 ·∆, 0.5 ·∆) expresses the shift of Ti, the sign of β indicates

the direction of the shift. For β = 0, T βi coincides with Ti, i = 1, . . . n.

Figure 1 Shifting the meaning of a basic term set element Ti by β

To define a syntactic rule, we extend the universe [a, b] to [a − ∆, b + ∆] (this is a technicality to
simplify the notation) and extend the meaning of T1 and Tn from T1 and Tn to T ′1 and T ′n respectively in
the following way (note that the meanings of T1 and Tn remain unchanged on [a, b]).

T ′1 = (a− 0.5 ·∆, a− 0.5 ·∆, a, a+ ∆),

T ′n = (b−∆, b, b+ 0.5 ·∆, b+ 0.5 ·∆),
(3)

and for T2, . . . , Tn−1 we leave the meaning unchanged, that is

T ′i = Ti, i = 2, . . . , n− 1. (4)

The meanings of the elements of the derived term set are now computed using the formula

M(T βi ) = (T ′i + β) ∩ FE, i = 1, . . . , n, β ∈ [−0.5 ·∆, 0.5 ·∆). (5)

It is however not reasonable to move T1 to the left and Tn to the right, hence for T1 we will consider
β ∈ [0, 0.5 ·∆) and for Tn we will consider β ∈ [−0.5 ·∆, 0].

The linguistic approximation T ∗ ∈ T (Eval) of a fuzzy evaluation Ej ∈ FN ([a, b]) is computed by

M(T β
∗

i∗ ) = arg min
i=1,...,n

β∈[−0.5·∆,0.5·∆)

d(Ej , T
β
i ). (6)

The result of this novel linguistic approximation method is a fuzzy 2-tuple (Ti∗ , β∗). In case there
are more solutions (Ti∗ , β∗) to (6), all such fuzzy 2-tuples are presented to the decision maker. To obtain
a fully linguistic description of the evaluation, β can be interpreted (described linguistically) using e.g.
Table 1. For example (Good,+0.1) translates into slightly better than good.
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Negative β value Linguistic description Positive β value Linguistic description

[−0.05 ·∆, 0 ·∆) About (0 ·∆, 0.05 ·∆] About

[−0.2 ·∆,−0.05 ·∆) Slightly worse than (0.05 ·∆, 0.2 ·∆] Slightly better than

[−0.35 ·∆,−0.2 ·∆) Worse than (0.2 ·∆, 0.35 ·∆] Better than

[−0.5 ·∆,−0.35 ·∆) Noticeably worse than (0.35 ·∆, 0.5 ·∆) Noticeably better than

Table 1 Linguistic labels for the interpretation of values of β.

4 Short example of the proposed linguistic approximation method

Let us consider a multiple-criteria decision support system proposed in [6]. The multi-stage model for
mutual fund selection first assesses investor’s investment aim and his/her investment horizon. In the
next stage the risk profile of the investor is taken into account. Based on the information obtained in
the first two stages an evaluation of each mutual fund under consideration is computed. This evaluation
is obtained in form of a fuzzy number (triangular fuzzy numbers are used to approximate more complex
outputs if necessary; see Figure 2). The best fit linguistic approximation of the fuzzy evaluations was
performed. As a result the decision maker (investor) was provided with a linguistic description of the
overall evaluation of each mutual fund and with a numerical value representing the center of gravity of
the respective fuzzy evaluation. These results are summarized in Table 2. The linguistic approximation
used in [6] assigns one of the five elements of the linguistic scale presented in Figure 3 (or a combination
of these terms) to each overall fuzzy evaluation of a mutual fund. Much information is therefore lost in
the process and the linguistic label may not fit well.

Figure 2 Overall evaluations of four mutual funds according to [6]

Output of mathematical model [6] Proposed linguistic approximation

Alternatives Overall evaluation Linguistic approximation COG 2-tuple Linguistic approximation

Pioneer (0.504, 1.404, 2.516) Between Bad and Average 1.468 (Bad, +0.457) Noticeably better than bad

ISČS (2.116, 2.992, 3.656) Good 2.932 (Good, -0.008) About good

ČPI ( 2.012, 3.036, 3.524) Good 2.864 (Good, +0.014) About good

C-QUADRAT (0.928, 1.920, 2.960) Average 1.948 (Average, -0.073) Slightly worse than average

Table 2 Evaluations of four mutual funds. Results provided by [6] compared with the results obtained by
the linguistic approximation method proposed in this paper.

Let us now approach the fuzzy evaluations obtained in [6] presented in Table 2 with the linguistic
approximation method proposed in this paper. We can depart from the original evaluation scale used in
[6], that is (Evalex, {V ery bad, Bad, Average, Good, Excellent}, [0, 4], G,M), where the meanings of the
elements of the basic term set are summarized in Figure 3. Using the distance defined in preliminaries
we obtain the linguistic approximations summarized in Table 2.
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Figure 3 Meanings of the basic linguistic terms of Evalex for n = 5 on the evaluation universe [0, 4].
These meanings correspond with the meanings of the values of the linguistic scale used in [6].

Figure 4 Illustration of the Pioneer mutual fund evaluation – its linguistic approximation by the fuzzy
2-tuple based method.

5 Discussion and conclusion

A novel linguistic approximation method for fuzzy numbers is presented in this paper. The method
draws from the fuzzy 2-tuple concept, which allows it to provide a combination of linguistic term and its
necessary shift (expressed numerically or linguistically). Using an initial linguistic terms set specified by
the decision maker (the fuzzy number meanings of the linguistic terms are defined in cooperation with
decision maker) it constructs a linguistic variable with substantially extended term set. The grammar and
syntactic rule necessary to construct this linguistic variable are introduced in the paper. The linguistic
approximation itself then uses a distance of fuzzy numbers to find the linguistic term that is closest to
the approximated fuzzy number. The method performs particularly well when the approximated fuzzy
numbers are of a similar shape and uncertainty as the meanings of the basic terms set. When the basic
linguistic terms set is linearly ordered, the fuzzy 2-tuple linguistic approximation also provides means for
ordering of the approximated fuzzy evaluations. This feature can prove useful both in decision making
and evaluation (rankings of alternatives etc.). A short numerical example from the area of financial
decision making showcasing the proposed method is also presented.

The example compares a classic ”best-fit” approach to the linguistic approximation fuzzy outputs of
mathematical models with the proposed fuzzy 2-tuple based method. We can clearly see, that although the
same basic term set (with the same meanings) and the same distance was used for linguistic approximation
in [6] and here, the linguistic approximations obtained by the methodology proposed in this paper provide
more insights in the evaluations. The fuzzy 2-tuple based approximation operates with the basic terms
well understood by the decision maker and uses small shifts of their meanings (numerically quantified;
linguistic labelling of these shifts is also possible) to reflect differences between the fuzzy evaluations and
the predefined meanings of the basic terms.
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If we focus on the Pioneer fund from the example, we can see, that Talášek et al. [6] suggest a
linguistic approximation involving two neighbouring basic linguistic terms – in fact it is suggested that
the appropriate linguistic approximation lies somewhere in between these two basic terms. No indication
is suggested as to which of the original basic terms is closer (consider that the basic terms are those that
are well understood by the decision maker). The approach proposed in this paper provides a similar
result. It however uses a single basic linguistic term and describes its necessary modification (shift of
meaning). The decision maker is thus provided with a single linguistic label (which is similar to classic
approaches to linguistic approximation) and provides an additional piece of information regarding the
difference of the approximated fuzzy set and the meaning of the basic term which can be used if needed.
The output of the proposed fuzzy 2-tuple based approximation is presented in Figure 4. The overall
evaluation of the mutual fund Pioneer is depicted together with its linguistic approximation expressed
by the fuzzy number T 0.457

2 . The most promising feature of the proposed method is the use of a single
well understood linguistic label along with a simple linguistic or numerical modifier of its meaning.

The effect of different distances of fuzzy numbers, different shapes of membership functions and
different types of scales on the usefulness of the proposed method in practical applications, as well as
the use of the proposed methof for the ranking of alternatives will be the subject of further study. Also
empirical research concerning the understandability and intuitiveness of fuzzy 2-tuple based outputs for
practitioners is planned.
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Abstract:  Linguistic approximation is a common way of translating the outputs of mathematical models in the 

expressions in common language. These can then provide an easy-to-understand alternative to the numerical 

outputs of formal models. As such linguistically approximated outputs can facilitate the interpretability of the 

outputs of the models and reduce their possibility misuse. However, linguistic approximation remains an under-

researched area and best practices in management, economics, decision support, social science and behavioural 

research are missing. The paper explores the performance of two selected distance measures of fuzzy numbers 

and two different fuzzy similarity measures in the context of linguistic approximation. Triangular fuzzy numbers 

are considered as the approximated entities, their symmetry is not required. We present the results of a 

numerical experiment performed to map the behaviour of the four distance/similarity measures under uniform 

output linguistic scales.  
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1 Introduction 

In practical applications, it is often suitable to represent outputs of mathematical models not only in 

mathematical form (as numerical values), but also to provide the users of these models with an easy-

to-understand representation of these results or their summary (Yager, 2004). This can be done using 

linguistic labels that describe the outputs of the models in natural language. This way the results 

become more understandable to the people who are not sufficiently familiar with the mathematical 

background of the models (Stoklasa, 2014). The process that assigns linguistic labels to mathematical 

objects is called linguistic approximation and is discussed particularly in connection with fuzzy models 
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and mathematical outputs that represent not only the values of the variables, but also their 

uncertainty. Usually a relatively small set of linguistic labels that are well understood by the user of 

the model is considered in linguistic approximation.  Due to the fact that the set of possible linguistic 

labels contains only a small number of labels, the linguistic approximation can assign the same 

linguistic label to two different outputs of mathematical model (e.g. numbers 1.0 and 1.1 can be 

linguistically approximated as small). This is a natural consequence of the chosen granularity of the 

approximating term set. It is, however, clear, that the process of linguistic approximation has to be 

set up in accordance with the given application and its context. The scientific literature does not 

provide many insights into this topic. The goal of this paper is therefore to investigate, how different 

methods for linguistic approximation behave in cases, where the meaning of output of the 

mathematical model is close to two linguistic terms or lies directly “between” them.  

In the following text we investigate how the choice of different distance/similarity measure affects 

the linguistic approximation of triangular fuzzy numbers using uniform linguistic scale. We recall the 

principles of linguistic approximation in Section 3 and describe four distance/similarity measures the 

performance of which is further analysed in Section 4 using a numerical experiment. We discuss the 

results of the experiment in Section 5 and draw conclusions in the last section.  

2 Preliminaries 

Let 𝑈 be a nonempty set (the universe of discourse). A fuzzy set 𝐴 on 𝑈 is defined by the mapping 

𝐴 ∶ 𝑈 → [0,1]. For each 𝑥 ∈ 𝑈  the value 𝐴(𝑥) is called a membership degree of the element 𝑥 in the 

fuzzy set 𝐴 and 𝐴(. ) is called a membership function of the fuzzy set 𝐴. Ker(𝐴) = {𝑥 ∈ 𝑈|𝐴(𝑥) = 1} 

denotes a kernel of 𝐴, 𝐴𝛼 = {𝑥 ∈ 𝑈|𝐴(𝑥) ≥ 𝛼} denotes an α-cut of 𝐴 for any 𝛼 ∈ [0,1], Supp(𝐴) =

{𝑥 ∈ 𝑈|𝐴(𝑥) > 0} denotes a support of 𝐴. Let 𝐴 and 𝐵 be fuzzy sets on the same universe 𝑈. We say 

that 𝐴 is a fuzzy subset of (𝐴 ⊆ 𝐵), if 𝐴(𝑥) ≤ 𝐵(𝑥) for all 𝑥 ∈ 𝑈. 

A fuzzy number is a fuzzy set 𝐴 on the set of real numbers which satisfies the following conditions: 

(1) Ker(𝐴) ≠ ∅ (𝐴 is normal); (2) 𝐴𝛼 are closed intervals for all 𝛼 ∈ (0, 1] (this implies 𝐴 is unimodal); 

(3) Supp(𝐴) is bounded. A family of all fuzzy numbers on 𝑈 is denoted by F𝑁(𝑈). A fuzzy number 𝐴 is 

said to be defined on [𝑎, 𝑏], if Supp(𝐴) is a subset of an interval [𝑎, 𝑏]. The real numbers 𝑎1 ≤ 𝑎2 ≤

 𝑎3 ≤ 𝑎4 are called significant values of the fuzzy number 𝐴 if [𝑎1, 𝑎4] = Cl(Supp(𝐴)) and 

[𝑎2, 𝑎3] = Ker(𝐴), where Cl(Supp(𝐴)) denotes a closure of Supp(𝐴). Each fuzzy number A can be 

represented as 𝐴 = {𝑎(𝛼), 𝑎(𝛼)}
𝛼∈[0,1]

, where 𝑎(𝛼) and 𝑎(𝛼) is the lower and upper bound of the 

𝛼-cut of fuzzy number 𝐴 respectively, ∀𝛼 ∈ (0,1], and [𝑎(0), 𝑎(0)] = Cl(Supp(𝐴)). The cardinality 

of a fuzzy number A on [𝑎, 𝑏] is a real number Card(𝐴) defined as Card(𝐴) = ∫ 𝐴(𝑥)
𝑏

𝑎
𝑑𝑥 and can be 

considered as a measure of uncertainty of the fuzzy number  𝐴.  

The fuzzy number 𝐴 is called linear if its membership function is linear on [𝑎1, 𝑎2] and [𝑎3, 𝑎4]; for 

such fuzzy numbers we will use a simplified notation 𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4). A linear fuzzy number 𝐴 is 

said to be triangular if 𝑎2 = 𝑎3. We will denote triangular fuzzy numbers by an ordered triplet 

𝐴 = (𝑎1, 𝑎2, 𝑎4). A triangular fuzzy number 𝐴 = (𝑎1, 𝑎2, 𝑎4) is called symmetric if 𝑎2– 𝑎1 = 𝑎4– 𝑎2. 

Otherwise it is called assymetric. More details on fuzzy numbers and computations with them can be 

found for example in Dubois & Prade (1980). 
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In real-life applications we often need to represent fuzzy numbers by real numbers. This process is 

called defuzzification. The most common method is to substitute fuzzy number by its centre of 

gravity (COG). Let A be a fuzzy number on [𝑎, 𝑏] for which 𝑎1 ≠ 𝑎4. The centre of gravity of A is 

defined by the formula COG(𝐴) = ∫ 𝑥 𝐴(𝑥)
𝑏

𝑎
 𝑑𝑥/Card(𝐴).  

A fuzzy scale on [𝑎, 𝑏] is defined as a set of fuzzy numbers 𝑇1, 𝑇2, … , 𝑇𝑠 on [𝑎, 𝑏], that form a Ruspini 

fuzzy partition (Ruspini, 1969) of the interval [𝑎, 𝑏], i.e. for all 𝑥 ∈ [𝑎, 𝑏] it holds that ∑ 𝑇𝑖(𝑥) = 1
𝑠
𝑖=1  

and the 𝑇's are indexed according to their ordering. A linguistic variable (Zadeh, 1975) is defined as a 

quintuple (V, T(V), 𝑋, 𝐺,𝑀), where V is the name of the variable, T(V) is the set of its linguistic values 

(terms), 𝑋 is the universe on which the meanings of the linguistic values are defined, 𝐺 is a syntactic 

rule for generating the values of V and 𝑀 is a semantic rule which to every linguistic value A ∈ T(V) 

assigns its meaning  𝐴 = 𝑀(A) which is usually a fuzzy number on 𝑋. A linguistic variable is called a 

linguistic scale, if the meanings of its linguistic values form a fuzzy scale. 

3 Linguistic approximation of fuzzy numbers 

Let us now consider the task of finding an appropriate linguistic term from the set {T1, … , T𝑠} to 

represent the fuzzy set 𝑂 on [𝑎, 𝑏], which is an output of a mathematical. Let us consider the 

linguistic terms are values of a linguistic scale V, i.e. T(V) = {T1, … , T𝑠} , and 𝑇𝑖 = 𝑀(T𝑖), 𝑖 = 1,… , 𝑠 

are fuzzy numbers on [𝑎, 𝑏]. The linguistic approximation T𝑂 ∈ T(V) of the fuzzy set 𝑂 is computed 

by 

 𝑇𝑂 = arg min
𝑖∈{1,…,𝑠}

𝑑(𝑇𝑖 , 𝑂) (1) 

where 𝑑(𝐴, 𝐵) is a distance or similarity measure (in the case of similarity measure the arg min 

function in formula (1) must be replaced by arg max function) of two fuzzy numbers 𝐴, 𝐵. During the 

past forty years a large number of approaches were proposed for the computation of distance and 

similarity of fuzzy numbers (see e.g. Zwick et al. (1987)). It is necessary to keep in mind that the 

choice of distance/similarity measure will modify the behaviour of the linguistic approximation 

method. In the next chapter the following distances and similarity measures of fuzzy numbers 𝐴 and 

𝐵 will be considered: 

modified Bhattacharyya distance (Aherne et al., 1998): 

𝑑1(𝐴, 𝐵) = √1 −∫ √
𝐴(𝑥)

Card(𝐴)
⋅
𝐵(𝑥)

Card(𝐵)
𝑑𝑥

𝑈

 

dissemblance index (Kaufman & Gupta, 1985)  

𝑑2(𝐴, 𝐵) = ∫ |𝑎(𝛼) − 𝑏(𝛼)|
1

0

+ |𝑎(𝛼) − 𝑏(𝛼)|𝑑𝛼 

similarity measure (introduced by Wei & Chen, 2009) 

𝑠1(𝐴,𝐵) = (1 −
∑ |𝑎𝑗 − 𝑏𝑗|
4
𝑗=1

4
) ⋅
min{Pe(𝐴), Pe(𝐵)} + 1 

max{Pe(𝐴), Pe(𝐵)} + 1
 

Where Pe(𝐴) = √(𝑎1 − 𝑎2)
2 + 1 + √(𝑎3 − 𝑎4)

2 + 1 + (𝑎3 − 𝑎2) + (𝑎4 − 𝑎1), Pe(𝐵) is 

defined analogically   

similarity measure (introduced by Hejazi et al., 2011)  
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𝑠2(𝐴, 𝐵) = (1 −
∑ |𝑎𝑗 − 𝑏𝑗|
4
𝑗=1

4
) ⋅
min{Pe(𝐴), Pe(𝐵)} 

max{Pe(𝐴), Pe(𝐵)}
⋅
min{Ar(𝐴), Ar(𝐵)} + 1 

max{Ar(𝐴), Ar(𝐵)} + 1
 

where Ar(𝐴) = 1 2⁄ (𝑎3 − 𝑎2 + 𝑎4 − 𝑎1), Ar(𝐵) is defined analogically and Pe(𝐴) and 

Pe(𝐵) are computed identically as in the previous method. 

These methods represent a sample of the distance and similarity measures of fuzzy sets used 

in the best-fit approaches to linguistic approximation (Yager, 2004, Stoklasa, 2014). In the 

next chapter we propose a numerical experiment to analyse and compare the performance 

of these measures in linguistic approximation. 

4 Numerical experiment 

For the purposes of the numerical experiment, 100 000 triangular fuzzy numbers on [0,1] 𝑂ℎ , ℎ =

1,… ,100 000 , were randomly generate. No restriction was posed on the symmetry of these fuzzy 

numbers (asymmetrical as well as symmetrical fuzzy numbers were generated). These fuzzy numbers 

were then linguistically approximated by a linguistic scale containing five linguistic terms T1, … , T5 

with the respective meanings 𝑇1 = (0, 0,0.25), 𝑇2 = (0,0.25,0.5), 𝑇3 = (0.25,0.5,0.75), 𝑇4 =

(0.5,0.75,1), 𝑇5 = (0.75,1,1) using all four distance/similarity measures 𝑑1, 𝑑2, 𝑠1 and 𝑠2 (therefore 

for each output 𝑂ℎ four linguistic labels were obtained using argmin𝑖∈{1,…,5} 𝑑1(𝑇𝑖, 𝑂ℎ), 

argmin𝑖∈{1,…,5} 𝑑2(𝑇𝑖, 𝑂ℎ), argmax𝑖∈{1,…,5} 𝑠1(𝑇𝑖, 𝑂ℎ) and argmax𝑖∈{1,…,5} 𝑠2(𝑇𝑖, 𝑂ℎ) respectively). 

The results are summarized in Figure 1. Results for each distance/similarity measure are represented 

by two subfigures – the upper one depicts outputs approximated by linguistic terms T1, T3, T5 and 

the second (bottom) one depicts outputs approximated by the remaining terms T2 and T4. Each 

linguistic term is represented by a different colour. The outputs to be approximated 𝑂ℎ are 

represented in two-dimensional space by the centre of gravity (COG(𝑂ℎ) on the x-axis) and length of 

the support (|Supp(𝑂ℎ)| on the y-axis). Results were split into two subfigures, because the coloured 

areas corresponding with the neighbouring linguistic terms partially overlap. 

5 Discussion 

Based on the results of the numerical experiment we have identified several important differences in 

the performance of the four studied distance/similarity measures in linguistic approximation. Note 

that since the symmetry of the generated triangular fuzzy numbers was not required, the results 

reported in this paper differ significantly from the results reported in (Talášek & Stoklasa, 2016), 

where only symmetrical fuzzy numbers were considered. Due to the random generation of triangular 

fuzzy numbers for the numerical experiment reported in this paper, the set of objects that are 

linguistically approximated here contains both symmetrical and asymmetrical fuzzy numbers 

(although asymmetrical fuzzy numbers constitute the majority of the objects). The results can 

therefore be considered to be more general and more relevant for the purposes of linguistic 

approximation of the outputs of fuzzy mathematical models where symmetry is not required or 

cannot be guaranteed. 

First, it is interesting to note that under the considered linguistic variable the dissemblance index is 

the only measure (out of the four considered ones) that assigns the most extreme linguistic labels T1 

and T5 to fuzzy numbers with the length of support higher than 0.5 (see Figure 1, Subfigures 2a and 

2b, green and red points above the 0.5 horizontal line). This way even a highly uncertain fuzzy 

output 𝑂, 𝑂 = (𝑜1, 𝑜2, 𝑜3), Card(𝑂) > 0.25 (i.e. |Supp(𝑂)| > 0.5) can be approximated by T1 or T5  
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FIG. 1: Results of the numerical experiment. Linguistic approximations of randomly generated 
triangular fuzzy numbers 𝑶𝒉, 𝒉 = 𝟏,… , 𝟏𝟎𝟎 𝟎𝟎𝟎 represented by points in two-dimensional space 
(centre of gravity (x-axis) and length of their support (y-axis)) computed using Bhattacharyya 𝒅𝟏 
(subfigures 1a and 1b), 𝒅𝟐 (subfigures 2a and 2b), 𝒔𝟏 (subfigures 3a and 3b) and 𝒔𝟐 (subfigures 4a 
and 4b). Each linguistic term assigned as a linguistic approximation T𝟏, … , T𝟓 is represented by 
different colour. 
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even though these are the least uncertain linguistic terms (Card(𝑇1) = Card(𝑇5) = 0.125 and 

Card(𝑇2) =  Card(𝑇3) =  Card(𝑇4) = 0.25). The resulting linguistic approximation can therefore 

distort the information concerning the uncertainty of the approximated fuzzy number and suggest it 

is lower than it really is (even though there are more uncertain linguistic terms available for the 

linguistic approximation). 

Second, the similarity measure 𝑠2 under our experimental setting tends to distort the information 

concerning the location of the approximated fuzzy number (represented by the centre of gravity). For 

fuzzy numbers with low uncertainty located close to the centre of the universe (in our case 0.5; see 

the right part of the green area and left part of the red area in Figure 1, Subfigures 4a and 4b) it is 

possible to obtain extreme linguistic approximation (T1 or T5). This means that e.g. a fuzzy number 

𝑃 = (0.649, 0.65, 0.651), Card(𝑃) = 0.001, will be approximated by T5. Note that 𝑃 is very close to 

the real number 0.65 for which T5 seems to be a counterintuitive (too extreme) linguistic 

approximation. This effect is caused by the focus of 𝑠2 not only on the location of the approximated 

fuzzy number but also on its shape. However in the above mentioned example a linguistic 

approximation best fitting in terms of uncertainty is suggested. 

In the case of the Bhattacharyya distance the centre of gravity of the approximated fuzzy number 

seems to be the most important piece of information in the determination of the linguistic 

approximation (using a uniform linguistic scale). The vertical boarders of the areas are almost 

perpendicular to the x-axis. Note that this feature of Bhattacharyya distance is even more apparent 

when symmetrical triangular fuzzy numbers are approximated. In this case the sole centre of gravity 

is a very good predictor of the result of linguistic approximation (Talášek & Stoklasa, 2016). The 

similarity measure 𝑠2 also takes into account the uncertainty of the approximated fuzzy numbers – 

see the close-to-horizontal upper border of the green and red areas respectively in Figure 1, 

Subfigure 4a. Using 𝑠2 fuzzy numbers with low uncertainty will almost never be approximated by T2 

or T4. The similarity measure 𝑠1 behaves in similar manner as 𝑠2, the patterns in the data generated 

by the numerical experiment are just less distinct. 

6 Conclusions 

 The analysis presented in this paper focuses on the performance of Bhattacharyya distance, 

dissemblance index and two selected similarity measures in linguistic approximation of triangular 

fuzzy numbers. More specifically a five-term uniform linguistic scale is considered to provide output 

values for the linguistic approximation. The results of a numerical experiment involving the random 

generation of 100 000 triangular fuzzy numbers and their subsequent linguistic approximation using 

the selected four distance/similarity measures are presented in Figure 1. The results confirmed that 

the measures perform differently depending on the requirements for linguistic approximation. The 

Bhattacharyya distance seems to be the method of choice when the most important piece of 

information is carried by centre of gravity (location of the output). On the other hand both similarity 

measures reflect also the uncertainty and shape of the approximated fuzzy numbers and hence tend 

to overemphasize the shape over location for low-uncertain fuzzy numbers. The dissemblance index 

is the only one of the analysed measures that assigns extreme linguistic approximations also for high 

uncertain fuzzy numbers. These findings are relevant for the design of model-user interfaces and 

appropriate presentation of data in application areas of fuzzy mathematical models, such as 

economics, finance, management, social sciences etc. 
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Talášek, T., Stoklasa, J. and Talašová, J.
The role of distance and similarity in Bonissone’s linguistic

approximation method – a numerical study

Reprinted with the permission from
Proceedings of the 34th International Conference on Mathematical Methods

in Economics 2016,
pp. 845–850, 2016,

c© 2016, Technical University of Liberec, Liberec





The role of distance and similarity in Bonissone’s

linguistic approximation method – a numerical study

Tomáš Talášek1, Jan Stoklasa2, Jana Talašová3

Abstract. Linguistic approximation is a common way of translating the out-
puts of mathematical models in the expressions in common language. These can
then be presented to decision makers who have difficulties with interpretations
of numerical outputs of formal models as an easy-to-understand alternative.
Linguistic approximation is a tool to stress, modify or effectively convey mean-
ing. As such it is an important yet neglected area of research in management
science and decision support.

During the last forty years a large number of different methods for linguistic ap-
proximation were proposed. In this paper we investigate in detail the linguistic
approximation method proposed by Bonissone (1979). We focus on its perfor-
mance under different “fit” measures in its second step - we consider various
distance and similarity measures of fuzzy sets to choose the most appropriate
linguistic approximation. We conduct a numerical study of the performance of
this linguistic approximation method, present its results and discuss the impact
of a particular choice of a “fit” measure.

Keywords: Linguistic approximation, two-step method, fuzzy number, dis-
tance, similarity.

JEL classification: C44
AMS classification: 90B50, 91B06, 91B74

1 Introduction

In practical applications of decision support models that employ fuzzy sets it is often necessary to be
able to assign a linguistic label (from predefined linguistic scale) to a fuzzy set (usually obtained as an
output of some mathematical model). This process is called linguistic approximation. The main reason
for applying linguistic approximation is to “translate” (abstract/formal) mathematical objects into the
common language (recent research also suggests that the ideas of linguistic approximation can be used
e.g. for ordering purposes - see [7]). This way the outputs of mathematical models can become easier to
understand and use for the decision-makers. The process of linguistic approximation involves the selection
of the best fitting linguistic term from a predefined term set as a representative of the given mathematical
object (fuzzy set). Obviously, since the set of linguistic terms is finite (and usually contains only a few
linguistic terms), the process distorts the actual output of the mathematical model to some extent (add
or decrease uncertainty, shift the meaning in the given context etc. - hence approximation). The key to a
successful linguistic approximation is to find an appropriate tradeoff between understandability and loss
(distortion) of information (see e.g. [10, 6]). Linguistic approximation relies in many cases on distance
and similarity of fuzzy sets, on the subsethood and the differences in relevant features of the output to
be approximated and the meaning of its approximating linguistic term.

In this paper we focus on the Bonissone’s two-step method for linguistic approximation [1], since it
combines the idea of semantic similarity with the requirement of the closeness of meaning. In the first
step, the method preselects a given amount of linguistic terms, that embody the semantic best fit (based
on a specified set of features). In the second step the linguistic term whose meaning is the closest based on
some distance/similarity measure is selected. We investigate the role of distance/similarity measure in the

1Palacký University, Olomouc, Kř́ıžkovského 8, Olomouc, Czech Republic and Lappeenranta University of Technology,
Skinnarilankatu 34, Lappeenranta, Finland, tomas.talasek@upol.cz
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second step of this method and on a numerical study we compare the performance of the Bhattacharyya
distance suggested by Bonissone with the dissemblance index distance measure and two fuzzy similarity
measures. Based on the results of a numerical study we analyze what features employed in the first
step (namely position and uncertainty - the same features employed by Wenstøp [9] in his method) are
emphasized and which are distorted by each of the distance/similarity measures. This way the paper
strives to contribute to the scarce body of research on good practices in linguistic approximation.

2 Preliminaries

Let U be a nonempty set (the universe of discourse). A fuzzy set A on U is defined by the mapping
A : U → [0, 1]. For each x ∈ U the value A(x) is called a membership degree of the element x in the
fuzzy set A and A(.) is called a membership function of the fuzzy set A. Ker(A) = {x ∈ U |A(x) = 1}
denotes a kernel of A, Aα = {x ∈ U |A(x) ≥ α} denotes an α-cut of A for any α ∈ [0, 1], Supp(A) = {x ∈
U |A(x) > 0} denotes a support of A.

A fuzzy number is a fuzzy set A on the set of real numbers which satisfies the following conditions:
(1) Ker(A) 6= ∅ (A is normal); (2) Aα are closed intervals for all α ∈ (0, 1] (this implies A is unimodal);
(3) Supp(A) is bounded. A family of all fuzzy numbers on U is denoted by FN (U). A fuzzy number
A is said to be defined on [a,b], if Supp(A) is a subset of an interval [a, b]. Real numbers a1 ≤ a2 ≤
a3 ≤ a4 are called significant values of the fuzzy number A if [a1, a4] = Cl(Supp(A)) and [a2, a3] =
Ker(A), where Cl(Supp(A)) denotes a closure of Supp(A). Each fuzzy number A is determined by
A =

{
[a(α), a(α)]

}
α∈[0,1], where a(α) and a(α) is the lower and upper bound of the α-cut of fuzzy

number A respectively, ∀α ∈ (0, 1], and the closure of the support of A Cl(Supp(A)) = [a(0), a(0)]. A
union of two fuzzy sets A and B on U is a fuzzy set (A ∪ B) on U defined as follows: (A ∪ B)(x) =
min{1, A(x) +B(x)}, ∀x ∈ U .

The fuzzy number A is called linear if its membership function is linear on [a1, a2] and [a3, a4]; for
such fuzzy numbers we will use a simplified notation A = (a1, a2, a3, a4). A linear fuzzy number A is
said to be trapezoidal if a2 6= a3 and triangular if a2 = a3. We will denote triangular fuzzy numbers
by ordered triplet A = (a1, a2, a4). More details on fuzzy numbers and computations with them can be
found for example in [2].

Let A be a fuzzy number on [a, b] for which a1 6= a4. Then A could be described by several real
number characteristics, such as cardinality : Card(A) =

∫
[a,b]

A(x)dx; center of gravity : COG(A) =∫
[a,b]

xA(x)dx/Card(A); fuzziness: Fuzz(A) =
∫
[a,b]

S(A(x))dx, where S(y) = −y ln(y)− (1− y) ln(1− y)

and skewness: Skew(A) =
∫
[a,b]

(x− COG(A))3A(x)dx.

A fuzzy scale on [a, b] is defined as a set of fuzzy numbers T1, T2, . . . , Ts on [a,b], that form a Ruspini
fuzzy partition (see [5]) of the interval [a, b], i.e. for all x ∈ [a, b] it holds that

∑s
i=1 Ti(x) = 1, and

the T ’s are indexed according to their ordering. A linguistic variable ([11]) is defined as a quintuple
(V, T (V), X,G,M), where V is a name of the variable, T (V) is a set of its linguistic values (terms),
X is an universe on which the meanings of the linguistic values are defined, G is an syntactic rule for
generating the values of V and M is a semantic rule which to every linguistic value A ∈ T (V) assigns
its meaning A = M(A) which is usually a fuzzy number on X. Linguistic variable (V, T (V), X,G,M) is
called a linguistic scale on [a, b] if X = [a, b], T (V) = {T1, . . . , Ts} and M(Ti) = Ti, i = 1, . . . , s form a
fuzzy scale on [a, b]. Terms Ti, i = 1, . . . , s are called elementary terms. Linguistic scale on [a, b] is called
extended linguistic scale, if besides elementary terms contains also delivered terms in the form Ti to Tj
where i < j, i, j ∈ {1, . . . , n} and M(Ti to Tj) = Ti ∪ Ti+1 ∪ · · · ∪ Tj .

3 Bonissone’s two step method for linguistic approximation

Bonissone’s two step approach for linguistic approximation [1] was proposed in 1979. In contrast to the
majority of linguistic approximation approaches, Bonissone suggested to split the process into two steps
– in the first step the set of suitable linguistic terms for the approximation of a given fuzzy number is
found (this “pre-selection step” is done based on the semantic similarity), then in the second step the
most appropriate term for the linguistic approximation is found from this set of suitable linguistic terms.

In the pre-selection step the set P = {Tp1 , . . . , Tpk} of k (k ≤ s) suitable linguistic terms from T (V)

Mathematical Methods in Economics 2016

846



is formed in the way that the meaning of these pre-selected terms are similar to the fuzzy set O (an
output of a mathematical model to be approximated) with respect to four characteristics (cardinality,
center of gravity, fuzziness and skewness). These characteristics are assumed to capture the semantic
value of a fuzzy set used to model the meaning of a linguistic term. The semantic value of a fuzzy set
on a given universe can thus be represented by a quadruple of real numbers (values of 4 features in
four-dimensional space). Let A be a fuzzy set on [a, b]. Then the respective characteristic quadruple is
denoted as (a1, a2, a3, a4) where a1 = Card(A), a2 = COG(A), a3 = Fuzz(A) and a4 = Skew(A).

Let the fuzzy set O on [a, b] be an output of a mathematical model that needs to be linguistically
approximated by one linguistic term from the set T (V) = {T1, . . . , Ts}. T (V) is a linguistic term set of a
linguistic variable (V, T (V), [a, b], G,M), such that Ti = M(Ti), i = 1, . . . , s are fuzzy numbers on [a, b].
Linguistic terms {T1, . . . , Ts} are ordered with respect to the distance of their characteristic quadruples
from the characteristic quadruple of O. The ordered set N = (Tp1 , . . . , Tps) is thus obtained, such that
d(Tp1 , O) ≤ d(Tp2 , O) ≤ · · · ≤ d(Tps , O) where

d(Tpi , O) =

4∑

j=1

wj |tjpi − oj |, i = 1 . . . , s, (1)

and wj , j = 1, . . . , 4 are normalized real weights (i.e.
∑4
j=1 wj = 1, wj ≥ 0, j = 1, . . . , 4). The choice of

weights is usually left with the user of the model and some features could be even optional. Wenstøp [9]
for example proposed (in his method for linguistic approximation) to use only two features – cardinality
(uncertainty) and center of gravity (position). First k linguistic terms (the parameter k is specified by
the decision maker) from the ordered set N are stored in the set P and the pre-selection step is finished.

In the second step, the linguistic approximation TO ∈ P of the fuzzy set O is computed. The fuzzy
set TO = M(TO) is computed as

TO = arg min
Tpi∈P

d1(Tpi , O) (2)

using the modified Bhattacharyya distance:

d1(A,B) =
[
1−

∫

U

(A∗(x) ·B∗(x))1/2dx
]1/2

, (3)

where A∗(x) = A(x)/Card(A(x)) and B∗(x) = B(x)/Card(B(x)). This way the linguistic term TO is
found as the closest linguistic approximation among the pre-selected linguistic terms.

The Bhattacharyya distance (3) can be substituted by different distances or similarity measures1 of
fuzzy numbers – this step will, however, modify the behaviour of the linguistic approximation method.
In the next section the following distance and similarity measures of fuzzy numbers are considered:

• A dissemblance index (introduced by Kaufman and Gupta [4]) of fuzzy numbers A and B is defined
by the formula

d2(A,B) =

∫ 1

0

|a(α)− b(α)|+ |a(α)− b(α)| dα, (4)

• A similarity measure (introduced by Wei and Chen in [8]) of fuzzy numbers A and B is defined by
the formula

s1(A,B) =
(

1−
∑4
i=1 |ai − bi|

4

)
· min{Pe(A), P e(B)}+ min{hgt(A),hgt(B)}

max{Pe(A), P e(B)}+ max{hgt(A),hgt(B)} , (5)

where Pe(A) =
√

(a1 − a2)2 + (hgt(A))2 +
√

(a3 − a4)2 + (hgt(A))2 + (a3− a2) + (a4− a1), Pe(B)
is defined analogically

• A similarity measure (introduced by Hejazi and Doostparast in [3]) of fuzzy numbers A and B can
be defined by the formula

s2(A,B) =
(

1−
∑4
i=1 |ai − bi|

4

)
· min{Pe(A), P e(B)}

max{Pe(A), P e(B)} ·
min{Ar(A), Ar(B)}+ min{hgt(A),hgt(B)}
max{Ar(A), Ar(B)}+ max{hgt(A),hgt(B)} , (6)

where Ar(A) = 1
2hgt(A)(a3 − a2 + a4 − a1), Ar(B) is defined analogically and Pe(A) and Pe(B)

are computed identically as in the previous method.

1In the case of similarity measure the arg min function in the formula (2) must be changed to arg max function.
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4 Numerical experiment

We restrict ourselves for the purpose of this paper to the linguistic approximation of triangular fuzzy
numbers. We assess the performance of the distance measures d1 and d2 and of the two similarity mea-
sures s1 and s2 in the context of Bonisonne’s linguistic approximation method by the following numerical
experiment. We randomly generate 100 000 triangular fuzzy numbers on [0, 1] to be linguistically approx-
imated (denoted {O1, . . . , O100000}) and compute their cardinalities {o11, . . . , o1100000} and their centers of
gravity {o21, . . . , o2100000}. We assume that for all these generated fuzzy numbers the hypothetical result of
the first phase of Bonisonne’s method is the set of linguistic terms P = {Tp1 , . . . , Tpk} - in our numerical
study this set is the linguistic term set of an extended linguistic scale constructed from a uniform Ruspini
fuzzy partition of the universe [0, 1] with 5 triangular fuzzy numbers. This way we obtain the linguistic
term set P = {Tp1 , . . . , Tp15}, the meanings of these linguistic terms are {T1, . . . , T15}, with cardinalities
{t11, . . . , t115} and centers of gravity {t21, . . . , t215}. Using each distance and similarity measure we find the
linguistic approximation of each generated output applying the second step of Bonisonne’s method - this
way we obtain {T d1O1

, . . . , T d1O100000
}, {T d2O1

, . . . , T d2O100000
}, {T s1O1

, . . . , T s1O100000
} and {T s2O1

, . . . , T s2O100000
} as the

linguistic approximations of the generated triangular fuzzy numbers using d1, d2, s1 and s2 respectively.

Figure 1 plots the cardinalities of the approximated fuzzy numbers (horizontal axis) against the cardi-
nality of the meaning of the respective linguistic approximation for all the distance/similarity measures.
We can clearly see from the plots, that all four measures provide linguistic approximations with both
higher cardinality (points above the main diagonal) and with lower cardinality. It, however, seems, that
higher cardinality case is more frequent (points in the left upper corner of the plots). This can be reason-
able, since even in common language we tend to use super-categories to generalize the meaning. In all
the methods it is possible to also get a linguistic approximation with a lower cardinality (i.e. the meaning
of the linguistic approximation is less uncertain than the original output of the model). Note, that since
we have generated triangular fuzzy numbers on [0, 1], the maximum possible cardinality of any generated
fuzzy number was 0.5. The Bhattacharyya distance is the only one from the investigated measures, that
provides very highly uncertain approximations. This behavior could be tolerated only if the reason for
the addition of uncertainty is the tendency of the measure to achieve a linguistic approximation that is
more general than the approximated fuzzy set. Table 1 summarizes in how many cases the kernel of the
resulting linguistic approximation is a superset of the kernel of the approximated results - in these cases
the “typical representatives” of the output are also the “typical representatives” of the approximated
linguistic term. We can see that Bhattacharyya distance focuses on this aspect much more than the
other investigated methods.

The situation for the centers of gravity is summarized analogically in Figure 2. Here the desired state
can be no presence of a systematic bias of the approximation. This corresponds with the points being
close to the main diagonal in the respective plot, or evenly distributed to the left and to the right. We
can see that with respect to this requirement the Bhattacharyya distance performs rather well. Both
similarities perform in most cases in the following way: i) in case of lower centers of gravity of the
approximated result they shift the center of gravity of the meaning of the linguistic approximation lower
than the original center of gravity of the approximated results, ii) in case of higher centers of gravity of the
approximated result they shift the center of gravity of the meaning of the linguistic approximation higher
than the original center of gravity of the approximated results. Similarities seem to have an amplifying
effect on the center of gravity - shifting the center of gravity to the endpoints of the universe. This can
be a desirable property in cases, when such an amplification of meaning is needed.

k d1 d2 s1 s2
Card{Oi|Ker(Oi)⊆Ker(Tk

Oi
),i=1,...,100000}

100000 0.2868 0.1559 0.1778 0.1632

Table 1: The relative count of cases when the Ker(Oi) ⊆ Ker(T kOi
), k ∈ {d1, d2, s1, ss2} out of the

given 100 000.

5 Conclusion

In the paper we have investigated the role of different distance and similarity measures of fuzzy numbers
in the second step of Bonissone’s linguistic approximation method. We focused on the cardinality and
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Figure 1: Comparison of cardinalities of the approximated outputs (horizontal axis) and the meanings
of their linguistic approximations (vertical axis) for d1, d2, s1 and s2.

Figure 2: Comparison of centers of gravity of the approximated outputs (horizontal axis) and the
meanings of their linguistic approximations (vertical axis) for d1, d2, s1 and s2.
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center of gravity characteristics of fuzzy numbers. We have performed a numerical experiment which
investigated the differences between the chosen characteristics of randomly generated triangular fuzzy
numbers on the interval [0, 1] and the characteristics of the meanings of their linguistic approximations
computed by Bonissone’s method. This served as a basis for the analysis of the performance of two
different distance measures and two similarity measures of fuzzy numbers in the linguistic approximation
context.

The results of the numerical experiment suggest, that the Bhattacharyya distance tends to provide
more uncertain approximations than the other methods and is more likely to provide approximating
linguistic term that “catch” the typical representatives (the kernel of the approximating linguistic term
meaning is a superset to the kernel of the approximated fuzzy number). Both presented similarity methods
have amplifying effect on the center of gravity – they shift the center of gravity of the approximating
linguistic term meaning to the endpoints of the universe.
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Linguistic approximation of values close to the gain/loss
threshold

Jan Stoklasa1, Tomá̌s Taĺǎsek2

Abstract. Linguistic approximation (LA) is a natural last step of linguistic fuzzy
modelling, providing linguistic labels (with their meaning known to the decision mak-
ers and understood well by them). Linguistic approximation techniques are based
on approximation and hence the nature of the approximated output of mathematical
model can be altered a bit by the application of these methods. LA can be considered
beneficial in linguistic fuzzy modelling, as long as the interpretability and understand-
ability of the provided linguistic outputs outweighs the possible loss/distortion of in-
formation. In many cases the distortion of information might be small and as such
completely acceptable. Recently, however, Stoklasa and Talá̌sek (2015) pointed out
that when specific thresholds are of importance in the decision-making situation (e.g.
the border between gains and losses), LA can distort the outcome of the decision-
making situation by providing a loss label for a gain and vice-versa. In this paper, we
investigate the phenomenon under different linguistic scales used for the approxima-
tion and provide a thorough discussion of this phenomenon in the context of linguistic
approximation.

Keywords: Linguistic approximation, gains, losses, threshold, distance, linguistic
scale.
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1 Introduction
Mathematical models for economic practice and for managerial decision support (including e.g. investment de-
cision support models, evaluation models) require a suitable interface to facilitate the exchange of information
between the model and its users. Linguistic fuzzy modelling provides such an interface in terms of presenting the
model and its outputs in terms of natural language [9]. To build a linguistic fuzzy model capable of providing
understandable linguistic outputs to its users, we need to be able to transform the mathematical objects computed
by the model into natural language. The process of transformation of the mathematical outputs of models into
natural language is called linguistic approximation. There are various approaches to linguistic approximation (see
e.g. [23] for an overview and [10, 15] for additional analysis of some of the methods). The majority of the methods
of linguistic approximation is based on finding the fuzzy object (usually a fuzzy number) with a known linguistic
label - e.g. methods finding the fuzzy set with a known linguistic label which is the closest (w.r.t. some distance
measure, see e.g. [3] or ) or the most similar (w.r.t. some similarity measure) to the approximated object. The
performance of different similarity and distance measures has been recently studied in several papers (see e.g.
[16, 17, 20]). Alternatively, there are also methods that use linguistic hedges and connectives to combine fuzzy
sets with a known linguistic label to create and object close or similar enough to the approximated one (see e.g.
[1, 5, 20, 22]). New methods for linguistic approximation are also being developed [19] and alternative uses for
linguistic approximation are being considered (e.g. ordering of fuzzy numbers in [18], or conveying/stressing of
specific pieces of information [23], the importance of the linguistic level of models has recently been discussed
also in [2, 8, 9, 11, 12, 13, 14]). Clearly, linguistic modelling and linguistic approximation are topics that currently
deserve the attention of researchers.

Although research into the behavioral aspects of linguistic approximation has already started, there are still
several issues that need attention. For one the reliance on the distance or similarity measures in linguistic ap-
proximation to find the best fitting approximating linguistic term (in terms of the distance or similarity of its
fuzzy-set-meaning to the approximated object) can prove problematic, since low distance and semantic closeness
might not always be the same thing. Stoklasa and Talá̌sek [10, p. 965, Figure 4] discuss the existence of a pos-
sible drawback of the use of linguistic approximation based on distance or similarity measures in the context of
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tomas.talasek@upol.cz.

Mathematical Methods in Economics 2017

726



economic decision-making concerning gains and losses. As already identified by Kahneman and Tversky e.g. in
the context of prospect theory [6], the decision making and attitude to risk might be different based on the framing
of a particular value as loss or gain by a specific decision maker. In this paper, we aim to investigate the possible
drawbacks of the use of distance and similarity in linguistic approximation of the outputs of mathematical mod-
els in financial units, provide a closer-to-real-life example of the possible problems and analyze the performance
of a frequently used distance measure and its possible alternative under different linguistic variables used for the
linguistic approximation.

The paper therefore continues by a chapter summarizing the necessary theory and notation for linguistic fuzzy
modelling including linguistic variables, linguistic scales and the basic idea of linguistic approximation. The next
section specifies the problem under investigation, introduces the distance measures the performance of which will
be investigated in this paper in the context of linguistic approximation of gains and losses and also specifies the
linguistic variables that will be studied. A prototype example of the problem is also presented in this section.
The next section summarizes the results of a numerical analysis of the performance of the selected methods and
discusses the results and the last section draws conclusions for the paper.

2 Preliminaries
Let U be a nonempty set (the universe of discourse). Afuzzy setA onU is defined by the mappingA : U → [0, 1].
For eachx ∈ U the valueA(x) is called themembership degreeof the elementx in the fuzzy setA andA(.)
is called themembership functionof the fuzzy setA. Ker(A) = {x ∈ U |A(x) = 1} denotes akernelof A,
Aα = {x ∈ U |A(x) ≥ α} denotes theα-cut of A for anyα ∈ [0, 1], Supp(A) = {x ∈ U |A(x) > 0} denotes
the supportof A. The cardinality of a fuzzy setA is computed as Card(A) =

∫
U

A(x)dx. A real-number
characteristic representing the location of the fuzzy setA in the universe of discourseU is called thecenter of
gravity: COG(A) =

∫
U

xA(x)dx/Card(A).

A fuzzy number is a fuzzy setA on the set of real numbers which satisfies the following conditions: a)
Ker(A) 6= ∅ (A is normal); b) Aα are closed intervals for allα ∈ (0, 1] (this impliesA is unimodal); c) Supp(A) is
bounded. The family of all fuzzy numbers onU is denoted byFN (U). A fuzzy numberA is said to be defined on
[a, b], if Supp(A) is a subset of an interval[a, b]. Real numbersa1 ≤ a2 ≤ a3 ≤ a4 are calledsignificant values
of the fuzzy numberA if [a2, a3] = Ker(A) and[a1, a4] = Cl(Supp(A)), where Cl(Supp(A)) denotes a closure
of Supp(A). Each fuzzy numberA can be also represented in the form ofA =

{
[a(α), a(α)]

}
α∈[0,1]

, wherea(α)

anda(α) is the lower and upper bound of theα-cut of fuzzy numberA respectively,∀α ∈ (0, 1], and the closure
of the support ofA, Cl(Supp(A)) = [a(0), a(0)]. A fuzzy numberA is calledlinear if its membership function is
linear on[a1, a2] and[a3, a4]; for such fuzzy numbers we will use a simplified notationA = (a1, a2, a3, a4). A
linear fuzzy numberA is said to betrapezoidalif a2 6= a3 andtriangular if a2 = a3. We will denote triangular
fuzzy numbers by ordered tripletA = (a1, a2, a4). More details on fuzzy numbers and computations with them
can be found for example in [4].

A fuzzy scaleon [a, b] is defined as a set of fuzzy numbersT1, T2, . . . , Ts on [a, b], where for allx ∈ [a, b]
it holds that

∑s
i=1 Ti(x) = 1, and theT ’s are indexed according to their ordering. Alinguistic variable[24] is

defined as a quintuple(V , T (V), X,G,M ), whereV is the name of the variable,T (V) is the set of its linguistic
values (terms),X is the universe on which the meanings of the linguistic values are defined,G is a syntactic rule
for generating the values ofV andM is a semantic rule which to every linguistic valueA ∈ T (V) assigns its
meaningA = M(A) which is usually a fuzzy number onX. Linguistic variable(V , T (V), X,G,M ) is called a
linguistic scaleon [a, b] if X = [a, b], T (V) = {T1, . . . , Ts} andM(Ti) = Ti, i = 1, . . . , s form a fuzzy scale on
[a, b].

3 Definition of the problem - distance based linguistic approximation in the
gain/loss domain

Kahneman and Tversky (see e.g. [7, 21]) suggested and subsequently experimentally proved, that the carrier of
decision-power in real life situations concerning e.g. sums of money is not the absolute value, but its reframing into
gain or loss. They also postulate, that people deal differently with gains and losses (willingness to take risk might
change, see [6] for more). The purpose of linguistic approximation is to find the best linguistic label for a given
mathematical output. If we assume a fuzzy numberO to be linguistically approximated by one of the linguistic
values of a linguistic scale(V , T (V), X,G,M ), whereT (V) = {T1, . . . , Ts}, then a distance based approach to
linguistic approximation translates into (1), i.e. into finding such an element inT (V ), for which the distanced of
its fuzzy-number meaning to the approximated fuzzy outputO is minimal.

TO = arg min
Ti∈T (V)

d(Ti, O) (1)
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We need to stress here, that the linguistic approximation is not always able to preserve all the information
carried out by the approximated output (hence “approximation”). We, however, need to make sure, that the most
important characteristics of the approximated objects are not distorted too much. In the context of gains/losses, we
would at least expect a clear loss not to be assigned a “gain” label and vise-versa. The outcome of the linguistic
approximation obviously depends on the linguistic variable used in the process and on the definition of the meaning
of its linguistic values. In this paper, we assume two different general types of linguistic scales for the purpose (the
meanings of the linguistic values of both of them are summarized in Figure 1). The first linguistic scale assumes
a decision maker not distinguishing in the loss domain, while the other one assumes that losses and gains are
partitioned in a similar manner, the red lines represent the loss/gain threshold.

Figure 1: The scales used for linguistic approximation of the outputs of mathematical models representing finan-
cial values (e.g. NPV of a project, etc.) or future cash flow estimates. The case represented in the top figure does
not differentiate in the area of losses, the bottom linguistic scale differentiates in the area of losses in the same way
as in gains.

Obviously the other crucial factor influencing the outcome of the approximation is the distance measure used.
One of the frequently used distance measures of fuzzy numbers is thedissemblance indexof fuzzy numbersA and
B, d1(A,B), defined by the formula (2). The dissemblance index requires bothA andB to be fuzzy numbers,
which is not a problem, since the meanings of the linguistic values of the approximating linguistic variable are
usually represented by fuzzy numbers and the approximated object can be expected to be a fuzzy number as well.
Without any loss of generality we use the dissemblance index in a non-normalized form, if needed, it can be
normalized so that its value lies within the[0, 1] interval, i.e.d1(A,B)/2 (b − a) ∈ [0, 1] for A,B ∈ FN ([a, b]).
Note, that in the gain/loss domain, we are expecting the outputs of the mathematical models to be fuzzy quantities
(e.g. represented by triangular fuzzy numbers).

d1(A,B) =
∫ 1

0

|a(α) − b(α)| + |a(α) − b(α)| dα, (2)

Using d1 and the top linguistic scale in Figure 1, we can obtain very counterintuitive results of linguistic
approximations. An example of such a problematic result is presented in Figure 2, where a clear “loss” represented
by the fuzzy numberOut is linguistically approximated by the label “small gain”. Such a mislabelling of an
output can have serious consequences in decision support, since a “gain” label can motivate a different reaction of
the decision maker than would be required for an actual lossOut. Note, that in Figure 2, we haved1(Out, SG) =
a + b <

∫ 1

0
|l(α) − Out(α)|dα < d1(L,Out) =

∫ 1

0
|l(α) − Out(α)| + |l(α) − Out(α)|dα.

We have thus identified an even clearer example of the possible problem with distance-based linguistic approx-
imation, where even though a mathematically sound distance measure and a reasonable linguistic scale is used,
the resulting approximation can completely change the nature of (information carried by) the actual approximated
output. In the next section, we investigate how serious this problem is for the dissemblance index and compare the
performance of this distance measure with another distance measure - namely the modified Bhattacharyya distance
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Figure 2: A graphical representation ofd1(Out, SG) represented by the blue shapes a) and b). Note, that
a =

∫ 1

0
|Out(α) − sg(α)|dα, b =

∫ 1

0
|Out(α) − sg(α)|dα anda + b = d1(Out, SG). Clearlyd1(Out, SG) <

d1(Out, L) and thus “small gain” is considered to be a better linguistic approximation forOut than “loss”, even
thoughOut is completely in the loss domain.

of fuzzy numbersd2, which can be computed in the following way:

d2(A,B) =
[
1 −

∫

U

(A∗(x) ∙ B∗(x))1/2dx
]1/2

, (3)

whereA∗(x) = A(x)/Card(A) andB∗(x) = B(x)/Card(B). We also investigate how a change in the linguistic
scale used for the approximation influences the results of the approximation and the performance (and appropri-
ateness) of both distance measures.

Figure 3: Results of the numerical experiment for the linguistic scale not differentiating in the loss domain.
Each point represents one symmetrical triangular fuzzy numberOi, Supp(Oi) ⊆ [−r, 0], i = 1, . . . , 125 000,
characterized by its center of gravity (x-coordinate, the[−r, r] universe is just linearly transformed to[0, 1]) and
the cardinality of its support (y-coordinate). The colour represents the result of the linguistic approximation: blue
for lossand green forsmall gain. Results are presented for the linguistic approximation usingd1 (left plot, 103
758 fuzzy numbers approximated correctly as losses, 21 242 incorrectly as gains) andd2 (right plot, 123 484 fuzzy
numbers approximated correctly as losses, 1 516 incorrectly as gains).

4 Numerical analysis and discussion of the results
To stress the magnitude of the problem of possible mislabelling of “losses” by a “gain” label, we will consider
only fuzzy-number outputs of the mathematical model to be approximated which are completely in the domain of
losses, i.e. for which the whole support lies in the loss domain. To simplify the analysis, we will also assume the
approximated objects are symmetrical triangular fuzzy numbers. Using the same approach as in [17], a total of
125 000 symmetrical triangular fuzzy numbersOi were generated,i = 1, . . . , 125 000, which uniformly cover the
[−r; 0] universe, wherer represents the maximum expected gain and−r the maximum expected loss. The results
of the numerical experiment using the top linguistic scale from Figure 1 are presented in Figure 3. Almost 17%
of the triangular fuzzy numbers representing a clear loss are mislabelled as gains using the dissemblance index.
Note also, that low-uncertain fuzzy numbers can still be labelled as gains, even though their COG is close to the
middle of[−r; 0] interval. The dissemblance index clearly is not a good choice with a linguistic scale which treats

Mathematical Methods in Economics 2017

729



gains and losses asymmetrically, since the large cardinality of theL fuzzy number distorts the computations. On
the other hand the use of Bhattacharyya distance in this case can significantly reduce the risk of mislabeling - see
that only about 1.5% of the clear loss fuzzy outputs were labelled as gains - all of them with low cardinality and
COG close to the loss/gain threshold.

Figure 4: Results of the numerical experiment for the linguistic scale differentiating in the loss domain in the
same way as in the gains domain. Each point represents one symmetrical triangular fuzzy numberOi, Supp(Oi) ⊆
[−r, 0], i = 1, . . . , 125 000, characterized by its center of gravity (x-coordinate, the[−r, r] universe is just linearly
transformed to [0,1]) and the cardinality of its support (y-coordinate). The colour represents the result of the
linguistic approximation: blue forvery large loss, green forlarge loss, black for lossand purple forsmall loss.
Results are presented for the linguistic approximation usingd1 (left plot, 12 620 timesV LL, 49 616 timesLL, 55
278 timesL , 6 972 timesSL and in 514 cases two loss labels were suggested with the same distance toOi) and
d2 (right plot, 11 862 timesV LL, 50 387 timesLL, 55 278 timesL , 6 972 timesSL and in 501 cases two loss
labels were suggested with the same distance toOi).

The same analysis was also performed for the symmetrical linguistic scale presented in the bottom part of
Figure 1. The results are presented in Figure 4. For a symmetrical underlying linguistic scale the differences
between the distance measures are almost nonexistent. Also note, that a gain label was never assigned for a
symmetrical triangular fuzzy number representing a clear loss.

We can clearly see that both the selection of the linguistic scale and the selection of the distance method can
significantly influence the results of the linguistic approximation. As Bhattacharyya distance favours supersets, it
seems to be a method of choice for the use with linguistic scales which are not symmetrical with respect to the
loss/gain threshold. On the other hand the selection of a symmetrical linguistic scale can get rid of the mislabelling
problem between gains and losses and renders the performance of the two investigated distance measures almost
identical.

5 Conclusion
This paper investigates the performance of two different distance measures of fuzzy numbers in the distance-based
linguistic approximation of fuzzy numbers representing uncertain sums of money in the gain/loss framing. It pro-
vides a clear example of possible mislabeling problem, where as a result of the choice of a selection of an improper
distance measure losses can be linguistically labelled as gains (and by the same logic gains as losses). In the context
of the findings of prospect theory, this presents a significant problem in decision support, since gains and losses
can motivate different decision strategies. A numerical analysis of this problem is performed and two possible
solutions of the problem - the use of symmetrical linguistic scales or the use of Bhattacharyya distance method
are suggested. The paper presents a first step in the investigation of the performance of linguistic approximation
methods in the gain/loss domain, the investigation of the role of other distance and similarity measures as well as
the implications of different formats of linguistic scales will be the natural next steps of this research stream.
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[11] Stoklasa, J., and Talá̌sek, T.: On the use of linguistic labels in AHP: calibration, consistency and related

issues. In:Proceedings of the 34th International Conference on Mathematical Methods in Economics. Tech-
nical University of Liberec, Liberec, 785–790.
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Distance-based linguistic approximation methods: graphical
analysis and numerical experiments

Tomáš Talášek1, Jan Stoklasa2

Abstract. Linguistic approximation (LA) as a tool for converting the outputs of
mathematical models into linguistic terms or expressions is a crucial tool in linguistic
fuzzy modelling. The success of the models depends significantly on the ability of the
users of these models to understand well enough the outputs provided by the models.
Linguistic approximation offers a natural language for conveying information. On
the other hand it is still an approximation of the original results and as such, there is
information distortion taking place.
In this paper we study several distance-based linguistic approximation methods and
analyse their performance in terms of LA for Mamdani-type outputs of mathematical
models using a numerical experiment. We provide graphical summaries of the perfor-
mance of these distance measures in LA as well as the frequencies of choosing specific
linguistic labels considered to be the values of an extended linguistic scale. We discuss
the differences in the focus of these methods and its implications for their usability.
The paper strives to increase understanding of the LA methods and to contribute to
the creation of a LA road map for practical use.

Keywords: Linguistic approximation, numerical experiment, distance-based meth-
ods, graphical analysis, Mamdani, fuzzy.

JEL classification: D81, C44
AMS classification: 90B50, 91B06

1 Introduction
Mathematical models for decision support and mathematical models representing expert knowledge frequently
provide outputs in the form of fuzzy numbers or intervals (see e.g. [3, 7, 11, 15, 22]). In such cases when
uncertainty is present, it might be convenient to provide the decision makers also with linguistic summaries of
these results. Linguistic fuzzy modelling applying appropriate linguistic approximation (see e.g. [2, 6, 12, 25, 27]
for some linguistic approximation techniques examples) can thus help to enhance the understandability of the
outputs. Since the process of linguistic approximation can distort the information that is being approximated -
note that the most fitting linguistic label from a usually small set of available well understood labels is assigned
- a thorough investigation of the process of LA is needed. The research in this area has already started from the
theoretical [4, 26] and behavioral [13, 16, 24] perspective and also from the perspective of the performance of LA
methods in various contexts [18, 23, 19, 20]. Also alternative uses of LA were studied recently [14, 17, 21]. Most
of the recent studies of LA methods and their applicability focus on the approximation of rather simple objects -
i.e. fuzzy numbers (and frequently of the triangular or rectangular type). More general types of outputs, such as
the outputs of Mamdani fuzzy inference [8] remain unaddressed. This paper strives to suggest the first step toward
the analysis of the performance of LA methods in connection with Mamdani-type outputs.

2 Preliminaries
Let U be a nonempty set (the universe of discourse). A fuzzy set A on U is defined by the mapping A : U → [0, 1].
A family of all fuzzy sets on U is denoted by F(U). For each x ∈ U the value A(x) is called a membership
degree of the element x in the fuzzy set A and A(.) is called a membership function of the fuzzy set A. Ker(A) =
{x ∈ U |A(x) = 1} denotes a kernel of A, Aα = {x ∈ U |A(x) ≥ α} denotes an α-cut of A for any α ∈ [0, 1],
Supp(A) = {x ∈ U |A(x) > 0} denotes a support of A. Let A and B be fuzzy sets on the same universe U . We
say that A is a fuzzy subset of B (A ⊆ B), if A(x) ≤ B(x) for all x ∈ U .

A fuzzy number is a fuzzy set A on the set of real numbers which satisfies the following conditions: (1)
Ker(A) 6= ∅ (A is normal); (2) Aα are closed intervals for all α ∈ (0, 1] (this implies A is unimodal); (3) Supp(A)
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is bounded. A family of all fuzzy numbers on U is denoted by FN (U). A fuzzy number A is said to be defined on
[a,b], if Supp(A) is a subset of the interval [a, b]. Real numbers a1 ≤ a2 ≤ a3 ≤ a4 are called significant values
of the fuzzy number A if [a1, a4] = Cl(Supp(A)) and [a2, a3] = Ker(A), where Cl(Supp(A)) denotes a closure of
Supp(A). Each fuzzy number A is determined by A =

{
[a(α), a(α)]

}
α∈[0,1], where a(α) and a(α) is the lower

and upper bound of the α-cut of fuzzy number A respectively, ∀α ∈ (0, 1], and the closure of the support of A
Cl(Supp(A)) = [a(0), a(0)]. The cardinality of fuzzy number A on [a, b] is a real number Card(A) defined as
follows: Card(A) =

∫ b
a
A(x)dx. A union of two fuzzy sets A and B on U is a fuzzy set (A ∪B) on U defined as

folllows: (A ∪ B)(x) = min{A(x), B(x)} and a Łukasiewicz union of two fuzzy sets A and B on U is a fuzzy
set (A ∪L B) on U defined as follows: (A ∪L B)(x) = min{1, A(x) + B(x)}, ∀x ∈ U . Let A1, . . . , An be a
fuzzy sets on U1, . . . , Un respectively. The Cartesian product of A1, . . . , An is a fuzzy set (A1 × · · · × An) on
U1× · · ·×Un with membership function (A1× · · ·×An)(x1, . . . , xn) = min{A1(x1), . . . , An(xn)}, ∀xi ∈ Ui.
A fuzzy set R on U1 × · · · × Un is called an n-ary fuzzy relation. Let R be a fuzzy relation on U × V and S
be a fuzzy relation on V ×W . The composition (R ◦ S) is a fuzzy set on U ×W a with membership function
(R ◦ S)(x, z) = supy∈V min{R(x, y), S(y, z)}, ∀x ∈ U, z ∈W.

The fuzzy number A is called linear if its membership function is linear on [a1, a2] and [a3, a4] and a1 6= a4;
for such fuzzy numbers we will use a simplified notation A = (a1, a2, a3, a4). A linear fuzzy number A is said
to be trapezoidal if a2 6= a3 and triangular if a2 = a3. We will denote triangular fuzzy numbers by ordered
triplet A = (a1, a2, a4). Triangular fuzzy number A = (a1, a2, a4) is called symmetric triangular fuzzy number if
a2 − a1 = a4 − a2. More details on fuzzy numbers and computations with them can be found for example in [5].

A fuzzy scale on [a, b] is defined as a set of fuzzy numbers T1, T2, . . . , Ts on [a,b], that form a Ruspini fuzzy
partition (see [10]) of the interval [a, b], i.e. for all x ∈ [a, b] it holds that

∑s
i=1 Ti(x) = 1, and the T ’s are

indexed according to their ordering. A linguistic variable ([27]) is defined as a quintuple (V, T (V), X,G,M),
where V is a name of the variable, T (V) is a set of its linguistic values (terms), X is an universe on which the
meanings of the linguistic values are defined, G is an syntactic rule for generating the values of V and M is a
semantic rule which to every linguistic value A ∈ T (V) assigns its meaning A = M(A) which is usually a
fuzzy number on X . Linguistic variable (V, T (V), X,G,M) is called a linguistic scale on [a, b] if X = [a, b],
T (V) = {T1, . . . , Tn} and Ti = M(Ti), i = 1, . . . , n form a fuzzy scale on [a, b]. Fuzzy scale is called uniform
when Card(Supp(Ti)) = 2 · (b− a)/(n− 1) for all i = 2, ..., n− 1,Card(Supp(Ti)) = (b− a)/(n− 1) for i = 1
and i = n, Ti form a Ruspini fuzzy partition of U , and T2, . . . , Tn−1 are symmetrical triangular fuzzy numbers.
Linguistic terms {T1, . . . , Tn} of linguistic scale T (V) are called elementary (level 1) terms of linguistic scale.
Linguistic scale using additional linguistic terms Ti to Tj where i = 1, . . . , n− 1, j = 2, . . . , n and i < j (called
derived linguistic terms) is called extended linguistic scale; M(Ti to Tj) = Ti∪LTi+1∪L · · ·∪LTj . The extended
linguistic scale thus contains linguistic values of different levels of uncertainty – from the possibly least uncertain
elementary terms {T1, . . . , Tn} to the most uncertain linguistic term T1 to Tn (uncertainty can be assessed by the
cardinality of the meanings of these linguistic terms). Derived linguistic terms Ti to Tj are called level j − i + 1
terms and can be also denoted by Tij .

Let Out be a fuzzy number on [a, b] and (V, T (V), [a, b], G,M) be a linguistic variable such that T (V) =
{T1, . . . , Ts} and Ti = M(Ti), i = 1, . . . , s, are fuzzy numbers on [a, b]. The linguistic approximation of fuzzy
number Out is a process of searching for a suitable linguistic term TOut from T (V) which describes the meaning
of the fuzzy number Out the best. One of the most popular approaches to finding the linguistic term TOut is using
the “best-fit” approach:

TOut = arg min
i∈{1,...,s}

d(Ti, Out), (1)

where d(A,B) is a distance measure3 of two fuzzy numbers A and B.

3 Definition of a problem
As was outlined in the introduction, our investigation aims on the Mamdani-type outputs and their linguistic ap-
proximation. More specifically we aim on the linguistic approximation of the outputs of Mamdani fuzzy inference.
Let us consider m linguistic scales (Vj , T (Vj), Xj , Gj ,Mj), j = 1, . . . ,m, representing the inputs of the fuzzy
inference system and an output linguistic scale (W, T (W), Y,GW ,MW). Let us also consider a collection of n
rules representing the relationships between the input and output variables in the form:

If V1 is Ai1 and . . . and Vm is Aim, thenW is Bi,
where Aj1 ∈ T (Vj) and Bi ∈ T (W), Mj(Aij) = Aij and MW(Bi) = Bi for i = 1, . . . , n, j = 1 . . . ,m. The
output Out of Mamdani fuzzy inference computed for the input (A′1 × · · · × A′m), A′j ∈ F(Xj), j = 1, . . . ,m,
3Alternatively a similarity measure of two fuzzy numbers can be used. In this case, the arg min function in formula
(1) is replaced by arg max.
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using the fuzzy rule base R consisting of n fuzzy rules, R =
⋃n
i=1(Ai1 × · · · ×Aim ×Bi) is computed by (2).

Out = (A′1 × · · · ×A′m) ◦
n⋃

i=1

(Ai1 × · · · ×Aim ×Bi). (2)

A sample output of this type is presented in Figure 1. ClearlyOut does not need to be a convex fuzzy set any more.
In this paper only normal Mamdani-type outputs are considered. The convexity of Out is not required. To find
the linguistic approximation of Out, two distances of fuzzy sets that do not require convexity will be compared in
terms of their performance in LA:
• modified Bhattacharyya distance [1]:

d1(A,B) =
[
1−

∫ b

a

(A∗(x) ·B∗(x))1/2dx
]1/2

, (3)

where A∗(x) = A(x)/Card(A) and B∗(x) = B(x)/Card(B),
• Fuzzy distance [9]:

d2(A,B) =

∫ b
a
| A(x)−B(x) |

Card(A) + Card(B)
. (4)

4 Numerical analysis and discussion of the results
The numerical analysis of the performance of d1 and d2 in linguistic approximation of Mamdani-type outputs
will be carried out under the assumption of a 5-element uniform linguistic scale representing the meanings of the
elementary terms of the output variable by triangular fuzzy numbers {B1, . . . , B5} = {(0, 0, 0.25), (0, 0.25, 0.5),
(0.25, 0.5, 0.75), (0.5, 0.75, 1), (0.75, 1, 1)} as presented in Figure 1. This assumption results in no loss of gener-
ality, as the results are generalisable for any number of elementary terms larger than 4, as long as their meanings
form a uniform Ruspini partition on the given universe. More specifically an extended scale defined using ele-
mentary linguistic terms {B1, . . . ,B5} is assumed for the purposes of LA. We also restrict our investigation to the
linguistic approximation of the outputs the type Out = hL · Bk−1 ∪ Bk ∪ hR · Bk+1 for hL, hR ∈ [0, 1] and
k = 3, . . . , t− 2, where t is the number of elementary terms inW .

Figure 1: An example of a Mamdani-type output. This type of outputs of Mamdani fuzzy inference models is
considered to be linguistically approximated in this paper. B1, . . . , B5 are the meanings of the elementary linguistic
values of the output linguistic variable used for the linguistic approximation.

For the purpose of systematic investigation of the behavior of LA under fuzzy distances d1 and d2, 501 uni-
formly distributed values of hL and hR from interval [0, 1] were generated. This way, 251 001 Mamdani-type
fuzzy sets {Out1, . . . , Out251001} were generated and linguistically approximated. Note, that each fuzzy set
Outi, i = 1, . . . , 251 001 can be unambiguously described by a 2-tuple (hL, hR). The results of the linguistic
approximation using fuzzy distances d1 and d2 are depicted in Figures 2 and 3 respectively. The result of the
linguistic approximation (i.e. the resulting element of the extended scale) for each approximated Mamdani-type
output represented as a point with coordinates (hL, hR), is represented by a specific color.

It can by clearly seen from Figures 2 and 3 that although both fuzzy distances assign only four linguistic terms
B3,B23,B34 and B24, the results of LA are significantly different for each fuzzy distance. The Bhattacharyya
distance favors linguistic terms the meanings of which are supersets to the linguistically approximated fuzzy set
Outi, i = 1, . . . , 251 001; only 1.33% of fuzzy sets are linguistically approximated by the elementary term B3
using the Bhattacharyya distance d1 (in the case of fuzzy distance d2 it is more than 15%). Moreover, when the
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value of hL or hR is higher than 0.13, the term B3 is never assigned based on d1. Higher uncertainty of Out thus
implies that an at least level-2 term will be assigned as a linguistic approximation using the Battacharyya distance.
Also linguistic terms B23,B34 are not used often – each of them is used in less than 9% of the cases. That is
caused by the fact, that when both hL and hR are higher than 0.135 simultaneously, the only possible outcome of
LA is B24 (i.e. a level-3 term). Actually, more than 80.7% of the approximated fuzzy sets are approximated by
the term B24. This only confirms the findings obtained in [20] that Bhattacharyya distance tends to suggest such
approximating labels that tend to be supersets of the approximated object meaning-wise.

On the contrary the fuzzy distance d2 divided the space of the approximated fuzzy numbers Outi, i =
1, . . . , 251 001 into four rectangular-like areas (see Figure 3) with respect to the result of the linguistic approxima-
tion. Note that all four possible outcomes of the linguistic approximation are suggested with similar frequencies.
Linguistic terms B23,B34 are both assigned to almost 25% of the approximated fuzzy sets. Linguistic term B24 (the
most uncertain term that is used) is assigned to 35% of approximated fuzzy sets. Note that for hL = hR ≈ 0.366
we obtain a fuzzy set that can be linguistically approximated by all four linguistic terms B3,B23,B34 and B24
(the fuzzy distance d2 between this fuzzy set and the meaning of each of the four linguistic terms considered is
the same). This could be a potential handicap of this fuzzy distance due to the fact, that just a small change of
hL and/or hR around this point could result in a different linguistic label from the set {B3,B23,B34,B24}. Only
limited number of approximated fuzzy sets results into ambiguous cases, when the LA was unable to assign proper
linguistic term (10 fuzzy sets in the case of d1 and 22 in the case of d2, see Table 1). These ambiguous cases are
depicted in the Figures 2 and 3 by yellow color. Note, that in fact the borders between the pairs of differently
colored areas are always constituted by ambiguous cases. Due to the chosen mesh just some of the ambiguous
cases manifested themselves in the numerical analysis.

Thus if the meaning of the linguistic approximation is required to be a superset to the approximated fuzzy set, it
is more reasonable to choose Bhattacharyya distance d1 over d2. The requirement of supersets is a “safe” approach
to linguistic approximation, since the reduction of uncertainty is not significant (in fact the approximating fuzzy
set is frequently more uncertain). This can, however, lead to the situations where most of the approximated fuzzy
sets will be labeled by the same linguistic term. The fuzzy distance d2 uses the available linguistic terms of the ap-
proximating extended linguistic scale more uniformly, which results in low-uncertain outputs being approximated
by a low uncertain linguistic term (but under a larger risk that a part of the approximated fuzzy output will not be
covered well by the selected linguistic approximation, i.e. the intersection of the meaning of the approximating
term and the output will be nonempty).

Figure 2: The results of the linguistic approximation of fuzzy sets {Out1, . . . , Out251001} using Bhattacharyya
distance d1. Approximated Mamdani-type fuzzy sets are represented by points with coordinates (hL, hR). The
color of each point represents the linguistic approximation of the corresponding fuzzy set. Ambiguous cases (when
more than one linguistic term is suggested based on d1) are depicted using yellow color.
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Figure 3: The results of the linguistic approximation of fuzzy sets {Out1, . . . , Out251001} using Fuzzy distance
d2. Approximated Mamdani-type fuzzy sets are represented by points with coordinates (hL, hR). The color of
each point represents the linguistic approximation of the corresponding fuzzy set. Ambiguous cases (when more
than one linguistic term is suggested based on d2) are depicted using yellow color.

B3 B23 B34 B24 Ambiguous
d1 3 329 22 541 22 541 202 580 10
d2 37 948 61 806 61 806 89 419 22

Table 1: Frequencies of assignment of linguistic terms {B3,B23,B34,B24} and Ambiguous cases obtained for
fuzzy sets {Out1, . . . , Out251001} in the linguistic approximation using d1 and d2. Unlisted linguistic terms (e.g.
B1,B13, . . . ) were not assigned to any approximated Mamdani-type fuzzy set.

5 Conclusion
Mamdani-type fuzzy sets are most frequently obtained through Mamdani fuzzy inference systems. These sys-
tems are represented by a set of fuzzy IF-THEN rules which can be formulated linguistically. As such these
systems present a useful tool for the descrtiption and investigation of economical phenomena and rather complex
systems. This paper investigates the performance of linguistic approximation of Mamdani-type outputs [8] un-
der two different fuzzy distance measures. The results of this numerical analysis clearly show, that the choice of
the fuzzy distance measure can significantly affect the results of linguistic approximation. In the paper we have
identified several important properties that could help the users of mathematical models choose the most suitable
fuzzy distance measure. First, although it is not frequently studied in the literature, linguistic approximation of
Mamdani-type fuzzy sets can be done, even within the “best-fit” LA context. Second, performance of the LA can
be customized by an appropriate choice of the distance measure - d1 is more prone to suggest a superset meaning-
wise, d2 suggests LA closer in terms of cardinality. This paper is the initial step of exploring the results of LA of
Mamdani-type outputs under different fuzzy distance/similarity measures.
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[3] Collan, M., Stoklasa, J., and Talašová, J.: On Academic Faculty Evaluation Systems: More than just Simple
Benchmarking. International Journal of Process Management and Benchmarking 4 (2014), 437–455.

[4] Degani, R., and Bortolan, G.: The problem of linguistic approximation in clinical decision making. Interna-
tional Journal of Approximate Reasoning 2 (1988), 143–162.

[5] Dubois, D., and Prade, H., eds.: Fundamentals of Fuzzy Sets. Kluwer Academic Publishers, Massachusetts,
2000.

[6] Eshragh, F., and Mamdani, E. H.: A general approach to linguistic approximation. International Journal of
Man-Machine Studies 11 (1979), 501–519.
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[23] Talášek, T., Stoklasa, J., and Talašová, J.: The role of distance and similarity in Bonissone’s linguistic approx-
imation method a numerical study. In: Proceedings of the 34th International Conference on Mathematical
Methods in Economics. Technical University of Liberec, Liberec, 845–850.
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Abstract: Linguistic approximation is a mathematical tool that transforms outputs of mathematical models (in 

the form of real numbers, intervals, fuzzy sets, etc.) into natural language. It therefore allows for the 

presentation of results of decision-support models in natural language in the final step of decision support. This 

is a crucial step especially for complex mathematical models whose results can be hard-to-interpret for non-

experienced users (managers, laymen). For them the linguistic approximation provides easy-to-understand 

alternative outputs of mathematical models. The paper strives to suggest an analytical framework to select the 

appropriate method for linguistic approximation based on numerical experimentation and graphical summaries 

of outputs. One distance measure of fuzzy sets is selected to show the applicability of the proposed analytical 

framework. The goal is to provide managers and practitioners in economics and finance with results they can 

understand and apply. 
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1. Introduction 

Linguistic approximation is a process of transforming mathematical outputs (i.e. numbers, intervals, 

fuzzy numbers) into a more natural form understandable by managers/laymen - natural language. 

This step may be crucial especially in some decision-support models, where the outputs of 

mathematical models are complex and cannot be interpreted by non-experienced users without the 

risk of misunderstanding or misinterpretation. In these cases, a proper linguistic label is often more 

understandable than numbers. In other words, linguistic summaries might be better understandable 
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for laymen users and hence more appropriate for them - even though the transition into natural 

language might introduce some uncertainty and/or bias into the situation (Stoklasa, Talášek and 

Musilová). However, the outcome of linguistic approximation may depend heavily on the selection of 

approximating method or the distance/similarity measure within the method. Therefore it is 

necessary to examine the appropriateness of the selected linguistic approximation methods for the 

selected decision-support model in sufficient detail. Studies in this topic have started to appear 

recently (Talášek and Stoklasa, 2016; Talášek and Stoklasa, 2017; Talášek, Stoklasa and Talašová, 

2016) , none of them, however, addresses directly the issue of the definition of an ideal and its 

possible impact on the appropriateness of linguistic approximation methods or their results. It is the 

aim of this paper to fill this gap with a suggestion of an analytical framework and a case study of one 

linguistic approximation method under a specific fuzzy distance measure. 

More specifically, we introduce the analytical framework for the examination of behaviour of the 

best-fit linguistic approximation method, which is based on distance/similarity measures (Stoklasa, 

2014; Yager, 2004). In contrast with other approaches to the analysis of linguistic approximation 

methods (Talášek and Stoklasa, 2016; Talášek and Stoklasa, 2017), this paper does not consider 

linguistic variables or linguistic scales (Zadeh, 1975) to provide values for the linguistic 

approximation. Instead, it focuses on the appropriateness of assigning a single, but very relevant and 

frequently used linguistic label: “THE BEST” or “IDEAL” (i.e. it considers such situations, where an 

ideal is defined and used as a benchmark). As such, the results are relevant not only for the purpose 

of the analysis of appropriateness of particular fuzzy distances or similarities in linguistic 

approximation, but also in the context of evaluation based on the distance from ideal (such as e.g. 

TOPSIS). For the simplicity and without loss of generality, the framework will be illustrated on one of 

the popular distances used in linguistic approximation - the dissemblance index (Kaufman and Gupta, 

1985). 

 

2. Preliminaries 

Let 𝑈 be a nonempty set (the universe of discourse). A fuzzy set 𝐴 on 𝑈 is defined by the mapping 

𝐴 ∶ 𝑈 → [0,1]. For each 𝑥 ∈ 𝑈  the value 𝐴(𝑥) is called a membership degree of the element 𝑥 in the 

fuzzy set 𝐴 and 𝐴(. ) is called a membership function of the fuzzy set 𝐴. Ker(𝐴) = {𝑥 ∈ 𝑈|𝐴(𝑥) = 1} 

denotes a kernel of 𝐴, 𝐴𝛼 = {𝑥 ∈ 𝑈|𝐴(𝑥) ≥ 𝛼} denotes an α-cut of 𝐴 for any 𝛼 ∈ [0,1], Supp(𝐴) =

{𝑥 ∈ 𝑈|𝐴(𝑥) > 0} denotes a support of 𝐴. Let 𝐴 and 𝐵 be fuzzy sets on the same universe 𝑈. We say 

that 𝐴 is a fuzzy subset of (𝐴 ⊆ 𝐵), if 𝐴(𝑥) ≤ 𝐵(𝑥) for all 𝑥 ∈ 𝑈. 

A fuzzy number is a fuzzy set 𝐴 on the set of real numbers which satisfies the following conditions: 

(1) Ker(𝐴) ≠ ∅ (𝐴 is normal); (2) 𝐴𝛼 are closed intervals for all 𝛼 ∈ (0, 1] (this implies 𝐴 is unimodal); 

(3) Supp(𝐴) is bounded. A fuzzy number 𝐴 is said to be defined on [𝑎, 𝑏], if Supp(𝐴) is a subset of an 

interval [𝑎, 𝑏]. The real numbers 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4 are called significant values of the fuzzy 

number 𝐴 if [𝑎1, 𝑎4] = Cl(Supp(𝐴)) and [𝑎2, 𝑎3] = Ker(𝐴), where Cl(Supp(𝐴)) denotes a closure 

of Supp(𝐴). Each fuzzy number A can be represented as 𝐴 = {𝑎(𝛼), 𝑎(𝛼)}
𝛼∈[0,1]

, where 𝑎(𝛼) and 

𝑎(𝛼) is the lower and upper bound of the 𝛼-cut of fuzzy number 𝐴 respectively, ∀𝛼 ∈ (0,1], and 

[𝑎(0), 𝑎(0)] = Cl(Supp(𝐴)). The centre of gravity of a fuzzy number 𝐴 on [𝑎, 𝑏] (if 𝑎 < 𝑏) is defined 

by the formula COG(𝐴) = ∫ 𝑥 𝐴(𝑥)
𝑏

𝑎
 𝑑𝑥/Card(𝐴). 
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The fuzzy number 𝐴 is called triangular if its membership function is linear on [𝑎1, 𝑎2] and [𝑎3, 𝑎4] 

and 𝑎2 = 𝑎3. Triangular fuzzy numbers will be denoted by 𝐴 = (𝑎1, 𝑎2, 𝑎4). A triangular fuzzy 

number 𝐴 = (𝑎1, 𝑎2, 𝑎4) is called symmetric if 𝑎2 − 𝑎1 = 𝑎4 − 𝑎2. Otherwise it is called assymetric. 

More details on fuzzy numbers and computations with them can be found for example in Dubois and 

Prade (1980). 

 

3. Analytical framework to select the appropriate method for linguistic approximation 

The process of linguistic approximation of the output 𝑂 of a mathematical model can be divided into 

two steps – in the first step, the set of proper linguistic terms/labels (words in natural language) 

describing the possible outputs of models is selected and their meaning (usually in the form of fuzzy 

numbers) is established. The crucial part of this process is that the future users of the model are part 

of this process. In the second step, the linguistic approximation method is selected and the most 

suitable linguistic label is selected (from the set of linguistic terms from first part). In our case, a 

single label “IDEAL” is considered with a meaning represented by a triangular fuzzy number 𝐹 

on [0,1], 𝐹 = (𝑘, 1,1), where  𝑘 ∈ [0,1). 

One of the most common linguistic approximation methods is the so called best-fit approach which 

employs distance/similarity measure of fuzzy sets. In this approach the distances (or similarity) 

between the output 𝑂 and the meaning of each possible linguistic label are computed and then the 

label which meaning is closest (or is the most similar in the case of similarity measure) to the output 

𝑂 is selected as a result from the linguistic approximation (in cases when more than one label are 

selected, further investigation must be done). 

The choice of proper distance/similarity method for the best-fit approach in the second step is crucial 

for the results of linguistic approximation. Different measures have different properties and (from 

the practical point of view) suggest different types of linguistic labels. Therefore it is necessary to 

properly investigate the possible impact of the selected distance/similarity measure on our model 

and its outputs. The presented framework examines the distance of different fuzzy numbers (outputs 

of models) from the fuzzy number 𝐹 representing the “ideal value” of the output of mathematical 

model. This approach differs from other approaches (i.e. Talášek and Stoklasa, 2016; Talášek and 

Stoklasa, 2017) which usually focus on the final result of linguistic approximation, not the distance 

from one particular linguistic term. This approach, however, enables to study the effect of selected 

distance/similarity measure more deeply and offers also evaluation-oriented interpretation. Note, 

that the distance from the ideal solution can be used to define the best alternative or to order the 

alternatives in terms of their closeness to the ideal (provided that the distance/similarity measure 

chosen for this purpose is a suitable one). In the evaluation framework, a reasonable requirement for 

the distance measure 𝐷𝑀 could be, that if an alternative 𝐴 is clearly better than alternative 𝐵, then 

𝐷𝑀(𝐴, 𝐹) ≤ 𝐷𝑀(𝐵, 𝐹). A violation of such assumption could indicate either a wrong choice of the 

distance measure, or a wrong definition of the ideal and its representation 𝐹. 

3.1. Analytical framework 

The presented analytical framework is based on graphical representation of the values of distances 

between different triangular symmetric fuzzy numbers and a fuzzy ideal 𝐹 representing an “ideal 

evaluation” or a “most desired value”. All fuzzy numbers are defined on the [0,1] interval (restriction 
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on [0,1] interval is chosen for the reader’s convenience, however the framework can be used on any 

interval without the loss of generality) . The fuzzy ideal in our framework is a triangular asymmetric 

fuzzy number 𝐹 = (𝑘, 1,1), where 𝑘 ∈ [0, 1].  Usually the values of 𝑘 are chosen as 0.9, 0.95 or 0.99 

and therefore the fuzzy ideal represents a slightly uncertain fuzzy number close to 1. The concept of 

fuzzy ideal is well known and used in decision making methods such as TOPSIS (see e.g. Collan, 

Fedrizzi, and Luukka, 2013) or fuzzy MCDM methods (see e.g. Stoklasa, Talášek and Luukka, 2018; 

Stoklasa, Talášek, Kubátová and Seitlová, 2017). 

One of the reasons why symmetric triangular fuzzy numbers are chosen is because they can be 

unambiguously identified by an ordered 2-tuple representing their centre of gravity and the length of 

their support. Symmetric triangular fuzzy numbers represent uncertain quantities or imprecise 

measurements and as such are frequent objects in mathematical models. In this paper 𝑚 uniformly 

distributed symmetric triangular fuzzy numbers 𝑂𝑖 , 𝑖 = 1,… ,𝑚 representing the possible outputs of 

mathematical model are generated analogously to Talášek and Stoklasa (2017). Cartesian product of 

𝑛 uniformly distributed values of centre of gravity from [0,1] interval and 𝑛 uniformly distributed 

values of the length of support from [0,1] is obtained. This Cartesian product is a set of 𝑛2 2-tuples 

representing symmetric triangular fuzzy numbers. However, the supports of some of these fuzzy 

numbers are not subsets of the [0,1] interval and therefore these fuzzy numbers must be removed 

from the set; the remaining 2-tuples represent the fuzzy numbers 𝑂𝑖, 𝑖 = 1,… ,𝑚. 

After the fuzzy ideal 𝐹 is chosen and 𝑚 symmetric triangular fuzzy numbers are generated, the 

investigated distance/similarity measure is selected and the distance/similarity between 𝐹 and each 

𝑂𝑖, 𝑖 ∈ 1,… ,𝑚 is computed. Then the results are plotted in a 3D graph, where each point represents 

the distance (z-axis) of point 𝑂𝑖 unambiguously represented by the centre of gravity (x-axis) and 

length of its support (y-axis) from the fuzzy ideal 𝐹. Moreover the colour of each point represents the 

distance of this point from fuzzy ideal. Due to this property, the graph can be plotted from the TOP 

view – i.e. the graph could be constructed as 2D graph where z-axis is represented by colours. 

However, it is more convenient to use both graphs sidewise instead of choosing only one of them. 

After the graphs are constructed, the author of the model should inspect the properties of the 

distance/similarity measure and then decide if it is reasonable to use this measure in this particular 

mathematical model. How to inspect the properties is shown in the next chapter using a numerical 

example. 

 

4. Numerical example and discussion 

In this chapter, the usage of the proposed framework will be shown. For this purpose, the fuzzy ideal 

𝐹 and the distance measure that will be investigated must be chosen. The distance measure called 

dissemblance index (Kaufman and Gupta, 1985) was chosen as a representative measure, analogical 

analysis can be done for other distance/similarity measures of fuzzy numbers. The dissemblance 

index 𝑑 of fuzzy numbers 𝐴 and 𝐵 is defined as: 

𝑑(𝐴, 𝐵) = ∫ |𝑎(𝛼) − 𝑏(𝛼)|
1

0

+ |𝑎(𝛼) − 𝑏(𝛼)|𝑑𝛼. 



610 
 

Fuzzy ideal 𝐹 = (0.9,1,1) was chosen due to the fact, that this ideal is more uncertain and therefore 

more reflect fuzziness. Finally, 80 000 uniformly distributed symmetrical triangular fuzzy 

numbers 𝑂𝑖 , 𝑖 ∈ 1,… , 80 000, is generated and the distance between each 𝑂𝑖 and 𝐹 is computed. 

The result of this approach is depicted in Figure 1. From the right subfigure of Figure 1 can be clearly 

seen, that the length of the support does not affect the distance from the ideal 𝐹, i.e. the distance 

from 𝐹 is dependent on the COG only (note, that this is the result of the use of symmetrical 

triangular fuzzy numbers). From the left subfigure we can clearly see, that the distance of 𝑂𝑖 from the 

fuzzy ideal 𝐹, measured by the dissemblance index, changes linearly with respect to the centre of 

gravity of the investigated fuzzy number. The linearity is disrupted only for fuzzy numbers whose 

centre of gravity is situated close to 1 (see the red part of the left subfigure where the linearity is 

disrupted). 

FIG. 1: Results from the numerical example, where the distance between 80 000 symmetric 
triangular fuzzy numbers 𝑶𝒊, 𝒊 = 𝟏,… , 𝟖𝟎 𝟎𝟎𝟎  and fuzzy ideal 𝑭 = (𝟎. 𝟗, 𝟏, 𝟏) is depicted. Each 
point 𝑶𝒊 is represented by its centre of gravity (x-axis) and the length of support (y-axis). The 
distances between points are represented by colours and in the case of the left subgraph also by 
the z-axis. 

 

 

 

To investigate the disruption of linearity, an additional analysis was performed. The symmetric 

triangular fuzzy numbers 𝑂𝑖 were replaced by 1 000 asymmetrical triangular fuzzy numbers 

{𝑃0, 𝑃0.001, 𝑃0.002, … , 𝑃0.999, 𝑃1}, where  𝑃𝑘 = (𝑘, 1,1). In fact, these fuzzy numbers represents 

different alternative definitions of fuzzy ideals. The distance 𝑑 between these fuzzy numbers and the 

fuzzy ideal was computed and the result is plotted in Figure 2. 

From Figure 2 we can clearly see that the closer the value of 𝑘 is to the value 0.9, the lower the 

distance between 𝑃𝑘 and 𝐹 is. Please note, that for the 𝑘 = 0.9 the distance is equal to 0. This is 

expected, because in this case the fuzzy number 𝑃0.9 is equivalent to 𝐹. However, if the value of 𝑘 is 

higher than 0.9, the distance will become positive again. This can be counterintuitive, because now 

the fuzzy number 𝑃𝑘 is a subset of 𝐹, i.e. the fuzzy number 𝑃𝑘 is even closer to number 1 (real-valued 
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ideal result) than the fuzzy ideal 𝐹 but it is evaluated as having a nonzero distance from the fuzzy 

ideal (in other words worse than the fuzzy ideal). We can thus conclude that the dissemblance index 

works well as long as the supports of the outputs of the mathematical model have no intersection 

with the support of the fuzzy-number representation of the ideal. When low-uncertain fuzzy values 

close to 1 are considered, the distance measure starts to provide counterintuitive results. The reason 

is, however, not the distance measure, but the definition of the fuzzy ideal. Note, that defining the 

ideal as (0.9,1,1) we expect the ideal not to be 1 and to be partially uncertain. As long as no value is 

close to the crisp 1, this is not a problem. If, however, values close to 1 are frequent, then the choice 

of the dissemblance index in combination with the definition of the fuzzy ideal is not a good one. This 

very simple combination of a numerical experiment with graphical outputs can provide easy-to-

interpret insights into the ideal-distance pair choice appropriateness and help identify possible 

problems beforehand. 

FIG. 2: Results from the numerical analysis, where the distance between 1 000 asymmetric 
triangular fuzzy numbers {𝑷𝟎, 𝑷𝟎.𝟎𝟎𝟏, 𝑷𝟎.𝟎𝟎𝟐, … , 𝑷𝟎.𝟗𝟗𝟗, 𝑷𝟏}, where 𝑷𝒌 = (𝒌, 𝟏, 𝟏) and fuzzy 
ideal 𝑭 = (𝟎. 𝟗, 𝟏, 𝟏) is depicted. On the x-axis the values of 𝒌 of each fuzzy number 𝑷𝒌 are 
depicted, whereas the y-axis represents the distance from the fuzzy ideal 𝑭. 

 

 

5. Conclusion 

In the paper a new analytical framework for selection of appropriate distance/similarity measure for 

linguistic approximation was proposed. This framework differ from standard framework in a way, 

that it compares the resulting distance between different outputs of mathematical models and so 

called fuzzy ideal – fuzzy number representing the goal. With this framework the author of 

mathematical model could examine the behavior of fuzzy measure more deeply and check if the 

measure possesses the required properties. The applicability of the framework is explained on a 

numerical example where one distance measure is examined and the found results are described. 

Also an additional analysis of found results is presented. 
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Ordering of fuzzy quantities with respect to a fuzzy
benchmark – how the shape of the fuzzy benchmark and the

choice of distance/similarity affect the ordering
Tomáš Talášek1, Jan Stoklasa2

Abstract. To order several outputs of a model represented by fuzzy numbers, we
can define a reference outcome of the model called benchmark (e.g. a fuzzy singleton
when ideals are used as benchmarks). Then the distance (or similarity) between this
reference outcome and each of the fuzzy outputs is used for the ordering of the outputs
of a model. In many cases, however, the benchmark is represented by a fuzzy number
i.e. when an expert estimate of the benchmark is given, or when predictions of future
values are considered.
This paper investigates the consequences of using fuzzy benchmarks for the order-
ing of fuzzy numbers. The paper studies if and how the use of a fuzzy benchmark
with different cardinality may affect the final ordering of fuzzy numbers with respect
to a chosen distance/similarity of fuzzy numbers. Different sets of fuzzy numbers
representing different outputs of models (e.g. fuzzy net present values) are ordered by
several distances/similarities of fuzzy numbers while the definition of the fuzzy bench-
mark changes cardinality-wise. Based on the analysis of the results and their graphical
summaries we identify distances/similarities suitable for use with fuzzy benchmarks.

Keywords: Ordering, fuzzy numbers, fuzzy benchmark, similarity, distance.

JEL classification: D81, C44
AMS classification: 90B50, 91B06

1 Introduction
In fuzzy multiple-criteria evaluation it might be difficult to select the best alternative, since the evaluations of the
alternatives are frequently represented by fuzzy numbers (or even collections of fuzzy numbers). A comparison
with an “ideal” value (see e.g. [2]) could be used to obtain the ordering of the alternatives. Yet for this the
“ideal” has to be defined and an appropriate measure of the distance of the fuzzy-valued evaluation from (or its
similarity with) the “ideal evaluation” has to be chosen. Even though a non-fuzzy ideal value seems to be a
natural choice, many authors decide to use fuzzy ideals (i.e. ideals represented by a fuzzy number) in various
mathematical methods including TOPSIS [5] or selection of human resources [7]. The reasons for this choice vary
from the inability of some distance/similarity measures of fuzzy numbers to work with fuzzy singletons to the
simple statement that since all the evaluations are fuzzy, the ideal should be fuzzy as well. We are not analyzing
the reasonability of this choice in the present paper, though. Our aim is to investigate what are the possible
consequences of the use of fuzzy ideal in the process of determination of the ordering of alternatives represented
by fuzzy evaluations. We depart from the widely accepted alpha-cut ordering of fuzzy numbers and show that
under some circumstances even this “natural” ordering of fuzzy numbers can be contradicted by the results of
a ordering procedure based on the similarity of fuzzy numbers and using a fuzzy ideal. Even more importantly
we show that under the same similarity of fuzzy numbers the ordering of the given fuzzy evaluations can change
simply as a result of the change of the uncertainty of the fuzzy ideal.

2 Preliminaries
Let U be a nonempty set (the universe of discourse). A fuzzy set A on U is defined by the mapping A : U → [0, 1].
For each x ∈ U the value A(x) is called a membership degree of the element x in the fuzzy set A and A(.)
is called a membership function of the fuzzy set A. Ker(A) = {x ∈ U |A(x) = 1} denotes a kernel of A,
Aα = {x ∈ U |A(x) ≥ α} denotes an α-cut of A for any α ∈ [0, 1], Supp(A) = {x ∈ U |A(x) > 0} denotes a
support of A.

A fuzzy number is a fuzzy set A on the set of real numbers which satisfies the following conditions: (1)
1Palacký University Olomouc, Department of Applied Economics, Křı́žkovského 12, Olomouc, Czech Republic,
tomas.talasek@upol.cz.

2Palacký University Olomouc, Department of Applied Economics, Křı́žkovského 12, Olomouc, Czech Republic and
Lappeenranta University of Technology, School of Business and Management, Skinnarilankatu 34, Lappeenranta, Finland,
jan.stoklasa@upol.cz.
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Ker(A) 6= ∅ (A is normal); (2) Aα are closed intervals for all α ∈ (0, 1] (this implies A is unimodal); (3) Supp(A)
is bounded. A fuzzy number A is said to be defined on [a, b], if Supp(A) is a subset of an interval [a, b]. Real
numbers a1 ≤ a2 ≤ a3 ≤ a4 are called significant values of the fuzzy number A if [a1, a4] = Cl(Supp(A))
and [a2, a3] = Ker(A), where Cl(Supp(A)) denotes a closure of Supp(A). Each fuzzy number A is determined
by A =

{
[a(α), a(α)]

}
α∈[0,1], where a(α) and a(α) is the lower and upper bound of the α-cut of fuzzy number

A respectively, ∀α ∈ (0, 1], and the closure of the support of A Cl(Supp(A)) = [a(0), a(0)]. Given two fuzzy
numbers A and B on the same universe U , their natural ordering can be defined based on their α-cuts in the
following way: if Aα ≤ Bα for all α ∈ (0, 1], then A is less or equal to B, denoted A ≤α B.

The fuzzy number A is called linear if its membership function is linear on [a1, a2] and [a3, a4]; for such fuzzy
numbers we will use a simplified notation A = (a1, a2, a3, a4). A linear fuzzy number A is said to be trapezoidal
if a2 6= a3 and triangular if a2 = a3.

Let A be a fuzzy number on [a, b]. Then the cardinality of A, denoted by Card(A) is computed by Card(A) =∫ b
a
A(x)dx. If a1 6= a4, then the center of gravity of A denoted by COG(A) is computed by COG(A) =∫ b

a
xA(x)dx/Card(A). More details on fuzzy numbers and computations with them can be found for example

in [3].

3 Ordering of outputs of mathematical model with respect to a benchmark
Let O = {O1, . . . , On} be a set of n outputs of mathematical model (evaluations), where Oi, i = 1, . . . , n, is a
fuzzy number and let the fuzzy number B be a reference outcome of the model called benchmark (i.e. the desired
output of the model, or in other words a (fuzzy) ideal value). The goal is to order the outputsOi of the mathematical
model with respect to the chosen benchmark B. To reach this goal a distance d(B,Oi) (or similarity s(B,Oi))
between the benchmark B and each output Oi must be computed. Then, the outputs of the model can be ordered
with respect to the computed distances in the ascending order (in the case of similarity, the outputs are ordered in
the descending order).

It is important to keep in mind that the selected distance/similarity of fuzzy numbers affects the output of
the final ordering, because different distances/similarities focus on different attributes of the fuzzy numbers to be
ordered. The definition of the benchmark also plays a significant role (see the following sections). For the purpose
of this paper we investigate two distances of fuzzy numbers (d1 and d2) and two similarities of fuzzy numbers (s1
and s2) - see their definitions for the case of fuzzy numbers C and D defined on the same universe (analogous
measures were analyzed e.g. in [8, 10]):
• A modified Bhattacharyya distance [1]

d1(C,D) =
[
1−

∫

U

(C∗(x) ·D∗(x))1/2dx
]1/2

, (1)

where C∗(x) = C(x)/Card(C(x)) and D∗(x) = D(x)/Card(D(x)). Note that this distance measure requires
Card(C(x)) 6= 0 and Card(D(x)) 6= 0, i.e. neither the fuzzy evaluation nor the fuzzy ideal can be represented
by a fuzzy singleton.

• A dissemblance index [6]

d2(C,D) =

∫ 1

0

|c(α)− d(α)|+ |c(α)− d(α)| dα, (2)

• A Weis and Chens similarity measure [11]

s1(C,D) =
(
1−

∑4
i=1 |ci − di|

4

)
· min{Pe(C), P e(D)}+min{hgt(C), hgt(D)}
max{Pe(C), P e(D)}+max{hgt(C), hgt(D)} , (3)

where Pe(C) =
√
(c1 − c2)2 + (hgt(C))2 +

√
(c3 − c4)2 + (hgt(C))2 + (c3 − c2) + (c4 − c1), Pe(D) is

defined analogically,
• A Hejazi and Doostparast similarity measure [4]

s2(C,D) =
(
1−

∑4
i=1 |ci − di|

4

)
· min{Pe(C), P e(D)}
max{Pe(C), P e(D)} ·

min{Ar(C), Ar(D)}+min{hgt(C), hgt(D)}
max{Ar(C), Ar(D)}+max{hgt(C), hgt(D)} , (4)

where Ar(C) = 1
2hgt(C)(c3 − c2 + c4 − c1), Ar(D) is defined analogically and Pe(C) and Pe(D) are

computed identically as in the previous method.

Ordering of fuzzy quantities with respect to a fuzzy benchmark – how the shape of the fuzzy benchmark and the choice
of distance/similarity affect the ordering
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Figure 1 The selected pairs of fuzzy evaluations to be ordered with respect to a chosen fuzzy ideal. Left subfigure
represents a case where the two fuzzy evaluations cannot be ordered based on the natural α-cut ordering, Right
subfigure represents a case where the D2 ≤α C2. In both cases the shape of the red fuzzy number is the same (it is
a symmetrical triangular fuzzy number with the same cardinality), just the location (i.e. center of gravity) differs.
The blue fuzzy numbers are identical in both subfigures.

Figure 2 Results of the analysis for C1 (blue curves) and D1 (red curves). Top left subfigure summarizes
d1(C1, Bp) in blue and d1(D1, Bp) in red. Top right subfigure summarizes d2(C1, Bp) in blue and d2(D1, Bp)
in red. In both cases whichever curve is the lowest represents the preferred alternative/evaluation w.r.t. the given
value of p. Bottom left subfigure summarizes s1(C1, Bp) in blue and s1(D1, Bp) in red. Bottom right subfigure
summarizes s2(C1, Bp) in blue and s2(D1, Bp) in red. In both cases whichever curve is the highest represents the
preferred alternative/evaluation w.r.t. the given value of p.

Tomáš Talášek, Jan Stoklasa
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Let us, for the sake of simplicity, consider just two pairs of fuzzy evaluations to be ordered. The selected two
pairs are depicted in Figure 1 (similar pairs of fuzzy numbers are analyzed e.g. in [11]). In the next section we
apply the four above-mentioned distance/similarity measures of fuzzy numbers to obtain the ordering of C1 and
D1 and C2 and D2 respectively.

As a benchmark we choose to use a parameterized symmetrical triangular fuzzy number Bp = (p, 0.5, 0.5, 1−
p), p ∈ [0, 0.5) with a center of gravity larger than any of the significant values of the fuzzy numbers to be ordered;
without any loss of generality we set COG(Bp) = 0.5. The cardinality of this fuzzy benchmark is dependent on the
choice of the value of the parameter p (another analysis suggesting to use parametrized fuzzy number to explore
the behaviour of fuzzy distance can be found in [9]). In the next chapter we analyze what ordering is suggested by
(1) - (4) for C1 and D1 and C2 and D2 for any choice of p ∈ [0, 0.5).

4 Analysis of the performance of the selected distance/similarity measures
of fuzzy numbers

Two pairs of fuzzy numbers representing the expected outputs of mathematical model were chosen (see Figure 1):
C1 = (0.10, 0.15, 0.25, 0.3), D1 = (0.15, 0.20, 0.20, 0.25) in its left subfigure and C2 = (0.10, 0.15, 0.25, 0.3),
D2 = (0.10, 0.15, 0.15, 0.20) in its right subfigure. Please note, that fuzzy numbers C1 and C2 represent the
same trapezoidal fuzzy number and fuzzy numbers D1 and D2 have same shape but different center of gravity.
Also note, that fuzzy numbers from the first pair have identical centers of gravity. The left subfigure of Figure 1
thus represents a case where the two fuzzy evaluations cannot be ordered based on their α-cuts, while in the right
subfigure we clearly have D2 ≤α C2. We would thus expect that all four chosen distance/similarity measures will
thus provide the same ordering for C2 and D2, even regardless of the definition of the benchmark Bp. We have
calculated the distances/similarities of the fuzzy evaluations to all the values of the fuzzy ideal Bp, p ∈ [0, 0.5)
for both cases from Figure 1 and present the results graphically in Figures 2 and 3. Note, that for the d1 and
d2 distances (top 2 subfigures in both figures) the lower curve represents the preferred evaluation, while for the
similarities s1 and s2 the higher curve represents the preferred evaluation for the given value of p.

In the Case 1 (fuzzy evaluations C1 and D1) both distances of fuzzy numbers favor the trapezoidal fuzzy
number C1 before triangular fuzzy number D1. However, this applies only for the cases, where the benchmark
Bp has higher cardinality (p is close to 0). When the value of p crosses a certain threshold (different for both
distances), both distances stop discriminating between C1 and D1. In other words when the cardinality of Bp is
low, which results in an empty intersection of Bp with C1 and D1, both fuzzy evaluations are considered equally
distant from the ideal. This is especially evident in the case of the dissemblace index (d2). We, however, need to
keep in mind that C1 and D1 have the same center of gravity and are the very prototype of a pair of fuzzy numbers
that cannot be ordered based on the α-cut ordering. On the other hand similarity s1 and s2 distinguish between
the fuzzy evaluations C1 and D1 even in the cases when p is close to 0.5. However, in both cases there is a value
of p (around 0.4), when the ordering of C1 and D1 switches. For p lower then this threshold, both methods prefer
the trapezoidal fuzzy number C1 (as well as in the case of d1 and d2), but when the cardinality of the benchmark
becomes lower, both method start to preferD1 over C1. This behaviour of the similarity measures can be attributed
to their focus on the shape of the fuzzy numbers being compared - when the cardinality of the fuzzy ideal Bp gets
lower, its shape gets closer to the shape of the triangular C1 evaluation. This would suggest that the similarity
measures focusing on the shape are not the best choice for the ordering of fuzzy evaluations. Their use can be,
however, justified, as long as cardinality (or the amount of uncertainty) of the fuzzy ideal should be well matched
by the best alternative.

For the Case 2 which is represented by the fuzzy numbersC2 andD2 to be ordered, the modified Bhattacharyya
distance d1 provides similar results as in the previous case – the trapezoidal fuzzy number C2 is preferred over
the triangular fuzzy number D2. Unlike in the first case the dissemblace index now favors the trapezoidal fuzzy
number C2 for any value of p. This behaviour is expected because D2 is a subset of fuzzy number C2 and
COG(D2) < COG(C2). The C2 is also preferred over D2 if the similarity s1 is used. And again this preference is
independent on the value of p. However, for the similarity s2 there again exists a threshold, where the preference
is switched. In other words from a certain value of p the similarity s2 gives results directly opposite to those
suggested by the α-cut ordering of the fuzzy evaluations C2 and D2. This is very counterintuitive, but it can still
be explained by the focus of s2 on the shape of the fuzzy numbers that are being compared.

From the above text can be conclude, that the Bhattacharyya distance d1 exhibits consistent behaviour, but can
only order fuzzy numbers, if the benchmark Bp has higher cardinality (p is close to zero). In fact d1 discriminates
(returns a value different from 1) only if the intersection of the fuzzy evaluation with the fuzzy ideal is nonempty.
This might not be a desired property. The Dissemblance index d2 may overcome this disadvantage of d1 in
some cases, but it is still possible that the distances may coincide. However, as shown in Case 1, this happens
in the “difficult to resolve” cases where the inability to distinguish two evaluations might actually be the correct
answer we are looking for (in some cases the values simply cannot be ordered without additional information).
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Figure 3 Results of the analysis for C2 and D2. Top left subfigure summarizes d1(C2, Bp) in blue and d1(D2, Bp)
in red. Top right subfigure summarizes d2(C2, Bp) in blue and d2(D2, Bp) in red. In both cases whichever curve
is the lowest represents the preferred alternative/evaluation w.r.t. the given value of p. Bottom left subfigure
summarizes s1(C2, Bp) in blue and s1(D2, Bp) in red. Bottom right subfigure summarizes s2(C2, Bp) in blue
and s2(D2, Bp) in red. In both cases whichever curve is the highest represents the preferred alternative/evaluation
w.r.t. the given value of p.
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If the similarity of fuzzy numbers is used, it is important to take into consideration, that for different cardinality
of benchmark Bp the ordering could be different; it can even be in conflict with the natural ordering of fuzzy
numbers based on the α-cuts. This is caused due to the construction of these similarities, because they take into
consideration the shape of fuzzy numbers. This is especially visible in the case of s2.

Overall the chosen distance/similarity measures seem to perform better for low values of p, i.e. for fuzzy ideals
with high cardinality. The less uncertain the fuzzy ideal is, the more problems seem to appear - ranging from the
loss of discrimination power in d1 to a complete switch in the ordering of the alternatives when s2 is used. This is
an interesting finding - mainly because fuzzy ideals are often derived by fuzzification from crisp (non-fuzzy) ideal
values just to allow for the use of distances/similarities of fuzzy numbers. Our findings suggest that just adding a
little uncertainty can be counterproductive as long as the ordering of alternatives based on their fuzzy evaluations is
needed. Out of the four analyzed distance/similarity measured the dissemblance index (d2) seems to be performing
best and seems to be the least dependent on the definition of the fuzzy ideal.

5 Conclusion
In the paper we investigate the reasonability of using fuzzy ideals in connection with two chosen distances of
fuzzy numbers and two chosen similarities of fuzzy numbers for the purpose of ordering of fuzzy evaluations. We
show that in many circumstances the resulting ordering depends not only on the choice of the distance/similarity
measure, but also on the definition of the fuzzy ideal. Surprisingly, low-uncertain fuzzy ideals do not seem to
provide appropriate results. The only distance/similarity measure that did not exhibit significant drawbacks under
any definition of the fuzzy ideal is the dissemblance index. Even though this study focuses on just four chosen
distance/similarity measures of fuzzy numbers, it still provides valuable insights into the use of fuzzy ideals in the
evaluation setting.
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Abstract: The linguistic approximation transforms outputs of mathematical models (real numbers, intervals, 

fuzzy numbers,…) into natural language. This is especially useful in situations, when the users lack proper 

mathematical background (managers, laymen) or need to make decisions quickly. However, the performance of 

linguistic approximation depends heavily on the chosen distance of fuzzy numbers.  Verification of the 

appropriateness of the chosen distance measure is thus crucial. Yet methods for the analysis of linguistic 

approximation methods for asymmetrical fuzzy numbers are scarce at best.  In the paper a new visualization 

method for the analysis is proposed and demonstrated on a chosen distance of fuzzy numbers.  The proposed 

method uses three-dimensional histograms to provide understandable overview of the properties of the 

selected linguistic approximation method and visualizes the outcomes of the approximation.  
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Introduction 

The issue of linguistic approximation (LA) has recently received some well-deserved attention in 

various papers (Yager, 2004; Talášek & Stoklasa, 2016). Linguistic approximation can be seen as the 

basis for the ability of transforming mathematical outputs (particularly fuzzy ones) into the 

expressions in common language. As such it opens the doors for the communication of model users 

with the model in a language they understand well. Replacing the formal description of the outputs 

of mathematical models with a natural one provides many benefits (understandability, usability by 

laymen, etc.), but there are also several shortcomings of this transition to “natural language” 

description – the most important of which might be the distortion of information originally present. 

Unfortunately, even the methods recently proposed for the analysis of the appropriateness of LA in 

various contexts and using various distance/similarity measures may provide outputs that are 

difficult to interpret by inexperienced users. This is true particularly when LA of asymmetrical fuzzy 

numbers is considered. In this case the visualization of the results of the analysis can be tricky, since 

the areas of objects approximated by different linguistic terms may be overlapping (Talášek & 

Stoklasa, 2016). In this paper we suggest a 3-D histogram representation of the outputs of LA 

performance analysis for asymmetrical fuzzy numbers. Our goal is to facilitate easy analysis of the 
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appropriateness of LA and to make the results of LA-analytical methods easily interpretable for less-

experienced users. 

1 Preliminaries 

Fuzzy sets were first introduced by Zadeh (1965). This section presents the basic notations of the 

theory of fuzzy sets. Let 𝑈 be a nonempty set (the universe of discourse). A fuzzy set 𝐴 on 𝑈 is 

defined by the mapping 𝐴 ∶ 𝑈 → [0,1]. For each 𝑥 ∈ 𝑈  the value 𝐴(𝑥) is called a membership degree 

of the element 𝑥 in the fuzzy set 𝐴 and 𝐴(. ) is called a membership function of the fuzzy set 𝐴. 

Ker(𝐴) = {𝑥 ∈ 𝑈|𝐴(𝑥) = 1} denotes a kernel of 𝐴, 𝐴𝛼 = {𝑥 ∈ 𝑈|𝐴(𝑥) ≥ 𝛼} denotes an α-cut of 𝐴 

for any 𝛼 ∈ [0,1], Supp(𝐴) = {𝑥 ∈ 𝑈|𝐴(𝑥) > 0} denotes a support of 𝐴.  

A fuzzy number is a fuzzy set 𝐴 on the set of real numbers which satisfies the following conditions: 

(1) Ker(𝐴) ≠ ∅ (𝐴 is normal); (2) 𝐴𝛼 are closed intervals for all 𝛼 ∈ (0, 1] (this implies 𝐴 is unimodal); 

(3) Supp(𝐴) is bounded. A family of all fuzzy numbers on 𝑈 is denoted by F𝑁
(𝑈). A fuzzy number 𝐴 

is said to be defined on [𝑎, 𝑏], if Supp(𝐴) is a subset of an interval [𝑎, 𝑏]. The real numbers 𝑎1 ≤

 𝑎2 ≤  𝑎3 ≤ 𝑎4 are called significant values of the fuzzy number 𝐴 if [𝑎1, 𝑎4] = Cl(Supp(𝐴)) and 

[𝑎2, 𝑎3] = Ker(𝐴), where Cl(Supp(𝐴)) denotes a closure of Supp(𝐴).  

The cardinality of a fuzzy number A on [𝑎, 𝑏] is a real number Card(𝐴) defined as Card(𝐴) =

∫ 𝐴(𝑥)
𝑏

𝑎
𝑑𝑥 and can be considered as a measure of uncertainty of the fuzzy number  𝐴. The centre of 

gravity of a fuzzy number A on [𝑎, 𝑏] for which 𝑎1 ≠ 𝑎4 is defined by the formula COG(𝐴) =

∫ 𝑥 𝐴(𝑥)
𝑏

𝑎
 𝑑𝑥/Card(𝐴). For a fuzzy singleton (A for which 𝑎1 = 𝑎4) we can define COG(𝐴) = 𝑎1. 

The fuzzy number 𝐴 is called linear if its membership function is linear on [𝑎1, 𝑎2] and [𝑎3, 𝑎4]; for 

such fuzzy numbers we will use a simplified notation 𝐴~(𝑎1, 𝑎2, 𝑎3, 𝑎4). A linear fuzzy number 𝐴 is 

said to be triangular if 𝑎2 = 𝑎3. We will denote triangular fuzzy numbers by an ordered triplet 

𝐴~(𝑎1, 𝑎2, 𝑎4). A triangular fuzzy number 𝐴~(𝑎1, 𝑎2, 𝑎4) is called symmetrical if 𝑎2– 𝑎1 = 𝑎4– 𝑎2. 

Otherwise it is called asymmetrical. More details on fuzzy numbers and computations with them can 

be found for example in Dubois and Prade (1980) or Klir and Yuan (1995). 

A fuzzy scale on [𝑎, 𝑏] is defined as a set of fuzzy numbers 𝑇1, 𝑇2, … , 𝑇𝑠 on [𝑎, 𝑏], that form a Ruspini 

fuzzy partition (Ruspini, 1969) of the interval [𝑎, 𝑏], i.e. for all 𝑥 ∈ [𝑎, 𝑏] it holds that ∑ 𝑇𝑖(𝑥) = 1𝑠
𝑖=1  

and the 𝑇's are indexed according to their ordering. A linguistic variable (Zadeh, 1975) is defined as a 

quintuple (V, T(V), 𝑋, 𝐺, 𝑀), where V is the name of the variable, T(V) is the set of its linguistic 

values (terms), 𝑋 is the universe on which the meanings of the linguistic values are defined, 𝐺 is a 

syntactic rule for generating the values of V and 𝑀 is a semantic rule which to every linguistic value 

A ∈ T(V) assigns its meaning  𝐴 = 𝑀(A) which is usually a fuzzy number on 𝑋. A linguistic variable 

is called a linguistic scale, if the meanings of its linguistic values form a fuzzy scale. 

Linguistic scales are frequently chosen as the linguistic variables for LA. LA in general means assigning 

a linguistic value of a given linguistic scale to a given fuzzy object. This is frequently done based on 

the distance or similarity of fuzzy sets – the linguistic value (either of the linguistic scale in its original 

or extended form, or of a subset of its linguistic terms selected in accordance with some criteria) with 

the meaning closest or most similar to the approximated fuzzy object is assigned as the linguistic 

approximation. 
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2 Linguistic approximation of triangular fuzzy numbers 

The linguistic approximation of fuzzy outputs of mathematical model consists of two steps. In the 

first step the set of 𝒏 ≥ 𝟐 appropriate linguistic terms T𝟏, …,T𝒏 (and their meaning represented by 

fuzzy numbers) that suitably represent the possible outputs of mathematical model must be 

specified by the user of the model (therefore it is ensured that the user will understand to final result 

of linguistic approximation). Usually a fuzzy scale is assumed as the underlying structure. In the 

second step the linguistic term T
∗
 (from the set T𝟏, …,T𝒏 ) which represents the output of the 

model best is chosen. The process of choosing the term T
∗
 is studied in the further text. 

One of the frequently used methods of linguistic approximation is the so called “best-fit” approach 

(Talášek and Stoklasa, 2017). In this approach, each linguistic term T𝑖, 𝑖 = 1, … , 𝑛 is represented by a 

fuzzy number 𝑇𝑖 and the distance between this fuzzy number and the output of the model 𝑂𝑢𝑡 is 

computed. The fuzzy number 𝑇∗ that is the closest to the 𝑂𝑢𝑡 is found and the respective linguistic 

term T
∗
 is selected as the result of LA. Instead of the distance it is also possible to use a similarity 

measure – in that case the fuzzy number that is the most similar to 𝑂𝑢𝑡 is found). The problem is that 

there exist various distance measures of fuzzy numbers with various properties and the choice of the 

distance affects the result of linguistic approximation. Therefore, it is critical for the purposes of 

linguistic approximation to know the properties of considered distance measures (and their 

performance in LA) before one of them is selected. 

Talášek et al. (2017) propose a framework for the visualization of the performance of linguistic 

approximation (with chosen distance/similarity measure) of symmetrical triangular fuzzy numbers. In 

this framework, each symmetrical triangular fuzzy number is unambiguously represented by a point 

in the two-dimensional space by its centre of gravity (on the x-axis) and length of the support (on the 

y-axis). The colour of the point represents the resulting linguistic approximation (linguistic term). 

Identical framework is used by Talášek and Stoklasa (2016) for the visualization of the performance 

of linguistic approximation of asymmetrical triangular fuzzy numbers. The problem is that the 

representation is not unambiguous (i.e. fuzzy numbers 𝐴~(1,1,4) and 𝐵~(0,3,3) have same centre 

of gravity and length of support and therefore are represented by the same point in the two-

dimensional space). The authors suggested to split the results into several subfigures (splitting is 

based on the resulted linguistic terms) to ensure that there is no information distortion.  

In the next chapter we propose a different approach to the visualization of the performance of LA on 

asymmetrical fuzzy numbers on a specific example of the Bhattacharyya distance and triangular fuzzy 

numbers. The added value of the proposed approach lies in its ability to estimate relative frequencies 

of assigning specific linguistic terms to fuzzy objects belonging to the given 3-D histogram bin (based 

on its COG and length of support). These estimates can be obtained using any reasonable method for 

the random generation of asymmetrical fuzzy numbers (as long as the method ensures that any 

asymmetrical triangular fuzzy number may be generated; given the specified precision of 

computations). The precision of the estimation is dependent on the number of generated fuzzy 

numbers. Generalization to different distance and similarity measures and to different types of fuzzy 

numbers is straightforward. 
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3 The proposed 3-D histogram visualization method presented on an artificial example 

The presented method will be demonstrated on the distance of fuzzy numbers called modified 

Bhattacharyya distance (Aherne, Thacker & Rockett, 1998): 

𝑑(𝐴, 𝐵) = √1 − ∫ √𝐴∗(𝑥) ⋅ 𝐵∗(𝑥)𝑑𝑥
𝑈

 

where 𝐴∗(𝑥) = 𝐴(𝑥)/Card(𝐴) and 𝐵∗(𝑥) = 𝐵(𝑥)/Card(𝐵). In other words, given a linguistic 

variable the most appropriate LA will be selected as the linguistic value of the variable, for which the 

Bhattacharyya distance of its fuzzy-number meaning to the approximated fuzzy set (fuzzy numbers) 

is the lowest.  

For the purpose of the explanation of the proposed visualization technique a set 𝑂 =

{𝑂1, … , 𝑂100000} of 100 000 triangular asymmetrical fuzzy numbers on [0,1] representing the outputs 

of a mathematical model was randomly generated. The generation of each fuzzy number was done in 

two steps – first, three real numbers from [0,1] interval were randomly generated. Subsequently, 

those numbers were ordered in ascending order and this triplet is used as a base for significant 

values of triangular fuzzy number. This approach to the generation does not guarantee a uniform 

coverage of the universe of all possible triangular asymmetrical fuzzy numbers (fuzzy numbers with 

COG close to 0.5 and with larger supports are more frequent – see FIG. 1). This is, however, not a 

problem in the analysis and graphical representation. 

Two characteristics were chosen to represent the generated fuzzy numbers in a 2-dimensional space: 

COG and the length of support. The first being a representation of location (even though less-

informative in the case of asymmetrical fuzzy numbers) and the second being a measure of 

uncertainty. The universe of COGs of the generated fuzzy numbers (i.e. [0,1]) and the universe of the 

possible lengths of the supports of these fuzzy numbers (i.e. [0,1]) were both uniformly divided into 

25 parts. This results in a 25 times 25 bin 3-D histogram presented in FIG. 1.  

FIG. 1: Three-dimensional histograms of the characteristics of the 100 000 randomly generated 
fuzzy numbers used for the analysis. 25 times 25 bin representation (left), 10 times 10 bin 
representation (right). 
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FIG. 2: Three-dimensional histogram representations of the results of the linguistic approximation 
of asymmetrical triangular fuzzy numbers. The bins are characterized by the COD of the fuzzy 
numbers and by the length of their supports. Each 3-D histogram summarizes the frequencies of 
suggesting the given linguistic term as the appropriate LA for the fuzzy numbers with 
characteristics belonging to the given bin.  
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Five linguistic terms T1, …,T5 that form a linguistic scale were chosen with the respective meanings 

𝑇1~(0, 0,0.25), 𝑇2~(0,0.25,0.5), 𝑇3~(0.25,0.5,0.75), 𝑇4~(0.5,0.75,1), 𝑇5~(0.75,1,1).  

The results of the numerical example can be found in FIG. 2. Note, that FIG. 2 splits the graphical 

summary into five subfigures analogously to Talášek and Stoklasa (2016). Each subfigure of FIG. 2 

represents the relative frequency of assigning the given linguistic term as LA for fuzzy numbers 

belonging to the respective bin. Although the use of histograms introduces a slight loss of 

information w.r.t. the approach proposed by Talášek and Stoklasa (2016), the limited amount of bins 

facilitates the comparison of the subfigures. It is now easy to see whether two corresponding bins in 

different subplots have nonzero height – in such case fuzzy numbers with similar (possibly even 

identical) characteristics can be assigned different linguistic approximations. Even though we have 

lost some information constructing the 3-D histograms (see FIG. 2), we can still obtain the same 

conclusions concerning the performance of Bhattacharyya distance as did Talášek and Stoklasa 

(2016). Note that even for a 10 times 10 bin 3-D histogram we can still clearly see that e.g. the result 

of the LA is less dependent on COG of the approximated fuzzy number when its length of support is 

high (see FIG. 3). In other words the reduction of information does not prevent us from identifying 

the important characteristics that were identified in the full information case (Talášek & Stoklasa, 

2016). Moreover we can now obtain an estimate of the relative frequency of assigning specific 

linguistic terms for each bin. Note that such a piece of information cannot be obtained unless the 

bins are introduced. 

FIG. 3: Three-dimensional histogram summarizes the frequencies of linguistic term T𝟒 as the 
appropriate LA for the fuzzy numbers with characteristics belonging to the given bin. 25 times 25 
bin representation (left), 10 times 10 bin representation (right). The dependence on the length of 
support is apparent for COG close to 0.5 in both subfigures. 

 

 

Conclusion  

The paper deals with the issue of the assessment of performance of linguistic approximation of 

asymmetrical fuzzy numbers. It proposes a 3-D histogram representation of the results of linguistic 

approximation. This representation allows for the estimation of relative frequencies of use of specific 

linguistic terms as linguistic approximation of fuzzy numbers with similar characteristics (COG and 
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length of support define each bin). Even though the construction of histograms slightly distorts the 

information, important patterns are still recognisable.  The proposed method relies on simulation to 

obtain the estimates and as such can be easily implemented with various distance/similarity 

measures and types of asymmetrical fuzzy numbers. 
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